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Quantifying evidence toward pathogenicity for rare
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A B S T R A C T

Purpose: The weight of the evidence to attach to observation of a novel rare missense variant in
SDHB or SDHD in individuals with the rare neuroendocrine tumors, pheochromocytomas and
paragangliomas (PCC/PGL), is uncertain.
Methods: Wecompared the frequency of SDHB and SDHDvery raremissense variants (VRMVs) in
6328 and 5847 cases of PCC/PGL, respectively, with that of population controls to generate a pan-
gene VRMV likelihood ratio (LR). Via windowing analysis, we measured regional enrichments of
VRMVs to calculate the domain-specific VRMV-LR (DS-VRMV-LR). We also calculated
subphenotypic LRs for variant pathogenicity for various clinical, histologic, and molecular features.
Results: We estimated the pan-gene VRMV-LR to be 76.2 (54.8-105.9) for SDHB and 14.8
(8.7-25.0) for SDHD. Clustering analysis revealed an SDHB enriched region (ɑɑ 177-260,
P = .001) for which the DS-VRMV-LR was 127.2 (64.9-249.4) and an SDHD enriched
region (ɑɑ 70-114, P = .000003) for which the DS-VRMV-LR was 33.9 (14.8-77.8).
Subphenotypic LRs exceeded 6 for invasive disease (SDHB), head-and-neck disease (SDHD),
multiple tumors (SDHD), family history of PCC/PGL, loss of SDHB staining on
immunohistochemistry, and succinate-to-fumarate ratio >97 (SDHB, SDHD).
Conclusion: Using methodology generalizable to other gene-phenotype dyads, the LRs relating
to rarity and phenotypic specificity for a single observation in PCC/PGL of a SDHB/SDHD
VRMV can afford substantial evidence toward pathogenicity.
© 2021 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
uted equally.
ould be addressed to Clare Turnbull, Division of Genetics and Epidemiology, Institute of Cancer Research,
ess: clare.turnbull@icr.ac.uk

sevier Inc. on behalf of American College of Medical Genetics and Genomics. This is an open access article
s.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:clare.turnbull@icr.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gim.2021.08.004&domain=pdf
http://www.journals.elsevier.com/genetics-in-medicine
https://doi.org/10.1016/j.gim.2021.08.004
http://creativecommons.org/licenses/by/4.0/


42 A. Garrett et al.
Introduction

Clinical genomic analysis is typically undertaken with the
aim of identifying an underlying monogenic cause in a pa-
tient with suggestive clinical features. For any genomic
variant identified, a variety of evidence types are integrated
to assess the likelihood of the variant being pathogenic. In
2015, the American College of Medical Genetics (ACMG)
and the Association of Molecular Pathology (AMP) pub-
lished a framework prescribing how these disparate evi-
dence elements should be combined by diagnostic
laboratories for classification of a newly identified genomic
variant.1 They defined 4 strengths for the evidence elements,
namely supporting, moderate, strong, and very strong,
which could be combined in the classification categories of
pathogenic, likely pathogenic, likely benign, and benign.
However, inclusion and strength of evidence elements often
differ between diagnostic laboratories and produce
discrepant classifications.2

Pheochromocytomas and paragangliomas (PCC/PGL)
are neuroendocrine tumors of the adrenal medulla and
autonomic nervous system with an estimated frequency of 1
in 4000 and 1 in 16,000 respectively.3–6 Head-and-neck
paragangliomas (eg, chemodectoma, glomus jugulare) are
derived from parasympathetic ganglia. Inherited predispo-
sition to PCC/PGL is associated with constitutional patho-
genic variants (PVs) in >15 genes, including SDHA,
SDHAF2, SDHB, SDHC, SDHD, VHL, FH, MAX,
TMEM127, RET, MEN1, and NF1.4,7 Among the Mendelian
PCC/PGL cases, the most sizable contribution is from PVs
in SDHB followed by SDHD.4,8 Associations with sub-
phenotypes of head-and-neck paragangliomas, namely
multiple, familial, and/or young-onset disease, have been
reported with underlying germline PVs in SDHA, SDHB,
SDHC or SDHD (SDHx) and with metastatic disease for
SDHB PVs.9 The SDH proteins together form the succinate
dehydrogenase enzymatic complex or mitochondrial com-
plex II, disruption of which by PVs of any of the SDHx
components may cause loss of SDHB expression in tumor
material.10 The SDH succinate-to-fumarate ratio (SSFR) in
the tumor has also been associated with underlying PVs
in SDHx.11 Other tumors have been associated with PVs in
SDHx but with much lower relative risks; these include
wild-type gastrointestinal stromal tumors, SDH-deficient
renal cell carcinoma, and pituitary adenomas.10 In the case
of SDHD, MAX, and SDHAF2, disease is typically only
manifested when PVs are transmitted paternally.4,10 For the
other SDHx genes, the pattern of disease transmission fol-
lows the normal autosomal dominant model of inheritance.

As per the classical Knudson 2-hit model of loss-of-
function, protein-truncating variants in SDHB/SDHD are
typically pathogenic.9 Interpretation and classification of
missense variants is more challenging. On encountering a
patient with PCC/PGL and a rare missense variant in SDHx,
evidence of pathogenicity could be inferred from (1) the
very observation in an individual with the relevant rare
PCC/PGL phenotype of a rare variant in an associated gene
(PP2 in the ACMG/AMP framework), (2) location of that
variant within a sub-region of the gene particularly associ-
ated with pathogenicity (PM1), and (3) subphenotypic fea-
tures particularly associated with PVs in the SDHx genes,
eg, invasive disease or loss of SDHB staining on immuno-
histochemistry (IHC) (PP4). We demonstrate generalizable
quantitative approaches and requisite data sets from which
likelihood ratios (LRs) can be calculated for each of these
elements using the genes SDHB/SDHD, the phenotype
PCC/PGL, and missense variation as our exemplar gene/
phenotype/variant-class paradigm.12
Materials and Methods

Assembly of group clinical and laboratory experts
for the gene-phenotype paradigm

Via our national United Kingdom multidisciplinary network
Cancer Variant Interpretation Group UK (CanVIG-UK), we
identified from the 23 United Kingdom genetics centers the
lead diagnostic laboratory scientists, clinical geneticists, and
endocrinologists for PCC/PGL to assemble the CanVIG-UK
SDHx expert group, who guided sourcing of case data and
focused survey of the literature.13
Assembly of case variant data

For the case control analyses, we were able to identify only
1 data series providing the frequency for individual SDHB/
SDHD variants, fully stratified by ethnicity, ascertained
from a full SDHx gene analysis in a PCC/PGL series un-
selected for subphenotypes, which comprised 179 cases of
PCC/PGL recruited to The Cancer Genome Atlas data set.14

We obtained summary-level per-variant frequencies for 4
additional PCC/PGL series from clinical testing; these series
were all of predominantly White (Western European)
ethnicity, but detailed/individual-level ethnicity data were
unavailable.

The Birmingham and Leeds data sets comprised per-
variant summary results from unrelated probands with
PCC/PGL referred from United Kingdom clinical genetics
and endocrinology centers to West Midlands Regional
Genomic Laboratory Hub (2000-2020) and Yorkshire and
North East Genomic Laboratory Hub (2015-2020), respec-
tively, comprising clinical testing (single gene/gene panel
including dosage analysis) of SDHB and SDHD for 3044
and 2565 patients (Birmingham) and 215 and 215 patients
(Leeds), respectively. The Ambry data set comprised per-
variant summary results from clinical testing for SDHx
undertaken at Ambry Genetics of 1338 PCC/PGL cases
referred from the US clinical genetics and endocrinology
centers from 2012-2020. The French data set comprised per-
variant summary results from single gene/gene panel testing
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of SDHB and SDHD for 1552 and 1550 patients, respec-
tively, French PCC/PGL cases accrued 2001-2010, as pre-
viously described by Buffet et al.8 In total, 6328 and 5847
unrelated PCC/PGL probands were available for analysis for
SDHB and SDHD, respectively. For SDHB, we identified in
total 308 PVs predicted to truncate the protein and 315
missense variants classified in ClinVar as (likely) patho-
genic. For SDHD, there were 155 protein-truncating PVs
and 139 (likely) pathogenic missense variants (of which 116
were c.242C>T p.Pro81Leu). These classifications for
missense variants are based on ClinVar (≥1 star, patho-
genic/likely pathogenic) and for truncating variants on
classification using ACMG criteria performed by a diag-
nostic clinical scientist.

For subphenotype analyses, we were able to access
individual-level clinical phenotype data for a subset of 709
of the Birmingham probands, including (1) tumor location
(head-and-neck/thoraco-abdominal), (2) tumor behavior
(invasive/noninvasive), (3) tumor number (multiple/single),
(4) family history (familial/isolated), and (5) age at diag-
nosis, as previously described by Andrews et al9 and
Ricketts et al.15 Data on the relevant molecular sub-
phenotypes, namely SDHB IHC and SSFR, were unavai-
lable for any of our case series and thus were instead derived
from the literature. We identified suitable IHC data, strati-
fied by SDHx variant type, generated by Van Nederveen
et al16 for 175 PCC/PGL cases with known germline SDHx
status (retrospective series) and 45 PCC/PGL cases in whom
SDHx germline testing was performed subsequently (pro-
spective series). Two different commercial primary anti-
bodies against SDHB (mouse monoclonal clone 21A11 and
rabbit polyclonal HPA00286) were used to perform IHC.16

We identified suitable SSFR data, stratified by SDHx variant
type, generated by Richter et al11 for 210 PCC/PGL cases
(69 with PVs, 14 with variants of uncertain significance, and
127 with wild-type SDHx). Metabolites were measured us-
ing liquid chromatography-mass spectrometry, and variant
classification was conducted according to ACMG/AMP
guidelines.1,11

Assembly of control data series

For the control comparison group, we made use of the pub-
licly available gnomAD v2.1.1 (noncancer) data set: exome
data from 118,479 individuals recruited via studies of com-
mon complex diseases, such as hypertension and type 2
diabetes (from which cancer-related series were excluded).
The gnomAD v2.1.1 data set comprised 51,377 non-Finnish
Europeans (NFEs), 10,816 Finnish Europeans, 17,130
Latino/African-Americans, 15,263 South Asians, 7451
Africans/African-Americans, 8846 East Asians, 4786
Ashkenazi Jewish, and 2810 others.17 To extend represen-
tation of rarer ethnicities, we also utilized the 1000 Genomes
Project (1000GP) phase 3 data comprising 2504 individuals
from 26 subpopulations, recognizing that some overlap be-
tween the 1000GP and gnomAD populations is reported.17,18
Calculation of predicted maximum tolerated allele
frequency

We calculated a predicted maximum tolerated allele fre-
quency (MTAFpred) for pathogenicity for a newly identified
missense variant in PCC/PGL for each of SDHB and SDHD
on the basis of the methods described by Whiffin et al19 as
follows: MTAFpred = disease prevalence × maximum allelic
contribution × 1/penetrance, where maximum allelic
contribution = genetic heterogeneity × allelic heterogeneity.
MTAFpred represents the estimated allele frequency in the
population above which a newly identified very rare
missense variant (VRMV) is not plausibly pathogenic. We
sought guidance from the CanVIG-UK SDH expert group to
ensure best estimation of the constituent parameters under-
pinning the MTAFpred estimation.19

Disease prevalence
Because PCC/PGL is typically a time-limited condition
resolved by surgery, we used lifetime risk to approximate
the disease prevalence for this analysis. Estimates of the
frequency in the population of PCC/PGL vary widely.3,20,21

For example, the estimated PCC/PGL incidence in the
Netherlands was 0.04 to 0.21 per 100,000 person-years
(equating to an approximate lifetime risk of ~1 in 6000 to
1 in 31,000), whereas the estimated PCC/PGL incidence in
the United States was 500 to 1600 cases per year (equating
to an approximate lifetime risk of ~1 in 2500 to 1 in
8000).20,21 We used a widely-cited cancer registry–derived
estimate of lifetime risk for pheochromocytomas from
Pacak et al3 of 1 in 4500 with a frequency of paraganglioma
estimated to be 4-fold less common (1 in 18,000), totaling a
combined lifetime incidence of 1 in 3600.

Penetrance
We used estimates of penetrance from the study by Andrews
et al,9 which comprised prospective follow-ups of 371 and
67 unaffected SDHB and SDHD PV-positive nonprobands,
respectively, ascertained on account of an affected index
case in the family, the largest series we could identify.
Penetrance to age 60 and 80 for nonprobands was estimated
for SDHB to be 22% and 39%, respectively. For SDHD,
penetrance in nonprobands for paternally-inherited SDHD
PVs was estimated to be 50% to age 60.9 Applying to
SDHD the proportionate age-related penetrance of SDHB,
we thus predicted a penetrance to age 80 for paternally-
inherited PVs of 88.6%. At the population-level, assuming
absence of sex-selection in transmission of pathogenic
SDHD alleles, we thus predicted an overall penetrance for
SDHD to age 80 of approximately 44%.

Genetic heterogeneity
We used data from our amalgamated series to estimate ge-
netic heterogeneity. The frequency in our PCC/PGL cases of
missense (likely pathogenic/PVs) was 315 of 6328 (4.9%)
for SDHB and 139 of 5847 (2.3%) for SDHD.
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Allelic heterogeneity
Because these are well-characterized genes for which
extensive clinical testing has been performed, it is likely that
majorly recurrent variants have been identified, and thus, we
estimated conservatively that any newly identified variant of
standard penetrance is unlikely to constitute >10% of the
total missense PVs.19

Using parameter estimates for disease frequency (1 in
3600), penetrance (SDHB: 0.39, SDHD: 0.44), genetic het-
erogeneity for missense variants (0.049 for SDHB, 0.023 for
SDHD), and allelic heterogeneity (0.1), we estimated the
MTAFpred to be 1.7 × 10–6 for SDHB and 7.3 × 10–7 for
SDHD.19 Assuming a Poisson distribution, adequate
coverage, and estimates based on the lower 95th confidence
interval, the MTAFpred (VRMV threshold) for each of
SDHB and SDHD is compatible with the observation of a
maximum of 1 allele in gnomAD v2.1.1(noncancer)NFE
(102,754 alleles or 51,377 individuals) and a maximum of
0 allele in any of the other gnomAD v2.1.1(noncancer)
subpopulations or 1000GPall (largest being gnomAD Latino/
African-Americans at 34,260 alleles or 17,130 individuals).

As would be anticipated, some of the more common
recurrent/founder PVs occur at a frequency in controls too
high for inclusion as a VRMV, namely SDHB c.286G>A
p.Gly96Ser (frequency = 2 in v2.1.1 [noncancer]NFE),
SDHB c.688C>T p.Arg230Cys (frequency = 2 in v2.1.1
[non-cancer]NFE), SDHB c.725G>A p.Arg242His
(frequency = 3 in v2.1.1 [non-cancer]NFE), and SDHD
c.242C>T p.Pro81Leu (frequency = 4 in v2.1.1
[noncancer]NFE).

Sensitivity analysis

A sensitivity analysis was undertaken in which a range of
plausible parameter estimates was tested for disease fre-
quency (1 in 2000, 1 in 3500, 1 in 5000, 1 in 10,000),
penetrance (10%-50%), and allelic × genetic heterogeneity
(0.001-0.006), examining the impact on MTAFpred and
maximum allele count in the different-sized population data
sets (Supplemental Table 1).

Generation of LRs

We generated positive LRs and confidence intervals based
on the rate of the entity under study in positives (true pos-
itive rate) compared with the rate of entity under study in
negatives (false positive rate), (a/a + c)/(b/b + d), where a =
true positive, b = false positive, c = false negative, and d =
true negative.22 We generated a negative LR based on the
rate of absence of the entity under study in negatives (true
negative rate) compared with the rate of absence of the
entity under study in positives (false negative rate), (d/b +
d)/(c/a + c). When 1 or more cells contained 0 counts, we
universally applied to those analyses a Haldane correction
(adding 0.5 to each cell): this correction dampens a signal of
association toward the null and thus is inherently
conservative.

Calculation of pan-gene VRMV-LR

The pan-gene VRMV-LR (PG-VRMV-LR) was generated
as the positive LR of SDHB/SDHD for the frequency of
VRMVs in PCC/PGL cases compared with population
controls. To estimate the frequency of VRMVs in SDHB/
SDHD in the general population, we made comparisons with
the largest available single-ethnicity control population, the
v2.1.1 (noncancer)NFE series. We also performed a modified
PG-VRMV-LR estimation in which established pathogenic
VRMVs observed recurrently in the case series were
excluded. We defined these as variants classified in ClinVar
as pathogenic/likely pathogenic and observed in more than 8
probands in our series. This rather conservative threshold,
derived from visual inspection of the frequency distribution,
equates to a variant present in >1 in 800 probands or
constituting in our series >5% of all VRMVs.

Calculation of domain-specific VRMV-LRs

Using the windowing method described by Walsh et al,23

we performed a clustering algorithm to examine agnosti-
cally regional enrichment of VRMVs reported in cases vs
VRMVs reported in controls.

Calculation of subphenotype LRs

Clinical subphenotypic data captured at ascertainment for
(1) tumor location (head-and-neck/thoraco-abdominal), (2)
tumor behavior (invasive/noninvasive), (3) tumor number
(multiple/single), and (4) family history of PCC/PGL (fa-
milial/isolated) were used to generate positive and negative
LRs. All cases with a variant of uncertain significance in any
SDHx gene were excluded from the wild-type SDHx group.
Age was excluded from the multivariable analysis because
on visual inspection, there was a complex relationship be-
tween PV status and age, not well captured by categorical
groupings. We quantified and adjusted for colinearity
among subphenotypic variables using univariable and
multivariable logistic regressions. For the univariable anal-
ysis, all individuals with data for that parameter were
included. For the multivariable analysis, only those with
complete data on all clinical subphenotypes were included.

Using the combined van Nederveen et al16 series, posi-
tive and negative LRs for PVs vs wild-type SDHx/untested
samples were calculated for loss on IHC. Using the Richter
et al11 series, the positive and negative LRs for PVs vs wild-
type SDHx were calculated for SSFR >97 and SSFR ≤97.
For all subphenotypes, data are presented for missense PVs
and all PVs.
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Results

The proportion of individuals for whom a VRMV was
identified was 366 of 6328 in the PCC/PGL probands, 39
of 51,377 in the SDHB controls, 37 of 5847 in the PCC/
PGL probands, and 22 of 51,377 in the SDHD controls.
We calculated the PG-VRMV-LR to be 76.2 (54.8-105.9)
for SDHB and 14.8 (8.7-25.0) for SDHD. PG-VRMV-LRs
were broadly consistent when analyzed for the 5 case se-
ries individually. These frequencies do not include recur-
rent founder PVs observed in controls at a frequency
exceeding the MTAFpred threshold, namely SDHB
c.286G>A p.Gly96Ser (frequency of 17 in cases and 2 in
v2.1.1 [non-cancer]NFE), SDHB c.688C>T p.Arg230Cys
(frequency of 10 in cases and 2 in v2.1.1 [non-cancer]NFE),
SDHB c.725G>A p.Arg242His (frequency of 19 in cases
and 3 in v2.1.1 [non-cancer]NFE), and SDHD c.242C>T
p.Pro81Leu (frequency of 116 in cases and 4 in v2.1.1
[non-cancer]NFE).

However, although observed at sufficiently low fre-
quency in controls to constitute a VRMV, a number of
variants were observed in multiple independent probands
and are well documented in ClinVar as (likely) pathogenic.
On removal of these recurrent-pathogenic-VRMVs, the
frequencies reduced to 156 in 6118 probands for SDHB and
37 in 5847 for SDHD, thus downadjusting the PG-VRMV-
LR to 34.6 (24.3-49.2) for SDHB and 14.8 (8.7-25.0) for
SDHD (Table 1, Supplemental Tables 2 and 3).

From the clustering analysis, we identified a region
comprising 30% of the coding region of SDHB (ɑɑ 177-
260) enriched for VRMVs in cases when compared with
controls (P = .001). This generated domain-specific
VRMV-LR (DS-VRMV-LR) of 127.2 (64.9-249.4) for
variants within the region and DS-VRMV-LR of 60.9 (41.6-
89.0) for those outside the region. For SDHD, there was also
a cluster region (ɑɑ 70-114, 28% of coding region, P =
.000003) such that DS-VRMV-LR was 33.9 (14.8-77.8)
inside and 5.9 (2.6-13.0) outside of that region. Excluding
the recurrent-pathogenic-VRMVs reduced the hot-
DS-VRMV-LR to 59.7 (28.5-125.2) and the cold-DS-
VRMV-LR to 28.2 (18.8-42.4) for SDHB; for SDHD, the
DS-VRMV-LRs were unchanged (Figure 1).
Table 1 Pan-gene VRMV likelihood ratios for SDHB and SDHD

Gene

VRMVs (all)

PCC/PGL Population Controls Positive Likelihoo

SDHB VRMV present 366 39 76.2 (54.8-10
VRMV absent 5962 51,338
Total 6328 51,377

SDHD VRMV present 37 22 14.8 (8.7-25.0
VRMV absent 5810 51,355
Total 5847 51,377

Frequency in cases of PCC/PGL and population controls (gnomAD v2.1.1 [non
excluding recurrent founder pathogenic variants.

NFE, non-Finnish European; PCC/PGL, pheochromocytoma and paraganglioma;
Based on PV-positive vs wild-type SDHx case-only
adjusted comparisons, invasive disease was predictive for
SDHB missense PV status when compared with wild-type
SDHx status (subphenotypic LR [SP-LR] = 6.5 [3.9-
10.7]). Both head-and-neck disease (SP-LR = 10.6 [8.8-
12.7]) and multiple tumors (SP-LR = 9.5 [5.3-17.1]) were
predictive of SDHD missense PV status when compared
with wild-type SDH wild-type. Family history of at least 1
affected first degree relative was highly predictive of
missense PVs in SDHB (SP-LR = 18.7 [8.7-40.0]) and
SDHD (SP-LR = 54.4 [25.6-115.5]) when compared with
wild-type status (Table 2, Supplemental Tables 4 and 5). In
a univariable analysis, loss of SDHB staining on IHC was
strongly predictive of a PV in both SDHB (SP-LR = 17.9
[14.7-21.8]) and SDHD (SP-LR = 18.1 [16.6-19.8]) when
compared with wild-type SDHx status (Table 2,
Supplemental Table 6). SSFR >97 was also strongly pre-
dictive of PVs in SDHB (SP-LR = 108.9 [92.9-127.6]) and
SDHD (SP-LR = 93.1 [78.3-110.8]) when compared with
wild-type SDHx (Table 2, Supplemental Table 7). In
Supplemental Table 8, some hypothetical variant scenarios
are presented to illustrate a combination of these LRs under
the points-based Bayesian adaptation of the ACMG variant
classification framework.
Discussion

Before evolution of the ACMG/AMP framework, assign-
ment of a variant as pathogenic was frequently based pri-
marily on observation thereof in an individual with the
correct phenotype (along with the absence on sequencing of
a few hundred control chromosomes). However, this adage
led to erroneous classification of many innocuous variants as
pathogenic on account of (1) insufficient size of the popu-
lation/control data series for confirmation of requisite rarity
and/or (2) application in the context of nonspecific pheno-
types such as familial breast cancer.

The notion of phenotypic specificity is not simple. For a
given gene/phenotype/variant-class scenario, phenotypic
specificity encompasses (1) rarity of the clinical phenotype
in the general population, (2) how much of the phenotype is
VRMVs (Recurrent Pathogenic Founder Variants Excluded)

d Ratio PCC/PGL Population Controls Positive Likelihood Ratio

5.9) 156 38 34.5 (24.2-49.1)
5962 51,338
6118 51,376

) 37 22 14.8 (8.7-25.0)
5810 51,355
5847 51,377

-cancer]NFE) of VRMVs in SDHB and SDHD for (1) all VRMVs and (2) VRMVs

VRMV, very rare missense variant.



Figure 1 Variant position schematic. Lolliplot showing the position of SDHB and SDHD variants in 51,377 controls and 6328 and 5847
cases (of phaeochromocytoma and paraganglioma), respectively. Variants identified in cases are represented by red circles and those in
controls are represented by yellow circles with proportional representation for variants identified in both. Exon-exon boundaries are shown
with a dashed line. Protein domains are represented by colored blocks. Variant cluster regions (CR), as defined using a custom clustering
algorithm (see methods), are shown as black rectangles below each protein (P < .004). Fer_2_3, 2Fe-2S iron-sulfur cluster binding domain
(red); Fer4_17, 4Fe-4S dicluster domain (purple); CybS, succinate dehydrogenase cytochrome B small subunit (blue). Escore interspecies
conservation is presented.
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Table 2 Case-only subphenotype analyses

Genotype Count LR Univariable LR Multivariable

Tumor location: HNPGL vs PCC/PGL w/o HN
SDHB missense PV HNPGL 37 1.77 (1.31-2.40) 2.43 (1.80-3.29)

PCC/PGL w/o HN 55 0.77 (0.65-0.92) 0.56 (0.47-0.67)
SDHD missense PV HNPGL 31 4.26 (3.54-5.13) 10.56 (8.78-12.72)

PCC/PGL w/o HN 1 0.04 (0.01-0.28) 0.02 (0.00-0.11)
SDHx wild-type HNPGL 97

PCC/PGL w/o HN 330
Tumor behavior: invasive vs noninvasive
SDHB missense PV Invasive 24 4.27 (2.57-7.08) 6.46 (3.89-10.72)

Noninvasive 66 0.78 (0.69-0.89) 0.52 (0.46-0.59)
SDHD missense PV Invasive 3 1.50 (0.48-4.69) 1.15 (0.37-3.60)

Noninvasive 29 0.97 (0.86-1.08) 1.27 (1.13-1.42)
SDHx wild-type Invasive 26

Noninvasive 390
Tumor number: multiple vs solitary
SDHB missense PV Multiple 12 3.04 (1.52-6.08) 2.38 (1.19-4.77)

Solitary 80 0.91 (0.84-0.99) 1.15 (1.06-1.25)
SDHD missense PV Multiple 15 10.91 (6.09-19.55) 9.53 (5.32-17.07)

Solitary 17 0.56 (0.40-0.77) 0.67 (0.48-0.92)
SDHx wild-type Multiple 18

Solitary 401
Family history: familial vs isolated
SDHB missense PV Familial 24 15.95 (7.45-34.16) 18.68 (8.72-40.01)

Isolated 52 0.70 (0.60-0.81) 0.70 (0.60-0.81)
SDHD missense PV Familial 16 29.93 (14.08-63.61) 54.36 (25.57-115.54)

Isolated 11 0.42 (0.26-0.66) 0.34 (0.21-0.53)
SDHx wild-type Familial 8

Isolated 396
IHC: IHC negative (abN) vs IHC positive (normal)
SDHB missense PV IHC negative 21 17.9 (14.7-21.8)

IHC positive 0 0.023 (0.001-0.396)
SDHD missense PV IHC negative 53 18.1 (16.6-19.8)

IHC positive 0 0.010 (0.001-0.171)
SDHx wild-type IHC negative 6

IHC positive 112
SDH Succinate: Fumarate Ratio: High (>97) vs Low (≤97)
SDHB missense PV SSFR >97 12 108.9 (92.9-127.6)

SSFR ≤97 2 0.14 (0.014-1.49)
SDHD missense PV SSFR >97 11 93.1 (78.3-110.8)

SSFR ≤97 4 0.27 (0.03-2.28)
SDHx wild-type SSFR >97 1

SSFR ≤97 126

Analysis of clinical subphenotypic features in 206 SDHB PV-positive, 66 SDHD PV-positive, and 427 SDHx wild-type cases of PCC/PGL. Analysis of SDHB IHC
staining in 21 SDHB PV-positive, 53 SDHD PV-positive, and 118 SDH wild-type/untested cases. Analysis of SDH SSFR) in 14 SDHB PV-positive, 15 SDHD PV-
positive, and 127 SDH wild-type cases of PCC/PGL.

HNPGL, head-and-neck paraganglioma; IHC, immunohistochemistry; PCC/PGL, pheochromocytoma and paraganglioma; PV, pathogenic variant; SSFR,
succinate-to-fumarate ratio; w/o HN, not in head or neck.
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attributable to that gene, (3) the level of enrichment of gene
variants of a particular class in that phenotype (ie, pene-
trance), and (4) how noisy the gene is for innocuous variants
of that variant-class, and there may in addition be (5)
regional variation for pathogenic vs innocuous variants of
that variant-class and (6) gene-specific subphenotypic fea-
tures that are particularly associated with pathogenicity.

Using SDHB/SDHD, PCC/PGL, and missense variants
as our gene/phenotype/variant-class exemplar, we have
demonstrated that quantitation of these LRs encompass (1)
identification of a rare missense variant in an individual with
the correct rare phenotype in a gene variably constrained for
those variants (ACMG/AMP criterion: PP2), (2) enrichment
for rare variants in cases compared with controls within
specific gene regions (PM1), and (3) presence of macro-
scopic or molecular subphenotypic features particularly
associated with germline PVs in a specific gene (PP4).

These analyses demonstrate a substantial PG-VRMV-LR
for SDHB in particular, which is quite striking even after
removal of the recurrently-reported pathogenic VRMVs. It
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is plausible that for other gene/phenotype/variant-class
scenarios in which the gene is constrained and/or the
phenotype is rare, the PG-VRMV-LR may be equivalently
substantial and we may currently be underscoring evidence
afforded by a single observation of a very rare variant in the
relevant phenotype. Wide variation in the etiologic fraction,
a similar metric, has been demonstrated for genes associated
with cardiomyopathies.24

These analyses also exemplify the potential clinical
utility of formal quantitation of LRs for subphenotypic
features, in this case abnormality on IHC, high SSFR, head-
and-neck disease, invasive disease, multiplex tumors, and
familial disease. Although we were only able to undertake
multivariable regression to adjust for collinearity between
clinical subphenotypic features, collinearity between the
clinical and molecular features would not be predicted a
priori. Stringent technical validation would be a prerequisite
for inclusion of locally-generated laboratory data: although
methodology and quality assurance for IHC is well
explored, there is no international reference method for
SSFR, and assay thresholds may be influenced by tumor
input material. The corresponding negative LR should be
applied when the absence of the subphenotypic feature has
high specificity for wild-type status (eg, absence of head-
and-neck disease for SDHD). Currently, the ACMG
framework lacks formal designation of a negative-
phenotype evidence item.

As demonstrated by Tavtigian et al,25 the ACMG/AMP
categorical evidence strengths can be converted to LRs
(supportive LR = 2.08, moderate LR = 4.33, strong LR =
18.8, and very strong LR = 350). Thus, the 3 types of ev-
idence items we have described can be combined together
with other relevant LRs in a Bayesian framework in which
the posterior probability is a function of the prior probability
and the product of relevant LRs ([LR]a × [LR]b × [LR]c. ×
[LR]d × [LR]e….).

Application to SDHB/SDHD–PCC/PGL cases illustrates
a number of challenges and limitations in the methods
presented. First, critical to the PG-VRMV-LR is conversion
of the MTAFpred to a filtering allele count for a given control
data set. Even the largest subpopulation of the cancer-free
gnomAD series (NFE) provides poor precision at low
values of MTAFpred. Observation of 1 in 51,377 in the NFE
group is consistent with the underlying frequency of 4.93 ×
10–7 to 1.084 × 10–4 (95% confidence interval of binomial
distribution). Accordingly, we may be overestimating the
frequency of VRMVs in controls (and thus underestimating
the PG-VRMV-LR). As illustrated in our sensitivity ana-
lyses (Supplemental Table 1), access to larger control series
for our VRMV case control comparison will improve the
precision by which we filter for MTAFpred.
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Second, limited size of non-NFE control series precludes
accurate filtering of variants in non-NFE populations. Vari-
ants with a true frequency above the MTAFpred may still be
sufficiently rare to be absent in these modest-sized control
series. Although the case series used were predominantly
Western European, in the non-White minority, we may be
erroneously including as VRMVs (1) variants common in
ethnic groups entirely unrepresented in gnomAD or 1000GP
or (2) variants absent in the respective partition of gnomAD/
1000GP but at a frequency exceeding the MTAFpred for the
relevant ethnicity group. Erroneous inclusion of such variants
as VRMVs in the case series may result in overestimation of
the PG-VRMV-LRs. Furthermore, because of limited control
and case data, we have had to develop parameters and apply
them to the same data set. Access to additional independent
data sets would allow testing of reproducibility.

Third, for most rare phenotypes, parameter estimates for
population frequency, lifetime penetrance, and genetic het-
erogeneity vary widely and may be subject to substantial
ascertainment bias. For pleomorphic syndromic phenotypes,
it is only feasible to estimate MTAFpred by pulling out a
specific component of the syndrome and estimating the
frequency, penetrance, and genetic heterogeneity for this
component (eg, type 2 renal papillary cancer for the FH
gene [hereditary leiomyomatosis and renal cell carcinoma]
or medullary thyroid cancer for the RET gene [multiple
endocrine neoplasia type 2]).27

Fourth, a specific case definition (ascertainment frame-
work) is required to which the VRMV-LR is applicable. In
practice, eligibility for clinical gene testing likely varies in
space and time, rendering it challenging to precisely pinpoint
the framework for ascertainment and case inclusion.

Fifth, the VRMV-LR metrics are based on and applicable
only to observed variants that themselves are very rare (ie,
are observed in the control population at frequencies below
the MTAFpred). Variants that are disease-associated but of
lower penetrance will likely occur in the population but at
frequencies above the MTAFpred. Such variants would not
have been included in the VRMV case control analyses, and
the VRMV-LR metric would not be applicable to them.

Thus, although our parameter estimates were deliberately
conservative and the limited size of NFE control data may
have caused underestimation of PG-VRMV-LR, failure to
guarantee full exclusion of VRMVs in non-NFE cases
would support a conservative translation of our estimates of
PG-VRMV-LRs to evidence strengths for clinical variant
classification.12

Although we used SDHB/SDHD, PCC/PGL, and
missense variation as our exemplar gene/phenotype/variant-
class paradigm, the principles, requisite data sets, and
methodologies illustrated here are universally applicable to
any other gene/phenotype/variant-class scenario. We pro-
pose that adoption of the methodologies illustrated for other
rare Mendelian cancer syndromes would improve consis-
tency and accuracy of quantitative estimation of the rare
variant/rare phenotype phenomenon (PG-VRMV-LR for
PP2), of the variant location in the right hot-spot (DS-
VRMV-LR for PM1), and of the quantitative evaluation of
subphenotypes (SP-LR for PP4).
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Data Availability

The publicly available data analyzed are available as per the
references/URLs provided. Any materials and data devel-
oped during this study will be made available upon request
from the corresponding author.
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