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Towards real-time Photon Monte Carlo Dose

Calculation in the Cloud
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Uwe Oelfke

Joint Department of Physics at The Institute of Cancer Research and The Royal

Marsden NHS Foundation Trust, London, UK SM2 5NG

E-mail: Peter.Ziegenhein@icr.ac.uk

Abstract. Near real-time application of Monte Carlo (MC) dose calculation in clinic

and research is hindered by long computational runtimes of established software.

Currently, fast MC software solutions are available utilising accelerators such as

graphical processing units (GPUs) or clusters based on central processing units. Both

platforms are expensive in terms of purchase costs and maintenance and, in case of

the GPU, provide only limited scalability. In this work we propose a cloud-based

MC solution, which offers high scalability of accurate photon dose calculations. The

MC simulations run on a private virtual supercomputer that is formed in the cloud.

Computational resources can be provisioned dynamically at low costs without upfront

investment in expensive hardware. A client-server software solution has been developed

which controls the simulations and transports data to and from the cloud efficiently and

securely. The client application integrates seamlessly into a treatment planning system.

It runs the MC simulation workflow automatically and securely exchanges simulation

data with the server side application that controls the virtual supercomputer. The

Advanced Encryption Standard was used to add an addition security layer which

encrypts and decrypts patient data on-the-fly at the processor register level. We could

show that our cloud-based MC framework enables near real-time dose computation. It

delivers excellent linear scaling for high-resolution datasets with absolute runtimes of

1.1 to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical

uncertainty. The computation times include the data transportation to and from the

cloud as well as process scheduling and synchronisation overhead. Cloud-based MC

simulations offer a fast, affordable and easily accessible alternative for near real-time

accurate dose calculations to currently used GPU or cluster solutions.

Submitted to: Phys. Med. Biol.

Page 1 of 19 AUTHOR SUBMITTED MANUSCRIPT - PMB-104620.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Towards real-time Photon Monte Carlo Dose Calculation in the Cloud 2

1. Introduction

Monte Carlo (MC) simulations are considered to be one of the most accurate dose

calculation techniques for treatment planning in radiation therapy (RT). For some

treatment modalities, e.g. in the presence of a strong magnetic field in an MR-Linac

(Lagendijk et al.; 2008) it is currently the only reliable method to precisely estimate

the influence of the magnetic field on the tracks of secondary electrons. For standard

IMRT/VMAT treatment planning, commercial treatment planning systems (TPS) can

perform MC simulations in the order of minutes which is suitable for most clinical

indications. However, current simulation times are too high to use MC in adaptive

radiation therapy (ART) scenarios in which dose calculation needs to be done in a

certain time-frame.

Over the last years, various groups have developed fast MC dose calculation solutions on

different computational platforms. Especially the utilisation of graphics processing units

(GPUs) has been very popular in an attempt to reduce calculation times significantly.

A number of GPU-based implementations have been introduced for photons, electrons

and protons, for example (Jia et al.; 2011; Hissoiny et al.; 2011; Jia et al.; 2012; Jahnke

et al.; 2012; Townson et al.; 2013). These groups claim speed-up factors of up to

several 100× compared to central processing unit (CPU) implementations. In light

of these overwhelmingly positive results, it comes as no surprise that very few MC

implementations for CPU-based architectures have been developed in recent years (Su

et al.; 2014; Tyagi et al.; 2004; Ziegenhein et al.; 2015).

A closer look into the GPU-based MC publications reveals that high speed-up

factors are often reported in comparison to un-optimised CPU-based implementations.

Other studies show that the performance advantage of GPUs is much smaller than

anticipated (Lee et al.; 2010; Jia et al.; 2015) when compared to optimized CPU-based

implementations. GPUs have their own physical memory which leads to two potential

limitations: First, the size of that memory even on high-end GPUs is typically limited

to a few gigabytes (GB) while powerful CPU-based systems can be populated with

hundreds of GB of main memory. Second, due to the physical separation of main

memory it is necessary to transport data to and from the GPU which may form a

bottleneck for applications which run a short amount of time. Furthermore, special

programming knowledge is required to use the performance potential of a GPU as well as

the hardware itself which is constantly evolving. Tyagi et al. (2004) reported an almost

linear performance scaling of the MC simulation on CPU-based clusters. However,

this solution is hardly feasible for research and clinical applications due to the high

cumulative cost of the cluster infrastructure, its maintenance and operational expenses.

A recently published point/counterpoint discussion (Jia et al.; 2015) further investigates

the question of which computational platform (GPUs or CPUs) is best suited to realise

near real-time MC simulations for modern treatment planning applications. The authors

came to the conclusion that there is no clear winner at the moment.

In this work, we discuss another potential solution for near real-time MC simulations:
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Towards real-time Photon Monte Carlo Dose Calculation in the Cloud 3

cloud computing. Using computational resources in the cloud for MC has been

previously investigated by (Pratx and Xing; 2011) and (Miras et al.; 2013). These

authors could demonstrate an almost linear performance scaling if the simulation

runtimes are high enough (in the order of minutes). However much shorter or even

real-time overall dose calculation times could not be demonstrated. In the context of

this work scalability will be denoted as strong scaling, which is conventionally defined as

the relation between the runtime and the number of computational resources employed

on a fixed size problem. Therefore, a strong scaling MC simulation framework should be

able to deliver (almost) arbitrarily short runtimes for a specific dose calculation problem

by using more and more computational resources (processors or computer nodes) in

parallel. The performance scaling down to short runtimes in the order of a few seconds

is limited by the simulation overhead which does not scale with the number of resources.

In a cloud computing environment a substantially larger overhead may occur due to the

need of transporting data up to the cloud, scheduling the calculation, obtaining the

results and sending the dose distribution back to the client computer. The potentially

large overhead is one of the main reasons why there are currently no cloud-based MC

solutions delivering competitive overall calculation times.

In this paper, we present a highly integrated dose calculation framework for cloud and

cluster computing which reduces the overhead significantly and provides excellent scaling

down to an overall simulation time of only a few seconds. We demonstrate that scaling

cloud resources can be used efficiently to deliver near real-time MC dose calculation

responses for challenging ART problems. Costs for provisioning cloud resources are

discussed in relation to performance for a publicly accessible cloud provider. We

conclude that using cloud computing provides a flexible and affordable way to realise

near real-time MC-based dose calculations.

2. Material and Methods

Monte Carlo simulations are known to be embarrassingly parallel problems. This

means that little computational overhead is needed to split an MC simulation into

individual tasks which can run concurrently in parallel on appropriate computational

hardware. Having this property, the MC simulation is expected to scale very well with

the amount of computational resources. Indeed, an excellent scaling behaviour could be

demonstrated with CPU-based implementations (Tyagi et al.; 2004; Ziegenhein et al.;

2015). The parallelisation strategy is simple: An individual MC calculation is launched

concurrently on every CPU core or server node. After the MC calculations are done, the

resulting dose cubes are merged together by adding the deposited energy values for each

voxel. The excellent scaling of this method motivates the assumption that the key to

real-time MC dose calculation is to employ as many parallel resources as possible while

keeping the overhead such as collecting the data from the resources as low as possible.

At the same time, these resources don’t have to be physically owned but can be rented

when needed from a cloud computing provider.
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Towards real-time Photon Monte Carlo Dose Calculation in the Cloud 5

itself in order to exploit the overall linear scaling of the method. The components,

methods and techniques employed in our new framework in order to achieve this goal

are described in detail in the following subsections.

2.1. Monte Carlo dose calculation engine

Our new cloud-based MC framework is an extension to the PhiMC package which we

introduced in (Ziegenhein et al.; 2015). PhiMC adapts the physics engine from the dose

planning method (DPM) package (Sempau et al.; 2000) for modern CPU architectures.

While the original DPM code was written in Fortran, PhiMC was implemented in

modern C++. It contains modules to simulate electrons and high energy photon

transport processes which have been highly optimised for multi-core CPUs. Thread-

level parallelism was implemented using OpenMP (Dagum and Menon; 1998) while an

array notation was employed to make use of vectorisation on wide CPU registers. It has

been demonstrated that PhiMC delivers accurate dose distributions by comparing to

the original DPM implementation. Simulation runtimes of about 10 to 30 seconds could

be achieved for clinical cases on a dual Intel Xeon workstation without compromising

on resolution and accuracy.

Due to its high single node performance and accuracy, the physical engine of PhiMC

was adapted for cloud computing with two vital changes: First, the high level parallel

programming interface was changed to work with distributed computing hardware as

described in section 2.3. Second, data encryption was added to protect patient data

(see section 2.4). The simulation engine was embedded in a server application which

is remotely controlled by a client. The communication between server and client is

described in sections 2.2 and 2.3.

2.2. Data transport between client and server

One of the key features of our cloud-based MC framework is the ability to transmit

data between the client and cloud very rapidly. This is important since transporting

data up to the cloud and back adds a constant overhead to the simulation time. The

transportation time remains the same no matter how many nodes are employed or

particle histories are simulated. Thus, in order to achieve good overall performance

scaling it is highly desirable to keep the transportation overhead as low as possible.

The data exchange over the internet between the client and the cluster is realised via an

efficient software module which will be referred to as data transportation unit (DTU).

An instance of this unit exists on both the client and on the server side and is able to

send and receive data at the same time. The DTU consists of an ecryption/decryption

module, a compression/decompression module and a Transmission Control Protocol

(TCP)-based encoder and decoder. A typical workflow for transmitting data from the

client to the server is illustrated in figure 2. The workflow starts with moving the

data to be sent to its local DTU. Within the DTU, the data is first encrypted (1)

and compressed (2), then directed to the encoder (3) which consequently transmits the
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Towards real-time Photon Monte Carlo Dose Calculation in the Cloud 8

(1) The new ct-data set is sent from the client to the head-node of the cluster. The head

node receives the data and stores a copy in main memory (2). Zig-zag waves symbolise

encrypted data as explained in detail in figure 4. Simultaneously a signal is sent (3)

to the main thread to report that new data is ready to be distributed to the worker.

The MPI thread sends the new CT data to all processes (cores) of the virtual cluster

(4) which all store an individual copy of the new data in memory. The send method is

triggered via a blocking function call and returns as soon as the data is delivered. The

delivery of the data is signaled to the DTU (5) and acknowledged by sending a status

word (ack) back to the client (6). The client can now trigger the simulation by sending

a startSim command to the head-node (7). Note that this command has a parameter

n which denotes the number of histories to be simulated. The startSim command is

signaled to the main thread (8) which passes it along to the simulation processes (9).

Each core performs the simulation and reports back to the head-node when finished

(10). The head-node then triggers an MPI operation (11) which requests all dose cubes

from the worker and automatically adds the energy contribution of all cubes together

(12). The main thread signals to the DTU that the result is ready (13) for download

to the client computer (14). Arrows 4, 9, 10 and 12 reach out to all cores in the virtual

supercomputer simultaneously. For the sake of clarity only the connection to one core

is shown in the graph.

The example in figure 3 shows how the different parts of the server module interact.

Similar workflows are defined for setting up the beam configurations and fluence

modulation, configuring the simulation physics of the worker and collecting debugging

and timing data.

2.4. Cloud methodology, security and reliability

Cloud computing has become an important economical driver for many large and

small businesses in the past years. It allows tapping into required IT resources and

applications using pay-as-you-go models or long lease options. Resources can be used

on-demand according to the actual needs of the users and released when no longer

needed. Furthermore Amazon (Seattle, WA, USA) and other cloud providers implement

rigorous security practices on their side which satisfy the requirements and standards

of governments and security agencies. Ultimately the level of security used in the cloud

is the responsibility of the user and multiple levels of security can be implemented.

For instance, the communication channel to the cloud can be encrypted, the data itself

can be encrypted or both at the same time. The point at which the data is decrypted

can also vary from the entry point to the cloud, to the cloud server itself, or to the

processor. For our tests, we selected Amazon Web Services (AWS) as it provides a

mature platform. The Amazon Elastic Compute Cloud (EC2) products on which the

results of this work were created can be used to architect applications in alignment with
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Towards real-time Photon Monte Carlo Dose Calculation in the Cloud 9

HIPAA ‖ and HITECH ¶ compliance requirements.

AWS has a special service called Virtual Private Cloud (VPC) which enables the creation

of an isolated subnet including selection of private IP addresses, so that compute servers

existing in it are not visible from the Internet. The communication with the external

world (the Internet) is carried through a designated head node which is configured to

have a public IP address. Additionally the VPC service includes security groups and

network access control lists, which were used to further restrict the communication with

the head node to two specific ports and a restricted set of client Internet addresses so

that only desired client(s) can access the service.

Cloud providers nowadays offer various tools and APIs to automate creation and

manipulation of instances in the cloud. Once we fashioned a desired virtual image

preloaded with all required libraries and tools, we could start a required number of

instances programmatically from the client workstation and shut them down when the

tests were finished. Thus it is entirely possible to create a client which not only schedules

a task and receives an answer but also orchestrates the cloud instances automatically.

Since our tests were taking only seconds whereas it takes a few minutes for an instance

to come up, we usually provisioned a maximum number of instances before running a

series of tests.

In order to realise a very fast MC dose calculation, the number of computational nodes

leased from a cloud service provider has to be chosen with care. For example, preliminary

tests can be run to estimate what sample size and sort of instances are needed to finish

computation in a given time limit. Then at production time, the client can make a

rational choice by spawning the right number of instances and therefore minimising

the cost. Finally, reliability of calculations in the sense of fault tolerance can be

increased by soliciting redundant calculations from other cloud zones or regions. Doing

so will obviously increase the running cost, and should be considered as an operational

decision. Multiple scenarios are possible here including oversampling, i.e. collecting and

incorporating all redundant calculations rather than disregarding them and therefore

increasing the accuracy of MC simulations.

Privacy and security are extremely important when it comes to clinical applications of

a cloud-based Monte Carlo dose calculation. In the following we describe a powerful

encryption module which implements a processor to processor encryption model and is

part of the DTU as described in section 2.2. This method and module can be used in

addition to other security methods described earlier. The encryption module ensures

that all patient specific data is held encrypted when transmitted or handled on third

party hardware. The decryption of patient specific data (e.g. CT data) is performed

on-the-fly during the simulation only. Figure 4 illustrates the working principle. The

workflow shows the handling of patient specific data on the example of the CT image.

The CT data is illustrated as a 2D grid plane in the TPS computer. All sensitive

‖ U.S. Health Insurance Portability and Accountability Act: http://www.hhs.gov/ocr/privacy/
¶ Health Information Technology for Economic and Clinical Health Act:

http://www.hhs.gov/ocr/privacy/hipaa/administrative/enforcementrule/hitechenforcementifr.html
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Towards real-time Photon Monte Carlo Dose Calculation in the Cloud 11

Case/ Prostate Liver

Size 1% 2% 1% 2%

Original
105m 28m 80m 19m

(3 mm)2 × 3 mm

Large
210m 53m 250m 68m

(1.5 mm)2 × 3 mm

Table 1. Number of particle histories to be simulated to achieve 1% and 2% statistical

uncertainty on the large and original sized prostate and liver treatment cases.

2.5. Test data

The performance of our MC cloud framework is tested against patients from the publicly

accessible CORT patient dataset (Craft et al.; 2014). From the shared data set∗ we

picked the prostate case and the SBRT liver case. Both cases were planned with step-

and-shoot IMRT using 5 photon beams for prostate and 7 photon beams for liver with the

intensity modulation as provided in the CORT data set. The beamlet size is (1 cm)2 for

both cases while the prostate target volume comprises 256.2 cm3 and the liver comprises

156.5 cm3. The resolution of the planning CT-cube is 3 mm in each dimension for both

patients. The size of the ct-cube is 184×184×90 voxels for prostate and 217×217×168

voxels for the liver patient. In order to demonstrate that our method is also capable of

dealing with higher resolutions we interpolated the original ct-data set to 368×368×90

voxels for prostate and 434 × 434 × 168 voxels for liver. This results in a resolution

of (1.5 mm)2 × 3 mm for both patient images. The number of CT-slices as well as

the resolution of the fluence matrix remains unchanged. The interpolated patient data

will be referred to as large while the original data set will be referred to as original,

hereinafter. The dose distribution of both patients on both image sizes is simulated up

to 1% and 2% statistical uncertainty. Thus, 8 MC simulation problems are studied in

total. The number of particle histories simulated for each problem can be found in table

1. Tests were performed on AWS using c4.8xlarge compute-optimised instances which

allowed the highest network performance comparable with 10 Gbps Ethernet. These

instances feature Intel Haswell processors which were the best processors available at

the time. Each instance was used to launch 18 MPI processes. Although the instances

are typically cheaper in the US, in order to minimise the latency to the cloud, we

provisioned our instances in Ireland at the typical cost of $1.811 per hour. All runtimes

have been collected on a working day (Thursday) between 11am and 7pm using a shared

Internet link of our institute.
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Towards real-time Photon Monte Carlo Dose Calculation in the Cloud 13

Size Stat. 1 node 10 nodes

Uncertainty Simulation Simulation Overhead Overall

P
ro
st
at
e

Large
1% 50.03± 0.28 5.13± 0.01 1.94± 0.24 7.07± 0.24

2% 12.77± 0.11 1.55± 0.00 1.51± 0.25 3.06± 0.25

Original
1% 14.40± 0.05 1.46± 0.00 0.65± 0.03 2.11± 0.03

2% 3.87± 0.01 0.450± 0.00 0.69± 0.19 1.14± 0.19

L
iv
er

Large
1% 67.90± 0.52 7.39± 0.02 3.56± 0.59 10.95± 0.60

2% 18.73± 0.13 2.64± 0.01 2.87± 0.45 5.52± 0.45

Original
1% 19.70± 0.12 2.12± 0.00 1.39± 0.30 3.51± 0.30

2% 4.77± 0.03 0.67± 0.00 1.31± 0.21 1.98± 0.21

Table 2. MC simulation runtimes in seconds measured on our cloud-based Monte

Carlo dose calculation framework employing only 1 workstation (18 physical CPU

cores) locally and 10 nodes (180 CPU cores) in the cloud. Standard deviations are

calculated from at least 10, typically 20-25 repetitions per test. Standard deviations

below 10 milliseconds are printed as 0.00

can be understood as wall-clock times measuring the actual time span as perceived by

the user between triggering the dose calculation on the client computer and receiving

the resulting dose cube back from the cloud. The overall and simulation runtimes on

10 worker nodes as well as the simulation time on one node are listed in table 2. The

overhead in this table corresponds to the overall runtime of simulating one batch (1000

particle histories) per CPU core. The actual simulation time of 1000 histories is in the

order of 5 ms and therefore negligible. Thus, the overhead column in table 2 denotes the

wall-clock time for all other processes including data transportation, synchronisation,

scheduling, network latency, internal data handling processes etc. - everything except

the actual physical particle track simulation.

Table 3 analyses runtime (T) and bandwidth (BW) of selected vital overhead processes

for the example of the prostate patient data set. The columns of the table denote

the following: ENC, encrypting the CT data in the DTU (see (2) in figure 2); COM,

compressing the patient image (see (1) in figure 2); UP, transferring the encrypted and

compressed CT data to the head node of the cloud; MPI, merging the results of the

worker nodes and DOWN, sending the merged dose cube back to the client. The on-

the-fly decryption of the patient data during the simulation as introduced in section 2.4

accounts for a performance loss of about 6% relative to the simulation time. The term

bandwidth is defined as the amount of processed data in a fixed time. More specifically,

bandwidths in table 3 are measured in megabits per second (Mbps) so that the notion

of bandwidth is: transferred or processed million bits of data in one second.
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CT cube Dose cube

ENC COM UP MPI DOWN

P
ro
st
at
e

Original
T 22.8 37.4 35.2 78.2 120.4

BW 2468.6 1371.9 167.2 2627.1 406.7

Large
T 23.4 134.9 320.2 319.1 245.0

BW 9525.2 1125.4 151.3 2564.6 805.0

Table 3. Runtime (T) in milliseconds and bandwidth (BW) in Mbps for encrypting

(ENY), compressing (COM) and transmitting (UP) the CT data set into the cloud as

well as merging the dose cubes from all workers (MPI) and sending the result back to

the client (DOWN). Errors are small and not listed for the sake of clarity.

4. Discussion

In this work, we introduced a highly integrated cloud-based framework which provides

near real-time Monte Carlo dose calculations for high energy photons. The framework

makes use of the embarrassingly parallel nature of the MC simulation technique by

employing a high number of CPU cores of a virtual supercomputer in the cloud while

reducing the overhead as far as possible. The performance analysed in figure 5 proves

two main results of this work. First, the linear scaling of the MC simulations which

was observed on shared-memory systems and CPU clusters (Ziegenhein et al.; 2015)

can be reproduced in the cloud. Second, the overhead of the MC simulation, which

consists of transferring data between the client and the cloud, scheduling the processes

and synchronising the workflow, can be limited to only a few seconds for patient data

sizes relevant for clinical applications. This allows us to leverage the excellent scaling

of MC simulations in the cloud. The achieved dose calculation times can be considered

to fulfill near real-time requirements.

Figure 5(a) and 5(b) analyse the performance of the MC simulation within the virtual

supercomputer in the cloud. The graphs show an almost perfect linear scaling up to

10 nodes for the simulations achieving 1% statistical uncertainty. The scaling of the

2% uncertainty cases, which simulate significantly less particles histories, deteriorates

when using more than 5 nodes. This is caused by the overhead which falls in the same

order of magnitude as the actual simulation time for 2% uncertainty cases. It can be

concluded that the computational effort of simulating the dose distribution up to only

2% uncertainty is too small to fully exploit the resources of more than 5 nodes using

the current simulation physics and patient data resolution.

The total overhead which is due to transporting data between client and cloud,

synchronising processes within the cloud as well as compressing and encrypting patient

specific data is printed in table 2. It depends on the size of the patient data set. The

liver patient CT and dose cube are significantly larger than the cubes corresponding

to the prostate patient. Similarly, the large configuration of each patient has 4 times

more voxels than the original patient data set, which accounts for a higher overhead.
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We observed a slightly higher overhead for the 1% uncertainty simulation. This is due

to the fact that the resulting dose distribution is more complex when more particles

are simulated leading to less efficient data compression and thus higher data volumes

to be transmitted back to the client. The overhead does not dependent on the number

of CPUs employed for the simulation. Table 3 reveals some of the most interesting

aspects of the data transportation overhead. It shows that encrypting, compressing and

transmitting a complete patient data set in clinical resolution can be done in real-time

on modern hardware. Please note that table 3 only lists selected aspects of the total

overhead which is printed in table 2.

The MPI based parallelisation of the simulation algorithm generalises the physical

structure of the worker nodes. It does not depend on the number of cores in a node

or where the nodes are located. It is even possible that part of cloud nodes are

physically located on a different continent (however, this would be ill-adviced in regard

to networking performance). Due to this flexibility our framework also runs on a local

cluster or on a remote single node server.

So far we described the functionality of our newly developed framework. How does

computing in the cloud compare to computing on-premise (using computer hardware

locally) in terms of performance and costs for MC dose calculation? On-premise one

could use a workstation at the office desk or offload the MC simulation to a local cluster.

The simulation time for running the MC calculations on one workstation (node) locally,

without any cloud or network interfaced involved is printed in table 2 in the third column.

The simulation starts after all data was loaded into the dose calculation application and

ends with the resulting dose cube being present in memory. These are the same start

and end points as assumed for the overall cloud-based performance measurements listed

in the last column of table 2. Thus, the runtime in both columns can be compared

directly. The runtimes show that on one node all simulation experiments are performed

in less than one minute. Faster runtimes can be achieved on-premise by employing a

local cluster for the dose calculation. However, even a cluster in close proximity to the

TPS client needs to be connected via a network to the planning computer which builds

overhead similar to the one discussed for our cloud solution. If the cluster is located

within a trusted area one could consider dropping data encryption. However, this would

hardly change the runtime since due to compression, transmittion, synchronisation and

distribution of data the workflow would be exactly the same. Even the magnitude of

the overhead would be comparable as we could show in table 2. The respective cloud

overhead was measured at the Institute of Cancer Research, which provides a stable 10

Gbps Internet link. This network rate is quite fast even for local network infrastructures.

Most clinics and institutes usually may not provide more than 1 Gbps internal network

bandwidth. Apart from minor latency differences we can assume that the overhead of

using a local cluster is comparable to the overhead we have measured using the cloud

configuration.

However, a 10 Gbps Internet fiber is not necessary in order to benefit from scalable

cloud-based MC simulations. Table 3 shows that our framework only uses about 160
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Mbps to transport patient data to the cloud and up to 800 Mbps to receive results. These

numbers show that a 1 Gbps Internet link may be enough to achieve the performance

stated in this paper. In case there is only a 100 Mbps Internet link present the additional

overhead would still allow a (near) real-time scaling as a simple calculation demonstrates:

For the prostate case the UP transfer would take about 24 ms and 164 ms longer for

the original and large prostate case while the downstream of the dose results would be

delayed by 361 ms and 1.7s, respectively. Engineering efficient data transport on 10

Gbps for relatively small data such as used for MC dose calculation is challenging and

we decided to settle with the bandwidths printed in table 3. On larger data sets we

achieved 3-4 Gbps network performance to and from the Amazon cloud even on peak

day times which leaves some room to improve our framework in the future.

Provisioning one c4.8xlarge instance (18 CPU cores) from Amazon costs $1.811 per hour

in Europe and $1.591 per hour in the US including energy, maintenance and network.

The consumer hardware price of one server similar to the Amazon node instance is about

$7k♯ which is equal to renting the Amazon node for 4400 hours. Assuming a 35 hour

use per week the hardware cost of one server will amortize in approximately 2 years and

5 months. This calculation takes into account that cloud node instances can be easily

terminated during night-time and on weekends when they are not needed. This can

be done automatically using a script and takes less than one minute. A virtual cluster

in the cloud can be built by provisioning a number of instances. The cost increases

linearly with the number of resources, e.g. for a 10 node cloud cluster 10 × $1.591

per hour has to be payed. Building a cluster on-premise costs more than the nodes

it contains. Additional expenses need to be planned for housing, cooling, networking

infrastructure, energy and maintenance. We estimate that hardware costs in the order

of $100k are required for a cluster which is comparable to the cloud configuration used

to achieve the results presented in this paper. This estimation includes the network

infrastructure and a separate login node. For the assumed on-premise hardware costs a

similar 10 node cluster in the cloud can be provisioned for 6285 hours or approximately

3 years and 5 months assuming again a 35 hours use per week. The cost estimations

drawn in this paragraph do not include VAT and potential volume discounts on both

sides. The on-premise calculation does not include cost of energy, maintenance, housing

facilities, cooling and redundancy arrangement. These numbers are difficult to estimate

and depend on individual factors and local conditions. Omitting these costs, which can

be significant, puts an advantage to on-premise cluster solutions in this discussion and

draws a pessimistic lower bound for the cost efficiency of the cloud solution. In addition

to that it can be argued that prices in the cloud drop over the assumed time span of

2-3 years due to technological advances according to Moore’s Law.

The cost estimation demonstrates that using cloud computing is an affordable

alternative to on-premise computing for MC dose calculations. Especially a research

environment can benefit from provisioning resources temporarily to realise scientific

♯ assuming a Dell PowerEdge R430 2xE5-2630v3 and 64 GB RAM configured on www.dell.com
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projects without upfront investment costs for expensive hardware. The elastic nature

of cloud computing allows to provision the right type and size of the computing

resources and adapt it dynamically to changing needs, almost instantly. If just fast dose

calculations are needed one node would be enough. More nodes can be dynamically

added to the virtual cluster to reduce calculation time even further in case real-time

requirements need to be satisfied. (Near) Real-time MC simulations are required for

modern ART scenarios (Jia et al.; 2015). We are currently using the presented framework

in on-line adaptive re-planning studies and plan to upgrade it soon for treatment

planning on MR-Linac machines.

MC simulations in the cloud can also be used to support every-day clinical treatment

planning. We showed that data can be transferred securely while peak workloads

can be handled by allocating elastic resources. For clinical use, throughput would

probably be more important than real-time calculation speeds which is best achieved by

provisioning multiple instances each providing an individual MC server application in

order to simulate multiple patient doses at a time. The main risk in this scenario would

be to maintain a stable Internet connection to the cloud. The risk of hardware failures

is the responsibility of the cloud provider. In case of a malfunction the image of a

running node is switched to another instance automatically. A general cost comparison

between a cloud-based MC dose calculation service and on-premise dose calculations for

clinical use cannot be drawn in the scope of this paper. Individual requirements and

circumstances need to be taken into consideration for that.

5. Conclusion

Cloud computing enables affordable (near) real-time Monte Carlo dose calculations

for everybody, everywhere. It provides a means to access much more computational

resources than usually available on-premise in an institute or a clinic. Monte Carlo

simulations are especially well suited to scale out in a cloud environment which creates a

huge potential to accomplish accurate dose calculations for adaptive treatment planning

scenarios with (near) real-time requirements.
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