
Efficient Online 4D Magnetic Resonance Imaging

Marco Barbone ∗1, Andreas Wetscherek †2, Thomas Yung1, Uwe
Oelfke2, Wayne Luk ‡1, and Georgi Gaydadjiev §3

1Department of Computing, Imperial College London, London, UK
2Joint Department of Physics at The Institute of Cancer Research

and The Royal Marsden NHS Foundation Trust,London, UK
3Bernoulli Institute, University of Groningen, Groningen,

Netherlands

February 15, 2022

Abstract

Magnetic Resonance (MR)-guided online Adaptive RadioTherapy (MR-
goART) utilises the excellent soft-tissue contrast of MR images taken
just before the patient’s treatment to quickly update and personalise ra-
diotherapy treatment plans. Four-dimensional (4D) MR Imaging (MRI)
can resolve variations in respiratory motion patterns. 4D MRI data can
be used to adapt the radiation beams to maximally target the tumour
while sparing as much healthy tissue as possible. 4D MRI reconstruc-
tion, however, is computationally challenging and current state-of-the-art
implementations are unable to meet MRgoART time requirements. This
study bridges the gap between high-performance computing and medical
applications by developing and implementing a parallel, heterogeneous
architecture for the XD-GRASP algorithm capable of meeting the MR-
goART time requirements. Our architecture exploits long-vector instruc-
tions and utilises all available resources, while minimising and hiding the
communication overhead when external GPUs are used. As a result, the
reconstruction time was reduced from 994 seconds to just 90 seconds with
a speed-up of more than 11x. In addition, we evaluated the impact of
the emerging Processing-in-Memory (PIM) technology. Our simulation
results show that 16 low power, in-order PIM cores with no SIMD unit
are 2.7x faster than an Intel Core™ i7-9700 8-core CPU equipped with
AVX512 SIMD units. Additionally, 40 PIM cores match the performance
of two AMD EPYC 7551 CPUs, with 32 cores each and just 87 PIM cores

∗m.barbone19@imperial.ac.uk
†andreas.wetscherek@icr.ac.uk
‡w.luk@imperial.ac.uk
§g.gaydadjiev@rug.nl

1



will match the performance of an NVIDIA Tesla V100 GPU equipped
with 5,120 CUDA cores.

Heterogeneous computing; Parallel computing; Processing-in-Memory; Mag-
netic Resonance Imaging; Radiotherapy; XD-GRASP;

1 Introduction

In recent years, the wide availability of multi-core CPUs and the evolution
of GPUs, from pure graphics processors to massively parallel many-core multi-
processors, have dramatically changed high-performance computing. To achieve
high-performance, in addition to reducing computational complexity and taking
into account memory latency, modern algorithms require parallelisation across
all cores available in the system. Further, to push performance, vector instruc-
tions and, where possible, external accelerators like GPUs, TPUs and FPGAs
are used. Present-era computational challenges cannot be solved by simply using
faster hardware: algorithms which are not designed to harness the full potential
of hardware architectures may not lead to a significantly lower execution time on
faster hardware, due to their low system utilisation. Additionally, many mod-
ern and emerging applications require the processing of very large datasets. For
example, many artificial intelligence and machine learning applications require
scans over large quantities of data, to extract the key properties of the dataset.
Most of the data used by these applications are not reused by the CPU, render-
ing the caching either inefficient or unnecessary while overwhelming the data
storage and routing resources of modern computers by continuously fetching new
data from the main memory [1]. Given the high cost of data movement and the
performance penalty of non-sequential memory data accesses, innovations such
as three-dimensional (3D)-stacked memory dies, that combine a logic layer with
DRAM layers, and the ability to perform logic operations using memory cells
themselves, provide the possibility to perform general-purpose computation di-
rectly within the memory. This new trend in computer architecture is known as
processing-in-memory (PIM). While PIM can allow many applications to over-
come data-movement bottlenecks, the programmer has to identify the suitable
memory-bound portions of a program that could be offloaded [2].

Magnetic resonance imaging (MRI) scans have been in routine clinical use
in diagnostic radiology for a long time, due to its excellent soft-tissue demar-
cation and the variety of available imaging contrasts in MRI. More recently,
the use of MRI in the context of radiotherapy has increased, due to its bet-
ter differentiation of soft tissue which can, for example, resolve the infiltration
of healthy tissue by tumours. This information can be used to design more
appropriate radiotherapy treatment plans [3]. The recent availability of hybrid
MR-Linacs, combining MR imaging with radiotherapy treatment delivery in one
device, led to new requirements in terms of the acquisition and reconstruction
time of MR images [4]. Both need to be completed within minutes to be used
for treatment planning, as the patient is already positioned on the MR-Linac
for treatment. This study aims to bridge the gap between high-performance

2



computing and medical applications by applying a heterogeneous computing
approach to accelerate four-dimensional (4D) MR image reconstruction, in the
context of MR-guided online adaptive radiotherapy (MRgoART). 4D MRI can
resolve the extent of respiratory motion of tumours and risk structures, which
can be incorporated to improve the treatment plan or be used as training data
for real-time imaging solutions [5, 6]. The results show that, by fully exploit-
ing the available computing resources, orders of magnitude speed-up can be
achieved which facilitates clinical adoption of the technique speed-up can band
improves MR-Linac treatmentse achieved which facilitates clinical adoption of
the technique.

4D MR image reconstructions, however, are often based on iterative compressed-
sensing based approaches, as regularisation is required to remove undersampling
artefacts. This becomes, in particular, a challenge if large imaging fields of views
are required to resolve the motion of tumours and risk organs and if a high spatial
resolution of the images is necessary. A variety of 4D MR image reconstruc-
tion techniques have been in consideration for MRgoART [7]. These techniques
can be divided into direct methods and iterative conjugate gradient-based al-
gorithms. While direct methods are faster, they are particularly sensitive to
streaking artefacts, hence producing lower-quality images. Iterative algorithms
produce higher-quality images but are characterised by higher computational
complexity that results in much larger execution times [7]. While GPU acceler-
ation has already been applied in the context of MRI [8], additional performance
can be harnessed by simultaneously using CPU and GPU compute capabilities.
Hence, a heterogeneous computing approach, in which the SIMD computations
can be executed on GPUs while the CPUs perform the remaining algorithmic
parts, can further reduce the reconstruction time compared to homogeneous im-
plementations based only on either a CPU or GPU. Although the heterogeneous
computing approach is promising, it creates new computational challenges as it
requires the transfer of data to and from the GPU over the PCIe bus. While
CUDA offers different communication APIs to transfer data between CPU and
GPU, the PCIe bandwidth is limited, hence data transfers may dominate the
total execution time, leading to a low overall system utilisation and limited
performance.

In this study, the MRI data are acquired in k-space, following a stack-of-stars
acquisition pattern [9] with golden angle spacing [10]. Given this acquisition
scheme, one major component of MRI reconstruction algorithms is the use of
the Non-Uniform Fast Fourier Transform (NUFFT) [11]. Despite this algorithm
being widely researched, with many optimised implementations existing, these
implementations are not thread-safe. Further, they are often internally paral-
lelised and optimised for 3D MRI data. As such, they are not efficient, or even
usable, in the context of 4D MRI. Additionally, the NUFFT algorithm is mem-
ory bound because nearby points in k-space may not be stored contiguously in
memory, even though gridding strategies, optimised data structures and mem-
ory access patterns could significantly speed-up the näıve implementations [12].
The performance achieved is not optimal and there is still room for improve-
ment. Thus, the performance achieved by PIM is investigated, which allows

3



overcoming data movement bottlenecks by directly processing the data within
the memory.

There are three key challenges that a successful MRgoART platform would
need to address. First, it must overcome the limitation of current state-of-the-
art NUFFT implementations which are optimised for 3D and 2D data. Second,
it must minimise multi-threading overheads, hide data transfers and avoid inter-
process communication. Third, a load-balancing strategy based on the 4D MRI
data characteristics suited for multi-processing parallelism is required.

The main contributions of this 4D MRI centric study are:

• A parallelisation scheme optimised for 4D MRI data, to reduce multi-
threading overhead, hide data transfer latency and minimise inter-process
communication;

• An efficient architecture capable of meeting online time requirements of
MRgoART to facilitate clinical use;

• Evaluation of the impact of future PIM technologies.

Considering an image of size 256x256x48 pixels and 10 respiratory phases as
a high-quality 4D image [5] and a reconstruction time of at most two minutes
suitable for MRgoART use, the throughput that a reconstruction algorithm
should achieve is 262,144 pixels/second. Additionally, the reconstructed image
should be indistinguishable to the naked eye when compared to an artefact-
free reference image. Hence, the image should score at least 97% structural
similarity, for the difference to be invisible to the human eye [13,14]. The result
of this study is a heterogeneous implementation of the XD-GRASP algorithm
which reduces reconstruction time by more than 95%, achieving five times the
minimum throughput necessary to meet online MRgoART time requirements,
producing high-quality images with similarity score over 97% when compared to
the reference implementation, allowing early-adoption of 4D MRI in MR-guided
online adaptive radiotherapy (MRgoART).

The remainder of this paper is organised as follows. In Section 2, there are
introductions to MRI, radiotherapy and the XD-GRASP algorithm. Section
3 illustrates the architecture developed to accelerate the 4D MRI. Section 4
explains the testing methodology and the performance achieved by the archi-
tecture in three configurations. Finally, Section 5 concludes the paper and lists
future directions.

2 Background

This section will outline some fundamental concepts.

2.1 Radiotherapy and MRI

Radiotherapy is part of approximately 50% of all cancer treatments [15]. It aims
to treat the targets, such as tumours and affected lymph nodes, by delivering

4



the prescribed radiation dose, while avoiding damaging healthy tissue to reduce
toxicity and side effects. To optimise this therapeutic ratio, radiotherapy is
typically delivered over the course of several treatment days (fractions). In
conventional radiotherapy, the patient needs to be set up in exactly the same
way for each fraction, to accurately deliver the previously calculated treatment
plan. For this, radiation therapists have to rely on external markings and laser
alignment, because only low contrast imaging is available on a conventional linac
(linear accelerator) to verify the exact internal anatomy.

In this context, MR-guided online adaptive radiotherapy (MRgoART) is a
game changer. It uses the excellent soft-tissue contrast of magnetic resonance
imaging (MRI) [3] to adapt the radiation on each fraction according to day-to-
day variations in anatomy, such as the filling of the bladder, bowel, stomach and
rectum, and anatomical changes over the course of treatment, such as tumour
shrinkage and weight-loss. The resulting increased certainty, with respect to
the internal anatomy, could be translated into smaller treatment margins to
account for setup errors, leading to lower radiation doses to healthy tissues.
MRgoART became possible with the integration of MRI scanners with linacs to
deliver radiation therapy [16–19]. Current clinical MRgoART workflows involve
re-planning of the treatment based on a freshly acquired image, while the patient
is on the table inside the hybrid MR-Linac (online). Treatment is then delivered,
while organ and tumour motion is monitored on two-dimensional (2D) cine-MRI
images. However, 2D cine-MRI cannot be used to perform treatment adaption
as it does not contain enough information about the patient anatomy.

4D MRI resolves the three-dimensional patient anatomy during different
phases of the respiratory cycle, adding the respiratory phase as the fourth (tem-
poral) dimension. MRI data are assigned into different respiratory bins based
on a respiratory surrogate signal, representing the different phases of the res-
piratory cycle. Including respiratory motion information on both target struc-
tures and healthy radiation-sensitive organs would be valuable for the treatment
planning process. It could be used to identify favourable anatomical configu-
rations, which allow delivery of higher doses to the tumour while maintaining
safe radiation levels for the healthy organs. Another application of 4D-MRI
is the retrospective calculation of delivered doses, which can then inform the
radiation prescription for the following treatment days. For the treatment of
moving targets, such as abdominal or thoracic tumours, 4D MRI could be used
to inform mid-position planning [20], based on image registration to calculate
a sharp image of the patient anatomy corresponding to the average position
during the respiratory cycle.

2.2 XD-GRASP

XD-GRASP uses the conjugate gradient algorithm to iteratively minimise the
following cost function [21]:

d = argmin
d
{‖F · S · d−m‖22 + λ ‖T · d‖1} (1)

5



where:

• d are image series to be reconstructed in the x-y-t space

• T it the temporal total-variation (TV) operator (sparsifying transform)

• m =
[
m1 . . .mc

]T
are the acquired multi-coil radial k-space data with c

coils

• F is the NUFFT operator defined on the radial acquisition pattern

• S =
[
S1 . . . Sc

]T
are coil sensitivity maps in x-y space

• λ is the regularisation weight that controls the trade-off between data
consistency and the regularisation enforcing sparsity

Intuitively, this optimisation problem, solved using the conjugate-gradient method,
aims to minimise the difference between the k-space representation of the image
and the acquired MRI signal, while avoiding the formation of streaking artefacts
through regularisation.

2.3 Related Work

Mickevicius and Paulson [7] tested different reconstruction algorithms and com-
pared the overall image quality, reconstruction time, artefact prevalence and
motion estimates. They tested four of the most promising algorithms: a direct
non-uniform fast Fourier transform (NUFFT) [22], iterative self-consistent par-
allel imaging reconstruction (SPIRiT) [23], sensitivity encoding solved with a
conjugate gradient algorithm (CG-SENSE) [24], and multi-dimensional golden-
angle radial sparse parallel MRI (XD-GRASP) [25]. Their results show that,
while NUFFT was the fastest, it exhibited the largest amount of streaking arte-
facts. On the other hand, XD-GRASP was not fast but was least sensitive
to undersampling artefacts, hence leading to short scan durations. This, com-
bined with a longer processing time of the XD-GRASP algorithm, resulted in
both high-quality images and a reduction of the overall time required to acquire
and process the image data. For this work, XD-GRASP [25], an open-source
reconstruction algorithm for 4D MRI, was chosen; it provides a good compro-
mise between its ability to reconstruct images from undersampled radial MR
acquisitions and its computational complexity.

XD-GRASP was previously explored for use in MR-guided radiotherapy,
where 6 respiratory phases were reconstructed for 40 slices with an in-plane
resolution of 1.77mm and a slice thickness of 6mm [7]. Recently, its use for
MR signature matching was proposed, where 10 respiratory phases were recon-
structed for 48 slices with an in-plane resolution of 1.25mm and a slice thickness
of 5mm in 74 minutes [5]. Using 10 respiratory phases is common in clinical
4D CT imaging. Incorporating motion estimation into image reconstruction can
achieve artefact-free reconstruction from more highly undersampled data. Using
the joint MoCo-HDTV algorithm, 20 respiratory phases were reconstructed from

6



only 240 radial spokes for 60 slices with an in-plane resolution of 1.5mm and a
slice thickness of 5mm, with an average reconstruction time of 6.5 hours [26].

3 Architecture

The use of 4D MRI in the context MRgoART requires minimising the com-
bined acquisition and reconstruction time while still producing high-quality im-
ages. To this end, the XD-GRASP algorithm was accelerated. This iterative
algorithm is one of the least sensitive to undersampling artefacts and hence
supports relatively short acquisition times while leading to clinically acceptable
images [7]. Besides, this reconstruction algorithm can reconstruct different slices
(2D images which, when stacked, build a 3D image) independently, making it
one of the best candidates for acceleration. Further, the proposed architecture
can exploit the slice parallelism offered by the 4D data, minimising the over-
head related to multi-threading and multi-process communications. In the case
of GPU acceleration, the architecture overlaps data transfers to and from the
GPU with useful computation avoiding idling times. In addition, the impact of
future PIM technology in MRgoART workflows was tested. With NUFFT being
a memory bound algorithm, the proposed architecture fully exploits the band-
width offered by PIM architectures, fully loading every PIM core to outperform
non-PIM architectures with the same core count.

3.1 NUFFT

The XD-GRASP algorithm relies on the NUFFT, a known and extensively
studied algorithm with several optimised open-source implementations available.
As such, the FINUFFT [27] and the gpuNUFFT [28] libraries are used, as
they are already optimised and implement all the features required by the XD-
GRASP algorithm. FINUFFT depends on the FFTW library [29] and, since
they all are open-source, we recompiled them to take advantage of CPU vector
instructions, including the recent AVX512.

These libraries are optimised for the 2D and 3D cases but they do not na-
tively support 4D data. Given the characteristics of the XD-GRASP algorithm
and the slice independence, it was possible to execute different calls to the
NUFFT, one for each slice. This resulted in a severe performance loss due to
the design assumptions made by the FINUFFT library. In case the slice paral-
lelism is not exploited properly, the threads are created every time the NUFFT
executed instead of being created once at the beginning of the program. This
greatly increases the multi-threading overhead dominating the NUFFT execu-
tion time. On the other hand, the gpuNUFFT library, used in this context to
offload the intensive SIMD computations of the XD-GRASP algorithm, spent
most of the time transferring data between the CPU and GPU. Besides, the GPU
was not fully utilised: the parallelism potential offered by respiratory phase and
the number of coils is not enough to saturate a modern GPU. We decided not to
leverage the internal parallelism but focus on an optimal parallelisation scheme

7



for the 4D MRI to overcome the above limitations.

3.2 Processing in Memory

In non-Cartesian MRI reconstruction, the acquired non-uniformly spaced data
are usually interpolated onto a uniform Cartesian grid before performing a fast
Fourier transform (FFT) [22, 30]. However, this method has many different
bottlenecks: the uniform grid needed to retain the k-space coordinates greatly
increases the memory requirement; close points in k-space might not be stored in
contiguous memory locations, causing cache misses; and neighbourhood search
requires scanning all the non-uniform space coordinates for each grid location
[12]. As a consequence, the NUFFT is a memory-intensive workload. Ghose et
al. [2] present a methodology to identify applications, or portion of applications,
that can take advantage of PIM. By applying this methodology, the NUFFT
algorithm, which is heavily memory intensive, was identified as suitable for PIM.

The PIM programming model is still being researched and, as such, many
different solutions have been proposed [2]. In this study, the PIM targets are
offloaded to the PIM cores by means of compiler directives, so that the compiler
takes care of generating the threads for PIM execution. For the sake of general-
ity, concurrent execution of CPU and PIM cores was not enabled, removing the
need for coordination between the CPU and PIM logic. This allows PIM to be
used even in the absence of a cache coherence mechanism between the CPU and
PIM. Non-concurrent execution limits parallelism causing performance losses,
hence PIM performance results underestimate the full potential.

Lastly, similarly to previous studies [31], PIM kernels were integrated into
the NUFFT library itself making the approach invisible to the user and more
general, since it can be integrated into algorithms other than XD-GRASP.

3.3 Inter-slice and Intra-slice Parallelism

The output of the MR scanner is a complex signal measured in each of the
receiver coils, a radio frequency receiver that produces the output signal of an
MRI scanner. Data are acquired in k-space, following a stack-of-stars acquisi-
tion pattern [9] with golden angle spacing [10]. For each angle, nx samples are
acquired across all slices. The samples taken at a particular angle are referred
to as a spoke. These data are then pre-processed and sorted, following a self-
gating signal [32], into respiratory phases. Lastly, Figure 1 shows how slices are
processed independently and how the XD-GRASP algorithm is used to recon-
struct a 3D volumetric image for each respiratory phase. Each input slice is
used to compute only one output slice. The set of 3D images per respiratory
phase produces a 4D reconstruction.

Given the input and the logic of the algorithm, there are different dimen-
sions which can be considered for parallelisation. An example is the intra-slice
parallelism across respiratory phases or coil channels. While relatively simple
to implement and natively supported by the NUFFT libraries used, this paral-
lelisation scheme has four major problems:

8



Coils

Slices

(nx, angles)

Phase
2

Phase
3

Phase
1

Phase
4

Phase
5

Phase
6

Phase
7

Phase
8

3D Image3D Image
Slices

4D Image

Figure 1: The input and output of the XD-GRASP algorithm.

• the computation of the gradient is a synchronisation point and it cannot
be entirely parallelised;

• it does not allow early termination of the computation of slices that have
already converged;

• in case of the utilisation of external accelerators, it prevents overlapping
communications and computation;

• threads are created and destroyed multiple times for each iteration.

In our experiments, the intra-parallelism scheme limits the scalability of the
XD-GRASP algorithm resulting in poor performance due to the overhead intro-
duced by the thread creation/destruction and the synchronisation mechanism.
Also, this form of parallelism does not allow overlapping data transfers and com-
putations, so when external accelerators are used to perform the NUFFT, the
transfer time dominates the compute time causing major performance degrada-
tion.

Another possible way to parallelise the algorithm is to exploit inter-slice
parallelism. This parallelisation scheme consists of executing an instance of the
XD-GRASP algorithm for each slice – thus splitting the 4D problem into sepa-
rate and independent 3D problems along the z-axis. The XD-GRASP problem
is solved for each slice separately since both the gradient and the objective func-
tion are local for each slice, so no communication, no synchronisation and no
output recombination are needed. When the inter-slice parallelism is exploited,
it is possible to overlap communications and computations since different slices
can request their NUFFT computations concurrently. Hence, while processing
a set of slices, another set of slices can be transferred to the accelerator. When
adopting the inter-slice parallelism, the intra-slice parallelism is disabled, as it
decreases the performance due to overhead caused by thread-creation, commu-
nication, and thread destruction.

Figure 2 is a timing diagram that shows the overlap strategy when three
CPU processes, P1, P2 and P3, are forked. The GPU is called multiple times
during each iteration of the conjugate gradient. The lines represent the compu-
tation time, while the rectangles represent the waiting time for the data to be
processed, and the arrows show the data-transfers. When only one process is
used, the communications between CPU and GPU are not overlapped meaning

9



there are times when the CPU is idle waiting for the GPU to finish and vice
versa. When more than one process is forked, communications can be over-
lapped and, in cases where a sufficient number of processes are forked, the full
overlap is achieved. While the CPU performs other steps of the XD-GRASP
algorithm, the GPU performs NUFFT, ideally achieving full utilisation without
idling time.

3.4 Maximising resource utilisation

After we derived the optimal parallelisation scheme, a major challenge arose.
State-of-the-art implementations of the NUFFT are not thread-safe, therefore
unless they handle the parallelism internally, they cannot be used in a multi-
threaded programming environment. To overcome this challenge and avoid man-
ual editing of these libraries, a multi-processing approach was used instead of
multi-threading. While this is thread-safe by definition and enables changing of
the parallelisation scheme, it has major drawbacks:

• process creation and scheduling introduce more overhead than thread cre-
ation and scheduling;

• implementing dynamic load-balancing is complex;

• inter-process communications and synchronisations are costly due to the
lack of shared memory;

• multi-process GPU scheduling is more expensive than multi-thread schedul-
ing as the multi-process service has to guarantee memory isolation [33].

Given these constraints, the focus was to develop and implement an architecture
that does not require any inter-process communication and leverages the copy-
on-write features of the modern implementation of the fork system-call [34], as
well as minimising multi-process scheduling on the GPU using the hardware
process scheduler introduced with the NVIDIA VOLTA GPU architecture [33].

Due to the lack of communication between the processes, as they read the
input and then process the necessary partition, linear scaling is expected in
both the number of cores and the number of GPUs utilised, as the total number
of slices to be processed increases. Since process creation overhead is negligi-
ble, it is better to create more processes than needed and achieve full overlap
between CPU and GPU computation. Creating fewer processes does not give
any benefit and with low number of processes, the performance degrades when
communications are not fully overlapped.

In the case of PIM systems, the parallelization strategy used is the same.
The only difference is that we create one process per PIM core and we allocate
the slices that the PIM core computes in its memory vault. This way the PIM
cores can compute independently without the need to: (a) access global memory
and (b) communicate among themselves.

10



time

CPU

GPU

P1
P2
P3

Figure 2: XD-GRASP architecture timing diagram. Dimensions are not repre-
sentative of real-time duration.

3.5 Load-balancing

The adoption of multi-processing creates additional challenges since dynamic
load-balancing techniques, like work-stealing [35] or a simple shared queue, can
lead to huge overhead due to the lack of shared-memory amongst the worker-
processes. Hence to maximise resource utilisation, a static load-balancing tech-
nique is required, based on the MRI data characteristics. Without regulari-
sation, the stack-of-stars acquisition scheme leads to undersampling artefacts
in the same locations across different slices, although the intensities of which
can vary. As a result, the number of iterations performed by the XD-GRASP
algorithm is about the same for each slice. To test this hypothesis, the time re-
quired for each slice was measured. Our experiments showed that the standard
deviation is less than 1% of the total execution time. To minimise the overhead,
we deployed a strategy that divides the slices into equal-sized partitions and
then assign the first element of each partition to the first process, the second
element to the second process, iterating over the processes until all work-units
are assigned.

4 Results

The algorithm was evaluated on two systems, one physical and one simulated.
The physical system incorporates two AMD EPYC™ 7551 32-core CPUs and a
NVIDIA Tesla V100 PCIe 32GB GPU. Two different configurations were used:
with and without GPU acceleration. The simulated system consists of an Intel
Core™ i7-9700 CPU and PIM accelerators. There is no system with both GPU
and PIM accelerators as PIM and GPUs would be performing the same portion
of the algorithm since the only memory intensive workload of the XD-GRASP
is the NUFFT.

11



The input data reading times are not included in the evaluation since in a
real case scenario data will be directly loaded in RAM during the acquisition.
The processing data transfers are completely hidden and overlapped with the
computation. Only, the latency to send the first batch of data to the GPU and
to read the last batch from the GPU would matter. It is worth mentioning that
these two latencies are completely negligible as they account for much less than
0.1% of the total time. In the PIM case, there are no transfers as the data are
already in the vault connected to the PIM core.

4.1 System Configuration

The AMD EPYC™ 7551 is a 64-bit 32-core 2 contexts x86 enterprise server
microprocessor based on the 14nm Zen micro-architecture. It is equipped with
64MB of L3 cache with a Thermal Design Power (TDP) of 180W, running at
2.0GHz with an all cores boost clock up to 2.55 GHz and up to 3.0GHz for
12 active cores. The Tesla V100 PCIe 32GB is an enterprise GPU based on
the 12nm Volta micro-architecture. It is equipped with 32GB GDDR5X with
a TDP of 250W. It has 5,120 CUDA cores running at 1,455 MHz. The PIM
system was simulated using ZSim+Ramulator, an open-source PIM simulation
framework [36, 37]. This framework is based on two widely-known simulators:
ZSim [38] and Ramulator [39]. A 3D-stacked DRAM, similar to the Hybrid
Memory Cube [40], was modelled, where the memory contained 16 vaults. One
low-power single-issue core, similar in design to the ARM Cortex-R8 [41], was
added per vault ensuring that the area of the PIM core did not exceed the
total available area for logic inside each vault (3.5-4.4mm2) [42–44]. There is
communication mechanism between PIM cores, the PIM cores can access the
contents of their memory vault but not the contents of the other memory vaults.
There is cache coherence mechanism among PIM cores and between PIM cores
and CPU cores. The following system configuration was used:

• CPU: Intel Core™ i7-9700 CPU @ 3.00GHz – 8 out-of-order cores, L1 in-
struction/data caches 64KB, private, 8-way associative; private L2 caches
256KB, 8-way assoc.; shared L3 cache 12MB, 16-way assoc., 16-wide SIMD
unit per core (AVX512 compatible);

• PIM core: 1 in-order core per vault, 1-wide issue, 1 floating-point unit, L1
instruction/data caches: 32KB private, 4-way associative;

• 3D-Stacked Memory: 4GB cube, 16 vaults/cube; Internal (256GB/s) and
Off-Chip (32GB/s) bandwidths;

• Baseline Memory: DDR4 2400, 32GB, 4 channels.

4.2 Evaluation Methodology

To evaluate the architecture, the original MATLAB implementation supplied
by Feng et al. [25] was extended to the 4D case by adding support to the z-axis,

12



allowing the reconstruction of multiple slices. To perform a fair comparison,
a MATLAB parfor (parallel for) over the slices was used, which replicates the
same inter-slice parallelism strategy implemented in C++ instead of serialising
the different slices. The CPU benchmarks were executed on the above-described
system. The MATLAB code was executed with MATLAB R2019a Update 6.
The CPU code was compiled with GCC 9.3.1 and the GPU code was com-
piled with CUDA compilation tools 10.2. The NVCC flags were the default
set by gpuNUFFT which only specify the architectural and code-generation
flags to support different GPU micro-architectures. The GCC flags were -O3 -
march=native which are the default flags set by FFTW [29]. Moreover, these
flags were set so that the generated binary fully exploits the vector instruction
offered by the CPU since most of the code can be vectorised. Since the imple-
mentation will be released as open-source, anyone can compile it with the best
optimisation flags.

4.3 Dataset

The dataset was supplied by The Institute of Cancer Research, London (ICR)
and consists of a female patient (48y) with pancreatic cancer who consented to
participation in the PRIMER trial (NCT02973828) for the development of daily
online MR imaging for MR image-guided radiotherapy. Images were acquired on
ICR’s Elekta Unity MR-Linac system (Elekta AB, Stockholm, Sweden), which
operates at a field strength of 1.5 Tesla and has 8 receive coil channels (4 ante-
rior and 4 posterior). A volumetric radial stack-of-stars gradient echo sequence
with golden angle spacing [45] and balanced MRI contrast was acquired for 287
seconds, resulting in the acquisition of 831 spokes for each k-space partition.
SPAIR fat-suppression was used in combination with a partial Fourier factor
of 0.7. Further MRI parameters were: echo time 1.34 ms, repetition time 3.5
ms, field of view 500 x 500 x 200 mm3, flip angle: 40°, bandwidth 866 Hz/px,
acquired voxel size: 1.5x1.5x3.0mm3. After a gradient delay correction [46] was
performed, coil sensitivities were estimated using the adaptive combine algo-
rithm [47] before applying the XD-GRASP algorithm. The tests were repeated
5 times and the results were averaged across the runs. The standard error is
shown in Table 2. Input pre-processing was excluded as it is not part of the
algorithm.

4.4 CPU Benchmarks

Figure 3 shows the scalability. The difference between the theoretical and nor-
malised speed-up is that the theoretical speed-up does not account for the CPU
boosting behaviour, whereas the normalised does. In these tests, the CPU can
boost up to 3.0 GHz if 24 cores or less are utilised. All of the tests were run with
the default CPU settings, not limiting the boosting behaviour, and with SMT
enabled, which resulted in the CPU boosting up to 3.0 GHz until a maximum of
24 cores was loaded, then dropping down to 2.55 GHz. Then the CPU boosting
frequency was limited to be the same in all cases, 2.55 GHz single-core and

13



20 40 60 80 100 120 140
processes

20

40

60

80

100

120

140

sp
ee

du
p

speedup
measured
theoretical
normalized
pysical cores

Figure 3: Measured, theoretical and normalised speed-up for the single-process
implementation.

multi-core boost, and the single-process implementation was tested again. In
this test, the implementation was 13% slower. The ideal speed-up was plotted
according to this value, which corresponds to the normalised line in Figure 3. It
can be observed that the boosting behaviour of the CPU measurably affects the
results with the algorithm exhibiting almost perfect linear scaling when the dif-
ference in clock frequency is taken into account. In the case where the dataset
contained a multiple of 64 slices, instead of a total of 144, the linear scaling
could be observed up to 64 processes. The highest speed-up was measured with
72 processes as, for this number of processes, the workload is balanced with
each process involving two work units. After 72 processes, the performance is
constant within margins of error. Due to the number of slices and the number
of cores not being multiples of one another and the coarse-grained parallelism
adopted, the ideal speed-up is not reached on this dataset. When 72 processes
are forked, the first 64 slices are processed in parallel and then the program
must wait for the remaining 8 to be processed. Due to the SMT technology,
the 8 remaining processes can already begin their computation, exploiting idle
resources left from the other 64 processes.

4.5 GPU Benchmarks

Figure 4 shows the time measured for the GPU implementation with different
numbers of processes. When the number of processes increases from 1 to 2, the
partial communication overlap increases the performance by more than 60%.
With only two processes, according to the NVIDIA nvprof tool, the GPU was
not 100% utilised. By increasing the number of processes, a higher overall GPU
utilisation, close to 100% for the entire duration of the program, was measured.

Since the gpuNUFFT library invokes different CUDA-kernels, some of them

14



2 4 6 8 10 12 14 16 18
processes

0

100

200

300

400

500

600

tim
e 

(s
)

327

199
154133119 105 95 93 91 91 90

GPU measurements
TESLA V100

Figure 4: Measured GPU performance.

requiring more constant and shared memory and others requiring less, the in-
creased number of processes likely leads to higher performance due to better
resource utilisation – kernels requiring different resources can be executed si-
multaneously. On the TESLA V100, the time goes down to 90s and remains
constant when 16 processes are forked. These results show that the multi-
process overhead is negligible and it does not impact the performance even if
tens of processes compete for the same GPU resources. This can be attributed
to the multi-process scheduler implemented in hardware on GPUs based on the
VOLTA micro-architecture [48].

4.6 PIM benchmarks

The simulation results show that 16 PIM cores are already faster than an 8-core
Intel CPU, while 40 PIM cores match the performance of two 32-core AMD
EPYC 7551 CPUs and 87 PIM cores match the performance of an NVIDIA
Tesla V100 GPU equipped with 5,120 CUDA cores. The worst-case scenario
was simulated, in which the CPU supports AVX instructions and the compiled
CPU code fully leverages them. It is worth noticing that, while the total energy
consumption has not been estimated, due to the thermal constraints of PIM and
the lack of the most energy consuming CPU features such as out-of-order execu-
tion and SIMD units on the PIM cores, the proposed PIM architectures consume
much less power than the non-PIM system used for testing. Zsim+Ramulator
supports the simulation of PIM architectures in which the number of PIM cores
(HMC vaults) is a power of 2. Given this limitation, the results of configura-
tions that cannot be simulated were obtained by combining simulated results
and the speed-up shown in Figure 3. The speed-up obtained by comparing the
PIM simulation results was higher than the one shown in Figure 3, hence PIM
results in Figure 5 can be considered a conservative estimate.

15



1 20 40 60 80 100 120
PIM cores

102

103

104

tim
e 

(s
)

PIM time
PIM
GPU
CPU

Figure 5: PIM time prediction (log scale).

4.7 Validation

In order to assess the validity of reconstructed images, they are compared to
a set of reference images produced by the baseline MATLAB implementation
of XD-GRASP supplied alongside [25]. The comparisons are evaluated quan-
titatively using a pair of measures: mean squared error (MSE) and structural
similarity (SSIM). The MSE and the SSIM of two identical images are 0% and
100% respectively. In our experiments, the image similarity score was above
99% with a normalised MSE (nMSE) of 10−5 for the CPU case and 97% with
an nMSE of 3 ∗ 10−5 when the GPU was used. The lower accuracy of the
GPU results arises from the oversampling factor and kernel width chosen for
the GPU NUFFT calculation, parameters which could be tuned to increase im-
age accuracy. Table 1 shows how different combinations of kernel widths (KW),
sector widths (SW) and oversampling factors (OSF) affect gpuNUFFT perfor-
mance and accuracy. The speedup is obtained by normalising the execution
times against the chosen configuration (in bold). For our tests, we chose the
fastest configuration capable of achieving at least 97% SSIM; achieving 99%
SSIM requires 7% more time. As mentioned in Section 1, a minimum of 97%
SSIM is required for the difference between two MRIs not to be visible to the
human eye [13,14] hence considered equivalent in this study. Figure 6 shows an
example of the reconstruction performed by the different implementations. It is
possible to notice that these images are indistinguishable to the naked eye.

5 Conclusions and future work

In this paper, we proposed a method to parallelise 4D MRI while minimising and
hiding the specific data transfers. This method is generally applicable to any
MRI processing algorithm as long as the stack-of-stars acquisition pattern [9]

16



(a) Reference (b) CPU (c) GPU

Figure 6: Example of one respiratory phase of one slice.

Table 1: The NUFFT benchmarks ordered by speed-up.

KW OSF SW SSIM Speed-up
1 1,25 16 93% 1.14
1 2,00 16 91% 1.10
1 1,25 8 93% 1.09
1 2,00 8 91% 1.04
3 1,25 16 97% 1.00
3 2,00 16 97% 0.99
3 1,25 8 97% 0.94
3 2,00 8 99% 0.93

with golden angle spacing [8] is used. The results shown in Table 2 indicate,
by harnessing the full potential of modern CPUs and GPUs, the proposed ar-
chitecture can reduce the reconstruction time by more than 80% and by 91%,
resulting in speed-up of 5.2x and 11x respectively. Table 3 shows the through-
put in terms of pixel/second of the state-of-the-art implementations present in
the literature. V100 and EPYC both use two AMD EPYC™ 7551, Mickevicius
et al. and Feng et al. do not report the CPU used in their study but only the
number of cores and the frequency. Rank et al. used an Intel Xeon E5-2687.
From Section 1, we consider a throughput of 262,144 pixels/second as the min-
imum requirement for MRgoART. Higher throughput allows higher resolution
images to be reconstructed within the time requirements of MRgoART, which
provides more detailed image features potentially leading to improved target
delineation and treatment. Our implementation, achieving a throughput five

Table 2: Results of the different implementations

Implementation Time (s) Standard Error (s) speed-up
Reference 994 5.46 1.00
EPYC 191 1.76 5.20
V100 90 0.45 11.04

17



times higher than the minimum requirements, enables the reconstruction of im-
ages with 5 times higher resolution measured in the total number of pixels. This
reduces the combined acquisition and reconstruction time from 21 minutes to
6 minutes, while maintaining very high similarity scores. This time reduction
shows the benefits of heterogeneous computing applied to the medical context
by increasing the clinical utility of 4D MRI in an MRgoART setting, making
it possible to integrate 4D MRI into the treatment workflow on an MR-Linac.
Because of the fast reconstruction time, volumetric real-time imaging solutions,
such as MRSIMGA [5] or image-driven techniques [6] become possible. The scal-
ing characteristics show that this architecture achieves high efficiency in all the
tested systems, suggesting that it can exploit the full potential of higher core-
count CPU and more powerful GPUs. Since the reported results are computed
using different CPUs, Table 4 shows the throughput normalised per core-count.
The GPU results are reported only for completeness in this table since this
comparison is not fair towards the GPU implementation, because CUDA cores
are much less powerful than CPU cores. However, we notice that in this case
our implementation is 5.2 times faster than the reference executed on the same
machine and 10.6 times faster than the fastest results reported in the literature.

Table 3: Throughput of the state-of-the-art implementations

Implementation
CPU/GPU

Cores
Speed
(GHz)

Algorithm
Pixels
Second

V100 5,120 1.455 GRASP 1,310,720
EPYC 64 2.0 GRASP 617,616

Reference 64 2.0 GRASP 118,676
Mickevicius et al.

[7]
40 2.3 GRASP 14,269

Feng et al. [5] 8 NR GRASP 7,281

Rank et al. [26] 16 3.10
MoCo
HDTV

2,564

The PIM results show that the proposed architecture can greatly benefit
from the adoption of PIM. To the best of our knowledge, most PIM archi-
tectures in the literature are based on HMC memory with 16 vaults and one
PIM core per vault. While architectures equipped with more vaults are not fre-
quently proposed, high core count PIM architectures might be available in the
future. The 16 PIM cores architecture significantly outperform an Intel Core™
i7-9700 8-core CPU equipped with AVX512 SIMD units by a factor of 2.7x.
In the case where systems equipped with more than 16 PIM cores becoming
available in the future, the proposed architecture could even be faster than a
64-core system or an enterprise GPU, while consuming significantly less power.
Moreover, the benchmarks show that the PIM cores are compute-bound and
cannot fully exploit the large bandwidth offered by the HMC vaults. Introduc-
ing SIMD units or more powerful PIM cores will increase performance by an

18



Table 4: Throughput of the state-of-the-art implementations normalised per
core-count.

Implementation
CPU/GPU

Speed
(GHz)

Algorithm
Pixels

Second*Cores

EPYC 2.0 GRASP 9,650
Reference 2.0 GRASP 1,854

Feng et al. [5] NR GRASP 910
Mickevicius et al. [7] 2.3 GRASP 356

V100 1.455 GRASP 256

Rank et al. [26] 3.10
MoCo
HDTV

160

order of magnitude. It is worth noticing that the NUFFT implementation was
optimised to best-exploit CPU compute resources such as caching and SIMD
vector units. Since the PIM cores used in this study have small caches and are
not equipped with SIMD units, the performance achieved underestimates the
real PIM potential.

In the future, we plan to implement the complete pre-processing pipeline,
interfacing our XD-GRASP 4D MRI reconstruction directly to the MR-Linac
system. After completing the integration, the library will be released open-
source and likely with a MATLAB interface to simplify its clinical application.
We will explore applying our architecture to real-time volumetric imaging, where
low reconstruction time is mandatory. We also plan to test the proposed archi-
tecture in a distributed scenario with multiple GPUs, to evaluate the scalability
and the efficiency of such systems. Finally, Zhang et al. [49] showed that the
performance of throughput-oriented programmable processing in memory can
slightly outperform the performance of mainstream GPU. If this solution be-
comes available, we would like to benchmark our solution against it.

It is worth noting that the authors of FINUFFT [27] are working on a GPU
implementation of the API which, at the time of writing, is still incomplete.
According to their benchmarks [50], their implementation is much faster than
gpuNUFFT [51] that we used in this paper. When cuFINUFFT is completed, we
will integrate it in our implementation in order to produce the same output on
both CPU and GPU, thus making the evaluation even fairer and, additionally,
improving the performance.

Acknowledgements

This research project was supported by the CRUK Convergence Science Cen-
tre at The Institute of Cancer Research, London, and Imperial College London
(A26234). We acknowledge funding from the Cancer Research UK programme
grant C33589/A19727. The Institute of Cancer Research and The Royal Mars-

19



den NHS Foundation Trust are members of the Elekta MR-Linac Research Con-
sortium.

References

[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings - In-
ternational Symposium on Computer Architecture, vol. 13-17-June-2015.
Institute of Electrical and Electronics Engineers Inc., 6 2015, pp. 105–117.

[2] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu,
“Processing-in-memory: A workload-driven perspective,” IBM Journal of
Research and Development, vol. 63, no. 6, 11 2019.

[3] M. A. Schmidt and G. S. Payne, “Radiotherapy planning using MRI,”
Physics in Medicine and Biology, vol. 60, no. 22, pp. R323–R361, 2015.

[4] J. J. Lagendijk, B. W. Raaymakers, A. J. Raaijmakers, J. Overweg, K. J.
Brown, E. M. Kerkhof, R. W. van der Put, B. H̊ardemark, M. van Vulpen,
and U. A. van der Heide, “MRI/linac integration,” Radiotherapy and On-
cology, vol. 86, no. 1, pp. 25–29, 1 2008.

[5] L. Feng, N. Tyagi, and R. Otazo, “MRSIGMA: Magnetic Resonance SIG-
nature MAtching for real-time volumetric imaging,” Magnetic Resonance
in Medicine, 2 2020.

[6] B. Stemkens, R. H. N. Tijssen, B. D. de Senneville, J. J. W. Lagendijk, and
C. A. T. van den Berg, “Image-driven, model-based 3D abdominal motion
estimation for MR-guided radiotherapy,” Physics in Medicine and Biology,
vol. 61, no. 14, pp. 5335–5355, 2016.

[7] N. J. Mickevicius and E. S. Paulson, “Investigation of undersampling and
reconstruction algorithm dependence on respiratory correlated 4D-MRI for
online MR-guided radiation therapy,” Physics in Medicine and Biology,
vol. 62, no. 8, pp. 2910–2921, 2017.

[8] H. Wang, H. Peng, Y. Chang, and D. Liang, “A survey of GPU-based
acceleration techniques in MRI reconstructions,” Quantitative Imaging in
Medicine and Surgery, vol. 8, no. 2, pp. 196–208, 3 2018.

[9] K. T. Block, H. Chandarana, S. Milla, M. Bruno, T. Mulholland, G. Fatter-
pekar, M. Hagiwara, R. Grimm, C. Geppert, B. Kiefer, and D. K. Sodick-
son, “Towards routine clinical use of radial stack-of-stars 3d gradient-echo
sequences for reducing motion sensitivity,” J Korean Soc Magn Reson Med,
vol. 18, no. 2, pp. 87–106, Jun 2014.

[10] S. Winkelmann, T. Schaeffter, T. Koehler, H. Eggers, and O. Doessel, “An
optimal radial profile order based on the golden ratio for time-resolved
MRI,” IEEE Transactions on Medical Imaging, vol. 26, no. 1, pp. 68–76,
Jan 2007.

20



[11] A. Dutt and V. Rokhlin, “Fast Fourier Transforms for Nonequispaced
Data,” SIAM Journal on Scientific Computing, vol. 14, no. 6, pp. 1368–
1393, 11 1993.

[12] D. S. Smith, S. Sengupta, S. A. Smith, and E. Brian Welch, “Trajectory
optimized NUFFT: Faster non-Cartesian MRI reconstruction through prior
knowledge and parallel architectures,” Magnetic Resonance in Medicine,
vol. 81, no. 3, pp. 2064–2071, 3 2019.

[13] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Transac-
tions on Image Processing, vol. 13, no. 4, pp. 600–612, 4 2004.

[14] “Results of the first fastMRI image reconstruction challenge.” [On-
line]. Available: https://ai.facebook.com/blog/results-of-the-first-fastmri-
image-reconstruction-challenge/

[15] Cancer Researh UK, “What is radiotherapy? — Cancer treatment —
Cancer Research UK.” [Online]. Available: https://www.cancerresearchuk.
org/about-cancer/cancer-in-general/treatment/radiotherapy/about

[16] B. W. Raaymakers et al., “Integrating a 1.5 t mri scanner with a 6 mv
accelerator: proof of concept,” Physics in Medicine and Biology, vol. 54,
no. 12, pp. N229–N237, 2009.

[17] S. Mutic and J. F. Dempsey, “The viewray system: Magnetic reso-
nance–guided and controlled radiotherapy,” Seminars in Radiation Oncol-
ogy, vol. 24, no. 3, pp. 196–199, 2014.

[18] B. W. Raaymakers et al., “First patients treated with a 1.5 T MRI-Linac:
clinical proof of concept of a high-precision, high-field MRI guided radio-
therapy treatment,” Physics in Medicine and Biology, vol. 62, no. 23, p.
L41, 2017.

[19] B. G. Fallone, “The rotating biplanar linac–magnetic resonance imaging
system,” Seminars in Radiation Oncology, vol. 24, no. 3, pp. 200–202, 2014.

[20] J. W. H. Wolthaus, J. J. Sonke, M. Van Herk, and E. M. F. Damen,
“Reconstruction of a time-averaged midposition ct scan for radiotherapy
planning of lung cancer patients using deformable registrationa,” Medical
Physics, vol. 35, no. 9, pp. 3998–4011, 2008.

[21] L. Feng, R. Grimm, K. T. Block, H. Chandarana, S. Kim, J. Xu, L. Axel,
D. K. Sodickson, and R. Otazo, “Golden-angle radial sparse parallel MRI:
combination of compressed sensing, parallel imaging, and golden-angle ra-
dial sampling for fast and flexible dynamic volumetric MRI,” Magnetic
Resonance in Medicine, vol. 72, no. 3, pp. 707–717, 9 2014.

[22] J. A. Fessler and B. P. Sutton, “Nonuniform fast fourier transforms using
min-max interpolation,” IEEE Transactions on Signal Processing, vol. 51,
no. 2, pp. 560–574, Feb 2003.

21



[23] M. Lustig and J. M. Pauly, “SPIRiT: Iterative self-consistent parallel
imaging reconstruction from arbitrary k-space,” Magnetic Resonance in
Medicine, vol. 64, no. 2, pp. 457–471, 8 2010.

[24] K. L. Wright, J. I. Hamilton, M. A. Griswold, V. Gulani, and N. Seiber-
lich, “Non-Cartesian parallel imaging reconstruction,” Journal of Magnetic
Resonance Imaging, vol. 40, no. 5, pp. 1022–1040, 11 2014.

[25] L. Feng, L. Axel, H. Chandarana, K. T. Block, D. K. Sodickson, and
R. Otazo, “XD-GRASP: Golden-angle radial MRI with reconstruction of
extra motion-state dimensions using compressed sensing,” Magnetic Reso-
nance in Medicine, vol. 75, no. 2, pp. 775–788, 2 2016.

[26] C. M. Rank, T. Heußer, M. T. A. Buzan, A. Wetscherek, M. T. Freitag,
J. Dinkel, and M. Kachelrieß, “4d respiratory motion-compensated image
reconstruction of free-breathing radial mr data with very high undersam-
pling,” Magnetic Resonance in Medicine, vol. 77, no. 3, pp. 1170–1183,
2017.

[27] A. H. Barnett, J. Magland, and L. af Klinteberg, “A Parallel Nonuni-
form Fast Fourier Transform Library Based on an “Exponential of Semi-
circle” Kernel,” SIAM Journal on Scientific Computing, vol. 41, no. 5, p.
C479–C504, 2019.

[28] F. Knoll, A. Schwarzl, C. Diwoky, and D. K. Sodickson, “gpuNUFFT-an
open source GPU library for 3D regridding with direct Matlab interface,”
in Proceedings of the 22nd annual meeting of ISMRM, Milan, Italy, 2014,
p. 4297.

[29] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture
for the FFT,” in ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, vol. 3, 1998, pp. 1381–1384.

[30] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection
of a Convolution Function for Fourier Inversion Using Gridding,” IEEE
Transactions on Medical Imaging, vol. 10, no. 3, pp. 473–478, 1991.

[31] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google Workloads for Consumer Devices,” ACM SIGPLAN Notices,
vol. 53, no. 2, pp. 316–331, 11 2018.

[32] J. Paul et al., “High-resolution respiratory self-gated golden angle cardiac
MRI: Comparison of self-gating methods in combination with k-t SPARSE
SENSE,” Magnetic Resonance in Medicine, vol. 73, no. 1, pp. 292–298,
2015.

[33] NVIDIA, “Volta Tuning Guide :: CUDA Toolkit Documentation.”
[Online]. Available: https://docs.nvidia.com/cuda/volta-tuning-guide/
index.html#multi-process-service

22



[34] L. Nyman and M. Laakso, “Notes on the History of Fork and Join,” IEEE
Annals of the History of Computing, vol. 38, no. 3, pp. 84–87, 7 2016.

[35] R. D. Blumofe, C. E. Leiserson, R. D. Blumofe, and C. E. Leiserson,
“Scheduling multithreaded computations by work stealing,” Journal of the
ACM, vol. 46, no. 5, pp. 720–748, 9 1999.

[36] “CMU-SAFARI/ramulator-pim: A fast and flexible simulation infrastruc-
ture for exploring general-purpose processing-in-memory (PIM) architec-
tures.” [Online]. Available: https://github.com/CMU-SAFARI/ramulator-
pim

[37] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk,
O. Mutlu, and H. Corporaal, “NAPEL: Near-memory computing applica-
tion performance prediction via ensemble learning,” in Proceedings - Design
Automation Conference. Institute of Electrical and Electronics Engineers
Inc., 6 2019.

[38] D. Sanchez and C. Kozyrakis, “ZSim: fast and accurate microarchitectural
simulation of thousand-core systems,” ACM SIGARCH Computer Archi-
tecture News, vol. 41, no. 3, pp. 475–486, 6 2013.

[39] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible DRAM
simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1, pp. 45–49,
1 2016.

[40] Hybrid Memory Cube Consortium, “HMC Specification 2.0,” 2014.

[41] “Cortex-R8 – Arm Developer.” [Online]. Available: https://developer.
arm.com/ip-products/processors/cortex-r/cortex-r8

[42] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scal-
able and Efficient Neural Network Acceleration with 3D Memory,” ACM
SIGPLAN Notices, vol. 52, no. 4, pp. 751–764, 5 2017.

[43] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Fal-
safi, B. Grot, and D. Pnevmatikatos, “The Mondrian Data Engine,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 639–651, 9 2017.

[44] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in Digest of Technical Papers -
Symposium on VLSI Technology, 2012, pp. 87–88.

[45] S. Winkelmann, T. Schaeffter, T. Koehler, H. Eggers, and O. Doessel, “An
optimal radial profile order based on the golden ratio for time-resolved mri,”
IEEE Transactions on Medical Imaging, vol. 26, no. 1, pp. 68–76, 2007.

[46] J. D. Ianni and W. A. Grissom, “Trajectory Auto-Corrected image recon-
struction,” Magnetic Resonance in Medicine, vol. 76, no. 3, pp. 757–768, 9
2016.

23



[47] D. O. Walsh, A. F. Gmitro, and M. W. Marcellin, “Adaptive reconstruction
of phased array mr imagery,” Magnetic Resonance in Medicine, vol. 43,
no. 5, p. 682, 2000.

[48] NVIDIA, “MULTI-PROCESS SERVICE vR450,” Tech. Rep., 2020.
[Online]. Available: https://docs.nvidia.com/deploy/pdf/CUDA Multi
Process Service Overview.pdf

[49] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “TOP-PIM: Throughput-oriented programmable process-
ing in memory,” in HPDC 2014 - Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing. As-
sociation for Computing Machinery, 2014, pp. 85–97.

[50] Y.-h. Shih, G. Wright, J. Andén, J. Blaschke, and A. H. Barnett,
“cuFINUFFT: a load-balanced GPU library for general-purpose nonuni-
form FFTs,” 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), vol. 1, pp. 688–697, 2 2021.

[51] “gpuNUFFT - An Open-Source GPU Library for 3D Gridding with
Direct Matlab and Python Interface.” [Online]. Available: https:
//github.com/andyschwarzl/gpuNUFFT

24


