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Summary
Background Surveillance is universally recommended for non-small cell lung cancer (NSCLC) patients treated with
curative-intent radiotherapy. High-quality evidence to inform optimal surveillance strategies is lacking. Machine
learning demonstrates promise in accurate outcome prediction for a variety of health conditions. The purpose of
this study was to utilise readily available patient, tumour, and treatment data to develop, validate and externally test
machine learning models for predicting recurrence, recurrence-free survival (RFS) and overall survival (OS) at 2 years
from treatment.

Methods A retrospective, multicentre study of patients receiving curative-intent radiotherapy for NSCLC was under-
taken. A total of 657 patients from 5 hospitals were eligible for inclusion. Data pre-processing derived 34 features for
predictive modelling. Combinations of 8 feature reduction methods and 10 machine learning classification algo-
rithms were compared, producing risk-stratification models for predicting recurrence, RFS and OS. Models were
compared with 10-fold cross validation and an external test set and benchmarked against TNM-stage and perfor-
mance status. Youden Index was derived from validation set ROC curves to distinguish high and low risk groups
and Kaplan-Meier analyses performed.

FindingsMedian follow-up time was 852 days. Parameters were well matched across training-validation and external
test sets: Mean age was 73 and 71 respectively, and recurrence, RFS and OS rates at 2 years were 43% vs 34%, 54% vs
47% and 54% vs 47% respectively. The respective validation and test set AUCs were as follows: 1) RFS: 0¢682
(0¢575�0¢788) and 0¢681 (0¢597�0¢766), 2) Recurrence: 0¢687 (0¢582�0¢793) and 0¢722 (0¢635�0¢81), and 3) OS:
0¢759 (0¢663�0¢855) and 0¢717 (0¢634�0¢8). Our models were superior to TNM stage and performance status in
predicting recurrence and OS.

Interpretation This robust and ready to use machine learning method, validated and externally tested, sets the stage
for future clinical trials entailing quantitative personalised risk-stratification and surveillance following curative-
intent radiotherapy for NSCLC.
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Research in context

Evidence before this study

We searched PubMed Central for papers published from
database inception to 6th June 2020, with the terms “non-
small cell lung cancer”, “radiotherapy”, “machine learning”,
“prognosis”, “outcome” and “prediction” with no language
restrictions. This returned 809 results which were manually
screened for suitability. The majority of returned results
either did not involve NSCLC or pertained to imaging
(radiomic and deep-learning) or biological models which
was not our focus. Six studies related to our work.

To the best of our knowledge, no published studies to
date have used routinely available clinical data to compare
multiple machine learning methods to build prediction
models for recurrence and survival following curative-intent
radiotherapy in non-small cell lung cancer.

Previous studies using clinical data for outcome predic-
tion following radiotherapy for NSCLC have explored cox
proportional-hazards models and support vector machines
and have generally focused on overall survival (OS), with
few studies looking at recurrence or recurrence-free sur-
vival (RFS). This is likely due to accurate data on death
being more readily accessible from national-level registries
than recurrence data; however recurrence and RFS may
offer more clinical utility than OS in stratifying follow-up,
allowing clinicians to potentially intervene earlier to provide
further, potentially curable treatment.

Added value of this study

Our study is the first to compare multiple machine
learning algorithms and feature reduction methods
using routinely available clinical data and to develop,
validate and externally test prediction models for recur-
rence, RFS and OS following radical radiotherapy for
NSCLC. Such approaches may overcome the limitations
of traditional statistical methods such as Cox propor-
tional hazards models.

Implications of all the available evidence

Performance of our models exceed traditional methods
and show consistency across validation and external
test sets. This robust and readily replicable machine
learning method, validated and externally tested, sets
the stage for future clinical trials entailing quantitative
personalised risk-stratification and surveillance follow-
ing curative-intent radiotherapy for NSCLC.
Introduction
Lung cancer is the leading cause of cancer deaths world-

wide.1 Non-small cell lung cancer (NSCLC) accounts for
85% of lung cancers, with approximately 1 in 5 patients
alive 5 years after diagnosis.2 Recurrence is reported in
up to 36% of patients receiving curative-intent treat-
ment for NSCLC.3 Surveillance is recommended across
international guidelines for NSCLC patients treated
with curative-intent radiotherapy.3 Surveillance ensures
on-going patient support, management of co-morbid-
ities and cancer treatment-related side effects as well as
detection of recurrence of the treated cancer or second
(metachronous) primary cancers. Curative treatment
following local recurrence results in 5-year survival rates
of 15%.4 Earlier detection of recurrence may therefore
improve survival and quality of life. Similarly, surveil-
lance-stratification may allow for better resource
allocation.

International guidance highlights a lack of high-
quality evidence to formulate specific recommendations
on the nature and frequency of follow-up after radio-
therapy.3 Most guidance is based on expert consensus
and advises follow-up with clinical review and contrast-
enhanced chest CT at 3�6 monthly intervals for
2�3 years. Without an agreed framework, follow-up dif-
fers according to local policy or even individual clinician
opinion.

The UK’s National Institute of Healthcare and Clini-
cal Excellence (NICE) have recommended further
research into use of prognostic factors to develop risk-
stratification models to inform optimal surveillance.4

Risk-stratification models may allow for personalised
follow-up for NSCLC patients undergoing curative-
intent radiotherapy, resulting in potentially earlier
detection of recurrence for high-risk patients or avoid-
ance of unnecessary scans and hospital visits for low-
risk patients. Such models would improve patient care
and healthcare resource management.

Previous studies using clinical data for outcome pre-
diction following radiotherapy for NSCLC have explored
cox proportional-hazards models and support vector
machines, and have generally focused on OS, achieving
validation or external test set AUCs between 0¢61 and
0¢69 and C-Index scores between 0¢58 and 0¢69.3,5�8 It
is possible that more advanced machine learning techni-
ques can better handle large clinical datasets leading to
superior performance. Comparison of the performance
www.thelancet.com Vol 77 Month March, 2022
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of several machine learning models has been undertaken
for systemic anti-cancer therapy for advanced NSCLC,9 but
is lacking in the radical radiotherapy cohort.

The intent of this study was therefore to utilise a
broad range of readily available patient, tumour, and
treatment related features in comparing performance of
several machine learning methods to develop and vali-
date prediction models for recurrence, recurrence-free
survival (RFS) and overall survival (OS). Such models
may be used to guide personalised risk-stratification
and surveillance following curative-intent radiotherapy
for NSCLC in future.
Methods

Ethics
This study was approved by the UK Health Research
Authority (reference number: 20/HRA/3051), Clinical-
Trials.gov identifier: NCT04721444.
Datasets
We utilised 3 independent, novel datasets of patients
receiving primary curative-intent radiotherapy for stage
I to III NSCLC, yielding a total of 722 patients across 5
hospitals.

Each dataset was retrospectively collated from elec-
tronic patient record (EPR) and radiotherapy treatment
planning systems (TPS) at UK National Health Service
(NHS) Trusts:

- Dataset X consists of 434 patients with stage I to III
disease treated at X Trust with stereotactic or con-
ventional radiotherapy with or without chemother-
apy between 26/9/2014 and 23/10/2018.

- Dataset Y consists of 111 patients with stage I to III
disease treated at Y Trust with conventional radio-
therapy with or without chemotherapy between 3/
2/2014 and 10/1/2019.

- Dataset Z consists of 177 patients with stage I to III
disease treated at Z Trust with stereotactic or con-
ventional radiotherapy with or without chemother-
apy between 21/1/2016 and 18/12/2018.

The datasets with the most (Dataset X) and least
(Dataset Y) patients were combined and randomly
divided into training and validation sets. The testing set
(Dataset Z) was selected by ring-fencing one specific
site as a geographically external test set. The data were
collected in early 2021, ensuring a minimum of 2 years
of follow-up for all patients. Those with no known recur-
rence or death within 60 days of the 2-year endpoint, or
no recurrence within 60 days of death, were taken to
have no event. This cut-off was agreed upon by the
authors after discussion about how best to reduce bias
and factoring in the variable nature of clinical follow-up
www.thelancet.com Vol 77 Month March, 2022
appointments. 60 days was taken to be mean timeframe
between follow-up appointments and thus an estimated
half-way point between the last time a patient was seen
and the 2-year endpoint. Therefore, we agreed that if
a patient had no known recurrence or death within
60 days of the endpoint, or no recurrence within
60 days of death, it was unlikely that a recurrence/death
had occurred.

The following patient demographics and clinical
parameters were collected: sex, age, ethnicity, World
Health Organisation (WHO) performance status, smok-
ing status, TNM8 T-stage, TNM8 N-stage, TNM8 overall
clinical stage, size of primary lesion, FDG PET-CT Stan-
dard Uptake Value (SUV) of primary lesion, nodal avid-
ity and maximal nodal SUV, whether nodes were
sampled (e.g. with endoscopic bronchial ultrasound,
EBUS), whether there was a confirmed pathological
diagnosis (e.g. with biopsy) and histological type, body
mass index, pre-treatment forced expiratory volume in 1
second (FEV1, as percent predicted) and diffusing capac-
ity for carbon monoxide (TLCO, as percent predicted),
pre and post-treatment neutrophil and lymphocyte
counts, type of radiotherapy treatment received (stereo-
tactic body radiotherapy (SBRT) or conventional radio-
therapy with or without chemotherapy), total dose in
Gy, number of fractions, biologically effective dose in
Gy (assuming an a/b value of 10) radiotherapy gross
tumour volume (GTV), radiotherapy planning target
volume (PTV) and dates of radiotherapy planning scan
and first and last fraction of radiotherapy.

To meet pre-processing requirements for machine
learning, categorical data were converted to numeric.
One-hot-encoding converted each level of each categori-
cal feature into a new binary feature. To mitigate for
resultant increase in data dimensionality, prior to one-
hot-encoding, levels of some categorical features were
combined, for example, “never”, “ex” and “current”
smokers were binarized to “never” and “ever”. Implicit
associations between variables were made explicit: dates
of planning scan and first and last fraction were
replaced with the number of days between them. Miss-
ing clinical data were assumed missing at random and
non-dependent on outcome. Features with more than
25% of observations missing were removed. Missing
data for remaining features was imputed using the mul-
tiple imputation with chained equations (MICE) pack-
age with default arguments in R. Highly correlated
features were removed using the treatment_corr func-
tion, with a threshold of 0¢85, removing one of each
pair of correlated features (Pearson correlation for con-
tinuous and Spearman correlation for categorical fea-
tures). Continuous features were standardized.
Statistics
Patient demographics and clinical parameters are sum-
marised as means and standard deviations for
3
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continuous features, and frequencies and percentages
for categorical features. Comparisons between datasets
are summarised using Wilcoxon rank sum test for con-
tinuous features and Fisher exact test for categorical fea-
tures. Time to event data for each of the study outcomes
(recurrence, RFS and OS) were binarized at 2 years
from the first fraction of radiotherapy for classification
purposes � cases scored “1” if there was recurrence or
death within 2 years, and “0” otherwise. Owing to the
nature of clinical follow-up, 340 patients (47%) were
not seen at or after the 2-year endpoint. As simply
excluding these patients would bias the dataset, those
with no known recurrence or death within 60 days of
the endpoint, or no recurrence within 60 days of death,
were taken to have no event. Those last seen more than
60 days from the endpoint or date of death were
excluded (n = 65, 9%). More information can be found
in the Supplementary Material section “Further details
on datasets”. To ensure non-biased dataset assignment
for training, validation, and testing, the datasets with
the most (Dataset X) and least patients (Dataset Y)
were combined and then cases randomly assigned as
training and validation with an 80:20 ratio, stratified
by the binarized outcome. The Z dataset was locked
for testing.
Feature handling and modelling
Dimensionality reduction may be required prior to
modelling to increase prediction accuracy, prevent over-
fitting, and reduce computational cost. We explored a
combination of 10 linear, Bayesian, neural-net and tree-
based machine learning algorithms applied to 8 differ-
ent feature sets (either no feature reduction or following
1 of 7 feature reduction methods, where possible. Fea-
ture reduction methods included correlation-based,
multivariate linear penalised and recursive approaches).
A brief description of these algorithms, feature reduc-
tion methods and resultant feature sets can be found in
Supplementary Table 2. Hyper-parameter optimisation
was performed via grid-search with 3 repeats of 10-fold
cross-validation using the caret package in R. Hyper-
parameters of the final selected models are listed in
Supplementary Table 1.

Receiver-Operator Characteristic (ROC) curves were
created for the validation set results of each algorithm-
feature set combination and the Area Under the Curve
(AUC) calculated. Ensemble prediction models were
then explored by averaging the predictions of the 3 algo-
rithms with the highest AUC in the validation set for
each particular outcome being predicted. Where the
ensemble model was superior, it was selected as the
final model for predicting that particular outcome on
the external test set. Otherwise, the single algorithm
with the highest AUC was selected as the final model.

Caret’s varImp function10 was used to identify fea-
tures that contributed most significantly to model
performance. It provides a generic method for calculat-
ing variable importance by either utilising a model’s
native feature importance ranking method or using
ROC curve analysis for each feature.10 It is not possible
to do this for averaged predictions across algorithms
and so where an ensemble was selected as the final
model, this was performed for the component algo-
rithms instead.
Benchmarking
TNM-stage and performance status are known prognos-
tic factors in NSCLC.11,12 Logistic regression models
based on TNM stage and performance status were devel-
oped to benchmark our prediction models against. As
above, the Caret package was used with hyper-parame-
ter optimisation performed via grid-search with 3
repeats of 10-fold cross-validation. AUC was calculated.
Risk-groups
Youden’s Index was calculated from the validation set
ROC curve for each final model and used to create a
classification threshold for outcome prediction. This
threshold was also used to separate groups into high
(outcome event occurs within 2 years of first fraction of
radiotherapy) or low (outcome does not occur within
2 years of first fraction of radiotherapy) risk groups.
Time to event data were then used to create Kaplan
Meier curves demonstrating the difference in recur-
rence/RFS/OS between high and low risk groups. Log-
rank test with a significance level of 0¢05 was used to
determine difference between survival curves. Perfor-
mance of the risk models was assessed using the exter-
nal test set. Using the same threshold as for Kaplan-
Meier analysis, classification was performed for each
outcome. Balanced accuracy and F1 score were recorded,
in order to convey performance in the context of imbal-
anced endpoints. All analyses were carried out using
R 3.5.1.
Role of the funding source
The funding source played no role in study design, data
collection, data analysis, data interpretation, or writing
of the report. All authors had full access to all the data
in the study and the corresponding authors had final
responsibility for the decision to submit for publication.
Results
In total, 657 patients were included in the study.
Median follow-up was 852 days. The combined train-
ing-validation and external test sets included 498 and
159 patients respectively. Patient demographics and
clinical parameters are a summarised in Table 1.

Datasets were well-matched for most parameters.
The external test set had a higher proportion of patients
www.thelancet.com Vol 77 Month March, 2022



Parameter Combined Training &
Validation Sets n = 498

External Test Set
n = 159

P-value

Age (IQR) 74 (14) 72 (14) ¢054
Sex (%)

- Male

- Female

273 (54¢8)
225 (45¢2)

88 (55¢4)
71 (44¢7)

¢907

WHO Performance Status (%)

- 0

- 1

- 2

- Missing

82 (16¢5)
282 (56¢6)
118 (23¢7)
16 (3¢2)

16 (10¢1)
85 (53¢5)
55 (34¢6)
3 (1¢9)

¢023

Body Mass Index (IQR)

- Missing, n (%)

25¢1 (6.5)
103 (20¢7)

26¢22 (7¢1)
7 (4¢4)

¢044

Smoking Status (%)

- Never

- Ever

- Missing

42 (8¢4)
437 (87¢8)
19 (3¢8)

8 (5¢0)
141 (88¢7)
10 (6¢3)

¢165

TNM8 T stage (%)

- 1

- 2

- 3

- 4

192 (38¢6)
133 (26¢7)
74 (14¢9)
99 (19¢9)

77 (48¢4)
36 (22¢6)
17 (10¢7)
29 (18¢2)

¢161

TNM8 N stage (%)

- 0

- 1

- 2

- 3

276 (55¢4)
50 (10¢0)
130 (26¢1)
42 (8¢4)

106 (66¢8)
7 (4¢4)
35 (22¢0)
11 (6¢9)

¢041

FEV1, percent predicted (IQR)

- Missing, n (%)

76 (33.2)

46 (9¢2)
68¢5 (34¢5)
17 (10¢7)

¢004

TLCO, percent predicted (IQR)

- Missing, n (%)

60 (25)

79 (15¢9)
57 (25¢8)
25 (15¢7)

¢092

Days from planning scan to first fraction (IQR) 18 (7) 18 (6¢0) ¢856
Size of primary (IQR)

- Missing, n (%)

33 (28)

16 (3¢2)
30 (28¢5)
0

¢050

SUV primary (IQR)

- Missing, n (%)

10¢35 (8¢9)
54 (10¢8)

9¢3 (9¢8)
8 (5¢0)

¢829

Max nodal SUV (IQR)

- Missing, n (%)

7¢35 (6¢8)
63 (12¢7)

5¢7 (4¢7)
48 (30¢2)

<¢001

Nodal avidity (%)

- Yes

- No

- Missing

194 (39¢0)
286 (57¢4)
18 (3¢6)

67 (42¢1)
92 (57¢9)
0

¢024

Nodal Sampling (%)

- Yes

- No

- Missing

159 (31¢9)
334 (67¢1)
5 (1¢0)

57 (35¢9)
99 (62¢3)
3 (1¢9)

¢380

Histology (%)

- Adenocarcinoma

- Squamous

- Other

- No pathology

223 (44¢8)
158 (31¢7)
49 (9¢8)
68 (13¢7)

59 (37¢1)
56 (35¢2)
5 (3¢1)
39 (24¢5)

<¢001

Treatment type (%)

- SBRT 174 (34¢9) 73 (45¢9)
¢045

Table 1 (Continued)
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Parameter Combined Training &
Validation Sets n = 498

External Test Set
n = 159

P-value

- Conventional RT

- Chemo + RT
125 (25¢1)
199 (40¢0)

33 (20¢8)
53 (33¢3)

Number of fractions (IQR) 20 (27) 20 (27) ¢402
Total Dose, Gy (IQR) 55 (9) 55 (9) ¢137
Biologically Effective Dose, Gy (IQR) 76¢8 (45¢4) 76¢8 (38¢7) ¢023
Planning Target Volume, cm3 (IQR) 218¢39 (343¢2) 126¢62 (314¢3) ¢097
Recurrence at 2 years (%) 214 (43¢0) 54 (34¢0) ¢051
Recurrence or death at 2 years (%) 267 (53¢6) 74 (46¢5) ¢122
Death at 2 years (%) 185 (37¢2) 54 (34¢0) ¢508
Median length of follow-up (range) 836 (0�2462) 868 (0�1442)

Table 1: Demographic and clinical parameters for combined training-validation and external test sets (prior to imputation). Features not
used for modelling are not shown. Categorical data are summarised with means and percentages and p-values pertain to Fishers exact
test. Continuous data are summarised with median and inter-quartile range (IQR) and p-values pertain to Wilcoxon rank sum test.
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with performance status 2 (34¢6% vs 23¢7%) and with
earlier stage disease (TNM8 T1-stage 1 48¢4% vs 38¢6%,
N0-stage 66¢7% vs 55¢4%). There were fewer cases of
adenocarcinoma (37¢1% vs 44¢8%) and more patients
lacking histological diagnosis (24¢5% vs 13¢7%) and
receiving SBRT (45¢9% vs 34¢9%) in the external test
set. The recurrence, RFS and OS endpoints were mar-
ginally imbalanced in the validation and external test
sets.13

Following data pre-processing a total of 12 continu-
ous and 22 discrete features were used for machine
learning. These are listed in Supplementary Table 2,
together with the features that remained after each fea-
ture reduction method for each of the measured out-
comes. The results of our experiments with machine
learning algorithms and feature set combinations on
Figure 1. Heatmaps illustrating the performance of each machine
(columns), measured by validation set AUC. No FR: No feature reduc
Selection Operator, E Net: Elastic-Net, RFE: Recursive Feature Elimina
Gradient Boosting machine, NB: Naïve-Bayes, PSL: Partial Least Squa
(radial) SVM, RF: Random Forest, MDA: Mixture Discriminant Analys
NNET: Neural Network.
the validation set for each outcome are shown in
Figure 1. These are in the form of heatmaps showing
the AUC for each combination of machine learning
algorithm (rows) with feature selection method (col-
umns).

Averaging across the machine learning algorithms
(columns), the best performing feature sets for predict-
ing RFS and recurrence were the full sets with no fur-
ther feature reduction and for predicting death, the best
performing feature set was after Kendall’s rank correla-
tion.

The final prediction models chosen were as follows:
For RFS, KNN alone, for recurrence, an ensemble of
NB, RF and KNN, and for OS, an ensemble of MDA,
XGB and NNET. Results of the final models on valida-
tion and external test sets are shown in Figure 2 (ROC
learning algorithm (rows) with each feature reduction method
tion (full feature set used), LASSO: Least Absolute Shrinkage and
tion, Univariate LR: Univariate Logistic Regression, XGB: Extreme
res, L-SVM: Linear Support Vector Machine, NL-SVM: Non-linear
is, KNN: K-Nearest Neighbours, GLM: Generalised Linear Model,

www.thelancet.com Vol 77 Month March, 2022



Figure 2. ROC curves for the validation and external test set for each prediction.

Articles
curves) and Table 2 (AUCs with 95% confidence inter-
vals), together with a comparison against both the TNM
stage and the performance status-based benchmarking
models. Performance of our models was consistent
across both validation and external test sets and whilst
there was some overlap in confidence intervals with the
benchmarking models, absolute AUC was superior for
predicting recurrence and OS. For predicting RFS, our
model was superior to the performance status-based
www.thelancet.com Vol 77 Month March, 2022
model in both validation and external test sets, however,
was eclipsed by the TNM stage-based model in external
test set performance.

Kaplan Meier survival curves for validation and exter-
nal test sets for each outcome are shown in Figure 3.
Log-rank tests for the difference between survival curves
was significant across the validation sets for RFS and
recurrence (P < 0¢01) and approached significance for
OS (P = 0¢0993). Stronger significance was
7



Outcome Validation Set External Test Set

AUC 95% CI AUC 95% CI

RFS Our prediction model 0¢682 0¢575�0¢788 0¢681 0¢597�0¢766
TNM based model 0¢650 0¢541�0¢760 0¢695 0¢616�0¢774
PS based model 0¢464 0¢363�0¢565 0¢499 0¢418�0¢58

Recurrence Our prediction model 0¢687 0¢582�0¢793 0¢722 0¢635�0¢810
TNM based model 0¢670 0¢563�0¢777 0¢707 0¢622�0¢791
PS based model 0¢506 0¢402�0¢609 0¢584 0¢503�0¢665

OS Our prediction model 0¢759 0¢663�0¢855 0¢717 0¢634�0¢800
TNM based model 0¢649 0¢541�0¢756 0¢665 0¢579�0¢751
PS based model 0¢459 0¢357�0¢561 0¢531 0¢447�0¢615

Table 2: AUC with 95% confidence intervals for the validation and external test set for each prediction model, benchmarked against
models based on TNM-stage and performance status.
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demonstrated for all 3 outcomes in the external test set
(P < 0¢001), confirming a statistically significant differ-
ence in outcome between the high and low risk groups
for prediction of each outcome. Classification metrics
including balanced accuracy, F1 score, sensitivity, speci-
ficity, positive and negative predictive value along with
Brier scores and calibration curves are detailed in Sup-
plementary Tables 3 and 7 and Figure 1.
Feature importance (subsection of results)
Supplementary Tables 4a-c show features ranked in
order of importance for the KNN model for predicting
RFS and for the component algorithms of the final
ensemble models for predicting recurrence and OS. For
RFS the top 5 features were PTV, size of the primary,
the total number of fractions, whether treatment was
with SBRT and the BED.

For predicting recurrence, feature importance for
KNN and NB were identical, owing to the fact that these
models do not have their own corresponding varImp
package methods and instead use a filter approach
where AUC is used to measure variable importance. For
these models the top 5 features were also PTV, primary
tumour size, number of fractions, SBRT treatment and
BED. The RF model also ranked PTV and size of the pri-
mary, as well as the SUV of the primary, patient age and
BMI in the top 5 most important features.

For predicting OS, the 8 features remaining after
Kendall’s rank correlation were PTV, size of the pri-
mary, BED, T1 stage, treatment with SBRT, treatment
with chemoradiotherapy, whether there was nodal avid-
ity and smoking status. There was a wide distribution of
feature importance across features for the XGB and
NNET models.
Discussion
In this multicentre UK study of over 700 patients
treated with curative-intent radiotherapy for NSCLC, we
have compared machine learning algorithms and fea-
ture selection methods using routinely available clinical
data and have developed and externally tested prediction
models which are able to categorise patients into low
and high risk for recurrence, RFS and OS, two years
from the start of treatment. Such models may have
future utility in personalised surveillance stratification,
whereby only those at greatest risk have the most inten-
sive follow-up.

AUCs for all three models are consistent between
validation and external test sets though the recurrence
model may demonstrate underfitting and the OS model
overfitting in validation sets. Performance of the models
is reasonable, demonstrating minor improvement on
TNM-based prognostication, but highlight the need for
more effective risk-stratification measures following
radical radiotherapy for NSCLC � a call that may be bet-
ter addressed with radiomic or deep-learning based
image analysis.

For predicting RFS and recurrence, averaging across
the machine learning algorithms, the best performing
feature sets were those with no prior feature reduction.
Unlike with -omics data where feature sets tend to be
very large and are likely to contain noise and highly cor-
related features, this clinical feature set is comparatively
small (n = 34) with all features possibly contributing to
model performance to some degree, rendering feature
reduction unnecessary. This is particularly the case
where the models have inherent ability to handle multi-
dimensional data and collinearity,14 for example LASSO
and tree-based methods which have their own internal
regularisation (L1-norm and number of estimators
respectively). This was not the case for predicting OS
however where Kendall’s rank yielded the best perform-
ing feature set. One explanation for this is that OS had a
lower event rate compared to recurrence and RFS, and
therefore a higher risk of over-fitting to the majority
class. As a result, feature reduction may play a more sig-
nificant role in mitigating against this. Kendall’s rank
may have emerged as the best performing correlation
www.thelancet.com Vol 77 Month March, 2022



Figure 3. Kaplan Meier survival curves for low and high-risk groups in both validation and external test sets for each prediction
model. P-values correspond to log-rank tests.
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method because it does not assume a normal distribu-
tion, is more robust to outliers and better suited to
smaller datasets

Looking at the top 5 features ranked by importance
for the final models or their component algorithms,
these are features related to: size (PTV and size of the
primary), stage (T1 stage and whether there was nodal
avidity), treatment (BED, total number of fractions and
treatment with SBRT) and also smoking status (ranked
top 5 by the XGB and NNET algorithms contributing to
the OS model) and SUV of the primary, BMI and age
(ranked top 5 by the RF algorithm contributing to recur-
rence).
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Whilst tumour size and stage are known prognostic
factors for NSCLC,12,15,16 despite the high feature impor-
tance ranking in our models, strong evidence for
tumour volume is lacking.17�19 The high importance of
features related to treatment presumably reflects that
our study included patients treated with SBRT as well
as conventional radiotherapy and thus likely two cohorts
of patients � those with early-stage disease that were
older and not fit for surgery (treated with SBRT) and
younger patients with more advanced disease (treated
with conventional (chemo)radiotherapy). The former is
less likely to experience recurrence both due to having
early-stage disease but also as they are more likely to die
9
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of other comorbidities prior to recurrence. Smoking is
linked to increased comorbidities and smoking status is
known to be an independent prognostic factor for sur-
vival in NSCLC.11 A number of studies have demon-
strated prognostic utility of PET SUV in NSCLC.20�23

BMI and age are also likely to reflect the older and
frailer cohort of patients described above that were likely
to have been treated with SBRT.

A recent study also explored recurrence and OS pre-
diction following curative-intent radiotherapy for
NSCLC, using cox-proportional hazards models. Back-
wards stepwise elimination was used to select signifi-
cant features resulting in 6 features for predicting
recurrence and 5 features for predicting OS. External
testing was not performed in this study, however on
comparison of validation set AUCs with our external
test set, our models demonstrate superior performance
for predicting OS and similar for recurrence (0.717 vs
0.607 and 0.722 vs 0.72, respectively). Whilst this study
did not rank feature importance, PS and nodal sampling
with EBUS were common to both models3 and are
known to hold prognostic value.11,24 Interestingly these
were not considered in the top important features by
our models.

Previous studies using clinical (non-imaging) data
for outcome prediction following curative intent radio-
therapy for NSCLC have generally focused on homoge-
nous cohorts and OS as the key end-point, with few
studies looking at recurrence or RFS.5�8 This is likely
due to accurate data on death being more readily acces-
sible from national-level registries than recurrence data,
however recurrence and RFS may offer more clinical
utility than OS in stratifying follow-up, allowing clini-
cians to potentially intervene earlier to provide further,
potentially curable treatment.

Earlier studies have focused on traditional statistical
and machine learning models such as Cox-proportional
hazards and SVMs.3,5�8 Cox models have limitations in
that the proportional hazard assumption and linearity
of each variable must be satisfied, which can be difficult
to do so with real-world data and may result in an inap-
propriate model fit. Secondly, in the context of tied sam-
ples, approximations are often employed to improve
computational efficiency however these may result in
significantly different results.25 Furthermore, survival
analysis can experience multiple-testing problems in
the context of high-dimensional data and may yield a
high number of false positive significant features, which
reduces reliability of analysis.26 Feature reduction based
approaches coupled with more advanced machine learn-
ing algorithms may mitigate this issue and have been
shown to provide more accurate alternatives to tradi-
tional Cox proportional-hazards models.14

Another potential benefit of exploring more
advanced machine learning approaches is the ability of
models to highlight “important” features as described
above. Until recently prediction models tended to rely
on clinician-determined input features thought to be of
significance based on previous research. This approach
is at risk of biasing and limiting choice of input features
through human assumption. This can be mitigated to
some degree by selecting a large number of potential
input features and allowing machine learning models
to select those that are best performing.25 These may
not necessarily correlate with those thought to be most
important by clinicians and may highlight features that
were previously not considered.

A previous study compared discriminative perfor-
mance of 6 classifiers in predicting a range of outcomes
following radiotherapy for different tumours.27 Random
forest and elastic net models showed the best overall dis-
crimination, but no single classifier performed well
across all datasets. The authors concluded that future
investigators should benchmark models against ran-
dom forest and elastic net models but that overall,
informed preselection of a classifier based on specific
datasets is advised. We build on this work by exploring
a larger number of classifiers (including random forest
and elastic net) together with feature reduction and
believe that our methodology of applying this to our spe-
cific dataset is a robust approach to selecting the most
suitable model.

Other strengths of our work are the multicentre
design including a large cohort of over 700 patients
from expert UK radiotherapy centres which is thus
likely representative of UK (and probably European
practice). Models were built using readily available clini-
cal data with no requirement for access to, and complex
pre-processing of imaging data. A broad set of features
was used encompassing patient demographics, fitness,
tumour characteristics and treatment parameters. The
results are consistent across both validation and external
test sets. Furthermore, this study included stage I-III
disease treated with SBRT and conventional (chemo)
radiotherapy, thus increasing clinical utility.

Whilst previous studies have demonstrated use of
clinical data in developing prognostic prediction models
following radiotherapy for NSCLC, none of these have
compared multiple feature reduction methods and
machine learning classification algorithms, as conveyed
in our work. Finally, whilst these studies focus on sur-
vival analysis using few features, in this work, we have
utilised the entire available feature set in our predictive
modelling approach. Jochems et al. used a Bayesian net-
work to predict 2-year survival using T-stage, N-stage,
age and total tumour dose, with an external test set
AUC of 0.66.28 With our wider range of features, our
survival model achieves superior performance of 0.717.

Imaging and biological markers have been used for
prognostication in NSCLC, however this requires com-
plex pre-processing of imaging data or biological sam-
ples and may necessitate invasive procedures. The focus
of our study was to use routinely available electronic
health record clinical data to overcome these challenges.
www.thelancet.com Vol 77 Month March, 2022
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We believe that this methodology may be replicated
across health systems, including those in resource-poor
settings, using local clinical datasets to benefit surveil-
lance stratification for patients following curative-intent
radiotherapy globally. In addition, to demonstrate that
there is a true benefit in using models built using imag-
ing and biological markers, these should be compared
with state-of-the-art clinical feature-based models.
Our methodology has the potential to act as a clinical
baseline for such models, as it provides reasonable pre-
dictions with clinically interpretable features. Further-
more, it may be combined with imaging and biological
markers to enhance future models.

Weaknesses of our study include its retrospective
nature, and reliance on data retrieved from the EPR and
TPS of participating centres. As some participating sites
were tertiary referral centres, some clinical information
was not available if omitted at the time of initial referral.
Owing to missing data, we had to omit 4 features: pre
and post-treatment lymphocyte and neutrophil counts,
which are known to have prognostic significance in this
cohort.29�31 On the contrary, this was necessary as to
maintain generalisability and utility, our models need
to be built using features that are consistently available
at other centres.

Treatment heterogeneity is a limitation that may be
addressed by developing separate models for each treat-
ment type. It would have been difficult to obtain suffi-
ciently large datasets for a single treatment modality
however, as we have curated novel datasets for this
work. Additionally, within a single treatment modality
there remains variation in dose and fractionation. Treat-
ment modality, dose and number of fractions were fea-
tures used for modelling to account for this and we
therefore believe that our models allow for wider clinical
utility. This work, including the novel datasets we have
curated, may serve as a foundation for future models
which are more specific to radiotherapy dose-fraction-
ation schedules and treatment modalities.

Patients assumed to have NSCLC, without con-
firmed pathological diagnosis were included in this
study as this is reflective of clinical practice, particularly
for early-stage disease treated with SBRT. There is there-
fore potential inclusion of patients with benign disease
or small cell lung cancer which may confound recur-
rence and survival rates, however our models were pro-
vided with this information and such patients would
still benefit from post-treatment risk-stratification. Our
study did not include patients treated with tri-modality
therapy (surgery before or after radiotherapy) and we do
not have data on patients treated with adjuvant Durvalu-
mab as per the PACIFIC trial32 or for oligometastatic
recurrence which may impact on recurrence or survival.

In developing our ensemble models, we used aver-
aged predictions of the component algorithms, however
more complex ensemble architectures such as random
forest or majority weighting may yield superior results.
www.thelancet.com Vol 77 Month March, 2022
Finally, owing to the patient cohort used for training
and validation, whilst our models are reproducible, they
are unlikely to be generalisable outside the UK or
Europe. Replication of these data in future international
prospective clinical trials are warranted.

In this study we have compared multiple machine
learning algorithms and feature selection methods to
develop prognostic prediction models for recurrence,
RFS and OS following curative-intent radiotherapy for
NSCLC. Our models demonstrate reasonable perfor-
mance exceeding traditional methods and show consis-
tency across validation and external test sets. More
advanced imaging-based models may surpass this
approach but there is potential value in use of routinely
available clinical data. This robust and ready to use
machine learning method, validated and externally
tested, sets the stage for future clinical trials entailing
quantitative personalised risk-stratification and surveil-
lance following curative-intent radiotherapy for NSCLC.
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