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Abstract 47 

We hypothesise the study of acute protein perturbation in signal transduction by 48 

targeted anticancer drugs can predict drug sensitivity of these agents used as single 49 

agents and rational combination therapy. 50 

We assayed dynamic changes in 52 phosphoproteins caused by an acute exposure 51 

(1hr) to clinically-relevant concentrations of 7 targeted anticancer drugs in 35 non 52 

small-cell lung cancer (NSCLC) cell lines and 16 samples of NSCLC cells isolated 53 

from patient pleural effusions. We studied drug sensitivities across 35 cell lines and 54 

synergy of combinations of all drugs in six cell lines (252 combinations).  We 55 

developed orthogonal machine-learning approaches to predict drug response and 56 

rational combination therapy.   57 

Our methods predicted the most and least sensitive quartiles of drug sensitivity with 58 

an AUC of 0.79 and 0.78 respectively, while predictions based on mutations in three 59 

genes commonly known to predict response to the drug studied e.g. EGFR, PIK3CA 60 

and KRAS, did not predict sensitivity (AUC 0.5 across all quartiles). The machine-61 

learning predictions of combinations was compared to experimentally-generated 62 

data showed a bias to the highest quartile of Bliss synergy scores, p=0.0243. We 63 

confirmed feasibility of running such assays on 16 patient samples of freshly isolated 64 

NSCLC cells from pleural effusions. 65 

We have provided proof of concept for novel methods of using acute ex-vivo 66 

exposure of cancer cells to targeted anticancer drugs to predict response as single 67 

agents or combinations. These approaches could compliment current approaches 68 

using gene mutations/amplifications/rearrangements as biomarkers, and 69 

demonstrate the utility of proteomics data to inform treatment selection in the clinic. 70 
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Introduction  71 

Non small-cell lung cancer (NSCLC) is the leading cause of cancer mortality (1) and 72 

is an example of a tumour type that benefits from molecularly targeted treatments 73 

(2). Genomic biomarkers of sensitivity to molecularly targeted drugs used to treat 74 

NSCLC include mutations or rearrangements in EGFR (3), ALK (4), MET (5), ROS 75 

(6) and RET (7) and KRAS (8). However more than 50% of patients with NSCLC 76 

lack gene mutations or rearrangements that can be treated with licensed anticancer 77 

drugs targeting the specific genomic aberration (2). Finding new approaches for 78 

using existing novel anticancer drugs is thus an urgent unmet need. 79 

Preclinical discovery of biomarkers of sensitivity of cancers to targeted anticancer 80 

drugs have relied heavily on concerted efforts to link drug sensitivity to mutations in 81 

large cell line panels (9). This has been transformative in enabling precision 82 

medicine paradigms to be used in the clinic, but has limitations and needs 83 

improvement (10). Interestingly, only approximately 40 drugs currently have FDA-84 

approved or cleared companion diagnostics across all targeted drugs (11) with 85 

NSCLC as a leading example of a disease type with biomarkers of response such as 86 

EGFR, ALK, MET, KRAS, ROS and RET mutation/rearrangements. Gene silencing 87 

technologies such as siRNA and CRISPR are the focus in finding determinants of 88 

resistance. For example siRNA and CRISPR screens have identified NF1 loss or 89 

RIC8A as being related to EGFR inhibitor resistance (12,13). Proteomic profiling is 90 

another approach used to discover new biomarkers of sensitivity to targeted therapy 91 

in NSCLC: this approach has revealed novel phosphorylation sites of EGFR Y1197 92 

and other proteins such as MAPK7 and DAP1 (14); however this has not yet resulted 93 

in change of clinical practice. Use of historical samples or patient derived model 94 

systems to profile signalling pathways to suggest sensitivity of NSCLC to drugs such 95 
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as PI3K inhibitors have been published, but these have not been used to make 96 

decisions on individual patients (15,16). 97 

Synergistic combination therapy is critical to overcome primary and secondary drug 98 

resistance to targeted anticancer drugs (17). Large-scale, preclinical  drug 99 

combination experiments across large cell line panels (including NSCLC cell lines) 100 

have been published and been helpful in understanding biology of drug resistance 101 

(18-20). Gene silencing technologies have suggested a few testable combinations of 102 

targeted therapy in NSCLC e.g. SHP2 and ALK inhibitors (21), FGFR and m-TOR 103 

inhibitors (22), or FGFR and EGFR inhibitors (23). However, the majority of such 104 

screens identify genes related to resistance that do not have drugs that can 105 

effectively target them, and thus cannot currently be tested in the clinical setting. 106 

Other approaches focusing on signal transduction have resulted in testable 107 

combinations in NSCLC, such as EGFR and BCL6 (24) inhibitors, or MEK and AKT 108 

inhibitors (25,26). These predictions are made on observations in cell line models 109 

and not samples of tumours obtained contemporaneously from patients, and thus 110 

have not been used to predict combination therapy in individual patients. 111 

Additionally, network biology-based approaches have been used to model multi-112 

omics networks to describe synthetic lethal target interactions in lung cancer, yet this 113 

approach does not utilise real drug response data in building and refining models 114 

(27). Despite these wide ranging efforts only two combination of targeted agents, i.e. 115 

dabrafenib in combination with trametinib (28), and erlotinib in combination with 116 

ramucirumab (29) have been licensed  for the treatment with NSCLC, while multiple 117 

combinations of chemotherapy and immunotherapy are used as standard of care. 118 

Experimental approaches of drug screening, gene silencing or proteomic studies to 119 

discover biomarkers of sensitivity or rational combination therapies have provided 120 
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useful research insights. However, their utility for clinical decision-making is 121 

hampered because they utilize technology for use in cell lines that either require 122 

experimental techniques like long term cell culture and drug treatment (drug 123 

screens), cell transfections (siRNA/CRISPR) or large quantities of protein and 124 

extended analysis (mass spectroscopy). These limitations preclude use rapid testing 125 

of tumour samples from an individual patient against multiple drugs to enable 126 

decision making at any point in their treatment.  127 

Here we quantify dynamic signalling responses within cancer cells to predict drug 128 

sensitivity and rational combinations in NSCLC. The approach is applicable both to 129 

cancer cell lines and ex-vivo to patient cells.  The clinically-relevant concentrations 130 

and the short exposure of drugs used in these experiments are key to clinical 131 

translation of these assays. We establish proof-of-concept that such an approach is 132 

feasible and, in the future, may result in the establishment of platforms that will 133 

inform clinical decision making and personalized treatment within 24-48 hrs of a 134 

biopsy of individual tumours. 135 

 136 

  137 
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MATERIALS AND METHODS 138 

Cell lines and media  139 

Thirty-five NSCLC cell lines were obtained from ATCC or from collaborators and 140 

STR typed (details in Supplementary Table 1).  141 

All cell lines were grown in RPMI-1640 (11835-063, Gibco, Burlington, ON, Canada) 142 

except for SK-LU-1 which was grown in Dulbecco’s Modified Eagle’s Medium 143 

(D5671, Sigma-Aldrich). Additionally, all media was supplemented with 10% FBS 144 

(10270-106, Gibco), 1mM L-Glutamine (25030-024, Gibco) and 1x MEM non-145 

essential amino acid solution (M7145, Sigma-Aldrich). Cells were incubated at 37 oC 146 

with 5% CO2. All cell lines used in experiments  were between 4-28 passages. Cell 147 

lines were tested for mycoplasma using MycoAlert (LT-07-218 Lonza, Switzerland) 148 

within 2 weeks before use. 149 

 Drugs  150 

Were obtained from Selleck chemicals. Drug concentrations used for our Luminex 151 

assays were based off the clinical maximum plasma concentration (Cmax) 152 

normalised to the protein binding effect in 20% FBS media: details are provided in 153 

the Supplementary Methods.  154 

Luminex suspension bead assay 155 

Cells were grown in 25 cm2 tissue culture flasks (Corning Inc, New York, USA) at 156 

20% FBS until approximately 80% confluent then dosed with one of seven drugs 157 

(plus 3 DMSO controls) for 1 hour. Lysate was stored at -80 oC until required. 158 
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MILLIPLEX MAP Akt/mTOR phosphoprotein kit, MILLIPLEX MAPK/SAPK signalling 159 

kit, MILLIPLEX MAP RTK phosphoprotein kit (48-611MAG, 48-660MAG, 160 

HPRTKMAG-01K respectively, Merck-Millipore, Billerica, MA, USA) were combined 161 

with the following single-plex magnetic bead sets to produce three multiplex Luminex 162 

assays: phospho-NFkB, phospho-SRC, phospho-STAT3, phospho-STAT5 A/B, total 163 

HSP27 and GAPDH (46-702MAG, 46-710MAG, 46-623MAG, 46-641MAG, 46-164 

608MAG, 46-667MAG, MerckMillipore). Bio-Plex Pro phospho-PDGFRa, phospho-165 

PDGFRb and Akt (Thr308) (171-V50017M, 171-V50018M, 171-V50002, Bio-Rad, 166 

Watford, Herts, UK) were combined into a triplex assay. Manufacturer’s protocols 167 

were followed throughout.   168 

Cytotoxicity assays 169 

Growth inhibition was assessed using 72 hour Sulforhodamine B (SRB) assay 170 

(details in Supplementary Methods). 171 

Isolation of cancer cells from patient effusions 172 

Up to 1000 ml of ascites or pleural fluid was collected by the patient and 173 

immunomagentically separated using previously published methods (30).  174 

Ethics and Consent 175 

All patients who had pleural effusions drained for palliative purposes. Pleural fluid 176 

was used in the study after investigators has obtaind written informed consent. The 177 

tissue collection protocols were approved by the Institutional Review Boards and 178 

conducted in accordance with the Decleration of Helsinki. 179 

 180 
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Bioinformatic /Statistical analysis 181 

To standardise the phosphoproteomic measurements, the control GAPDH 182 

measurements were normalised and median-centred, all other data normalised 183 

accordingly (see Supplementary Methods).  184 

For predictions and feature selection we created and assessed the performance of a 185 

suite of AI-based predictors. First, we used Random Forest recursive feature 186 

selection to define the phosphoprotein changes that most contributed to prediction, 187 

then trained and validated Random Forest classifiers and regressor functions (details 188 

of implementation in Supplementary Methods). Moreover, we additionally utilised 189 

elastic net predictors to predict responses to drugs. Similar models were constructed 190 

using notable clinical genomic features of NSCLC to allow comparisons of model 191 

performance using the different feature types in predicting drug response.  192 

The Environmental Perturbation Score is an integrative function across the protein-193 

protein interaction network neighbours. The protein networks were constructed using 194 

the highly curated interactome from canSAR (31). The absolute values of change 195 

were then integrated for the environment of each node, and then used to predict 196 

which drug target to select to produce a beneficial drug combination response. 197 

Details are in Supplementary Methods. 198 

Combination of drugs were assessed using Bliss independence analysis to study 199 

synergy. Details in supplemental data. The different distribution of the EPS rankings 200 

in the highest and lowest quartiles of the combinations ranked by the Bliss 201 

independent analysis was test by a Mann-Whitney U test. Details in Supplementary 202 

Methods. 203 
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Data availability 204 

Data generated in this study is avaible upon request from the corresponding author 205 

 206 

 207 

  208 
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RESULTS 209 

Prediction of sensitivity to targeted therapy using focussed phosphoproteomic screen 210 

We experimentally profiled 35 NSCLC cell lines (Supplementary Table 1) and 16 211 

samples of immuno-magnetically separated cancer cells from patients with NSCLC 212 

with pleural effusions. Cells were exposed to a single concentration (Cmax adjusted 213 

for protein binding in culture medium) of 7 anticancer drugs: gefitinib (EGFRi), 214 

trametinib (MEKi), pictilisib (PI3Ki), capivasertib (AKTi), everolimus (m-TORi), 215 

vemurafenib (BRAFi) and luminespib (HSP90i) for 1 hr to recapitulate a clinical 216 

setting and eventual translational relevance of our experiments. We chose a limited 217 

panel of drugs with well-understood mechanisms of action which had been either 218 

licensed or evaluated in clinical trials.  We used a panel of 52 relevant 219 

phosphoproteins based on the known action of our drug panel and previously 220 

validated signal transduction pathways. Using highly curated protein-protein 221 

interaction data (31,32), we constructed a protein-protein interaction network to act 222 

as a framework to map and interpret our experimental data (Supplementary Figure 223 

1).  We chose to use an early time point and this antibody-based platform (33,34) 224 

because it would serve as a prototype of an assay in a clinical setting with a 225 

possibility of generating results to inform treatment within 24-48 hrs. The 226 

experimental design and analysis are illustrated in Figure 1 and expanded in the on-227 

line methods. Quantified changes in protein phosphorylation in response to one hour 228 

of drug incubation are shown in Figure 2A. On average, cell lines show 229 

downregulation of 11.88 phosphoproteins (22.4% of the panel) and upregulation of 230 

11.95 phosphoproteins (22.5% of the panel) per experimental condition, whereas 231 

patient-derived samples have on average 8.94 phosphoproteins downregulated and 232 

13.25 phosphoproteins upregulated per experimental condition, corresponding to 233 
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16.9% and 25% of the panel, respectively. This demonstrates that in terms of 234 

number of proteins perturbed in response to drug treatment, patient-derived samples 235 

and cell lines are comparable.  A dendrogram shows the clustering of the 236 

phosphoproteins based on the phosphorylation profile across the entire data set 237 

(Figure 2B). 238 

We chose to compare our findings with the recently published CPPA database 239 

(35,36) which describes similar drug perturbation using a reverse phase protein 240 

array (RPPA) platform on a variety of drugs and cancer cell lines. Of the seven drugs 241 

used in this study, four have also been used in the CPPA dataset (trametinib, 242 

gefitinib, vemurafenib and pictisilib). Only one cell line was common between the 243 

CPPA database and our experiments (A549) and this cell was not exposed to any of 244 

the drugs used in our experiments. For the four common drugs in both databases, 245 

changes in twenty-six proteins are measured in both studies. Despite different 246 

concentrations and lengths of drug exposure, the RPPA values for these drug 247 

treatments produce similar results: Supplementary Figure 2A shows hierarchical 248 

clustering of the data, demonstrating that the RPPA profiles do not separate by 249 

source and that many CPPA profiles are more similar to profiles generated in this 250 

study, and vice versa. Equally, Supplementary Figure 2B shows that for the first 251 

two components of PCA analysis, the source of the data is not a major driver of 252 

variance. This indicates, in part, that the phosphoproteomic data generated in this 253 

study are broadly aligned with those currently in the public domain. 254 

We then trained a suite of orthogonal machine learning algorithms with appropriate 255 

training and validation sets (random forest regressors, classifiers and elastic net, see 256 

Supplementary Methods) to define the key phosphoprotein changes that predict drug 257 

sensitivity in individual cell lines.  For comparison, we applied the same algorithms to 258 
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test the power of known genomic features to predict drug sensitivity. We divided the 259 

response data into four quartiles where the first quartile and fourth quartile contain 260 

the least and most drug sensitive outcomes, respectively (Figure 3A). Feature 261 

importance of phosphoproteins used in the elastic net analysis was described as 262 

significant if the absolute weight is greater than 0.1 (Figure 3B). We find that 263 

dynamic phosphoproteomic changes can strongly predict high and low drug 264 

response (Supplementary Figure 3) with an Area Under the Curve (AUC) of 0.78-265 

0.79 for Q1 and Q4 (Figure 3C and Supplementary Figure 3A, 3C, 3E). In 266 

comparison, genomic features such as mutations in EGFR, KRAS and PIK3CA failed 267 

to predict sensitivity in the same samples (Figure 3D and Supplementary Figure 268 

3B, 3D, 3F). This demonstrates that dynamic proteomic profiles enable more 269 

accurate single agent drug response prediction than the mutational statuses of 270 

EGFR, KRAS and PIK3CA – the three genomic markers currently used in the clinic 271 

to predict drug response. 272 

In addition, we calculated the predictive performance of each of the three mutated 273 

genes when targeted with drugs against their specific protein.  Despite EGFR (3) and 274 

PIK3CA (37) mutations being used in the clinic to select patients most likely to 275 

respond to EGFR and PI3K inhibitors, we identified that EGFR mutated cell lines did 276 

not show an enrichment for sensitivities to the EGFR inhibitor gefitinib in Quartiles 1 277 

and 2 relative to the EGFR wild type cell lines (Chi-squared test with Yates 278 

correction, p=0.67) (Supplementary Table 2). Equally, PIK3CA mutated cell lines 279 

did not show an enrichment for sensitivities to the PI3K inhibitor pictisilib in Quartiles 280 

1 and 2 (Chi-squared test with Yates correction, p=0.23). Whilst this may be due to 281 

the relatively small sample sizes of numbers of cell lines, these results highlight the 282 

limitations of using genotype alone to predict sensitivity to targeted drugs, even 283 
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those which target a  protein that can drive a cancer cell when mutated.  These 284 

experiments were performed prior to KRAS G12C inhibitors becoming available, 285 

however proteomic analysis outperformed KRAS mutations to predict 286 

sensitivity/resistance to all drugs studied. Thus, the predictive power of 287 

phosphoproteomic changes in the models studied shows that they could be used to 288 

augment current predictive biomarker paradigms based on genotype. 289 

 290 

Prediction of synergistic and antagonistic combinations using focussed 291 

phosphoproteomic screening results 292 

We applied our method of calculating dynamic environmental perturbation score 293 

(EPS) of each individual phosphoprotein when exposed a drug to predict synergistic 294 

combination (see Supplementary Methods for details). The list of EPS values for 295 

each node per cell line per drug is presented in the Supplementary Table 3 and an 296 

example of proteomic changes caused by capivasertib and trametinib in the HCC827 297 

cell line and the associated EPS score are shown in (Figure 4A, 4B) and (Figure 298 

4C, 4D) respectively. Note that using this measure, a node can be a signalling 299 

junction, even if its own perturbation is low. 300 

To test and validate the power of the EPS in predicting synergistic combinations, we 301 

conducted blind unbiased pairwise combination screening in vitro of the 7 drugs in 6 302 

cell lines (2 EGFR mutated, 2 KRAS mutated and 2 wt for EGFR and KRAS), 303 

resulting in 252 experimentally-derived Bliss independence scores. The Bliss 304 

independence scores of all the combinations in the 6 cell lines are represented in 305 

Figure 5A, Supplementary Table 4. We show that of the 128 cell line-combination 306 

pairs with a Bliss score >0.1 (i.e. synergy), EPS correctly identified the combination 307 
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to be in the top 5 ranked combinations in 73 (57%) cases and the top 10 ranked 308 

combinations in 106 (83%) cases. EPS correctly identified previously reported 309 

synergistic combinations of MEK or EGFR inhibitors with PI3K pathway inhibitors 310 

(25,26,38) – examples of true positive synergistic combinations. For example, EPS 311 

identified combinations of trametinib and capivasertib in HCC827 cells (Bliss 0.6, 312 

EPS ranking for AKT_308 of 3, AKT_473 of 2) and gefitinib and everolimus in PC9 313 

cells (Bliss 0.3, EPS ranking for mTOR of 2).  Moreover, EPS was able to correctly 314 

predict previously unreported combinations such as vemurafenib and capivasertib in 315 

H522 cells (Bliss 0.32, EPS ranking for AKT_308 of 4, AKT473 of 2), 316 

Supplementary Table 4.  317 

We find that while EPS is a strong predictor of clear synergy or clear lack of synergy, 318 

it was unable to distinguish marginal signals. Thus, when counting all data, we do 319 

not observe clear correlation between the Bliss independence score and the EPS 320 

(R2=0.0132) (Supplementary Figure 4). However, we observed enrichment of 321 

correct predictions in the highest and lowest Bliss data quartiles: predictions for 322 

these quartiles showed significantly skewed distributions (Mann-Whitney U test p 323 

value of 0.003887). To test the statistical significance of this enrichment, we 324 

compared the concordance of our EPS ranking with synergy based on the 325 

experimental input data versus 10,000 equivalent rankings based on randomly 326 

simulated data (see Supplementary Methods). We found a clear difference between 327 

EPS concordance with the experimental data of p values of <0.1 with that of the 328 

random rankings (Figure 5 A, B, C). This is remarkable as we used a 52 329 

phosphoprotein panel and only generated experimental data studying growth 330 

inhibition of combinations using 7 drugs. Thus, the EPS method so far is unable to 331 
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predict marginal synergistic signals, but it is very successful at predicting clear 332 

events such as clear synergy or clear lack of synergy.  333 

The route to clinical translation  334 

In keeping with our desire to translate our proof-of-concept findings to a clinically-335 

relevant platform, in addition to exposing established NSCLC cell lines clinical 336 

relevant concentrations (Cmax, adjusted for protein binding) for one hour, we 337 

exposed immunomagnetically separated cancer cells isolate from fresh pleural 338 

effusion aspirates to the 7 drugs under identical conditions. The phosphoprotein 339 

analysis was conducted and principal component analysis (PCA) of phosphoprotein 340 

changes due to 7 drugs in established NSCLC cell lines (n=35) and samples from 341 

patients (n=16) were broadly similar (Figure 6A); similar results were found when 342 

plotting the probability density functions of the two sample types, despite a 343 

statistically significant difference in their distributions (Figure 6B). It is important to 344 

note that the collection of the sample from the patient, ex-vivo treatment for one 345 

hour, cell lysis, protein quantification, quantification of phosphoproteins on the 346 

antibody based proteomic platform and machine learning analysis could technically 347 

be carried out within a 48 hour window, thus demonstrating the feasibility of this 348 

technique for use in the clinic to deliver rapid and accurate predictions of patient 349 

response, and thus inform drug selection. Significant further validation will be 350 

required prior to use in patients. 351 

  352 

D
ow

nloaded from
 http://aacrjournals.org/m

ct/article-pdf/doi/10.1158/1535-7163.M
C

T-21-0442/3095254/m
ct-21-0442.pdf by Institute of C

ancer R
esearch - IC

R
 user on 17 M

ay 2022



 

17 
 

Discussion 353 

To our knowledge, we have showed for the first time that simultaneously quantifying 354 

multiple phosphoproteins responses to clinically relevant concentrations of targeted 355 

anticancer drugs for a short period of time (1 hr) can be used to predict drug 356 

sensitivity: this data was able to outperformed known genetic biomarkers as 357 

predictors of sensitivity in the cell line panels and drugs studied. The tailoring of 358 

experiments to use clinically relevant concentrations adjusted to protein binding and 359 

an acute one hour exposure in order to be used clinically on biopsy specimens in the 360 

future, make our proteomic dataset and analysis different from other important 361 

recently published work on effects of drugs on proteomic perturbation (36). However, 362 

these previously published resources are helpful to benchmark some of the changes 363 

seen in our analysis (35,36). Whilst our study acts as a proof-of-concept, the length 364 

of time used for drug incubation could be further optimised to identify the optimal 365 

time point at which to obtain the highest predictive power of proteomic responses. 366 

Multiple factors contribute to the need for not relying solely on genetic biomarkers 367 

such as tissue context specificity. For example G12C KRAS inhibitors cause clinical 368 

benefit in KRAS G12C driven NSCLC but not CRC and this is related to feedback 369 

loops involving EGFR signalling (39). Furthermore, we have previously shown 370 

context specific signalling differences in signalling between NSCLC, CRC and PDAC 371 

cell lines  (34). Other factors could include transcriptional silencing of genetic 372 

aberrations  (40). Finally, the challenge posed by spatial and tumour temporal 373 

heterogeneity cannot be underestimated (41). 374 

We have also for the first time described the use of EPS in predicting synergistic 375 

combinations. We validated the model by running all possible combinations of the 7 376 
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drugs described in the manuscript in six cell lines. The proteomics-based EPS model 377 

predicted synergy significantly better than over 10,000 random permutations of EPS 378 

rankings. Interestingly, some of the combinations suggested by our methodology 379 

such as the synergy of the combination of MEK and PI3K pathway inhibitors have 380 

previously been reported following specific hypothesis testing experiments 381 

(25,26,42), which partially confirms our findings with true positives. However, the 382 

EPS model is particularly exciting as it can discover novel combinations in an 383 

unbiased way. There have been no unbiased, systematic drug combination therapy 384 

screens reported in NSCLC to date, however NSCLC cell lines have been included 385 

in large drug screens (18-20). Outside NSCLC, multiple approaches using gene 386 

silencing techniques such as siRNA/CRISPR have been attempted and are out of 387 

the scope of this manuscript, but such experimental systems would need long-term 388 

cultures of patient-derived tissue to make predictions of drug response for individual 389 

patients in the clinic. In contrast, our approach uses acute incubation of patient-390 

derived cells to make accurate and informative predictions of drug response. 391 

In this manuscript a set of unbiased combination experiments, done to validate the 392 

EPS have statistically shown high concordance in the highest and lowest quartiles 393 

predictions of synergy. Predictions of top and bottom quartiles of responses 394 

represent a stepping stone from binary classifications of sensitive/insensitive and 395 

toward an ultimate goal of predictions of precise, continuous synergy. Additionally, 396 

prediction of ranked sensitivities as opposed to absolute values may be of benefit 397 

when considering the well-known challenges of translating in vitro cell line 398 

observations into in vivo studies or patients (43).  While we have established early 399 

proof of concept, iterative improvements i.e. incorporating the use of larger 400 
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proteomic data sets, new drugs and newer understanding signal transduction 401 

pathways will further improve this approach. 402 

There are biological complexities such as the role of stroma or the immune system 403 

which cannot be captured in the model system described in this manuscript. 404 

However, we do believe that the current approach is a functional assay that can be 405 

delivered in the clinic, which intellectually lies in between genomics (finding 406 

mutations/amplifications/deletions or siRNA/CRISPR experiments) and truly 407 

phenotypic assays (cell culture/organoid and patient derived xenografts), with the 408 

added advantage of being able to near contemporaneously predict sensitivity and 409 

synergistic combination therapy. The EPS algorithm, based on acute 410 

phosphoproteomic changes, has been validated in in-vitro experimental models. 411 

While in-vivo testing is desirable, to meaningfully impact the model (7 drugs across 412 

35 cell line models and 252, 2 drug combinations), xenograft experiments need be 413 

done at a scale that is out the scope for academic groups. Showing the results of 1-2 414 

xenograft models to show proof of concept, while conventional, we felt would be 415 

against the spirit of unbiased testing and thus we have not conducted these 416 

experiments for this manuscript. Such experiments will have to be considered prior 417 

to using the assay in the clinical setting.  418 

To conclude, we have demonstrated for the first time, that the use of a focused 419 

phosphoproteomic assay and machine learning approaches that has used dynamic 420 

phosphorylation in signal transduction to predict sensitivity to drugs and prioritise 421 

rational combinations tested on cancer cell lines and patient samples in NSCLC. 422 

This is a powerful approach that is orthogonal to genomic markers, is adaptive and 423 

individualised, with a clinically meaningful turnaround time. This feasibility study 424 

provides proof of concept, however considerable technical validation is needed 425 
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before use in patients.  If developed further, this methodology can potentially 426 

improve the outcomes of cancer patients treated with targeted anticancer drugs as a 427 

single agent or as combination therapy.  428 
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Figure Legends 429 

Figure 1: Experimental design 430 

Single drug evaluation:  A library of 7 targeted anticancer drugs were used. Firstly, 431 

GI50 concentrations were determined in a panel of 35 NSCLC cell lines with diverse 432 

genetic backgrounds (44). Secondly, phosphoproteomic changes of 52 selected 433 

proteins were measured after one hour of drug exposure of the drugs at clinically 434 

relevant concentrations adjusted for protein binding and DMSO controls were 435 

measured. The phosphoproteomic protein changes were used to train machine 436 

learning predictors of sensitivity, and validated using 100-fold cross validation with a 437 

rotating set of 15% leave out for validation and 85% for training (see methods). The 438 

same phosphoproteomic measurements were also carried out in 16 patient samples 439 

obtained from pleural effusions producing profiles which can be fed into the 440 

predictive model to predict likely response to each drug of the individual patient 441 

samples. Two drug combination:  A novel machine learning method (environmental 442 

perturbation score) using dynamic phosphoprotein data 35 cell lines exposed to the 443 

7 drugs was used to predict combinations. All pair wise two-drug combinations (7 444 

individual drugs) were tested in six representative NSCLC cell lines and Bliss 445 

synergy was calculated for all combinations.  The predicted results from the 446 

environmental perturbation score was compared with the experimentally-validated 447 

results.  448 

 449 

 450 

 451 
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 452 

Figure 2:  Acute dynamic phosphoproteomic perturbation 453 

a) Hierarchically clustered heatmap showing all 53 phosphoproteomic changes 454 

measures across all 35 cell lines exposed to all seven drugs, overlaid with quartiled 455 

drug sensitivity annotation, generated using Morpheus. Blue denotes a decreased 456 

phosphoprotein, red denotes an increased phosphoprotein. Drug sensitivity quartiles 457 

are as illustrated and discussed in Figure 3a. Clusters are highlighted with yellow 458 

boxes. (b) Unrooted dendrogram representing clustering of phosphorylated proteins 459 

measured across entire dataset, showing receptor tyrosine kinases cluster together. 460 

Colours represent distinct clusters of the dendrogram, as per slicing at the level 461 

annotated by the turquoise line. 462 

 463 

Figure 3: Prediction of drug sensitivity using phosphoproteomic analysis 464 

 a) Classification of cell line-drug single agent sensitivities into four quartiles, with Q1 465 

= most sensitive and Q4 = least sensitive. (b) Feature importance of 466 

phosphoproteins based on elastic net analysis shown. Features are described as 467 

significant if the weight is greater than + 0.1 or lesser than -0.1 (c) Performance of 468 

predictions of sensitivity quartile based on phosphoproteomic changes using elastic 469 

net analysis. (d)  Performance of prediction of sensitivity quartile based on three 470 

clinically-relevant mutations (EGFR, PIK3CA and KRAS) using elastic net analysis. 471 

 472 

  473 
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Figure 4: Dynamic changes in phosphoproteins and EPS 474 

Exemplar of results in a cell line HCC827. (a, b) Network diagrams showing 475 

phosphoproteomic changes and drug targets with colour gradient blue (-1.7) and red 476 

(+1.7). Nodes that are drug targets but where phosphorylation has not been 477 

measured are denoted in grey i.e. HSP90, PI3K and BRAF a) shows 478 

phosphoproteomic changes related to exposure to the AKT inhibitor capivasertib b) 479 

shows phosphoproteomic changes related to exposure to the MEK inhibitor 480 

trametinib. (c, d) Show EPS calculated for nodes that are tractable on CanSAR. c) 481 

Shows EPS scores upon exposure to the AKT inhibition capivasertib d) Shows EPS 482 

scores upon exposure the MEK inhibitor trametinib. 483 

 484 

Figure 5: Experimental and predicted combinations 485 

a) Clustered heatmap of Bliss synergy scores was experimentally measured for six 486 

cell lines treated with 21 two drug combinations. (b) Histogram representing the EPS 487 

rankings of nodes of targets of drugs in the top 25% highest Bliss synergy scores, 488 

i.e. ‘most synergistic’ (left), or the EPS rankings of nodes of targets of drugs in the 489 

25% lowest Bliss synergy scores, i.e. ‘least synergistic’, (right). There is a significant 490 

bias towards higher EPS rankings for the most synergistic drug targets, with a 491 

significant Mann-Whitney U test p value of 0.0038875, indicating a biased 492 

distribution of rankings. (c) Simulation of Mann-Whitney U test p values obtained 493 

from 10,000-fold random permutations of EPS ranking, demonstrating the 494 

robustness of this p value. 495 

 496 
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Figure 6: Comparison phosphoprotein changes in patient samples and cell 497 

lines 498 

a) 3D plot showing that for the first three principal components of the 499 

phosphoproteomic data, patient samples (blue diamonds) show comparable 500 

distribution to cell line data (yellow circles), indicating that changes in 501 

phosphorylation in cell line panels could potentially reflect changes within clinical 502 

samples. b) Probability density functions of cell line and patient data, showing a 503 

strong overlap in distribution and peak values between the two sample types, despite 504 

a Welch Two Sample t-test indicating the two groups have different means (p = 505 

0.006804). Here, x-axis plots the value of dynamic phosphoprotein changes, and the 506 

y axis (density) is proportional to frequency.  507 
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