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Abstract

Despite a low overall mutational burden, paediatric high-grade gliomas
(pHGG) display high intra-tumour heterogeneity. Accumulating evidence
suggest the presence of cellular mechanisms that maintain such high hetero-
geneity, possibly through interactions between subclones within a tumour.
In several studies, the interplay between subclonal populations has been
demonstrated to confer an overall fitness advantage to the cancer cell popula-
tion as a whole. However, the mathematical and evolutionary tools to detect
and quantify these interactions are continuously being developed, refined
and improved. To this end, I designed and implemented a series of math-
ematical and computational models coupled with statistical inference infer-
ence on in vitro data to quantify subclonal interactions in patient-derived
pHGG cell cultures. Using ordinary differential equations (ODE) and partial
differential equations (PDE), I demonstrated the presence of growth interac-
tions in 2D and 3D in vitro co-cultures. I detected both positive and negative
(competition) interactions, although with great differences between 2D and
3D culture systems. Cellular automata models were also used to detect and
quantify the strength of interaction that affected not just growth, but also the
motility of infiltrating cells. Positive interactions that enhanced the motility
of a subclone in a co-culture were detected between pairs of clones isolated
from the same bulk tumour. These results demonstrated that subclonal in-
teractions are indeed present between pHGG cells, and my computational
approach quantified the magnitude and dynamics of such interactions. Ad-
ditionally, the implication of heterogeneity of therapeutic response was ex-
plored using ODE and PDE models applied to co-culture assays. Indeed,
interactions could affect the therapeutic sensitivity of subclones and alter the
competitive landscape present between them. I also showed that my ap-
proach was suitable to model adaptive therapy in in vitro model systems. An
in silico exploration evaluated the applicability of adaptive treatment strate-
gies.
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7.8 Images from a preliminary invasion assay of B169 (green)
and T3 (red) mono-cultures and co-cultures (67% B169 and
33% T3 and 33% B169 and 67% T3). A) No therapy. B169
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Chapter 1

Introduction

1.1 Introduction to paediatric gliomas

Cancer is a collection of diseases sharing the feature of abnormal cell growth
[1], [2]. These diseases arise due to mutations that disrupt the normal func-
tioning of cells, enhancing the ability of cells to grow uncontrollably.

Paediatric cancers are rare; however, they represent a leading cause of death
of children in developed countries [3]. In 2016, the Office for National Statis-
tics reported cancers as the leading cause of death for children 1 to 15 years
of age [4]. Central nervous system (CNS) tumours are one of the most com-
mon categories of childhood cancers (behind haematological cancers) and
represent a higher proportion in children (ages 0-14 years) than any other
age group (Figure 1.1) [5]. This is not seen in adults, with brain tumours only
representing 2% of tumours, the majority in adults being carcinomas [4], [6].

Survival from childhood cancer has continued to improve, with 5-year sur-
vival rates increasing from 77.1% in 2001 to 85.5% in 2018 [4]. However, this
survival rate increase has not been seen in childhood CNS tumours with a
smaller increase from 72.9% in 2001-2007 to 75.7% from 2008-2015 [7].

FIGURE 1.1: Cancer incidence by type divided into three age
groups (0-14, 15-29, ≥30 years) CNS tumours are abundant in

the 0-14 years age group. Figure is taken from [5].
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1.1.1 Adult and paediatric gliomas

Gliomas represent the most significant cause of CNS tumour-related death
in children [8]. Childhood gliomas are uniquely distinguished from adult
tumours by the presence of molecular alterations such as somatic histone
mutations [9]–[13].

For example, adult low-grade diffuse gliomas are most frequently driven
by IDH mutations whilst paediatric low-grade gliomas are most frequently
driven by alterations to the RAS/MAPK pathway [14], [15]. Another exam-
ple can be seen from the H3K27-altered subtype of paediatric-type diffuse
gliomas, which are primarily distinguished by their molecular characteris-
tics, uniquely differentiate them from adult tumours. In these tumours, the
H3K27-alteration has an impact on chromatin remodelling on a wide scale
with epigenetic silencing and activation as the lysine 27 residue is a crucial
site for epigenetic regulation [16], [17].

These distinctions have been reflected in the WHO classification of CNS tu-
mours, which has evolved from applying morphological criteria designed
primarily for adult tumours to a classification approach that acknowledges
the molecular differences between the two groups of tumours [18]–[20] (Fig-
ure 1.2). Two new families of paediatric tumour types have been added to the
2021 WHO classification; namely paediatric-type diffuse low-grade gliomas
and paediatric-type diffuse high-grade gliomas to reflect this distinction [18].

FIGURE 1.2: Table is taken from [18] demonstrating the distinc-
tion made between adult-type diffuse gliomas and paediatric-

type low and high-grade diffuse gliomas.
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1.1.2 Paediatric-type low-grade and high-grade diffuse

gliomas

Paediatric diffuse gliomas are subdivided into two categories; high-grade
and low-grade. Typically, these tumours were classified based on histo-
logical presentation. However, with the recent advances in the field with
the identification of unique molecular characteristics correlating with patient
prognosis, these tumours are now classified in a more nuanced manner [18],
[19]. An integrated diagnosis is now standard practice; this combines histol-
ogy, WHO grading schemes and molecular characteristics to classify tumours
into unique subgroups with meaningful distinctions. This is reflected in the
changes seen in the WHO classifications for 2007 and 2016 with an increase
in the number of subgroups characterised with unique molecular character-
istics (Figure 1.2) [18]–[21]. This is not solely limited to paediatric tumours,
specifically in paediatric diffuse low-grade and high-grade gliomas, there is
an emphasis on these molecular characterisations.

1.1.3 Paediatric-type low-grade diffuse gliomas

Paediatric-type low-grade diffuse gliomas (pLGG) are distinguished by well-
differentiated cells exhibiting less aggressive tendencies and better prog-
noses. Within this grouping, there are four sub-divisions; diffuse astro-
cytoma (MYB or MYBL1-altered), angiocentric glioma, polymorphous low-
grade neuroepithelial tumour of the young and diffuse low-grade glioma
(MAPK pathway-altered). Low-grade gliomas were predominantly classed
based on the histological grading of a tumour, however, now with the iden-
tification of unique molecular characteristics such as the alterations in the
MAPK pathway, low-grade tumours are not solely classified based on a sin-
gle criteria at a single point in a tumour’s history [18], [21].

The primary treatment for pLGG is complete surgical resection when possi-
ble, often requiring no further therapy. Partially resected tumours have been
demonstrated to show quiescence for a significant period of time [22]. Resec-
tion is not always possible, and in these case, additional therapies are sought
after. Typically, this involves radiotherapy, which has been linked to adverse
effects such as cognitive impairments, growth abnormalities and secondary
tumours, so this treatment often occurs in older patients [23], [24]. As the
molecular landscape of pLGG becomes increasingly well-defined through
the exploration of genetic and expression characteristics, targeted therapies
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have been increasingly explored. For example, the MEK-1/2 inhibitor tram-
etinib is currently under a paediatric clinical trial with 23 patients enrolled
(NCT02124772) [25]. There are many other clinical trials ongoing for a num-
ber of agents such as everolimus (NCT01734512); however, these are ongoing
studies with varying success [26]. A phase II trial of sorafenib was halted due
to disease progression in 9 of 11 patients attributed to ERK activation [27].
This reflects the challenge that developing targeted therapies represent.

1.1.4 Paediatric-type high-grade diffuse gliomas

The change in classification of CNS tumours is most striking for paediatric-
type high-grade diffuse gliomas (pHGG). Here, there are a group of tu-
mours that do display high-grade-like histology and will be classified as
such, however, there is the presence of a subset of tumours that can display
low-grade histology but possess the characteristics and prognosis of higher-
grade tumours. Specific molecular alterations such as amino acid substitu-
tions, K27M and G34R/V are found in the histone tails of H3.1 and H3.3 are
classified as high-grade regardless of histology. These mutations affect the
epigenome and are related to the anatomical regions of where these tumours
occur, with H3.3 K27M occurring in, predominantly, midline structures (in-
cluding the thalamus, brainstem, cerebellum, and spine), H3.1 K27M occur-
ring, frequently, in the pons (an area controlling many critical nervous sys-
tem functions) and G34R/V in the cortex (Figure 1.3) [10], [12], [13], [28], [29].
The H3 K27M group of tumours, in the WHO classification, is now expanded
to include tumours with similar characteristics and are classified as diffuse
midline gliomas H3 K27-altered [18].

Molecular characterisation of tumours is crucial to address the unique char-
acteristics of each distinct subgroup. A new category of pHGG, infant-
type hemispheric glioma occurs in newborns and infants, and has a distinct
molecular profile, with fusion genes involving ALK, ROS1, NTRK1/2/3, or
MET [18], [30]. A demonstration of the benefits of molecular characterisation
is in the treatment of kinase fusion-positive tumours, these have been shown
to have a better prognosis and respond better to targeted therapy [30].

Treatment options for pHGG include surgical resection, when feasible, which
is followed by radiotherapy and administration of chemotherapy agents such
as temozolomide [31]. Due to the infiltrative nature and sensitive anatomical
location of pHGG, particularly diffuse midline gliomas, complete surgical re-
section is not always possible. For example, surgery is not recommended for
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tumours arising in the pons. Additionally, chemotherapy has provided little
clinical benefit for diffuse midline gliomas [32]. Radiotherapy has proven the
only effective treatment in increasing progression-free survival [33]. Looking
more in-depth at the mutational landscape of pHGG, there is an increasing
shift towards subtype-specific therapies [34].

The primary issues thought to be limiting the progress in developing treat-
ments for pHGG is the presence of heterogeneity which complicates the abil-
ity to generate effective treatments as well as the strong diffuse phenotype
occurring in sensitive regions where resection is not possible [16], [35]. Re-
search focused on understanding these phenomena can provide a new way
of tackling pHGG and paediatric CNS tumours in general [12].

FIGURE 1.3: Figure taken from [13], illustrates the characteris-
tics of high-grade gliomas based on histone mutations and ge-

netic alterations.

1.2 Intra-tumoural Heterogeneity

Intra-tumour heterogeneity represents a significant barrier to the diagnosis
and treatment of cancer. It can complicate our understanding of cancers and
lead to poorer patient prognosis through a number of mechanisms such as
the failure of cancer therapies due to the emergence of resistance or the con-
volution of diagnostic procedures [36]–[40]. Understanding intra-tumoural
heterogeneity and its effects open the avenues for a greater understanding
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of how tumours progress, recur and develop resistance to therapies. Hetero-
geneity within a tumour can arise via a variety of mechanisms; these can be
genetic or non-genetic.

1.2.1 Genetic heterogeneity

In 1976, Peter Nowell published a paper that viewed cancer as an evolution-
ary process driven in mechanisms akin to Darwinian evolution, a fact which
is now widely accepted [41], [42]. Since this study was published, genetic
sequencing techniques have improved significantly to allow for the develop-
ment of models to describe tumour evolution with several models attempt-
ing to explain the causes or mechanisms that underpin the development of a
tumour [43]. Evolution is viewed in the context of clones, which vary in def-
inition between models, but can be described as a group of cells with highly
similar genetic profiles.

The linear evolution model describes tumour evolution through the step-
wise acquisition of mutations. These mutations provide a strong selective
advantage to a clone such that it will outcompete all other clones (Figure
1.4 A). This is called a selective sweep, and this process is thought to have
repeated many times over the evolution of a tumour, with each step increas-
ing the tumours fitness. This is demonstrated in the study by Fearon et al.,
where colon cancers are shown to progress through a linear series of muta-
tions [44]; the dynamics under this model appear to support only one linear
evolving population over time [45]. However, linear evolution is not likely
to be a complete explanation of tumour evolution, with significant data, gen-
erating using advancements in genetic sequencing technology, demonstrat-
ing the presence of heterogeneous mutations that define different clones [16],
[36], [46], [47].

Instead of existing linearly, evolution is branched since cell divisions and mu-
tations occur continuously, producing genetic divergence. Under models of
branching evolution, there can be the absence of selective advantages, such
as in the case of neutral evolution [48], and the presence of selective advan-
tages [43].

Neutral evolution can be considered a subset of branching evolution existing
between points of selection and can explain the presence of a large number
of low frequency mutations present in tumour sequencing data [48]. How-
ever, when selective advantages exist, a subclone can expand, which can be
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seen in evidence from the presence of subclonal driver mutations [48]. Here,
subclones are defined as cells in a clonal population that acquires a fitness
advantage and are able to expand. Selection can also exist in parallel where
two lineages acquire driver mutations such as the presence of two distinct
subclonal populations with PTEN aberrations found in the study by Tura-
jlic et al. [49]. The selection of a particular lineage can occur via a positive
or negative mechanism. Positive selection arises when a cell within a clonal
population acquires a mutation that provides a selective advantage allowing
for a subclone to grow. Whilst negative selection occurs when a mutation
decreases the fitness of a cell, thus leads to its elimination, such as the acqui-
sition of neo-antigens [50]. From these models, we can see that the presence
of clonal diversity can occur via selective and neutral mechanisms.

Udern the branching evolution model, adaptive evolution is thought to occur
in continuous gradual steps, whereas punctuated evolution models describe
the presence of rapid bursts of adaptive evolution. This is thought to occur
through large-scale genomic alterations with evidence shown in tumours ac-
quiring multiple driver mutations in a short period of time [49]. Eldredge
and Gould published a paper in 1970 describing punctuated equilibrium in
species evolution; here, adaptation occurs in small spatially isolated niches
until the new adaptive individual expands [51]. Applied to cancer evolu-
tionary dynamics, we can see that these small spatially isolated niches are
unlikely to be observed and remain largely undetectable until they expand,
thus the evolutionary dynamics of a population look punctuated, appearing
as short periods of rapid evolution [46], [48], [52].

A vital observation of these evolution models is that we cannot rewind time
and understand the early dynamics of a tumour. In species evolution, we
can only model what we can observe; using fossil records can give a glimpse
of the past. In the case of cancer evolution, we can only observe surviving
lineages, much of the early development of a tumour may be unobservable.
However, through the generation of vast quantities of DNA sequencing data
as well as the development of techniques to analyse these, the evolutionary
history of a tumour could potentially be inferred [53]. The study by members
of my group, Heide et al. demonstrated the ability to use multi-region DNA
sequencing in colorectal cancer to predict the time of emergence of different
subclonal lineages [54].

Heterogeneity can arise naturally as a tumour grows through the evolution-
ary process as well as occurring through a tumours’ spatial features [55]. This
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is demonstrated in multi-region sequencing studies, where there are signifi-
cant differences in the mutational profiles across distinct regions of a tumour
[47], [54].

FIGURE 1.4: Phylogenetic trees under different evolution mod-
els. Figure taken from [45].

1.2.2 Genetic heterogeneity in glioma

Developing effective treatments has proven difficult in pHGG, as these ma-
lignancies invade the brain parenchyma, making resection difficult and lead-
ing to poor prognosis [12]. In these tumours there is a low mutational burden
but a high degree of intra-tumoural heterogeneity, this is in stark constrast to
many other tumour types (Figure 1.5) [36]. The presence of multiple sub-
clonal populations evolving simultaneously could be the cause of this obser-
vation.

In a study published by members of my group, Vinci et al., it was demon-
strated that there are indeed genetic differences between cells in different
anatomical regions of the same tumour, a characteristic that was shown
amongst multiple autopsy samples [16]. Existing published exome datasets
were also analysed in this study showing the presence of multiple co-existing
subclonal populations in each tumour. It was further highlighted through the
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isolation and targeted sequencing of single-cell derived clones that there are
significant differences in the mutational profiles and phenotypic characteris-
tics, such as growth and invasion, between these clones demonstrating the
implications of heterogeneity in pHGG [16]. This study demonstrates the
genetic heterogeneity which has been is both functional and spatial.

In another study by Hoffman et al., mechanisms of heterogeneity in paedi-
atric glioblastoma were investigated. They found that paediatric glioblas-
toma were characterised by intratumoural genetic hetereogeneity and sub-
clonal architecture, which rapidly evolved at surgical resection and treat-
ment. For example, in one patient they observed the continual divergence
from the germline at each successive recurrence. These findings demon-
strated the role of heterogeneity in the development and recurrence of these
tumours, highlighting the need for targeted treatments that account for func-
tional and genomic heterogeneity [56].

49



Chapter 1. Introduction

FIGURE 1.5: Figure taken from [36] comparing the intra-
tumoural (ITH) proportion across multiple tumour types as
well as the number of homogeneous and heterogeneous non-
silent mutations. This demonstrates the high degree of intra-
tumoural heterogeneity in diffuse intrinsic pontine gliomas (a
subgroup of pHGG) which can be contrasted with lower-grade

gliomas.

1.2.3 Non-genetic heterogeneity

So far, we have considered solely genetic heterogeneity arising from tumour
evolution and spatial dynamics. However, there is also the potential for phe-
notypic heterogeneity [57]. This can arise as a result of phenotypic plasticity,
where two genetically identical cells are able to display different phenotypes
through non-genetic pathways. These can be split into deterministic [58] and
stochastic [59].

Deterministic mechanisms can arise due to of microenvironmental changes,
such as extracellular growth signalling, resulting in a marked difference in
the phenotype of tumour cells [60], [61]. Stochastic heterogeneity arises
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through the random fluctuations in intracellular processes occurring be-
tween genetically identical cells [62].

A study by Quintana et al. 2010, demonstrated that melanoma cells are ca-
pable of forming tumours that recreate the surface marker heterogeneity of
the tumours they are derived from [63]. This is a strong indication that the
heterogeneity of surface markers arises via a non-genetic mechanism. An-
other study by Sharma et al. 2010, demonstrates resistance to therapeutics can
be reversible, suggesting that this may arise through epigenetic mechanisms
[64]. Liu et al. 2019 highlights the potential of cancer-associated fibroblasts as
a target for anti-cancer immunotherapy [65]. These fibroblasts are thought to
remodel the tumour microenvironment to become more favourable to cancer
cells allowing for a more malignant tumour phenotype, occurring via a non-
genetic mechanism. Finally, a study by Marusyk et al. 2014, demonstrated
increased growth dynamics of subclonal populations when cultured with a
clone that secretes interleukin-11 [66].

1.2.3.1 Non-genetic heterogeneity in glioma

Non-genetic heterogeneity has been displayed in glioma across a variety of
studies. One such study investigating the ’Go or Grow’ hypothesis of in-
vasion in glioma was conducted by Hatzikirou et al. 2012 [67]. Here, it
is hypothesised that switches between proliferative or motile phenotype is
the mechanism underpinning the aggressiveness of many gliomas. The au-
thors conclude that mutation-driven phenotypic changes are insufficient in
explaining these tumours’ behaviour and demonstrate phenotypic-switching
as a source of non-genetic heterogeneity. Venkatesh et al. demonstrated the
role of cell-cell signalling in enhancing the proliferation of HGG. The secre-
tion of Neuroligin-3, from oligodendrocyte precursor cells, induces PI3K-
mTOR signalling in HGG cells, resulting in a mitogenic effect. The cells here
display non-genetic heterogeneity induced through signalling in the tumour
microenvironment by non-tumour cells, and this signalling is linked with
adverse prognosis in patients [68].

1.3 Subclonal interactions

The hallmarks of cancer are ten biological capabilities acquired during the
development of human tumours [2], [69]. However, due to the acquired ge-
netic alterations, some cells can satisfy some or all of these characteristics.
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FIGURE 1.6: Figure taken from [69] illustrates the ten hallmarks
of cancer with examples of mechanisms with which these could

occur

These can arise through the evolution of a tumour generated from a single
cell lineage acquiring mutations [46].

However, since paediatric tumours arise in a younger population, hetero-
geneity may induce cooperative interactions between subclones, enhancing
tumorigenesis. A study published by Vinci et al. highlighted that the pres-
ence of subclonal interactions could induce a heightened invasive and mi-
gratory phenotype in pHGG. However, the study could not quantify and
classify interactions present but represented one of the first indicators of sub-
clonal interactions present in pHGG. Axelrod et al. suggest that coopera-
tion could enable multiple subclonal populations to evolve niches to satisfy
some but not all hallmarks, allowing for an earlier tumour formation with
one of the examples provided suggesting that extracellular signalling via the
chemokine SDF-1 can provide cooperative cellular invasion [70]. This sug-
gests that multiple clones can cooperate to satisfy the hallmarks of cancer as
a collective instead of one clone acquiring mutations to satisfy all ten hall-
marks individually. This could potentially explain why tumours are able to
occur in younger patients, where the time taken to satisfy all ten hallmarks is
very short.

Whilst ITH represents a significant barrier in tackling cancer, understand-
ing the dynamics present in heterogeneous populations allows exploring
new avenues to manage tumours [16]. Subclonal interactions can be studied
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FIGURE 1.7: Classification of the types of interactions that exist
between two distinct populations.

through the lens of evolution and ecology, which seek to understand the dy-
namics of a particular population within its environment and with other sub-
clones. The most evident negative interaction between populations is com-
petition for space and resources, leading to Darwinian selection [71]. There
are other interactions, such as amensalism, where only one population is ad-
versely affected [72], [73]. Positive interactions instead lead to a population
benefitting from the presence of another and can arise in three varieties [72],
[73] (Figure 1.7). These three positive interactions are exploitation, mutual-
ism and commensalism.

Exploitation interactions lead to a reduction in the size of the exploited pop-
ulation. They can result in extinction, making these interactions challenging
to identify in cancer, where turnover is considerably faster than in species.
Mutualism is a two-sided benefit thus requires two species to evolve to oc-
cupy complementary niches. Although it could be unlikely to concomitantly
evolve this form of adaptation by two independent subclones in the short
timescales of a growing malignancy compared to millions of years in natural
species, this has been suggested as a potential avenue for the survival of het-
erogeneous subclones [70]. Instead, commensalism is likely to be observed
as it requires just one population to provide an interaction from which other
populations can benefit.

A typical example of this could be seen from extracellular signalling through
secreted factors. These can be considered ‘public goods’ where all cells in
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the tumour benefit while not all cells produce them [70], [74]. Indeed, this
has even been seen to confer treatment resistance in pancreatic cancer, where
amphiregulin produced by treatment-resistant clones confers resistance to
sensitive clones [75]. There have also been some studies that have found in-
teractions driving tumour initiation [76], metastasis [66] and cell growth[77].
Looking into some of these studies, we can see how subclonal interactions
can complicate our understanding of tumours.

In the paper by Hobor et al. [75], it has been shown that cetuximab resistant
cells are able to induce resistance in sensitive cells through paracrine sig-
nalling. Under these dynamics, it would be possible for a tumour to main-
tain both genotypically sensitive and resistant cells, whilst the tumour is re-
sistant to cetuximab as a whole. This presents the idea that even treatments
designed to target particular cells may fail due to subclonal interactions.

Marusyk et al. [66], demonstrated that polyclonality affected tumour initia-
tion. In particular, the presence of a clone that produces interleukin 11 (IL11)
significantly increased tumour volume in mice, targeting such clones that
drive disease progression can considerably slow down tumour progress. Us-
ing this intuition, targeting these interactions holds the potential in develop-
ing new treatments to prevent the development of some tumours.

Cellular invasion and metastasis are key drivers of cancer progression, with
little to no treatment options for metastatic cancers. Diffuse gliomas, as their
name suggests, are characterised by their invasive phenotype. It has been
shown in numerous studies that subclonal interactions can aid in driving
invasion and metastasis. These interactions can occur through chemokine
communication the inducing a change to a more invasive phenotype [16] or
remodelling the ECM [78]. In the study by Vinci et al. [16], it has been sug-
gested, through the co-culturing of distinct subclones, that subclonal inter-
actions enhancing the invasive phenotype of clones can induce an invasive
phenotype in subclones that would not otherwise. This has also been shown
in a study by Tsuji et al. [79], where the subcutaneous inject of both EMT
and non-EMT cells led to lung metastasis that would not form with only
one type of cell in isolation. More interestingly, the metastases were mostly
comprised of non-EMT cells, suggesting that EMT cells may aid in the for-
mation of metastasis but not to their further development. Venkatesh et al.
demonstrated the role of signalling via Neuroligin-3 secretion to promote the
proliferation in HGG, resulting in a poorer prognosis [68].
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As demonstrated, there are a multitude of examples highlighting the effect
of subclonal interactions in cancer formation, growth and spread. However,
these interactions are yet to be quantified, with aims to achieve this remain-
ing largely under-explored, especially in the case of spatial interactions. De-
veloping such quantification methods will allow for detecting subclonal in-
teractions and improve the understanding of how their presence affects a
tumour.

1.4 Adaptive therapy

There are a multitude of therapies for cancers, however, a commonly emerg-
ing phenomenon is the failure of treatments due to the emergence of resis-
tance or toxicity [80], [81]. These failures can be due to the inability to target
all tumour cells due to the heterogeneous composition of tumours and the
ability of cancer cells to evolve or adapt to treatment. Adaptive therapy is
a treatment strategy that leverages the presence of heterogeneity in tumours
to prevent treatment failure. These methods have been applied in many pre-
clinical trials and a number of clinical trials [80], [82]–[84].

Heterogeneous tumours contain multiple different subclonal populations
and these distinct groups compete for resources and space. Introducing
therapy can affect this balance and provide a proliferative advantage to
treatment-resistant subclones. This eventually leads to a scenario where the
size of a tumour can shrink; however, the remaining cells in the tumour are
resistant with little competition to prevent their proliferation. This then leads
to the recurrence of a tumour that no longer responds to therapy.

Under adaptive therapy, treatment seeks to maintain a degree of heterogene-
ity. This is achieved by delivering a lower dose of treatment or shorter du-
ration of treatment than normally delivered. The result will be a smaller
tumour that maintains the presence of both treatment sensitive and resis-
tant clones. As therapy is lifted, the growth dynamics return to normal and
sensitive cells can proliferate once again. The resulting tumour that arises
will maintain heterogeneity. This competition between sensitive and resis-
tant cells is essential in the effectiveness of adaptive therapy [85]. Another
proposed advantage of adaptive therapy is that using sub-maximal doses
will result in fewer treatment induced side-effects and toxicity [81].
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FIGURE 1.8: Figure taken from [80], illustrating the difference
in the effect of maximal dose treatment (a) and adaptive ther-

apy (b).

A clinical trial conducted on the adaptive abiraterone therapy in metastatic
castrate-resistant prostate cancer found that adaptive therapy can prolong
time to cancer progression whilst also using 50% less drug [80], [82].

A subset of adaptive therapy is metronomic therapy, where multiple treat-
ments are alternated between, this can be useful in managing tumours that
contain distinct subclonal populations resistant to different therapies. A
phase II clinical trial assessing the effect of metronomic therapy on paediatric
brain tumours found that the multi-drug therapy was active and effective in
patients with acceptable toxicity [83].

A trial investigating the effect of docetaxel plus epirubicin in metastatic
breast cancer patients [84]. The trial showed a higher monthly median sur-
vival rate of 54.6 months, which was higher than the 19.5-34 months reported
elsewhere. They also demonstrated that adjusting the dosage according to
adaptive PK/PD modelling could reduce toxicity whilst achieving a higher
efficacy.

There are many issues with the approaches of adaptive therapy. Primarily,
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the need to monitor tumours increases as therapy is knowingly leaving be-
hind tumour cells. There also needs to be an understanding that there is the
potential for a tumour to develop resistance, whether through pre-existing
subclonal phenotype or acquired through the course of treatment.

Another concern is the need for a cost of resistance that will allow sensitive
clones to out compete resistant clones, these are thought to arise as the resis-
tance phenotype invest resources into pathways or mechanisms to achieve
their treatment tolerance [86].

1.5 Mathematical and computational methods in

cancer

1.5.1 Mathematical models

Mathematical models are increasingly becoming a crucial part of cancer re-
search. These techniques are useful in developing an understanding of the
dynamics of cancer. These models have been applied to understand the evo-
lution [46], [55], growth dynamics of tumours [87], analysis of MRI images
[88] as well as models to understand the spatial growth of tumours. This is
not an exhaustive list, as the full scope of mathematical modelling in can-
cer research is too broad to summarise succinctly, we will explore a range of
models demonstrating the impact of mathematical and computational mod-
els in cancer research.

1.5.2 Non-spatial and spatial models

Focusing on mathematical models of cancer heterogeneity, there is an abun-
dance of research. These models can initially be divided into spatial and
non-spatial models. Non-spatial models, as the name describes, are models
where the spatial structure of a population is not relevant and not predicted,
whilst spatial models integrate these features directly into the models.

The advantage of using non-spatial models is that they are simpler to solve
and require less computational power, whilst spatial models are more com-
plex and use significantly more computational power. In the case of differ-
ential equations based models, ordinary differential equations are easier to
solve numerically in comparison to partial differential equations. A simple
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example of this can be seen from the studying of doubling times. These as-
sume simple exponential growth, which can be described as an ordinary dif-
ferential equation [89].

A useful non-spatial model can be seen in the Lotka-Volterra competition
equations [90]. These models seek to understand the growth dynamics of a
number of populations sharing the same resources and space. Used exten-
sively to study species interactions, they are increasingly being applied to a
variety of fields, including cancer research, as demonstrated by Zhang et al.
[80]. In this study, the authors use Lotka-Volterra competition equations to
model the growth of difference cellular populations with in prostrate cancer,
both under and in the absence of therapy. The speed at which these models
are able to be solved allows for the exploration of a vast number of parameter
values, thus allowing a computationally inexpensive method of exploring a
large parameter space.

Spatial models consist of a variety of models such as partial differential equa-
tions (PDE) as well as cellular automaton and agent based models. These
models incorporate a spatial dimension as a parameter. PDE models have
been applied to various fields, including tumour invasion and metastasis us-
ing reaction-diffusion equations. These are largely more complicated and
computationally expensive models, however are able to study more compli-
cated features. For example, rather than modelling the growth of different
mutational frequencies, in the study by Chkhaidze et al., the authors have
investigated the implications of spatial sampling and the biases this intro-
duces when measuring the evolutionary dynamics of a tumour [55]. Using
spatial models of tumour growth and evolution, they demonstrate the differ-
ence between different tumour sampling techniques in recovering the true
evolutionary dynamics of the simulated dataset.

1.5.3 Differential equations

A differential equation is a mathematical equation that describes the rela-
tionship between functions and their derivatives. These models are used in
various fields such as physics, engineering, economics and biology. Due to
the utility of differential equations in describing how some dynamic systems
have been increasingly applied to cancer research.

A common example of this is the derivation of growth rates where models,
such as the logistic function, [91] have been used to describe the growth of
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cells in-vitro. Other modelsm such as Gompertzian growth, have been used
to quantify the growth and size of tumours [92]. These simple models paved
the way for more complex analyses that describes tumour growth and evo-
lution [93], [94], therapy [80], [86], [95] as well as a multitude of other fields
in cancer research.

In the study by Gerlee et al., a partial differential equation model is used to
study the growth and invasion of glioblastoma [93]. Specifically, they use
reaction-diffusion equation models to understand the effect of the rate of
switching between proliferative and motile phenotype has on the speed at
which the tumour edge grows.

In a study by Anderson et al., the authors describe the effect selective pres-
sures from the microenvironment has on morphology and phenotypic evo-
lution in tumours [94]. The microenvironment is modelled using partial dif-
ferential equations such as the consumption and diffusion of oxygen.

In the study by West et al., the utility of adaptive therapy in a multi-drug
regime is investigated for the management of prostate cancer [95]. Here the
authors use an ordinary differential equation (ODE) models to describe the
growth and dynamics under lupron, lupron + abiraterone or no treatment.
Utilising data from a small clinical trial parameters are derived for the ef-
fects of each therapy type. Using the mathematical framework, the authors
demonstrate the presence of an evolutionary cycle, where a specific sequence
of treatments can be applied to keep the tumour population in a fixed cycle.

Strobl et al. presented a study that defines the conditions under which adap-
tive therapy may be applied [86]. This is modelled using Lotka-Volterra
equations, modelling growth sensitive and resistant cell populations under
therapy and in its absence.

1.5.4 Cellular automaton and agent-based models

Cellular automaton (CA) and Agent-based models (ABM) are models that
can incorporate spatial structure, this is particularly useful in understand-
ing heterogeneous cancer dynamics and have been applied increasingly to
understand the behaviour of tumours. This class of models aim to simulate
the actions and interactions between agents, such as cells, in order to under-
stand how a system behaves. These models are fairly simple to implement
in comparison to spatial differential equation models (such partial differen-
tial equations) that can be difficult to solve analytically or numerically. It has
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been demonstrated that cellular automata and differential equations have
been shown to be related [96], [97]. Some applications to cancer research are
the understanding the spatial evolution of tumours [55] and understanding
cellular invasion [67], [98], [99].

As described previously, in the study by Chkhaidze et al., the authors utilise
spatial simulations to understand the effects of spatial sampling on the evo-
lutionary dynamics observed [55]. These simulations are cellular automata,
that incorporates the presence of mutations as cells divide. A particular type
of cellular automaton, demonstrated by Ilina et al., is a lattice-gas cellular
automaton where cells are represented as point particles moving between
positions on a 2D lattice. This is used to simulate a multicellular sheet of
cells to understand the role of cell-cell adhesion and cell confinement affect
collective cell motion in in-silico, in-vitro and in-vivo settings.

In the study by Hatzikirou et al., the authors demonstrate the power of using
cellular automaton simulations such as a lattice-gas model in understanding
the invasion of gliomas [67]. Here the authors are able to integrate differential
equation based models with a lattice-gas model to understand the role of
phenotypic switching on the observed dynamics in gliomas.

1.5.5 Approximate Bayesian computation

Approximate Bayesian computation (ABC) is a class of computational meth-
ods using Bayesian statistics to estimate the posterior distributions of a mod-
els parameters. These are valuable methods as they allow for the inference
of model parameters without likelihood functions which can sometimes be
difficult to derive. Instead of computing a likelihood function, these methods
use a rejection algorithm to assess which how close the data generated by a
model fits the data.

This inference methodology has been used in a number of studies to quantify
the parameters of a system [46], [55], [100].

Sottoriva et al. present a quantitative framework to understand tumour
growth dynamics and the origins of intratumoural heterogeneity by simu-
lating the growth of malignancies in-silico [46]. ABC coupled with these sim-
ulations enabled the inference of patient-specific tumour characteristics.

Xiao et al. describe a two methods parameter estimation for a PDE model of
cancer invasion and metastasis [100]. The first approach uses ABC whilst the
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other approach involves gradient matching. Their findings were that ABC
inference produced more accurate results; however they highlighted some
issues with this methods, such as computation cost involved.

1.5.6 Image analysis

Image analysis is the process of extracting meaningful information from data
in the form of images. This is an increasingly prominent field in understand-
ing cancer, due to its applications both in research and as a diagnostic tool.

Whilst image analysis encompasses a large number of techniques, some of
these techniques are directly relevant in the processing of data for cancer
research such as image enhancement, image segmentation and motion track-
ing.

Image analysis in histology is increasingly being used. In addition to enhanc-
ing signal of samples, there is now an increasing interest in digital pathology.
This field seeks to lessen the burden on pathologists and enable a higher-
throughput analysis of histopathological images by automating the process.
A review by Barisoni et al, highlighted the use of digital pathology and com-
putational image analysis in nephropathy [101].

Image analysis is increasingly being used to extract information for the pur-
poses of understanding tumours in for research purposes. An example of this
is the paper by Abdul Jabbar et al. where the authors apply image analysis
in conjunction with other computational techniques to infer how the spatial
structure of tumours affects the immune invasion in lung cancers [47].

1.6 Thesis objectives

Tumours are heterogeneous, particularly paediatric gliomas, and this limits
the ability to develop therapies and control the evolution disease. Mathe-
matical modelling proves to be a powerful tool that can be applied to better
understand heterogeneity and its effects on tumour dynamics. The devel-
opment of mathematical models to understand the interactions present in
heterogeneous tumour landscapes has proven promising, however, there are
significant areas for development.

The overall objective of this thesis is to develop, apply and test mathemati-
cal and computational models to detect and measure subclonal interactions
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present in paediatric high-grade gliomas. This will be split into understand-
ing the facets of heterogeneity that are thought to drive aggressive tumour
phenotypes; growth, invasion and therapeutic failure.

1.6.1 Aims

Aim 1: Establish a methodology to understand and measure interactions
affecting cell proliferation

1. Test and further develop models to understand the growth dynamics
of a pure population

2. Understand co-culture dynamics and measure interactions between
populations

Aim 2: Develop a framework to detect and measure the presence of spatial
interactions

1. Measure the invasive phenotype of a pure population.

2. Using computational modelling, detect and measure the presence of
spatial interactions.

Aim 3: Leverage heterogeneity to develop adaptive treatments

1. Understand the effect of treatment on the growth of a populations

2. Identify any interactions present between populations that hinder treat-
ment

3. Using models of treatment develop and test treatment protocols that
leverage heterogeneity
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Chapter 2

Materials and methods

All experimental assays in this thesis was performed by myself, with the
exception of 2D proliferation assays for HSJD-DIPG-007 clones in Chapter 4
and invasion assays presented in Chapter 5. Assays performed by myself
include; 2D/3D proliferation assays for ICR-B169 lines in Chapter 4, 2D/3D
drug response assays in Chapter 6, all therapeutic strategy assays shown in
Chapter 7.

2.1 Cell lines

These cell lines were isolated and established in culture by other members of
my lab, Glioma team - the Institute of Cancer Research.

2.1.1 HSJD-DIPG-007

Patient-derived culture HSJD-DIPG-007 is a primary tumour from a six year
old patient taken at autopsy [102]. It is characterised by the mutations;
H3F3AK27M, ACVR1R206H, PPM1Dp.P428fs4, PIK3CAp.H1047R. From the bulk
tumour, clones were isolated using a single cell sorting approach (described
by Vinci et al.) [16]. Among these clones, F8 and F10 were selected for fur-
ther study in this thesis. These two clones share several mutations however,
F10 possesses mutation affecting the KMT5B gene, resulting in the acquisi-
tion of a stop codon truncating the protein and thus altering the H4K20me3
distribution in the cells (Figure 2.1). This mutation is also present in the bulk
tumour in less than 1% of the cells [16].
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H3F3A
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Shared Private

FIGURE 2.1: Illustrating the genotype of HSJD-DIPG-007
clones, F8 and F10. The public mutations are highlighted in
blue, which have overlap with the bulk tumour, and there is a
private mutation in F10 in the KMT5B gene, which is not mu-

tated in F8.

2.1.2 SU-DIPG-VI

Patient-derived cultures SU-DIPG-VI is a primary tumour from a seven year
old female collected at autopsy [102]. It is characterised by the mutations;
H3F3AK27M,TP53p.R175H & p.E198∗ , MYCamp. From the bulk tumour, clones
were isolated using a single cell sorting approach (described by Vinci et al.
[16]). Among these clones, E6 and D10 were selected for further study in this
thesis. Amongst E6 and D10, there are shared mutations but also mutations
unique to each clone. E6 possesses the private mutation SMARCB1 whilst
D10 possesses private mutations in PHF21A, SMARCC2 and NOTCH2 (Fig-
ure 2.2) [16].

H3F3A

PDE4DIP
TP53

PSG5
CHD5

PHF21A

SMARCC2

NOTCH2

SMARCB1
D10

E6

Shared Private

FIGURE 2.2: Illustrating the genotype of SU-DIPG-VI clones,
D10 and E6, shows the shared and private mutations present
between these clones. Private mutations demonstrate unique
molecular differences between D10 and E6. Adapted from [16].

2.1.3 ICR-B169

Patient-derived cultures ICR-B169-Parental (B169), is a primary tumour
from a nine year old patient collected at autopsy [102]. It is characterised
by the mutations a number of mutations, most notably BRAFG469V. This
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parental cell line was used to generate trametinib resistant cell lines by Elisa
Izquierdo-Delgado [103]. Amongst the resistance cell lines generated, ICR-
B169-T3 (T3) was selected for further study in this thesis, T3 has acquired
the mutation MEK1I141S. Throughout this thesis, ICR-B169-Parental will be
referred to as B169 and ICR-B169-T3 will be referred as T3.
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FIGURE 2.3: Illustrating the genotype of cell lines B169 and T3,
adapted from [103].

2.1.4 Generation of single cell derived clones

The generation of single-cell derived clones performed by members of my lab
is described in the paper Vinci et al. [16]. A bulk patient derived tumour cell
culture was sorted using flow cytometry into 96 well plates. These cells were
subsequently expanded in either 2D laminin or 3D neurosphere cultures.

2.2 In-vitro culture

2.2.1 Primary glioma cell culture

Cells were cultured in stem cell media consisting of Dulbecco’s Modified
Eagles Medium: Nutrient Mixture F12 (DMEM/F12); Life Technologies,
11330-038), Neurobasal-A Medium (Life Technologies, 10888-022), HEPES
Buffer Solution 1M (Life Technologies, 15630-080), MEM Sodium Pyruvate
Solution 100 nM (Life Technologies, 11360-070), MEM Non-Essential Amino
Acids Solution 10mM (Life Technologies, 11140-050) and Glutamax-I Sup-
plement (Life Technologies, 35050-061). Growth medium was supplemented
with B-27 Supplement (Life Technologies, 12587-010), 20 ng/ml recombinant
Human-EGF (2B Scientific LTD, 100-26), 20 ng/ml recombinant Human-FGF
(2B Scientific LTD, 100-146), 20 ng/ml recombinant Human-PDGF-AA (2B
Scientific LTD, 100-16), 20 ng/ml recombinant Human-PDGF-BB (2B Scien-
tific LTD, 100-18), and 2 µ g/ml Heparin Solution (Stem Cell Technologies,
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07980). For the first passages (around 3-4), primary cultures were maintained
with antibiotic-antimycotic at 100x (Invitrogen, 15240-096).

2D cultures (2D-Lam) were grown on flasks coated with laminin (Sigma-
Aldrich) 10µg/ml, whilst 3D cultures (3D-NS) were grown in ultra-low at-
tachment (ULA) flasks (Corning, 4616) When cultures reached confluency,
90% surface area for 2D-Lam cells and a diameter of 200 µm for 3D-NS cul-
tures, cells were split into new flasks for expansion and maintenance. For
2D-Lam, growth medium was removed from the flask and cells were incu-
bated in accutase dissociation reagent (Sigma, A6964) for 2-3 min at 37oC or
until 70% cells were detached from the flask, media was then added mak-
ing sure all the cells were in suspension. Cells were then transferred to a
universal tube for centrifugation at 1300 rpm for 5 min, and the pellet was
resuspended using fresh media. For 3D-NS cultures, cells were centrifuged
with the original media at 1,000 rpm for 10 min. The supernatant was dis-
carded and pellet resuspended in accutase for 5 min, which was then diluted
by adding 5 mL of fresh media and centrifuged at 1,300 rpm for 3 min. Su-
pernatant was removed gently without disturbing the pellet and 200 µl of
media was added and resuspended to obtain a single-cell suspension. When
both 2D-Lam and 3D-NS cultures were resuspended, cell count and viability
were assessed using the automated cell counter, Countess II FL (Invitrogen,
AMQAX1000).

2.3 Cell labelling

Cell labelling was performed by Ketty Kessler for SU-DIPG-VI and HSJD-
DIPG-007 clones and by myself for B169 and T3.

We used the Piggybac technology based on the transposon system: the cas-
sette of interest in our donor vector is inserted into the genome via the trans-
posase expressed by our helper vector. This system allow us to generate
stable labelled cell lines expressing our cassette of interest (fluorescent pro-
teins) through several passages. Cells were transfected by nucleofection us-
ing the A-23 program from the electroporator (Nucleofector I Device - Lonza)
and the transfection reagents (Lonza Human Stem Cell Nucleofector Kit 1)
according to the manufacturer’s instructions. We transfected the following
plasmids: plasmids CMV-hyPBase vector, a gift from Kosuke Yusa, Well-
come Sanger Institute [104], PBCAG-eGFP was a gift from Joseph Loturco
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(Addgene plasmid # 40973)[105], PCAG-mCherry. PCAG-mCherry was gen-
erated in our laboratory by removing the eGFP cassette from PCAG-eGFP
plasmid using AgeI, NotI enzymatic digestion and the mCherry cassette was
inserted using the ligation Gibson Assembly Master Mix (NEB, E2611) ac-
cording to the manufacturer’s instructions The transfected cells can be se-
lected using FACS (MoFlo or BD FACS Aria II) and expanded for the different
assays.

2.4 In-vitro assays

2.4.1 Proliferation and drug assays

All proliferation assays were performed in either 96-well plates (flat-bottom
(Thermo Scientific 165305 or Corning 3596) for adherent cultures and ultra-
low attachment round bottom (Corning 7007) for 3D spheroid culture), 24-
well plates (Corning 3524) or T25 flasks (Sarstedt 83.3910.002). A dissociated
single-cell suspension is required prior to this step. To obtain this, cells were
passaged as explained in section 2.2 and resuspended cells were used for
seeding. Cells were counted using the Countess II FL (Invitrogen) and the
stock single-cell suspension required was diluted to the desired seeding con-
centration.

2.4.1.1 2D proliferation assay

A working dilution of cells was created with the desired cell count, and cells
were seeded in 100µl per well. All exterior wells were filled with PBS to
minimise evaporation. Cells were incubated for 24 hours to attach before
first experimental timepoint. For drug assays, cells were seeded at 50% of
working volume of complete media with the remaining 50% added at the
time of the first timepoint with twice the desired drug concentration. For 2D
laminin adherent glioma culture, 96-well plates were coated with laminin.
This was achieved by using 1µg per cm2 at 10µg per ml, (in the case of 96
well plates 0.5cm2). Plates were then incubated for at least 2 hours at room
temperature.

2.4.1.2 3D proliferation assay

For 3D cultures, the single-cell suspension was seeded at the desired cell con-
centration with 100ul of media per well in a 96-well ultra-low attachment
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plate (Corning 7007). Once seeded, the plate was centrifuged at the lowest
setting (300rpm) for 2 minutes to allow the cells to settle at the bottom of the
plate. Spheroid formation then took between 1 to 4 days depending on the
line, which was monitored daily under a microscope. Growth medium was
replenished before the first timepoint was taken.

2.4.1.3 Quantification of cell number

Cell viability analysis was performed using Cell-Titer Glo (Promega). Cell
Titer-Glo readings were performed using a plate reader capable of measuring
luminescence (BMG FLUOstar Omega Microplate Fluorescence Reader ID
#: 18518). Cell vilability was used as a surrogate for the number of live-
cells. Image analysis measurements were also used as a measure to quantify
population size, performed using algorithms I implemented in Chapter 3.

2.4.2 Invasion and migration assays

Ketty Kessler performed invasion assays for HSJD-DIPG-007 and SU-DIPG-
VI assays. I performed all other invasion assays. These protocols are detailed
by Vinci et al. [16].

For HSJD-DIPG-007 and SU-DIPG-VI, cells were seeded at 100 and 250 cells
per well per 100µL of complete media in a 96-well plate ULA round bottom
(Corning 7007), respectively. A single sphere per well was allowed to form
for 3 days. A total of 100µL medium was removed from each well contain-
ing neurospheres of 100µm in diameter. 100µL of cold matrigel was gently
added to each well (6 replicates) and plates were incubated at 37oC, 5% CO2,
95% humidity for 1hr. Once the matrigel solidified, 100µL/well of complete
culture medium was added on top.

For B169 and T3, cells were seeded at 500 cells per well per 100µL of complete
media in a 96-well plate ULA round bottom (Corning 7007), respectively. A
total of 100µL medium was removed from each well containing neurospheres
of 100µm in diameter. For B169 and T3, the amount of matrigel was reduced
from 100µL/well to 100µL/well whilst maintaining the same concentration
of 1:1 matrigel to media. Once the matrigel solidified, 100µL/well of com-
plete culture medium was added on top.
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2.4.3 Imaging

Cells were imaged using the Incucyte S3 Live-Cell Analysis System (Sarto-
rius). Incucyte S3 images were exported as contrast-enhanced for the phase
channel and as uncalibrated 16-bit tiff files for green and red fluorescence
channels. These images were then processed using image analysis detailed
in Chapter 3.

2.5 DNA extraction and quantification

DNA extractions were be performed using QuickExtract DNA Extraction so-
lution (Lucigen). The protocol was adapted from that provided by Lucigen.
From the cells grown in a 96-well plate, as much media was removed as pos-
sible, following which 100 µl of QuickExtract solution was added and the
plate was vortexed gently. The plate was transferred to a heat block for 65oC
for 8 minutes and then 95oC for 2 minutes. DNA concentrations were quan-
tified using Qubit Assays.

2.6 Droplet-digital PCR

ddPCR was performed by Ketty Kessler for HSJD-DIPG-007 clones.

PCR-ready sample is prepared, containing the primers, probes, ddPCR Su-
permix as well as the DNA sample. This sample was transferred to a droplet
generator such as the QX200 AutoDG Droplet Digital PCR System (Bio-
rad). This requires DG32 cartridges (Bio-rad 1864108); Droplet generation
oil for probes (Bio-rad 1864110); Pipette tips (Bio-rad 1864120); ddPCR 96-
well plates (Bio-rad 12001925). This was an automated process, and once
completed the plate was sealed using a foil seal (Bio-rad 1814040) in a plate
sealer (Bio-rad 1814000). The PCR plate was transferred to a thermal cycler
with the appropriate protocol according to the reaction prepared. The plate
was transferred to a refrigerator at 4oC overnight to allow for more stable
droplets. The PCR plate was read using a droplet reader, and the output file
was exported for analysis (Bio-rad QX200 Droplet Reader).
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2.7 Mathematical and computational techniques

In this section I described the mathematical and computational techniques I
used in this thesis. Code for the implementation of techniques can be found
using the GitHub link: https://github.com/haidertari/thesis-icr-subclonal.

2.7.1 Approximate Bayesian Computation

Approximate Bayesian computational inference was implemented in R 3.6.3,
using a weighted Euclidean distance between simulated and experimental
data.

2.7.2 Agent-based model

Agent-based models have been produced using a combination of either C,
C++ or CUDA C, with an implementation of Gillespie’s stochastic simulation
algorithm to determine the order of operations.

2.7.3 Differential equations

Differential equations that are numerically solved are using either ’DeSolve’
in R or NDSolve in Mathematica. Some differential equations are solved ex-
plicitly, these will be detailed with a functional form.

PDE models are solved numerically using the method of finite differences.
This is implemented in Python 3.7 using the ’numpy’ module.

2.7.4 Genetic algorithm

Genetic algorithms were implemented in R 3.6.3 using the "GA" package.
With at least 20 iterations and population size of 32 per iteration. The option
parallel was set to 16 to utilise multi-threading. Fitness values were required
to be stable for 5 iterations for the final result to be accepted.

2.7.5 Parameter fitting and model selection methodology

There are multiple different approaches used to fit parameters in this thesis.
Here I will describe briefly implementation of each method.
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2.7.5.0.1 Method 1: Least-squared regression Regression parameter fit-
ting was performed in R using; base R function ’lm’; nls from package ’nls’
in R; ’nls.lm’ from the package ’minpack.lm’ in R. Dose-response curves fit-
ting was performed using the ’drc’ package in R; with the model ’LL.4()’ used
in the the function ’drm’.

When attempting to fit ODE parameters to experimental data it is required to
both simulate and then calculate the distance between the output of a specific
set of parameter values and the experimental data. The function ’nls.lm’ from
the package ’minpack.lm’ in R allows for the use of more complicated data
generation functions, in this case an ODE. The packages use computational
optimisations to speed up parameter inference.

A complication in fitting data that follows a logistic growth pattern is that
there is the presence of heteroscedasticity, this means that the variance is non-
constant. Typically, for exponential growth data a log transformation can
be used to convert the data to a linear format removing much of this issue.
However, with logistic growth there is a period of exponential growth as well
as a plateau, and a simple log transformation will shift non constant variance
to a latter point. As such there is a trade-off between which set of data points
are given the most weighting.

Due to the use of different cellular population with differential growth dy-
namics I decided to use a simple unweighted sum-of-squares approach to
my regression fitting. Alternative approaches such as a log transformation
could equivalently be used. The optimisation problem I have set up is to find
the set of parameters that provide the minimum deviation from the exper-
imental data. All regression fits are inspected visually to address issues of
inappropriate fitting.

This method is primarily used for the inference of 2D growth and drug re-
sponse assays presented in Chapter 4 and 6, due to the speed at which these
ODE models can be solved.

2.7.5.0.2 Method 2: Approximate Bayesian Computation My approach
of this rejection sampling approach is to select parameters drawn from an
uninformative prior distribution and to calculate the distance of simulated
observations and experimental data using a scheme of summary statistics.
There summary statistics are explained in more detail in Chapter 5. Parame-
ters values are accepted if the distance calculated is below a threshold, ε, and
reject if they exceed this threshold. The resulting distribution of accepted
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parameters is defined as a posterior distribution, and is used to act as an
estimate of the true parameter values.

Before any inference the bounds of the uninformative prior distribution is
required. This distribution is set as a uniform distribution and the limits are
calculated by running an exploration of a set of parameter values to ensure
that all the initial distribution is wide enough to contain the true posterior
distribution.

This method is primarily used for the inference of invasion interactions pre-
sented in 5, due to the complexity, time taken to run simulations and lack of
functional form of the data generation process.

2.7.5.0.3 Method 3: Genetic Algorithm I have used a genetic algorithm to
determine parameter values throughout this thesis. This involves finding the
value of a particular fitness function for a range of parameter values and then
using evolutionary principles to aim to converge to the best fit parameters.
Sets of parameter values are able to reproduce, which means they are used
for determining the next set of parameter values in a subsequent generation.
These parameter values in subsequent generations are mutated, this means
there is a slight perturbation. The fitness is compared at each point and to
previous generations and the result is to converge towards a maximum fit-
ness (if this is exists).

The fitness function I use is the negative of the sum-of-squared error, as max-
imising this is equivalent to minimising the sum-of-squared error. This ends
up becoming similar to the output of a regression.

Genetic algorithms are used when the data generative process is time con-
suming but the functional form is known. For these cases applying regres-
sion methods proved to too time consuming so genetic algorithms were used
to speed up inference, but they sacrifice accuracy as they converge to the
global minimum when the number of generations is large. Alternative opti-
misers could have been chosen to alleviate these issues such as the ADAM
gradient descent algorithm.

This method is primarily used for the inference of PDE based models pre-
sented in Chapters 4, 6 and 7, due to the time taken for the solving these
PDE’s.
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2.7.5.0.4 Model selection AIC was used for model comparison through-
out this thesis. AIC was calculated using residuals sum of squares (RSS)
instead of the maximum of the likelihood function. The formula for AIC is
as follows:

AIC = n ln
(

RSS
n

)
+ 2k (2.1)

with a correction for small sample sizes:

AICc = n ln
(

RSS
n

)
+ 2k +

2k (k + 1)
n− k− 1

(2.2)

Model selection was performed using an assessment of AIC value with an
interpretation of the suitability of results. This check varied from each appli-
cation of model selection. However, the data fits were visually inspected to
check if models captured the correct dynamics and parameter values were in-
spected to check for non-sensical or impossible parameter values. Therefore,
solely using AIC is inappropriate choice of model selection.

The model selected was therefore the model with the lowest AIC but sensible
parameter values. This is highlighted best in Chapter 6, where the interac-
tion coefficients in response to increasing therapy concentration should be in
a dose-dependent manner and not random. The randomness indicates the
presence of potential overfitting which I seek to avoid.

2.7.6 Image analysis

Contrast-limited adaptive histogram equalisation (CLAHE) was imple-
mented in python3.7 using the cv2 module. Threshold-based segmentation
the ’Canny’ edge detector in MATLAB R2018b or python3.7 using the cv2
module. Region-of-interested (ROI) based segmentation using algorithms
the ’sobel’ transform in MATLAB R2018b or python3.7 using the cv2 mod-
ule. Image registration implemented using MATLAB R2018b. Deep-learning
based image segmentation using a ResNet-UNet network architecture. Train-
ing data, in the form of binary masks, was prepared using Adobe Creative
Cloud. Training and segmentation was implemented in python3.7 using py-
torch modules and custom functions. Segmented images were evaluated vi-
sually to identify cases of significant over and under segmentation, which
was manually corrected where possible. This manual correction was only
performed in the analysis of invasion assays.

73





Chapter 3

Image analysis methodology

Image analysis is a powerful tool for the extraction of meaningful informa-
tion from complex imaging data. Image analysis incorporates a number of
techniques that can be divided into several categories; image enhancement,
image segmentation, removing noise and statistical analyses [106]. With
broad applicability to many fields, such as security and astronomy, it has
become of increasing relevance in the field of cancer research. This chapter
provides an introduction into the relevance of images analysis methodology
to cancer research and most importantly describes the methodology used in
this thesis to translate data contained in images to a format that can be pro-
cessed with mathematical models.

Applications of image analysis in cancer studies include, but are not limited
to, digital pathology, image enhancement and feature extraction from diag-
nostic images (such as MRI or CT) as well as analysis of research imaging.
Bahadure et al. present image analysis techniques for detecting and feature
extraction of data from MRI images of brain tumours [107]. Here, the authors
were able to segment the brain into regions of normal and tumour-infected
tissues. This is particularly useful for monitoring tumours as well as guiding
operative procedures. AbdulJabbar et al. presented the use of digital pathol-
ogy to understand the relationship between geospatial features and the evo-
lution of lung adenocarcinomas [47]. The authors demonstrate that tumours
with multiple regions defined as "immune cold", with low immune response
has a higher risk of relapse.

The study by AbdulJabbar et al. displays the utility of image analysis to
enable research progression. Applications such as ImageJ, an open-source
image processing program, or integrated tools such as those provided by
Satorius for their IncuCyte S3 live-cell analysis exist, however, these are
not complete tools applicable universally to all experimental data generated
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[108], [109]. Implementing bespoke image analysis algorithms can enable the
extraction of previously unidentifiable images through image enhancement
and segmentation, and these techniques also largely automate the processing
of data thereby improving the throughput of research [110].

Histogram equalisation is the process of contrast adjustment [111]. It allows
for the better distribution of pixel intensities, thus allowing for intesity values
to be spread across a wider range. Caveats with simple histogram equalisa-
tion is that it applies a transformation to a global threshold; this means that
the histogram equalisation lacks the ability to enhance contrast on a local im-
age area. It is limited by the presence of areas with particularly bright or
dark intensities, as these limit how much pixel intensities can be spread out.
This is particularly a problem with fluorescent images where large clusters
of cells are brighter than disperse cells (a major issue in invasion assays that
contain sparse invading cells and a dense spheroid) as well as the presence
of background fluorescence. In these cases adaptive histogram equalisation
(AHE) is a preferred choice [111]. This involves the computation of a his-
togram for different regions of an image. AHE tends to introduce noise as it
over amplifies the contrast in regions with a near-uniform intensity. In this
chapter, I use contrast limited AHE (CLAHE), which is a variant of AHE ad-
dressing the issue of over-amplifying contrast in near-uniform regions [111].
It does this by clipping the histogram at a predefined value and redistribut-
ing the clipped pixels before computing the cumulative density function and
carrying out equalisation.

In time-lapse microscopy imaging, there are slight variations in the position
of the lens and subject. These variations result in slight deviations of the
subject in the resulting images, which can pose a problem to analyses that
aim to track the position of objects. For example, tracking the movement of
cells is difficult as it would be unclear distinguishing between the shifting of
the frame and the movement of cells. To address these issues, a technique
called image registration can be applied. This is the process of transforming
different sets of images to be mapped on the same coordinate system. In mi-
croscopy imaging, the variation is predominantly a shift in the x-y plane, as-
suming magnification is kept constant. Image registration in this application
seeks to map an input image to the coordinate system of a reference image.
Image registration is often performed using Fourier-based image correlation
to determine the translation required to align images, as demonstrated by
Tong et al. [112].
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When processing images, the presence of noise can complicate analysis. This
can be addressed by filtering images, thus reducing the presence of small
fluctuations which will be eliminated by averaging in a pixel’s neighbour-
hood. The cost that arises as a result of noise reduction with these methods
is the loss of detail in the filtered image, for example, median filters can re-
move fine details such as lines. Median and bilateral filtering are both edge-
preserving methods whilst Gaussian blurring is not, thus Gaussian blurring
can reduce the performance of edge-detection algorithms [113]–[116]. These
three methods are all windowing operations, which means that for each pixel
a specific neighbourhood window is explored.

Threshold-based image segmentation utilises a pixel intensity threshold to
define the difference between foreground and background. This process sets
a pixel intensity value, defined as the threshold, with intensities above or
below this representing the background or foreground (this depends on if
images have a dark or light foreground). This threshold is obtained either
via trial and error or using algorithms such as Otsu’s method. Solely apply-
ing threshold-based segmentation can lead to the over/under segmentation
in images where the foreground and background are variable and not so well
defined and difficult to generalise. As a result, these methods are best applied
to images with high contrast between foreground and background. Edge-
detection image segmentation method uses the fact that there are often sharp
intensity changes between foreground and background, thus a boundary can
be draw between them. This boundary can then be filled to account for the
entire foreground. There are numerous edge detection algorithms with no-
table examples such as Canny, Prewitt and Sobel edge detectors [117]–[119].
Edge-detection methods can be used to find a region-of-interest, and this can
either be segment or thresholds methods can be applied inside these regions.

Deep-learning based image segmentation methods are able to incorporate a
greater degree of complexity than traditional image segmentation methods
[120]. In a simplified explanation, these methods requires the training of a
convolutional neural network (CNN) to perform image segmentation on a
training dataset - where the desired binary masks is known. The perform
of this segmentation tested against a set of unseen images and binary masks,
these are called a validation set. The CNN will ’learn’ the features that should
be used to best perform the image segmentation. Once this CNN is trained, it
is then applied to unseen data to process image segmentation automatically.
In this chapter, I used a U-Net architecture with ResNet encoders. A U-net is
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a CNN architecture consisting of a contracting path and an expansive path,
which gives it the U-shaped architecture [121], [122]. The contracting path re-
duces the number of features retained whilst the expansive path increases the
number of features, this is a common network architecture used for binary
segmentation applications specifically created for biomedical imaging data
by Ronneberger et al. [122]. ResNet encoders are used in the downsampling
contraction phase, these are a common architecture style due to the ability to
allow deeper neural networks. He et al. presented a ResNet encoder which
allowed for 152 layers, 8 times greater than other network architectures of
the time [121]. The key to these techniques is passing previous layers for-
ward which we can see demonstrated by the forward connections in both
U-Net and ResNet architectures.

In this chapter, I implement image analysis techniques to extract informa-
tion from data generated using the IncuCyte S3. This forms a crucial stage
of the data generation process for the work presented in Chapters 4, 5, 6
and7. Without image analysis techniques, the ability to extract meaningful
information from experimental data at the throughput demonstrated in this
thesis would be unfeasible.

3.1 Intuition behind image analysis and alterna-

tive approaches

The key goal of image analysis in this chapter is to extract meaningful in-
formation from images so it can be passed into mathematical modelling for
inference. This is a key simplification of the complex information contained
in the form of images. Very specifically, I seek to generate binary masks that
dictate the presence of absence of a particular cell in an image with the pixel
value of 1 or 0.

It is important to note that the process of generating binary masks is neither
unique nor novel. There are a multitude of analyses that can be performed in
a number of different programming languages. Some popular open-source
choices are ImageJ, MATLAB and Python. I have made the decision to pro-
duce most of my analysis in Python due to familiarity as well as an increasing
adoption of Python based analysis in wider literature [47]. It is very possible
for the analysis produced in this chapter to be performed using other soft-
ware, for example adaptive histrogram equalisation can be performed in a
completely analogous manner in ImageJ or MATLAB instead of Python.
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The key understanding from this chapter is to demonstrate the information
extraction process and the considerations made when this is performed.

3.2 Issues with IncuCyte S3 in-built segmentation

The imaging platform that I have used for the experimental work in this
thesis is the IncuCyte S3. This system comes with a software package that
seeks to automate the analysis of images. During the course of processing
images for analysis, it became apparent that numerous issues were limiting
the power of analysis. The work in this section seeks to rectify those issues
by implementing my own framework for image analysis.

There are many key issues I faced when attempting to use of the IncuCyte S3
image analysis software. This platform lacks high-quality histogram equali-
sation tool, the built-in methods are for global histogram equalisation is un-
suitable for fluorescence images, where the intensity can vary between dif-
ferent regions of an image [123]. There is also a lack of adaptive thresholding
methods which calculate a pixel intensity threshold using a smaller region of
an image instead of the entire image, these have been demonstrated to pro-
duce better segmentation results in images with non-uniform illumination
[124], [125]. Pixel intensities also vary in time, for example the expression
of a fluorophore can increase as a population grows, this will mean that the
threshold will also be required to be adjusted temporally. Both of these con-
siderations cannot be adequately addressed using built-in IncuCyte S3 image
analysis software. The segmentation methods provided with this software
are also relatively basic when compared to deep-learning approaches [126],
[127]. Finally, the IncuCyte S3 cannot correct for shifts in the position of the
microscope lens, this causes issues with tracking features between images of
the cells in the same well.

3.3 Adaptive histogram equalisation to enhance

signal in fluorescent images

Before passing data into my analysis framework, images are pre-processed.
For phase contrast images, this is a simple process of enhancing contrast so
that the boundary between cells and background is more pronounced. This
proves to be more convoluted for fluorescent channel images as these images
vary in multiple ways.
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The first issue is that cells display a difference in the expression of a fluo-
rescent label. As such some cells are more complex than others to identify
from the background. Another issue is that there are significant differences
in the quality of red and green fluorescent images before pre-processing is
performed. The normalisation of these images can allow for the comparison
between different imaging channels.

To address these issues, images with inadequate quality are removed from
analysis. Images with large background fluorescence or ’dirt’ will be re-
moved to avoid complicating further analysis. This is then followed by an
application of contrast enhancement for phase images (using the Incucyte
built-in tools) and an application of contrast limited adaptive histrogram
equalisation (CLAHE) on fluorescent images.

When CLAHE was applied to 2D images there was a significant enhance-
ment of the foreground (Figure 3.1). This is vital when a thresholding-based
approach is used to segment images as it creates a more noticeable distinction
between the background and foreground. For 3D proliferation assays, a sim-
ilar effect was seen, the effect of CLAHE is to make the spheroid appear more
prominent and uniform in intensity, thus allowing for easier identification of
the boundary of the spheroid (Figure 3.2).

The most significant impact of CLAHE is seen when there is little difference
between the background and foreground, this can arise due to background
fluorescence or weak expression of a fluorophore. This is most notable for
invasion assays. There is also difficulty in seeing invading cells that do not
produce a signal as strong as a dense core of multiple hundreds of cells. The
result is that invading cells are difficult to see before applying CLAHE, how-
ever, once this is applied, invading cells are distinguished more clearly (Fig-
ure 3.3 3.4). This is crucial, as most of the information around a spheroids
invasion is contained in the position of these invading cells. On cells that do
not strongly express a fluorescent label, this is not possible. While applying
CLAHE provides a stronger ability to detect foreground, it is not a substitute
for consistently expressed fluorescent labelling.
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B169 2D
No CLAHE   CLAHE

T3 2D
No CLAHE   CLAHE

FIGURE 3.1: Contrast limited adaptive histogram equalisation applied to 2D prolif-
eration assays using B169 (labelled with eGFP) and T3 (labelled with mCherry).

B169 3D
No CLAHE   CLAHE

T3 3D
No CLAHE   CLAHE

FIGURE 3.2: Contrast limited adaptive histogram equalisation applied to 3D prolif-
eration assays using B169 (labelled with eGFP) and T3 (labelled with mCherry).
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D10 Invasion
No CLAHE   CLAHE

E6 Invasion
No CLAHE   CLAHE

FIGURE 3.3: Contrast limited adaptive histogram equalisation applied to invasion
assays using D10 (labelled with Venus) and E6 (labelled with Venus) from different

assays.

F8 Invasion
No CLAHE   CLAHE

F10 Invasion
No CLAHE   CLAHE

FIGURE 3.4: Contrast limited adaptive histogram equalisation applied to invasion
assays using F8 (labelled with Venus) and F10 (labelled with mCherry).
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3.4 Image registration to remove translations in

microscopy imaging

Image registration methods translate images so that they are mapped to a
reference image. This is an essential tool when attempting to track features
across multiple images, as microscopy images tend to have a slight difference
in the position of the lens from image to image, thus leading to slight shifts.
Processing statistics using a image that is shifted from the reference can skew
results, particularly when spatial features are being inferred.

The result of image registration can be seen in Figure 3.5. Three images of
the same well have slight deviations from one another. Taking these images
and stacking them by giving each a separate channel in an RGB image (red,
green or blue) shows the fluctuations. Once the registration is performed, the
images appear perfectly overlaid, with deviations unidentifiable.
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Raw images from microscopy contain slight shifts in frame

Unregistered
image stack

Registered
image stack

FIGURE 3.5: Demonstration of image registration. Input images (top) have slight
deviations. Simply stacking images (bottom left) shows the deviation of the spheroid
centre. Stacking registered images (bottom right) shows these deviations are cor-

rected.

3.5 Segmentation algorithm and output for 2D

proliferation and drug assays

Here, I present my implementation of a segmentation algorithm, to process
images from 2D proliferation and drug assays. I also describe how data is
extracted from these images to be passed into mathematical models in all
subsequent chapters. These are custom algorithms implemented by myself
for the purposes of analysing images generated from in vitro assays.
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From the point of exporting images, the process to analyse images for prolif-
eration and drug assays is as follows:

1. Input images were filtered for poor quality images; these include high
background fluorescence, out of focus images and presence of signifi-
cant debris.

2. Fluorescent images are contrast enhanced using CLAHE and converted
from 16-bit to 8-bit images.

3. Median filtering was applied with a 3-pixel window, this will largely
remove the presence of salt and pepper noise that arising from CLAHE.

4. A threshold-based segmentation algorithm was developed, the thresh-
old between background and foreground was investigated, and the
quality of segmentation was analysed by reviewing the overlay of seg-
mentation on the original image.

5. Segmentation was processed to create binary masks for all images.

When conducting co-culture images, are used from red and green channels.
The resulting segmentation when looking at two channels has four possibili-
ties:

• If a pixel has a value of 0 in both binary masks - this pixel was classed
as empty.

• If a pixel has a value of 1 in mask A and 0 in mask B - this pixel was
classed as containing the cell type A.

• If a pixel has a value of 1 in both binary masks - this pixel was classed
as containing both cells.

Immediately, it is clear to see that the third case raises the issue of double-
counting a pixel. Within 2D assays, there is often the overlapping of cells,
and thus, the red and green segmented masks will also overlap. To address
this issue, I determine that when a pixel has a value of 1 in both binary masks,
the associated weight of that pixel is halved. This will ensure the maximum
confluence of an image was maintained at 1 which is essential for models
explored in Chapters 4 and 6. The statistics exported for the analysis of this
data is the confluence of a channel, which is represented as proportion of
pixels occupied divided by total pixels. Segmentation was evaluated by a
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visual inspection of a binary mask overlay on fluorescent images. Exam-
ple images show agreement between binary masks and fluorescent channels,
demonstrating the suitability of this algorithm (Figure 3.6).

T3

B169

FIGURE 3.6: Images of B169 (imaged using a green fluorescent
channel) and T3 (imaged using a red fluorescent channel) from
2D proliferation assays with the outline of binary mask segmen-

tation outlined in green.

3.6 Segmentation algorithm and output for 3D

proliferation and drug assays

Here I present my implementation of a segmentation algorithm to process
images from 2D proliferation and drug assays. I also describe how data is
extracted from these images to be passed into mathematical models in Chap-
ters 4, 6 and 7. These are custom algorithms implemented by myself for the
purposes of analysing images generated from in vitro assays.

From the point of exporting images, the process to analyse images for prolif-
eration and drug assays is as follows:

1. Input images were filtered for poor quality images; these include high
background fluorescence, out of focus images and presence of signifi-
cant debris.
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2. Fluorescent images were contrast enhanced using CLAHE and con-
verted from 16-bit to 8-bit images.

3. Median filtering was applied with a 3 pixel window, this will largely
remove the presence of salt and pepper noise that arising from CLAHE.

4. A threshold-based segmentation algorithm was developed, here the
threshold between background and foreground is investigated and the
quality of segmentation was analysed by reviewing the overlay of seg-
mentation on the original image.

5. Segmentation was processed to create binary masks for all images.

From these binary masks, the area occupied (confluence) of each channel was
recorded. Due to the cells being cultured as a 3D spheroid but an image is a
2D representation, there can be multiple clones in the same pixel. Thus, the
confluence of the red and green channels was calculated separately.

Looking at the output masks generated by segmentation, there is good per-
formance of segmentation for both B169 and T3 (Figure 3.7). When compared
to the segmentation from the IncuCyte analysis, it is clear, from a visual com-
parison, my analysis is better able to segment the spheroid whilst the In-
cuCyte produces a more variable output with some images displaying com-
parable segmentation and some such as those at later points demonstrating
over-segmentation (Figure 3.8).
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B169

T3

FIGURE 3.7: Images of B169 (imaged using a green fluorescent
channel) and T3 (imaged using a red fluorescent channel) from
3D spheroid assays with the outline of binary mask segmenta-

tion outlined in green.

Day 0 Day 2 Day 4 Day 6

FIGURE 3.8: 3D spheroid segmentation of B169 (green fluo-
rescent channel) using the built-in IncuCyte S3 image analysis
tools, with the outline of a binary mask represented in blue.
These demonstrate the inadequacy of IncuCyte segmentation

algorithms for processing data.

3.7 Deep-learning tile-based image segmentation

for invasion assays

Even after applying CLAHE, 3D invasion assay images are challenging to
analyse due to the inability to identify sparse invading cells. This is clearly
demonstrated where comparing images from 2D proliferation assays and 3D
invasions. There is a dense, bright spheroid that is extremely bright, this
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3.7. Deep-learning tile-based image segmentation for invasion assays

makes identifying cells outside of the spheroid difficult to identify (Figure
3.9). These cells are precisely what I was trying to capture in assays to quan-
tify the in vitro invasion.

2D images 3D images

Dim cells

Bright center

FIGURE 3.9: Difference in foreground illumination between 2D
(left) where foreground illumination if relatively consistent and
3D (right) assays where lone invading cells are significantly

fainter than the spheroids.

Using simple segmentation assays using thresholding and edge-based seg-
mentation is no longer feasible. Deep-learning tile-based image segmenta-
tion involves training neural networks to identify the features that can iden-
tify cells, and these can be used for segmentation. For this reason, I imple-
mented a segmentation algorithm that utilises deep-learning tile-based meth-
ods. From the point of exporting images, the process to analyse images for
invasion assays was as follows (Figure 3.10):

1. Input images were filtered for poor quality images; these include high
background fluorescence, out of focus images and significant debris.

2. Fluorescent images were contrast enhanced using CLAHE and con-
verted from 16-bit to 8-bit images.

3. If a segmentation model does not exist a random subset of data was
selected for training a classifier. Otherwise, proceed to step 5.

4. Use training data to produce a classification model by training and val-
idating a neural network (using an 80:20 training:validation split with
50 images in total per classifier). A image segemntation classifier was
created for each channel and may not be transferable between assays.
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5. Apply image classification model to 8-bit images to generate raw
masks. These represent the classification models probabilities a pixel
was positive.

6. Convert raw masks to binary masks by picking a threshold (usually set
to 0.5).

7. Register binary masks and input images to the original reference image
if this has not been processed.

8. Concatenate fluorescent channel masks with phase masks to create a
filtered mask.

9. Refine these filtered masks to generate final masks; at this point, an out-
line could be generated to assess the performance of segmentation. If
under segmentation is occurring then either the model must be refined
or manual segmentation is advised.

10. Final masks were ready to be processed for spatial statistics.

Input images Contrast
enhanced images

Raw masks

Filtered registered
masks

Discard noisy
images

Process spatial
statistics

Binary mask
processing

Image
registration

CLAHE

Deep-learning
segmentation

Concatenate
phase and 
�uorescent

masks

Error
correction

Final masksFinal
measurements

Prepare training
data

Training data

Neural network
training

Classi�cation
Model

a b

c d

e

f

gh

FIGURE 3.10: Flowchart illustrating the segmentation algo-
rithm used to process experimental images.
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The output of segmentation in this case, is compared to the IncuCyte S3 anal-
ysis. Cells within phase images have higher contrast, compared to fluores-
cent images, and as such these should be the easiest to analyse. However, I
have demonstrated that using the IncuCyte analysis software produces vari-
able results and significant under segmentation (Figure 3.11 A). This is par-
ticularly an issue as the under segmentation is often apparent for the isolated
invading cells and not cells in the core. These isolated cells are precisely the
phenotype I am interested in understanding, and as such, they are crucial to
detect. Looking at my segmentation on the phase channel, I was able to very
accurately detect foreground from background and especially the isolated in-
vading cells (Figure 3.11 B). This is even the case in fluorescent images where
cells are very accurately detected (Figure 3.11 C).

A)

B) C)

FIGURE 3.11: Comparison of Incucyte segmentation and my
implementation for processing invasion assay images. A) In-
cuCyte S3 built-in segmentation was demonstrated to be in-
adequate, with areas of over-segmentation and considerable
under segmentation. B) My implementation of segmentation,
of phase images from an invasion assay, performs better than
the IncuCyte segmentation, although there are areas of over-
segmentation (small specks that can be filtered). C) My imple-
mentation of invasion assay segmentation was also able to be

applied to fluorescent images with considerable accuracy.
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3.8 Discussion

In this chapter, I have demonstrated the application of image analysis tech-
niques to extract information from microscopy images. This field is increas-
ing in prominence in biological applications [47]. Here, image analysis tech-
niques allowed for the improvement of segmentation when compared to off-
the-shelf tools, such as those included with the Incucyte S3 system (my cho-
sen platform for imaging). The importance of the results from this chapter
should be emphasised as they are crucial for the ability to generate data used
in the remainder of this thesis.

Image analysis is a complex, constantly evolving field with new develop-
ments arising frequently. As such, any analysis can always be improved, and
this applies to the analysis in this chapter. A prominent improvement can
be to increase the ability to apply deep-learning algorithms to a wide array
of data. Currently, the data performs well on the data presented, however,
this would require new data to have a classified trained from scratch. This
increases the time taken to obtain result from analysis.

While the methods demonstrated in this chapter show improvement over the
built-in IncuCyte S3 tool, they are considerable areas of improvement. Image
normalisation techniques can also be further developed to reduce variability
between images from different time points and assays. This can be achieved
by using deep-learning methods to train a neural network to normalise im-
ages, which will allow for a greater magnitude features to be considered to
inform normlaisation. Currently, my deep-learning segmentation algorithm
requires a time-consuming process of generating binary masks for training
and validation. However reducing the time taken to generate these masks
will greatly improve the applicability of techniques.

Here, I created a small set of highly accurate training masks, however, there
might be a benefit that can arise from a large number of less accurate masks.
This will give the neural network larger datasets to learn features from. Ad-
ditionally, identifying publicly available imaging datasets of segmented im-
ages from similar experiments can help create a larger training data, although
these images will have to be normalised to be comparable to one another.
There are existing methods that normalise staining in histological images us-
ing computational techniques. These could be adaptive to normalise other
types of images [128]. Exploring different network architectures can also
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yield varying results and thus, understanding how best to choose network
design is crucial.
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Chapter 4

Cell growth and proliferation
interactions

4.1 Introduction

Tumours are characterised by their ability to grow uncontrollably, thus un-
derstanding their growth dynamics and predicting the trajectories of tu-
mour size is an important predictive tool. Often growth models of tumours
have ignored the presence of intratumoural heterogeneity and its effects on
growth. Numerous studies demonstrating the potential for intratumoural
heterogeneity to both drive and hinder growth in tumours, for example
through the secretion of IL-11 driving cell proliferation [66].

When two or more distinct populations are grown in the same environment,
they share space and nutrients [129]–[131]. As such, the growth dynamics
of one population will inevitably affect another. Moreover, there are factors
where the characteristics of one population can influence the phenotype of
another. In ecology, this is a common phenomenon, with examples such as
bees being crucial for pollinating certain species of plants [132] or invasive
species such as the grey squirrel affecting the endangering the red squirrel
[133].

Clonal interactions can present themselves between distinct populations in
several ways. These can broadly be summarised into two categories; those
arising within and between populations. Some examples of sources of inter-
actions include other tumour cells [80], immune cells [47] and stroma [66].
Interactions that are present between members of the same population are
commonly integrated into population fitness description, this is a crucial ap-
proach reducing the complexity in descriptions of population dynamics [80],
[90].
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There are two classes of models used to understand cell proliferation; spatial
and non-spatial. Non-spatial models such as ordinary differential equations
(ODE) have the advantage of being simple to solve and having a low compu-
tational cost; however, this limits their complexity. A non-spatial model has
been explored in the paper by Zhang et al [80], [82]. Here, the authors were
able to predict the growth of androgen-producing, androgen-dependent and
androgen-independent cells. Using this description, they infer the effect of
treatment with abiraterone on the population structure. This is an approach
that is currently being applied to clinical trial data. Spatial models, such
as those based on partial differential equations (PDE) or cellular automa-
ton (CA) are able to incorporate a greater degree of complexity. As such,
these models can be used to study the effect of a variety of phenomena.
Some examples include the modelling resource constraints and gradients on
growth[134], cellular invasion [93], [135] and angiogenesis [136].

Mathematical models are increasingly being applied to experimental data
with more complex and intricate study designs to understand interactions
between tumour subpopulations [137]–[141]. Noble et al. demonstrated
through the use of competition assays the presence of "parasitic-like" inter-
actions with modelling performed using density-dependent Lotka-Volterra
equations [137]. Archetti et al. created a public goods game on a network
to simulate the effect of a growth factor (IGF-11 is a shared resources) on
the population dynamics [139]. Ultimately, they demonstrated that both the
spatial structure as well as the benefit received (linear or non-linear) dictate
whether stable coexistence is possible. Farrokhian et al. showed the prexence
of frequency-dependent interactions between a sensitive ancestral cell line
and a resistant line derived from this [141]. This highlights the concepts of
fitness cost for resistance and it manifests in the competitive growth dynam-
ics.

In this chapter, I focus on designing and implementing mathematical and
computational models to quantify the parameters to describe cell prolifera-
tion both in 2D and 3D in vitro cultures. First, the models are developed to
quantify the mono-culture phenotypes of cells using ODE and PDE models.
Then, these models are extended incorporate interactions between genotyp-
ically and phenotypically distinct populations to highlight and quantify the
effect of heterogeneity on growth dynamics.
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4.2 Classification of interactions

Cancer is a term for disease in which cells divide without control and can
invade nearby tissues. Using this definition, it is clear that cancer is an out
of equilibrium system. Cells in a tumour will continue to divide, grow and
spread in the absence of any intervention. Thus, cancers are able to over-
come the usual resource and spatial constraints populations in ecology face.
Modelling cancer interactions within in silico and in vitro systems should be
focused on the shorter term interactions rather than the long-term popula-
tion dynamics, since the latter are not reflective of the biology of cancer. This
is particularly of note in 2D systems where there is a surface area limitation,
which would not be present in actual tumours.

Before attempting to model interactions between subclonal populations in
cancer, it is vital to understand how to classify these interactions. Interac-
tions could be classified as long-term or short-term interactions. Short-term
interactions are defined as those that affect the initial early growth dynamics
of a population. Long-term interactions are defined as those that affect the
equilibrium between populations. Accounting for both short and long-term
interactions is crucial to separate their effects on growth dynamics.

4.2.1 Long-term interactions

Long-term interactions must be viewed through the lens of the competitive
exclusion principle [142]. The competitive exclusion principle, also referred
to as Gause’s law, states that two species competing for the same limited re-
sources cannot co-exist, with the species with a slight advantage dominating
in the long-term [142]. The competitive exclusion principle has relevance at
steady-state; however, cancer is an out of equilibrium system, and thus, this
consideration may not be relevant to global tumours dynamics. Neverthe-
less, it is particularly relevant in the case of modelling interactions between
tumour cells in in vitro experiments since these cells are competing for com-
mon and finite resources and space. Thus, the competitive exclusion princi-
ple implies that under my models, in the absence of ecological interaction, I
would expect the extinction of all but one population of tumour cells in the
long-term. These long-term considerations may not be realised in an in vitro
system; however, it can affect the dynamics prior to the arrival of a system to
a steady-state.
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In all experimental systems used in this chapter, cells share the same envi-
ronment and compete for both space and resources as they are cultured in
the same well. The default interaction must be competition since only one
population is able to be sustained due to the implications of the competi-
tive exclusion principle. Cellular fitness is defined by the growth dynamics
when cultured in a mono-culture, as this describes how effectively a popu-
lation utilises its environment in the absence of interpopulation interactions.
Cells should then compete with one another according to how they utilise
their environment relative to one another. However, the competitive land-
scape between these groups of cells can vary from predictions through the
presence of interactions. This can occur due to many factors. For example,
population A may secrete growth factors from which members of both pop-
ulations A and B can benefit. Under this example, the fitness of population
B will increase relative to that of population A but will be dependent on the
density of population A.

Understanding the above complexities can define the nature and classifica-
tion of interaction. Interactions now can be described in relation to the effect
they have on the relative fitness of a population, since under the competitive
exclusion principle, it is unlikely a population will experience an increase to
its long-term fitness. Interactions, however will affect the relative fitness of a
population and can still be viewed as neutral, positive or negative. These can
be given classifications based on the pairwise interactions (Table 4.1), which
have been seen in ecology [129].

Effect on A Effect on B

Neutralism 0 0
Competition - -
Amensalism - 0

Commensalism + 0
Mutualism + +

Exploitation + -

TABLE 4.1: Table demonstrating ecological interactions and
how they are classified based on the relative benefit to each

species.
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4.2.2 Short-term interactions

Short-term interactions are difficult to identify, this is because they affect the
rate at which an expanding population grows. Due to the stochastic nature of
cellular expansion, unless an interaction affects the growth rate significantly,
it will be unobservable. Growth rate interactions must be sufficiently larger
than the uncertainty of the growth rate of the population in isolation. Other-
wise, it will be impossible to detect with confidence. This, coupled with the
fact that interactions I model are assumed to be density-dependent, as this
will increase or decrease the number of cells providing an interaction, leads
to growth rate interactions being left out of my model. These interactions are
of greater interest in the context of tumour growth dynamics since they can
exist in both equilibrium systems and out of equilibrium systems.

There are growth models, such as the Allee effect growth models discussed
later in this chapter, that seek to describe the slower growth rate of popu-
lations at low densities [143]–[145]. However, the possibility of interactions
that alleviate Allee effects exists, which is unexplored. For example, a low-
density population may not grow sufficiently fast due to the lack of cell-
cell signalling; however, if cultured with another population over-expressing
these signalling pathways, the Allee effect can be alleviated at similar densi-
ties.

4.2.3 Interpreting growth interactions through the lens of

competition

In order to contextualise interactions for cancer, a reworking of terminology
can help. Since cells within a tumour compete for the same resources and
space, it is unlikely there will be a genuine positive growth interaction. Most
growth interactions are classified as negative due to the presence of compe-
tition. If competition is assumed as the default behaviour between different
distinct populations of cells, symmetric competition can be considered the
default competition model. Symmetric competition can be defined as the
case where each population competes according to their relative fitness in
isolation, deviations from which can be seen as positive or negative inter-
actions. For example, experiencing excess competition from another popu-
lation would be classified as negative, whilst experiencing less competition
will be classified as positive. This can be used to classify competitive interac-
tions further using their effect on the competitive landscape (Table 4.2). This
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takes the standard ecological interaction classifications, which apply to more
diverse ecosystems, and modifies them to provide context to the competitive
interactions between populations.

Interaction type Effect on competition
Neutral competition Neutral 0
Excess competition Negative Increase
Deficit competition Positive Decrease

TABLE 4.2: Table of competitive interactions and how they are
classified based on the cost incurred compared to symmetric

competition.

4.2.3.1 2D vs 3D interactions

It is expected that there is a different degree of interaction between 2D and 3D
systems (Figure 4.1). In 2D systems, as mentioned previously, all cells have
contact and access to the growth medium. This is not possible in 3D systems,
where there is an expectation that the local environment more significantly
dictates the fitness of a cell in a 3D system. One such interaction can be seen
from the potential of cells to be completely engulfed in a 3D setting, these
cells will be unable to divide or will divide slower, due to the lack of access
to nutrients or space.

3D spheroid culture 2D adherent culture

FIGURE 4.1: Illustration highlighting the difference between 2D
and 3D cultures. In 3D cultures, cells are in close proximity and
able to form a barrier to the centre of a spheroid, limiting space
and creating nutrient concentration gradients. In 2D cultures,
cells are more spread out initially and are constantly exposed to

growth medium.
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4.3 Experimental design

Before proceeding to model growth of cells in-vitro, I will first explain the
experimental systems and design used to model proliferation, as these have
profound impacts on the modelling approach. A key point to note here is
that all mono-cultures and co-cultures for a single experiment were seeded
and analysed in parallel to reduce the presence of confounding factors. The
specific details are provided in Chapter 2. A summary of each assay can be
found in the Appendix B.1 including the conditions used, number of images
taken and the time points.

4.3.1 2D proliferation assay

The choice of assay here has an impact on the value of the maximum popu-
lation size attainable.

For HSJD-DIPG-007, proliferation assays were performed with lumines-
cence as an indicator of cell numbers. This involved using a Cell-Titer Glo
(Promega) and this reagent reacts with ATP to indicate of the number of live
cells present. For ICR-B169, the data was produced in the form of images in
phase, red and green channels for cells labelled with mCherry (T3) or EGFP
(B169). Cellular confluence was calculated from these images and used as a
metric of growth. The design of the assays besides this difference was identi-
cal. Cells were plated as pure populations and mixed populations in parallel.

When in a co-culture, I used two different methods of distinguishing be-
tween distinct cellular populations, each of which have different implica-
tions to mathematical analysis. For ICR-B169 cells were labelled with flu-
orescent markers and using image segmentation allows for quantifying the
size of each population. For HSJD-DIPG-007 cells were distinguished by us-
ing ddPCR to identify the proportion of a unique mutation present. This
was then used to infer the relative abundance of each population. Using the
frequency of each cell as well as the luminescence signal, a portion of the
luminescence can be attributed to each clone. So a co-culture of 50% F8 and
50% F10 with a RLU of 500000, will have RLU = 250000 for F8 and RLU =
250000 for F10. This may not necessarily be completely consistent due to
the fact that some cells may be more metabolically active than another or the
metabolic activity could change in co-culture conditions unrelated to growth.
This is an inherent limitation in the assay design and is one of the reasons for
choosing confluence as a measure for ICR-B169 assays.
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4.3.2 3D proliferation assay

These assays were only performed on B169 and T3. The data was produced
in the form of images in phase, red and green channels for cells labelled with
either mCherry (T3) or EGFP (B169). Images were segmented according to
analysis the presented in Chapter 3. A more detailed protocol for 3D prolif-
eration assays was presented in Chapter 2. For 3D assays, cells were seeded
and allowed then to form spheroids, as such, there is some variability be-
tween the initial seeding ratio and the ratio of cells in a spheroid at the start
of an assay. This problem was addressed by using the area of confluence of
red and green channels to construct a ratio between the populations at the
first time point.

4.4 Detecting and quantifying proliferation inter-

actions in 2D cultures

4.4.1 Inference methodology

There are a vast number of mathematical and computational models that
have been used to describe the growth dynamics of cells in vitro, such as
agent-based models, ODE’s and PDE’s. In this section I utilise ODE models
to characterise the growth dynamics of cells.

Before attempting to model interactions between distinct cellular sub-
populations, it is crucial to understand how these populations behave in
isolation. I explore several ODE based models that describe the growth of
a single population. Using model selection, I determine the best model to
capture the growth dynamics present. Once a growth model is selected I
propagate uncertainty in my inference to arrive to a set of distributions that
summarise the growth parameters of the chosen model. The main area of
uncertainty in measuring mono-culture growth is the size of the initial pop-
ulation. This is an important input parameter that remains static but dictates
the trajectory of growth. The issue with parameter fitting methods is that,
unless weights are adjusted, this parameter will be provided with the same
weight as all others. To avoid issues with determining the optimal weight,
I draw the initial population size from the distribution of the sample mean
for the initial timepoint. This parameter is then used as an input in the ODE
models for parameter fitting. To ensure I capture the uncertainty present, I
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carry out 100 fits from the initial population distribution to construct a dis-
tribution for growth parameters.

Following the quantification of a single population, I analyse co-culture
growth dynamics using the Lotka-Volterra model of species interactions [90].
However, considerations are made to incorporate the findings from mono-
culture modelling. Once again, model selection is applied to arrive at a final
model. The final step is to incorporate the uncertainty from the initial pop-
ulation size as well as the mono-culture parameter distributions. This will
then result in distributions that summarise the interaction values observed.

4.4.2 Modelling and quantifying growth dynamics in mono-

cultures

Here I focus on the use of ODE models to quantify the parameters that de-
scribe the growth dynamics of 2D mono-cultures for HSJD-DIPG-007 clones
and ICR-B169 lines.

4.4.2.1 Growth models

Common growth models are explored to understand the dynamics present
as well as the key defining features. The models covered are exponential
growth, logistic growth and logistic growth with Allee effects.

4.4.2.1.1 Exponential Growth Model My analysis begins with the most
basic model of exponential growth. This model can be described by the fol-
lowing equation:

dN
dt

= rN (4.1)

with population size (N), exponential growth rate (r) and time (t). This
equation has the solution:

N (t) = N0ert (4.2)

with initial population size, N0 = N(0).

The rate of change of N is dependent on both r and N as there is a linear
relationship between dN/dt and N which has gradient r. This means larger
initial population sizes, N0, will grow faster. This model makes the unrealis-
tic assumption that population size can continue to grow indefinitely with no
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restriction or slowing down. This makes this model unsuitable for the analy-
sis of most in-vitro experiments, where I would expect to see growth limited
by space and resources

4.4.2.1.2 Logistic growth model Logistic growth models, devised by
Pierre Francios Velhurst [146] introduced the concept of carrying capacity,
representing the maximum population size the environment can sustain, this
maybe be due to resource or spatial constraints. These models have widely
been applied to in-vitro growth assays [80], [147].

The models can be represented by the following equation:

dN
dt

= rN
(

1− N
K

)
(4.3)

with the addition of the term K representing the carrying capacity. This equa-
tion has the solution:

N(t) =
KN0ert

K + [N0ert − 1]
(4.4)

where N(t) is the population size at time t and N0 = N(0).

Parameter K determines the plateau of a system (Figure 4.2 A). Parameter
r represents if there is positive or negative growth, as well as how fast the
plateau is attained, there will be a focus on r > 0 in this section (Figure 4.2
B). However, where the initial population size exceeds the carrying capacity
there is negative growth, ensuring that all positive initial conditions with
positive growth converges to K (Figure 4.2 B).

This behaviour is better seen by looking at the phase diagram (Figure 4.2 D).
There are two stationary points; at 0 and K. Looking at the sign of dN

dt shows
that that the stationary point at K is stable. This means that for values of N
that satisfy 0 < N < K, there is positive growth and N > K there is negative
growth. Increasing K shifts the position of the stable stationary point (Figure
4.2 E) and the slope of per capita growth (Figure 4.2 F).
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FIGURE 4.2: Analysis of logistic growth: a) Effect of K: the parameter for the carry-
ing capacity determines where the plateau for growth is attained. b) Effect of r: the
parameter for the growth rate dictates whether there is positive or negative growth
for 0 < N < K, as well as the speed of this growth trajectory. c) Effect of N0: The
starting population size determines the direction of growth. d) This system has two
stationary points, an unstable equilibria at 0 and a stable at K. e) Increasing K shifts
the stable stationary point to the right. f) Per capita growth rate is linearly decreasing

in N with gradient determined by K.

4.4.2.1.3 Allee effects The Allee effect is the phenomenon in biology
where a populations per capita growth rate is slowed at lower densities [148].
This is often seen in cell cultures, where seeding a low number of cells leads
to a culture displaying an inability to grow, whilst the same cells seeded at a
higher density are able to grow.
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The Allee effect can be separated into strong and weak Allee effects. A strong
Allee effect is present when there is a minimum population size needed to
sustain a positive growth rate; any population size smaller than this will lead
to extinction. This can be expressed as a multiplicative term to the standard
logistic growth model:

dN
dt

= rN
(

1− N
K

)(
N
A
− 1
)

(4.5)

where the population has a negative growth rate for 0 < N < A and a pos-
itive growth rate for N > A (Figure 4.3 a). The dynamics are altered under
the Allee effect; with 3 equilibrium points at 0 (stable), A (unstable) and K
(stable) (Figure 4.3 b). Asymmetric growth dynamics are able to be reflected
using the Allee effect. The above equation demonstrates a strong Allee effect;
however, there is also the possibility of a weak Allee effect. This occurs when
there is a lower growth rate at low population densities:

dN
dt

= rN
(

1− N
K

)(
N

N + c

)
(4.6)

where c is the weak Allee threshold. Here, there is a positive growth rate for
all N > 0, with the Allee effect term converging to 1 as N −→ 0.

In all of my experimental systems, I chose a sufficiently large initial popu-
lation size to ensure positive growth. Due to this decision, I can ignore the
presence of strong Allee effects focusing solely on weak Allee effects.
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FIGURE 4.3: Analysis of Allee effect growth: a) Effect of the
Allee threshold A in a strong Allee effect growth model. This
demonstrates that when the initial population size N0 is less
than A, the population size declines over time. b) The nega-
tive growth can be seen from the presence of the curve dN/dt
falling below the x-axis. There is now an additional station-
ary point which arises at A and is unstable. c) The per capita
growth rate is negative until N = A beyond that the growth
rate is increasing before achieving a plateau and decline as N
approaches K. d) Effect of the Allee threshold c in a weak Allee
effect growth model. This demonstrated that when c is increas-
ing the population grows slower over time. e) Under an Allee
effect the growth dN/dt is shown to be slower and there are
only two stationary points similar to logistic growth. f) The
per capita growth rate is increasing until a plateau is attained,
then it is decreasing. In a logistic growth model, the per capital

growth rate is decreasing.

4.4.2.2 Model selection and quantification of growth dynamics

Applying these growth models to make an inference of the growth dynamics
present for ICR-B169 lines (B169 and T3) and HSJD-DIPG-007 clones (F8 and
F10).

4.4.2.2.1 ICR-B169 lines From the data, I can immediately conclude that
an exponential model cannot capture the plateau and thus proves to be inad-
equate in explaining the data (Figure 4.4). Additionally, comparing the fits

107



Chapter 4. Cell growth and proliferation interactions

for logistic and Allee effect growth models, I have shown that the logistic
model is able to capture the plateau but does not capture the intermediate
growth dynamics well. Visually, the Allee effect model demonstrates a better
fit, and the AICc values from this model are lower than the logistic model
(Table 4.3). This leads me to the conclusion that an Allee effect growth model
is the best fitted model.
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FIGURE 4.4: Growth model fitting for B169 (blue) and T3 (red)
using exponential, logistic and Allee effects growth. Visually,
the exponential model appears to be unsatisfactory, whilst the
logistic model appears to not capture the intermediate dynam-

ics (between days 1.5 and 4.5).

Allee Exponential Logistic

B169 -1454 -1140 -1053
T3 -1088 -483 -1053

TABLE 4.3: Summary of AICc for fitted growth models for B169
and T3 (rounded to the nearest whole number). The lower the
AICc value the better fit a model represents. This table shows
that the minimum AICc for all models tested is attained by the

Allee effect growth model for both B169 and T3.

The fitted parameters using the mean initial population size shows that B169
experiences slower growth as well as a higher Allee threshold when com-
pared to T3 (Table 4.4), this can also be seen from the fact that T3 obtains a
plateau sooner than B169 (Figure 4.4).
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Growth Allee Carrying
rate (r) threshold (c) capacity (K)

B169 1.51 0.257 1
T3 1.76 0.116 1

TABLE 4.4: Summary of growth parameters for B169 and T3.
Note that K = 1 is fixed as the maximum confluence is 100%.
B169 grows slower and has a higher Allee threshold than T3.

Next, propagating uncertainty in the value of the initial population size, I
construct parameter distributions for the Allee effect and growth rate. The
resulting parameter distribution are summarised in Table 4.4, with the dis-
tribution plotted in Figure 4.5. It is clear to see that B169 displays a lower
growth rate (1.507 for B169 and 1.759 for T3) and a higher Allee threshold
than T3 (0.258 for B169 and 0.116 for T3). The results from the propagating
error and the fitted model largely agree as one would expect.
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FIGURE 4.5: Posterior distributions of growth rate (left) and
Allee threshold (right) for B169 (blue) and T3 (red). B169 dis-
plays lower growth rate and a higher Allee threshold than T3.

Growth rate (r) Allee threshold (c)

B169 (1.507,0.0413) (0.258,0.0205)
T3 (1.759,0.0592) (0.116,0.0228)

TABLE 4.5: Summary of growth parameters for B169 and T3.
Here the posterior distributions from Figure 4.5 were fit to a
normal distribution and the resulting mean and standard devi-

ation are provided. Data presented as (mean,sd).
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Looking at images from experiments, it is clear that whilst B169 and T3 begin
at a similar density as the lines grow T3 displays a more spread out pheno-
type whilst B169 grows in smaller clusters before spreading out (Figure 4.6).
B169 appears to grow faster once the initial clusters are formed.

                         Day 0                                                       Day 2                                                        Day 4

B169

T3

FIGURE 4.6: Images from in vitro experiments of B169 and T3 in
culture, the images shown are the fluorescent channels so only
B169 or T3 cells are shown in either. This demonstrates that
B169 grows slower in culture and also exhibits a more promi-

nent growth from day 2 to 4 compared to day 0 to 2.

4.4.2.2.2 HSJD-DIPG-007 For clones F8 and F10, the data from this assay
is in the form of luminescence readings, a surrogate of the ATP level in cells
which correlates with cell number. Thus, the carrying capacity is not fixed at
1, so I must infer this parameter.

From the data, once again, the exponential model is unable to capture the
growth dynamics of F8 and F10 across both replicates. Between the logis-
tic and Allee effects growth models. On a visual inspection, it is clear that
the logistic growth model is unable to capture the intermediate growth dy-
namics whilst the Allee effect model is more suited to do this (Figure 4.7).
Confirming this observation, the AICc values for the Allee growth model is
lower in both repeats for each clone (Table 4.6). This leads to the conclusion
that the Allee effects growth model is the best model to describe the growth
dynamics.
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FIGURE 4.7: Growth model fitting for F8 (blue) and F10 (red)
using exponential, logistic and Allee effects growth. Visually,
the exponential model appears to be unsatisfactory, whilst the
logistic model appears to not capture the intermediate dynam-

ics (between days 2 and 10).

Allee Exponential Logistic

F8 (replicate 1) 1139 1328 1154
F8 (replicate 2) 956.7663 999 1159
F10 (replicate 1) 1122 1288 1137
F10 (replicate 2) 975 1123 999

TABLE 4.6: Summary of AICc for fitted growth models for F8
and F10. The lower the AICc value the better fit a model repre-
sents. This table shows that the minimum AICc for all models
tested is attained by the Allee effects growth model for both F8

and F10 across both replicates.

Looking at the mean parameter fits, the interesting observation here is the
variability between replicates (Table 4.7). In replicate 1, it is clear that F8 has a
slower growth rate than F10 and lower Allee threshold. This trend is reversed
for replicate 2. This supports the set up of the experimental design in this
chapter and future chapters. All experiments are carried out in parallel, so
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mono-culture, co-culture and drug response parameters are all derived from
the same technical replicate minimising variability between assays.

Growth Carrying Allee
Rate (r) Capacity (K) Threshold (c)

F8 (replicate 1) 1.218 573873 74226
F8 (replicate 2) 1.416 575271 109961
F10 (replicate 1) 2.109 434160 129072
F10 (replicate 2) 1.153 516513 73102

TABLE 4.7: Summary of growth parameters for F8 and F10.
Here there are clear fluctations between assays - seen by the
differences in the growth and Allee threshold for each line. In
replicate 1, F10 displays a faster growth rate with a higher Allee
threshold than F8 . In replicate 2 the reverse is true. This sup-
ports the modelling strategy of conducting all co-culture and
drug response curves in parallel to minimise these fluctations.

For replicate 1 there is a need to pass forward parameter distribution for fur-
ther inference, as such, I propagate the uncertainty in the initial population
size. The resulting parameter distribution are summarised in Table 4.8, with
the distribution plotted in Figure 4.8.
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FIGURE 4.8: Posterior distributions of growth rate (A,D) and
Allee threshold (B,E) and carrying capacity (C,F) for F8 (blue)
and F10 (red). This is presented for replicate 1 as this will be
used for further analysis. F8 has a lower growth rate and lower

Allee threshold but a higher carrying capacity than F10.

112



4.4. Detecting and quantifying proliferation interactions in 2D cultures

Growth Allee Carrying
rate (r) threshold (c) capacity (K)

F8 (1.219,0.0112) (74365,2947) (573872,58)
F10 (2.110,0.0392) (129088,5864) (434159,16)

TABLE 4.8: Summary of growth parameters for F8 and F10.
Here the posterior distributions from Figure 4.5 were fit to a
normal distribution, and the resulting mean and standard de-

viation are provided. Data presented as (mean,sd).

4.4.2.2.3 Summary of 2D growth dynamics To summarise the results, I
have found that the Allee effects growth model exceeds the performance
of the logistic growth model in terms of AICc as well as residual deviance.
These results show that my future models will need to be developed taking
into account Allee effects.

Using HSJD-DIPG-007 clones as an example, I demonstrated that growth dy-
namics are variable between replicates. This can arise for several reasons
such as minor fluctuations in growth conditions, fluctuations between pas-
sages or even inconsistency across measurements. This highlights the need
for consistent normalisation when planning experiments. If co-culture dy-
namics are investigated, then there should be a mono-culture experiment
performed at the same time using the same conditions, this will minimise
the effects of confounding factors.

4.4.3 Modelling and quantifying proliferation interactions

in co-cultures

To extend the logistic growth dynamics to two distinct populations, I used
the Lotka-Volterra competition equations [90]. These equations are used ex-
tensively in ecology to model the interactions between species. They can ac-
count for any number of different species, with complexity increasing as the
number of species does. These models, however, do not typically account
for the presence of Allee effects. I have just demonstrated the presence of
Allee effects in experimental data from in vitro mono-cultures. The standard
Lotka-Volterra competition models are not sufficient to understand the effect
of interactions between clones.

I develop and test models that incorporate Allee effect into Lotka-Volterra
competition models and allow for another source of interaction through
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Allee effects. This model is then applied to experimental data from in vitro
co-cultures to assess the long and short term interactions present and quan-
tify the benefit provided to each population.

To the best of my knowledge, Allee effects have not been incorporated in
the way I present in this section. I focus on allowing Allee effects thresh-
old to be satisfied by either population, thus allowing interactions to affect
these. There have been papers that have presented Lotka-Volterra compe-
tition models with Allee effects; however, these are only dependent on the
density of a single population and not between populations [149]–[151]. The
rationale to support this is due to the nature of the Allee effect, where the
population density is too low to enable maximal or positive growth. It makes
sense that cells cooperating will be able to reach the Allee threshold more
readily and cells hindering one another will satisfy this threshold slower.
Most of the models in literature have not explicitly applied to the case of
cancer.

4.4.3.1 Modelling growth and interactions in 2D systems

4.4.3.1.1 Lotka-Volterra competition equations with Allee effects In the
mono-culture growth models, I detected the presence of an Allee effect. As
such co-culture models are required to reflect these dynamics. Here I take the
approach of allowing for both interactions via the Lotka-Volterra interaction
coefficient and the Allee effect.

A generalised N species models incorporating these interactions is as follows:

dNi
dt = rNi

(
1− Ni

Ki
−

n
∑
j 6=i

aij Nj
Kj

) Ni+
n
∑
j 6=i

bij Nj

Ni+ci+
n
∑
j 6=i

bij Nj

 (4.7)

Here bij is a new term introduced, which represents the interaction affecting
the Allee effect. If bij > 1 then i receives a greater contribution towards the
Allee threshold from j than other members of i. If bij < 1 then i receives a
lesser contribution towards the Allee threshold from j than other members of
i. If bij > 1 then i receives an equal contribution towards the Allee threshold
from j or i. The case of bij > 1 represents a positive interaction whilst bij < 1
is negative and bij = 1 is neutral.

In this section, I focus on a two species model, as this is the format of the
experiments:
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dN1
dt = rN1

(
1− N1

K1
− a12N2

K2

) (
N1+b12N2

N1+b12N2+c1

)
dN2
dt = rN2

(
1− N2

K2
− a21N1

K1

) (
N2+b21N1

N2+b21N1+c2

) (4.8)

Exploring the dynamics under a two-species model with Allee effects high-
lights the ability of Allee effects to manipulate early population dynamics;
however, the long-term behaviour of a system is still governed by the Lotka-
Volterra interaction coefficients (Figure 4.10 A). The presence or absence of
an Allee effect has an effect similar to that of a lower growth rate on the dy-
namics. The same effect can be seen from Allee interactions (Figure 4.10 B).
This makes sense since Lotka-Volterra interaction coefficients influence the
dynamics at higher densities whereas Allee effects are most pronounced at
lower densities.
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FIGURE 4.9: Exploration of growth dynamics under Allee ef-
fects. A) Allee effect presence and absence. B) Allee effect inter-
actions. Allee effect interactions or presence and absence have

a similar effect in shifting the initial growth dynamics.

4.4.3.1.2 Lotka-Volterra competition equations To understand the effects
of Lotka-Volterra competition coefficients, I explore a model in the absence
of Allee effect and demonstrate the dynamics present.

dNi

dt
= rNi

(
1− Ni

Ki
−

∑j 6=i aijNj

Kj

)
(4.9)

The Lotka-Volterra competition equations include an interaction term that
describes the effect of one population on another. The coefficient aij describes
how the density of population j impacts population i. This is included in a
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negative term so when aij > 0, an increase in the size of j reduces the growth
rate of i, and the opposite is true for aij < 0. When aij = 0, population j has
no effect on the growth of population i. For competition models it is unlikely
to observe a value of aij < 0, as this will imply synergy, which violates the
fact that in all cases there will be competition. The default value of aij is set
to 1, as it implies i and j compete according to their relative utilisation of the
environment.

In this section, I focus on a two species model as this is the format of my
experiments:

dN1
dt = rN1

(
1− N1

K1
− a12N2

K2

)
dN2
dt = rN2

(
1− N2

K2
− a21N1

K1

) (4.10)

Looking at the dynamics of this system, with carrying capacity fixed to 1,
exploring only the effect of a12 and a21. Under symmetric competition both
species are able to co-exist in the long-term (Figure 4.10 A). If a population
experiences deficitt competition, it will lead to that population dominating
the system and the extinction of the other species (Figure 4.10 B). The con-
trary is true in the case of excess competition (Figure 4.10 C). If both popu-
lations experience deficit competition, then there is the presence of a stable
equilibrium where both populations can coexist, this case is unlikely due to
the fact it implies both populations total will exceed the carrying capacity of
the system (Figure 4.10 D). On the other hand, if both populations experience
excess competition, an unstable equilibrium exists between the two popula-
tions, and the growth rates or initial population size can determine which
population becomes extinct (Figure 4.10 E).
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FIGURE 4.10: Exploration of Lotka-Volterra dynamics. A)
Symmetric competition with a12 = 1 = a21, species will coexist
with an infinite number of equilibria. The rate of growth has
the ability to influence the equilibrium. B) Deficit competition
with a12 = 0.75 and a21 = 1, here species 1 will out compete
species 2 to extinction in the long-term. The rate of growth has
the potential to delay or speed up this extinction. C) Excess
competition with a12 = 1.25 and a21 = 1, here species 2 will
out compete species 2 to extinction in the long-term. The rate
of growth has the potential to delay or speed up this extinction.
D) Dual-deficit competition with a12 = 0.75 = a21, here there is
the presence of a stable equilibrium where both species are able
to co-exist in the long run. E) Dual-deficit competition with
a12 = 0.75 = a21, here there is the presences of a unstable equi-
librium where both species are able to co-exist in the long-run.
Since this point is unstable slight deviations in growth rates can

lead to the extinction of one species.

4.4.3.2 Quantifying interactions in 2D co-cultures

A simple parameter fitting exercise using the mean growth parameters from
Table 4.4 can shed light on which model using Allee effects is most suitable.
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The models I explore are as follows:

Symmetric interaction null:
dNi
dt = rNi

(
1− Ni

Ki
− Nj

Kj

) (
Ni+Nj

Ni+Nj+ci

)
Symmetric Allee with Lotka-Volterra interaction:
dNi
dt = rNi

(
1− Ni

Ki
− aij Nj

Kj

) (
Ni+Nj

Ni+Nj+ci

)
Both Allee and Lotka-Volterra interaction
dNi
dt = rNi

(
1− Ni

Ki
− aij Nj

Kj

) (
Ni+bij Nj

Ni+bij Nj+ci

)
(4.11)

where the first model assumes symmetric interactions, this is used as a
benchmark model and seems unrealistic to describe the dynamics. The sec-
ond and third incorporate Lotka-Volterra competition coefficients, which is
one of the avenues of interactions explored, with the third model also includ-
ing Allee effect interactions. The Allee effect interaction model allows for the
cases where there is a symmetric contribution or biased contribution to the
Allee threshold of a population from being in a co-culture. The case of bi-
ased contribution can also account for the case that there is no contribution
to the Allee threshold. Between the three models, I can determine whether
Lotka-Volterra interactions are necessary and, more interestingly, whether
the scheme of incorporating Allee effect interactions is realistic.

4.4.3.2.1 B169 and T3 Exploring the three models discussed in equations
4.11, I apply model selection to inform my analysis. Immediately looking
at the fitted model without any Allee effect interactions the data is not ex-
plained. This is also represented by a higher AICc value of -2323 (Figure
4.11 A). This model is thus excluded from further analysis, and I fit a model
with the Allee effect interactions set either to 1 (indicating symmetric neutral
dynamics) or explored using parameter fitting.

The model incorporating both Allee effect and Lotka-Volterra interactions is
compared to a model without Allee effect interactions. The AICc from the
fitted models demonstrates that the incorporation of Allee effect interactions
results in a better fit (lower AICc of -3114 for a model including Allee effect
interactions compared to -2805 for a model not including these). These inter-
actions are better able to fit the growth dynamics that can be seen visually,
particularly in the case of the 75% B169 to 25% T3 ratio where the growth of
T3 was not captured (Figure 4.11 B, C).

118



4.4. Detecting and quantifying proliferation interactions in 2D cultures

Model AICc

Symmetric interaction null -2323
Lotka-Volterra + symmetric Allee interactions -2805

Both Lotka-Volterra and Allee interactions -3114

TABLE 4.9: Summary of AICc values for the three models de-
scribed in 4.11. This demonstrates that model 3 is the best

choice.
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FIGURE 4.11: Test fits of B169 and T3 co-culture growth mod-
els. A) Fitted model with no interactions. This model demon-
strates poor fitting across all conditions. B) Fitted model with
only Lotka-Volterra interactions. This model displays better fits
but there is a departure in the dynamics of T3 from day 4 on-
ward in the 50% T3 and 25% T3 ratio. C) Fitted model with
Lotka-Volterra and Allee effects interactions. This model fits
best visuallt with good reproduction of the dynamics in early

and late stages for both B169 and T3.
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To propagate uncertainty in the growth parameters, I run 100 simulations
with growth parameters drawn from the mono-culture growth parameter
distributions. From the distribution of coefficients, it appears as though there
is symmetric competition due to the posterior distribution overlapping with
1 for both a12 and a21 (Figure 4.12 A). Although the means are slightly differ-
ent, the distributions appear to be very similar and as such, the long-term be-
haviour of this system will involve the coexistence of B169. However, given
the range of values, the Lotka-Volterra interaction can take, the system could
converge to either, coexistence or extinction (Figure 4.13). This fact demon-
strates that whilst coexistence is possible, there is also the possibility to find
extinction in longer-term dynamics (Figure 4.13 B).

The Allee effect interaction coefficients shows that T3 receives a minimal con-
tribution towards the Allee effect from B169 since b12 < 1 and B169 receives
a high contribution towards the Allee effect from B169 since b21 > 1 (Figure
4.12 B). This shows that B169 benefits from being in the presence of T3 as its
Allee threshold is reached faster, whilst T3 suffers from being in the presence
of B169 as its Allee threshold is reached slower. Whilst the Allee threshold
has minimal effect on the long-term dynamics as shown in section 4.4.3.1.1,
the Allee threshold is influential in early dynamics.
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FIGURE 4.12: Posterior distributions of B169 and T3 interac-
tion coefficients. A) Lotka-Volterra interaction coefficients, a12
(left) shows the interaction received by B169 from T3 and a21
(right) shows the interaction received by T3 from B169. B) Allee
effect interaction coefficients show the contribution to the Allee
threshold for each line. b12 shows the contribution to the Allee
threshold from T3 to B169. b21 shows the contribution to the

Allee threshold from B169 to T3.
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FIGURE 4.13: Phase diagram to show the long-term dynamics
of B169 under recovered parameters. A) Under mean parame-
ter values the system displays convergence to a stable equilib-
rium where B169 and T3 co-exist. B) Slight perturbations in the
interaction coefficients, such as taking a21 = 1.02 (which is con-
tained in the posterior distribution), shows the dynamics move

towards extinction.

The early interactions between B169 and T3 can be seen from the growth rate
of B169 under co-culture conditions, this is significantly higher than that of
a mono-culture (Figure 4.14 A). The analysis was performed using a fitted
exponential growth model to the first two days of growth (Figure 4.14 B).
The coefficient was plotted with 95% confidence intervals, with the mono-
culture confidence intervals not overlapping with the co-culture confidence
intervals. In all co-cultures the growth rate of B169 was calculated to be sig-
nificantly higher than in a mono-culture (p-value < 0.001) (Figure 4.14 A).
Equivalently, the negative effect T3 experiences due to B169 can be seen from
the slower growth T3 displays in a co-culture (Figure 4.14 C). This was anal-
ysed using a fitted exponential growth model, and in this case, there was no
significant difference between 100% T3 and 75% T3. However, there were
for other co-cultures (Figure 4.14 D). This interaction, can be classified as an
exploitative interaction where in the early dynamics B169 benefits and T3
suffers. The non-significant difference between 75% and 100% T3 growth pa-
rameters can be explained by the fact that the initial population size is near
the Allee threshold in this condition and so the Allee effect is less relevant.
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FIGURE 4.14: Allee effect interactions show exploitative in-
teractions between the early growth dynamics of B169 and
T3. A) Growth rates from a fitted exponential growth model
of B169 in mono-cultures and co-cultures. There is significantly
faster growth of B169 in co-cultures. B) The fitted exponential
growth models with growth rates are plotted to highlight the
suitability of the model to describe early growth dynamics of
B169. C) Growth rates from a fitted exponential growth model
of B169 in mono-cultures and co-cultures. There is significantly
slower growth of T3 in two of three co-cultures, with the nega-
tive interaction more apparent in lower seeding densities where
the Allee effect would be more relevant. D) The fitted exponen-
tial growth models with growth rates are plotted to highlight
the model’s suitability to describe early growth dynamics of T3.

Fluorescent images of B169 only in co-cultures can be compared to B169 in a
mono-culture to demonstrate the increased growth and Allee effect interac-
tion observed (Figure 4.15). Here B169 displays a more spread out phenotype
in a co-culture, and this is what displays the faster initial growth dynamics
observed.
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                     Day 0                                                          Day 2                                                        Day 4

B169 in a
mono-culture

B169 in a
50:50 co-culture

FIGURE 4.15: Images of B169 in a mono-culture and a 50:50
co-culture. Fluorescent images display only B169 cells in a co-
culture. In a co-culture, B169 displays a more spread out phe-

notype and thus displays greater confluence.

4.4.3.2.2 HSJD-DIPG-007 clones Similar to the analysis of the co-culture
dynamics between B169 and T3, I compare a model of symmetric Allee effect
interactions against one with biased Allee effect interaction. Here I choose to
skip a model with no Allee effect interactions since this was shown to be very
inaccurate in predicting growth dynamics. The resulting fits from symmetric
and biased interactions are similar. However, there is a better fit visually and
lower AIC for a model with biased fits. This will be used for future inference
(Figure 4.16).
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A)

B)

AIC = 3253.799

AIC = 3196.244
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FIGURE 4.16: Test of fits of F8 and F10 co-culture growth mod-
els. A) Model fit with a symmetric Allee effect interactions, the
dynamics here are captured well but there appears to be some
deviance in the dynamics of F8. B) Model fit with fitted Allee
effect interactions, the dynamics here are captured well and the
deviation demonstrated by F8 is reduced. Amongst both equa-

tions, panel B has the lower AIC.

For simplicity, I denote F8 with a subscript 1 and F10 with a subscript 2. I
recover the interaction coefficients a12, a21, b12 and b21 whilst accounting for
uncertainty in the growth parameters. Looking at the posterior distribution
of parameters; a12 has a mean value of 1.023, and a21 has a mean value of
0.842 (Figure 4.17). This indicates that F8 experiences symmetric competi-
tion from F10 however F10 experiences deficit competition. Looking at the
Lotka-Volterra dynamics (Figure 4.10), this would suggest that in the long-
term F10 will out-compete F8, which indeed is confirmed visually from the
late dynamics seen in the experimental data (Figure 4.16). Looking at the
phase diagram of this system I can see that in all co-culture seeding ratios,
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F10 will out-compete F8 (Figure 4.18).
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FIGURE 4.17: Distribution of parameters in Lotka-Volterra
analysis of HSJD-DIPG-007 co-cultures. A) F8 experiences
similar competition from F10 than itself, and F10 experiences
less competition. B) Both F8 and F10 experience a smaller con-
tribution to each others Allee threshold, however for F8 this
overlaps with 1. This suggests that the early dynamics will

demonstrate slower growth for both F8 and F10.

126



4.4. Detecting and quantifying proliferation interactions in 2D cultures

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

Dynamics under
experimental parameters

F8 (RLU)

F1
0 

(R
LU

)

90:10

50:50

10:90

Nullclines

F8

F10

FIGURE 4.18: Phase diagram of clones F8 and F10. The tra-
jectories plotted (black) shows that in the long-term F10 will
out-compete F8 at a range seeding ratios, leading the extinction

of F8.

Turning attention to short-term interactions, the posterior distribution of
both b12 and b21 is concentrated below 1. This can be interpreted as a lesser
contribution to the Allee threshold and should reflect slower early growth
dynamics in a co-culture than in a mono-culture. Indeed, whilst the trend
is less striking that the case of B169 and T3, there appears to be a negative
effect of being cultured in a co-culture for both F8 and F10 (Figure 4.19). This
interaction can be classified as an excess competition interaction.
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FIGURE 4.19: The early exponential growth rate of F8 (panel
A) and F10 (panel B) from day 0 to day 5. It appears that both
F8 and F10 display a lower growth rate in a co-culture than a
mono-culture. This trend is weaker than that seen in B169 and

T3.
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FIGURE 4.20: Final fitted models of F8 (blue) and F10 (red) us-
ing the mean parameter values from the posterior distribution.

The implication of the interaction between F8 and F10 deviates from obser-
vations of Vinci et al [16], where F10 represents a small fraction of the bulk
tumour and F8 represents a larger proportion. My model predicts the extinc-
tion of F8 in the long run. Looking at the experimental images can demon-
strate why the conclusion from this model do not match the bulk tumour
characteristics (Figure 4.21). Firstly, 2D cultures have very simplified dynam-
ics to those observed in tumour dynamics. These cultures can be useful for
studying specific features, however, with the loss of complexity they are not
always generalised to bulk tumour dynamics. I demonstrated this with the
difference in B169 and T3 growth rates in 2D and 3D cultures. Another more
obvious reason can be seen from images. They demonstrate that F8 grows in
clusters while F10 grows more spread out. This suggests that the 2D system
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4.5. Detecting and quantifying proliferation interactions in spheroids

for F8 and F10 fails as F8 is unable to display significant 2D growth and is
an inherent limitation of 2D cultures. Interpreting the results with this con-
text shows that since F10 is able to display more prominent 2D growth it will
be able to access more resources and space, and thus it will be able to out-
compete F8 in the long-term. Finally, cancer is an out-of-equilibirum system,
thus these long-term conclusions may not hold. Studying the more relevant
3D interactions present between F8 and F10 are discussed in Chapter 5.

F8 F10

FIGURE 4.21: Images of F8 (left) and F10 (right) display the
differential 2D growth dynamics that are able to explain the na-
ture of interactions observed. F8 displays growth as a cluster
whilst F10 displays growth as a mono-layer, thus F10 is more

efficiently using space.

4.5 Detecting and quantifying proliferation inter-

actions in spheroids

4.5.1 Inference methodology

Solving PDE models requires considerably greater computational resources
than ODE models. For example, fitting using the ’nls.lm’ function in R takes
roughly 45 minutes for a 3D mono-culture compared to 1 minute when ap-
plied to 2D data. As a result of this I approach parameter fitting using a ge-
netic algorithm. Additionally, propagating uncertainty in initial conditions
now has a significantly higher computational cost, as such I make the com-
promise to explore models using the best fit parameters.
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Chapter 4. Cell growth and proliferation interactions

The rest of the inference methodology follows the same logic as 2D models.
First, the mono-culture phenotype is investigated, and using these findings
co-culture models are tested and interaction coefficients are determined. In
this section I treat each co-culture condition as a separate system. The reason
for this decision is the differing initial spatial dynamics present in each con-
dition vary. This can be explained by comparing a clone seeded at a very low
density, for example 10%. At 10%, a clone will experience significant spatial
restriction whilst the clone at 90% is largely free to expand.

4.5.2 Modelling 3D spheroid growth

For 3D cultures, I do not use ODE models, because they cannot capture the
spatial effects present. PDE models, on the other hand are able to incorporate
spatial structure into simulation.

4.5.2.1 PDE model

Sherratt et al [152] explored a system of PDEs to model the growth of
spheroids. This approach will influence the models used in the analysis of
3D assays. I introduce a model for the growth of tumour spheroids using an
approach inspired by the paper from Sherratt et al [152]. The single popula-
tion PDE is as follows:

∂u
∂t

= α
∂

∂x

[
∂

∂x
u
]
+ ρuu (1− u) (4.12)

where u ≡ u(x, t) is the density of cells at position x at time t. ρ represents
the proliferation rate. Additionally, α is the advection parameter, describing
the cell flux. To model this system, I implemented a central finite differences
scheme with the following form:

un+1
i = un

i + ∆t [αQn
i + ρuun

i (1− un
i )] (4.13)

where ∆x is the grid spacing, ∆t is the time intervals and Qn
i is defined by:

un
i+1 − 2un

i + un
i−1

∆x2 (4.14)

By imposing radial symmetry, since I do not assume biased directional
growth, a 1D system can be used to simulate spheroid growth. This is a
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4.5. Detecting and quantifying proliferation interactions in spheroids

sensible decision to make as the growth of a spheroid can be captured by
looking as growth from the centre.

The system’s solution can be represented by plotting the distance from the
center (radius) against density of u at a specific distance. Growth can be
summarised by integrating under this wave, providing an area under the
curve (AUC) measurement.

Exploring the effects of the input parameters of advection and proliferation
rate demonstrates that both of these parameters are linked to the growth of
a spheroid (Figure 4.23 A, B). There is a noticeable increase in the growth
of the the AUC with an increase in the proliferation rate and advection rate.
Looking at the waves as the growth rate increases reveals that the wave shifts
outwards as the proliferation rate increases, which can be seen as the growth
of a spheroids radius (Figure 4.23 C). The advection parameter dictates the
shape of the wave observed, with a higher advection rate leading to a flatter
slope (Figure 4.23 D). This is somewhat problematic due to higher advection
rates having dynamics that do not follow the structure of a spheroid. In a
spheroid, the density has a value of 1 until reaching a point, the edge of the
spheroid, where the density rapidly drops to zero (Figure 4.23 E). As such, as
relatively low advection rate is selected of 0.1, which will be compared to a
model where both advection and proliferation rates are inferred.
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FIGURE 4.22: Exploring the dynamics of PDE spheroid
growth. A) As time increases, the wave shifts outwards to the
right representing a growing spheroid. B) Calculating the area
under the wave over time and plotting this measure shows a
quadratic relationship that shifts up as the proliferation rate in-
creases. C) As the growth rate increases the wave shifts out-
wards. D) As the advection rate increases the wave becomes
less steep, going from a sharp drop to a gradual fall. E) An
example of a wave calculated from an experimental image of

B169, this shows a sharp drop akin to a low advectin rate.

Data is generated as 2D images of spheroids, so these images show the cross-
sectional area. This PDE is a 1D model, so to make comparisons between the
PDE model and spheroids, I carry out a polar transformation of the spheroids
images to convert them to a 1D representation. This now presents both my
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spheroid data and PDE in 1D form, greatly simplifying and reducing the
computational cost of models. Looking at some examples of these polar
transformations, indeed reveals the sharp drop in density at the edge of the
spheroid.

4.5.2.2 Quantifying 3D growth dynamics

To quantify the growth dynamics in spheroid cultures, I explore two vari-
ations of the PDE model described in equation 4.12. The first model in-
volves fixing the advection rate to 0.1 and only exploring the proliferation
rate, while the second involves inferring these parameters. The first model
will be referred to as model 1 and the second as model 2.

Applying a genetic algorithm to minimise the sum of squared error from the
PDE simulations to experimental data, allows me to determine the optimal
parameters that fit the data.

The results of the two models are near identical in terms of the model fits
(Figure 4.23 A). This is especially noticeable in the case of T3. The parameter
values of the two models can be compared, revealing that model 2 has a
higher advection rate and lower proliferation rate when compared to model
2, for both B169 and T3 (Table 4.10. This is due to some of the growth being
attributed to the advection rate, as shown later in Figure 4.23.

The AICc value of both models suggests that the exploration of both advec-
tion and proliferation demonstrates signs of a poor fit (Table 4.11). In fact,
AICc values support the visual observation that both models are relatively
identical, with model 1 fitting better to the data. Additionally, the waves of
model 1 mimic those that arise from experimental data, shown previously in
Figure 6.12.

Proliferation Advection
rate (ρ) rate (α)

Model 1 - Advection fixed (B169) 3.275 0.1
Model 1 - Advection fixed (T3) 0.676 0.1

Model 2 - Advection fitted (B169) 1.531 0.308
Model 2 - Advection fitted (T3) 0.461 0.221

TABLE 4.10: Summary of parameter values recovered using
a genetic algorithm to fit a PDE model to data from spheroid

growth assays for B169 and T3.
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Model 1 Model 2
Advection fixed Advection fitted

AICc AICc

B169 190 210
T3 61 67

TABLE 4.11: Summary of AICc values derived to assess the
suitability of PDE models in explaining growth dynamics. In
both cases, the AICc is lower for model 1, suggesting that this

model is preferred.
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FIGURE 4.23: PDE model with fixed advection rate (solid line)
demonstrates a good fit to the data for both mono-cultures of
B169 (blue) and T3 (red). Inferring advection rate (dashed line)
does not visually provide an advantage in terms of the fit ob-

served.

This leads to my decision to keep the advection fixed at 0.1 and not infer this
parameter in my analysis. The final proliferation rates recovered for B169 and
T3 are 3.275 and 0.676, respectively (Table 4.12). This demonstrates that B169
grows faster than T3 in spheroid cultures. This is the opposite result seen
from the mono-culture growth dynamics in 2D cultures, where B169 grows
more slowly. This may be due to the appearance of B169 growing as clusters
first before spreading (Figure 4.14). Additionally, the sum of squared error
is considerable lower for T3 than it is for B169. This is down to two factors.
Firstly, the model demonstrates a very close fit to the data for T3. Secondly,
the range of values covered by T3 is narrower than B169 due to the greater
growth displayed.

134



4.5. Detecting and quantifying proliferation interactions in spheroids

Proliferation rate (ρ) Sum of squared error

B169 3.275 6598.855
T3 0.676 187.1252

TABLE 4.12: Summary of growth parameters of B169 and T3
mono-cultures in spheroids recovered using PDE modelling.

B169 spheroids grow at a faster than T3.

4.5.3 Modelling growth and interactions in 3D systems

Within a spheroid, the competitive dynamics are stronger than a 2D system.
This is mainly due to the close proximity of cells to one another, and this in-
creases the sharing of resources, as well as increases the possibility of slower
growing cells becoming engulfed and thus less able to grow. This feature is
demonstrated in a study by Melissaridou et al who compare the growth of
cells in 2D and 3D cell culture systems [153].

4.5.3.1 PDE model

Due to the experimental design, there is a period of 4 days to allow spheroids
to form, thus the initial ratio will inevitably diverge due to drift in growth
(Section 4.3). To account for this, the ratio of the starting condition will be
determined by the initial configuration. Taking a ratio between the relative
area of confluence will be used to estimate the initial ratio. This is not the
ideal measurement. An alternative method of quantifying this could be to
allow for counting cells in the spheroids with a replicate in parallel; however,
this will require a new assay design where spheroids are broken down and
cells counted.

Introducing a model for the growth of tumour spheroids, I use an approach
once again inspired by the paper by Sherratt et al [152] for a co-culture pop-
ulation. The PDE is as follows:

αu
∂u
∂t = ∂

∂x

[
u

u+v
∂
∂x
(u + v)

]
+ ρuu (1− u− auvv)

αv
∂v
∂t = ∂

∂x

[
v

u+v
∂
∂x
(u + v)

]
+ ρvv (1− v− avuu)

(4.15)

where the parameters auv and avu are competition coefficients with the
growth term resembling Lotka-Volterra equations.
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Deriving the finite difference scheme of this equation for u is as follows:

un+1
i = un

i + ∆t [αuQn
i + ρuun

i (1− un
i − auvvn

i )] (4.16)

where ∆x is the grid spacing, ∆t is the time intervals and w = u + v (used to
simplify differentiation) and Qn

i is defined by:

(
un

i+1 − un
i−1
)

wn
i
(
wn

i+1 − wn
i−1
)
+ 4wn

i un
i
(
wn

i+1 − 2wn
i + wn

i−1
)
− un

i
(
wn

i+1 − wn
i−1
)2

4 (∆x)2 (wn
i
)2

(4.17)

Previously, the effect of variations in the proliferation rate was explored.
Here I demonstrate the effect of the competition coefficient on the dynamics
present, keeping proliferation rates fixed for a 50:50 co-culture. The compe-
tition coefficient increases or decreases the growth of a particular subpopu-
lation. Under a symmetric population with equal growth, both populations
grow identically (Figure 4.24 A). When a single subpopulation experiences
deficit competition, it is able to grow at a higher level, whilst proving detri-
mental to the growth of the other (Figure 4.24 B). The reverse is true in the
case of excess competition (Figure 4.24 B). When both populations experi-
ence deficit competition, the overall fitness of both populations increases and
when both experience excess competition, the overall fitness is reduced (Fig-
ure 4.24 D,E).
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FIGURE 4.24: Exploring the population dynamics under differ-
ent values of competition coefficients. A) Symmetric compe-
tition with auv = 1 and avu = 1. B) Deficit competition with
auv = 1 and avu = 0.5. C) Excess competition with auv = 1 and
avu = 1.5. D) Double deficit competition with auv = 0.5 and
avu = 0.5. E) Double excess competition with auv = 1.5 and

avu = 1.5.

Looking at the waves of subpopulation v shows the spatial dynamics present
(Figure 4.25). Under excess and double excess competition the density of v
is lower than symmetric. With deficit competition the population performed
better. It is important to note here that the case of double deficit competition
will result in a density greater than 1, as such this case will be prevented to
ensure the max density at any point is 1.
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FIGURE 4.25: Spatial population dynamics show that the com-
petition coefficient restructures the population according to the

relative competitive values.

4.5.3.2 Inference

To find the effect of a co-culture on the growth dynamics of each subpopu-
lation, I model the effect of a co-culture on both the growth rate as well as a
competition coefficient in the form of a Lotka-Volterra equation. The mod-
els I explore will be compared to the null model of symmetric competition
represented as:

∂u
∂t = αu

∂
∂x

[
u

u+v
∂
∂x
(u + v)

]
+ ρuu (1− u− v)

∂v
∂t = αv

∂
∂x

[
v

u+v
∂
∂x
(u + v)

]
+ ρvv (1− u− v)

(4.18)

I will test two models to show the co-culture dynamics between cells growing
in a spheroid in this section. The first involves introducing Lotka-Volterra
competition coefficients into the PDE model, which can be represented as
follows:

∂u
∂t = αu

∂
∂x

[
u

u+v
∂
∂x
(u + v)

]
+ ρuu (1− u− auvv)

∂v
∂t = αv

∂
∂x

[
v

u+v
∂
∂x
(u + v)

]
+ ρvv (1− avuu− v)

(4.19)

In the following model, I explore two additional parameters to describe the
change in the proliferation rate of B169 and T3 in a co-culture (euv and evu).
This is shown in the system of PDE’s as follows:

∂u
∂t = ∂

∂x

[
u

u+v
∂
∂x
(u + v)

]
+ (ρu − euv)u (1− u− auvv)

∂v
∂t = ∂

∂x

[
v

u+v
∂
∂x
(u + v)

]
+ (ρv − evu)v (1− avuu− v)

(4.20)
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4.5.3.3 Quantifying interactions in 3D co-cultures

Looking first at a model with symmetric competition interactions (equation
4.18), it is clear that there is some agreement between this model and the data.
However, specifically for initial seeding ratios of 50% B169 with 50% T3 and
75% B169 with 25% T3, the growth of B169 is overestimated, and the growth
of T3 is underestimated by this model (Figure 4.26). This indicates that there
might be interactions present between T3 and B169, different from symmetric
competition, to explain the difference in the proliferation observed.
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FIGURE 4.26: A model with symmetric interactions provides
some suitability in explaining the data. However, the growth

of B169 is overestimated and T3 is slightly underestimated.

There are two models that incorporate interactions presented in equations
4.19 and 4.20 that seek to provide a better explanation of the dynamics. These
models take mono-culture proliferation rate as an input parameter and ad-
just the dynamics by introducing interactions that affect the proliferation rate
or competition coefficient. I used a genetic algorithm to find the set of param-
eters to minimise the sum of squared error between experimental and simu-
lated data. The sum of squared error is compared between the two models
and an AICc value is calculated.

Both models display better fits to the data than the symmetric competition.
This is to be expected due to their increased complexity. The key difference
between these two models is the early dynamics of B169 at day 1. For a
model with only Lotka-Volterra interactions the early growth dynamics are
underestimated (Figure 4.27) whilst including alterations to the proliferation
rate is better able to capture this (Figure 4.28).
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FIGURE 4.27: Incorporating Lotka-Volterra interactions into
PDE models are able to capture the competitive dynamics be-

tween B169 (blue) and T3 (red).
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FIGURE 4.28: Incorporating Lotka-Volterra interactions into
PDE models is able to capture the competitive dynamics be-
tween B169 (blue) and T3 (red). Adding proliferation rate inter-
actions is also able to match the early growth dynamics better,
however, this improvement is not strikingly different to the dy-

namics in Figure 4.27.
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Looking at the AICc values for each of these models demonstrates the pres-
ence of overfitting in a model with both Lotka-Volterra and proliferation rate
interactions (Table 4.16). In fact, this decision also makes logical sense, since
visually the benefit provided by model 3 over model 2 is a better fit to day
1 at the expense of increased complexity with two additional parameters per
condition.

Sum of squared
Model error AICc

Symmetric competition 6122 209
Lotka-Volterra interaction 1898 174

Growth rate and Lotka-Volterra interaction 1535 189

TABLE 4.13: Summary of AICc values for the three models
tested in this section. Model 2 has the lowest AICc, suggest-

ing it has the most acceptable fit.

Looking at the resulting parameter values from model 2 support that the dy-
namics are very close to symmetric competition (Table 4.14). With the aver-
age interaction value showing slight excess competition experienced by B169
and slight deficit competition experienced by T3.

Looking at the parameter values from model 3 highlights the source of over-
fitting. The parameter euv shows B169 growing faster than expected in a 25%
B169 culture and slower in 50% and 75% (Table 4.15). Additionally, the value
of evu represents a high proportion of the original growth rate of 0.676 ( 32%
of the base proliferation value for a 75% T3 culture). For this reason coupled
with the higher AICc value of model 3 compared to model 2, I choose model
2 as my final model.

Initial seeding ratio auv avu

25% B169 : 75%T3 0.928 0.940
50% B169 : 50%T3 1.236 1.050
75% B169 : 25%T3 1.089 0.900

Average 1.082 0.963

TABLE 4.14: Summary of growth parameters for co-cultures of
B169 (blue) and T3 (red) in 3D spheroid proliferation assays us-
ing the model described in equation 4.19. This model displays a
more satisfactory fit than the model described in equation 4.20.

141



Chapter 4. Cell growth and proliferation interactions

Initial seeding ratio euv evu auv avu

25% B169 : 75%T3 -0.447 0.0997 1.058 1.010
50% B169 : 50%T3 0.642 0.189 1.019 0.851
75% B169 : 25%T3 0.266 0.219 0.957 0.737

Average 0.461 0.169 0.866 1.386

TABLE 4.15: Summary of growth parameters for co-cultures
of B169 (blue) and T3 (red) in 3D spheroid proliferation as-
says using the model described in equation 4.20. B169 dis-
plays slower growth and experiences more competition in a co-
culture whilst T3 displays faster growth and experiences more

competition in a co-culture.

Finally, I investigate the suitability of a model where interactions are inferred
for all co-culture simultaneously. This model will inevitably demonstrate a
poorer fit due to having two parameters inferred in place of six inferred in
the previous case. However, by using AIC and assessing the fits, it may allow
for the determination of a single set of coefficients that describe the dynamics
of co-culture, leading to the model being model generalisable.

Looking at the fitted models, it appears that there is little difference between
the two models (Figure 4.29). The most noticeable area where separate in-
ference performs better is for the 50% B169 to 50% T3 seeding ratio. Here
B169 growth is overestimated when inference is combined and correctly in-
ferred when separated. This can be seen when looking at the fitted parameter
values in Table 4.15, with both coefficient values auv and avu having a maxi-
mum value for this co-culture. The sum of squared errors for each model are
largely different, with combined inference displaying a value of 4298 com-
pared to a value of 1898 for separate inference. Additionally, the AICc value
is lower for a model with co-cultures inferred separately.

Sum of squared
Model error AICc

Combined 4298 449
Separate 1898 354

TABLE 4.16: Summary of AICc values for the combined and
separate inference of Lotka-Volterra coefficients shows the

closer fit is obtained separate inference.

Looking at the separate model in more detail shows no linear relations
between seeding density and Lotka-Volterra interaction coefficient (Figure
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FIGURE 4.29: Comparing fitted models when co-culture condi-
tions are inferred separately or combined. The fits demonstrate

considerably agreement between both methods of inference.
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FIGURE 4.30: Plotting the Lotka-Volterra interaction against the
initial seeding density of B169. There does not appear to be a

identifiable relationship in this case.

4.30). This lack of a discernible relationship suggests that the fits from this
model may not be generalisable to a wider range of co-culture conditions.
However, without more intermediate data points, it is impossible to know
if there is indeed a trend that may be linear or of a higher order, such as
quadratic. Investigating this relationship with a greater number of seeding
ratios would be an interesting area of further investigation.

These considerations led me to select a combined inference model as my final
model to describe co-culture dynamics. Although the AICc is larger, this
is compensated for by having similar fits as well as a model that has been
applied to a wider range of data, thus enhancing its ability to be generalised
to other conditions.
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The parameter values under this model suggest the presence of near sym-
metric competition experience by B169 whilst T3 experiences slight deficit
competition (Table 4.16). This suggests at each distance T3 is able to grow
more significantly than under the null model. This also suggests that the
centre of the spheroid, which will contain primarily the slower growing T3
cells, will increasingly become dominated by T3 in the longer term. This is
something that can in fact be seen in experimental images, where it is clear
T3 is being engulfed by B169, and the centre of the spheroid becomes almost
pure T3. The ability to detect these interactions better allows me to predict
the trajectories of tumour spheroids as well as determine methods of quanti-
fying perturbing these systems.

auv avu

1.003 0.874

TABLE 4.17: Summary of Lotka-Volterra interaction coefficients
demonstrate symmetric competition experienced by B169 from

T3 and deficit competition experience by T3 from B169.

4.6 Discussion

In this chapter, I explored the dynamics of multiple tumour growth models
in 2D and 3D cultures. Choosing the best model to describe mono-culture
dynamics allows for a quantitative description of the observed growth dy-
namics. Using these models, I explored the co-culture dynamics and further
extended the mono-culture models to capture the effect of interactions on
co-culture growth.

In 2D cultures, I demonstrated the presence of Allee effects in mono-culture
settings and built models to extend Lotka-Volterra competitive equations to
include interactions that impact the Allee effect. Between B169 and T3, I
detected the presence of an exploitative interaction affecting the short-term
dynamics, which is reflected in higher growth rates experienced by B169 in
a co-culture compared to a mono-culture. The early dynamics between F8
and F10, shows excess competition where both clones grow slower in a co-
culture than a mono-culture. To the best of my knowledge, the Allee effects
interactions model I have developed is a novel approach to detecting and
quantifying early growth dynamics of 2D cultures. The long-term dynamics
of B169 and T3 shows that co-existence or extinction of either B169 or T3
are both possibilities explained by values in the posterior distribution of the

144



4.6. Discussion

competition coefficients. The mean parameters point toward long-term co-
existence. In the case of F8 and F10, the longer term dynamics show that
F10 will grow to dominate the population, with F8 leading to extinction. The
long-term dynamics of 2D systems are less relevant biologically, as these are
equilibrium dynamics whilst cancer is an out of equilibrium system. From
the paper by Vinci et al, F8 is the more prominent clone in the patient tumour,
with F10 representing a small proportion [16]. This is contrary to the finding
of the long-term dynamics determined from my experimental work. This
explains why long-term dynamics are less relevant in the case of applicability
to inference within tumours. Models such as those used by Zhang et al, rely
on Lotka-Volterra equations to make predictions on the tumour burden for
patients in the presence and absence of therapy with abiraterone. However,
as shown in this chapter, the long-term dynamics that these models predict
are not always translatable to the conditions in tumours.

In 3D cultures, I approached modelling mono-cultures using PDE to recover
the growth rate. A key observation is that results from 2D and 3D growth
dynamics do not agree with each other. Looking at experimental images
showed that T3 showed a preference for disperse growth in 2D whilst B169
displayed growth as a cluster. This can explain the difference in phenotype
between experiments and further highlights the importance of using the cor-
rect system to make conclusions relevant to patient tumours. I also presented
an analysis to quantify the co-culture dynamics present in 3D spheroids. This
demonstrated that the co-culture dynamics present in spheroids with differ-
ent initial seeding densities can be represented by a single set of competition
coefficients, thus presenting a model that can be applied to a wide variety
of initial conditions. The value of the competition coefficients demonstrates
that T3 experiences less competition from B169 thus dominates the competi-
tive dynamics within a tumour. Whilst B169 has a higher growth rate so can
dominate the exterior of a spheroid. This reflects the fact T3 is engulfed by
B169, which is confirmed by experimental images.

These findings are important since they demonstrated that 2D models are not
translatable to predict 3D models. This is a consideration that should inform
the design of experiments and future studies. Understanding the difference
in the mechanisms that alter growth in 2D, 3D and even in-vivo models is
something that should be explored further so that inference from these mod-
els can provide more context and understanding of which models are more
translatable to specific clinical considerations. The difference between 2D
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and 3D models have been highlighted in this chapter, with the proximity of
cells representing a potential mechanism influencing the dynamics present,
shown with 2D and 3D culture images. An extension to in vivo models will
require the understanding of enhanced complexity present. Not only will
there be competition between cancer clones but also between cancer cells
and non-cancer cells. Additionally, factors such as the immune response and
the microenvironment will inevitably be influential to growth dynamics.

A large number of mathematical models are tested using publicly available
data, I demonstrated a potential caveat with this. For example, growth rates
of F8 and F10 are not consistent between assays, this may arise due to issues
with seeding density or accuracy of measure or random stochastic fluctua-
tion in cell culture conditions. As a result my approach involved conduc-
tion co-culture and mono-culture experiments in parallel to limit the pres-
ence of factors that my confound analysis. This integrated approach com-
bining mathematical modelling and experimental biology is key to making
informed inference, free from biases.

Improvement in assay design can be used to probe more complex spatial
features. Understanding the effect of proximity (cell-cell and cell-matrix in-
teractions) and detecting extra-cellular signalling may be able to explain the
difference in 2D and 3D growth dynamics, and this may help shed light on
the unique biology. Focusing on more complex mathematical models can
be developed to understand a larger degree of heterogeneity. However, this
will require the use of better techniques to extract data from experiments.
Examples of technologies, such as single-cell sequencing, as well as imaging
technologies such as spatial transcriptomics and immunofluoresence, allow
for probing population dynamics with a finer resolution.

The results from this chapter will be used in further chapters to understand
the therapeutic implications on mono-culture and co-culture growth dynam-
ics. Understanding how therapy can affect growth and interactions will al-
low for predictions to be made on the optimal therapeutic strategies.
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Chapter 5

Quantifying spatial interactions

5.1 Introduction

Paediatric-type high-grade gliomas (pHGG) are fast-growing tumours char-
acterised by their propensity to invade neighbouring tissue [18], [154]. The
H3K27 altered subgroup of these tumours is predominantly found in the
midbrain regions such as the pons; these tumours are difficult to remove sur-
gically as the pons is involved in critical functions such as sleep and breath-
ing [155]. This is further complicated by their diffuse phenotype, which
means there is no well-defined border for a surgeon to identify [20].

In a study by members of my lab, Vinci et al. it was identified that there is a
large degree of heterogeneity present in these tumours. This has been linked
to a positive effect between subclones in the tumour that enhance its inva-
sion [16]. This is not a unique phenomenon to pHGG. In the case of breast
cancer, it has been shown that polyclonal tumours seeded in mice generated
polyclonal metastasis [66]. However, the tools that discriminate between true
subclonal interactions and those that appear similar to subclonal interactions
are underdeveloped. Furthermore, there are no true methods to quantify and
classify these interactions.

Spatial interactions have largely been understudied, with much of the focus
on growth interactions. This may be due to the complexity in analysing such
interactions on a cellular level. It is required to be able to identify different
subpopulations and track them over time, but also a hypothesis of what effect
the presence and absence of interactions have on the phenotype observed.
This can be achieved through computational modelling and constructing a
null model.
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Chapter 5. Quantifying spatial interactions

I model the effect of interactions on cellular invasion in vitro. Cellular inva-
sion encompasses a number of processes that allows a cell to move through
the extracellular matrix into neighbouring tissue. This is a key characteristic
of pHGG and represents a key hurdle in tackling this disease [154]. It in-
volves cellular processes such as degradation of the extra-cellular matrix and
migration which is the directed movement [156].

In this chapter, I leverage a unique set of primary glioma cell lines derived
from patients at autopsy that have been thoroughly characterised at the
molecular and phenotypic levels [16]. Importantly, different subclones with
distinct molecular features and invasion characteristics have been isolated. I
integrate in vitro assays of co-invasion between subclones with a spatial com-
putational modelling framework to quantify the presence of spatial subclonal
interactions or lack thereof.

5.2 Inference methodology

In this chapter, I combined data generated from in-vitro experimentation and
computational modelling to determine whether the invasive phenotype of
a particular clone is enhanced by being in a co-culture with another clone,
compared to being in isolation.

I apply a two-stage inference methodology. The first stage involves deter-
mining the mono-culture phenotype of a clone in terms of its motility and
growth. At the second stage, I use the phenotype of clones in a mono-culture
to condition the parameters of my co-culture simulations. This approach
allows for the set-up of a model where the uncertainty around the mono-
culture phenotype is propagated forward. The only parameter to be explored
in this stage is that which affects interactions. At each step, I use approximate
Bayesian computation (ABC) for parameter inference (Figure 5.1).
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FIGURE 5.1: Outline of the inference methodology used to identify interactions.
Left: By coupling in silico simulations and in vitro assays using ABC, the invasion
parameters of a pure population can be quantified . Right: Using previously quanti-
fied invasion parameters, the effect of interactions between two or more clones can
be modelled. Using experimental data, the strength of interactions present can be

measured.

5.2.1 Measuring mono-culture invasion

I must first extract spatial information from experimental images to deter-
mine the phenotype of a clone in isolation. To achieve this, I used an image
segmentation process that involves tile-based deep learning image process-
ing 3. This segmentation results in binary masks, representing pixels with
cells present with 1 and with no cells present with 0. This process is detailed
in 3. An outline of binary masks overlaid on images demonstrates the per-
formance of the segmentation algorithm (Figure 5.2).

Using summary statistics, I can simplify the information contained in binary
masks to a series of measurements. This summarising is crucial as it allows
for extracting relevant and manageable information from the binary masks.
In parallel to extracting information from experimental images, I also process
invasion simulations using the same methodology. Calculating summary
statistics on simulated data coupled with ABC parameter inference, I can
determine which combination of summary statistics allows for the recovery
of the invasion parameters. Once I have determined the optimal regime of
summary statistics, I can process the binary masks to find the posterior distri-
bution of the invasion parameters for a mono-culture. I then summarise the
posterior distributions as truncated normal distributions to be used as prior
parameter distributions for co-culture simulations.
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400 um 400 um 400 um

FIGURE 5.2: Binary mask outline of image segmentation with more details in Chap-
ter 3. The yellow outline represents the boundary of the binary mask for the green

channel images of SU-DIPG-VI clone D10.

5.2.2 Measuring interactions in co-culture invasion

In order to measure positive interactions, I introduced their presence in my
computational model. Using previously recovered parameter distributions
as priors for invasion parameters, I can isolate the effect of interactions on
the invasive phenotype of a clone in a co-culture whilst incorporating any
uncertainty present in previous inference.

Processing images parallel to simulations from computational modelling, I
can determine a scheme of summary statistics that provide information to
recover the interaction strength present. I generate credible intervals, which
I use to understand whether a model with no interactions is suitable in ex-
plaining the experimental data better than a model with interactions.

5.3 Invasion assay in-vitro

The specifics of the invasion assay performed are discussed in 2.4.2, here I
outline the features of the assay. The assay involves generating spheroids
from fluorescently labelled cells, in this case with Venus and mCherry fluo-
rophores, and embedding these in an extracellular matrix (Corning Matrigel).
These spheroids are then incubated and images over time using the IncuCyte
S3 live-cell analysis system (Figure 5.3).

See Appendix B.3 for details the precise number of replicates for each exper-
imental conditions at each time point.
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FIGURE 5.3: Outline of invasion assay. Cells are fluorescently labelled and seeded
to form spheroids, these are then embedded in an ECM and imaged over time.

5.4 Computational model

I aim to distinguish between the presence and absence of interactions; for
this reason I favour simpler models. Attempting to model niche scenarios of
interactions limits the power to detect any interactions by increasing compu-
tational complexity and increasing the risk of overfitting models to data with
an excessive number of parameters. My approach minimises the number
of parameters used and processes simulated to have a model that translates
readily between different systems. Simply put, my models aim to answer the
question, "Does a clone display an increased invasive phenotype when cul-
tured with another distinct clone?" Once interactions are detectable, it will
allow resources and research time to determine the biological basis for these
interactions.

In this chapter, I focus on the use of CA models to recreate invasion in-silico.
The primary choice for this decision is the modularity of CA models com-
pared to PDE models, allowing for the incorporation of complexity, such as
interactions, easily. CA models can be considered equivalent to PDE models.
[96].

5.4.1 Model set up

I create a CA model on a three-dimensional grid with each point representing
an empty space or containing a cell. Each cell can undergo a pre-determined
set of possibilities; divide into a neighbour grid point, move to a neighbour-
ing grid point or undergo cell death. Each of these processes occurs at dif-
ferent rates, and the extended model will have a distinct set of rates for each
subpopulation modelled (Figure 5.4). To determine the next process to occur
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at any given time and the location at which this occurs, I employ Gillespie’s
stochastic simulation algorithm, discussed in detail in A.1 [157].

Initialise Simulation Calculate reaction 
propensity

For each occupied grid space
calculate likelihood of a process

Determine the next 
reaction

Time to 
next reaction

Reaction:

Location

  Execute reaction
update state

   Division

            Movement

Death

while current time < max time

Define initial conditions and
initialise the simulation space 

    Day 0     Day 1     Day 2     Day 3

High invasive
phenotype

Low invasive
phenotype

A

B

FIGURE 5.4: Demonstration of simulation design and output. A, Simulation design
flow diagram. B. Simulation output over time highlighting the differences between

a high invasive and low invasive set of parameters.

5.4.1.1 0 - Initialisation

An n × n 3D grid is created where the entries can take the values 0, 1 or 2.
An empty cell is represented by a 0, and a cell of type 1 or 2 is represented
by 1 or 2 in the grid space. It is easy to see how this can be extended to any
number of different cell types.

I initialise rates for each process; proliferation, motility and death rate for
each cell type. In addition to this, I initialise interaction terms that can be
represented in an interaction matrix. However, since I have model two cell
types, I can append this to the rates vector. As the number of cell types in-
creases, it may be convenient to represent interactions in the form of a matrix.
For simplicity, I have set the death rate as 10% of the proliferation rate, which
I chose as I do not want cells to become extinct since my main focus is on the
motility rate.

Cells are initiated in all grid points where the distance from the centre is
below the radius I desire. I draw a random number according to the desired
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ratio, at each grid point chosen to contain a cell. Based on the number, I
initialise the cell as type 1 or 2.

5.4.1.2 1 - Calculating propensity of processes

At each iteration, I calculate the propensity of each cell to undergo each pro-
cess. Since I assume a cell can only move into space if it is vacant, I minimise
unnecessary computation by calculating all cells with an empty space in their
local 3D Moore neighbourhood. Only those cells with an empty neighbour
can have a non-zero propensity. Following this, I create a matrix to store the
propensity values for each process. This approach allows for the modifica-
tion of rates according to local conditions.

Proliferation and death rates are constant, as I do not impose interactions
on these processes in these models. This was to reduce computational com-
plexity, as well the inability to accurately quantify cell growth. This could be
rectified but determining growth rates in mono-cultures and co-cultures for
invading cells. Here, my main aim was to find the effect on the motility.

There is no change to the motility rate in a mono-culture model. However,
in the case of co-culture models, I set interactions as a constant factor mul-
tiplied by the ratio of each cell type in the neighbourhood. This neighbour-
hood could be anywhere from a Moore neighbourhood of radius 1 or the
entire simulation space. This choice is influenced by the size of the simula-
tion and the type of interactions modelled, long-range or short-range. In this
implementation, I have chosen to select the global space as the interaction
space.

The new motility rate is then calculated by:

Motility rate = Base motility + Interaction strength x Proportion (5.1)

5.4.1.3 2 - Determine the next process, location and time elapsed

I seek to find the process P that satisfies:

P | A−
P

∑
µ=0

aµ ≤ 0 (5.2)

where aµ is the propensity of process mu and A = R ∑2
µ=0 aµ where R is a

random number drawn from U[0, 1].
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Once a process is selected, a location is determined. I seek to find the coordi-
nate (i, j, k) that satisfies:

(i, j, k) | L−
i

∑
x=0

j

∑
y=0

k

∑
z=0

P (x, y, z) ≤ 0 (5.3)

where P (x, y, z) is the propensity of process P at the coordinates (x, y, z), and
L = R ∑n

x=0 ∑n
y=0 ∑n

z=0 P (x, y, z) where R is a random number drawn from
U[0, 1].

5.4.1.4 3 - Execute reaction

Once I have determined the next process to occur, the simulation space must
be updated to reflect this. For cell movement, I choose a random empty space
from the 3D Moore neighbourhood of radius 1 and swap the entries of these
voxels (Figure 5.5 A).

For cell death, I replace the cell from the simulation space with a 0 (Figure 5.5
B).

The execution of cell proliferation is more complex. The observation that tu-
mours can have boundary driven growth has been shown in numerous stud-
ies [55]. However, the distance to which cells can remain proliferative is yet
to be determined and changes between different systems based on numerous
factors such as concentration gradients. I introduce a parameter that allows
the modification of the distance to which cells ’push’ in a random direction
(from a uniform weighting of all neighbourhood point) to create space to di-
vide (Figure 5.5 C). For the analysis in this chapter, I keep this fixed to 1,
which means cells can only divide into their local environment (Figure 5.5).
The scope to adjust this parameter could be explored in future models.
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   Division

            Movement Death

Division

with push

C

A B

FIGURE 5.5: Graphical outline simulation processes. A, Movement of a cell into
a random neighbourhood grid point. In a fully occupied neighbourhood the cell
cannot move and this process fails. B, Cell death removes the cell from the simu-
lation. C, Division of a cell can occur according to two regimes. If there is space
in the neighbourhood the newly created cell will occupy this space. However, if
there is not space, a ’push’ parameter dictates how far the divided cell can push in a

randomly chosen direction to create space.

5.4.1.5 4 - End condition

Check if the current simulation time exceeds the maximum time allowed. If
this is satisfied, the simulation is terminated; otherwise, the simulation goes
back to step 1.

5.5 Quantifying invasion parameters in a mono-

culture

Following the structure of investigation discussed in 5.2, I quantify the mono-
culture phenotype of each cell line. I use measurements that summarise spa-
tial data generated from experimental and simulated data. This is then used
to infer parameter values for my cell lines by first testing and validating in-
ference on in silico data and applying this to experimental data.

5.5.1 Summary statistics

Spatial information is complex from which it is difficult to draw comparisons.
I use summary statistics to simplify and extract meaningful information from
spatial data. Applying these statistics leads to the loss of some information

155



Chapter 5. Quantifying spatial interactions

but is crucial in making data manageable. Here I discuss the summary statis-
tics used to summarise the invasive phenotype in a mono-culture simulated
and experimental data.

5.5.1.1 Normalisation

Before calculating and processing summary statistics, I first determine a
scheme of normalisation to allow simulations to follow the scales of exper-
imental images. To do this, I determine the average distance of each point
pixel representing a cell and use this to normalise all future distances. This
has the effect of bringing systems on largely different scales to more compa-
rable scales.

5.5.1.2 Travelling wave solution to a reaction-diffusion equation

Reaction diffusion equations have been used to study the invasion of tu-
mours, particularly glioma [158][93]. A simple reaction diffusion equation
is as follows:

ut = D∇2u + f (u) (5.4)

where u is used a short form notation for u(x, t), describing the density of
population u at time t and position x. D is defined as a constant of diffusion
and f (u) is a growth function. Choosing f (u) = u(1− u) leads to Fisher’s
equation. Since there is no bias in terms of direction, I can use a 1D version
of these equations, this will be analogous to a 3D system.

These class of PDE have a travelling wave solution in the form of:

u(x, t) =
1

1 + exp x−t−c
2a

(5.5)

here the parameters a, the diffusion coefficient, and c, the wave-front coeffi-
cient, will be used to summarise the information from my spatial simulations
and images from experiments. This solution represents the density of cells at
a certain radius from the centre. For a fixed time, I can ignore the coefficient
t, absorbing it into the wave-front coefficient.

Looking more closely at the effect of each of these parameters I can see that
a affects the slope of the exponential phase of the function, whilst c affects
the position of the centre of this slope. A larger value of a leads to a more
shallow decrease, in the context of invasion this means that the cells will be
more spread out over a larger area. A larger value of c will shift the curve to
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the right, this in the context of invasion, means the dense core of the invad-
ing spheroid will be larger. I can see from the illustrated examples (Figure
5.6) that this system neatly summarises the spatial dynamics of an invad-
ing spheroid. Focusing on the fit to experimental images, I confirm that the
spheroids do indeed follow this behaviour and that differences in invasion
are captured (Figure 5.6).

r
Fit to function

d( r ) 1
1 + e

r - c
2a
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Distance from center (r)

FIGURE 5.6: Demonstration of travelling wave solution to a reaction-diffusion
equation applied to simulated data. Distance to each pixel is calculated and stored,
this is then fitted to the travelling wave solution (5.5) (left). Applied to two different
motility parameter values demonstrates the good fit of the equation and the effect of

the motility rate on the spatial configuration (right).

5.5.1.3 Confluence

A common measure used to summarise the extent of invasion is the conflu-
ence of cells. This involves creating a convex hull (the minimum bounding
convex polygon) around all points and then calculating the area of the hull
generated (Figure 5.7).

Hull area

FIGURE 5.7: An illustration of the convex hull. The convex hull of a set of pixels is
used as a measure of confluence.

5.5.1.4 Density

Using confluence as a basis, I can measure the density of the invaded area.
Taking the total positive pixel count and dividing by the convex hull area,
gives the density of the invaded area. This is a useful metric as I am able
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to probe how the cells are spread out in their local environment. A dense
spheroid growing fast has very different properties to a diffuse spheroid,
even if the confluence grows at the same rate. Particularly in the case of
pHGG, it would be useful to understand how densely cells invade since this
is a hallmark feature of these tumours.

5.5.2 Experimental measurements

Using summary statistics, I build a picture of the difference between the in-
vasive phenotypes of clones. I can see that the two clones E6 and D10, from
the bulk tumour SU-DIPG-VI, display vastly different invasive phenotypes.
D10 displays a higher diffusion coefficient, wave-front coefficient and conflu-
ence whilst also displaying lower density across time points when compared
to E6 (Figure 5.8A). On inspection of images taken at day 3, I can see that
there is indeed a greater extent invaded by D10 whilst E6 displays very little
invasion at all (Figure 5.8B).

Similarly, the two clones F8 and F10, from the bulk tumour HSJD-DIPG-007,
display different invasive phenotypes, although this is more subdued at day
3. F10 displays a higher diffusion coefficient and confluence whilst also dis-
playing lower density and wave-front coefficient across time points when
compared to F8 (Figure 5.8C). On inspection of images taken on day 2, F10
appears to be more dispersed whilst F8 invades more densely, but the core of
the two spheroids appears to be similar (Figure 5.8D).

I can see that F10 displays a plateau in its invasive phenotype at around day
2. It would skew the results to compare data from a cell line that has achieved
or near a plateau than one that is not. As such, I restrict my analysis to day 2
for HSJD-DIPG-007 cell lines. This similar behaviour is not seen in SU-DIPG-
VI cell lines, the key difference between the two groups is that HSJD-DIPG-
007 is significantly more invasive and, as such, can achieve a plateau more
readily. This can be seen from the images of the cell lines (Figure 5.8 B, D).
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FIGURE 5.8: Summary statistics calculated on experimental data. a, Measurements
for SU-DIPG-VI clones E6 (light blue) and D10 (red). This demonstrated that D10
displays a more invasive phenotype compared to E6. b, Images of SU-DIPG-VI
clones taken at day 3, with phase (top) and GFP (bottom) channels shown. This
confirms the observations, from the spatial statistics, that D10 is more invasive than
E6. c, Measurements for HSJD-DIPG-007 clones F8 (blue) and F10 (red). This demon-
strated that initially F10 displays a more invasive phenotype, however, this plateaus
after day 2. d,. Images of HSJD-DIPG-007 clones taken at day 2, with phase (top)
and GFP/RFP (bottom) channels shown. This shows that before the plateau, F10 is

displaying considerably more prominent invasion.

5.5.3 Recovering invasion in silico

These measures on their own allow comparisons to be drawn. However, they
do not associate a quantifiable parameter related to the phenotype of each
clone. To apply my summary statistics to experimental data and extract the
parameters of motility and proliferation rates, I validate my ABC parameter
inference in silico. I use a simulated dataset consisting of 32000 random sim-
ulations with parameters drawn from uninformative uniform distributions.
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I carry out a set of sample simulations across a wide range of proliferation
and motility rates and use ABC to recover these rates. The different models
of recovery are compared based on the sum of squared error of the recovered
rates. I combine summary statistics using a weighted Euclidean distance be-
tween the observed summary statistics in sample simulations and the simu-
lated dataset.

Using single statistics, I can see that the recovery of the ground truth is
largely inconsistent and unable to recover both parameters simultaneously.
This is clear to see from the contours of summary statistics displayed in 5.5.1,
where I see that there are multiple combinations of proliferation and motility
rates that can give the same summary statistics value.

Using a combination of summary statistics with complementary contours
can provide a more consistent recovery of the ground truth. The natural con-
sideration of a combination to use would be the coefficients from the trav-
elling wave solution to a reaction-diffusion equation. This will be the basis
of my recovery, as it has been demonstrated in other studies that these mod-
els are able to mimic glioma invasion[93]. I use a genetic algorithm in order
to determine the optimal weights that provide the most consistent recovery
across all the sample parameters.

In order to scale the loss function used in a genetic algorithm according to
the scale or the parameters being recovered, I normalise the distance between
the true parameter and posterior recovered according to the minimum con-
verged loss from recovering a single parameter. This determines the weight
each parameter provides to the final genetic algorithm for recovering both
parameters simultaneously.
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FIGURE 5.9: Recovery of invasion parameters in silico. The ground truth parame-
ter value is presented as a vertical line. Both measures used demonstrate consistent
recovery of the invasion parameters, with the combination of wave front and diffu-
sion coefficients displaying more consistency. A, Recovery of motility rate (left) and
proliferation rate (right) using wave front and diffusion coefficients. B, Recovery of

motility rate (left) and proliferation rate (right) using area invaded and density.

Using the coefficients for the travelling wave solution to a reaction-diffusion
equations I can see that there is consistent recovery the ground truth motility
and proliferation rate across a number of different parameter values (Figure
5.9 A). Combining area invaded with the density of this area also provides
similar recovery to the travelling-wave solution to a reaction diffusion equa-
tion, suggesting that there are a multitude of ways I can approach the quan-
tification of invasion parameters (Figure 5.9 B).

5.5.4 Recovering invasion in-vitro

Applying the validated parameter recovery methods from the previous sec-
tion, I am now able to quantify the parameters for my experimental data.

I can see for SU-DIPG-VI clones that E6 displays a lower proliferation rate
compared to D10, as well as almost 0 motility rate. This aligns with my visual
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observations from experimental images (Figure 5.8 B), where the core as well
as extent of the D10 spheroid is greater(Figure 5.10).

Similarly, for HSJD-DIPG-007 clones, F8 displays a lower motility rate com-
pared to F10, as well as a similar proliferation rate. This aligns with visual
observations from experimental images (Figure 5.8 D), where the core F8 is
similar in size to F10, however the extent of the F10 spheroid is greater (Fig-
ure 5.10).

This analysis produces distributions to which I fit truncated normal distribu-
tions, allowing for the use of this information to condition co-culture simula-
tions.
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FIGURE 5.10: Posterior distribution of recovered invasion parameters. (Prior dis-
tribution in grey) A, Posterior distribution for SU-DIPG-VI clones, E6 (light blue)
and D10 (red). Dashed line represents the fitted truncated normal distribution. E6
has a considerably lower motility rate (close to zero) and a lower proliferation rate
compared to D10. B, Posterior distribution for HSJD-DIPG-007 clones, F8 (blue) and
F10 (red). Dashed line represents the fitted truncated normal distribution. F8 and
F10 display similar proliferation rates, with considerable overlap between the distri-

butions, however, F10 displays a considerably faster motility rate.

Rate F8 (mean/sd) F10 (mean/sd)

Proliferation (0.895,0.0956) (0.767,0.0596)
Motility (9.79,1.30) (31.3,2.41)

TABLE 5.1: Summary of fitted truncated normal distributions
for HSJD-DIPG-007 clones, F8 and F10.
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Rate E6 (mean/sd) D10 (mean/sd)

Proliferation (0.016,0.091) (0.249,0.027)
Motility (0,0.162) (10.9,0.909)

TABLE 5.2: Summary of fitted truncated normal distributions
for SU-DIPG-VI clones, E6 and D10.

5.6 Detecting and measuring interaction strength

in a co-culture

To extract information from co-culture experiments, a different approach is
required. First, the mono-culture summary statistics are no longer feasible to
apply due to the presence of multiple subclonal populations that will com-
pete with one another. In this section, I pass the posterior distributions of
pure population invasions parameter to condition the co-culture simulations
and introduce parameters to model the interactions between these distinct
populations. This approach allows to propagate uncertainty in the parameter
values the government proliferation and motility so that the final inference
is not skewed.

5.6.1 Deriving summary statistics

I model interactions and the relative benefit or cost they provide to a clone
in a co-culture when compared to that clone in a mono-culture. Co-culture
seeding ratios are normalised to the mono-culture observation. This choice is
intuitive as it is normalising to a mono-culture where these interactions are
absent.

Before processing data, I make an important distinction in calculating sum-
mary statistics on mono-cultures and co-cultures. The travelling wave solu-
tion to a reaction-diffusion equation is no longer applicable as this result was
derived from a PDE modelling a pure population.

Simply trying to fit the travelling wave solution to a single clones spatial con-
figuration will not provide a good fit in all cases and mechanistically does not
make sense since it does not account for the spatial competition. One exam-
ple of the inconsistent behaviour of this statistic in a co-culture can be seen in
certain spatial configurations where the core of the spheroid in broken into
multiple distinct pieces as cells are now sharing space with another clone. To

163



Chapter 5. Quantifying spatial interactions

alleviate this issue, I utilise area invaded a measurement since I am interested
in whether a clone derives a benefit from being cultured in a co-culture. In
this case, there would be an increase in the invasive phenotype, and thus the
extent of invasion a clone can achieve, reflecting a higher area invaded.

Taking samples at varying interaction strengths demonstrated the effect of
interactions (Figure 5.11 A). Using the area invaded normalised to the mono-
culture phenotype, I can see that there is a difference in the phenotype ob-
served for clones in a co-culture with and without interactions. There is a
parabolic relationship between the ratio at which cells are seeded and the
phenotype observed. In the case of positive interactions, as the ratio of the
clone providing the interaction (the supporting clone) increases, more cells
are providing an interaction. As such, the clone receiving an interaction has
enhanced motility, although this is not linearly increasing. Eventually, there
is diminishing and eventually negative returns due to both spatial competi-
tion and low cell numbers, which is displayed as a plateau and a subsequent
decline in the observed phenotype. In the case of negative interactions, I can
see that as the ratio of the supporting clone increases, both the negative inter-
action and lower cell numbers have a compounding effect, leading to a lower
extent of invasion than a mono-culture.

Upon closer inspection of the data, there is a pattern as the positive interac-
tions increase the area under the curve (AUC) as the fitted parabola shifts up.
This suggests there is a link between AUC and interaction strength, which in-
deed is the case (Figure 5.11 B). This relationship also exists between the AUC
and negative interactions, as the interaction strength decreases, the AUC also
decreases. Thus, I claim that interaction strength can be inferred by using the
AUC of normalised area invaded as a measurement. This is calculated by
fitting a quadratic function to the data with y-intercept fixed to 1. These rela-
tionships are also seen from the experimental data.

In the case of E6 and D10, I can see that D10 displays a declining pheno-
type as its seeding ratio decreases, whereas E6 displays a heightened inva-
sive phenotype with the predicted decline with a seeding ratio of around
40% or lower. I can also see this is the case in the images where almost no
E6 cells leaving the core in a mono-culture, whilst in a co-culture there are
a small number that escape the core (Figure 5.12 A). This suggests that E6
displays a phenotype that displays similar characteristics to that of a positive
interaction.
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FIGURE 5.11: Simulating the trend between interaction strength and AUC.A, Area
invaded normalised against mono-culture invasion at varying interaction strengths.
Fitted line is a parabola of form y = ax2 + bx + 1. As the interaction strength in-
creases the parabola shifts upwards. B, AUC plotted against interaction strength

demonstrates a positive relationship between AUC and interaction strength.

For F8 and F10, I see that F10 displays a striking declining phenotype where
as F8 displays a parabolic relationship, however this attain a peak and subse-
quent decline in a seeding ratio of 100% to 50%. This in the images is repre-
sented with a smaller core for F8 but for F10 I can see far fewer cells escaping
and a smaller core. (Figure 5.12 B).
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FIGURE 5.12: Normalised area invaded plotted with seeding ratio (left). Images of
fluorescent channel highlighting differences in the invasive phenotype between
a mono-culture and co-culture (right). A, E6 displays a parabolic relationship with
area occupied initially increase as the ratio of D10 increase, but then decreases as its
ratio become too low. D10 displays a negative decreasing relationship as its ratio
decreases. E6 (light blue) and D10 (red). B, F8 displays a parabolic relationship
with area occupied initially increase as the ratio of F10 increase, but this decreases
below the pure population level at a ratio of 0.5. F10 displays a negative decreasing

relationship as its ratio decreases. F8 (blue) and F10 (red).

5.6.2 Recovering invasion in silico

Using the proposed measurement AUC of normalised area invaded as a sum-
mary statistic to recover the interaction strength in simulations I can demon-
strate consistent recovery of the interaction strength in simulations. This was
tested across a range of interaction strength values.

5.6.3 Recovering invasion in vitro

Now I have defined a summary statistic that can capture the interaction
strength as well as demonstrated the in silico recovery of the interaction
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5.6. Detecting and measuring interaction strength in a co-culture

strength. The next step is to apply this to experimental images from the
clones from SU-DIPG-VI and HSJD-DIPG-007.

Clone D10 displays an interaction strength that is not credibly different from
zero (Figure 5.13A i), whilst there is a negative interaction strength seen from
the modal bin this is very close to zero. This is further seen from the AUC
plotted against the interaction strength, where I can see that there is a vast
number of simulations with interaction strength close to zero with AUC val-
ues similar to the experimental value (Figure 5.13A ii). Looking at the distri-
bution of the motility rate and motility rate plus interaction, I can see that
there is a slight negative shift of the distribution, this suggests there is a
weakly negative interaction but once again not credibly different from zero
(Figure 5.13A iii).

Clone E6 displays an interaction strength that is different from zero, which I
can see from the HDI; the modal bin is also positive (Figure 5.13B i). Looking
at the AUC plotted against interaction strength, I can see simulations with an
interaction strength of zero are not sufficiently able to achieve a similar AUC
as the experimental data (Figure 5.13B ii). Furthermore, the distribution of
motility rate plus interaction does not overlap with the initial motility rate;
thus there is a credible increase in the invasive phenotype of the clone E6
(Figure 5.13B iii).

Looking at both of these observations in conjunction suggests that commen-
salism exists between these two clones. This is due to the credibly positive
benefit received by E6 and not credibly different from zero interaction re-
ceived by D10, a one way positive interaction.

Clone F8 displays an interaction strength that is different from zero, which
can be seen from the HDI (0.55 14.06); the modal bin is also positive (8,9)
(Figure 5.14A i). Looking at the AUC plotted against interaction strength,
some simulations with an interaction strength less than zero have a similar
AUC. However, these simulations are not of a sufficient mass (Figure 5.14A
ii). Furthermore, the distribution of motility rate plus interaction has a slight
overlap with the initial motility rate; thus there is a credible increase in the
invasive phenotype of the clone F8 (Figure 5.14A iii).

Clone F10 displays an interaction strength that is different from zero, which
can be seen from the HDI (-27.13, -12.06); the modal bin is also negative (-20,-
18) (Figure 5.14B i). Looking at the AUC plotted against interaction strength,
no simulations with a similar AUC have zero interaction strength. (Figure
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Chapter 5. Quantifying spatial interactions

5.14B ii). Furthermore, the distribution of motility rate plus interaction has
non-overlaping shift to the left with the initial motility rate; thus there is a
credible decrease in the invasive phenotype of the clone F10 (Figure 5.14B
iii).

Looking at both of these observations in conjunction suggests that an ex-
ploitative interaction exists between these two clones. This is due to the
credibly positive benefit received by F8 and negative effect experiences by
F10.
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FIGURE 5.13: Summary of interaction strength recovered for clones from SU-
DIPG-VI. A) E6 (light blue) B) D10 (red) i) Posterior distribution of interaction
strength demonstrates that D10 has a negative (but not credibly different from 0)
interaction strength whilst E6 displays a credible positive interaction. ii) AUC plot-
ted against interaction strength with experimental AUC as vertical line shows the
relationship of the parameter value observed against experimental observations. iii)
Distribution of motility rate and interaction plus motility rate shows that there is
overlap between the motility rate of D10 in isolation and with an interaction. Whilst,
E6 displays no overlap and a considerable positive shift in its motility rate with a in-

teraction.
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Demonstrates that F8 has a psotive credible interval indicating a positive effect to
its motility rate from an interaction. F10 displays a large credible decrease in its
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and without and interaction, however, there is a clear positive shift. F10 displays a
considerably negative interaction with the distribution shifted very far left after an

interaction.

5.7 Discussion

In this chapter, I presented a new quantitative methodology enabling the de-
tection of positive spatial interactions that affect the invasive phenotype of a
subclone and also quantify them. I applied this to a unique set of single-cell
derived clones from autopsy samples. These findings help understand intra-
tumoural heterogeneity, a phenomenon linked to the adverse prognosis for
patients, particularly in the case of paediatric high-grade gliomas. Further-
more, detecting and measuring subclonal interactions can open the avenue
for treatments that seek to contain tumours by disrupting positive interac-
tions and promoting negative interactions.
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Spatial interactions are largely unexplored in cancer, particularly those af-
fecting cellular invasion, with much of the literature focusing on the prolifer-
ative interactions. Interactions in cancer are seldom identified, so it would
be interesting to see this work recreated in a greater number of samples.
Whilst I have demonstrated the ability to detect positive and negative in-
teractions and estimate their strengths across biological replicates, there is
significant room for further developments. Detecting interactions is merely
the initial step; the ultimate goal should be to understand such interactions
to improve patient outcomes, potentially through therapeutic interventions.
This study combines computational modelling study of intratumoral inter-
actions between subclones and created a model trained from two distinct
patient-derived cell lines well-characterized phenotypically and genotypi-
cally. Therefore, this new model can be applied to more cell lines and sub-
clones and potentially more cancer types. Whilst also focusing on determin-
ing mechanisms that underpin such interactions will enable the development
of therapeutic targets that leverage interclonal interactions to improve pa-
tient prognosis.

In the case of this chapter, a key extension would be to introduce mechanistic
modelling to determine the nature of interactions and find the causal fac-
tor. There are many different avenues for interactions to exhibit themselves,
such as being pulled via cell-cell adhesion or chemotaxis across a chemical
gradient. This will require the creation of assays tailored to detecting these
interactions, which should be matched with computation models that aim to
do the same. Models to recreate the interplay between spatial competition
and interactions will help broaden the understanding of how likely a partic-
ular clone is to be engulfed and how this changes with the ratio seeded and
strength of interaction.

While the model used in this study is relatively simple, as it does not in-
clude the presence of resource concentration gradients, secreted factors, and
many other considerations, it provides a crucial stepping stone in detecting
interactions. Furthermore, since positive interactions are seldom found, my
approach allows for the identification of interactions, indicating where re-
sources and time should be spent exploring the causes of such interactions
further.

170



Chapter 6

Modelling drug response

6.1 Introduction

Developing cancer therapies is a crucial aim of cancer research, with con-
siderable attention devoted to identifying drug targets. With tumours such
as pHGG, it is not always possible to carry out surgical resection, which
emphasises the non-surgical management of this disease. However, this is
hindered by intratumoural heterogeneity contained in these tumours, which
makes treatments challenging to develop [12]. A common theme seen in
cancer treatment is the emergence of therapeutic resistance. There may be
pre-existing resistant tumour cells that are selected by intervention or they
may arise during therapy. Further complicating treatment is the possibility
of subclonal interactions to confer resistance to otherwise sensitive popula-
tions, as seen in the study by Hobor et al. [75]. Here, the authors explored
the effect of EGFR signalling on cetuximab resistance, where therapy sensi-
tive cells develop tolerance due to the secretion of amphiregulin by resistant
cells.

Mathematical modelling presents a powerful tool to understand the dynam-
ics of treatment on tumours. These models, such as those created by Zhang
et al. [80], seek to model the temporal dynamics of therapy and utilise this to
inform treatment decisions. Jarrett et al. present a model to quantify the syn-
ergy present between therapies to increase the effectiveness of treatments for
HER2+ breast cancer [159]. McKenna et al. quantify drug pharmacokinetics
and pharmacodynamics of doxorubicin treatment in cell lines [160].

Therapies can be either cytostatic, cytotoxic or both [161]. Whilst trametinib
can induce autophagy and apoptosis, there are a number of examples high-
lighting a cytostatic effect as well [161], [162]. Dasatinib is linked to a more
cytostatic effect however does possess the ability to be cytotoxic [163]–[165].
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Quiescent cells are not actively proliferating but are also not undergoing cell
death as readily.

In the previous two chapters, I have quantified the mono-culture and co-
culture phenotypes of two distinct populations in terms of invasion and pro-
liferation. This allowed for the selection of suitable models to capture the
dynamics present and now allows me to extend these models to incorporate
the effect of therapy on the growth and invasion of cells.

In this chapter, I develop and test models to understand the dynamics of B169
and T3 under dasatinib and trametinib therapy. These lines have demon-
strated reciprocal sensitivity to the two drugs in 2D in vitro assays in a pre-
vious study by members of my research groups, Izquierdo et al. [103]. B169
displays sensitivity to trametinib whilst T3 displays resistance. Under dasa-
tinib, T3 displays sensitivity to therapy whilst B169 does not. Utilising a sys-
tem with two lines derived from the same bulk tumour and two chemother-
apy drugs with differing mechanisms of action allows for the exploration of
mathematical models across a broader context. The models first quantify the
mono-culture dynamics of B169 and T3 under therapy, followed by looking
at the effect therapy has on the competitive landscape between the two lines.
Understanding the implications of co-culture therapy is crucial to the work
performed in Chapter 7, where adaptive therapy treatment protocols are in-
vestigated. The key aim of this chapter is to quantify the therapeutic response
to cells under therapy and how this changes when cells are under co-culture
conditions.

6.2 Experimental set up

In chapter 4 I demonstrated the presence of considerable variations between
experimental replicates. This is addressed by conducting both co-culture and
mono-culture experiments in parallel. This limits the need to process infer-
ence from input parameters generated from quantification on another exper-
iment, thus reducing variability arising from cell passages as well as minor
fluctuations in tissue culture conditions explored. Specific tissue culture con-
ditions and protocols are explained in Chapter 2 and Appendix B.

For 2D experiments, the drug concentrations used were: 0µM, 0.001µM,
0.01µM, 0.1µM and 1µM. The seeding ratios used are: 100% B169, 75% B169
25% T3, 50% B169 50% T3, 25% B169 75% T3, and 100% T3. For 3D experi-
ments the drug concentrations used are: 0µM, 0.01µM, 0.1µM and 1µM. The
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seeding ratios used are: 100% B169, 75% B169 and 25% T3, 50% B169 and
50% T3, 25% B169 and 75% T3, and 100% T3. These assays are performed for
both dasatinib and trametinib in parallel.

6.3 Modelling 2D growth dynamics under therapy

In this section, I explored introducing therapy into the Lotka-Volterra co-
culture growth equations with Allee effects explored in Chapter 4. All
growth parameters were drawn from the distributions derived in Chapter
4, in this chapter I will be introducing drug response parameters.

The inference methodology I use in the section is similar to previous ap-
proaches. I will begin by describing the growth dynamics under therapy
for a mono-culture by introducing drug response parameters. The models
were evaluated for suitability by using the mean values for input and fitted
parameters. These parameters were next be passed into co-culture models of
drug response to infer the effect of therapy on co-culture growth dynamics.

Once a model is selected for both mono-culture and co-culture conditions,
I pass the recovered distribution of growth parameters, from Chapter 4, as
prior parameter assumptions and attempt to recover the parameter distribu-
tion for drug response and interactions parameters. Finally, when attempting
to infer the drug response parameters, the lower bound for this parameter is
set to 0 since it does not make sense the have a positive growth effect derived
from therapy.

6.3.1 Modelling drug response in a mono-culture

For a mono-culture I also investigate the suitability of ODEs to model drug
response. I explored 3 models to introduce drug response into mono-culture
drug dynamics. These are explored by drug response reducing the growth
rate (Model 1), reducing the carrying capacity (Model 2) or inducing quies-
cence in addition to reducing the growth rate (Model 3 adding quiescence
and rate response, Model 4 adding only quiescence).

6.3.1.0.1 Model 2D-Mono-1: Drug response as a rate The first model I
explore introduces drug response as a negative term that reduces the growth
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rate. This can be represented by the equation:

dN
dt

= rN
(

1− N
K

)(
N

N + A

)
− DN (6.1)

where D is the drug response parameter, increasing the value of D leads to
the population growing slower and to a lesser size. At a significantly high
level of D, the population shrinks. The effect this has on the system’s stability
is a shift in the stationary point, which is at carrying capacity in the absence of
therapy (Figure 6.1 A). As D increases, the stable stationary point initially at
carrying capacity K shifts towards zero, signifying that increasing D reduces
the population’s carrying capacity under therapy (6.1 B). Thus, under logistic
growth (by setting A = 0 or removing the Allee growth term), the effect of
increasing D is shifting the per capita growth rate curve downwards (Figure
6.1 C).
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FIGURE 6.1: Exploring the growth dynamics of therapy us-
ing the model described in equation 6.1 A) Growth curves of
a population under different drug response values. As drug
response increases, the population size and growth decreases.
B) Growth rate plotted for different population sizes at vary-
ing values of drug response - the stationary point of this sys-
tem shifts to the left as drug response increases. C) Per capita
growth rates at varying drug response values, this shows the
effect of the drug is to shift the per capital growth downwards.

6.3.1.0.2 Model 2D-Mono-2: Drug response reducing carrying capacity
Another model I tested to capture drug response dynamics involves a re-
duction of the carrying capacity. This is a common approach used in many
studies such as those from Jarrett et al. and Zhang et al. [80], [159]. The model
is as follows:

dN
dt

= rN
(

1− N
K− D

)(
N

N + A

)
(6.2)

where, again, D represented the drug response parameter. However now D
will be bound by the limits 0 ≤ D ≤ K. The dynamics under this model are
similar to that seen in equation 6.1 (Figure A, B), however the key difference
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FIGURE 6.2: Exploring the growth dynamics of therapy using
the model described in equation 6.2 A) Growth curves of a
population under different values of drug response. As drug
response increases the population size and growth decreases.
B) Growth rate plotted for different population sizes at varying
drug response vlaues. The stationary point of this system shifts
to the left as drug response increase. C) Per capita growth rates
at varying drug response values, this shows the effect of the

drug is to pivot the per capital growth clockwise.

is noted from looking at the per capital growth rate. Under equation 6.1 (Fig-
ure C), increasing the value of D shifts this curve down whilst using equation
6.2 results in a pivot of clockwise (Figure C). This means that under equation
6.1 the per capita growth rate is lower for all values of N. However, under
equation 6.2 the per capita growth rate decreases as N increases; thus, at low
values of N the difference in rates is smaller. These models produce different
growth dynamics as a result and I will explore which is most appropriate.

6.3.1.0.3 Model 2D-Mono-3/4: Drug response as a rate with switching to
quiescence The final model I test introduces the presence of quiescent cells
that may arise due to cytostatic effects arising from therapies. These cells
do not undergo cell death, instead enter a state of dormancy, however, they
still occupy space and as such will have implications towards to growth of
neighbouring cells. To introduce these effects, I utilise a system of coupled
ODE’s:

dN
dt = rN

(
1− N+M

K
) ( N

N+A
)
− DN −QN

dM
dt = QN

(6.3)

where N are normal cells and M represents quiescent cells, D is the drug re-
sponse parameter affecting slowing growth and causing cell death, and Q is
the transition rate to a quiescent state. The dynamics under this system are
vastly different and depend on 2 groups. Looking at the growth of the prolif-
erating population demonstrates that there is a similar effect to equation 6.1
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on confluence as drug response increase (Figure 6.3 A). The key difference
in this model is that cells are now able to transition to a non-proliferating
quiescent state at rate Q. Looking at the growth of this population, with a
low transition rate the proliferating population is still able to grow, however,
once this rate reaches a significantly higher level the proliferating population
shrinks. The effect this has on the quiescent population is that there are fewer
proliferating cells at higher transition rates thus fewer cells are able to switch
to a quiescent state. This leads to a plateau in this population size (Figure
6.3 B). The total confluence in this instance differs from the dynamics under
equation 6.1, this demonstrates that the switch to a quiescent stage leads to
the density remains flat instead of decreasing (Figure 6.3 C).
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FIGURE 6.3: Exploring the dynamics of drug response with a
transition to a quiescent state. A) Confluence of proliferating
cells over time. B) Confluence of quiescent cells over time. C)

Total confluence over time.

For this model, I investigated the presence of cells to transition to a quies-
cent state and a drug response similar to equation 6.1. I explore the model
suitability with both effects and just quiescence in isolation.

6.3.1.0.4 Inference These models are compared for their appropriateness
in explaining the experimental data. Once assessed, the best model is chosen
and prior distributions for the growth rates and initial density, error is prop-
agated forward. Using 100 simulations drawn from growth parameters and
initial density I construct a distribution for drug response.
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6.3. Modelling 2D growth dynamics under therapy

6.3.1.1 Quantifying the drug response

To understand the suitability of each model I begin my analysis by fitting
each model to the data using the mean growth parameters derived in chap-
ter 4. This will allow me to determine the performance of the model and un-
derstand the mean drug response. The drug response parameter has a lower
bound set a 0, this is chosen since introducing treatment should not enhance
growth and this is not be explored. However, the upper bound is set to just
below 1 for equation 6.2, as this is the carrying capacity of the system.

2D-Mono-1 2D-Mono-2 2D-Mono-3 2D-Mono-4

B169 + Dasatinib -4565 -4660 -4649 -4656
B169 + Trametinib -5734 -5840 -6438 -6396

T3 + Dasatinib -4469 -5099 -4757 -4709
T3 + Trametinib -4710 -4721 -4700 -4708
All Conditions -8509 -8893 -8759 -8737

TABLE 6.1: AICc values for 3 models described in equations
6.1 (2D-Mono-1), 6.2 (2D-Mono-2) and 6.3 (2D-Mono-3/4). The

lowest AICc value is presented in bold.

The decision based on the AICc values summarised in Table 6.1 is that 2D-
Mono-2 is the best fitted model. This choice is made as it has the lowest
AICc value across 3 of the conditions tested. 2D-Mono-3 performs best for
B169 under trametinib however includes an additional parameter and under
performs in the other 3 conditions tested. Of particular note, only 2D-Mono-2
is able to capture the behaviour of T3 under dasatinib concentrations 0.01µM
and 0.1µM. 2D-Mono-2 also displays the best AICc value across a summary
of all conditions, further supporting my decision (Figure 6.4).
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FIGURE 6.4: Demonstrating the resulting fitted regression
models from equations 6.1 (2D-Mono-1), 6.2 (2D-Mono-2) and
6.3 (2D-Mono-3/4). A) Fitted models for B169 (blue) and T3
(red). Here, all models demonstrate an ability to capture the
dynamics in terms of slowed growth as the concentration of
therapy increases. However, 2D-Mono-2 appears to show the
best fit (supported by AICc in Table 6.1), which is demonstrated
in the highlighted fits. B) Highlighting two cases of model fits
where only 2D-Mono-2 is able to capture the dynamics by dis-
playing a plateau and faster initial growth whilst 2D-Mono-
1/3/4 show an agreement amongst each other in not being able

to replicate the dynamics.
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6.3. Modelling 2D growth dynamics under therapy

Solely relying on minimising AICc is not a sufficient methodology of model
selection, and as such, I look at the appropriateness of the fitted models to
further emphasise my decision. Looking at all of the 4 fitted models plotted
with the experimental data, it is clear that all the models visually represent a
good fit to the data (Figure 6.4). There is considerable agreement between 2D-
Mono-3 and 2D-Mono-4 as these involve the same base models. 2D-Mono-2
appears to diverge most prominently from the other models, this can par-
ticularly be seen in the dasatinib concentration for 0.1µM and 0.1µM for T3
(Figure 6.4 A). Here, 2D-Mono-1, 2D-Mono-3 and 2D-Mono-4 are not able to
capture the effect of what appears to resemble a plateau which 2D-Mono-2
is able to do this. This exercise provides visual confirmation for the decision
to choose 2D-Mono-2 (Figure 6.4 B). 2D-Mono-2 is a simple model involving
1 additional parameter and is able to replicate the dynamics across multiple
conditions in this assay consistently.

The dose-response curves fitted to the mean drug response parameter
demonstrate reciprocal sensitivity for dasatinib and trametinib for B169 and
T3 (Figure 6.5). B169 displays higher sensitivity for trametinib compared to
T3. T3 displays higher sensitivity to dasatinib compared to B169, and negli-
gible or no response to trametinib.

B169 T3

0.001 0.01 0.1 1 0.001 0.01 0.1 1
0.0

0.2

0.4

0.6

0.8

Concentration (uM)

R
es

po
ns

e

Line
B169
T3

Drug
Dasatinib
Trametinib

0 0

FIGURE 6.5: Dose response curves for drug response parame-
ter. For B169 (blue) and T3 (red) with trametinib (solid line and
circles) and dasatinib (dashed line and triangles). This high-
lights the differential sensitivity for dasatinib and trametinib for

B169 and T3.

The next step in my analysis is to propagate the uncertainty in the value
of growth parameters. Drawing 100 sets of values from the prior growth
parameter distributions, I carry out parameter optimisation to find the best
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parameter value D for each drug and concentration. Saving the resulting pa-
rameter values allows for the construction of a posterior distribution for drug
response, this will be used to condition co-culture drug response simulations.
I used these fitted parameter distributions to construct dose response curves
to find the best fit curve that incorporates input parameter uncertainty. The
resulting dose-response curves show similar relationship to the previously
defined models (Figure 6.6 A). The difference in the response of B169 and
T3 to dasatinib is less prominent, with B169 showing sensitivity at a lower
concentration but both B169 and T3 showing similar maximal response (Fig-
ure 6.6 B). The difference in the response of B169 and T3 to trametinib is
more prominent, with B169 showing sensitivity and T3 displaying minimal
response (Figure 6.6 B). Looking at the distance between the curves the max-
imum difference under trametinib is obtained at 1µM, however, it is impor-
tant to note that this is due to this being the maximum concentration used in
my experiments. Response under dasatinib is closer between B169 and T3,
and a maximum is obtained at 0.04µM.
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FIGURE 6.6: Posterior drug response parameters fitted to dose
response curves for B169 and T3 under dasatinib and tram-
etinib. A) Demonstration of B169 (left) and T3 (right) drug
response under trametinib (grey, dashed line) and dasatinib
(white, solid line). The reciprocal sensitivity is demonstrated
here where B169 is more sensitive to trametinib and T3 is more
sensitive to dasatinib. B) The sensitivity of B169 and T3 to
dasatinib is closer than the sensitivity to trametinib. C) B169 is
more sensitive under trametinib and this achieves a maximum
at 1µM and T3 is more sensitive under dasatinib which has a

peak at 0.04µM.
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Finally, looking at images from the assay at day 6 can illuminate the dynam-
ics observed (Figure 6.7). Visually, I can confirm that there is response for
B169 with both dasatinib and trametinib therapy (Figure 6.7 A). For T3, there
is therapeutic response observed for dasatinib only (Figure 6.7 B). This fur-
ther supports my observations and adds confidence to my 2D model infer-
ence.
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FIGURE 6.7: Images from drug response assay of B169 and
T3 mono-cultures at day 6. A) B169 displays response to both
dasatinib and trametinib, although this is emerges at a lower
concentration and more strongly for trametinib response. B) T3
displays no observable response to trametinib; however dasa-

tinib response is clearly demonstrated.

6.3.2 Modelling the effect of therapy on co-culture dynamics

Following quantification of drug response in a mono-culture, models for co-
culture drug response are required to understand the effect of heterogeneity
on therapy. There are a number of effects heterogeneity can introduce to ther-
apy. An obvious effect is changing the competitive landscape, since therapy
affects the way cells grow it is easy to assume that it will also affect the way
cells utilise their environment and thus how they compete with neighbour-
ing cells. Heterogeneity may also alter the effect of therapy on a cells growth.
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6.3.2.1 Modelling co-culture dynamics under therapy

6.3.2.1.1 Null model (2D-Co-Null) The null model under co-culture in-
teractions I use involved combining both drug response determined in the
previous section and the interaction parameters from chapter 4. The form
this model takes is as follows:

dN1
dt = rN1

(
1− N1

K1−D1
− a12N2

K2

) (
N1+b12N2

N1+b12N2+c1

)
dN2
dt = rN2

(
1− N2

K2−D2
− a21N1

K1

) (
N2+b21N1

N2+b21N1+c2

) (6.4)

here the drug response parameter reduces the carrying capacity of each
line and thus increases the occupancy fraction at the same density reduc-
ing growth. I do not include the terms D1 and D2 in both equations, this
choice can be explained with an example. If D1 = 0.5 and D2 = 0, there
should not be a response for population 2, however if the occupancy term(

1− N2
K2−D2

− a21N1
K1

)
is replaced with

(
1− N2

K2−D2
− a21N1

K1−D1

)
then the growth

of population 2 is hindered as populations 1 attains its carrying capacity at a
lower density, saturating occupancy incorrectly.

6.3.2.1.2 Alternative model (2D-Co-Alt) I also explore the model where
drug response is included outside of the growth terms, like in equation 6.1,
comparing it to the previous model. The model is as follows:

dN1
dt = rN1

(
1− N1

K1
− a12N2

K2

) (
N1+b12N2

N1+b12N2+c1

)
− D1N1

dN2
dt = rN2

(
1− N2

K2
− a21N1

K1

) (
N2+b21N1

N2+b21N1+c2

)
− D2N2

(6.5)

6.3.2.1.3 Drug response interaction models I investigated improvements
to the fitted models by introducing changes to which parameters are being
inferred. In the co-culture Allee effect growth model there are two sources of
interactions that exist. Here I explore 3 such models to address the effect of
therapy on the competitive landscape as well as the effect of co-cultures on
drug response.
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Looking at the 3 models I explore, I present one of the equations from the
system of ODEs for each model:

2D-Co-1:
dN1
dt = rN1

(
1− N1

K1−D1
− a12N2

K2

) (
N1+b12N2

N1+b12N2+c1

)
dN2
dt = rN2

(
1− N2

K2−D2
− a21N1

K1

) (
N2+b21N1

N2+b21N1+c2

) (6.6)

2D-Co-2:
dN1
dt = rN1

(
1− N1

K1−D1
− a12 N2

K2

) (
N1+b12 N2

N1+b12 N2+c1

)
dN2
dt = rN2

(
1− N2

K2−D2
− a21 N1

K1

) (
N2+b21 N1

N2+b21 N1+c2

) (6.7)

2D-Co-3:
dN1
dt = rN1

(
1− N1

K1−D1
− a12 N2

K2

) (
N1+b12 N2

N1+b12 N2+c1

)
dN2
dt = rN2

(
1− N2

K2−D2
− a21 N1

K1

) (
N2+b21 N1

N2+b21 N1+c2

) (6.8)

in bold are the parameters that are being inferred for each model. In the first
model, I will explore the effect of drug response changes from being in a co-
culture. This will be performed by keeping interaction coefficients fixed to
the values derived in chapter 4. The second model does this opposite and
keeps drug response fixed, at values derived in the previous section, instead
of looking at the effects of drug response on the co-culture interactions. Fi-
nally, the third model combines both of these effects and looks to understand
the dynamics if both of the parameters are able to be adjusted.

The dynamics of these models have largely been explored in previous sec-
tions, with two-species growth dynamics and Allee effects explored in Chap-
ter 4, and drug response parameters explored in the previous section.

6.3.2.1.4 Inference Each drug and each concentration is not assumed to
affect the co-culture dynamics equally, so these combinations are treated as
separate models, but inference of the best model is selected for the whole
dataset. As a result of this consideration, every drug and concentration com-
bination has parameters inferred separately. This will require extra checks
for overfitting as the number of parameters in this case is equal to the num-
ber in each model multiplied by the number of drug and concentration com-
binations (in this chapter, this is up to 6 parameters multiplied by 4 drug
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6.3. Modelling 2D growth dynamics under therapy

concentrations and 2 drugs, leading to a total of 16 to 48 fitted values).

When selecting a model, in this case, I impose additional checks to avoid
overfitting. The AICc and visual goodness-of-fit checks are maintained, how-
ever, the approach used also requires to check the dose-dependent trend of
parameters inferred. If parameters display a dose-dependent trend, this sug-
gests that there is an increasing or decreasing effect observed in line with
drug concentration. However, if this trend is somewhat random it could in-
dicate the model is overfitting to the variability between conditions.

6.3.2.2 Testing null models

First, I compared the fits demonstrated by the two models described in equa-
tions 6.4 and 6.5, referred to as model 2D-Co-Null and 2D-Co-Alt respec-
tively. Using growth and drug response parameters derived in Chapter 4
and Section 6.3.1 and combining these with the above models provide pre-
dictions in the absence of drug response.

The fits demonstrate that model 2D-Co-Null is better able to describe the data
than model 2D-Co-Alt; this is predictable since model 2D-Co-Null is an ex-
tension of a drug response that was not the most optimal fit in mono-cultures.
The sum of squared errors for model 2D-Co-Null are 2.91 and 13.58 for dasa-
tinib and trametinib, respectively. The sum of squared errors for model 2D-
Co-Alt are 6.84 and 15.88 for dasatinib and trametinib, respectively. Since
these models have the same number of input parameters, the lower residual
for model 2D-Co-Null further supports my decision to use a model where
drug response affects the carrying capacity. Looking closely at the fits, both
models are unsatisfactory in explaining the dynamics, especially in terms of
the trametinib response (Figure 6.8). It is clear from this that there is some
deviance in response from the null prediction, especially for higher concen-
trations of trametinib.

This demonstrates that using an approach following equation 6.4 produces
a closer fit to the dynamics observed in comparison to equation 6.5 (Figure
6.8).
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FIGURE 6.8: Fitted models using equations 6.4 (solid line) and
6.5 (dashed line) using previously determined parameter val-
ues. A) Fitted models for dasatinib response at varying con-
centrations and ratios for B169 (left, blue) and T3 (right, red).
Here both models show some ability to capture the dynamics
with equation 6.4 (solid line) performing better. B) Fitted mod-
els for trametinib response at varying concentrations and ra-
tios for B169 (left, blue) and T3 (right, red). Here both models
show some ability to capture the dynamics with equation 6.4

performing better in this instance again.

6.3.2.3 Model selection and interpretation

These 3 models described in section 6.3.2.1.3, have varying effectiveness at
explaining the data. Looking at the AIC for each model, it is apparent that
the model with 6 parameters fitted is the best choice (Table 6.2).
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Null 2D-Co-1 2D-Co-2 2D-Co-3

Dasatinib -55828 -62675 -65306 -67726
Trametinib -63268 -71513 -73448 -74247

TABLE 6.2: Summary of AICc values from model fits demon-
strate that the 6 parameter fitted model produced the best fit
in both dasatinib and trametinib. 2D-Co-3, containing 6 fitted

parameters, is the best choice.

Other checks, in addition to finding the lowest AICc value, were performed
to see if the models make logical sense. First, I look at the values of each co-
efficient recovered from this analysis plotted against the drug concentration.
This will highlight the effects of therapy on parameter values and thus the
dynamics of the system. I assume that drug response rates would display a
shift in the dose-response curve if there is an effect from being cultured in a
co-culture. Additionally, if interactions (parameters a12, a12, b12 and b21) are
affected by drug response then they should demonstrate a dose-dependent
trend, similar to a dose-response curve. Looking at 2D-Co-1, the response
parameters follow a similar trend to the dose-response curves previously de-
rived in this chapter (Figure 6.9). This relationship, unsurprisingly, just con-
firms the assertion that drug response is dependent on concentration. For
2D-Co-2, it is clear that there is a relationship between the Lotka-Volterra
competition coefficient. Looking at dasatinib fitted values, the relationship is
weak and appears somewhat randomly scattered (Figure 6.10). This could be
indicative of overfitting to experimental variability, and coupled with lower
AICc than 2D-Co-3 leads me to discredit this model. 2D-Co-3 in fact presents
the most convincing fit visual and as demonstrated by the AICc. Addition-
ally, there is a clear dose-dependent relationship for all sets of parameters
(Figure 6.11).
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FIGURE 6.9: Value of response parameter from 2D-Co-1 at dif-
ference concentrations of therapy demonstrates similar drug
response to that seen in 6.5. A) Dasatinib response. B) Trame-

tinib response.

187



Chapter 6. Modelling drug response

0.75

1.00

1.25

1.50

0.0010.01 0.1 1
Concentration (uM)

R
es

po
ns

e

0.5

1.0

1.5

2.0

0.001 0.01 0.1 1
Concentration (uM)

R
es

po
ns

e
0

1

2

3

0.001 0.01 0.1 1
Concentration (uM)

R
es

po
ns

e

0.0

0.5

1.0

1.5

0.001 0.01 0.1 1
Concentration (uM)

R
es

po
ns

e

A) B)Dasatinib Trametinib
a12
a21

C) D)Dasatinib Trametinib
b12
b21

b12
b21

a12
a21

FIGURE 6.10: Value of fitted parameters from 2D-Co-2 at dif-
ferent concentrations of therapy. A) Lotka-Volterra interac-
tion coefficients under dasatinib therapy demonstrates some-
what random scattering of coefficients shown by a visually
poor fit. This is indicative of overfitting. B) Lotka-Volterra
interaction coefficients under trametinib therapy demonstrate
more structure than dasatinib dynamics. Here there is an in-
crease in the competition faced by B169. C) Allee interaction co-
efficients under dasatinib therapy demonstrate a relatively flat
profile indicating this parameter has little effect on the dynam-
ics observed. D) Allee interaction coefficients under trametinib
therapy demonstrate more structure than seen under dasatinib
therapy. Here the benefit experienced by B169 is greatly re-

duced to the lower bound of 0.
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FIGURE 6.11: Value of fitted parameters from 2D-Co-3 at dif-
ferent concentrations of therapy. A) Drug response parame-
ters under dasatinib therapy show a reduction in the effect ex-
perienced by T3. B) Drug response parameters under dasatinib
therapy show a similar effect to the mono-culture phenotype.
C) Lotka-Volterra interaction coefficients under dasatinib ther-
apy shows that both B169 and T3 experience more competition
from one another under therapy, with the greater increase seen
for T3. D) Lotka-Volterra interaction coefficients under dasa-
tinib therapy shows that both B169 experiences more competi-
tion whilst T3 experiences less. E) Allee effect interaction coeffi-
cients under dasatinib therapy shows a relatively flat profile for
both B169 and T3, indicating that this parameter might have a
negligible effect on the overall dynamics. F) Allee effect inter-
action coefficients under trametinib therapy demonstrate B169
experience a reducing benefit from T3 as the concentration of

therapy increases.

For dasatinib response, both 2D-Co-1 and 2D-Co-3 are near identical for T3
and B169 dynamics. Although the AICc value is higher than 2D-Co-3, the
fitted values are very close between the two models. The change in drug
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response for T3, observed in 2D-Co-3, raises alarms. It appears the higher
competition coefficient value DB is leading to a lower therapy response ob-
served (Figure 6.11). Looking at the model fits, it does not appear there is a
reduced response for dasatinib. Combining all these factors, I have deemed
2D-Co-1 to be a satisfactory model to describe the dynamics of B169 and T3
in a co-culture under dasatinib treatment. However, I also will consider the
implications under 2D-Co-3 due to the lower AICc.

For trametinib response, the decision is simpler. 2D-Co-1 displays a less con-
vincing fit to the data than 2D-Co-3, it also has a higher AICc value and
model 3 has coefficients that follow a density-dependent trend. Due to these
3 factors, I reject 2D-Co-1 in favour of model 3 and explore the implications
of the finding from this model.

I drop 2D-Co-2 from my analysis due to the display of unsatisfactory param-
eter fits, as they do not follow a dose-dependent trend. Between 2D-Co-1
and 2D-Co-3, I am concerned of the potential overfitting to data for dasatinib
response. Rejecting 2D-Co-1 in this case would have significant implications
to the interpretation of data, as 2D-Co-3 suggest T3 experiences more com-
petition under therapy but displays a lower response to the drug itself. This
is a contradiction that should arise scepticism, as the relative improvements
to the model appear limited, and the inference of parameter values do not
follow logical sense. Equally with the current data available, there is support
from AICc and quality fitted models to suggest 2D-Co-3 is superior. As such,
without additional data to assess these models, I proposed a compromise
where I analyse both models for dasatinib response moving forward.

These issues are not present with trametinib response, here it is easy to see
that 2D-Co-1 is unsuitable from the model fits. Additionally, the parameters
of 2D-Co-3 are logically consistent in this case. B169 displays sensitivity to
trametinib, and T3 does not, as a result B169 experiences more competition
from T3 and T3 experiences less competition from B169.

Interpreting of the meaning of these parameters can provide insight into the
potential causes. B169 displays a similar drug response under trametinib,
however, there are considerable differences in the competition coefficient and
Allee effect interactions. B169 is not experiencing significantly higher com-
petition from T3 and also a lesser contribution to its Allee effect from T3. On
the other hand, T3 is experiencing less competition and an unchanged Allee
threshold. Adding these two factors together, T3 is out-competing B169 at
a greater rate under trametinib therapy, resulting in T3 displaying higher
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growth than the null model (using mono-culture response parameters and
co-culture parameters in the absence of therapy) would predict, while B169
displays slower growth. The relevance of this finding is that under tram-
etinib therapy the interaction coefficients under therapy enhance its effec-
tiveness. Since B169 experiences greater competition and lower Allee effect
interactions, it means that the effect of therapy on B169 in a co-culture with
T3 is being enhanced. This is an interesting finding as it suggests that hetero-
geneity can increase the potency of therapy by modulating the competitive
dynamics. As explained in Chapter 4, B169 experienced a positive short-term
interaction from T3, this is completely eliminated under therapy.

Under dasatinib response, I present the findings of 2D-Co-1 and 2D-Co-3 sep-
arately. Under 2D-Co-1, the drug response parameters are very similar with
the same hierarchy of response maintained. This suggest that the null model
is suitable in predicting response if variability in drug response parameters
are accounted for. The relevance of 2D-Co-1 is no different from that seen in
the mono-culture drug response models. B169 and T3 seem to display similar
sensitivities with an optimal concentration to target T3 with dasatinib falling
in around the same range as previously seen (0.01-0.1µM).

Under 2D-Co-3, the interpretation is more complex. As previously men-
tioned T3 displays less sensitivity but experiences significantly more com-
petition under therapy. The effect of this is that both B169 and T3 experience
significantly impaired growth as a result of dasatinib therapy, however the
cause differs. T3 experiences impaired growth in this instance due to the
competitive dynamics. However, the deviation of T3 response from higher
sensitivity in a mono-culture to lower sensitivity in a co-culture seems im-
plausible, and the response observed visually is still similar. Continuing to
interpret this model, it appears to demonstrate that both B169 and T3 expe-
rience enhanced competition with Allee dynamics unchanged. The findings
from this model are largely contradictory, and thus, this model should now
also be disregarded.

6.4 Drug response models in tumour spheroids

Introducing drug response into a PDE model of spheroid growth follows a
similar strategy to that seen in the previous section. Incorporating a drug
response term either slows down or negatively impacts the growth observed.
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I will explore both cases to find the most suitable model for mono-culture
dynamics.

Using a similar methodology as the previous section, I infer the effect of ther-
apy on the co-culture dynamics. Specifically, I try to identify whether the co-
culture dynamics are altered due to therapy and the implications of this to
modelling considerations.

Taking insight from spheroid modelling in Chapter 4, I treat each co-culture
seeding ratio as a separate condition and infer model parameters separately.
Additionally, I attempt to explore the global dynamics across multiple seed-
ing ratios. Each drug and concentration will also be modelled as a separate
system, with an attempt to identify a dose-dependent treat in parameter val-
ues.

In Chapter 4, I determined that inference for co-culture conditions can be
carried out together. This greatly reduces the complexity of the modelled
data and now I treat each concentration and drug as a separate system.

6.4.1 Drug response in spheroid mono-cultures

6.4.1.1 Modelling drug response

3D-Mono-1

To introduce therapy into spheroid models, I follow an approach similar to
that used for 2D assays. Including a negative term that reduces the rate of
growth can capture the effects of therapy on growth. The model builds on
the PDE model for spheroid growth (equation 4.12) and is as follows:

∂u
∂t

=
∂

∂x

[
∂

∂x
u
]
+ ρuu (1− u)− Du (6.9)

where the new term introduced D represents drug response. Deriving the
finite difference scheme of this equation is as follows:

un+1
i = un

i + ∆t [Qn
i + ρuun

i (1− un
i )− Dun

i ] (6.10)

where ∆x is the grid spacing, ∆t is the time intervals and Qn
i is defined by:

un
i+1 − 2un

i + un
i−1

∆x2 (6.11)
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3D-Mono-2

I also explore another model introducing therapy into spheroid models.
Once again, introducing a negative rate term, however this is absorbed into
the growth rate in this instance. The reason this distinction is made is due to
the fact spheroids represent a solid mass of maximum occupancy, however,
under the previous model in equation 6.9 the negative death term leads to a
maximum local density less than 1.

The growth model now becomes:

∂u
∂t

=
∂

∂x

[
∂

∂x
u
]
+ (ρu − D) u (1− u) (6.12)

with finite differences scheme:

un+1
i = un

i + ∆t [Qn
i + (ρu − D) un

i (1− un
i )] (6.13)

where Qn
i is identical to equation 6.11.

The dynamics of these two models can be explored in terms of increasing the
response parameter D. Looking at the response of 3D-Mono-1 compared to
3D-Mono-2 it is evident that 3D-Mono-1 displays a more immediate response
to therapy for whilst 3D-Mono-2 demonstrates a flatter response (Figure 6.12
A). In fact, comparing a response rate of 0.25 in both models (the second
weakest response shown) it is apparent that for the same response 3D-Mono-
1 demonstrates a larger effect.

In 3D-Mono-1, the drug response parameter reduces the maximum density
observed at any distance from the centre. The value this is reduced to can
be seen by finding the stable stationary point of the growth term. This is ob-
tained by solving ρu (1− u) − Du = 0 to arrive to the solution u = 0 and
u = ρ−D

ρ . This similar reduction is not seen from 3D-Mono-2 where find the
stable stationary point of the growth term by solving (ρ− D) u (1− u) = 0
results in the exact same stationary point in the presence or absence of drug
response. This can be highlighted graphically by looking at the effect of
drug response on the waves, with 3D-Mono-1 shifting the wave down whilst
3D-Mono-2 shifts the wave to the left (Figure 6.12 B). 3D-Mono-1 produces
dynamics that are not consistent with the expectation of the density wave
a spheroid would present, where the density will be equal to 1 inside the
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spheroid and 0 outside the spheroid. It is unrealistic to expect the interior of
a spheroid to have a density of less than 1.
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FIGURE 6.12: Highlighting the effects of drug response on the
growth dynamics of spheroids. A) The normalised area occu-
pied decreases in both models as the response rate increases.
However, in 3D-Mono-1, the response occurs at an earlier time
point whilst, under 3D-Mono-2, the response occurs later. B)
The waves of the models demonstrates that the response pa-
rameter in 3D-Mono-1 reduces the maximum density whilst in

3D-Mono-2 the response shifts the wave to the left.

6.4.1.2 Measuring drug response

Applying the model described in equation 6.12 to the data using a genetic
algorithm can give an understanding of the drug response. Looking at the
fitted values of this model demonstrates that it performs considerably better
than the model described by equation 6.9 (Figure 6.13). This is no surprise
since I previously showed that the latter model was unsatisfactory in recre-
ating spheroid dynamics (Figure 6.12 B).
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FIGURE 6.13: Fitted values for the growth of tumour
spheroids under dasatinib and trametinib therapy using two
models based on equations 6.9 (3D-Mono-1 - dashed line)
and 6.12 (3D-Mono-2 - solid line). For both B169 (blue) and
T3 (red) 3D-Mono-2 outperforms 3D-Mono-1. A) Response for
B169 (blue) demonstrates greater response for trametinib than
dasatinib. B) Response for T3 (blue) demonstrates greater re-

sponse for trametinib than dastinib.

On inspection of the parameter recovery for the response parameter D, it ap-
pears that the dynamics of B169 agree with 2D observations (Figure 6.12 A,
Table 6.3). There is response to both dasatinib and trametinib; however, the
trametinib response arises more rapidly and attains a higher value (Figure
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6.12 A, Table 6.3). On the other hand, T3 dynamics appear to disagree with
2D observations. In 2D assays, there is no response observed for T3 under
trametinib, but in 3D assays, I observed a positive response (Figure 6.12 B,
Table 6.3). As expected, there is also response to dasatinib for T3 (Figure 6.12
B, Table 6.3). This is highlighted clearly in the dose response curves, where it
is important to note that D is larger in B169 models than T3 due to the faster
proliferation rate of B169 (Figure 6.14). Looking at the percentage response
can make these parameters more transferable between line, by normalising
for growth rate; however these models are designed to understand the tem-
poral growth dynamics of a cell line over time and not to make comparison
using parameter values (Table 6.4).
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FIGURE 6.14: Dose-response curves for B169 (blue) and T3
(spheroids) highlighting the effect of trametinib (solid line) and
dasatinib (dashed line) therapy on the growth of spheroids.
Here the response rate is the value of the parameter D deter-

mined from inference using equation 6.12.

0.01 µM 0.1 µM 1 µM
B169 trametinib 0.673 2.652 3.239
T3 trametinib 0.186 0.339 0.943
B169 dasatinib 0.517 0.796 1.555
T3 dasatinib 0.0102 0.112 0.681

TABLE 6.3: Summary of drug response parameters for B169 and
T3. Represented graphically in Figure 6.14.
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0.01 µM 0.1 µM 1 µM
B169 trametinib 20.5% 81.0% 98.9%
T3 trametinib 27.5% 50.1% 139.5%
B169 dasatinib 15.8% 24.3% 47.5%
T3 dasatinib 0.15% 16.6% 100.7%

TABLE 6.4: Summary of drug response parameters for B169 and
T3 expressed as a percentage of the maximal growth rate.

This in another instance that demonstrates the difference between 2D and 3D
models, in addition to those shown in Chapter 4. I can highlight this differ-
ence by looking at images of spheroids in culture. For B169, the images sup-
port the conclusion that there is greater sensitivity to trametinib than dasa-
tinib as well as the fact there is a response to both drugs (Figure 6.15). The
response of T3 is highlighted with images, here the growth in the absence of
drug is far less pronounced than in B169; however, with trametinib indeed
reducing the size of the spheroid, it confirms that there is a departure from
the 2D observations (Figure 6.16). There observations are further confirmed
by the assay demonstrated in Chapter 7, where I observe T3 displaying re-
sponse to trametinib therapy.

197



Chapter 6. Modelling drug response
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FIGURE 6.15: Images of B169 (green imaging channel) at day
0 and day 4 for no treatment (top), 1uM trametinib (middle)
and 1uM dasatinib (bottom). This shows that there is a greater

response to trametinib than dasatinib.
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FIGURE 6.16: Images of T3 (red imaging channel) at day 0 and
day 4 for no treatment (top), 1uM trametinib (middle) and 1uM
dasatinib (bottom). This shows that there is slightly greater re-

sponse to trametinib than dasatinib.

6.4.2 Quantifying drug response in a co-culture

Here, I extend mono-culture models to understand the dynamics of co-
culture spheroids under therapy. I explore models of therapy affecting both
the proliferation rate as well as the competitive dynamics present between
clones.

6.4.2.1 Modelling co-culture

Taking insight from findings of mono-culture drug response leads to the fol-
lowing model for therapy in co-cultures:
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αu
∂u
∂t = ∂

∂x

[
u

u+v
∂
∂x
(u + v)

]
+ (ρu − Du) u (1− u− auvv)

αv
∂v
∂t = ∂

∂x

[
v

u+v
∂
∂x
(u + v)

]
+ (ρv − Dv) v (1− v− avuu)

(6.14)

which is an expansion of the model seen in equation 4.15. Here the parameter
Du and Dv represent the response of u and v to therapy.

Deriving the finite difference scheme of this equation for u is as follows:

un+1
i = un

i + ∆t [αuQn
i + (ρu − Du) un

i (1− un
i − auvvn

i )] (6.15)

where ∆x is the grid spacing, ∆t is the time intervals and w = u + v (used to
simplify differentiation) and Qn

i is defined by:

(
un

i+1 − un
i−1
)

wn
i
(
wn

i+1 − wn
i−1
)
+ 4wn

i un
i
(
wn

i+1 − 2wn
i + wn

i−1
)
− un

i
(
wn

i+1 − wn
i−1
)2

4 (∆x)2 (wn
i
)2

(6.16)

6.4.2.2 Analysing a null model of therapy

Using the model described in equation 6.14 combined with co-culture inter-
action coefficients from Table 4.17 and therapy response from Table 6.3 I am
able to evaluate a baseline model for recovering co-culture therapy dynam-
ics.

First, evaluating the model for dasatinib response demonstrates some con-
sistency to the data (Figure 6.17). The response for T3 is largely captured
by this model with less optimal fits unsurprisingly as the concentration in-
creases (particularly 75% T3 and 25% T3 seeding ratios). The is more devi-
ation for B169 in this null model, with the AUC being overestimated under
this model.

The model with trametinib response is far less satisfactory (Figure 6.18). Here
the most striking feature is that T3 displays increasing growth under 1µM
trametinib, whereas declining growth is observed in a mono-culture (Figure
6.13 B). Under declining growth, the value of drug response D is greater than
the growth rate ρ, and the reverse is true for increasing growth. Thus, in these
co-culture conditions, the drug response is lower for T3 under trametinib in a
co-culture than a mono-culture. A similar effect is seen in the study by Hobor
et al., where the sensitivity of a cell line to cetuximab decreases in a co-culture
[75].
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This variation in the drug response observed leads to the decision to infer
either interaction coefficients, drug response parameters or both.
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FIGURE 6.17: Null model estimates for dasatinib response in
spheroid co-cultures using competition coefficients are defined

in Chapter 4 and drug response parameters defined in 6.3.
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FIGURE 6.18: Null model estimates for trametinib response in
spheroid co-cultures using competition coefficients defined in
Chapter 4 and drug response parameters are defined in 6.3. The
fits from this model demonstrate that T3 growth dynamics, es-

pecially at 1µM, are not captured correctly.

6.4.2.3 Quantifying co-culture dynamics

To quantify growth dynamics, I first investigate the effect of co-cultures on
the drug response parameters. The model is as follows:

3D-Co

αu
∂u
∂t = ∂

∂x

[
u

u+v
∂
∂x
(u + v)

]
+ (ρu −Du) u (1− u− auvv)

αv
∂v
∂t = ∂

∂x

[
v

u+v
∂
∂x
(u + v)

]
+ (ρv −Dv) v (1− v− avuu)

(6.17)
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where the parameters in bold are to be inferred. Using a genetic algorithm the
best response parameters are chosen for each concentration and drug com-
bination. The result of this, unsurprisingly, is a closer fit to the dynamics
present. The model now is better able to recreate the dynamics, however,
checks must be performed to assess the model for overfitting and whether it
is generalisable.
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FIGURE 6.19: Fitted model estimates for dasatinib response in
spheroid co-cultures using competition coefficients defined in
Chapter 4 and drug response inferred from a genetic algorithm.

This model performs better than that seen in Figure 6.17.

203



Chapter 6. Modelling drug response

0.01 uM 0.1 uM 1 uM
25%

 B169 75%
 T3

AU
C

50%
 B169 50%

 T3
75%

 B169 25%
 T3

B169
T3

0 2 4 6 0 2 4 6 0 2 4 6

0

50

100

150

0

50

100

150

0

50

100

150

Time

FIGURE 6.20: Fitted model estimates for trametinib response
in spheroid co-cultures using competition coefficients defined
in Chapter 4 and drug response inferred from a genetic algo-
rithm. This model performs better than that seen in Figure 6.18,

especially for T3 growth dynamics.

This model displays a lower AICc value than under the null , reflecting it is a
better fit lacking the presence of overfitting (Table 6.5). To assess sensibility, I
plot the parameter values against the drug concentration which demonstrate
a dose-dependent relationship (Figure 6.21). Finally, the waves generated
by this model do not appear to violate the structure of a spheroid. Due to
these considerations, I deem this model to be better than the null model at
explaining the dynamics. The parameters under this model are presented in
Table 6.6.
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Dasatinib Trametinib Dasatinib Trametinib
Parameters SSE SSE AICc AICc

Null 22355 45706 1372 1604
Fitted 10775 17544 1174 1332

TABLE 6.5: Comparison of fitted model to null model demon-
strates lower AICc for both dasatinib and trametinib response.
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FIGURE 6.21: Dose-response curves demonstrating the re-
sponse of B169 (blue) and T3 (red) to dasatinib (dashed line)
and trametinib (solid line). The response of B169 demonstrates
a similar relationship to that seen in Figure 6.14, with greater re-
sponse to trametinib. The response of T3 demonstrates a devi-
ation from the relationship seen in Figure 6.14, with trametinib

response reduced considerably.

Concentration B169 dasatinib T3 dasatinib B169 trametinib T3 trametinib
(µM) response response response response

0.01 1.090 0.0314 1.527 0.189
0.10 1.277 0.122 2.832 0.112
1.00 2.031 0.743 3.352 0.119

TABLE 6.6: Summary of parameter values recovered from the
analysis of co-culture spheroids under dasatinib or trametinib

therapy using equation 6.17.

To understand the implications of this model, I first compare the dose-
response curves under this model to those from the mono-culture observa-
tions (Figure 6.22). The response of B169 to both dasatinib and trametinib
appears to be slightly higher. However, this is not a significant deviation and
could be due to stochasticity in data observations (Figure 6.22 A, B). The most
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striking difference is observed for T3 response under trametinib. Under the
fitted model, T3 displays considerably less therapy response (Figure 6.22 C).
This can be seen in the comparison of co-culture and mono-culture growth of
T3 with 1µM trametinib therapy. In a mono-culture there is negative growth;
however, in a co-culture, T3 expands. T3 response under dasatinib is virtu-
ally identical (Figure 6.22 D). The decline in therapy response in a co-culture
indicates the presence of a positive subclonal interaction, where the sensitiv-
ity of a clone to therapy is reduced due to being in a co-culture. Looking for
a potential explanation for this, I look at experimental images with phase,
red and green channels overlaid. Comparing the growth of B169 and T3 as
mono-cultures and in co-cultures in the absence and presence of therapy can
visually demonstrate the dynamics (Figure 6.23). These images demonstrate
that T3 being engulfed by B169 in a co-culture leads to less access to the drug
which correlates with a lower response show in the data. The sensitive B169
cells are engulfing T3 due to their faster proliferation during the spheroid
formation stage, which occurs prior to the introduction of therapy.
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FIGURE 6.22: Comparison of dose-response curves from the
mono-culture response (solid line) and generated from the
model described by equation 6.17. A) Trametinib response of
B169 is largely similar, with a slightly higher response in a co-
culture. B) Dasatinib response of B169 demonstrates height-
ened sensitivity from B169, although this still follows a similar
trend. C) Trametinib response of T3 demonstrates the largest
deviation with T3 displaying less sensitivity considerably lower
sensitivity. D) Dasatinib response of T3 demonstrates virtually
no difference between the mono-culture observation and in the

co-culture fitted values.
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100% T3 100% B169

75% T3
25% B169

50% T3
50% B169

25% T3
75% B169

FIGURE 6.23: Experimental images taken at day 3 of spheroids
under 1µM trametinib at various ratios. This demonstrates that
T3 in a co-culture is engulfed by B169 and therefore does not
have as much direct access to the media containing drug as a

mono-culture.

Finally, for completeness, I investigate a model that accounts for both co-
culture dynamics affecting the drug response rate and competition coeffi-
cients. This model demonstrates signs of overfitting due to a higher AICc
value, therefore, I reject this model and do not investigate further (Table 6.7).

Dasatinib Trametinib
Model AICc AICc

Fitted drug 1174 1332
response only

Fitted drug response and 1239 1334
interaction coefficients

TABLE 6.7: Comparison of two fitted models with the lowest
AICc value highlighted in bold. This leads to the decision to
reject a model fitting both interaction coefficients and drug re-

sponse.
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6.5 Discussion

In this chapter, I designed and implemented mathematical models to quan-
tify the growth dynamics of cells growing as mono-cultures and co-cultures
under therapy. This work is particularly interesting through the use of
patient-derived samples in combination with a number of model systems,
2D and 3D growth models, as well as two different therapies. This differs
from much literature where mathematical models are frequently not applied
to experimental data, limited to the response under a single therapy or ap-
plied to cell lines. The therapies, dasatinib and trametinib, applied to the
patient derived cell lines, B169 and T3, have been shown by Izquierdo et
al. to possess a potent combinatorial effect to overcome acquired resistance
[103]. The studying of interactions between distinct cellular populations is
something that is underexplored, and as such, represents an unknown ques-
tion in cancer therapeutics [103]. This chapter attempts to understand the
co-culture dynamics present that may enhance or reduce the effectiveness of
treatments.

Once again, similar to the results of Chapter 4, I demonstrated vast differ-
ences in 2D and 3D systems, in this case in terms of drug response. This was
mainly seen in T3, which displayed no therapeutic response to trametinib in
2D mono-culture; however, validated with experimental images, my analy-
sis demonstrated T3 response to trametinib in a 3D spheroid mono-culture.
As suggested by experimental images, this is likely occurring due to the ap-
parent preference of T3 to grow in isolated clumps as opposed to as a group,
like in spheroid cultures (Figure 4.6). However, the exact mechanism for this
departure should be probed further. Looking at the gene expression of T3,
under and in the absence of therapy, can explain the change in phenotype
therapy is inducing. Additionally, testing whether 2D or 3D models are bet-
ter able to predict in vivo dynamics is an underexplored question. This can
be answered by conducting a combination of 2D, 3D and in vivo assays us-
ing the biological material and comparing observations. Understanding the
generalisability of a system can better guide research focus.

Modelling 2D co-cultures, I determined with the support of experimental
evidence from two patient-derived cell lines and two therapies that drug re-
sponse should be incorporated as a reduction of carrying capacity. A key
point of consideration for model selection, is that whilst the data currently
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supports 2D-Mono-2, introducing an increased number of repeats or a mod-
ified experimental design could shed more light on the dynamics. I do ac-
knowledge that the experimental design does not allow for probing the dif-
ference between cytotoxic and cytostatic therapies. Extending the experi-
mental design to allow for cells to be seeded at varying confluence as well as
lifting therapeutic pressure will better allow for the exploration of this facet.
Additionally, a greater number of repeats over a wide range of drug concen-
trations will further illuminate the therapy response dynamics.

I showed that introducing a negative term leads to the PDE model to violate
the structure expected from spheroids. I introduced therapy as a term reduc-
ing cell growth rates to generate PDE solution waves consistent with those
from experimental data. This method to quantify the effect of therapies on
spheroid culture backed up with experimental data is different from much
of the literature which relies on more computationally intensive agent-based
models such as those presented by Pourhasanzade et al. [166]. It also allows
for the detection of spatial effects which are lost when using ODE models of
spheroid dynamics.

A striking result is seen from comparing T3 therapy response in mono-
culture and co-culture spheroids. T3 displays a therapeutic response; how-
ever, in a mono-culture spheroid, this response is considerably lessened once
in a co-culture with B169. Using a co-culture PDE based model, I demon-
strated that the response of cells to therapy is altered when cultured as mono-
culture or co-culture spheroids. This was further supported with experimen-
tal images, which indicated that the ability of B169 to engulf T3, due to faster
growth during spheroid formation, shields T3 from the effect of therapy and
the response to trametinib is reduced. This result could be further explored to
understand exactly the mechanism present, as alternative explanations could
be trametinib reduces competitive pressures present between B169 and T3,
thus allowing T3 to grow, although this is less likely due to a clear departure
of T3 from its mono-culture phenotype. A caveat of the analysis of the 3D
models is that the growth dynamics between B169 and T3 vary widely. With
T3 growing considerably slower, slight deviations in spheroid size can sig-
nificantly impact the response observed and the ability for a cell line to be
engulfed. Thus, extending this analysis to cell lines with more comparable
dynamics is something interesting that should be further explored.

There are a few caveats to this analysis, the first is the limited scope of the
experimental design. Ideally, more intermediate concentrations, as well as
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a higher maximum concentration of both drugs should be used. The vali-
dation of result with further experimentation is also crucial in making this
inference. Here I presented some avenues to approach the analysis of co-
culture drug response and with more tailored data, the true dynamics that
underpin this system can be uncovered. This result is significant as it further
enhances the understanding of how intratumoural heterogeneity can induce
therapeutic failure, simply using a one-dimensional approach to therapy by
targeting a single population is ineffective and complicated by the presence
of heterogeneity.

Understanding the time taken for a cellular population to recover from ther-
apy once therapy is lifted could help determine the better dosing regimes.
This could be performed by simply treating cells and then monitoring the
growth of cells whilst under and immediately after lifting therapy. Addi-
tionally, understanding whether the effect of treatment depends on the to-
tal density of cells could allow therapies to include an optimal time to treat
to achieve the most impact. This is useful as it can potentially reduce the
negative side effect many therapies have on patients. Implementing this is
relatively simple by treating cells at varying densities and monitoring if this
changes. This experimental design will also allow for the investigation of the
suitability of mathematical models in predicting the effect of cytotoxic and
cytostatic therapies.

Other considerations that should be made involve the application of a wider
array of biological systems. In the study by members of my group, Izquierdo
et al., there are a considerable number of potential systems to extend the anal-
ysis [103]. In addition to T3, there are multiple other trametinib-resistant
lines generated from the bulk tumour ICR-B169. Furthermore, the models
can be used to test if the exciting observations of the difference T3 thera-
peutic response between 2D and 3D models and the co-culture reduction
in spheroid are reproducible. The analysis can be made more applicable
by repeated for assays with existing cell lines explored in Chapter 4, such
as HSJD-DIPG-007 clones, and also other patient samples, such as those ex-
plored by Izquierdo et al. [103]. Additionally, I have only explored trametinib
and dasatinib therapy, with both therapies supporting the same mathemati-
cal modelling decisions. It would be interesting to explore whether there are
classes of therapies that require a different mathematical model to replicate
the dynamics. This will require extending the analysis to a greater variety
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of therapies. Finally, there is a lack of inclusion of the tumour microenviron-
ment and how this may change therapeutic dynamics. This can be tested by
evaluating whether prediction from in vitro experiments are able to match
the observations from in vivo studies.
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Chapter 7

Modelling treatment strategies

7.1 Introduction

Therapeutic strategies are gaining increasing prominence in treating cancers.
Adaptive therapy, a recently emerging strategy in the treatment of tumours,
is one such prominent therapeutic paradigm. Promising results shown in a
prostate cancer clinical trial [82] demonstrate the potency of these strategies.
Adaptive therapy seeks to utilise the heterogeneity present within tumours
in order to increase the effectiveness of treatment. This is achieved by capi-
talising on the presence of competitive interactions between subclonal popu-
lations within a tumour that will constrain a tumour’s growth. Therapeutic
failure through the emergence of resistance or the presence side effects has
limited the ability to improve outcomes. Zhang et al. present an approach
used in a clinical trial to delay the progression of metastatic castrate-resistant
prostate cancer [80], [82]. Here the authors build a mathematical model to pa-
rameterise the response to abiraterone therapy for 3 groups of cells in these
tumours. This model is then applied to investigate the effects of adaptive
abiraterone therapy based on prostate-specific antigen concentration, com-
pared to metronomic therapy and maximum tolerated dose treatment. The
authors find that, for this particular tumour type, adaptive therapy produces
the best result in controlling the tumour [80], [82]. Additionally, in a small
clinical trial only 1 of 11 (9.1%) patients with adaptive therapy progressed ra-
diologically which is significantly less than the 14 of 16 (87.5%) patients that
progressed with standard of care treatment [80], [82].

Personalised medicine has largely focused on discovering therapies that tar-
get specific mutations. However, under these treatments it is not uncommon
to see the emergence of resistance upon relapse, leading to therapeutic fail-
ure [167], [168]. Recent studies have explored the ability of multiple drugs in
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combinations to achieve a better more potent affect in the treatment of dis-
ease. This is seen in the study by Izquierdo et al., here the authors investigate
the use of a combination of trametinib and dasatinib to treat paediatric-type
diffuse high-grade gliomas [103]. In these tumours, there are few effective
therapies, and this study reflects a positive stride in managing these tumours,
reflecting the benefit of taking innovative approaches using existing thera-
pies to improve their effectiveness.

Adaptive therapy and other therapeutic scheduling paradigms require a met-
ric based on which the decision to apply or remove therapy will be made.
There are a number of different metrics that can be explored. The most ob-
vious could be considered tumour burden, with therapy introduced where
tumour burden exceeds a threshold and is lifted below this threshold. This is
an approach used by Zhang et al. 2017, where the concentration of prostate-
specific antigen (PSA) is used as an analogous measure of prostate cancer
burden [80]. Other measures such as the ability detecting and quantifying
specific mutations in cell free DNA are useful in understanding the effect of
therapies that seek to target specific populations.

Considerable research has been conducted in understanding the implications
of adaptive therapy on many experimental and in silico settings. Recent stud-
ies seeking to develop the mathematical tools have illuminated key features
of consideration such as the effect of cell turnover or spatial structure. Strobl
et al. demonstarted the prerequistes for cases where adaptive therapy would
be feasible; namely that there should be strong competition between sensitive
and resistant populations, the resistant population should be of a low initial
proportion and slow growing, and there should be high cell turnover. With
this last feature, involving turnover, the authors demonstrated turnover me-
diated the impact of a particular cost of resistance. Furthermore, they showed
that in the case of patients undergoing intermittent androgen deprivation
therapy, relapse could be predicted by understanding cost of resistance and
turnover [86]. Gallaher et al. demonstrated the effects of spatial heterogene-
ity and evolutionary dynamics on the time to reccurence in both continuous
and adaptive therapies [169]. There are a multitude of other adaptive therapy
studies that develop on the understanding in the field [95], [170]–[174].
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In this chapter I will explore the suitability of mathematical models in repli-
cating treatment strategies in silico. Performed using mono-culture and co-
culture tumour spheroids, I will use the insights gained to motivate an ex-
ploratory in silico analysis of some therapeutic scheduling paradigm con-
cerns. I investigate the effectiveness of treatment scheduling in different sce-
narios. I assess the strength of single and dual agent therapy models to un-
derstand standard treatment protocols explored in models such as those by
Zhang et al., and also the prospect of evolutionary steering by leveraging col-
lateral sensitivity presented in a model by Acar et al. [80], [175]. Resistance
is thought to have a cost to the fitness of a cell in the absence of therapy and
thus these cells will be out-competed in the absence of therapy. This has been
demonstrated by Gallaher et al., where cells sensitive to doxorubicin rapidly
out-competed resistant cells [169]. As such the cell is able to proliferate once
therapy is lifted. Finally, the effect the initial size of a resistant population
has on the time taken for resistance to emerge is investigated.

7.2 Investigating the effect of sequential treatment

windows

7.2.1 Experimental design

To understand the suitability of combining spheroid assays with inference
from PDE based models, I performed a drug response assay with two treat-
ment windows. B169 and T3 cells were seeding as mono-culture and co-
culture spheroids with treatment and the absence of treatment applied.

In this Chapter, a 3D spheroid assay, described in Chapter 2 and explored
in Chapter 6, is used with a modification where therapy is swapped at the
third day of growth. This is performed by sequential diluting and remov-
ing of growth medium containing drug with fresh medium until the remain-
ing therapy has a neglible effect. This dilution was determined by the dose
response curved from Chapter 6. Similar to previous spheroid assays con-
ducted in Chapter 6, images are taken at 24 hour intervals. A detailed outline
of the experimental design, plate maps, number of conditions and protocol
for removal of therapy can be found in B.

Here spheroids are under the following conditions; no treatment, dasatinib
(0.1µM), trametinib (0.1µM) or a combination of both (0.05µM each) (Figure
7.1). In this assay I have investigated the following treatment combinations:
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NN, ND, NT, DN, DD, DT, TN, TD, TT, NB, BN and BB (where the first letter
represents treatment 1, the second represents treatment 2 and the code N =
No Treatment, D = Dasatinib, T = Trametinib and B = Combination).

FIGURE 7.1: Outline of treatment window assay. Here there are
4 choices of treatment at each stage with therapy switched at

day 3. Growth is tracked throughout the assay.

7.2.2 Inference methodology

In chapter 4, I demonstrated the presence of variability between assays in
terms of growth, it is natural that this would also extend to drug response.
As such, it is not suitable to just use growth parameters from a previous assay,
such as those in chapter 6. My approach to addressing this issue is to use the
first 3 days of treatment, where the treatment applied can represent one of
four choices, to infer the growth and drug response dynamics present and
use these parameters to make an inference of the effectiveness of treatment
regimes.

An approach which uses previously defined parameters can be used in this
instance. However for this, there is a need for a large number of reproducible
biological replicates.

7.2.3 Quantifying growth and drug response parameters

The growth and drug parameters are recovered using the modelling ap-
proach described in chapters 4 and 6 (Table 7.1). Interestingly, here it is
demonstrated that the combination therapy is more effective for both B169
and T3 even though half the concentration (0.05µM instead of 0.1µM) of each
drug is used. Unsurprisingly, this is supported by the results presented in the
paper by Izquierdo et al., where the authors investigated the positive effect
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of combination therapies involving trametinib and dasatinib [103]. Addi-
tionally, exploring the co-culture dynamics in the absence of therapy demon-
strates the same findings from Chapter 4. T3 experiences deficit competition
from B169, whilst B169 experiences excess competition. This indicates that
T3 will dominate the internal structure of the spheroid whilst B169 will dom-
inate the exterior due to a higher growth rate.

B169 T3

Growth rate 4.730 1.274
Dasatinib response 1.795 0.375

Trametinib response 3.824 0.247
Combination response 4.516 0.647
Competition coefficient 1.069 0.867

TABLE 7.1: Summary of growth and drug response parameters,
inferred using a genetic algorithm and equations 4.19 and 6.12,
for the first 3 days of B169 and T3 in the assay described in

Figure 7.1.

7.2.4 Comparison of predicted and actual response

Taking the recovered parameters (Table 7.1) and inserting them into a mono-
culture drug response PDE model from (equation 6.12) allows for the replica-
tion of this assay in silico. Looking at the response of B169 demonstrates the
suitability of this approach in recreating the assay dynamics, for most condi-
tions there is agreement between the model prediction and experimental data
(Figure 7.2 A). However, it appears to overestimate growth after treatment is
changed, which can be seen by the line appearing consistently above the ob-
servations (Figure 7.2 A). This is most prominent for the treatments BN, TN
and NT, in three of these cases, there is the lifting of treatment and replacing it
with no treatment and in the final case dasatinib is replaced with trametinib.
The models produce a convincing explanation of the data which can be fur-
ther emphasised by ranking the treatment effectiveness and comparing pre-
dictions and observations. The metric used to rank the different treatments is
the final spheroid size at day 6. Comparing the rankings demonstrates some
degree of agreement between the predictions and experimental observations,
with a correlation coefficient of 0.741 suggesting a strong agreement (Figure
7.2 B).
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FIGURE 7.2: Summary of experimental data and model pre-
dictions for B169 drug response across multiple treatment
strategies. A) B169 growth over time for different treatment
strategies with experimental data (points) compared to model
prediction (line) largely agreeing. B) Comparing ranking of
treatment effectiveness, determined by final spheroid size, be-

tween experimental observations and model predictions.

Similar conclusions can be drawn for T3, although there appears to be smaller
fluctuations between predictions and data (Figure 7.3 A). This is unsurprising
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since the growth and response rates of T3 are lower than those seen in B169,
thus there is less potential for deviations. Here the most interesting observa-
tion is that seen in DT, there appears to be a considerably higher trametinib
response in this instance than any other application of trametinib. This could
be due to the drug synergy highlighted from the response rates of combina-
tion therapy, and suggests that preceding trametinib therapy with dasatinib
may achieve a greater effect. However, this will require considerable further
investigation and it would be interesting to probe the phenotypic effect of
this, potentially by using RNA sequencing to assess gene expression of per-
turbed pathways. Comparing the ranking of predictions and experimental
observation displays some agreement, with a moderate positive correlation
of 0.434.
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FIGURE 7.3: Summary of experimental data and model pre-
dictions for T3 drug response across multiple treatment
strategies. A) T3 growth over time for different treatment
strategies with experimental data (points) compared to model
prediction (line) largely agreeing. B) Comparing ranking of
treatment effectiveness, determined by final spheroid size, be-

tween experimental observations and model predictions.

These findings demonstrate that my PDE models have some ability to reca-
pitulate the experimental dynamics, and thus, exploring co-culture dynamics
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is a natural extension. Here I would expect greater variation due to the in-
creased complexity, and thus, there are more potential mechanisms that can
cause deviations. This is to be expected as one set of parameters is used
to model three co-cultures and four different types of therapies for two cell
lines. Using parameters derived in Table 7.1 I am able to construct predic-
tions of the co-culture response. The models will be ranked on the total
spheroid size, obtained by summing the values for B169 and T3.

From the three co-culture conditions, the same conclusions can be drawn.
Looking at the 25% B169 and 75% T3 co-culture, the PDE model appears to
follow the data, except for the treatment strategies TT, BN and BB where there
is a considerable deviation (Figure 7.4 A). Nonetheless, applying a rank-
ing between the experimental and predicted rankings demonstrates a very
strong positive correlation of 0.889, indicating that the model is able to pre-
dict response in this co-culture condition (Figure 7.4 B). 50% B169 and 50%
T3 demonstrates better fits than the previous co-culture; however, here it is
again possible to see the prolonged sensitivity when therapy is removed for
the treatments BN and TN, although this appears to be less severe (Figure
7.5 A). The predicted and experimental rankings again demonstrate a very
strong positive correlation, supporting the utility of my PDE model (Fig-
ure 7.5 B). Finally, 75% B169 and 25% T3 also demonstrates a good fit to the
data. However, in this instance, the removal of therapy effect is more promi-
nent, with the prolonged sensitivity shown for B169 in treatments BN and TN
(Figure 7.6 B). The predicted and experimental rankings again demonstrate
a strong positive correlation, providing further support for my PDE model
(Figure 7.6 B).

A caveat in my analysis for this experiment is that it required to infer the
growth and response parameters to make an inference on the dynamics. To
address this, an increased number of biological replicates should be con-
ducted to predict the growth and response rates of B169 and T3. Currently, as
demonstrated in Chapter 4, there is variability in the observation of growth
rates arising from variability in culture conditions. I compared the ranking
between experimental response and that using previously derived parame-
ters from inference in Chapters 4 and 6. B169 predictions are strongly corre-
lated with the data (r = 0.717), however, T3 demonstrated a weak correlation
(r = 0.434) (Figure 7.7 A, B). While this suggests that B169 can be predicted
with experimental parameters, it is apparent there is much more evidence
required to understand the response of T3. This is not surprising since there
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is considerable variation in the growth and response of T3 between different
assays. Looking at co-culture response, all three co-cultures display a strong
correlation with the data (Figure 7.7 C, D, E).

The findings from both mono-culture and co-culture conditions support the
notion that this PDE model is able to capture much of the effect of treatment
switching. Whilst there are some issues, I deem this model to be satisfactory
to move forward for in silico exploration.
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FIGURE 7.4: Summary of experimental data and model pre-
dictions for 25% B169 and 75% T3 spheroid co-cultures. A)
The model and data appear to largely agree, with deviations for
TT, BN and BB appear most prominent. B) Comparing ranking
of treatment effectiveness, determined by final spheroid size be-
tween experimental observations and model predictions shows

a very strong positive correlation.
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FIGURE 7.5: Summary of experimental data and model pre-
dictions for 50% B169 and 50% T3 spheroid co-cultures. A)
The model and data appear to largely agree, with deviations
appear very minimal. B) Comparing ranking of treatment ef-
fectiveness, determined by final spheroid size, between ex-
perimental observations and model predictions shows a very

strong positive correlation.
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FIGURE 7.6: Summary of experimental data and model pre-
dictions for 75% B169 and 25% T3 spheroid co-cultures. A)
The model and data appear to largely agree, with deviations
displaying prolonged sensitivity in BN and TN. B) Compar-
ing ranking of treatment effectiveness, determined by final
spheroid size, between experimental observations and model

predictions, shows a very strong positive correlation.
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FIGURE 7.7: Comparison of experimental ranking to pre-
dicted ranking using parameters inferred in Chapters 4 and
6. A) B169 mono-culture demonstrates a strong correlation.
B) T3 demonstrates a weak correlation. C) 25% B169 and 75%
T3 demonstrates strong correlation. D) 50% B169 and 50% T3
demonstrates very strong correlation. E) 75% B169 and 25% T3

demonstrates very strong correlation.

7.3 Extension of analysis

In this chapter, I demonstrated the use of tumour spheroids to model the ef-
fect of therapy under two treatment windows with the option of 4 treatment
options. There are many extensions possible that could greatly enhance the
understanding of adaptive therapy dynamics. Here I will discuss and ex-
plore some of these extensions.

7.3.1 Modelling cellular invasion under therapy

Diffuse gliomas are highly infiltrative and, as such, a natural extension to the
modelling presented in this chapter is to test the ability to manage the cellular
invasion. In Chapter 5, I introduced models to quantify cellular invasion as
well as the ability to detect and measure subclonal interactions that affect
the motility of a subclone. Using these models, I can test the effectiveness
of therapies at limiting cellular invasion, which could occur by the declining
growth dynamics demonstrated in spheroid or by reducing the motility of
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a cell. Additionally, I can also test the ability of therapy to eliminate the
positive interactions present between subclones.

To achieve this, it will be required to carry out invasion assays under treat-
ment similar to the experimental design for spheroid from 6. This will al-
low me to quantify the effect of therapy at various different concentrations of
therapies as well as measure the effect of therapies on the interaction between
subclones. Once this is achieved, treatment windows or other adaptive ther-
apy regimes can be tested.

To achieve this goal, I performed an exploratory invasion assay. Here I ex-
plored the effect of trametinib and dasatinib at 0.1µM for mono-cultures of
B169 and T3 as well as 2 co-culture conditions (33% B169 and 67% T3 and
67% B169 and 33% T3 were used in this pilot study). I present preliminary
data, in the form of images, here to indicate the effectiveness of each therapy
and perform a qualitative analysis.
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No treatment

Dasatinib (0.1uM)

Trametinib (0.1 uM)

FIGURE 7.8: Images from a preliminary invasion assay of
B169 (green) and T3 (red) mono-cultures and co-cultures (67%
B169 and 33% T3 and 33% B169 and 67% T3). A) No therapy.
B169 displays a considerably stronger invasive phenotype than
T3. The co-culture conditions demonstrate the ability of B169
or T3 to engulf one another and dominate the invasive dynam-
ics. B) 0.1µM dasatinib. B169 and T3 both display considerably
lower invasion. C) 0.1µM trametinib. There is a negligible ef-
fect to the invasion of T3, this leads to T3 avoiding being en-
gulfed by B169 in both co-cultures. B169 appears to be more

significantly engulfed by T3.

From the data is its immediately apparent that both lines display the abil-
ity to invade, with B169 displaying a stronger invasive phenotype than T3
(Figure 7.8 A). This aligns with the 3D spheroid growth dynamics, so is not
to surprising. Comparing the co-culture conditions, it appears that under
the condition 33% B169 and 67% T3, T3 is able to engulf B169 limiting the
invasive potential seen. This observation suggests that the invasion of a co-
culture can be managed by maintaining a higher proportion of T3 than B169.
Finally, looking at the effect of therapy demonstrates that dasatinib is able to
limit invasion more prominently than trametinib (Figure 7.8 B, C). Addition-
ally, trametinib therapy is able to push the spatial structure such that B169 is
engulfed (Figure 7.8 C).
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Coupling these observations suggests that if T3 can engulf B169, by using
trametinib to ensure this, then introducing dasatinib should limit the inva-
sion observed. This is interesting analysis, representing a unique objective
of treatment focusing on invasion, however there is a need to quantify and
reproduce these invasion assays through mathematical modelling. Addition-
ally, whilst the growth of T3 appeared to be limited by trametinib therapy in
spheroid assays, in the invasion assay this effect appears lesser.

7.3.2 Prolonged sensitivity

In the analysis presented earlier in this chapter, I detected the potential for
prolonged sensitivity. I define this as a period of time where cells display
therapeutic sensitivity even when treatment is removed. If this finding is
true, it has the potential to change significantly the way tumours are man-
aged, as shorter treatment windows with lower concentrations can be used to
achieve similar treatment effects. This links very well to metronomic therapy,
which is a therapeutic strategy where drugs are administered in shorter inter-
vals more regular intervals over a longer period of time. This contrasts with
the traditional maximum tolerated dose therapy where treatment is admin-
istered in less frequently and at higher doses. Lower, more frequent doses
of chemotherapy are thought to possess lesser side-effects than conventional
maximal dose therapy, which has been demonstrated in a study by Perroud
et al. [176]. In this study, the authors detected an improvement in the quality
of life of patients with metastatic breast cancer, through the administration
of lower daily doses of cyclophophamide and celecoxib.

The parameter values presented in Table 7.2 are used to demonstrate the ef-
fect of prolonged sensitivity. I compare the size of a spheroid in its pres-
ence and absence, with exponential decay in the response, when therapy is
removed, as opposed to the sharp elimination of response currently in my
models. The response following treatment being lifted is calculated using
the following formula:

D(t) = d ∗ exp (−λt) (7.1)

where D(t) is the therapy response t days after treatment is lifted, d is the
base therapy response parameter (Table 7.2) and λ is the decay in therapy
response once treatment is lifted.
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Parameter Value Source

Growth rate 3.275 B169 growth rate
High response 3.239 B169 response (trametinib 1µM)

Medium response 2.652 B169 response (trametinib 0.1µM)
Low response 0.673 B169 response (trametinib 0.01µM)

TABLE 7.2: Summary of parameter values used for analysis of
single therapy metronomic therapy. These parameters are de-

rived from analysis in Chapters 4 and 6.

I first explore the effect prolonged sensitivity has on the size of the spheroid
by introducing treatment from day 0 to day 2 in a PDE model and then mon-
itor the size of the spheroid at day 6. As expected, the longer time it takes for
therapy to decay the smaller the size of a spheroid (Figure 7.9 A). This obser-
vation leads me to believe that if there is indeed prolonged sensitivity, then
a lower dose can be used to achieve a similar therapeutic effect as high dose
therapy with no prolonged sensitivity (Figure 7.9 B). Finally, if there does ex-
ist the presence of prolonged sensitivity, then the effectiveness of metronomic
therapy is heightened due to the reduced growth rate even in the absence of
therapy (Figure 7.9 C).
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FIGURE 7.9: Modelling the implications of prolonged sensi-
tivity on spheroid dynamics. A) The longer therapy takes to
decay the smaller the spheroid at day 6. This was performed
by introducing therapy for 2 days and the monitoring the effect
of lifting therapy. B) A similar response can be obtained with
lower doses if there is the presence of prolonged sensitivity. C)
Metronomic therapy is demonstrated to possess a marginally
larger response compared to standard therapy, however, with
the presence of prolonged sensitivity the effectiveness of this

treatment is greatly increased.

This analysis shows there is suitable potential in leveraging treatments that
are still effective even once lifted; however, it is crucial to validate the pres-
ence of this effect. This could be performed by repeatedly introducing and
lifting therapy on a cell in vitro, and monitoring growth. If there indeed is
prolonged sensitivity, the mechanisms should be explored using techniques
such as RNA sequencing to understand the gene expression of cells under
therapy and upon lifting therapy.
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7.3.3 Evolutionary herding

The system used in this chapter contains both B169 and T3 cells with different
sensitivity to trametinib and dasatinib. Here, I demonstrate two evolutionary
herding strategies and the effects observed. Starting with a spheroid consist-
ing of 25% B169 and 75% T3 and using the parameters determined in Table
7.1, I introduce single continuous therapy and compare this to sequential
therapies. The choice of initial condition is selected due to the lower growth
rate of T3 compared to B169. In silico exploration was performed over the
course of 8 days comparing the response of either; 8 days 1µM trametinib
(Figure 7.10 A), 8 days 1µM dasatinib (Figure 7.10 B), 4 days 1µM trametinib
followed by 4 days 1µM dasatinib (Figure 7.10 C) and 4 days 1µM dasatinib
followed by 4 days 1µM trametinib (Figure 7.10 D).
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FIGURE 7.10: Attempting to demonstrate evolutionary herd-
ing in spheroids, with B169 (blue) and T3 (red) modelled in
silico. A) Trametinib only therapy leads to the growth of T3 and
B169 appears to stagnate, since T3 grows significantly slower.
This is the treatment where the spheroid is the smallest. B)
Dasatinib only therapy fails to target B169 effectively, thus the
spheroid growth is the largest in this condition. C) Treating
with trametinib followed by dasatinib has the potential to con-
trol the total spheroid size best, as both T3 and B169 are kept to
lower levels than seen in pure therapies. There may be better
optimal strategies. D) Treating with dasatinib first leads to the
outgrowth of B169, and this condition is not able to properly
control the B169 population, which mainly drives the growth

of a spheroid.

My analysis demonstrates that evolutionary herding under the current
model is not possible in the sense of eliminating a particular subclone (Fig-
ure 7.10). This is due to the fact that I do not see significant cell death, high-
lighted by stable spheroid sizes even under high concentrations of therapy,
as demonstrated in Chapter 6. This means that the population will always
be mixed. However, from the analysis, it is clear that applying treatment can
determine which cell dominates the exterior of a spheroid and thus is able
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to dominate the growth dynamics in the long term. From the use of exper-
imental parameters, it is clear that the spheroid size is minimised when the
population of B169 is minimised, this is achieved by treating with trametinib
(Figure 7.10 A). It will be interesting to explore if periods of prolonged tram-
etinib therapy followed by prolonged dasatinib therapy is able to target both
populations effectively(Figure 7.10 A C).

If trametinib therapy is not completely applied, such that B169 growth is
limited by spatial constraints, it will result in the outgrowth of B169 (Figure
7.10 C). This can be seen in the trametinib first therapy. Also, consideration
must be given to the fact that therapies may become less effective due to an
inability of drug a to penetrate a spheroid, this was potentially the reason for
lower sensitivity of T3 in co-culture conditions shown in Chapter 6.

7.3.4 Cost of resistance

Both B169 and T3 have been shown to demonstrate differential sensitivity
dasatinib and trametinib. Since both B169 and T3 display resistance to a ther-
apy, thus they both display a cost of resistance and are unsuitable models for
exploring the relevance of this cost on therapeutic dynamics. However, ex-
ploring cost of resistance in silico can explain the effect the cost of resistance
has on treatment dynamics.

I model cost of resistance as penalty to the growth rate observed and explore
the effect of cost of resistance on the treatment dynamics. Comparing the
effect of standard therapy (3 days on 3 days off) against metronomic therapy
(1 day on 1 day off repeated). To explore the effect of cost of resistance I used
B169 as my model system, as it displays a strong growth phenotype than T3,
and using in silico manipulation I can create a purely resistant and sensitive
pair of lines (Table 7.3). Here, I am manipulating the cost of resistance using
the parameter c.

From my analysis, it appears that the cost of resistance is less relevant than
the timing of therapy. Under early therapy, the resistant population always
dominates the growth except for when the cost of resistance is set arbitrarily
high (c = 0.8 is likely to be unrealistic) (Figure 7.11). This suggests that
the cost of resistance is not as big of a driver of spheroid dynamics, which
is unsurprising as I demonstrated in Chapter 6 a cell which is engulfed has
greatly reduced growth potential. This suggests that if late therapy is applied
under a small cost of resistance, the resistant clone will be engulfed and thus
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the competition with the sensitive population will still limit its growth, even
under therapy (Figure 7.11). Finally, a metronomic therapy regime under a
moderate cost of resistance (c = 0.4) is able to keep both the sensitive and
resistant populations at similar levels; this means the competitive dynamics
will be preserved, and thus, the sensitive may be able to out-compete when
therapy is removed.

This analysis is largely theoretical, and further experimental validation will
be required. The cost of resistance should also be further investigated as it is
not always clear that this is present.

Line Growth Response

B169 sensitive 3.275 3.239
B169 resistant (simulated) 3.275 (1-c) 0

TABLE 7.3: Summary of parameter values used for analysis the
of cost of resistance. Here the parameter c represents the cost of

resistance and satisfied 0 ≤ c ≤ 1.

50

100

150

200

0 2 4 6
Time

Si
ze

60
90

120
150

0 2 4 6
Time

Si
ze

60

90

120

0 2 4 6
Time

Si
ze

40

60

80

100

0 2 4 6
Time

Si
ze

40
60
80

100
120

0 2 4 6
Time

Si
ze

50

100

150

200

0 2 4 6
Time

Si
ze

60
90

120
150

0 2 4 6
Time

Si
ze

40

60

80

100

0 2 4 6
Time

Si
ze

40
60
80

100
120

0 2 4 6
Time

Si
ze

60

90

120

0 2 4 6
Time

Si
ze

60

90

120

0 2 4 6
Time

Si
ze

40

60

80

100

0 2 4 6
Time

Si
ze

40
60
80

100
120

0 2 4 6
Time

Si
ze

40
60
80

100
120

0 2 4 6
Time

Si
ze

40
60
80

100
120

0 2 4 6
Time

Si
ze

Cost of resistance increasing

Early
therapy

Metronomic
therapy

Late
therapy

c = 0 c = 0.2 c = 0.4 c = 0.6 c = 0.8

Treatment applied

Dasatinib

Trametinib

Line
B169
T3

FIGURE 7.11: Exploring the increasing cost of resistance in
early, late and metronomic therapy regimes. The resistant clone
(red) is compared to the growth of the sensitive. Under early
therapy (top row) as the cost of resistance increases the sensi-
tive clone is able to grow faster once therapy is lifted. In metro-
nomic therapy (middle row) this control is achieved at a lower
threshold. Whilst, with late therapy the early competitive dy-

namics dictate the phenotype observed.
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7.4 Discussion

In this chapter, I demonstrated the effect of treatment windows on the growth
of mono-culture and co-culture spheroids. This was achieved using patient-
derived cell lines, B169 and T3, coupled with a PDE-based mathematical
model to generate predictions of experimental data. The findings in this
chapter demonstrated that the PDE model is suitable for modelling the ef-
fect of replacing therapies.

Therapeutic strategies such as adaptive therapy have been shown to be ef-
fective, most notably in a metastatic castrate-resistant prostate cancer clinical
trial presented in the study by Zhang et al. [80]. This model was shown to
be sufficient in being able to delay therapeutic relapse. However, the model
is relatively simplistic and makes the assumption that PSA always correlates
well with tumour burden. However, in the case of prostate cancer, a common
metastatic site is the bones, and these sites have very little if any vasculature.
Thus, it could be conceivable that prostate cancer that has metastasised pri-
marily into bones would not be able to be modelled this way. This is not
merely a critique of the study by Zhang et al. but also adaptive therapy in
general. For adaptive therapy to be effective, information on the structure of
a tumour is required, which cannot always be inferred. Recent developments
in the molecular profiling of circulating-free DNA (ctDNA) could shed light
on the structure of a tumour and the response of a tumour to therapy. In
a study by myself and fellow co-authors, Cresswell et al., we demonstrated
the ability of utilising ctDNA to understand metastasis and resistance within
metastatic breast cancer [177]. Khakoo et al. demonstrated the suitability of
ctDNA to be used as a complementary tool to MRI for assessing response to
therapy in rectal cancers [178]. Members of my lab, in the study by Izquierdo
et al., demonstrated that cfDNA (cell-free DNA) is more prominent in cere-
bral spinal fluid than plasma for pHGG and cfDNA was able to act as a mea-
sure of tumour burden in a small number of cases [179]. These studies have
shown that ctDNA or cfDNA may be able to be used as measures for tu-
mour burden. However, to effectively evaluate therapeutic strategies, these
techniques need to be made more robust and extended to larger datasets.

In my analysis I noticed a number of discrepancies between the experimen-
tal data and model predictions over time. The most prominent was the pro-
longed sensitivity to therapy of spheroids, even after therapy was removed.
There are a number of reasons for these differences, which could be related
to the therapeutic effect but also could be confounding factors arising from
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experimental design. Under my current models, the therapeutic impact is as-
sumed to be a constant rate in time, however this assumption may not hold
in all scenarios and thus is something that must be investigated. This could
be performed by monitoring the phenotype of cells pre- and post-drug with-
drawal and comparing quantifying the time taken for the effects of therapy to
wane. The therapeutic impact is also not immediate, thus changing therapy
as it is explored in my model does not reflect biological factors present. This
could be improved by modelling the diffusion of the drug into the spheroid
and uptake by cells. The non-therapeutic factors are related to the inherent
limitation of in vitro systems. Switching between treatments is not immedi-
ate, so cells are experience stress from the change in condition. Whilst this is
aimed to be minimised in any experimental design, it is impossible to avoid.
It is not something that can be incorporated into model design due to its
stochasticity.

If prolonged sensitivity to therapy exists, it could indicate that standard ther-
apy may not be optimal. Investigating this further could lead to understand-
ing whether metronomic therapy may be suitable to treat tumours such as
these. I demonstrated that under a system with prolonged sensitivity, metro-
nomic therapy is more effective at a lower therapeutic dose than standard
therapy. This is particularly interesting finding as lifting therapy may be able
to alleviate or lessen some of the side effects associated with chemotherapy,
especially in children where it can have developmental effects. This agrees
with the findings of many studies where metronomic therapy is known to
produce less toxicity with similar effectiveness [176]. Metronomic therapy
has also been demonstrated to prevent drug resistance in non-small cell lung
cancer by modulating clonal interactions [180]. Investigating this in the con-
text of paediatric gliomas will require a redesign of the experimental set up
as well as suitable treatment options. For example, the frequency of a resis-
tant mutation can be tracked in cultures under low-dose metronomic therapy
and maximal-dose therapy. Additionally, replacing media containing drugs
with drug-free media, may not result in the elimination of therapeutic effect.
There likely is a time lag between cells being treated and cells recovering,
or a lag between drug delivery and penetration, this could explain the over-
estimation of growth in some of these cases. Metronomic therapy can most
effectively be tested in in vivo models. Here, the delay in the therapeutic
delivery should better replicate that seen in patients. Additionally, drugs
would be processed in vivo and biological processes similar to those in pa-
tients. This should be the ultimate aim of testing such strategies with in vitro
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studies helping to inform in vivo exploration.

The experimental system I model in this chapter involves 3D tumour
spheroids. This choice was primarily made as spheroids represent a dense
group of cells where the competitive forces between cells will be more promi-
nent as well as representing a system that is closer to the structure of tumours
than a 2D mono-layer of cells [153]. Whilst spheroid models can be more dif-
ficult to work with compared to adherent cell cultures, they lack the caveats
present in adherent cultures. The primary roadblock I faced in the adaptive
therapy modelling of 2D cultures, was due to the ability of both dasatinib
and trametinib to cause cells to detach [161], [163]. This did not represent a
cause for concern in previous models as those models did not require for the
complete removal of media; however, in the experimental design for adap-
tive therapy it is required that the media is removed and sufficiently diluted
before applying a new treatment, to avoid confounding analysis with rem-
nants of previous treatments. This process would cause the cells to detach in
all 2D systems I explored, which included 6/24/48/96-well plates as well as
T25/T75 flasks. This same issue did not arise in spheroid cultures, as dilut-
ing or removing the media did not cause the spheroid to be perturbed in a
similar fashion. There may be alternative experimental designs that can be
explored to further understand 2D adaptive therapy cultures, however, due
to the benefits provided from spheroid assays in replicating the competitive
dynamics between subclones,and the lack of confounding factors in experi-
mental design, I deemed spheroid models to be superior. Under the current
system, it appears as though the response of B169 is able to dictate the pre-
diction made, thus it would be interesting to repeat this analysis in cell lines
that have more comparable growth dynamics in the absence of therapy. Ex-
tending the experimental model used in this analysis to incorporate cellular
invasion is already something I have considered, with preliminary data sug-
gesting the ability of therapy to divert the co-culture invasive dynamics. Us-
ing the computational models I introduced in 5, I can model drug response,
and thus, explore treatment strategies. This can be used to understand the
effect of therapy on the invasive dynamics present as well as the subclonal
interactions detected.

A computational and experimental system that incorporates a greater degree
of complexity should be explored. Specifically, greater heterogeneity should
be introduced through the culturing of multiple distinct populations, or
tracking resistant mutations in more genetically diverse bulk tumours. This
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complexity could be introduced by modelling invasive dynamics, studying
a more heterogeneous population or investigating in vivo dynamics where
there will be influences from the tumour microenvironment. For example,
immunocompetent in vivo models or in vitro cultures with non-tumour cells
can recreate some microenvironmental factors. There are a multitude of other
considerations that should be investigated, which combined with the con-
siderable contributions to the literature in recent years highlights that thera-
peutic strategies like adaptive therapy are an extremely interesting and con-
stantly evolving field of study. With the promising developments the field
has shown it is inevitable that these finding will find increasing relevance in
clinical practice in the future.
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Discussion

Paediatric high-grade gliomas are a group of highly heterogeneous tumours
with dismal prognosis. There has been a lack of significant developments to
improve the survival of patients afflicted with these tumours. However, re-
cent advances in the identification of the genetics of these tumours have led
to the prospect of further understanding what drives these tumours and how
they can be treated. To this end, in this thesis, I explored multiple aspects of
how heterogeneity can influence tumour dynamics. I developed mathemat-
ical and computational models to quantify the presence of interactions that
affect growth, invasion and therapeutic response.

In chapter 4, I explored the effect of subclonal interactions on the growth of
2D and 3D in vitro cultures. In chapter 5, I demonstrated the ability to detect
and quantify subclonal interactions that affect cellular invasion. Finally, in
Chapters 6 and 7, I explored mathematical models that capture the effect of
therapy on in vitro cultures. The models that measure drug response were
then applied to test their ability to represent sequential treatment strategies
as well as in silico exploration of treatment dynamics. These findings to-
gether, create a picture of how heterogeneity can influence the growth and
therapeutic dynamics of tumours.

Throughout this thesis, I used 6 patient-derived cell lines; two of these were
single cell-derived clones from the bulk tumour SU-DIPG-VI (E6 and D10),
two were single cell-derived clones from the bulk tumour HSJD-DIPG-007
(F8 and F10) and two were generated from the bulk tumour ICR-B169 (tram-
etinib resistant T3 and parental line B169). Mathematical models are rarely
applied to experimental systems, with much of the research focusing on theo-
retical explorations. Amongst those that are applied to experimental systems,
often immortalised cell lines are used. So an approach, like I have displayed
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in this thesis, where patient-derived cell lines are used for validation of math-
ematical models is of great value. Amongst a number of studies, such as one
presented by Huo et al., patient-derived cell lines are thought to better reca-
pitulate the biology of tumours [181]. Additionally, both 2D and 3D in vitro
experiments were used throughout this thesis. It has been highlighted in a
number of studies that 2D cultures are not to produce findings translatable
to patient tumour dynamics effectively. Imamura et al. demonstrated, in 2D
and 3D breast cancer cultures, that 2D-cultures were unable to precisely se-
lect clinically active drugs whereas 3D cultures were better able to simulate
important tumour characteristics [182]. This was in line with findings from
Chapters 4 and 6, where I demonstrated differences in 2D and 3D in vitro cul-
tures in terms of growth and therapeutic response. In a review published by
Pampaloni et al., the authors explained that 3D cultures were better able to
be translated to live tissue when compared to 2D models, emphasising their
importance [183]. This thesis develops and test models for both 2D and 3D
cultures and uses patient-derived lines, which is rarely seen in mathematical
modelling for cancer research.

In chapter 4, I explored the growth dynamics of cells grown in mono and
co-culture conditions. This chapter aimed to establish a mathematical de-
scription of the growth of a cellular population and how it was influenced
by the presence of another in a co-culture. Coupling my mathematical mod-
els with data generated from 2D and 3D spheroid in vitro cultures, I set out
to quantify the growth dynamics of each line in isolation. I then extended
my models to measure the effect one line had on another in a co-culture. As
mentioned previously, there were differences identified between 2D and 3D
cultures. The cell line B169 displayed slower growth than T3 in 2D cultures,
quantified by mathematical modelling. However, this was reversed in 3D
cultures. The differences were explained by looking at images of 2D in vitro
cultures, which showed that B169 grew as clusters that expanded, whilst T3
grew with a more dispersed phenotype. These differences supported my de-
cision to pursue both 2D and 3D models.

Using ODE models to understand the growth dynamics of 2D mono-cultures
demonstrated the presence of a weak Allee effect across all four of the
patient-derived glioma lines tested. This was performed across two different
assay designs with the same conclusion that a growth model with weak Allee
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effects best explains in vitro observations. This model had significant impli-
cations towards further modelling of co-culture assays. Typically, the inter-
actions between two distinct populations can be modelled using the Lotka-
Volterra equations. These equations have been used to model a wide variety
of phenomenon in ecology and cancer research. For example, Gatenby et al.
discussed the applicability of such models to understand non-evolutionary
population interactions and the dynamics between normal and cancerous
cells [184]. These have been applied by Zhang et al. to understand the com-
petitive dynamics between cells in the the absence or presence of therapy
[80].

I demonstrated that Lotka-Volterra interactions have a more significant ef-
fect on the long-term population dynamics. These are likely not to be rel-
evant in cancer since cancers are an out-of-equilibrium system. It is more
relevant in these cases to understand how the early growth dynamics are
affected, which I demonstrated can be understood by modelling the effect
of co-cultures on the Allee effects observed. To achieve this, I developed a
model that introduced Allee effect interactions into a Lotka-Volterra compe-
tition system, which allowed for determining how co-culture conditions can
affect growth. Between B169 and T3, it was shown that T3 receives a lesser
contribution towards its Allee threshold from B169, which results in faster
growth for B169 and slower growth of T3 in the early dynamics. This was
supported visually from images from assays that highlighted the difference
in co-culture and mono-culture growth. A similar, albeit weaker trend, was
seen between F8 and F10, where both F8 and F10 appears to grow slower in
a co-culture than in a mono-culture.

These results demonstrate the ability to detect and quantify interactions that
affect the short-term growth dynamics between two populations, which can
improve our understanding of the implications of heterogeneity on popu-
lation dynamics. This can lead to many ways of leveraging heterogeneity
to manipulate the growth of tumours. For example, steering the structure
of a population, such as through therapeutic intervention, to promote nega-
tive interactions between constituents can lead to lesser growth dynamics, as
demonstrated with F8 and F10. Alternatively, detecting positive interactions
can open up the prospect to identify novel strategies to limit the growth of
tumours.

This analysis was also attempted in 3D tumour spheroid cultures. 3D cul-
tures are expected to be more applicable models to live tissues, as such, this
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was a natural extension to previous analysis. Here I used PDE models, based
on those created by Sherratt et al., to simulate the growth of a spheroid, as
these models were able to incorporate the presence of spatial structure [152].
Upon quantification of the mono-culture growth phenotype of B169 and T3,
it became apparent that T3 displayed a markedly slower growth rate than
B169. This was easily identified visually through observations of the size of
the spheroid over time, and it was also quantified using genetic algorithms
to infer the growth rates. Extending PDE models to allow for the presence
of heterogeneous populations allowed for the modelling of co-cultures. Here
I demonstrated the ability of a co-culture PDE model, with a single set of
parameters, to be applied to multiple co-cultures, allowing for the generali-
sation of models to a wider array of conditions. The interaction coefficients
observed demonstrated that T3 would be engulfed by B169 and dominate the
internal dynamics of the spheroid, whilst B169 was able to grow unrestricted.

These mathematical models and growth assays should be interpreted with
a degree of scepticism. It is important to further validate of these models
with a larger number of biological systems to ensure their general applica-
bility. Assessing the performance of using 2D and 3D assays to predict in
vivo growth dynamics can demonstrate which models are more reflective of
tumour biology. A major aspect missing in these models is the considera-
tion of the tumour microenvironment. This environment includes all non-
tumour features such as normal cells, signalling molecules, blood vessels
and the extracellular matrix as well as immune response. This choice was
made deliberately, as including the microenvironment introduces many dif-
ferent ways cells can be influenced which could prove difficult to control. In
Chapter 4, my main focus was to isolate the dynamics present between two
distinct cellular populations and demonstrate the suitability of mathematical
models to detect these, serving as the basis for further extension of models
to therapeutic response. Increasing the number of distinct populations will
inevitably increase complexity but is necessary to recapitulate highly het-
erogeneous tumour dynamics. Some studies have introduced microenviron-
ment factors into the study of growth dynamics. One such study, presented
by Marusyk et al., demonstrated the ability of cancer-associated fibroblasts,
secreting IL-11, to enhance the growth of tumours [66]. This is a parallel
approach where the authors focused on the potential of the microenviron-
ment to drive the growth of tumours, whilst I focused on being able to detect
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interactions intrinsically arising within tumours to enhance growth. To in-
corporate microenvironmental factors, first the specific factors should be de-
termined. For example, assessing the effect of the immune system on cellular
invasion will either require the use of immune-competent mouse models orin
vitro co-cultures with immune cells. Diffusible factors, such as chemokine
signalling, can be introduced to in vitro models through supplementation.

Nonetheless, the application of mathematical models to measure the growth
and interactions, in 2D and 3D cultures, between distinct patient-derived cel-
lular populations isolated from the same bulk tumour produced interesting
results and conclusions that should be explored further. I used these models
to further integrate complexity in the form of therapeutic intervention.

In Chapter 5, I turned my attention towards a particular characteristic of
pHGG. These tumours, particularly the H3K27-altered group, display con-
siderable invasion into surrounding tissue complicating therapeutic and sur-
gical intervention [12], [16]. In the study performed by other members of
my research group, Vinci et al., it was detected that subclonal interactions
could be a potential driver of invasion in pHGG [16]. Here, the prelimi-
nary exploration of interactions between pairs of single-cell derived clones
F8 and F10, from the bulk tumour HSJD-DIPG-007, and E6 and D10, from the
bulk tumour SU-DIPG-VI, demonstrated heightened invasion in co-culture.
However, the tools to distinguish whether this increase is significant as well
as quantify and classify interactions did not exist. I set out to demonstrate,
through the use of cellular automaton models, the nature of interactions as
well as their strengths. To achieve this I used mono-culture invasion assays
to quantify the phenotype of clones in isolation, and use this description to
condition co-culture simulations to create a null model of cellular invasion
in the absence of interaction. I determined the presence of commensalism
between clones E6 and D10, where E6 displayed enhanced motility in the
presence of D10, as well as the exploitative interaction between F8 and F10,
where F8 experienced an increase in its motility rate at the expense of F10
which had reduced motility.

The results from Chapter 5 confirmed the observation of Vinci et al., that in-
deed subclonal interactions have a tangible impact on the invasion of pHGG
across two patient-derived systems. Understanding the effect of subclonal
interactions can help inform predictions on the invasiveness of tumours and
potential guide clinical decisions. To achieve this, there needs to be a map-
ping made between the interactions detected and the mechanism and causes
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of these interactions. I proposed the further investigation of 3 potential mech-
anisms that could enhance motility in a co-culture; degradation of the extra-
cellular matrix could open channels for cells that lack the ability to do this,
cell-cell adhesion could allow for the co-invasion of clones and cellular sig-
nalling could induce the epithelial-mesenchymal transition (EMT) allowing
clones to acquire the ability to invade surrounding tissue [78], [98], [185]–
[189]. Through the use of microfluidics assays, the cell-cell adhesion dynam-
ics can be explored to understand whether co-movement of cells occurs due
to adhesive forces [190]. To investigate whether the degradation of the ex-
tracellular matrix (ECM) allows for greater cell motility, a cell with a less
motile phenotype such as E6 should be compared in varying concentrations
of ECM molecules or through matrix degradation assays [187]. To assess
the induction of EMT through cellular signalling, the combination of a se-
cretome analysis and assays with conditioned or supplemented media with
chemokine signalling molecule should be performed. This can be evaluated
using microfluidics or transwell assays [191], [192]. Additionally, the in vivo
implications of these observations must be further investigated. Developing
a model that incorporates features of cerebral structures could identify the
routes along which tumour cells invade, which can prove crucial in inform-
ing surgical intervention but also assess the severity of disease. For example,
if cells are detected in a region of the brain where it has been demonstrated
it is unlikely to invasion into, it could suggest advanced disease. Finally, in-
teractions affecting invasion were only applied to a pair of clones; however,
these interactions have been verified across multiple samples from different
bulk tumours. Therefore, it is natural to attempt to extend this analysis to a
greater number of clones, at a level that is representative of a tumour’s sub-
clonal structure, to create a more detailed picture of the drivers of cellular
invasion.

In Chapter 5, the consideration of the extracellular matrix incorporated mi-
croenvironmental factors into the analysis. This added complexity allowed
for the detection of more complex interactions. A study by Lin et al. high-
lighted the differences in the microenvironmental factors between adult and
paediatric high-grade gliomas [193]. However, this study lacked significant
in vivo exploration, and microenvironmental factors were considered in iso-
lation. These have to be relevant to the cerebral microenvironment, so cells
like fibroblasts should not be included. However, tumour-immune interac-
tions or cellular signalling molecules could be a natural inclusions. The use
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of immune-competent mouse models can demonstrate the effects of the neu-
roimmune system on cellullar invasion. Looking at the genetic information
of invading cells in immune-competent and immune-deficient mouse mod-
els can demonstrate whether the immune system is able to influence invasion
dynamics. Cellular signalling molecules can be investigated by the use of
common chemokines, such as the chemokines CCL2 and CXCL2 identified
by Vinci et al., in in vitro assays. Studies by Traggiai et al. and Mosier et al.,
demonstrated the ability to incorporate human immune systems into mouse
models [194], [195].

Prior to chapter 6, all my investigation focused on interactions affecting
growth and invasion, but in this chapter, I investigated the therapeutic im-
plications of heterogeneity, which was introduced by using varying ratios
of B169 and T3, two distinct lines generated from the same bulk tumour.
I used two chemotherapy drugs, dasatinib and trametinib, which are clini-
cally approved for use in specific cancers. These therapies were chosen due
to their differential response in 2D in vitro cultures of B169 and T3, which was
demonstrated by members of my group in the study by Izquierdo et al. for 2D
cultures [103]. Nonetheless, proceeding to analyse co-culture interactions un-
der this model, I determined that trametinib possessed the ability to change
the competitive landscape between B169 and T3, whilst dasatinib lacked this
ability. This is an interesting finding since it displays the ability of therapies
to target cells through drug response and modulating competitive interac-
tions, thus presenting a way of integrating heterogeneity to achieve a greater
effect of therapies. Choosing therapies and concentrations that maximise re-
sponse and increase the presence of negative interactions could lead to more
a potent effect. The short-term interaction, which increased the growth rate
of B169 in a co-culture, disappeared under trametinib therapy. This suggests
that in a co-culture the response of B169 under trametinib is greater than in
a mono-culture due to the elimination of the positive interaction, the mech-
anism of which is yet to be explored. This finding can be applied in a wider
context by understanding the competitive landscape arises under therapeu-
tic intervention.

The response of spheroid cultures to therapy was quantified by further ex-
tending the PDE model described in chapter 4. I demonstrated another in-
stance of the significant divide between the phenotype of cells in 2D and
3D cultures. Here I demonstrated that T3 appears to display a response to
trametinib, a drug that it displayed resistance to in 2D assays, which was
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validated in a repeat assay. This finding further demonstrates the difference
in conclusions that can arise under different in vitro systems. T3 displays
therapeutic response for both trametinib and dasatinib deviating from obser-
vations of 2D model, while for B169, trametinib response was stronger than
dasatinib response in line with previous observations. Once again, I explore
the implications of co-culture conditions of 3D therapeutic response, and the
findings were very interesting. The response of B169 remained largely un-
changed and could be within a margin of error, however the response of T3
was markedly different. Through interpretation of model coefficient, it ap-
peared as though T3 was less sensitive to trametinib in co-cultures compared
to mono-cultures. Images of spheroids demonstrated that T3 is able to be
somewhat shielded by B169 under trametinib therapy, possibly due to the
ability of B169 to engulf T3 as it has a high growth rate. Additionally, B169
was sensitive to trametinib and thus was unable to limit T3 growth effec-
tively. This was not seen under dasatinib therapy as B169 was not signifi-
cantly limited in growth. A finding of this nature illustrates that the spatial
dynamics within tumours are extremely relevant to the response observed.
It leads to the natural extension of my models to incorporate concentration
gradients of therapy and resources. This could be implemented by adding an
additional layer for therapy or resource concentration over space modelling,
using a diffusion equation eliminating cells metabolising resources or drugs.
Alternatively, a hybrid cellular automaton (HCA) may be used, which have
been implemented in a number of studies. Lai et al. implemented an HCA
to model the effect of personalised therapy in breast cancer [196]. However,
models do not have to be limited to just therapy response, and other microen-
vironment conditions can be included in these models. Such as in the study
by Gerlee et al., where the authors used an HCA to model the effect of oxygen
concentration on the emergence of cells with a glycolytic phenotype [197].

In the final chapter, I explored the ability of the models I developed in chap-
ters 4 and 6 to predict therapeutic response in a changing treatment land-
scape. This was achieved by choosing one of four treatment options across
two consecutive treatment window in mono-culture and co-culture tumour
spheroids. I demonstrated that whether or not prior information on spheroid
response is used, the predictions from a PDE model of drug response in mul-
tiple treatment windows aligns with the experimental observation. This was
not as strongly seen in T3; however I believe this was due to the response of
T3 to trametinib and dasatinib being fairly similar. Nonetheless, the analy-
sis of this assay raised a number of issues which I explored through in silico
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investigation.

Interestingly, the combination therapy of trametinib and dasatinib was more
effective than a single agent therapy, even though the concentration of each
drug was halved. As of yet I have not explored the response of cells to
combination therapies, however it has been demonstrated that dasatinib and
trametinib in pHGG display synergistic therapeutic effects [103]. This is an
important consideration to incorporate in future models and functionally it
may not be as simple as adding therapeutic response. I propose that a multi-
dimensional dose-response relationship should be explored to give a func-
tional form to synergistic therapies. This would show the response of cells to
different concentration combinations of two or more therapies. There are a
number of null models for therapeutic synergy such as BLISS [198] or Hands’
models, with Hands’ model demonstrated by Sinzger et al. to be the most
plausible. Further investigation of detecting and modelling drug synergies
should be explored.

The response of both B169 and T3 once therapy was removed appeared to
display a period of prolonged sensitivity. This means that once therapeutic
pressure is alleviated, there still is an impact on the growth of both B169 and
T3. If such a finding is true and widespread, it raises interesting implications
for therapeutic dosing and highlights the potential for metronomic therapy
to be leveraged. This is a treatment strategy where lower doses are adminis-
tered over a longer period of time to achieve a similar or greater therapeutic
effect with markedly lower side effect [83], [127], [176], [180]. Its utility was
demonstrated by Perroud et al. who showed that metronomic dose therapy
improved the quality of life for patients with metastatic breast cancer [176].
In another study, Perroud et al. showed that metronomic therapy was able
to elicit a therapeutic response whilst being a lower cost alternative to tradi-
tional strategies [199]. Bondarenko et al. showed that metronomic therapy
was able to leverage clonal interactions to prevent drug resistance in lung
cancer [180]. Through my in silico exploration, using parameters derived
for B169 response to trametinib, I displayed that under a system with pro-
longed sensitivity, metronomic therapy could achieve a greater effect than
simple high dose therapy alone. Additionally, I demonstrated that with pro-
longed sensitivity lower doses can be used to achieve a similar therapeutic
effect. This hints at a beneficial prospect for the treatment of children with
cancers. Many chemotherapy drugs have side effects which are particularly
detrimental to young children, this could be from developmental effects to

249



Chapter 8. Discussion

higher toxicity. Exploring treatment strategies such as metronomic therapy,
could allow for the use of lower dosing which can reduce side effects and
improve the quality of life for these patient. Additionally, it may allow for
the exploration of treatments previously rejected due to toxicity, since these
treatment strategies can reduce side effects.

In addition to metronomic therapy, I explored the potential for modelling
evolutionary herding and the effect of a cost of resistance. Under my current
model, both of these considerations had little success in controlling a tumour,
with the spheroid dynamics largely being dictated by which cells are able to
expand and engulf the others. There are a number of ways my models could
be improved to explore these dynamics better. To understand the possibility
of evolutionary herding [175], I should have determined the response under
higher therapeutic doses so that the evolutionary dynamics could play out
in a shorter period of time, as well as introduced the possibility of necrotic
cells, which would exist in the core of the spheroid and not be able to achieve
growth, although these considerations may not be relevant to short in vitro
assays. This would have allowed the models to capture the elimination of
one clone in a co-culture, and then therapy could be used to target another.
Nonetheless, evolutionary herding was shown to be a promising strategy of
treating tumours with multiple treatment options [175]. The cost of resistance
under these models seemed to only display response at extremely unrealistic
cost values. This should be further explored with the potential of necrosis,
quiescence and prolonged sensitivity introduced to see how the cost of resis-
tance may be leveraged to understand treatment dynamics. Currently, under
my models, the implication of a cost of resistance is that resistant cells can
completely engulf sensitive cells. Thus, when therapy is removed the sensi-
tive cells are unable to expand.

Finally, I attempted to explore the effects of therapy on cellular invasion. This
was seen as an extension to the work in chapter 5, where I performed an in-
vasion assay to study the phenotype of B169 and T3 mono-cultures and co-
cultures in response to trametinib and dasatinib. This data showed that in the
absence of therapy, at higher seeding densities of B169, B169 is able to engulf
T3 and invade significantly. However, at low densities of T3, T3 is able to
limit the invasion of B169. Detecting the interactions present between these
lines could illuminate the invasive dynamics and inform treatment strate-
gies. Under dasatinib therapy it appears that invasion is severely limited.
However, it is not known what the effect of lifting dasatinib therapy would
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have and if cellular invasion would resume. Trametinib therapy was able to
direct the invasive dynamics such that T3 would dominate and engulf B169.
This could lead to a strategy of either combination therapies, such as those
shown by Izquierdo et al. or sequential therapy to allow T3 to engulf B169
and then focus on controlling the less invasive and slower growing T3 cells.

To summarise, in this thesis, my key aim was to develop a mathematical and
computational modelling approach to understand the interactions present
between phenotypically distinct cancer cells. To this end, I developed and
implemented a series of mathematical and computational models to address
the implications of interactions between cancer cells to some of the key char-
acteristics of paediatric-type high-grade gliomas. These included their pro-
liferative capacity, significant invasive phenotype and the lack of effective
therapies developed. I was able to validate my model using clones and cell
lines derived from multiple patient bulk tumours. The findings of this thesis
demonstrated that interactions were present in all of these cases, significantly
affecting growth dynamics, changing the motility of cells allowing them to
invade more prominently and affecting the therapeutic dynamics present be-
tween differential sensitive cells. In all of these instances, I demonstrated a
method of interpreting and quantifying interactions, which would provide a
great benefit to further understanding the implications of heterogeneity.
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Appendix

A.1 Gillespie’s stochastic simulation algorithm

(SSA)

In the paper by D. Gillespie (1997), an approach to simulating chemical reac-
tion kinetics is detailed. This is an alternative to using deterministic ordinary
differential equation (ODE) approach. I use this algorithm to simulate com-
plex cell dynamics such as motility and interactions, as well as incorporating
stochasticity. The alogrithm has been applied to chemical reaction kinetics
[157], growth and evolution of cells [55] as well as modelling the immune
response [200].

The SSA was expore initially to explore chemical reaction kinetics, as a result
of this much of the nomenclature derives from this context. Some key terms
to be defined are:

• Reactions: A process being simulated, this could be a chemical reaction
or processes such as cell proliferation.

• Propensity: The likelihood for a particular reaction to occur, this takes
into account its rate as well as the number of reactants involved.

• Molecules: A reactant.

To simulate reactions it is important to understand when and how frequently
each reaction occurs. This is captured through the calculation of the propen-
sity of a reaction. This is:

aµ = cµhµ (A.1)
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where µ is the type of reaction, a is the propensity, c is the reaction rate and h
is the total number of combination reactant molecules can meet to satisfy the
reaction.

To determine which reaction will occur I calculate a0 = ∑µ aµ and find the
reaction µ which satisfies the following:

µ−1

∑
ν=1

< r1a0 ≤
µ

∑
ν=1

(A.2)

for a random number r1 ∈ (0, 1), generated by a uniform random number
generator.

Calculating the time until the next reaction also involves the propensity. This
is obtained from:

τ =
1
a0

ln
1
r2

(A.3)

for a random number r2 ∈ (0, 1) generated by a uniform random number
generator.

Once reactions are executed, the state of a system is updated and propensities
are updates so that the next reaction can be calculated.

In my implementation the is used SSA to determine the next process to occur
in a cellular automaton as well determine the time between each process.
For simplicity I also explain the algorithm in the context of its application to
cellular invasion with subclonal interaction (applied in chapter 5).

At any give time there are N cells which belong to one of M phenotypes.
The phenotype of each cell determines its base rate of reactions that could
occur; proliferation, death and motility (movement rate). For each cell in
the simulation the local neighbourhood is explored to determine the rate of
each reaction for each cell incorporating any potential neighbourhood inter-
actions. Following this, the propensity of each reaction is calculated, since all
reactions involve a single reactant the propensity is equal to the reaction rate.

A.2 Approximate Bayesian Computation

Approximate Bayesian computation methods are useful in applications of
Bayesian statistics where the underlying likelihood function is unknown.
This methods involves defining summary statistics that are able to capture
the information contained in a dataset. A rejection algorithm in conjunction
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with a method of creating a simulated dataset are used in order to find the
set of parameters that best match the experimental data. A key assumption
of these techniques is that the dataset is able to be simulated.

FIGURE A.1: Demonstration of ABC-rejection algorithm from
[201]

A basic outline of this approach (Figure A.1):

• Summary statistics are calulated on observed data, this will be called µ

• Using a simulation coupled with a prior distribution of the model pa-
rameters, which represent the pre-existing knowledge of the parameter,
a dataset of simulations is generated. The choice of prior distribution
for parameters is typically chosen as a uniform distribution that is likely
to contain the ground truth. Let θ be the set of parameters.

• A distance is calculated between the summary statistics values for each
simulation and the observed data. Let this be called p(µi, µ) where i
represents the simulation i.

• Based of a tolerance value ε, simulations with p(µi, µ) ≤ ε are saved
and the the resulting set of accepted simulation parameters together
approximate the posterior distribution of the model parameters.
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In this Appendix, a summary of assays performed for this thesis is pre-
sented. All experimental work was performed by myself with the excep-
tion of HSJD-DIPG-007 clones proliferation assays and invasion assays per-
formed in Chapter 5. All experimental work not produced by myself will be
credited.

B.1 2D proliferation and drug assays

B.1.1 HSJD-DIPG-007 clones - F8 and F10

These assays were performed by Ketty Kessler with design input from my-
self. They involved seeding cells in two 96-well plates per timepoint, where
one plate is used for ddPCR and another is used for cell viability quantifi-
cation. This could not be done using the same plate as the luminesence of
cell viability readings would interfere with the detection during the ddPCR
protocol. A summary of the relevant numbers for the assay are provided in
the Table B.1 and a plate map in Figure B.1.
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Wells for Wells for Time points
Assay Condition viability ddPCR (day)

1 100% F8 6 per time point 6 per time point pooled 0,1,2,3,4,7,10,14,17
1 100% F8 6 per time point 6 (pooled) 0,1,2,3,4,7,10,14
1 100% F8 6 per time point 6 (pooled) 0,1,2,3,4,7,10,14
1 100% F8 6 per time point 6 (pooled) 0,1,2,3,4,7,10,14
1 100% F8 6 per time point 6 (pooled) 0,1,2,3,4,7,10,14,17

2 100% F8 6 per time point Not used 0,1,2, 3,6,7,8,10
2 100% F8 6 per time point Not used 0,1,2,3,6,7,8,10

TABLE B.1: Table to summarise the experimental data col-
lected for 2D proliferation assays performed for HSJD-DIPG-
007 clones F8 and F10. These assays have been analysed in

Chapter 4.
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FIGURE B.1: Plate map for HSJD-DIPG-007 clones, F8 and F10.
Assay 1 (Top) represents co-culture assays and Assay 2 (Bot-
tom) represents repeat of mono-culture conditions. Two plates
are seeded per time point for Assay 1 (for ddPCR and cell via-
bility analysis), one plate is seeded per time point for Assay 2
(for cell viability analysis). These assays have been analysed in

Chapter 4.
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B.1.2 B169 and T3

These assays were designed, performed and analysed solely by myself. They
involved seeding fluorescent tagged cells (B169 - EGFP, T3 - mCherry) at var-
ious proportions in a 96 well plate. The assay design incorporated mono-
culture and co-culture conditions both under and in the absence of therapy
(Dasatinib and Trametinib) all in parallel. This limited stochasticity from fac-
tors such as using cells from a different passage or using a different batch of
cell culture medium. Three 96-well plates were seeded in parallel with iden-
tical configurations to allow to three replicates, there are twice as many. Each
line was imaged every 6 hours for 5.5 days, resulting in 24 images per well.
A summary of the relevant numbers is presented in the Table B.2 and a plate
map in Figure B.2.
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Ratio seeded Concentration (uM) Replicates

100% B169 0 6 (no drug)
75% B169 & 25% T3 0 6 (no drug)
50% B169 & 50% T3 0 6 (no drug)
25% B169 & 75% T3 0 6 (no drug)

100% T3 0 6 (no drug)
100% B169 0.001 3 (trametinib) + 3 (dasatinib)

75% B169 & 25% T3 0.001 3 (trametinib) + 3 (dasatinib)
50% B169 & 50% T3 0.001 3 (trametinib) + 3 (dasatinib)
25% B169 & 75% T3 0.001 3 (trametinib) + 3 (dasatinib)

100% T3 0.001 3 (trametinib) + 3 (dasatinib)
100% B169 0.01 3 (trametinib) + 3 (dasatinib)

75% B169 & 25% T3 0.01 3 (trametinib) + 3 (dasatinib)
50% B169 & 50% T3 0.01 3 (trametinib) + 3 (dasatinib)
25% B169 & 75% T3 0.01 3 (trametinib) + 3 (dasatinib)

100% T3 0.01 3 (trametinib) + 3 (dasatinib)
100% B169 0.1 3 (trametinib) + 3 (dasatinib)

75% B169 & 25% T3 0.1 3 (trametinib) + 3 (dasatinib)
50% B169 & 50% T3 0.1 3 (trametinib) + 3 (dasatinib)
25% B169 & 75% T3 0.1 3 (trametinib) + 3 (dasatinib)

100% T3 0.1 3 (trametinib) + 3 (dasatinib)
100% B169 1 3 (trametinib) + 3 (dasatinib)

75% B169 & 25% T3 1 3 (trametinib) + 3 (dasatinib)
50% B169 & 50% T3 1 3 (trametinib) + 3 (dasatinib)
25% B169 & 75% T3 1 3 (trametinib) + 3 (dasatinib)

100% T3 1 3 (trametinib) + 3 (dasatinib)

TABLE B.2: Table to summarise the experimental data collected
for 2D proliferation assays performed for B169 and T3. These

assays have been analysed in Chapter 4 and 6.
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FIGURE B.2: Plate map for B169 and T3. Three plates follow
the configuration presented to ensure triplicates. These assays

have been analysed in Chapter 4 and 6.

B.2 3D proliferation and drug assays

These assays were designed, performed and analysed solely by myself. They
involved seeding fluorescent tagged cells (B169 - EGFP, T3 - mCherry) at var-
ious proportions in a 96 well ultra-low attachment plate. The assay design
incorporated mono-culture and co-culture conditions both under and in the
absence of therapy (Dasatinib and Trametinib) all in parallel. This limited
stochasticity from factors such as using cells from a different passage or us-
ing a different batch of cell culture medium. Three 96-well plates were seeded
in parallel with identical configurations to allow to three replicates, there are
twice as many. Each line was imaged every day for 5 days, resulting in 6 im-
ages per well. A summary of the relevant numbers is presented in the Table
B.3 and a plate map in Figure B.4.
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Ratio seeded Concentration (uM) Replicates

100% B169 0 6 (no drug)
75% B169 & 25% T3 0 6 (no drug)
50% B169 & 50% T3 0 6 (no drug)
25% B169 & 75% T3 0 6 (no drug)

100% T3 0 6 (no drug)
100% B169 0.01 3 (trametinib) + 3 (dasatinib)

75% B169 & 25% T3 0.01 3 (trametinib) + 3 (dasatinib)
50% B169 & 50% T3 0.01 3 (trametinib) + 3 (dasatinib)
25% B169 & 75% T3 0.01 3 (trametinib) + 3 (dasatinib)

100% T3 0.01 3 (trametinib) + 3 (dasatinib)
100% B169 0.1 3 (trametinib) + 3 (dasatinib)

75% B169 & 25% T3 0.1 3 (trametinib) + 3 (dasatinib)
50% B169 & 50% T3 0.1 3 (trametinib) + 3 (dasatinib)
25% B169 & 75% T3 0.1 3 (trametinib) + 3 (dasatinib)

100% T3 0.1 3 (trametinib) + 3 (dasatinib)
100% B169 1 3 (trametinib) + 3 (dasatinib)

75% B169 & 25% T3 1 3 (trametinib) + 3 (dasatinib)
50% B169 & 50% T3 1 3 (trametinib) + 3 (dasatinib)
25% B169 & 75% T3 1 3 (trametinib) + 3 (dasatinib)

100% T3 1 3 (trametinib) + 3 (dasatinib)

TABLE B.3: Table to summarise the experimental data collected
for 3D proliferation assays performed for B169 and T3. These

assays have been analysed in Chapter 4 and 6.
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FIGURE B.3: Plate map for B169 and T3. Three plates follow
the configuration presented to ensure triplicates. These assays

have been analysed in Chapter 4 and 6.
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B.3 Invasion assays

Two classes of invasion assay were performed. Those performed for analy-
sis in Chapter 5 were conducted by Ketty Kessler with shared responsibility
towards experimental design and set up. Due to issues with the IncuCyte
S3 imaging system, only wells with in focus images were considered for
analysis. In the Tables B.4, B.5, B.6 and B.7, I have presented the number of
wells passed forward for analysis. A single co-culture assay was performed
for HSJD-DIPG-007 clones, F8 and F10, and three assays were SU-DIPG-VI
clones, D10 and E6. Three assays were used in SU-DIPG-VI assays due to
the inadequacy of the mCherry label prompting the use of a single colour
labelling system. For the HSJD-DIPG-007 assay a two-colour (Venus - green
and mCherry - red) was used.

F8 F10 Day Day Day Day
% % 0 1 2 3

100 0 4 4 4 4
90 10 3 3 3 3
75 25 6 6 6 6
50 50 4 4 4 4
0 100 4 4 4 4

TABLE B.4: Counts of images per condition and time point for
HSJD-DIPG-007 clones, F8 and F10, analysed in Chapter 5.

D10 E6 Day Day Day Day
% % 0 1 2 3

0 100 3 3 3 3
10 90 3 3 3 3
30 70 7 6 6 9
50 50 9 10 10 11
60 40 4 8 8 8
80 20 6 8 7 8

TABLE B.5: E6 invasion assay 1: Counts of images per condition
and time point for SU-DIPG-VI clones, E6 and D10, analysed in
Chapter 5. Here a single-colour system was used and only E6

was tracked using the Venus fluorescent label.
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D10 E6 Day Day Day Day
% % 0 1 2 3

0 100 3 2 2 1
10 90 5 6 6 7
50 50 5 6 6 6
90 10 2 2 3 4

TABLE B.6: E6 invasion assay 2: Counts of images per condition
and time point for SU-DIPG-VI clones, E6 and D10, analysed in
Chapter 5. Here a single-colour system was used and only E6

was tracked using the Venus fluorescent label.

D10 E6 Day Day Day Day
% % 0 1 2 3

100 0 4 4 4 4
90 10 3 3 3 3
50 50 3 2 2 2
10 90 5 5 4 4

TABLE B.7: D10 invasion assay: Counts of images per condition
and time point for SU-DIPG-VI clones, E6 and D10, analysed in
Chapter 5. Here a single-colour system was used and only D10

was tracked using the Venus fluorescent label.

B.4 Treatment window assay

A treatment window assay was performed for B169 and T3. Here, spheroids
of B169 and T3 were allowed to form in a ultra-low attachment plate. At day
0, media was topped up with 2x of the desired concentration of drug used.
This was then imaged every 24h for 3 days. At day 3 the media was required
to be changed, however, since there was drug present it required an exten-
sive washing. By selecting an volume that would be appropriate to remove
cell culture medium without disturbing the spheroid, repeated washes can
be performed with drug-free media. This was tested on a sample plate and
for my specific case out of the 200µL present, 180µL could be removed and
gently replaced. For repeat assays this would have to be validated as the
volume can change based on spheroid size and cell culture technique. I per-
formed 2 washes before replacing medium with the desired concentration of
the second treatment window. The choice of 0.1µL was selected to minimise
the washes, from analysis in Chapter 6. It was apparent that at 0.001µL there

302



B.4. Treatment window assay

would be minimal therapeutic effect, this would effectively neutralised drug
action.

FIGURE B.4: Plate map for treatment window assay performed
for B169 and T3. Here the windows are defined by a two-letter
code "XX". The first letter represented the treatment during Day
0 to 3 and the second letter represented treatment during Day
3-6. There choices of treatment were: N - No treatment, D -
Dasatinib 0.1µM, T - Trametinib 0.1µM, B - A combination of

both Dasatinib and Trametinib at 0.05µM each.
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