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MR-GUIDED RADIOTHERAPY
In recent decades, advances in imaging and technology 
have led to improvements in target coverage and confor-
mality in addition to normal tissue sparing in radiotherapy 
treatment delivery. From 3D conformal radiotherapy to 
intensity-modulated radiotherapy (IMRT), volumetric 
arc therapy (VMAT) and stereotactic body radiotherapy 
(SBRT), radiotherapy planning and delivery has become 
increasingly complex.

The benefits of integrating MRI into the radiotherapy treat-
ment pathway has been reported as early as 1986.1 These 
include, but are not limited to, superior soft tissue contrast, 
the lack of ionising radiation, the ability to acquire non-
invasive functional imaging and the possibility of real-time 
imaging during beam delivery. Most experience of MR 
in radiotherapy so far has been with respect to improved 
target delineation on MRI.

Image-guided radiotherapy (IGRT) has been a key devel-
opment in the delivery of radiotherapy and is now utilised 
in most radiotherapy treatments. It refers to imaging that 
is taken in the treatment room at the start of, or during, 

each fraction followed by individual positional adjustments 
to increase accuracy and ensure the planned dose is deliv-
ered to the target.2 The most recent technological advance-
ment is the creation of MRI-radiotherapy hybrid systems, 
by virtue of its superior image quality. MRI-guided RT 
(MRIgRT) allows the possibility of acquiring MR images at 
any time point during the radiotherapy treatment and its 
implementation and use is rapidly expanding.

Radiotherapy is used in the treatment of half of all patients 
with cancer and cures up to 40% of patients.3 Prostate 
cancer is the most common cancer in the UK, with over 
47,000 men diagnosed each year, accounting for over a 
quarter of all new male cancer diagnoses.4 The majority of 
patients diagnosed with localised disease are treated with 
external beam radiotherapy (EBRT). As the α/β ratio of 
prostate is low, at <2 Gy,5 many trials have proven hypofrac-
tionation (around 3 Gy per fraction) to be non-inferior to 
standard fractionation (2 Gy per fraction).6,7 There is now 
a body of Level II evidence suggesting that ultrahypofrac-
tionation with 5 fractions may be equivalent to 20 fraction 
treatments. This is being tested in the PACE B8 and PACE 
C trials.
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ABSTRACT

Advances in radiotherapy technology have increased precision of treatment delivery and in some tumour types, 
improved cure rates and decreased side effects. A new generation of radiotherapy machines, hybrids of an MRI scanner 
and a linear accelerator, has the potential to further transform the practice of radiation therapy in some cancers. Facil-
itating superior image quality and the ability to change the dose distribution online on a daily basis (termed “daily 
adaptive replanning”), MRI-guided radiotherapy machines allow for new possibilities including increasing dose, for hard 
to treat cancers, and more selective sparing of healthy tissues, where toxicity reduction is the key priority.
These machines have already been used to treat most types of cancer, although experience is still in its infancy. This 
review summarises the potential and current evidence for MRI-guided radiotherapy, with a predominant focus on pros-
tate cancer. Current advantages and disadvantages are discussed including a realistic appraisal of the likely potential to 
improve patient outcomes. In addition, horizon scanning for near-term possibilities for research and development will 
hopefully delineate the potential role for this technology over the next decade.
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This review explores the current role of the MR-Linac in clinical 
practice, its benefits, limitations, and potential role in the future, 
with a focus on prostate cancer.

MRIgRT systems
Multiple MRIgRT systems are available with varying magnetic 
field strengths (Table 1), of which only two are being used in a 
clinical setting.9,10 Strengths and limitations of MR linac systems 
are described in Table 2.

In 2014, the Viewray MRIdian system (ViewRay Inc, Oakwood 
Village, OH) was the first to be used to treat patients, combining 
a tricobalt-60 source with a 0.35T MR imaging system and since 
2017, a 6-Megavoltage Linac with a 0.35T MRI.11,12 The Elekta 
Unity system (AB, Stockholm, Sweden) has been in clinical use 
since 2017 and has a 1.5T imaging system which is integrated 
with a 7-Megavoltage linear accelerator.13,14 Two other systems 
currently in development are being used primarily for research; 
an Australian15 and a Canadian system.16

STATE OF THE ART TECHNOLOGY: ADVANTAGES 
AND LIMITATIONS
Advantages
Superior image quality
The PTV (planning target volume) encompasses the target 
requiring treatment plus a margin to account for setup and 
patient movement error. This margin can be up to 15 mm 
for some radical treatments and will inevitably encompass 
surrounding healthy tissue. Target delineation is said to be the 
weakest link in the delivery of accurate radiotherapy.17

The primary advantage of an MR-integrated radiotherapy 
system is that of superior soft tissue contrast when compared 
to X-ray-based imaging.18 This is highlighted in Figure 1, which 
displays the difference between MR and CT when visualising 
soft tissue anatomy; the prostate and surrounding tissues, 
and their interfaces, are more clearly demarcated on the MRI. 
In prostate cancer, the clinical target volume drawn on MR 
images has been shown to be smaller, by around 30%,19 and 
more consistent when compared to CT-derived contours.20,21 
Contouring on MRIs has been shown to reduce interobserver 
variability in prostate cancer22 and improve precision in other 
tumour sites such as brain, nasopharynx as well as with crit-
ical structures such as the brachial plexus.23 Therefore, with a 
clearer anatomical picture the volume of normal tissue irradi-
ated could be reduced, due to a combination of smaller volumes 
and margins.24 The smaller volumes could lead to a reduction in 
treatment toxicity.25,26

In addition, precise delivery of radiation dose to the PTV 
during the course of treatment is dependent on visualisation of 
the organs. Current IGRT techniques include kV-imaging and 
CBCTs, which can be affected by motion artefacts and poor 
tissue contrast.9,20

Whether the superior image quality of MRgRT truly offers a 
therapeutic benefit, when compared to the use of current image 
guidance techniques such as fiducials and cone beam CTs used 
with standard linacs, is yet to be seen. This is particularly perti-
nent in prostate cancer, where rates of cure are high and that of 
toxicity is low even with standard techniques.

Table 1. MRIgRT systems currently available, either commercially or for research purposes

MR-RT system Imaging strength Linac Bore size
Viewray MRIdian system (12) 
(Viewray Technologies Inc, 
Oakwood Village, OH)

0.35T Integrates either tricobalt-60 or 
6 MV linac

70 cm closed bore

Elekta MR-Linac (13) (Elekta 
AB, Stockholm, Sweden)

1.5T 7 MV 70 cm closed bore

Sydney Inline Australian system 
(15) (Australian MRI-Linac 
Program)

1.0T 6 MV 82 cm open bore

Aurora RT system (16) 
(MagnetTx, Alberta, Canada)

0.6T 6 MV 60 cm

MRIgRT, MRI-guided RT.

Table 2. This table summarises the advantages and limitations of the MR-Linac. Each point is described in more detail in the text.

Benefits Limitations
Superior image quality compared to CT Technical:- Geometric distortions and artefacts can impact the MR image quality. Electron 

return effect. Lack of non-coplanar & electron beams

Online adaptive radiotherapy Limitations with bore size & craniocaudal field size length

Real-time cross-sectional imaging Longer treatment times. Noisy during imaging. Not suitable for claustrophobic patients

No additional radiation exposure with imaging Multi-disciplinary team needed to deliver treatment daily

Additional MR imaging possible daily during treatment 
including functional imaging

E Currently a research tool

MDT, multidisciplinary team.
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Online adaptive radiotherapy
One of the unique features of MRIgRT systems is the integration 
of online adaptive radiotherapy (ART). Although current IGRT 
techniques allow couch corrections to account for interfractional 
changes, it does not account for complex geometric changes 
such as target rotation, deformation and weight loss.27 Due to 
poorer soft tissue image quality, the accuracy of current IGRT 
techniques is limited and often large PTV margins are applied to 
account for this.

In prostate cancer, movement of the seminal vesicles and lymph 
nodes may occur independent to the prostate and, if in conflict, 
the prostate is prioritised, potentially missing the other targets.28 
Interestingly, a study demonstrated that approximately a third of 
fractions would benefit from replanning, when the original plan 
is overlayed on the daily CBCT due to the difference in deliv-
ered dose compared to the planned dose.9,29 In some tumour 
types such as the brain, there is no evidence that conventional 
IGRT is inferior to MRIgRT as intrafraction motion is negligible 
and thus, using X-ray based localisation is likely to be sufficient. 
MRIgRT provides new possibilities of biologically targeted adap-
tive dose delivery and these are currently being tested.

Online ART modifies the treatment based on changes in the 
anatomy on the day of the treatment. This will account for inter-
fractional movement, changes to the target organ and varying 
shape and size of the organs at risk during radiotherapy; this is 
demonstrated in Figure 2, where the small bowel is seen to be 
moving in and out of the radiotherapy field on different days. The 
target itself may shrink during a course of treatment (e.g. cervix 
cancer) or the target may deform30 or swell during hypofraction-
ated treatments.31 With daily adaptive recontouring and replan-
ning, the need for rigid immobilisation and invasive tracking 

Figure 1. Axial images of an MRI of the prostate (left) and CT 
of the prostate (right) . The architecture and boundaries of 
the prostate are more clearly visualised on the MRI due to 
superior soft tissue contrast.

Figure 2. Small bowel movement during the course of treatment. These four images demonstrate four separate fractions of a 
20-fraction prostate cancer radical treatment. These axial images, taken at the level of the mid-femoral heads, demonstrate inter-
fractional motion of the organs at risk, particularly that of the small bowel which is shaded in yellow. Various target contours are 
denoted in purple and aqua (PTVs) and green/blue (prostate and SV); the rectum is outlined in orange. In three fractions (A, C, 
D), the small bowel is sitting adjacent to the prostate and seminal vesicles and thus overlapping in various degrees with the PTV 
whilst in fraction C it has moved away out of the treated volume.
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methods such as fiducial markers become redundant. This can 
lead to a shortening of the patient workflow and improvement of 
the patient experience.

The potential benefits highlighted above of online ART may 
become more pertinent in hypofractionated treatments. Hypof-
ractionation is likely to become standard of care for some tumour 
types and has been shown to be effective in curing some of the 
more common tumour sites; prostate,6,32 lung33 and breast.34 
With fewer fractions, the precision of radiotherapy delivery with 
each fraction becomes more important. MRIgRT may have a role 
to play in this context; the HERMES trial35 is currently studying 
two fraction versus five fraction MRgRT for prostate cancer. 
With only two opportunities to deliver the intended dose, daily 
anatomical correction is considered mandatory. It is conceiv-
able therefore that with ART, the overall dose to the target will 
increase and the dose to the organs at risk can be reduced, 
leading to a reduction in toxicity.

There is a limited capacity on MR linac machines, relative to 
standard machines and treatment times are longer. Therefore, 
informed by further research, patients and tumour types who 
will reap the most benefit from adaptive radiotherapy need to 
be prioritised.

Real-time imaging
Real-time cross-sectional imaging during treatment is a feature 
not commonly available with standard radiotherapy treatments. 
This allows monitoring of intrafractional movement of the target 
and organs at risk during treatment, thus giving the opportunity 
to gate treatment if necessary, such as pausing treatment when 
rectal gas passes through the rectum displacing the prostate.36 
The prostate can move during treatment, either independently or 
due to increased bladder filling and/or movement of gas through 
the rectum. This movement has the potential to impact the dosi-
metric coverage. Studies have shown prostate displacement to 
occur during treatment; in one study a shift of >3 mm was seen 
over approximately 13% of the treatment time.37 A more recent 
study using data from patients treated on the MR-Linac for pros-
tate cancer show only small anatomical displacements (<3 mm) 
in most patients. However, in those where larger displacements 
took place, the dose delivered was substantially different to that 
intended.38 It is anticipated that tracking and trailing of dose 
(i.e. dose follows the target if it moves) will soon be a reality for 
commercial MRIgRT systems.

Current IGRT techniques on standard linacs do not account 
for this movement and it is largely mitigated (in terms of target 
coverage) by the PTV margins. Cyberknife (Accuray, Sunny-
vale), however, accounts for intrafraction movement by tracking 
fiducials with kV imaging throughout treatment. Yet, these treat-
ments are sometimes lengthy and require the invasive procedure 
of inserting fiducials, and thus will not be suitable for all patients.

Radiation exposure
The use of MRI for image guidance removes the additional radi-
ation exposure delivered from X-ray-based image guidance. 
MRIgRT thus allows frequent verification as well as continuous 
‘real-time imaging’ radiation free. The dose from daily X-ray 

based image guidance (8–18 mGy daily) may be considered 
negligible in the setting of delivering large doses of curative 
radiation but continuous ‘real-time’ X-ray tracking daily over a 
course of treatment may increase this dose to a more clinically 
meaningful level.

The lack of additional radiation exposure with MRI may make 
this an ideal treatment modality for paediatric patients10 for 
whom secondary malignancy risk is a key concern. This benefit 
will need to be weighed against potential drawbacks such as 
anaesthetising a child, if needed to ensure tolerability, and tech-
nical considerations such as MR safe anaesthetic equipment.39

Limitations
Technical considerations
MR imaging, although superior to X-ray-based imaging, is also 
susceptible to external factors affecting quality such as random 
motion.40 Ensuring a high geometric fidelity of the MR images 
is also paramount, impacting dose calculation and spatial accu-
racy of the target and organs at risk.41,42 Patients with some metal 
implants may be unsuitable due to distortions affecting the image 
quality or safety.

The electron return effect or Lorentz force is where secondary 
electrons move in a circular manner due to the existence of a 
magnetic field.43 This effect is especially evident around the point 
at which the beam exits and at tissue and air interfaces.24 This 
can impact the dose delivered,44 more so in certain tumour types 
such as whole breast45 and needs to be accounted for during the 
planning process.

MRIgRT systems currently do not allow non-coplanar beans 
or electron beams; both of which are used for multiple tumour 
types. Whilst dosimetric benefit of non-coplanar beams is not 
seen for all tumours, this does limit potential solutions for diffi-
cult plans.

Size limitations
The bore size of the MR-Linacs is fixed; the Elekta Unity MR 
Linac is 70 cm in diameter and closed. Patients who are larger 
in habitus, or those with significant claustrophobia, will not be 
suitable for treatment. The bore size can also limit the range of 
positions that can be reproduced.26

The maximum field size in the craniocaudal patient direction 
on the Elekta Unity MR-Linac is 22 cm which is too small for 
some patients needing lymph node irradiation in the pelvis46 or 
other longer fields. With this field size, 80% of plans would be 
suitable for the MR-Linac with a 1 cm margin; all prostate and 
brain patients were found to be suitable. However, this falls to 
61% with larger tumour volumes such as cervix and some head 
and neck plans.47

Workflow and patient experience
Treatment times are much longer in duration compared to a 
standard linac; up to 1 hour has been reported for some sites and 
the average treatment duration for prostate cancer is 45 min46 in 
comparison to current treatment times on a standard linac with 
IMRT of approximately 10 min. Approximately 5% of patients 
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have found the treatment on an MR linac lengthy.48 This is due 
to the time taken for recontouring by the clinician, optimisation 
of the plan to meet the constraints on the day and dose delivery.

The long treatment times may lead to greater intrafraction motion 
and thus the original plan created may no longer be valid and 
a positional shift and repeat optimisation of the plan may need 
to take place, further increasing the treatment time. Enhancing 
patient comfort on the couch is therefore crucial. Patients are 
provided with noise reducing headphones through which music 
can be played and interaction can occur between the patient and 
radiographers. Overall, the patient experience has been encour-
aging but the most frequently reported complaints were of noise 
(this was the most common complaint), parathesia and cold.49,50

Patients who complain of claustrophobia will be unsuitable for 
treatment on the MR linac as well as those who have contraindi-
cations to MR imaging such as cardiac implants.51

Resource intensive
Delivering each treatment on the MR-Linac requires a multi-
disciplinary team; a radiation oncologist, radiographers, and a 
physicist in comparison to treatment on a standard linac which 
usually only requires radiographers. For this reason, at The Royal 
Marsden Hospital, the standard MR Linac day would only treat up 
to seven patients a day, whereas on a standard linac the throughput 
is much higher. Work is underway to improve efficiency and 
reduce the number of staff needed at the console, e.g. training 

radiographers to contour52 and to plan. The use of this new tech-
nology will also require additional training for all staff in areas such 
as MR safety and MR anatomy.

Cost
The adoption of MR-Linacs is increasing rapidly but machines 
remain limited in number. The cost of MRIgRT systems is much 
greater than conventional linacs and this is due to a combination of 
the initial capital cost but also the cost of preparation of the site and 
service contracts. Radiofrequency shielding is an additional cost, 
which is not required for conventional linacs.

MR-LINAC IN CLINICAL PRACTICE AT OUR 
INSTITUTION
At our institution, an Elekta (Elekta AB, Stockholm, Sweden) 
Unity MR-Linac has been in clinical use since 2018. Patients are 
only treated within a clinical trial. We recruit all patients to the 
MOMENTUM study,53 which is a collaborative international data-
base collecting technical, imaging and patient data on over 2000 
patients to date. Initially, in prostate cancer, we also conducted the 
PRISM study,54,55 treating a total of 27 patients with intermediate 
risk prostate cancer with 20 fraction treatment. Currently, prostate 
patients treated on the MR-Linac mostly receive five fractions.

The workflow for treatment is shown in Figure 3. The online adap-
tive workflow produces a new radiotherapy plan for patients, based 
on their anatomy, for every fraction (Figure 4). Once the patient 
is set up in the correct position, a session image is acquired. The 

Figure 3. Schematic of a treatment workflow on the MR Linac at the Royal Marsden Hospital (Figure adapted from prototype by 
Alex Dunlop and Helen McNair, RMH).
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clinician or trained radiographer reviews the image and assesses for 
a change in anatomy. If present, the target, and/or organs at risk 
contours are modified or recontoured and reoptimisation of the 
plan is carried out by the physicist. A verification image is obtained 
to assess for intrafractional movement. If significant, a positional 
shift is applied to the new plan (‘Adapt-to-Position’) to ensure target 
coverage. The workflow for the Viewray MRIdian differs slightly 
and more details can be found in Tocco et al.46

FUTURE
MR-only workflow
MR-only workflow describes the procedures needed for radio-
therapy planning based solely on MR, without a CT planning 
scan. This may reduce hospital visits for the patient by negating 
the need for pre-treatment planning imaging. It will also reduce 
costs and lower the total patient radiation dose.41 It will also 
overcome any contouring discrepancies caused by the introduc-
tion of systematic errors from inaccurate co-registration of the 
planning CT and MRI during the pre-planning process.46,56 In 
prostate cancer, this arises usually from a discrepancy in bladder 
and rectal volumes between the two scans.

The main necessary step in implementation is the generation of 
synthetic CTs to provide electron density information to enable 
dose calculation26 which require high geometric accuracy of the 
MR images. MR-only workflows have been shown to be feasible 
and have similar dosimetric accuracy as CT-based electron 
density planning in pelvic cancers.57 Clinical implementation of 
this approach is in process.

AUTOSEGMENTATION
Currently, contours are automatically propagated from the initial 
MR to the session MR on the day of treatment following deform-
able registration. Most radiation oncologists then modify these 
contours rather than starting from scratch. Autosegmentation 
may improve the workflow in the future by reducing the time 
needed for delineation and even avoiding the need for recon-
touring. This will also accelerate time to beam-on, reducing time 
for motion to occur.

Expansion of clinical roles
The role of the radiographer is likely to expand to take the lead 
in the online workflow. This may reduce the need for a clini-
cian to be present during treatment and could improve patient 
throughput. A ‘clinician-lite’ approach has been adopted at the 
Christie for simple prostate treatments58 and at our institution, we 
are in the process of training the radiographers to perform online 
contouring. Pathmanathan et al demonstrated good agreement 
between radiographer contours and the gold-standard on MRI.21

Real-time imaging
Real-time imaging during radiotherapy can be invaluable for 
some tumour types. It offers the possibility of adjusting the 
patient, or even pausing treatment, when the internal anatomy 
changes during treatment leading to the target moving out of the 
field or when an organ at risk moves into a high dose area; this 
can occur in cases of peristalsis, air in the rectum and breathing.

Logically, one would presume that if there is a benefit for 
MR-guided adaptive radiotherapy, it would be largest for ultra-
hypofractionation, due to the inclusion of MR guidance and 
in-beam imaging. Level I evidence is however currently lacking 
to demonstrate its benefit.

The ultimate goal would be that of intrafraction adaptive replan-
ning whereby a plan is being adapted during beam delivery,59 
and thus potentially negating the need for a PTV margin. This 
would be especially useful in ultra-hypofractionated regimens60 
and would be expected to reduce toxicity of treatment.

Dose escalation and reirradiation
In prostate cancer, the dominant intraprostatic lesion (DIL) is 
known to be the most common site of local relapse. These can be 
visualised on MR sequences which offers the possibility of dose 
escalation under direct vision, expecting that this will lead to 
greater tumour control.61,62 MRIgRT with adaptation offers the 
opportunity of reirradiation of tumours with reduced margins.

MR imaging during treatment
The MR-Linac offers the ability to collect multiple MRI images 
daily, before and during treatment. The quality of these images are 
not as high as those obtained from a 3T diagnostic MRI machine, 
yet it provides a wealth of data which otherwise would have been 
difficult to obtain, as daily diagnostic MR imaging is expensive 
and time consuming. This information will enable radiation 
oncologists to study changes in tumours during the course of 
radiation treatment and carry out dose–response studies.

One of the more exciting possibilities of MR-guided radiotherapy 
is the ability to perform functional imaging such as diffusion-
weighted imaging (DWI) during treatment.63 DWI is sensitive to 
the Brownian motion of water within tissues and can be used to 
discriminate malignant from benign tissue. Malignant tumours 
have a low ADC value.64 DWI images are also used to monitor 
response to treatment, post-chemotherapy or radiotherapy, to 
differentiate post-therapy changes from active tumour and to 
detect recurrent tumour.65

Figure 4. An example of a daily plan on the MR linac for a 
patient with prostate cancer receiving 60 Gy in 20 fractions. 
Sagittal, coronal, axial images and a dose–volume histogram 
are demonstrated; 57 Gy colourwash denoted in orange.
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This can provide information about the biology about the tumour 
and may act as a predictive biomarker for certain tumour sites as 
well as an indicator of tumour response to treatment.66 It has been 
demonstrated that changes on DWI images may be useful for 
prediction and early assessment of pathologic response to radio-
therapy with a better accuracy than volumetric measurements 
in rectal cancer.67 In prostate cancer, the ADC values have been 
shown to increase in the initial few weeks of therapy, more mark-
edly in those patients who have better clinical outcomes.68–70 The 
same pattern has been seen in other tumours sites.71,72 ADC as 
an imaging biomarker is sensitive but lacks specificity; it can be 
affected by factors such as necrosis and altered vasculature.73

Obtaining functional MR images could be done during the 
online workflow, hence would not take additional time. With 
these images, daily response assessment can be carried out which 
can influence the dose delivered to parts of the organ; e.g. dose 
escalation to areas with persistent restricted diffusion24,46 as 
these areas are likely to harbour a more radioresistant phenotype 
of the tumour. The MR-Linac has been shown to identify these 
areas in some tumours.74 The clinical value of these biological 
markers are yet to be determined and needs further exploration.

CONCLUSIONS
MR-guided radiotherapy remains in its early stages but is 
exciting and rapidly evolving. It offers greater possibilities for 
image-guided radiotherapy, thus offering opportunities for 

dose-escalation and reduction in toxicity. The development of 
individualised treatment plans is possible due to the combina-
tion of superior soft tissue contrast, real-time imaging and online 
daily adaptation. We may see a reduction of margins, increase 
in the dose per fraction and the use of functional data to guide 
treatment. However, at present, it remains resource and time 
intensive to deliver and is not yet widely available. Although 
the theoretical possibilities of this new technology is numerous, 
prospective randomised clinical trials and extensive clinical 
validation are required before clear benefits for MRIgRT can be 
claimed.
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