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Interplay between cellular, molecular,
and mechanical factors shapes tumor
morphology.

Tumor architecture has genetic, epige-
netic, and phenotypic effects on cancer
cells.

Primary tumor architecture informs
cancer progression.

Cytoskeletal architecture remodels
The 3D architecture of tissues bearing tumors impacts on themechanical microen-
vironment of cancer, the accessibility of stromal cells, and the routes of invasion.
A myriad of intrinsic and extrinsic forces exerted by the cancer cells, the host
tissue, and themolecular and cellular microenvironment modulate themorphology
of the tumor and its malignant potential throughmechanical, biochemical, genetic,
and epigenetic cues. Recent studies have investigated how tissue architecture
influences cancer biology from tumor initiation and progression to distant
metastatic seeding and response to therapy. With a focus on carcinoma, the
most common type of cancer, this review discusses the latest discoveries on
how tumor architecture is built and how tissue morphology affects the biology
and progression of cancer cells.
before metastatic invasion.

Carcinoma cells invade as single cells
upon epithelial-to-mesenchymal transi-
tion or as epithelial clusters.

The architecture and topography of the
tumor impacts on therapy delivery and
efficacy.
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3D architecture conditions tumor biology
Tissue architecture is dependent on tensional homeostasis that is necessary for organ function
[1]. When tumors arise and grow, they alter the organized morphology of tissues, creating
aberrant tensional forces and inducing changes in the mechanical microenvironment. The 3D
morphology of the resulting lesion and the associated aberrant mechanics influence the biology
of cancer cells and surrounding tissues. Recently, several groups have focused on studying the
etiology of different tumor architectures, their evolution throughout progression, and their prognostic
value [2–4]. This review discusses the recent literature evaluating the relevance of tissue architecture
in tumor biology.

Architectural and mechanical heterogeneity of primary tumors
The 3D architecture of tumor host tissues andmalignant lesions is driven bymechanical traits and
is a source of mechanical and functional intratumor heterogeneity. Diverse architectural proper-
ties of tissues, including their geometry, confinement, and fluidity, exert different mechanical
stimuli on cancer cells within a tumor [5].

Tumorigenesis disrupts physiological architecture
The disruption of tissue architecture at the onset of tumorigenesis is conditioned by the
molecular drivers of transformation. Bona fide cancer drivers such as RAS oncogenes
(HRAS, NRAS, and KRAS) cause loss of tensional homeostasis and reorganize tissues by
altering local actomyosin contractility. In non-malignant mammary MCF-10A cells, stress
fibers are localized in the apical region and contribute to the stiffness of the cell. In malignant
mammary cells (MCF-7 and MDA-MB-231), stress fibers localize basally [6]. Upon transfor-
mation with oncogenic HRAS, non-malignant MCF-10A mammary cells lose their epithelial
monolayer organization and aggregate into 3D structures in vitro. This occurs by reduction
of cellular adhesion and decreased traction forces to the substrate, together with disrupted
cytoskeletal polarization [7].
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Epithelial cells of the lung airways, hepatic ducts, and exocrine pancreas present a physiological
apical polarization of actin and phosphorylated myosin. Upon transformation, constitutively active
KRAS triggers the inhibition of phosphatases that maintain this actomyosin polarity, and leads to
the basal accumulation of actomyosin cortex-related components including integrins and
mechanoregulators [2]. Thus, the local loss of cytoskeletal polarity in transformed cells contrib-
utes to the malignant cellular morphologies that in turn result in the characteristic architecture
of early lesions (Figure 1).

Intratumor mechano-architectural heterogeneity
Throughout tumor progression, cell–cell interactions and tissue fluidity determine the individual
cellular geometry [8]. In MCF10A spheroids, the cytoplasmic and nuclear volume of cells varies
between the core and periphery [9], and different force magnitude levels are at play in these
two regions, suggesting that local confinements throughout a tumor contribute to intratumor
cellular heterogeneity. In the tumor margins, confinement by the extracellular matrix (ECM)
plays a key role in cancer progression. Cancer cell confinement together with reduced cell–cell
and cell–ECM adhesions regulate tumor unjamming transitions (increase of tissue fluidity) and
promote invasion [10]. Conversely, an increase in collagen concentration provokes tissue
jamming and prevents invasion [11]. Under artificial confinement in vitro, HRASV12 transformed
cells present a proliferation advantage. Although they are softer in intermitotic periods, their rigidity
increases during mitosis, surpassing that of healthy cells, and thereby allows correct chromosome
segregation without mitotic arrest [12]. Hence the mechanical heterogeneity driven by the tumor
composition and architecture plays an important role in dictating cancer cell shape and competitive
proliferation.
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Figure 1. Architects of tumor morphology. Oncogene-driven cytoskeletal rearrangements, geometric constraints of the tissue of origin, and the cellular andmolecular
microenvironment shape the architecture of cancer cells and tumors. Abbreviations: CAF, cancer-associated fibroblast; ECM, extracellular matrix; LOX, lysyl oxidase;
pMLC2, phospho-myosin light chain 2; RASCA, constitutively active RAS.
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The different local forces created by the tumor architecture have further consequences on the
biology and behavior of cancer cells. In morphologically identical spherical colonies of breast
cancer cells, traction stresses distribute stochastically, and a single cell can alter the organization
andmechanics at themulticellular level [13]. Conversely, mouse and human cancer cell lines cultured
in a variety of matrix shapes show tension at the matrix–media interface of curved geometrical traits.
Increased local tension induces the expression of cancer stem cell markers and modulates cell
shape, adhesion, and signaling [14]. Tumor growth and shape, conditioned by mechanical tension
and spatial restrictions among other factors, affect the diversification of genetic subclones in clear
cell renal carcinoma, demonstrating crosstalk between cellular and architectural intratumor hetero-
geneity that impacts on cancer evolution [15]. The use of spatial transcriptomics and single-cell
RNA sequencing in human pancreatic ductal adenocarcinoma (PDAC) allowed the correlation of
transcriptomic signatures and stromal enrichment with spatially isolated architectures within a
tumor [16]. The aberrant tissue architecture upon transformation alone could contribute to heteroge-
neity and malignancy through chromosome instability. Native tissue architecture and integrin
function are necessary for proper chromosome segregation [17], and cancer-induced disruption
of epithelial architecture may lead to chromosome instability.

Intertumor mechano-architectural heterogeneity
Tumors of similar etiology or cell of origin often present different morphologies from early tumor-
igenesis that later affect their progression. The drivers of these different morphologies are starting
to be elucidated, and, as in normal tissue developmental processes, these may depend on the
organization and geometry of the naïve epithelium before transformation [18]. In the pancreas,
the heterogeneous geometry of the pancreatic duct determines early morphogenesis of PDAC
precursor lesions. Transformation in ducts with a diameter of 17μmor above leads to the formation
of endophytic lesions that grow into the duct lumen. The higher curvature of narrower ducts forces
early tumors to grow exophytically into the surrounding parenchyma. Through their higher expo-
sure to the non-cancerous tissue environment, exophytic lesions interact with protumorigenic
cancer-associated fibroblasts (CAFs) more efficiently and display increased tumor cell dissemina-
tion [2]. Strikingly, the actomyosin cortical perturbations are similar among cells in both lesion types,
but lead to different tissue morphological outcomes owing to the disparate geometries of large-
and small-diameter ducts and the cells within (Figure 1).

In the skin, non-invasive basal cell carcinoma (BCC) forms bud-like lesions, whereas invasive
squamous cell carcinoma (SCC) forms folds. This key architectural difference is explained by
the assembly and stiffness of the basement membrane (BM). BCCs accelerate the assembly of
the BM, creating a softer BM that is more resilient to tension. SCCs decrease BM assembly
and exert higher tensional forces on it, facilitating rupture and invasion beyond [3].

Thus, the spatial position of the tumor-originating cell in the normal tissue epithelium influences
key aspects of lesion biology through an interplay between cell behavior and external geometric
cues (Figure 1). Although driver mutations modulate cancer cell behavior and shape, local forces
exerted by cancer cells and the geometry of the tissue before transformation condition tumor
morphology, and the tumor-adjacent molecular and cellular microenvironment further crucially
shapes tumor morphology.

The tumor microenvironment modulates its architecture
The tumor microenvironment is the ensemble of ECM molecules and non-transformed cells that
surround cancer cells. Cancer cells secrete matrix modifiers [19] and exert forces [20,21] to ex-
pand in restricted spaces and break through mechanical barriers. The architecture of ECM fibers
and the cellular microenvironment can physically facilitate or restrict invasion. The biophysical
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characteristics of the tumor stroma have important implications in tumor morphology and cancer
cell behavior (Figure 1). A stiffer stroma can foster invasion, which in part may come from the pro-
motion of cancer cell interaction with the surrounding endothelium [22]. On the other hand, high
ECM deposition stiffens the stroma and reduces pore sizes, leading to confinement and reduced
tissue fluidity which may limit cancer cell proliferation. For example, PDAC lesions grow slower in
their stiffer acellular primary site than as metastatic lesions in the liver, with reduced stroma [23].

ECM architecture and cancer
The ECM is an acellular array of macromolecules that function as a scaffold for maintaining the
architecture of the tissue. Tumors have aberrant ECMs because tumor cells, CAFs, and other
cells of the tumor microenvironment secrete components that alter the physicochemical charac-
teristics of the matrix. The ECM is viscoelastic and it can also undergo irreversible deformations
[24]. Forces exerted by tumor growth alone can cause breaking of weak crosslinks and
untangling of fibers [25]. Cancer cells can modulate the architecture of the ECM by exerting pul-
sating forces and contracting against collagen fibers, inducing anisotropy [20,21]. Similarly, CAFs
create forces that align fibers, creating anisotropic paths that facilitate cancer cell migration [26].

The BM is a thin sheet of ECM that provides essential structural support to epithelial, mesothelial,
and endothelial tissues, and constitutes a physical barrier for immune infiltration and tumor inva-
sion. The BM is permeable to nutrients and is hyperelastic. Upon experimental pressure applica-
tion, the BM was discovered to have a non-linear stiffening behavior, making it resistant to
instability, breaching, or softening under mechanical stress [27]. BM stiffness is a key determinant
of distant metastasis. Netrin-4 induces openings of laminin node complexes and softens the BM.
Although this creates pores in the BM, the softening increases its resilience to growing tumors
and reduces metastasis. The netrin-4/laminin ratio determines the stiffness of the mammary
gland BM. A higher ratio results in lower stiffness and decreased invasion [28]. Recent evidence
shows that the relationship between BM and tumors is more complex than was previously antic-
ipated because tumors can produce their own BM [29].

CAFs induce mesenchymal traits and invasion
In vitro, CAFs can drive the invasion of single cells or collective migration by directly interacting with
cancer cells through N-cadherin/E-cadherin heterotypic adhesions. CAFs exert pulling forces on
the cancer cells away from 3D spheroids, inducing invasion [30]. In addition, CAFs can alter the in-
tegrity of the BM by exerting physical forces, making it permissive for tumor cell invasion, as shown
in coculture experiments with colon cancer cell lines [31]. Conversely, adipose stromal fibroblasts
stiffen the ECM by deposition of fiber proteins such as collagen and fibronectin [32].

CAFs induce epithelial-to-mesenchymal transition (EMT) and proliferation of PDAC cells through
TGF-β secretion. This leads to a heterogeneous composition of tumor cell types (proliferative,
EMT, neither or both), allowing the classification in eight architecture 'units' that can coexist within
the same tumor [33]. CAFs also aid breast cancer growth in an architecture-dependent manner
via secretion of IL-6, which induces local hepcidin expression and iron retention that are charac-
teristic of breast cancer. Interestingly, this mechanism has only been observed in vivo and in
organoids, and not in 2D culture, suggesting that the 3D architecture of the transformed epithe-
lium is required [34].

Spatial interactions between tumors and healthy epithelium
Epithelial malignancies involve mechanical crosstalk between the expanding lesion and the
surrounding healthy cells. Local transformation by KRASV12 in Xenopus laevis embryos leads to
actomyosin hypercontractility, creating a radial anisotropic tension around the lesions and inducing
Trends in Cancer, June 2022, Vol. 8, No. 6 497
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division of contiguous wild-type cells [35]. In mouse skin, tissue straining through self-inflating gels
boosts cell proliferation in the absence of tumors [36]. Hence the tension exerted by an expanding
tumor affects the tissue shape and can induce proliferation of surrounding healthy cells.

Extrusion of transformed cells is an epithelial defense mechanism against cancer that involves
increased lateral interfacial actomyosin contractility [37] (Figure 2). However, cancer-induced stiff-
ening of the surrounding ECM drives reorganization of the cytoskeleton of healthy cells including
perinuclear localization of filamin that impedes extrusion [38].

The basal myoepithelium of glandular organs such as the mammary gland and prostate impairs
the preinvasive-to-invasive transition of transformed luminal cells. Genetic perturbations that
affect the function of themyoepithelium increase the risk of invasive carcinomas [39]. Live imaging
of mammary tumor 3D cultures has revealed that the myoepithelium not only functions as a
physical barrier against invasive phenotypes of cancer cells but also dynamically impairs invasion
by interacting with cells undergoing EMT, exerting pulling forces and returning them to the luminal
region upon escape [40]. The mechanisms inducing the forces that myoepithelial cells exert on
cancer cells of the luminal epithelial layer remain to be investigated. Most recently, morphometric
quantifications comparing the myoepithelium of patients with ductal carcinoma in situ have
shown that progressors have a thicker continuous myoepithelium [41], perhaps in response to
aggressive luminal phenotypes.

Mechanical interaction between tumor and immune cells
The recent success of immunotherapy against cancer has focused the attention of researchers
on the immune microenvironment. Different immune cells play distinct pro- and antitumorigenic
functions. Inflammation induced by immune cells can change the biophysical properties of a
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Figure 2. Invasive architectures. Invasive routes of carcinomas as single cells that abandon an epithelial architecture or as
collective multicellular epithelial structures. Forces modulating invasion are indicated in blue. Abbreviations: CTC, circulating
tumor cell; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition.
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tumor. Furthermore, by modulating the architecture of the ECM, immune cells impact on the
architecture and invasive routes of tumors.

Natural killer (NK) cells interact with B16melanoma cells through Ncr1 receptor–Ncr1 ligand inter-
action. This induces IFN-γ secretion by NK cells which promotes tumor cells to express the ECM
protein fibronectin 1. Increased fibronectin 1 builds a benign architecture of the primary tumor
that impedes metastasis [42]. At the cellular level the aberrant cytoskeletal architecture of cancer
cells can be detected by cytotoxic cells. Myocardin-related transcription factors can enhance the
rigidity of the cytoskeleton of cancer cells and their invasiveness in the absence of immune cells.
However, cytotoxic T lymphocytes and NK cells efficiently detect and eliminate cancer cells with
increased rigidity [43]. Consistently, inducing stiffening of the cancer cell plasma membrane by
depleting cholesterol enhances T cell cytotoxicity [44].

Macrophages create crosslinking in the ECMby secreting lysyl oxidase (LOX) enzymes that stiffen
the stroma and induce cell invasion and poor prognosis in patients with aggressive breast cancer
[45]. In zebrafish, macrophages and neutrophils were shown to span breaches in the BM to
access tumors of the epidermis. The cells have protumorigenic activity, and might aid invasion
by creating breaches in the BM [46].

Chemotherapy has been shown to affect cancer cell behavior by modulating the activity of
immune cells. After paclitaxel chemotherapy, CD8+ T cells have shown to remodel the ECM of
lungs via LOX expression and the deposition of collagen and laminin, aiding the metastatic
seeding of breast cancer cells [47].

These recent discoveries manifest the cell- and context-dependent role of the immune microen-
vironment in enhancing or impairing tumorigenesis and invasion by modifying mechanical traits.

Tumor morphology and invasion
Cancer cells acquire invasive traits throughout primary tumor evolution and metastasize through
the lymphatic and blood vasculature to distant organs. In this section we differentiate between
two types of carcinoma invasion based on tissue and cell architecture. Upon EMT, cancer cells
undergo total remodeling of their cytoskeletal architecture and can abandon the tissue of origin
as single cells [48]. Epithelial cells or cells that undergo partial EMT can invade tissues and vascu-
lature as clusters, partially preserving their epithelial organization (Figure 2).

EMT and single-cell invasion
EMT is induced by oncogenes that remodel the cytoskeleton (as discussed in the preceding text)
and by the physical properties of the tumor such as interstitial fluid pressure [49] and forces
exerted by the stroma. A higher ECM stiffness correlates with the invasive phenotype of cells of
different cancer types. Non-malignant MCF10A breast cells behave like invasive cancer cells in
stiff matrices [50]. In endometrial cancer cells, EGF induces EpCAM proteolysis, nuclear translo-
cation of its intracellular region, and interaction with LEF1. These molecules act as transcription
coactivators and upregulate the key EMT regulators TWIST1, ZEB1, and SNAI1. Atomic force
microscopy (AFM) experiments revealed that cells treated with EGF are both softer and less
adhesive as a result of EMT and loss of membrane EpCAM, respectively [51]. BAR proteins
sense and generate membrane curvature and are inhibited physiologically in epithelial cells [52].
The plasma membrane tension is maintained by membrane-to-cortex attachment proteins
ezrin, radixin, and moesin (ERM) in healthy epithelia and in early carcinomas. Upon EMT, these
protein families are dysregulated, the tension of the plasma membrane decreases, and the cell
undergoes deformation, thereby increasing its disseminating capacity [53].
Trends in Cancer, June 2022, Vol. 8, No. 6 499
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Although apical cell extrusion is a defense mechanism of epithelia, transformed cells can hijack
this mechanism to facilitate invasion. In zebrafish epidermis KRASV12 mutation induces basal
extrusion, facilitating invasion beyond the epithelium [54].

Single cancer cell migration through confined spaces increases energy demand, and cells
migrate towards the area of lower confinement because of the lower energy cost [55]. Immune
cells such as dendritic cells also choose the path of least resistance [56]. The nucleus constitutes
the limiting structure for migrating cells to move through narrow spaces. In vitro, the cytoplasm
and plasma membrane of invasive cancer cells passing through constriction channels can
bend with ease, but spaces narrower than nuclei lead to cell obstruction in the absence of matrix
degradation. Nuclei sense the degree of confinement and communicate with the actomyosin
cortex through stretch-sensitive proteins in the nuclear envelope [57,58]. Compared to the
cytoplasm, deforming the nucleus requires higher cellular forces and time [59]. Experimentally,
10–20 nN exerted by AFM is sufficient to rupture the nucleus of U20S osteosarcoma cells [60].
Passing through narrow constrictions (2–5 μm) in vitro can lead to nuclear envelope rupture,
cytoplasmic translocation of nuclear DNA, and activation of cGAS-mediated inflammatory cues
[61]. Although holes in the nuclear envelope are quickly repaired, these ruptures and nuclear
compression alone can induce double-strand breaks in the DNA [62] which may contribute to
mutagenesis and genetic instability of invasive cells. Consistent with these discoveries, markers
of DNA damage and nuclear envelope rupture are enriched in the invasive margins of mouse
and human mammary tumors [63]. In addition to DNA damage, compression of the nucleus
has epigenetic consequences. In a recent preprint, confined migration of fibrosarcoma and
breast cancer cell lines was shown to induce the formation of heterochromatin that was associ-
ated with an increased invasive phenotype [64].

The apicobasal polarity inherent to epithelia limits EMT. In breast and colorectal cancer (CRC)
organoids, the PAR complex, an atypical PKC that maintains cell polarity, phosphorylates and
targets the EMT factor SNAI1 for degradation [65]. However, lack of EMT or partial transition
does not necessarily restrict invasion and metastasis, and epithelial clusters can develop mech-
anisms to invade beyond the primary tumor site.

Multicellular structures of collective invasion
In carcinoma, cancer cells can migrate collectively, thereby preserving epithelial cell–cell interactions
and providing a protective architecture that facilitates distantmetastasis (Figure 2). RAB5A-mediated
internalization of EGFR triggers MAPKhyperactivation and downstream actin nucleation that causes
unjamming and collective migration in breast cancer spheroids. Similarly, downregulation of
E-cadherin and p120 catenin promotes epithelial fluidization, thus favoring tumor migration
[10]. CRC cells spontaneously form tumor spheres of inverted polarity, with an outward api-
cal pole and basal ezrin. Apical budding triggered by non-canonical TGF-β signaling and
downstream ROCK and myosin II activity allows migration and metastatic seeding in the
peritoneum [66]. Multicellular cancer structures can reach the vasculature, and cells migrate
through the bloodstream as circulating tumor cell (CTC) clusters of epithelial architecture.

Tumor shape and mechanics during metastatic invasion
Cells of a primary tumor invade distant organs through the lymphatic and blood vasculature.
CTCs enter the draining lymphatic vasculature where the low-velocity laminar flow created by
low-amplitude pulsations does not exert high shear stress on CTCs. Cells arrive in lymph
nodes where they can proliferate and form tumors. Cells may enter the venous blood circulation
at the primary tumor or at the lymph nodes. In large vessels, CTCs will encounter turbulent flow
and strong shear forces. In narrow capillaries and during extravasation, cancer cells experience
500 Trends in Cancer, June 2022, Vol. 8, No. 6
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mechanical constrictions. Surviving cells can exit from the circulation and proliferate in secondary
organs with biological and physicochemical characteristics distinct from the organ of origin
[67,68] (Figure 3).

Once the invasive cancer cells reach the draining lymph nodes through the lymphatic vasculature,
a necessary first step in successful lymph node colonization is metabolic rewiring towards fatty
acid oxidation. Interestingly, this metabolic adaptation occurs via YAP, a mechanosensory tran-
scriptional regulator, suggesting that the differential mechanical landscape of the lymph node
Lymphatic vasculature

Blood vasculature

Expansion in confinement
Selection of pro-invasive traits

C TC cluste

rs

CT

Cs

Lymph node

Lymph node
mechanics
Drives metabolic
rewiring of cancer

Laminar flow. Low shear stress

Constriction forces
upon intravasation

Turbulent flow. High hemodynamic shear stress

Cap
illa

ry

Constriction forces
in narrow capillaries
and upon extravasation

Distant metastasis
New mechanical landscape
drives architecture of lesions

Primary
tumor

Lymph node
metastasis

Surviving the hemo-
dynamic stress

CTC clusters
Physical shielding

Single cells
EMT-driven softening
Cortical protection of
membrane

TrendsTrends inin CancerCancer
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cells experience a myriad of different mechanical forces that lead to the selection of the most resilient, deformable, and motile cells. Forces can induce genetic, epigenetic,
and morphological changes in cancer cells throughout tumor progression. Abbreviations: CTCs, circulating tumor cells; EMT, epithelial-to-mesenchymal transition.
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Outstanding questions
How do other components of the tumor
microenvironment (nerves, endothelium,
other immune cells) shape tumor
architecture?

Does clustering of cells in collective
invasion cushion and protect them
from mechanical stress?

Can benign tumor morphologies
be promoted by pharmacologically
targeting architecture drivers?
environment triggers this shift [69]. However, the link between lymph node mechanics and
rewiring via YAP remains to be identified.

When cancer cells enter the blood flow, most die as a result of hemodynamic shear stress. For
example, most breast cancer cells in suspension exposed to hemodynamic shear flow are elim-
inated. Those that survive present EMT features such as elongated morphology and low stiffness
associated with reduced F-actin assembly [70]. Healthy prostate cells are efficiently killed by the
extreme fluid shear stress in the circulation, but, upon PTEN and P53 deletion, transformed cells
can resists this mechanical stress via RhoA–actomyosin cortical protection of plasma membrane
integrity [71]. Homotypic and heterotypic clustering of CTCs can protect them from shear stress-
induced cell death in the circulation. CTCs interact with each other [72], as well as with blood cells
such as neutrophils [73]. Platelets may protect CTCs from venous and arterial-like shear stress,
as shown in vitro for ovarian cancer cells [74]. These interactions might cushion the shear stress
in circulation, but how mechanical forces affect CTCs of different sizes and cellular composition
has not been explored. Although it was originally believed that CTC clusters would be jammed
in capillaries and hence never reach arteries, it has since been demonstrated that clusters of up
to 20 cells can pass through the capillary bed [75]. In thin capillaries and during extravasation,
cancer cells experience constrictive forces that could trigger further selection, DNA damage,
and epigenetic changes. Cells forming part of the CTC cluster architecture present
hypomethylated chromatin at the binding sites of the embryonic transcription factors OCT4,
SOX2, NANOG, and SIN3A. Disruption of the CTC cluster architecture into single cells by
Na+/K+ ATPase and tight-junction inhibitors changes the chromatin methylation profile, and
limits stem cell features and metastasis [76]. The link between multicellular and chromatin
architecture and translational activity [77,78] might be explained by mechanical crosstalk
between the cytoskeleton and nucleoskeleton. The linker of nucleoskeleton and cytoskeleton
(LINC) complex connects these dynamic architectural cortexes [79]. Nuclear mechanics are
influenced by cytoskeletal forces [80] and vice versa [81].

Cancer cells can produce extracellular vesicles that prime the premetastatic niche by influencing
its ECM architecture and mechanics. Upon exposure to taxol chemotherapy, breast cancer cells
secrete extracellular vesicles that increase the elasticity of the lung mechanostructure, thus facil-
itating metastatic seeding [82]. Once cancer cells arrive in a secondary organ, they colonize by
competing with pericytes and adhering to the perivascular niche through L1CAM. This triggers
mechanotransduction effectors such as YAP and MRTF which enable metastasis outgrowth
[83], indicating that the mechanostructure of invasive sites conditions successful metastasis
(Figure 3).

Concluding remarks and future perspectives
The study of tissue and tumor architecture and its consequences for cancer cell biology and pro-
gression have benefited from the development of techniques to study tissue transformation in 3D.
Although spheroids and organoids are widely used in biomedical research, the recent develop-
ment of epithelial assembloids containing a complex layered microenvironment recapitulating
whole organs [84] holds promise for a more rigorous study of tissue architecture and mechanics.
In this study, muscle and stroma surrounding luminal epithelium recapitulated the architecture of
a healthy bladder, and, upon transformation, the lineage identity of tumor cells was preserved.
Ex vivo, tissue clearing and fluorescence 3D imaging allows the characterization of tissue and
tumor architecture with unprecedented resolution [85]. Using tissue clearing of prostate resec-
tions, a stagingmethod based on 3D architecture of prostate lesions has demonstrated prognos-
tic value [4]. In CRC, tissue architecture informs on Src activity because Src induces ezrin which
changes the morphology of cells and multicellular structures, informing on prognosis [86].
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The topographical presentation of tumors is an important consideration for therapeutic options.
Sheet-like lesions are difficult to efficiently resect surgically. The use of topical hydrogels contain-
ing nanoparticles with small RNAs is agnostic to tissue topography and can be used to treat
sheet-like lesions [87]. Therapeutic efficiency is further influenced by tumor composition andmor-
phology, as well as by their underlying physical properties. The density and integrity of the vascu-
lar network, as well as interstitial fluid pressure, are crucial for the efficient delivery of anticancer
therapies [88]. Architectural tumor compartmentalization leads to regional molecular and func-
tional fluctuations that shape treatment response, as is apparent in skin BCC where the basal
cells in direct contact with the BM (presenting low Notch signaling) and suprabasal cells (high
in Notch) respond differently to the hedgehog inhibitor vismodegib that is widely used in BCC
treatment [89]. The increased stiffness upon tumor development can be exploited in creative
treatment avenues for efficient drug delivery [90]. Altering tumor stiffness [91] can help the efficacy
of immuno- and chemotherapies [92] in a tumor-specific manner. Targeting the ECM architecture
could restrict tumor invasion, but needs to aim at ECM normalization rather than at ablation so as
to provide the controlled environment that regulates cell behavior and naturally limits proliferation
and invasion. Therapeutic ECM interference could also facilitate immune cell infiltration, boosting
the effect of immunotherapy. Stiffness increases the expression of the immune checkpoint PD-L1
in lung cancer, inducing immune evasion [93]. Using LOX inhibitors, preclinical tumor stiffness
was reduced, increasing T cell infiltration and the response to anti-PD-L1 immune checkpoint
blockade treatment [94].

These examples illustrate the importance of tumor and stroma architecture in cancer cell behavior.
Further investigation on the etiology and consequences of different tumor morphologies will
expand our understanding of fundamental and clinical cancer biology (see Outstanding questions).
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