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recherche médicale (INSERM), Paris, France, 4 Department of Radiology, Leiden University Medical Center, Leiden,
Netherlands, 5 Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands, 6 Department of Surgical
Sciences, University of Turin, Turin, Italy, 7 Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per
l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy, 8 Department of Radiology & Nuclear
Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers [Vrije Universiteit (VU) University], Amsterdam,
Netherlands, 9 Medical Imaging Department, Mater Dei Hospital, University of Malta, Msida, Malta, 10 College of Science,
University of Lincoln, Lincoln, United Kingdom, 11 Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, 12 Nuclear Medicine Unit, Istituto Di Ricovero e Cura a Carattere
Scientifico (IRCCS) – Humanitas Research Hospital, Milan, Italy, 13 Department of Radiology, Institut de Recherche
Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels,
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Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference
standard for evaluating efficacy of therapies in patients with solid tumours who are
included in clinical trials, and they are widely used and accepted by regulatory agencies.
This expert statement discusses the principles underlying RECIST, as well as their
reproducibility and limitations. While the RECIST framework may not be perfect, the
scientific bases for the anticancer drugs that have been approved using a RECIST-based
surrogate endpoint remain valid. Importantly, changes in measurement have to meet
thresholds defined by RECIST for response classification within thus partly circumventing
the problems of measurement variability. The RECIST framework also applies to clinical
patients in individual settings even though the relationship between tumour size changes
and outcome from cohort studies is not necessarily translatable to individual cases. As
reproducibility of RECIST measurements is impacted by reader experience, choice of
target lesions and detection/interpretation of new lesions, it can result in patients changing
response categories when measurements are near threshold values or if new lesions are
missed or incorrectly interpreted. There are several situations where RECIST will fail to
evaluate treatment-induced changes correctly; knowledge and understanding of these is
crucial for correct interpretation. Also, some patterns of response/progression cannot be
correctly documented by RECIST, particularly in relation to organ-site (e.g. bone without
associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require
specialist reader experience and communication with oncologists to determine the actual
impact of the therapy and best evaluation strategy. In such situations, alternative imaging
markers for tumour response may be used but the sources of variability of individual
imaging techniques need to be known and accounted for. Communication between
imaging experts and oncologists regarding the level of confidence in a biomarker is
essential for the correct interpretation of a biomarker and its application to clinical
decision-making. Though measurement automation is desirable and potentially reduces
the variability of results, associated technical difficulties must be overcome, and human
adjudications may be required.
Keywords: tumour, biomarker, imaging, response, RECIST
INTRODUCTION

Imaging plays a major role in the evaluation of tumour response
to cancer treatments. It provides an objective in-vivo
measurement of tumour burden, and helps oncologists
determine whether a treatment should be pursued, interrupted
or adapted.

Response evaluation criteria in solid tumours (RECIST) v1.1
currently is the reference standard for evaluating efficacy of
therapies in patients with solid tumours who are included in
clinical trials, and it is widely used and accepted by regulatory
agencies (1). However, many publications question both the
reproducibility and the clinical relevance of RECIST. This
paper is an expert statement aiming to answer some of the
questions regarding the principles underlying RECIST and its
reproducibility compared to other biomarkers, as well as the
limitations to its application and continued role in an era where
other biomarkers exist that are more explicitly geared towards
tumour-specific properties.
2

HOW WERE RECIST THRESHOLDS
ESTABLISHED?

RECIST has instituted several overarching principles underpinning
its approach to tumour response evaluation. Primarily, RECIST
defines which lesions are measurable in a reliable manner. Among
these, it defines a maximal number of lesions (‘target lesions’) to be
measured to yield a quantitative value representative of tumour
burden. The remainder are considered ‘non-target lesions’ and are
evaluated qualitatively. On follow-up scans, new lesions indicate
progression (Table 1). The threshold for response is defined as a
decrease of at least 30% of sum of diameters (SOD) of target lesions
compared to baseline, AND no progression of non-target lesions
AND no new lesions. The threshold for progressive disease (PD) is
defined as an increase of at least 20% of SOD of target lesions
compared to nadir AND/OR unequivocal progression of non-
target lesions AND/OR appearance of new lesions.

The first publication addressing thresholds for determining
treatment efficacy was published by Moertel and Hanley in 1976
January 2022 | Volume 11 | Article 800547
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(2). In this study, 16 observers were asked to measure by clinical
examination using a calliper the diameters of solid spheres of
variable sizes arranged randomly underneath a mattress. Authors
suggested the product of two diameters should be used, as this
would be more reliable if lesions were not spherical. For this
‘clinical’ estimate, a 50% reduction in the product of two
diameters was shown to have an acceptable measurement error
estimated between 7-8%. Interestingly, the authors specifically
stated that “the purpose was not to predict long-term efficacy but
to determine what change in bidimensional size could be
confidently considered a change”. Progression, on the other
hand, was defined as an increase in the product of diameters ≥
25%, but the authors could not justify this cut-off, other than by
specifying it “should not necessarily be regarded as influencing
the management of the patient”.

In 1979, the World Health Organization (WHO) provided
recommendations for the evaluation of cancer treatments in
clinical trials on imaging. Criteria were based not only on the
bidimensional measurement of lesions on clinical examination,
but also CT or standard radiography (3), transposing results of
Moertel and Hanley’s study and setting cut-offs for definition of
Frontiers in Oncology | www.frontiersin.org 3
response to -50% and of progression to +25%. However, many
technical aspects were not detailed, such as the number of lesions
to be measured or what constituted a measurable lesion.

In 2000, a working group of European, American and
Canadian cancer research organizations (EORTC, NCI, NCIC)
defined the Response Evaluation Criteria In Solid Tumours –
RECIST (4). They used data from over 4,600 patients enrolled in
14 clinical trials to formulate criteria based on imaging. RECIST
used unidimensional measurement of lesions, justified by an
extensive comparison of methods of measurement (1D vs. 2D)
(5). Moreover, this working group specified conditions of
measurement, number of lesions, and detailed how to
document progression. Regarding cut-off values for response
and progression, the -50% value for response for bidimensional
measurement was altered to -30% for unidimensional
measurements, and the +25% value for progression for
bidimensional measurement was altered to +20% for
unidimensional measurements (Table 2).

RECIST was then revised in 2009 (version 1.1) (1),
introducing specific rules for measurement of small axis of
lymph nodes and reducing the number of target lesions to five
TABLE 2 | Relationship between diameter and corresponding volume.

Diameter (“long axis”) Percentage of variation Corresponding volume Percentage of variation

20 mm 4.2 cm3

26 mm +30% 9.2 cm3 +120%

34 mm +30% 20.6 cm3 + 120%

27 mm -20% 10.3 cm3 -50%
January 2022 | Vo
Repeated measurements are given for a theoretical lesion including diameter measured in a single dimension (long axis), percent changes between measurements, and the corresponding
volume assuming the lesion is a sphere and percent changes in volume.
TABLE 1 | RECIST categories of response.

Overall Response Target Lesions Non Target Lesions New Lesions

Definition •Lesions with longestdiameter≥10 mm and
limits that are sufficiently well defined for their
measurement to be considered reliable
•Lymph nodes: measurement of short axis,
target lesion if short-axis measures≥15 mm
• Maximum number of selected target lesions
5/patient and 2/organ

•Lesions that are too small
(< 10 mm)
•Lesions for which measurement is considered unreliable as
their limits are difficult to define (bone or leptomeningeal
lesions, ascites, pleural or pericardial effusion, lymphangitic
carcinomatosis etc.)
•Measurable lesions not selected as target lesions
•Lymph nodes: measurement of short axis, non-target lesion if
10 mm ≤ short-axis diameter < 15 mm
•Levels of tumour markers > normal (if relevant and
predefined)

Complete response (CR) • Disappearance of all target lesions and all
nodes have short axis < 10 mm

• Disappearance of all non-target lesions and normalisation of
tumour marker levels

• No

Partial response (PR) •≥ 30% decrease in the sum of target lesions
taking as reference the baseline sum

•No progression • No

Stable disease (SD) •Neither response nor progression • Persistence of one or more
non-target lesions and/or
tumour marker levels > normal

• No

Progressive disease (PD):
response is PD if at least one
category of lesions meets
progression criteria

•≥ 20% increase in the sum of target lesions
taking as reference the smallest sum
measured during follow-up (nadir) and ≥ 5 mm
in absolute value

• ‘Unequivocal’ progression (assessed qualitatively) in lesion
size (an increase in size of a single lesion is not sufficient)

• Yes [appearance
of new
unequivocally
metastatic
lesion(s)]
lume
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per patient. This new version was also based on data analysis,
including a literature review and a simulation using a database of
over 6,500 patients and 18,000 lesions. The number of target
lesions for example, was chosen by determining the minimum
number for which response rates and time to progression were
not altered from RECIST 1.0 results (6, 7).
Statement #1
RECIST thresholds were chosen to produce a comparable
classification of patients in a given category of response when
comparing trials or even when comparing patients, taking into
account tumour measurement variability.
DO RECIST CATEGORIES PREDICT
OUTCOME?

RECIST criteria were originally tested and validated to provide
an objective and reproducible assessment of treatment effect in
cancer patients, without any references to patient outcome (8).
Yet it seems intuitive that when a tumour decreases in size, a
patient will have a better outcome, and vice versa. There is
evidence to support this, including some large studies, which
pool data from various trials. In over 500 patients with metastatic
colorectal cancer treated with combination chemotherapy, a
decrease in size resulted in a decreased hazard ratio for overall
survival (OS) (9). In a meta-analysis of 24 phase I trials, a linear
relationship was shown between change in tumour size and
survival (10). In a pooled analysis of over 2,700 patients with
metastatic renal cell carcinoma treated with anti-angiogenic
agents, tumour shrinkage of ≥ 30% resulted in improved OS
and progression-free survival (PFS) (11). In addition, the authors
demonstrated that tumour shrinkage between 60% and 100% at
6-month follow-up represented an independent prognostic
factor for OS. Litière et al. also demonstrated in an even larger
pooled analysis of over 23,000 patients treated with targeted
agents, chemotherapy or a combination thereof (12), that a
decrease in tumour size was consistently associated with a
lower hazard ratio, while an increase in size was associated
with a higher hazard ratio.

Tumour response according to RECIST can only be
quantified by a decrease in size or number of target lesions, as
non-target lesions are not taken into consideration for partial
response (PR). Regarding progression however, it is important to
consider non-target lesions, as unequivocal progression of non-
target lesions or emergence of new lesions defines tumour
progression. In over 3,700 patients from 13 trials in the
RECIST trial database, the presence of new lesions and
progression of non-target lesions were most strongly associated
with worse OS (hazard ratios range 1.5–2.3) regardless of tumour
type, whereas percentage tumour growth in target lesions
contributed less in a multivariate model of OS (13).

Finally, in two separate studies (14, 15), An et al. compared the
predictive ability of RECIST categories vs. longitudinal tumour
measurement–based continuous metrics and alternative
Frontiers in Oncology | www.frontiersin.org 4
categorical response metrics such as slope (absolute change in
tumour size) and percent change (relative change in tumour size)
to predict OS. The databases consisted respectively of almost 2,100
patients from 13 trials and over 1,500 patients from 3 trials with
breast cancer, non–small cell lung cancer (NSCLC) or colorectal
cancer. Although there seemed to be a slightly better performance
for continuous variables, it was not statistically significant, which
led the authors to conclude there was no evidence that growth rate
or a continuous evaluation of percent change would improve
prediction of outcome. However, it may be noted that timing of
evaluations, particularly when considering non-continuous
variables, may have an impact on their performance and results.

Statement #2
Tumour size changes correlate to outcome at a statistical
(cohort) level.
HOW REPRODUCIBLE IS RECIST?

When considering whether RECIST evaluates tumour response
correctly, metrology principles guide us to consider two aspects
(16): is the measurement “true” (when compared to a “real”
value, which defines its accuracy), and is the measurement
“precise” (i.e. repeatable and reproducible)?

Assessing accuracy of change in size measurements would
require obtaining “true” values of change in size. As it is not
possible to surgically excise all tumours for comparison with
imaging, and often inaccurate to compare ex vivo with in vivo
measurements, the true value of an imaging biomarker must be
derived from data obtained through a combination of primary
tumour excision and phantom studies.

Precision refers to the variability of the measurement process
and can be evaluated by repeatability (when measurement
conditions do not change) and reproducibility (when
measurement conditions vary). The precision of RECIST and of
response categories has been studied extensively. Table 3 lists the
documented reproducibility of RECIST and factors that may
impact it. Overall, SOD reproducibility is in the order of +/-20%
in multi-observer studies, and +/-10% in single observer studies
(17). Important factors associated with RECIST measurement
reproducibility are the choice and number of target lesions
(Figure 1) and the experience of the reader(s). Where multiple
target lesions are used, their selection affects variability: agreement
ranges from 0.58 when different targets are chosen to 0.97 when
the same targets are used (23). Variability also increases with the
number of target lesions selected. For this reason, it has been
recommended that a central review in clinical trials should include
two readers and one adjudicator (29). Finally, reader experience
has major impact on variability, from the selection of the correct
reference examination (baseline vs. previous CT) to the detection
and proper interpretation of new lesions (20, 21, 25, 26).
Measurements of well-demarcated lesions and bigger lesions are
also more reproducible (17–19), which vindicates RECIST
recommendations for the choice of target lesions.
January 2022 | Volume 11 | Article 800547
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Statement #3
RECIST reproducibility is impacted by reader experience, choice of
target lesions, lesion characteristics, and detection/interpretation
of new lesions. At an individual level, this can result in patients
being categorised incorrectly when values of SOD are near
thresholds or when new lesions are either missed or
incorrectly interpreted.
HOW REPRODUCIBLE ARE OTHER
BIOMARKERS?

Table 4 summarises repeatability and reproducibility of some of
the other biomarkers suggested or used as alternatives to RECIST
for evaluating response. With the abundance of suggested
candidate biomarkers in the published literature, the purpose
here is not to be comprehensive, but to give a general overview of
some of the most frequently explored options for providing a
level of comparison with RECIST.

A first alternative to measuring a single size dimension as a
response biomarker, would be to measure volume of a single or
several lesions as an indicator of tumour bulk. This seems
particularly important when lesions are irregular in shape, or
Frontiers in Oncology | www.frontiersin.org 5
when they change orientation and are therefore not identically
represented on standard axial follow-up scans. Volumetric
response on first follow-up CT has been shown to better
predict OS than RECIST response (65). Tumour volume
response has been utilised in lung (66), cervical (67), and other
solid malignancies (68). Despite a trend towards better intra- and
inter-observer reproducibility, the routine use of volume has
been hampered by the need for manual segmentation, which is
user-dependent and time-consuming and does not improve the
discrepancies linked to the choice of target lesions (24, 28). Aside
from tumour bulk, metabolic activity of tumours through
functional imaging (e.g. positron emission tomography - PET))
is highly predictive of response in lymphoma (69), lung cancer
(70), and metastatic melanoma (71). Other radioligands are
utilised for response or recurrence detection, e.g. 18F-
fluoroestradiol (FES) in hormone-dependent breast cancer (72)
and 18F- or 68Ga Prostate-Specific Membrane Antigen (PSMA)
ligands in prostate cancer (73). Additionally, radiolabelled
ligands of various metabolites and biologically active molecules
can assess proliferation, hypoxia, angiogenesis, apoptosis and
gene transfection (74).While parameters used for the
quantification and measurement of tumour metabolism by
PET are generally based on semi-quantitative assessments,
these can be made relatively reproducible and harmonised
TABLE 3 | RECIST reproducibility and factors impacting it.

Biomarker Reproducibility Factors impacting
reproducibility

95% limits of agreement Kappa Other

RECIST
(measurement)
CT (size)

Per lesion
- Intra-obs: -18% to 16%
- Inter-obs: -22% to 25% (1 (17)
Per sum of diameters
- Intra-obs: -10% to 13%
- Inter-obs: -20% to 20%
Interval change in tumour burden
(% change between time points)
- -31% to 30%
Repeatability (same image on
repeat CT taken within 15 minutes)
- -4% to +4% (18)

With target lesion
selection
- Intra-obs: 0.957
(19)
- Inter-obs 0.954
(19)
Target response
classification
- Inter-obs: 0.48
(20) to 0.66 (21)
Non-target
response
classification
- Inter-obs: 0.58
(20)

Lesion size ICC (22)
-Pre-treatment: 0.72
-Post-treatment: 0.85
-Interval change: 0.70

-Selection of target lesions
differs in 21 to 33% (17, 23, 24)
-Practical training (ref 40)/
expertise (21)
-Same observer (17, 20)
-Well delineated lesions (17, 19)
-Lesions size (greater variability
for smaller lesions) (18, 19)
-Adjudication could reduce
easily avoidable inconsistencies
(20, 25)

RECIST
(overall
response)

With target lesion
selection
- Inter-obs: 0.97
(23)
Without target lesion
selection
- Inter-obs: 0.51
(20), 0.53 (24, 26) to
0.58 (23)

-30% of patients classified differently in a cohort of
39 pts with 2 readers (26)

-Arbitrary nature of CR/PR/SD/
PD categories (10)
-Inconsistencies mainly due to
interpretation of new lesions
(20, 26)
-Choice of target lesions

3D
measurement

- Intra-obs: 0.4 to 33% according
to automated volume measurement
method (27)

Whole body
volumetry
- Inter-obs: 0.95 30)

-Discordant classification in overall response in 10 to
21% of patients according to automated volume
measurement method (27)

-Time consuming (28)
-Do not resolve the
discrepancies linked to the
choice of target lesions (24)
January 20
95% limits of agreement are derived from the Bland-Altman method comparing two measurements of the same variable. Kappa coefficients measure agreement between qualitative
observations. ICC measures the reliability of measurements by comparing the variability of different ratings of the same subject to the total variation across all ratings and all subjects.
Intra-obs, intra-observer; Inter-obs, inter-observer; ICC, Intra-class coefficient; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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throughout the world through standardised imaging protocols
and dedicated initiatives promoted by the international scientific
societies (75, 76), such as the accreditation program developed by
the EANM Research Ltd. (EARL) (34, 77).

Other alternate imaging biomarkers include perfusion and
diffusion imaging. As tumours are commonly characterised by
neo-angiogenesis, perfusion and permeability derived from
dynamic-contrast enhanced studies (e.g. with MR or CT) have
been contenders for measuring early response (78), and
vascularity can be quantified using most imaging techniques,
such as MRI, CT, ultrasound and PET. The utility of biomarkers
of vascularity has been demonstrated particularly where anti-
angiogenic agents such as bevacizumab have been part of the
therapeutic strategy (79). However, their quantitation, which
Frontiers in Oncology | www.frontiersin.org 6
depends on measuring or estimating an arterial input function, is
susceptible to large potential variations (80), and the
reproducibility of such data is often low, thus limiting their
clinical utility (81). Another biomarker reflecting tissue
cellularity, the apparent diffusion coefficient (ADC) from DW-
MRI, has proven a robust quantitative measure with good
repeatability and reproducibility across vendor platforms (82),
and has the potential to detect therapeutic response earlier than
size measurements. It is increasingly being introduced routinely
into scanning protocols, as it does not require injection of an
extrinsic contrast agent and is simple and fast to acquire and
analyse. Increasing automation with artificial intelligence (AI)
systems may aid the translation of biomarkers indicative of
tumour characteristics other than bulk into routine clinical
FIGURE 1 | Selecting target lesions in a 58 yo patient with metastatic renal cell carcinoma. Multiple lung, lymph node, pancreatic and adrenal metastases are
present. Lymph nodes should be sampled from different locations where possible. Selection of target lesions at baseline from multiple organ sites is important for
response evaluation at a patient level.
January 2022 | Volume 11 | Article 800547
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TABLE 4 | Reproducibility and factors impacting it of other imaging biomarkers.

Biomarker Reproducibility Factors impacting reproducibility

ICC Coefficient of Variation Other

Metabolic activity (18-FDG PET) Semiquantitative:
SUV (SUVmax, SUVmean; SUVpeak), SUL (SULmax,
SULmean, SULpeak); MTV, TLG
Response criteria: PERCIST (30)/EORTC (31)

SUVmax (4 observers)
(22)
- Pre-treatment: 0.93
- Post-treatment: 0.91
- Interval change: 0.94
- SUVmean repeatability
(32)
- 0.91 (meta-analysis)
SUVpeak
- -31% to 30%

SUVmax (4 observers) (22)
- Pre-treatment: 6.3%
- Post-treatment: 18.4%
- Interval change: 16.7%

Repeatability
standard
deviation (33)
- SUVmax:
1.01
- SUVmean:
0.28

Technical factors:
Scanner calibration/injected activity
calibration (34, 35)
Incorrect decay correction (36)
Tracer extravasation (37, 38)
Residual activity in syringe (34)
Synchronization of clocks (34)
Biological factors:
Blood glucose levels (38)
Inflammation (34)
Patient preparation (38)
Injection-acquisition interval (39, 40)
BMI/metabolic syndrome (41)
Drug interaction/corticosteroids (38)
Physical factors:
Acquisition parameters/matrix size
(34, 36)
Reconstruction algorithm (39, 42, 43)
Partial volume effect (44)
Normalization factor for SUV (34, 45)
Use of contrast agents (34)
ROI/VOI definition (39, 42)
Semiautomated/manual contouring (46)
Movement artifacts/respiratory
movements (34)
Recovery effect/motion blur (47)
Image noise (44, 48)
Background activity/visual assessment
(42, 49)
Lesion size/location (50)

Vascularity (DCE MRI) DCE-MRI ktrans
- Intra-obs: 0.98 (51)
DCE CT (arterial flow,
blood volume,
permeability) - Intra-obs:
0.72-0.89
- Inter-obs: 0.70-0.91
(52)
DCE and DSC-MRI
intersoftware
reproducibility ICC 0.31
to 0.58 (53)

DCE MRI
- model-free parameters (ex:
AUC60, peak…): 12-24%
- modelled parameters (ex:
distribution volume, blood flow,
mean transit time): 21-29% (54)
DSC MRI normalised rCBVmax
- repeatability: 50%,
- reproducibility: 6% (55)
DCE-CT (blood flow, blood
volume, mean transit time,
permeability)
- within subject: 18% to 25%;
DCE-MRI (Ktrans, k(ep), v(e))
- within subject 16% to 23%
(56),

- Parameter extraction model (54)
- Segmentation: 3D vs 2D regions
of interest (52)
- Software (53)

Cellularity (MR)
ADC

ADC mean value
- Intra-obs: 0.91 (57) –
0.99 (51)
- Inter-obs: 0.92 (57)
ROI segmentation
method (Inter-obs)
- Manual method: 0.69
- Semi-automated
volumetric method: 0.96
(58)

Repeatability
- ADC total = 4.8% (57), 7.1%
(59) to 13.3% (60)
Different post-processing
platforms
- 2.8% (59)
Different sites
- multicentric: 9% (61)
- ice-water phantom: 1.6% (61)
- breast fibroglandular tissue:
7.0% (61)

Repeatability
(single centre)
- ≤ ± 0.1x10-3

mm2/s (62)

- Field homogeneity gradient
linearity (63)
- QA procedure by trained
operators assessing artifacts, fat
suppression, and signal-to-noise
ratio (57)
- Segmentation: 2D vs. 3D, manual
vs. semi-automatic (58)
- Choice of measurement: mean/
min/max/percentiles of ADC (64)
- Lesion size (59)
Frontiers in Oncology | www.frontiersin.org
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SUVmax is measured as the maximum single voxel value of SUV, SUVmean is the average value of SUV in all voxels above a threshold, SUVpeak (is the average value of SUV in a region of
interest positioned so as to maximize the enclosed average.
SUV, standardized uptake value; SUL, lean body mass corrected SUV;MTV, metabolic tumour volume; TLG, total lesion glycolysis; PERCIST, PET Response Criteria in Solid Tumours; EORTC,
EuropeanOrganization forResearchandTreatmentofCancer;wCV,within-subject coefficientofvariation;BMI,bodymass index;ROI, regionof interest;VOI, volumeof interest; ICC intercorrelation
coefficient; DCE dynamic contrast enhanced; DSC-MRI dynamic susceptibility contrast magnetic resonance imaging; ADC, apparent diffusion coefficient; QA quality assurance; 3D, three-
dimensional; 2D, bi-dimensional; AUC60, area under the curve at 60s; rCBV, relative cerebral blood volume; Ktrans, transfer constant; k(ep), wash-out transfer constant; v(e), extracellular volume.
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workflows. Unfortunately, tightened legal rules are slowing down
the process of their adoption (83).

Although historically dependent on imaging, response
assessment for malignancies may now also include liquid
biopsies [quantification of circulating tumour cells or DNA
(CTC, ctDNA)], as well as histological sampling. ctDNA
shedding is influenced by the overall tumour burden (cells)
and may thus inform the use of imaging in relation to likely
tumour size (84), because ctDNA estimations require less
workflow and infrastructure than repeated monitoring with
imaging. Initial clinical evaluations showed that ctDNA
detected response earlier than imaging-based assessment (85).
The simplest clinical implementation of ctDNA may be in
postoperative monitoring of disease recurrence (86) but even
here reproducibility and standardisation issues remain limiting.
In one study, ctDNA quantities based on measurement of some
target genes (e.g. TERT) were, on average, more than two-fold
higher than those of other assays (e.g. ERV3) (87). In another,
quantities of cell-free DNA for the different isolation methods for
detection of EGFR variants in NSCLC varied between medians of
1.6 ng/mL and 28.1 ng/mL (88). Moreover, concordance between
tissue and plasma variant detection for leading platforms has
been shown to range from 70% to 90% (89). Thus, ctDNA
extraction/isolation methods (87, 88) may need to be
standardised before routine clinical use.

Finally, histopathology may also be a method for tumour
response evaluation. However, serial histological sampling is not
routinely used for response assessment and has thus far shown
agreement with imaging-based responses only in a few studies
(90). Histopathological evaluation of response is performed
usually after neoadjuvant therapy, when the organ is surgically
resected. Qualitative or semi-quantitative histopathological
evaluation also presents variable reproducibility according to
organs, methods and published studies (91–94). Agreement
between pathologists yielded kappa values ranging from 0.21
for extent in prostate cancer (92), to 0.49 for multiple well-
trained observers in cervical cancer (93), 0.64 for a 5-point
tumour regression grade in rectal cancer (90) and 0.83 for a
central review in bladder cancer (91). As with macroscopic
imaging, reader experience (94), and central review (92)
improve reproducibility.

Statement #4:
Alternative biomarkers for tumour response yield reproducibility
generally comparable to RECIST. Each technique has its sources of
variability, and it is important to understand inherent variability
and limitations of individual biomarkers. It is critical that
imaging experts communicate their level of confidence in any
chosen biomarker.
WHAT ARE COMMON RECIST
LIMITATIONS?

Challenging Organs: Bone
Bone metastases were considered unmeasurable in the initial
RECIST initiative, because of the lack of sensitivity of existing
Frontiers in Oncology | www.frontiersin.org 8
techniques to bone marrow infiltration (4). On CT it is the bone’s
osteolytic or osteosclerotic reaction to the presence of tumour, or
its response to therapy (flare lesions) that is visualised rather
than the tumour itself (95, 96). With the updated RECIST 1.1.
version, bone metastases with soft tissue masses ≥10 mm are
recognized as measurable target lesions (1). Nevertheless, bone
lesions without soft tissue involvement, whether lytic, mixed or
sclerotic, remain unmeasurable by RECIST. Since the early
1990s, bone marrow MRI has been shown to be superior to
bone scintigraphy and CT for the assessment of bone metastatic
disease. Bone marrow replacement by neoplastic foci is detected
and quantified on T1-weighted and fat-suppressed T2-weighted
MRI sequences (97, 98), more recently complemented with
diffusion-weighted imaging (DWI) sequences (99, 100).
However, to date, RECIST 1.1 has not validated quantitative
bone MRI for tumour response assessment. Positron Emission
Tomography Response Criteria in Solid Tumours (PERCIST),
introduced in 2009 (30, 101), enables response to be measured in
18F-fluorodeoxyglucose (18F-FDG) avid bone metastatic lesions
based on their metabolic activity in the absence of any obvious
anatomic changes. Finally, PSMA-PET appears promising for
identifying bone marrow invasion due to prostate cancer,
regardless of the impact on the bone mineral content (102, 103).

Challenging Diseases: GIST and mCRC
As RECIST is not organ-specific, it might not capture the key
parameters that are associated with survival outcomes in certain
cancer types, and under certain types of treatment. In
gastrointestinal malignancies, the hepatic tumour burden and its
response commonly outperform other sites of metastatic disease for
survival prediction. A study in metastatic colorectal cancer (mCRC)
showed that the depth and uniformity of response in liver
metastases represented a highly useful and clinically relevant
indicator for therapy monitoring (104). Organ-specific response
patterns may also occur under immunotherapy possibly due to
varying immune microenvironments in organs or the lymphatic
system (105–107). Thus, choice of target lesions would largely
impact the response observed according to the organ, as well as the
predictive ability of RECIST. In this case also, reader experience and
knowledge of the disease is crucial for proper target lesion selection.

Response to therapy in patients with advanced GIST was
drastically improved by the introduction of imatinib, a tyrosine-
kinase inhibitor. Imatinib treatment has been shown to induce
necrosis with a marked decrease in vascularity of GIST lesions,
resulting in a decrease in CT density often before any significant
decrease in size is seen, thus leading to underestimation of the
initial tumour response (108, 109) (Figure 2). A paradoxical
increase in volume is occasionally observed, simulating
progression (110). Choi et al. therefore proposed adapted
criteria for GIST, combining changes in tumour density on
contrast-enhanced CT expressed in Hounsfield units (HU)
and/or size to determine tumour response (109): PR is defined
as a decrease of ≥10% in the SOD or a decrease of ≥ 15% in
tumour density of target lesions, whereas PD is defined as a ≥
10% increase in size and not meeting the PR criteria by tumour
density. PD may also occur if new intra-tumoural nodules are
present or existing intra-tumoural nodules show an increase in
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size, factors which are not catered for in RECIST. In patients
treated with imatinib, Choi criteria showed a significantly better
correlation with survival rates than RECIST (111).

Challenging Treatments: Focal Therapies
Treatment of tumour lesions with ablative therapies, such as
radiofrequency ablation, microwave ablation or cryoablation,
results in a larger defect than the original lesion and such
treated lesions are not considered measurable unless there is
progression at this site (1), such as the development of a new
measurable nodule within the ablation defect. Distinguishing
normal post-ablation changes from residual disease and
recurrence can be challenging (112).

Intravascular therapies are also a challenge for the use of
RECIST. Trans-arterial radioembolization (TARE) induces
inflammatory changes with a generally delayed morphologic
response (112). A reduction of 18F-FDG uptake on early PET-
CT has been found to be helpful in predicting further outcome of
these patients (113). As a consequence, both TARE and intra-
arterial therapies such as trans-arterial chemoembolization
(TACE) in hepatocarcinoma require modified RECIST
(mRECIST) criteria derived from arterial and portal venous
enhancement phases of CT or MRI (114), and which take into
account both lesion size and vascularity.

High-intensity focused ultrasound (HIFU), under the
guidance of ultrasound or MRI, has also been used as a non-
invasive technique for tissue ablation in prostate cancer and
more recently in recurrent gynecological malignancy (115). The
use of HIFU for hepatic tumour lesions is still in the exploratory
stage. As for other ablative therapies and for similar reasons
(116), RECIST 1.1 appears to be unsuitable for local response
evaluation following HIFU applied to liver lesions.
Frontiers in Oncology | www.frontiersin.org 9
Finally, tumour lesions in a previously irradiated area (via
CyberKnife, stereotactic radiotherapy or traditional fractionated
radiation therapy) are not considered measurable (1) and must
be excluded from RECIST evaluation due to the inflammatory or
fibrotic changes that may be observed, thus making evaluation of
size unreliable.

Statement #5
There are several scenarios in which RECIST criteria fail to
evaluate treatment-induced changes correctly. Informed
appreciation that RECIST criteria are not applicable to all
tumour sites and situations is thus crucial for proper
interpretation and again dependent on reader experience.
WHEN IS RECIST RESPONSE
ASSESSMENT MISLEADING?

Pseudo-Progression
During immunotherapy, RECIST may describe progression that
can be misleading and is thus classified as “pseudo-progression”.
In fact, in around 5 to 10% of patients with metastatic disease
treated with check-point inhibitors, an initial increase of tumour
burden has been observed, followed by actual response or long-
term stabilisation of disease (117–119). This phenomenon relates
to the mechanism of action of immunotherapy, which stimulates
the immune response and initially induces inflammation and
tumour swelling, thus delaying visible tumour shrinkage. For this
reason, adaptations of RECIST criteria for assessing treatment
response to immunotherapy (iRECIST) have been developed.
The first ascertainment of progression by iRECIST is considered
FIGURE 2 | Response unrelated to tumour size in a 66 yo patient treated with imatinib for a gastrointestinal stromal tumour (GIST). Compared to the baseline image
(left), after treatment (right) the tumour shows a dramatic decrease in density rather than in size.
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as “immune unconfirmed progressive disease”(or iUPD), and
requires, if possible, a subsequent evaluation 4 to 8 weeks later in
order to confirm true progression (120) (Figure 3).

Mixed Response/Progression
In some patients, the tumour bulk does not respond homogeneously,
with some lesions increasing and others decreasing. Mixed or
heterogeneous response is defined as an increase in size of some
tumour lesions and decrease of others in the same patient during
treatment. This lesion-specific response has been attributed to the
emergence of drug-resistant clones and indicates that tumour
heterogeneity is likely causing treatment failure (121, 122). Mixed
response has the same incidence in patients treated with targeted
cancer agents and those undergoing chemotherapy alone or even
combined with targeted agents (12, 28).

Since RECIST records overall patient response rather than
individual lesion response, the choice of target lesions critically
affects the objective assessment of overall patient response in
patients with mixed response in individual lesions (Figure 4)
(12). As lesions escaping treatment control will weigh negatively
on patient prognosis (123), their presence should be annotated in
order to offer the best alternative treatment for the patient.

Lesion cavitation, necrosis and residual non-viable masses
represent other forms of response than decrease in size and may
complicate RECIST assessment (124). Tumour necrosis with
cavitation is present in approximately 14-24% of NSCLC patients
undergoing anti-angiogenic drug therapy (125–127). When
Frontiers in Oncology | www.frontiersin.org 10
cavitation is present, lesion size may not change significantly and
RECIST may therefore under-estimate the effect of therapy.
Conversely, cavitation also risks missing progression if there is
tumour regrowth inside the cavity. While alternative criteria have
been proposed in such cases, e.g. subtracting the longest cavitation
diameter from the largest lesion diameter (such as Crabb criteria)
(126), these are not commonly used.

When residual tissue is present after therapy, evaluation with
RECIST criteria is subject to pitfalls. First, an asymmetric shrinkage
of the tumour may result in a similar longest diameter and
consequent stable disease (SD) rating not reflecting the real
response to treatment (Figure 2). Second, it may be difficult to
distinguish between viable tumour and fibrosis. In such cases, best
response assessment, an important endpoint in phase 2 studies
(partial vs. complete response; PR vs. CR) may be affected (126).
According to RECIST guidelines, in equivocal cases, residual lesions
should be evaluated by either biopsy or PET(-CT) (Figure 2). This
may well then allow upgrading PR to CR. However, false positive
PET findings are not uncommon (128). Alternatively, other
advanced imaging tests, such as DWI-MRI or perfusion imaging
(e.g. from MR or CT) could be used.

Statement #6
Some patterns of response/progression cannot be correctly
documented by RECIST. These require specialist reader
experience and communication with oncologists to determine
appropriate evaluation approaches and/or therapeutic options.
FIGURE 3 | Pseudoprogression on immunotherapy in a 56 yo patient with metastatic non-small cell lung cancer. The baseline image (left) shows lung and peritoneal
nodules (arrows). After 4 wks of antiPDL1 therapy (middle), CT shows an increase in previous lesions and the appearance of new lung nodules. Disease was
considered immune unconfirmed progressive disease. Six weeks later (right) a dramatic response in all previous lesions was seen classifying the patients as a
complete responder and endorsing an earlier diagnosis of pseudoprogression.
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SHOULD (COULD) RECIST BE
AUTOMATED?

The core assumption of RECIST is that a single diameter on the
cross-sectional imaging slice presenting the largest cross-section of
a given lesion (or sum thereof) is a surrogate for tumour burden.
This assumes that lesions are grossly spherical and that their size
represents their overall activity. To streamline the determination
of this single diameter and make it less subject to possible human-
induced variability, semi- or fully-automated 2D or even 3D
segmentation techniques can be applied to target lesions, which
can also be semi- or fully-automatically tracked between scans
Frontiers in Oncology | www.frontiersin.org 11
acquired at different time points (129–134). The 2D or 3D mask
resulting from the segmentation process then readily permits the
automated and accurate extraction of the largest diameter from
the segmented lesion. With 3D segmentation, the full volume of a
target lesion can be provided alongside an automatically extracted
largest diameter, which may not be oriented in the 2D plane of the
source images in a broader RECIST interpretation, together with
any other geometric metric of relevance. Using the largest 3D
diameter would allow RECIST to be used beyond 2D constraints,
and can account for non-orthogonal motion of target lesions
between scans at different time-points. While segmentation and
tracking can now plausibly be fully automated, especially with
FIGURE 4 | Mixed response to treatment in the same patient illustrated in Figure 1. Eight weeks after targeted therapy lung, adrenal and pancreatic metastases
decreased, whereas one mediastinal lymph node (top right, arrow) increased.
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newer approaches using machine learning, and such capabilities
are already implemented in several commercially available clinical
systems, some challenges remain with key RECIST operations,
such as the proper selection of target lesions and dealing with new
or disappeared lesions. These are currently still best addressed or
verified with a human (e.g. a radiologist) in the loop (20, 135).
Statement #7
Though automation is desirable to streamline the process and
potentially reduce the variability of results within the RECIST
paradigm, remaining technical challenges must be overcome to
ensure proper repeatability, and human adjudication is still required.
RECIST IN NOVEL DRUG DEVELOPMENT

RECIST measurements play a pivotal role in the development of
novel oncological drugs (136). In most registered randomised
controlled trials (RCTs), studies are powered to meet primary
endpoints such as OS/PFS, which determines the number of
patients recruited. A study of RCTs between 2006 and 2015
looking for evidence of clinical efficacy of novel oncology drugs in
order to gain US Food and Drug Administration (FDA) approvals
had PFS as primary endpoint in 28 out of 42 RCTs (66%), andOS in
14 (33%). In 2012, 12 novel anticancer drugs were approved by the
FDA; only three drugs showed improvement of overall survival
(137). Similarly, a study of drugs approved by the European
Medicine Agency (EMA) between 2009 and 2013 also showed
that only 18 of 68 (26%) novel drug uses were supported byOS data,
whereas PFS was used in 31 (46%) (138). In the vast majority of
trials, PFS is determined using the RECIST1.1 framework, or
iRECIST for immune-oncology trials. It is acknowledged however,
that in some disease types other criteria are used: e.g. Lugano criteria
for 18F-FDG PET/CT or RECIL in lymphoma (139, 140) and
RANO criteria for brain tumours (141, 142). The fact that PFS
can predict OS outcome in large patients cohorts with commonly
occurring cancers, reinforces the use of RECIST criteria in clinical
trials (143). Moreover, rapid progress in drug development will
make the reliance on OS as endpoint for novel drugs in oncology
increasingly challenging because treatment options on progression
on trial, including in-trial cross-over, are increasing.
Statement #8
Although the RECIST framework might not be perfect, the
scientific basis for the anticancer drugs that have been approved
using a RECIST-based surrogate endpoint remains valid.
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RECIST: ONLY AS GOOD AS ITS USERS?

RECIST criteria were developed for clinical trials and thresholds
chosen to produce a comparable classification of patients, taking
into account tumour measurement variability. These criteria are
widely used in clinical trials and accepted by regulatory agencies.
Despite some limitations, the scientific basis for the anticancer
drugs that have been approved using a RECIST-based surrogate
endpoint remains valid. Reader experience, choice of target lesions
and detection of new lesions impact RECIST reproducibility,
which necessitates adequate training of radiologists using these
criteria. Automation is not currently sufficiently reliable to replace
human experience. Unfortunately, some organ-, disease- or drug-
specific patterns of response/progression cannot be correctly
documented by RECIST.

This expert statement includes that RECIST remains a tool for
radiologists that needs to be used with discrimination and good
understanding of its purpose and limitations. Training of radiologists
is essential to improve its application and reproducibility. RECIST
conclusions should not go against common (or informed) sense.
Furthermore, RECIST criteria have the advantage of simplicity,
availability, cost-effectiveness, and intuitiveness. Overall, therefore,
RECIST provides a common language between oncologists and
imaging experts (e.g. radiologists), provided there is full
understanding of how measurements are made, what they
represent, and their inherent limitations.
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