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Abstract 
Colorectal malignancies are a leading cause of cancer death. Despite seminal genomic 
studies, DNA alterations alone do not fully explain malignant evolution. Here we 
investigate the co-evolution of the genome and epigenome of colorectal tumours at single-
clone resolution using spatial multi-omics of individual glands. We collected 1,373 samples 
from 30 primary cancers and 9 concomitant adenomas and generated 1,212 chromatin 
accessibility profiles, 527 whole-genomes and 297 whole-transcriptomes. We found 
positive selection for DNA mutations in chromatin modifier genes and recurrent somatic 
chromatin accessibility alterations (SCAAs), including in regulatory regions of cancer 
drivers devoid of genetic mutations. Genome-wide alterations in transcription factor 
binding accessibility involved CTCF, downregulation of interferon, and increased 
accessibility for SOX and HOX, suggesting developmental genes involvement. SCAAs 
were heritable and distinguished adenomas from cancers. Mutational signature analysis 
showed the epigenome influencing DNA mutation accumulation. This study provides a 
map of (epi)genetic tumour heterogeneity, with fundamental implications for understanding 
colorectal cancer biology.  
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Introduction  
Clonal evolution, fuelled by intra-tumour heterogeneity, drives tumour initiation, 
progression and treatment resistance1,2. Much is known about the genetic evolution and 
intra-tumour heterogeneity of colorectal malignancies3–5. Although genetic heterogeneity is 
widespread6, epigenetic changes are also responsible for phenotypic variation between 
cancer cells7–10. Epigenetic profiling of chromatin accessibility in colon cancer has been 
performed in seminal studies in cell lines11 and human samples12. However, current 
investigations are limited to single bulk samples and some also lack normal controls13. 
Moreover, how cancer genomes and epigenomes concomitantly evolve and shape intra-
tumour genetic and epigenetic heterogeneity remains unexplored.  
 
Measuring genome-epigenome co-evolution in a quantitative manner requires multi-omic 
profiling at single clone resolution and accurate spatial sampling of human neoplasms, as 
well as matched normal tissue. Colorectal cancers (CRCs) are organised into glandular 
structures, reminiscent of the crypts of the normal intestinal epithelium14. Normal crypts 
are tube-like invaginations where cell proliferation is driven by a relatively small number of 
stem cells at the base15–18 and cancer glands are thought to have the same architecture19. 
This implies that all cells within a gland share a recent common ancestor and are a few 
cell divisions apart: thus, glands are largely clonal populations that, through cell 
proliferation, copy DNA with relatively high fidelity. Ultimately, the gland can be thought of 
as a natural “whole-genome amplification machine” that can be exploited to perform multi-
omics at single clone resolution. Indeed, single crypt and gland genomic profiling has been 
long used to study clonal dynamics in both normal20–22 and cancer cells4,23–28. We have 
developed a new method to concomitantly profile single nucleotide variants (SNVs), copy 
number alterations (CNAs), chromatin accessibility with ATAC-seq29 and full 
transcriptomes with RNA-seq from the same individual gland or crypt. Here we present the 
results of multi-region single gland multi-omics of 1,373 samples from 39 lesions arising in 
30 patients, with 23-57 tumour samples per patient (median=43). 
 

Results 
 
Single gland multi-omics 
We prospectively collected fresh resection specimens from 30 stage I-III primary colorectal 
cancers and 9 concomitant adenomas belonging to 30 patients referred for surgery at the 
University College London Hospital (Figure 1A, Table S1 for clinical information, Methods 
Section 1.1). Single gland isolation was performed from normal and neoplastic tissue 
(Figure 1B, Methods Section 1.2), followed by separation of nuclei from cytosol (Figure 
1C). Leftover fragments that remained after gland isolation were retained to assess how 
representative glands are of the bulk they originated from. We referred to those samples, 
consisting of a few tens of glands, as “minibulks”. We used the nuclei to perform whole-
genome sequencing and chromatin accessibility profiling with ATAC-seq and the cytosol to 
perform full transcriptome RNA-seq (Figure 1D, Methods Section 2.1). We verified that 
cytosolic RNA expression in our normal colon tissue controls was highly correlated with 
whole-cell RNA expression from the TCGA cohort5 (Figure S2).  
 
Our tumour spatial sampling strategy was designed to measure clonal evolution at multiple 
scales. We first sampled four spatially distant regions of a given cancer (regions A,B,C,D) 
located close to the tumour edge, one distant normal epithelium region (region E), and 
concomitant adenomas if present (region F,G,H). A bulk sample was collected from each 
region and was spatially annotated in the original resection specimen (Figure 1E and S1). 
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Each piece was cut into 4 subregions (e.g., A1-A4, B1-B4, …) as shown in Figure 1E 
(bottom-right). We then collected and profiled 12-40 (median=37) individual tumour glands 
and 3-18 (median=4) minibulks per patient, a few healthy crypts and a minibulk from the 
matched normal, as well as blood when available (Figure 1F and S3). C542 sample F was 
originally labelled as adenoma but confirmed to be part of the cancer upon histopathology 
re-evaluation (Figure S1).  
 
ATAC-seq was performed in 18-61 samples per patient (median=42, Table S2, Methods 
Section 2.2), deep whole-genome sequencing (WGS, median depth 35x) in 3-15 samples 
per patient (median=8.5), and low-pass whole genome sequencing (lpWGS, median depth 
1x) in 1-22 samples per patient (median=8) – see Table S3 and Methods Section 2.3. For 
a proportion of samples (n=382/1,373) both WGS and ATAC-seq data were available 
(Figure 1G). We also generated a total of 623 whole-transcriptomes, of which 297 were of 
high quality to be used for analysis (1-40 samples per patient, median=7, Methods Section 
2.4) with many also overlapping the WGS dataset, the ATAC-seq dataset or both (Figure 
1H). In addition, we ran methylation arrays on 8 samples (Methods Section 2.5). We 
identified copy number alterations (CNAs), somatic single nucleotide variants (SNVs), 
indels (Indels), and ATAC peaks for all samples (Methods Section 3). 
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Figure 1. Spatial single gland multi-omics. (A) Fresh colectomy specimens from 30 
stage I-III colorectal cancer patients were used to collect tissue from 30 cancers and 9 
adenomas. (B) Single glands and small bulks (‘minibulks’) were isolated from normal and 
neoplastic samples. (C) From each sample we performed cell lysis followed by nuclei 
pelleting. (D) Cytosolic fractions were used for RNA-seq whereas nuclei were used for 
whole-genome sequencing and ATAC-seq.  (E) We identified separate regions of the 
cancer: A,B,C,D, a distant normal sample: E, and adenomas if present: F,G,H. Each 
sample was split into 4 fragments (inlet square). (F) From each fragment we collected 
individual glands (marked as _G) as well as minibulks, agglomerates of a few dozen crypts 
(marked as _B). (G) We performed multi-omics using whole-genome sequencing, ATAC-
seq and RNA-seq on the same sample, achieving a good level of overlap between assays. 
(H) For each assay we had representative samples from normal, adenoma and cancer. 
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Genetic mutations affecting the epigenome 
We first assessed the landscape of genetic alterations in our cohort. Six cases in the 
cohort were characterised by microsatellite instability (MSI, Methods Section 3.8), as 
reported in Figure 2A, leading to significantly higher SNV and InDel burdens (Figure 2B). 
Copy number alterations recapitulated previous datasets3,5, with microsatellite stable 
(MSS) cases displaying high aneuploidy and largely diploid MSI cases (Figure S4). As 
previously described3, adenoma samples showed a lower degree of aneuploidy than MSS 
carcinomas, except for two outliers (Figure S5). Recurrent CN loss of canonical tumour 
suppressor genes, such as APC, PTEN, TP53 and SMAD4, was confirmed. Focal 
amplifications were found in FGFR1 (2 cases) and MYC (1 case). Recurrent cancer driver 
events in colorectal cancers were recapitulated in this dataset, with stereotypical mutations 
in APC, KRAS and TP53 (Figure 2C and S6). Except for a single case (C539), mutations 
in these three genes were invariably clonal. The mutational profiles of the adenomas were 
consistent with earlier studies, specifically compared to Lin et al. 201830, no differences 
were observed for APC (4/8 vs 73/135, p-value=1, Fisher’s Exact Test) or KRAS (2/8 vs 
13/135, p-value=0.20, Fisher’s Exact Test). We observed a slightly larger incidence of 
TP53 mutations (2/8 vs 4/135, p-value=0.037, Fisher’s Exact Test). Compared to Cross et 
al. 20183, no major differences were detected (TP53: p-value=1, KRAS: p-value=0.33, 
APC: p-value=0.029, PIK3CA: p-value=1, Fisher’s Exact Test).  
 
To investigate the influence of genetic mutations on the epigenome, we specifically 
examined somatic mutations in chromatin modifier genes, namely the lysine demethylases 
(KDM), lysine acetyltransferases (KAT), lysine methyltransferases (KMT) and SWI/SNF 
(ARID1A) families (see Figure 2D for MSS cases and Figure S7 for all). Evolutionary 
selection on chromatin modifier genes was assessed by dN/dS31,32 (Methods Section 
3.10). Clonal (occurring in all cancer cells) truncating mutations in chromatin modifier 
genes in MSS cases showed clear signs of positive selection, with dN/dS significantly >1 
(Figure 2E, arrow). Subclonal chromatin modifier mutations were present but positive 
selection was not detected, with dN/dS»1 (Figure 2E). No evidence of positive selection for 
chromatin modifier gene mutations was detected in MSI cancers, although their high 
mutational burden may limit the power of detection. Hence, clonal truncating mutations in 
chromatin modifiers were found in 6/24 MSS cases (25%) and all MSI cases, with few 
recurrently mutated genes, suggesting a convergent pattern of selection for inactivation of 
chromatin modifiers in CRC.  
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Figure 2. DNA alterations in canonical cancer drivers and chromatin modifier genes. 
(A) Microsatellite instability per case. (B) Mutational burden by type of mutation (InDel: 
small deletion or insertion, MNV: multiple nucleotide variant, SNV: single nucleotide 
variant). (C) Recurrently mutated colorectal cancer driver genes, with orange dot indicating 
whether the mutation is clonal. (D) Truncating mutations and Indels in chromatin modifier 
genes in MSS cases. (E) dN/dS analysis of clonal and subclonal chromatin modifier 
mutations in MSS and MSI cancers and adenomas. Bars are 95% CI. 
 
Focal chromatin alterations are recurrent, largely clonal and hit known driver genes 
Recurrent genetic events in cancer driver genes clearly demonstrate the role of somatic 
alterations in cancer, but how common epigenetic changes of chromatin accessibility in 
CRC are? We examined the landscape of somatic chromatin accessibility alterations 
(SCAAs) in our cohort. We identified peaks in the ATAC-seq data for each region of a 
cancer using MACS233 and compared each peak size in the tumour versus normals (see 
Figure S8), normalising for the effect of copy copy number alterations (Figure S9-11), to 
identify significant SCAAs (Figure 3A, Methods Section 3.11). We found highly recurrent 
SCAAs in both promoters (Figure 3B) and putative enhancers (Figure 3C) of several 
genes of interest, including many previously associated to cancer. We note that these 
levels of recurrence are as high if not higher than many genetic driver mutations (see 
Figure 2C).  
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Figure 3. Somatic chromatin accessibility alterations (SCAAs) in cancers and 
adenomas. (A) Example of SCAAs detected in cancer C530 versus normal. Significantly 
altered peaks in red. (B) Recurrence of lost and gained chromatin accessibility in 
promoters (C) and enhancers. (D) SCAAs hitting known cancer driver genes occurring in 
³3 patients. Stars indicate DNA mutation in reported colorectal cancer driver gene. (E) 
Summary of the 20 most recurrent SCAAs in promoter and putative enhancers of genes 
not previously associated with cancer through DNA mutation. Subclonal changes are 
marked in shaded squares. (F) Clonal somatic peak gained at the JAK3 promoter in 
cancer C551. (G) Recurrent promoter loss of accessibility of colorectal cancer driver 
CCDC6, example from C524. (H) FOXL1 enhancer gain of accessibility was found in 
regions B and C of C524 but not in other regions. (I) Example of somatic peak in NXPH1 
enhancer gain found in the cancer but not in the concomitant adenomas of C561. All 
heterogeneous peaks were identified accounting for purity differences. (J) SCAA burden of 
adenomas versus carcinomas for gain of accessibility versus (K) loss of accessibility. (L) 
For a proportion of promoters and (M) enhancers, we were able to confirm changes in 
gene expression. 
 
Recurrent SCAAs were identified in known cancer driver genes previously identified by 
genetic studies (Figure 3D, list in Table S4, shown are events occurring in ³4 patients). 
Many of these genes were devoid of genetic mutations in our cohort (see purple stars in 
Figure 3D), confirming that SCAAs are an alternative modality for driver gene 
(in)activation. We also found recurrent SCAAs in genes that were not previously 
associated with tumourigenesis by means of genetic mutation (Figure 3E, shown are the 
20 most recurrent events per group, Figures S12-15 for all). We then leveraged our spatial 
multi-region profiling strategy to assess intra-tumour SCAA heterogeneity. The signal from 
ATAC peaks is notoriously difficult to compare between samples because it is confounded 
by variability in purity and transcription start site enrichment (TSSe). We used our matched 
WGS to identify clonal (truncal) DNA mutations present in all cancer samples and 
assessed the frequency of these variants in the reads from ATAC-seq to obtain an 
estimate of sample purity (Methods Section 3.11.2). Samples from each region were 
treated as pseudo-“biological replicates”, and compared the signal between different 
cancer regions and the corresponding normal while accounting for purity (Methods Section 
3.11.5). 24/30 cancers and 9/9 adenomas had sufficient samples with enough purity for 
the analysis. We focused on the 20 most recurrently altered loci per category 
(promoter/enhancer, gained/lost), as well as those associated to CRC driver genes from 
the IntoGen list34 found in ³4 patients (Table S4). We found that for the largest majority of 
these events (695/730, 95.2%) we had no evidence that they could be subclonal, 
indicating that the majority of SCAAs are clonal epigenetic changes in the malignancy 
(Figure 3D,E, see shading). Clonality of all SCAAs is reported in Figure S16-S19. 
 
Amongst the recurrently altered and almost invariably clonal epigenetic changes, we found 
JAK3 promoter gain of accessibility in 11/24 cancers (Figure 3F), we well as loss of 
chromatin accessibility in CRC tumour suppressor gene CCDC6 in both promoter (11/24 
cancers) and enhancer regions (3/24 cancers), see example case C524 in Figure 3G. 
Notably, mutations CCDC6 are infrequent in CRC (3/30 cases in our cohort, annotated as 
purple star in Figure 3D). Furthermore, ARID1A enhancer loss was observed in 4 cancers 
and 1 adenoma (Figure S19), with only 2 of those cases also bearing a mutation in this 
gene. Alterations in multiple other putative CRC drivers were also found, such as SMAD3 
and SMAD4 promoter loss, NCOR2 enhancer gain, and FBXW7 enhancer loss. NFATC2 
and LIFR cancer driver genes that were not reported in colorectal cancer were found 
epigenetically altered in our cohort, and in the absence of DNA mutations. Of interest, we 
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found typically-clonal promoter SCAAs in FOXQ1 in 11/24 patients, a known oncogene 
reported to be involved in colorectal cancer tumourigenicity35, angiogenesis and 
macrophage recruitment during progression36. Although most recurrent SCAAs were 
clonal in the cancer, a proportion of SCAAs were found to be subclonal and confined to 
one or more regions. This was exemplified by FOXL1 enhancer gain (10/24 patients – 
42%) in Figure 3H occurring only in regions B and C of cancer C524.  
 
We note that ATAC peaks called in our dataset showed strong overlap with peaks from the 
TCGA dataset (single-sample and lacking normals13) and the ENCODE normal colon 
tissue dataset37, both reanalysed with our pipeline (Figure S20). Due to unmatched normal 
controls however, in these orthogonal single bulk sample datasets it is not possible to 
distinguish chromatin changes occurred in the cancer versus those already present in the 
normal colon (e.g., to determine the somatically-changed status of the peak), and indeed 
most of the signal of chromatin accessibility comes from the tissue of origin of the 
sample13. 
 
Somatic changes in chromatin accessibility distinguish adenomas from cancers 
After observing strong evidence for that chromatin accessibility changes contribute to 
tumourigenesis, we then sought to define the evolutionary trajectories of SCAAs and 
determine their role in adenoma-carcinoma transition whilst considering the possibility that 
these changes may be a product of normal tissue aging. We examined the stage of 
tumour development when SCAAs occurred. Out of the 834 SCAAs found in ³6 patients in 
cancers with available concomitant adenomas, only 141 (16.9%) were also detected in the 
matched adenoma, suggesting that most SCAAs likely occurred at the onset of malignant 
transformation, hence after neoplastic growth initiation but before subclonal diversification 
(as they were also largely clonal). Such events are exemplified by the gain of accessibility 
of NXPH1 enhancer (4/24 patients – 17%), which was present in each region of the cancer 
but not in any of the concomitant three adenomas (Figure 3I, all events in Figure S21). 
Indeed the lower SCAA burden of adenomas compared to cancers was not dependent on 
purity or read depth (Figure S22A,B). In a power analysis where we explicitly normalised 
for coverage (Figure S22C), we found a significantly lower burden of recurrent gain of 
accessibility SCAAs (>10 patients) between adenomas and carcinomas (Figure 3J). No 
difference was found in the burden of loss of accessibility between adenomas and 
carcinomas (Figure 3K). We note that the only advanced adenoma in our cohort that was 
found co-locating with the cancer (C516) indeed showed the SCAA gain burden of a 
carcinoma (Figure 3J). It was previously noted that there were limited differences between 
adenomas and carcinomas in colorectal cancer at the level of point mutations in driver 
genes, and instead major differences at the level of chromosomal instability3. Here we 
found also differences in epigenetic rewiring between adenomas and cancers. Moreover, 
the higher burden of SCAA gains in cancers supports the idea that carcinogenesis 
involves an increased genome-wide chromatin accessibility. 
 
To elucidate whether the observe SCAAs resulted from patient-specific alterations, we 
applied the same approach that we used for the analysis of cancer samples to the normal 
glands of each patient. Here we found very few SCAAs in individual normal glands, 
demonstrating that, supporting that the SCAAs we observed in the tumours were indeed 
somatic alterations. However, in a small subset of SCAAs alterations were also identifiable 
in multiple glands of the same patient (see Figure S23A). Still, very few of these changes 
were recurrent across cases (see Figure S23B) and no correlation of the frequency of 
chromatin alterations in normal glands and the frequency of the reported SCAAs was 
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observed (see Figure S23C). Plausibly germline genetic variation could cause chromatin 
accessibility alterations in normal tissue. 
 
Impact of SCAAs on gene expression 
We next assessed the impact of SCAAs on gene expression using matched RNA-seq 
(e.g., Figure 3L,M). Over 11.9% of promoters (45/379) and 14.1% of enhancers (10/71) 
with recurrent SCAAs (>5 patients) showed signs of altering the expression of associated 
genes (Figure S24, FDR<0.01, Table S4, Methods Section 3.11.4 and 3.14). We note that 
chromatin accessibility measures the potential for transcription, indicating priming for 
future expression or a remnant ‘scar’ of important past transcription. Therefore, more 
chromatin changes than those that correlate with expression in our analysis may actually 
be important for tumour evolution. Moreover, the power to detect expression changes was 
limited by the recurrence of a given SCAA in the cohort, incomplete matched RNA data, 
and the lack of information about other factors influencing transcription such as 
methylation, post-translational modifications, or just trans-regulation by other genes. To 
further probe the impact of somatic mutations on SCAAs, we analyzed SNVs that we 
found were associated with changes in cis gene expression in our associated paper38 and 
found that some of these SNVs co-occurred with a change in chromatin accessibility at the 
locus (Figure S25). 
 
Transcription factor accessibility analysis reveals global epigenetic reprogramming 
Beyond focal changes in chromatin accessibility in promoters and enhancers, we 
investigated whether chromatin architecture could have genome-wide influence on 
transcriptional control. To examine this, we analysed the genome-wide accessibility of 
transcription factor (TF) binding sites for 870 transcription factors37 using publicly available 
TF motif and ChIP-seq data (Methods Section 3.12). We piled-up the ATAC reads for all 
binding sites of a given TF across the genome and plotted read count versus the distance 
from the centre of the TF motif and the length of each read, producing a characteristic 
signature of TF accessibility for a given sample, which also encodes the footprint of the TF 
complex itself in the cancer (Figure 4A and S26) and normal (Figure 4B). The normalised 
tumour-difference showed the somatic change in accessibility Figure 4C. As many 
transcription factors bind to similar loci, we considered only largely non-overlapping TF 
annotations to ensure a single locus could not drive the signal of multiple TFs (Figures S27 
& S28). These analyses showed pervasive genome-wide rewiring of TF chromatin 
accessibility in CRCs (Figure 4D, see Methods section 3.12 for details).  
 
Unsupervised clustering of somatic TF binding signatures produced three major clusters. 
The first major cluster (green cluster, Figure 4D) was associated with downregulation of 
interferon signalling through loss of chromatin accessibility in loci putatively bound by 
transcription factors from the IRF (interferon-regulatory factor) family, suggesting 
suppression of immune signalling. Reactome and GO analysis indicated that the signal 
was significantly enriched for downregulation of interferon-g (FDR=4.2e-6) and interferon 
a/b (FDR=3e-8), as well as downregulation of cell differentiation (FDR=5e-5) (Figure 4E). 
The signal was even stronger in MSI cancers, which are heavily infiltrated by immune cells 
(p=0.012, Fisher’s Exact Test).  
 
The second major cluster (blue cluster, Figure 4D) contained two distinct subgroups of 
patients with differential chromatin accessibility for CTCF. CCCTC-Binding Factor (CTCF) 
is a key player in chromatin insulation, determining looping and TAD (Topological 
Associating Domain) formation. Most cases were characterised by loss of CTCF binding 
site accessibility, particularly in MSI cancers. A smaller group showed increased CTCF 

Commented [AS9]: Comment 3.1 

Commented [AS10]: Comment 1.2b and 3.2 

Commented [AS11]: Comment 1.2a 



 11 

accessibility. CTCF chromatin accessibility alterations were previously noted in single bulk 
cancer sample39, CTCF somatic mutations are frequent in CRC40, and indeed a mouse 
model of chronic CTCF hemizygosity led to higher cancer incidence and dysregulation of 
oncogenic pathways41. 
 
The third major cluster (red cluster, Figure 4D) showed increased chromatin accessibility 
for TFs involved in stem cell differentiation and pluripotency (GO: ‘positive regulation of 
stem cell differentiation’ – FDR=2.5e-4, and ‘mesenchymal stem cell differentiation’ – 
FDR=9e-4; KEGG: signalling pathways regulating pluripotency of stem cells – 
FDR=0.047), as well as TFs involved in development, such as the HOX, FOX and SOX 
families (UniProt: ‘homeobox’ – FDR=2.7e-40, ‘developmental protein’ – FDR=1.7e-21). 
The chromatin accessibility of this cluster of TFs was higher in cancer in most cases, 
suggesting possible reactivation of developmental genes in colorectal cancer 
tumorigenesis (Figure 4F). The expression of the TFs involved in this cluster is reported in 
Figure S29.  
 
Interestingly, matched RNA-seq data showed that gene expression of HLA genes was 
significantly reduced in both MSS and MSI cancers with respect to normals (Figure 4G) 
consistent with the downregulation of interferon signalling as highlighted by the signal in 
the “green” cluster.  
 
We also noted a small cluster characterised by increased accessibility of SNAI1 and 
SNAI2 transcription factor binding sites, two genes involved in Epithelial to Mesenchymal 
Transition - EMT42. This cluster was significantly enriched with cases showing truncating 
mutations in chromatin modifier genes (p=0.047, Fisher’s Exact Test), consistently with 
previously reported regulation of EMT by chromatin modulators43. Although more patients 
are needed, we cannot exclude that there could be additional subgroups of patients with 
distinct TF accessibility patterns beyond the CTCF subgroup (blue cluster). 
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Figure 4. Transcription factor binding site accessibility is rewired in tumours. (A) TF 
binding site accessibility (in this example CTCF) is computed by summing the signal of 
ATAC-seq reads centred at the binding site, plotted against read length. (B) The same is 
done for the normal controls. (C) Signal from the normal is subtracted from the signal from 
the cancer to assess differential accessibility. TF accessibility for CTCF is reduced in this 
example as demonstrated by fewer ATAC cuts at the binding site in the cancer.  (D) The 
differential signal is then regressed against TSSe and purity to identify TF binding 
accessibility altered in tumours. Results here for the three major clusters of differentially 
accessible TF loci (heatmap colour is regression coefficient, star indicates significance). 
Major cluster identity is denoted by left-most column. (E) String-db analysis of the green 
TF cluster highlights downregulation of interferon signalling. (F) String-db analysis of the 
red cluster indicates upregulation of stem cell differentiation and activity of developmental 
genes such as the homeobox family. (G) Relative tumour expression of HLA genes versus 
other gene groups.  
 
Binding sites of developmental TFs with increased accessibility are demethylated 
We further attempted to corroborate the increased accessibility to TF involved in 
development. Changes in chromatin accessibility can be accompanied by changes in DNA 
methylation, with heterochromatin regions often being methylated and vice-versa for open 
chromatin regions. This is particularly the case for regions that are permanently silenced 
after development44. We tested whether SCAAs identified at TF binding sites (Figure 4D) 
were reflected in the methylation of the same loci. We performed methylation profiling on a 
subset of 8 samples using Illumina EPIC 850k methylation arrays (1x sample from C516, 
2x samples from C518, 2x samples from C560 and 3x samples from C561 – see Section 
3.13 for detail). First, we report that C518 is a likely a CpG island methylator phenotype 
case according to established markers45 (Figure S30). Comparing the methylation of TF 
binding annotations in cluster 3 (Figure 4F), we found that methylation in these regions 
was significantly lower than in normal tissue, supporting the finding that these sites were 
accessible (Figure S31A). This was particularly clear for TF binding sites of DLX5, HOXA4, 
HOXB4, ISL1, SOX5 and SOX6 (Figure S31B), suggesting stable reactivation of 
regulatory regions involved in developmental genes. We note that this was not due to a 
general pattern of global hypomethylation, as methylation in genes which are usually 
normally highly methylated in normal were also high in cancer (Figure S32). 
 
Chromatin changes are stable and heritable, and can be a substrate for Darwinian 
clonal selection 
Epigenetic alterations, and in particular chromatin modifications, are responsible for cell 
identity in all tissues, but it remains unclear whether epigenetic changes in cancer are 
stable during tumour evolution. Seminal studies have begun unravelling epigenetic 
heritability in blood cancers46,47, suggesting that stable SCAAs could provide a heritable 
substrate for Darwinian selection to operate. For most detected SCAAs, if the peak was 
differentially accessible in one region of the tumour, it was also differentially accessible in 
other distant regions. Because we sampled opposing tumour sides, each sampled region 
likely only has a most common recent ancestor many thousands of cell divisions ago 
(Figure 3E&F). Hence, we argue that most SCAAs we detect are likely clonal or have high 
‘clonality’, i.e. they are shared by large proportions of cancer cells. This can occur either 
through convergence of different lineages to the same SCAAs, or through evolution by 
common descent. Given the number of putatively clonal SCAAs, as well as the distance 
and probably difference in microenvironment of the distinct regions of each cancer, we 
argue that the most parsimonious explanation is, as for species evolution, evolution by 
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common descent, rather than convergence of many different lineages to the same overall 
epigenetic pattern.  
To further test the heritability of epigenetic alterations we specifically compared SCAAs 
within versus between tumour regions (Figure S33A). In a majority of patients (23/29), 
ANOVA controlling for TSSe and total read count, showed that samples from the same 
region were significantly less divergent in terms of SCAAs than samples from different 
regions (Figure S33B). Moreover, a direct correlation between genetic distance and 
epigenetic distance was found in 8/29 cases (the power of this analysis is limited by small 
sample numbers), after controlling for purity (example in Figure S33C). This was not the 
case for all patients, either because of lack of a correlation or not enough data (example in 
Figure S33D). Thus, chromatin profiles were heritable and followed, at least in part, 
genetic divergence (Figure S33B; see coefficients of the ANOVA analysis per region in 
Figure S34), thus providing additional evidence that common descent is the reason of 
SCAAs common to multiple samples of the same tumour, not convergence. Genome wide 
TF SCAAs (Figure 4) showed similar evidence of heritability (Figure S35), suggesting that 
such rewiring of the chromatin existed in a common ancestor of all the samples and was 
inherited during tumour growth. There were however some interesting exceptions where 
different regions showed distinct SCAA profiles. For example, C548 showed 
homogeneous loss of accessibility to CTCF binding sites at loop loci. In C543 both 
promoter and loop binding sites of CTCF were altered and in a heterogeneous manner, 
with region displaying differential organisation of the chromatin (Figure S35). 
 
Mutational signatures affecting the epigenome 
There is a ‘growing appreciation of the multidimensional nature of mutation signatures 
beyond the 96 channel representation and across different regions of the genome, 
especially in relation to replicating timing and 3D genome organisation48. However, the 
relation between mutational signatures and epigenetic features remains poorly studied due 
to lack of matched data. Here we examined the feedback between epigenome and 
transcription status and mutational processes49,50 through tumour evolution. We performed 
de novo signature discovery using a methodology robust to over-fitting51, detecting six 
mutational signatures across our cohort (Figure 36A):  
 
• SparseSignature1, corresponding to COSMIC signature 1 of C>T deamination at 

methylated CpG sites 
• SparseSignature2, corresponding to COSMIC signatures 2+13 caused by APOBEC 

enzymes 
• SparseSignature3, corresponding to COSMIC clock-like signature 5 
• SparseSignature4, corresponding to COSMIC signature 17a+b of unknown aetiology 
• SparseSignature5, corresponding to COSMIC signature 9+41 also of unknown 

aetiology 
• SparseSignature6, corresponding to COSMIC signature 44 caused by mismatch repair 

deficiency.  
 
Genome wide signature activity divided the cohort into five distinct clusters of patients 
(Figure S36B,C). The two major clusters consisted of MSS (cluster 1) and MSI cases 
(cluster 2). Cluster 3 contained only patient C549, which was strongly enriched with the 
APOBEC signature. Cluster 4 with patients C561 and C539 had high activity of 
SparseSignatures 4 and 5 of unknown aetiology. Cluster 5 with patients C518 and C548 
had higher SparseSignature 3 (clock-like signature in CRC). We assessed changes in 
mutational process activity over time by comparing inferred activity between clonal and 
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subclonal mutations (Figure 5A). SPS1 (deamination) was dominant in MSS cases 
throughout tumour evolution, and in MSI cancers SPS6 (mismatch repair) was also 
dominant throughout. Interestingly, SPS2 (APOBEC), SPS4 and SPS5 (unknown) were 
enriched subclonally level in cases where they were active, demonstrating activity late in 
tumour evolution. 
 
Mutations in chromatin modifier genes, or in transcription factor binding sites, can 
determine the characteristics of the epigenome. Conversely, chromatin architecture 
determines how the cancer genome accumulates mutations due to its effect on different 
mutational processes and activity of DNA repair genes53,54. To examine the latter, we 
compared mutational signature burdens between epigenetic regulatory regions identified 
with the ATAC-seq data: active/inactive promoter (e.g., chromatin open/closed), 
active/inactive enhancer, intergenic and coding, as well as using matched RNA-seq data 
to differentiate between typically expressed and not expressed genes. 
 
SparseSignature1 (cytosine deamination) was 2-4 fold higher in closed chromatin regions 
of the genome (inactive promoters and enhancers) for both clonal and subclonal 
mutations, consistent with the need for methyl-cytosine (enriched in inactivated regulatory 
regions) to be present in order for it to become deaminated and produce the associated 
mutational signature (Figure 5C). Analogous differences were observed in the coding 
regions of the genome between genes expressed versus not expressed genes in the 
normal: specifically, genes that were “switched on” in tumour after being off in normal 
carried an intermediate load of C>T deamination mutations that were likely accumulated in 
the normal tissue before carcinogenesis when the locus had inaccessible chromatin, 
before the mutation rate was reduced when the chromatin opened and gene expression 
was induced (Figure 5C). Similar dynamics were observed for SparseSignature4 (Figure 
5D) and SparseSignature5 (Figure 5E)55. The activity of the mismatch repair signature in 
MSI cases was more uniformly distributed across the genome (Figure S38).  
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Figure 5. DNA mutational signatures and the epigenome. (A) Clonal and subclonal 
mutational signature composition for each patient. (B) Proportion of each signature for 
every cluster responsible for generating loss or gain of CTCF binding affinity in our cohort. 
(C) The epigenome influences accumulation of deamination signature 1 in distinct regions, 
both for clonal and subclonal mutations. (D) Signature SparseSignature4, mostly present 
subclonally, is also influenced by the epigenome status. (E) Signature SparseSignature5, 
particularly at the subclonal level, is again depleted in active regions as SparseSignature1.  
 
 
We hypothesised that different mutational processes may also differentially alter TF 
binding site affinity, as an example mechanism of how mutational processes can directly 
influence the cancer epigenome. It has been previously documented that point mutations 
can disrupt CTCF binding sites40. We selected CTCF sites with somatic mutations that 
were predicted by deltaSVM52 to cause significant loss or gain of binding and assessed 
the relative contribution of each mutational signature to these CTCF mutations across the 
five mutational signature clusters. In MSS cancers (cluster 1), mutations predicted to 
cause loss of binding had a signature that was consistent with the background mutational 
signature acting on the genome (cosine similarity = 0.977; Figure S39A), and the same 
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was true for gains (cosine similarity = 0.919; Figure S39B). In MSI cancers (cluster 2), 
SparseSignature6 (mismatch repair, Figure S39C) was consistent with causing gain of 
CTCF binding affinity (cosine similarity = 0.925). In C549, the only case with high levels of 
SparseSignature4 (COSMIC signature 17, Figure S39D), such signature was also a 
source of mutations causing gain of affinity (cosine similarity = 0.977). These results 
suggest that CpG deamination causes the largest proportion of mutations altering CTCF 
binding in MSS cancers, with a higher tendency of generating loss of binding (Figure 5B). 
In MSI cases, the mismatch repair signature is also a dominant factor in causing altered 
binding of CTCF, with preference for generating increased affinity (Figure 5B). When 
considering the abundance of any given mutational signature in the genome, we found 
that 4% and 8% of signature 1 mutations cause respectively gain and loss of CTCF 
binding, whereas 5% and 8% of signature 6 mutations cause respectively gain and loss of 
CTCF binding (see all in Figure S40).  
 

Discussion 
The contribution of epigenetic events to cancer evolution is recognised as highly 
significant10,56, but has remained understudied8. Recently, a pan-cancer analysis revealed 
the chromatin accessibility profile of multiple cancer types, but the lack of appropriate 
matched normal control precluded proper identification of cancer-specific events, as 
opposed to tissue specific and ‘cell of origin’ chromatin profiles which remained the 
dominant signal in the data13. Studies with normal tissue references have identified 
complex patterns of SCAAs within CRCs11,12, but have not been able to assess the 
evolutionary dynamics that led to these chromatin changes. Here, we show that genetic 
and epigenetic modification of cancer-associated genes occurs independently but 
recurrently in CRCs, and that epigenome alterations likely control important tumour cell 
phenotypes, including immune escape. Further, we find that chromatin alterations are 
stable and heritable, providing a substrate for Darwinian selection to act, and 
interrelatedly, chromatin alterations influence the accumulation of somatic genetic 
alterations that can also drive evolution57,58. Currently, genomics detects driver alterations 
or mutational processes that inform on drug sensitivity but is blind to potentially clinically-
actionable biology governed by the epigenome. The observation that epigenetic changes 
occur in regulatory regions of known cancer driver genes in the absence of somatic 
mutations argues for the importance of epigenomics for genomic medicine. Certainly, the 
interaction between somatic mutations and SCAAs remains challenging to unravel. 
Although multiple studies have investigated the effects of somatic mutations in chromatin 
modifier genes, for instance linking mutations with increase transcriptional heterogeneity59, 
identifying the direct (cis) functional effects on the chromatin from DNA variants remains 
difficult. Our multiomic dataset provides some clear examples of a genome-epigenome 
relationship: we observed somatic mutations associated with changed cis gene expression 
where there was also a chromatin accessibility change. Follow-up work is required to 
explore the functional impact of epigenetic alterations in cancer driver genes and other 
loci.  
 
We also observed that the epigenomes of adenomas and carcinomas are distinct. The 
lower prevalence of SCAAs in adenomas and, at the same time, the clonality of most 
SCAAs in carcinomas, suggest that many cancer SCAAs may occur at the onset of 
malignant transformation. This is important because, besides broad copy number 
alterations, mostly non-focal chromosomal arm gains or losses of unknown significance, 
there is little difference in driver alterations between benign adenomas and malignant 
carcinomas3. Moreover, there is no validated prognostic genetic alteration that predicts 
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recurrence in colorectal cancer. The seminal paper of Johnstone et al.12 showed that 
chromatin topology changed over time in ageing colon tissue, including in transformed 
tissues, and showed a link between altered chromatin patterns and patient outcomes. This 
is consistent with our finding of a decisive role for SCAAs in cancer biology. We 
acknowledge that our multi-omic analysis was based on the analysis of tumour glands, 
and it possible that the biology could differ in the rare CRCs that completely lack glands.  
 
 
One of the most intriguing results was the evidence of reactivation of developmental genes 
during tumourigenesis. Those genes are usually silenced in somatic tissue, and the 
reactivation of these gene families and their involvement in tumourigenesis has been 
postulated before in the context of glioblastoma tumourigenesis55 as enabler of growth and 
adaption. We identified a group of TFs with decreased accessibility that were related to 
interferon signaling as well as cell differentiation, suggesting the possible activation of 
early progenitor-like transcriptional programmes or de-differentiation. On the other hand, 
we also found a group of TFs that had increased accessibility and was highly enriched with 
homeobox genes, e.g., SOX5 and SOX6, that are directly involved in early development 
cell differentiation. We speculate that we may detect a combination of processes that aim 
at avoiding full differentiation reprogramming cell fate through the involvement of 
developmental genes. We hypothesize the process may lead to an ‘early progenitor’ 
phenotype that is proliferative (unlike a fully stem-like phenotype) but does not differentiate 
completely60. Further functional work is warranted. 
 
Our spatially resolved multi-omic analysis of primary colorectal cancers shows non-genetic 
determinants of cancer cell biology and clonal evolution. 

 

Methods 
 
1.1 Sample collection 
Primary tumour tissue and matched blood samples were prospectively collected from 
patients undergoing curatively-intentioned surgery at University College London Hospital 
(UCLH). All patients gave informed consent for collection of their materials to the UCLH 
Cancer Biobank (REC approval 15/YH/0311). Four regions of each primary cancer were 
sampled by punch biopsy or scalpel dissection, at notionally 12, 3, 6 and 9 o’clock 
positions around the tumour periphery. Tissue was slow-frozen to -80C, using a Mr Frosty 
Freezing Container (Thermofisher) in 1ml of a buffered media (MEM supplemented with 
5% FBS and 0.5% 5mM HEPES buffer, diluted with 10% DMSO) in a 1.8ml Nunc 
Cryotube (Sigma- Aldrich) immersed in isopropanol to preserve chromatin structure.  
 
1.2 Gland isolation 
Each biopsy was manually dissected into a series of smaller pieces of tissue (notionally 
1mm2) with attempts made to record the relative spatial location of smaller piece within the 
larger biopsy. A tissue piece was selected for gland extraction and placed in a 50µl HBSS 
supplemented with Protease inhibitors: 1 tablet in 50ml dH2O as directed (C0mplete 
Protease Inhibitor Cocktail, Sigma- Aldrich) and RNASE inhibitor 1U/µl (Protector RNase 
Inhibitor, Sigma- Aldrich) and kept on wet ice until needed. A clean glass slide was placed 
into a 10cm Petri dish and 500ul of PBS supplemented with RNAse and protease 
inhibitors was pipetted on top of the slide. The petri dish was then transferred to stage of a 
dissecting microscope. Tissue pieces were manually dissociated under the microscope 
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using two 16G needles, where individual glands glands were pulled away from the tissue 
mass. An additional epithelial “minibulk” sample was collected for every specimen that 
comprising approximately a total of 10-20 crypts/glands. Each gland or bulk specimen was 
transferred into a 1.5ml Eppendorf tube containing to a total volume of 50µl  cell lysis 
buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% IGEPAL CA-630 
supplemented with Protease inhibitors: 1 tablet in 50ml dH2O as directed (C0mplete 
Protease Inhibitor Cocktail, Sigma- Aldrich) and RNASE inhibitor 1U/µl (Protector RNase 
Inhibitor , Sigma- Aldrich ) and incubated on ice for 10-45min. Bulk samples were collected 
in a final volume of 100µl  cell lysis buffer. We found longer or warmer incubations 
decreased RNA quality and yields and negatively affected chromatin structure. While 
selecting the 30 cases included in our study we rejected only a single additional case due 
to being unable to isolate any glands, confirming that retainment of glandular structures is 
pervasive in CRC. 
 
2.1 Chromatin, DNA and RNA separation 
Each tube containing an individual gland or bulk was lightly vortexed, transferred to a pre-
chilled centrifuge and spun at 500g for 10 min holding the temperature at 4C. This 
produced a cell nuclei pellet at the bottom of the tube, with the cytosolic fraction present 
within the supernatant. For RNA extraction: 45µl of the supernatant was transferred into a 
new tube containing 300ul of Trizol (taking care not to disturb the pellet). Trizol lysates 
could be stored at -20oC if not processed immediately or at -80oC for long term storage. 
For extraction of nuclear material: the nuclei pellet was resuspended in residual cell lysis 
buffer. 2.5µl of suspension (roughly half the remaining suspension) was transferred into 
another tube for subsequent DNA extraction, that could be frozen if required.  The 
remaining suspension was immediately used for preparation of ATAC-seq libraries, as we 
found subsequent handling or storage compromised library quality. 
 
2.2 Preparation of ATAC-seq libraries. 
Tubes containing the nuclei suspension (roughly 2.5µl) were kept on wet ice. 2.5µl of 2X 
TD buffer and 0.25µl of Tn5 transposes (Illumina) was added to each tube (resulting in a 
final volume of approximately 5µl) before incubation at 37°C for 30 min. Purification was 
performed reaction using AMpure XP SPRI beads (Beckman Coulter), 10µl (2x sample 
volume) of room temperature beads were added to each tube and mixed by pipetting 10 
times, then incubated at RT for 1 minute. The tube was placed on a magnetic plate and 
beads allowed to settle for 3 minutes. Once clear the supernatant was discarded. With the 
tube still on the magnet, 200 μL of 80% ethanol was added and incubated at RT for 30 
seconds, ethanol supernatant was discarded, this step was repeated for a total of 2 
ethanol washes. The tube was removed from the magnet and 12µl of 10mM Tris buffer 
added to each tube and mixed by pipetting 10 times, then incubated at RT for 1 minute, 
The tubes were placed on a magnetic plate and the beads allowed to settle for 3 minutes. 
Once clear 10µl of supernatant containing purified DNA was transferred to a fresh tube for 
immediate library preparation or stored at -20C for later use. 
  
 
For library preparation: the transposed sample was supplemented with 1µl 10 µM of 
Nextera i7 PCR primer, 1µl of 10 µM Nextera i5 PCR primer (Illumina) and 12.5µl of 
NEBNext Q5 High-Fidelity 2x PCR Master Mix (New England Biolabs).  PCR amplification 
was performed, with initital eleongation at 72C for 5 minutes,then initial denaturation at 
98C for 30 seconds, and then  for glands 14 cycles (10 cycles for bulks) of the following: 
10 seconds of denaturation at 98C, annealing step at 63C for 30 seconds followed by 72C 
for 1 minute.  
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Following amplification, samples were purified with 2X SPRI beads and eluted in 20-30µl 
of 10mM Tris Buffer, pH 8. Samples were screened using the Agilent Tapestation 4200 
and HSD1000 screentapes. Only those which showed fragment size distribution with 
peaks at multiples of ~147bp, indicating intact nucleosomal structure within the nuclei, 
were sent for sequencing.  
 
2.3 Preparation of whole genome sequencing libraries 
DNA fractions were extracted using the Zymo QuickDNA Microprep plus kit according to 
the manufacturer’s instructions. Only samples with a total DNA yield higher than 10ng 
were taken forward for WGS library preparation. Libraries were prepared using the 
NEBnext Ultra II FS kit according to manufacturer’s instructions. A short enzymatic 
fragmentation step of 5 minutes was performed, and 5 PCR cycles are used for library 
enrichment. After purification, libraries were quantified by Qubit and run on the Agilent 
Tapestation using HSD1000 screentapes. Samples with sufficient library DNA yield and 
characteristic fragment size distribution (~200-500bp) were further subjected to either low-
pass (~1x coverage) or deep (~35x coverage) WGS.  
 
2.4 RNA library preparation 
The cytoplasmic fractions of each sample in the form of Trizol lysates were used for RNA 
extraction using the Directzol kit (Zymo R2052). Modifications to the manufacturer’s 
protocol were introduced to increase the total RNA yields. Firstly, we passed the initial 
trizol/ethanol mix twice through the spin column. Secondly, we eluted the RNA using two 
25ul volumes of water instead of just one 50ul elution. The optional DNase step was used. 
  
Agilent Tapestation QC showed low RIN scores for most samples (<3) and so was not 
used to exclude samples for library preparation. Libraries were prepared using the Illumina 
TruSeq RNA Exome kit (compatible with low quality input material) according to the 
manufacturer’s instructions.  
 
2.5 Methylation arrays 
DNA methylation array analyses were carried out on selected bulk samples with sufficient 
DNA yield.  Genomic DNA was bisulphite converted using Zymo EZ DNA Methylation kit. 
A 50µl reaction containing 2.5-100ng of DNA was incubated in the dark using a modified 
conversion protocol; 95°C for 30 seconds then 50°C for 60 min, for 16 cycles then hold at 
4°C. The full 8ul elute of converted DNA was repaired using the Infinium HD FFPE 
Restore Kit (Illumina). All 8ul of the bisulphite converted DNA for each sample was 
analysed on the lllumina Human MethylationEPIC BeadChip (Illumina). Processing was 
carried out by the University College London Genomics Core Facility according to 
standard protocol.  
 
2.6 Sequencing 
Sequence libraries were multiplexed and sequenced on an Illumina Novaseq, typically 
using S2 flow cells.  Read length and depth was varied as required by library composition. 
Sequencing was performed by the Institute of Cancer Research Tumour Profiling Unit 
(TPU). 
 
3.1 Whole-genome sequencing – alignment 
Contaminating adapter sequences were removed using Skewer v0.2.261. Adapter 
sequences were 'AGATCGGAAGAGC' and 'ACGCTCTTCCGATCT', with a maximum 
error rate of 0.1, minimum mean quality value of 10 and a minimum read length of 35 after 
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trimming using options "-l 35 -r 0.1 -Q 10 -n". The trimmed and filtered reads from each 
sequencing run and library where separately aligned to the GRCh38 reference assembly 
of the human genome62 using the BWA-MEM algorithm v0.7.1763 Following the GATK best 
practices and the associated set of tools v4.1.4.164–66 reads were sorted by coordinates 
(GATK SortSam), merged independent sequencing runs or libraries generated from the 
same tissue sample and marked duplicated reads using GATKs MarkDuplicates. The 
structure of the final bam files was verified using GATKs ValidateSamFile. 
 
3.2 ATAC-seq – alignment  
Adapter sequences were removed with Skewer v0.2.261 using the full-length adapter 
sequences below with the option "-m any.  
 
Adapter sequences: 
CTGTCTCTTATACACATCTCCGAGCCCACGAGACNNNNNNNNATCTCGTATGCCGTC
TTCTGCTTG 
CTGTCTCTTATACACATCTGACGCTGCCGACGANNNNGTGTAGATCTCGGTGGTCGC
CGTATCATT 
 
The reads of each sequencing run and library were aligned to the GRCh38 reference 
genome using Bowtie2 v2.3.4.367 with the options "--very-sensitive -X 2000" set. After 
sorting the reads with samtools v1.968 reads mapping to non-canonical chromosomes and 
mitochondria (chrM) were removed (GATK PrintReads followed by RevertSam and 
SortSam). After of independent libraries of each sample, we removed duplicated reads 
using GATKs MarkDuplicates and removed all reads mapping to multiple-locations (multi-
mappers). The final bam files were validated with GATK’s ValidateSamFile. 
 
3.3 Detection of germline variants 
HaplotypeCaller v4.1.4.1 with the GATK package69 was used to identify germline variants 
from the reference normal samples in each patient (buffy coats or adjacent normal tissue) 
using know germline variant annotations from the build 146 of the dbSNP database70 
separately for each chromosome. Resulting VCF files were then merged with GATK 
MergeVcfs. Variant recalibration was performed with gatk VariantRecalibrator with options 
set according to GATK best practices70–73 and applied to VCF files using gatk ApplyVQSR 
with the options "-mode SNP -ts-filter-level 99.0" and "-mode INDEL -ts-filter-level 99.0" 
respectively. All germline variant calls marked as "PASS" were retained. 
 
3.4 Verification of sample-patient matches 
For all samples we excluded the possibly of sample mismatch by comparing germline 
variants identified in normal tissue to neoplasia samples of a given patient. The reads of 
each read-group were extracted with samtools view using options '-bh {input_bam} -r 
{read_group_id}' and GATK’s CheckFingerprint tool was applied to extract statistics on 
sample-patient matches74. For virtually all high-purity samples without extensive loss of 
heterozygosity, we were able to confirm that the samples were obtained from the expected 
patient, for the latter group we inspected copy-number profiles (see below) to confirm that 
these matched the remaining samples. 
 
3.5 Copy number analysis 
 
Deep whole genome sequencing 
Coverage of genomic loci relative to matched normal tissue samples (buffycoats or 
adjacent normals) were extracted with methods provided in the sequenza v2.1.2 package 
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for R75 and binned in non-overlapping windows of 106 bp. B-allele frequencies (BAF) of 
germline mutations determined with the GATK HaplotypeCaller (see above) for each 
patient were added to these binned files. Joint segmentation on BAFs and read depth 
counts across all samples from a given tumour were used to determine a set of 
breakpoints to use for the subsequent analysis. Specifically, GC content bias correction 
from was applied using the ‘gc.norm’ method from sequenza v2.1.2 and positions with 
non-unique mappability (i.e., < 1), as determined by the approach of QDNAseq v.3.876, in 
windows of 50 bp were removed. Piecewise constant curves were fitted for each 
chromosome arm using the multipcf function (gamma = 80) from the copynumber v1.22.0 
package for R77. The per-patient set of break points, binned depth-ratio and BAF data 
were then inputted into the sequenza algorithm (version 2.1.2) to determine allele specific 
copy-numbers, ploidy Ψ and purity ρ estimates75. The initial parameter space searched 
was restricted to {ρ | 0.1 ≤ ρ ≤1} and {Ψ | 1 ≤ Ψ ≤ 7}. Upon manual review of the results, 
we identified several samples with unreasonable fits (cases where calls suggested 
extremely variable ploidy values across samples). For these samples, we manually 
identified alternative solutions consistent with the other samples and somatic variant calls. 
 
Low-pass whole genome sequencing 
Low-pass WGS bam files were processed using QDNAseq76 to convert read counts in 
500kb bins across the autosomes of hg38 into log2ratio data. Data normalisation was 
performed in accordance with the QDNAseq workflow, except for outlier smoothing 
(smoothOutlierBins function) which was seen to artificially depress signal from highly 
amplified bins. Bins for hg38 were also generated according to QDNAseq instructions. 
Log2 ratio values in each bin were normalised by subtracting the median log2 ratio from all 
log2 ratios per sample. Samples in a patient were segmented jointly using the multipcf 
function in the R package copynumber (gamma = 10)77 and the mean segment log2ratio 
was calculated across the bins.  
 
Absolute copy number status was calculated using the approach taken by ASCAT78. Using 
the ASCAT equation to describe logR ratios, we took an integer ploidy value Ψt in the 
tumour t as determined by paired deep WGS in each case and searched a range of 
purities from 0.1 to 1 (and assumed gamma was 1 as is the case in sequencing data). For 
each purity (ρ) value we calculated the continuous copy number status of each bin and 
calculated the sum of squared differences of these values to the nearest positive integer of 
the modulus. Purity estimates were given by local minima (goodness of fit to integer copy 
number values, measured as the sum of square distances) across the purity range 
considered. The absolute copy number state for each bin was taken as the closest integer 
value calculated using this purity. If no local minimum is found the purity is assumed to be 
1. If the best solution produced negative copy number states at some loci, these were set 
to copy number zero to avoid impossible copy number states. In two patients per sample 
ploidies were determined by manual adjustment due to integer ploidy values producing 
poor fits. 
 
3.6 SNV detection 
Somatic mutations were first called for each tumour sample separately against matched 
blood derived or adjacent normal tissue samples with Mutect2 (version 4.1.4.1) using 
options ”–af-of-alleles-not-in resource 0.0000025 –germline-resource af-
onlygnomad.hg38.vcf.gz”69,79 Variants detected in any tumour sample (marked PASS, 
coverage AD 10 in both normal and tumour, at least 3 variant reads in the tumour, 0 
variant reads in the normal, reference genotype in normal and non-reference genotype in 
cancer) were merged into a single list of “candidate mutations”. The multi-sample caller 
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Platypus v0.8.1.180 was then used to recall variants at each candidate mutation position in 
all samples of the patient. In practice, this meant that the pipeline leverage information 
across samples to improve the sensitivity of variant calling. The platypus output of joint 
variant calls was then filtered to only keep high quality variants with flags ”PASS”, 
”alleleBias”, ”QD” or ”Q20”, in canonical chromosomes (i.e., not in decoy), a minimum 
number of reads NR>5 in all samples, a genotyping quality GQ>10 in all samples, a 
reference genotype (i.e., 0/0) in the normal reference and a non-reference genotype (i.e., 
0/1 or 1/1) in at least one tumour sample.  
 
To alleviate concerns of false-negative calls of mutations in important driver alterations, we 
generated a second set of variant calls for the identification of known driver mutations and 
dNdS analysis (see details below) to which we did not apply the second step of filtering.  
 
3.7 SNV annotation 
Somatic variants were annotated and candidate driver genes of colorectal cancers 
reported by3 and IntOGen34 as well as pan-cancer driver genes reported32 and81 filtered 
with the Variant Effect Predictor v93.282. 
 
3.8 MSI status detection 
The identification of microsatellite instability (MSI) colorectal cancers was performed with 
the MSIsensor v0.283. We first determined the position of microsatellites sites by applying 
the msisensor scan method to the GRCh38 reference assembly and subset these to the 
first chromosome. In a second step we identified the fraction of mutated microsatellites in 
each sample using the msisensor msi method with default options. Generally, in known 
MSI cases (e.g., those identified by mutation burden and mutational signature) more than 
30% of microsatellites were mutated and we used this as a critical value to classify cases 
as MSS and MSI. One exception was C562, where the low purity of the samples led to a 
low msisensor score. However, this case was clinically classified as MSI by pathological 
reports and it had a relatively high indel burden leading to the conclusion that it was MSI. 
 
3.9 Extraction of reads supporting variants 
Using the VCF files from both somatic and germline variant calling, we extracted the 
number of reads supporting the reference and alternate alleles as well as the total number 
of reads covering the sites from WGS, LP-WGS and ATAC-seq samples using python and 
the pysam library68, pysam version 0.15.2, samtools version 1.9. 
 
3.10 dN/dS analysis 
dndscv package for R32 was used for dN/dS analysis. Per-patient variant calls were 
obtained from the vcf files84 and lifted over to the hg19 reference genome using the 
rtracklayer package for R85 Variants were divided into clonal mutations (i.e., present in all 
samples) and subclonal mutations (i.e., present in a subset of samples) present in the 
cancer and a set of mutation present in any of the adenoma samples. MSI and MSS 
patients were treated separately. dndscv was applied separately to each of the four sets 
(MSI/MSS & clonal/subclonal) (using default parameters apart from deactivated removal of 
cases due to number of variants). Further, dN/dS values for a set of 167 chromatin 
modifier genes were extracted. 
 
3.11 ATAC-seq 
 
3.11.1 ATAC peak calling analysis 
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Extraction of cut-sites  
For the detection of cut-sites (hereafter “peaks” where read density was high) bed-files of 
ATAC-seq cut-sites were produced. Aligned reads were sorted by read name using 
“samtools sort -n{bam}”, all proper reads pairs (i.e., reads mapped to the same 
chromosome and with correct read orientation) were isolated using ”samtools view -bf 0x2” 
and finally converted to the bed format using ”bedtools bamtobed -bedpe -mate1 -i{bam}”. 
Equivalent to86 the start site of reads was shifted to obtain the cut sites: specifically, 
forward reads were shifted by -4 bases and reverse reads by +5 bases. ATAC-seq reads 
spanning nucleosomes have an insertion size periodicity of multiples of 200 bp and reads 
in regions of open-chromatin have insertion sizes smaller than 100 bp86. For this reason, in 
line with previous studies, ATAC-seq reads were divided into a set of nucleosome-free 
reads (insertion size £ 100) and a set of nucleosome associated reads (180 £ insertion 
size £ 620). 
 
Peak detection 
Peaks were called separately for each tumour region using MACS2 v2.2187 using ”macs2 
callpeak -f BED -g hs –shift -75 –extsize 150 –nomodel –call-summits –keep-dup all -p 
0.01” with the concatenated and sorted bed read files of nucleosome-free cut-sites of all 
samples as input. A set of normal peaks (across patients) were also called using the 
concatenated normal sample bed files (i.e., region "E" samples) and per adenoma peak 
calls using all adenoma bulk samples as input. 
 
Filtering and concatenation of peaks 
Strict filtering of per-region peak calls was applied (extended by 250 bp, q-value of 0.1%, 
enrichment of 4.0, maximum number of peaks 20,000). Iterative merging was then applied, 
using a method equivalent to that used by11 on per-region peak calls of individual patients 
(per-tumour peaks set) as well as across all cancer samples and pan-patient normal peak 
calls (pan-patient peak set). This procedure resulted in a total of N = 343,240 peaks, of 
which filtered N = 67,215 peaks called in >2 tumour regions or the panel of normal. The 
ChIPseeker v2.14.0 package for R88 was used to annotate peaks based on their genomic 
location. For peaks that were not proximal to known promotor regions (1000 bp), overlaps 
with known Enhancer elements reported in the double-elite annotations of the 
GeneHancer database was examined89. The general distribution of these features in the 
genome and overlaps of peaks with those reported by13. 
 
Extraction of cut-sites in peaks  
Read counts for each peak in the final set were collated using bedtools90 as follows: 
”bedtools coverage -a bed peaks -b bed cut sites -split -counts -sorted”.  
 
3.11.2 Purity estimation for ATAC-seq and accounting for copy number alterations 
Clonal variants identified by paired WGS sequencing (clonal variants were those present 
in all samples from the cancer) were used to estimate sample-specific ATAC-seq purity. 
First, variants in intervals with identical (clonal) copy-number states (i.e., A/B states) and 
regions of closed chromatin, were identified from WGS data. Copy-number values 𝑐! and 
mutation multiplicity 𝑚! of each variant site 𝑖 were obtained from the WGS data. For a 
mutation at site 𝑖 covered by 𝑛",! reads in sample 𝑠  the number of reads 𝑘!  containing the 
alternate allele is expected to follow a binomial distribution with the likelihood: 
 

𝐵(𝑘!)𝑝",! , 𝑛",!, = .
𝑛",!
𝑘! /

𝑝",!
$!
(1 − 𝑝",!,

%",!&$! 
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where the expected success probability 𝑝",! is a function of the sample purity as, the 
number of mutated alleles in the tumour cells 𝑚",! , the total copy-number of the mutated 
site in the tumour cells 𝑐",! and the copy-number in contaminating normal cells CN=2 
 

𝑝",! =
𝜌"𝑚",!

𝜌"𝑐",! + (1 − 𝜌")𝑐%
=

𝜌"𝑚",!

𝜌"𝑐",! + 2 − 2𝜌"
 

 
A maximum-likelihood estimate of the sample purity 𝜌" was then obtained by minimising 
the negative-log-likelihood across all 𝑁 mutated sites: 
 

𝑙(ρ") =:−𝑙𝑜𝑔 =𝐵(𝑘!)𝑝",! , 𝑛",!,>

'

!()

 

 
To account for the influence of copy number alterations on the read counts, the signal 
observed at a locus should be given by 𝑆	 = 𝑆' 	

*	(-	&	.)	0	1	.
*	(-	&	.)	0	2	.

, where 𝑆'is the signal of the 
reference allele, 𝜌 the purity of the sample, 𝜋 the copy-number of the locus and 𝜓 the 
ploidy of the tumour. For pooled samples we calculate the average of S weighted by the 
total number of reads across samples. Indeed, CNAs were affecting the read depth at the 
locus (example in Figure S9A, CNA coefficient from the ATAC data vs CNA profile from 
WGS in black line). The correlation between the expected and observe coefficients is 
reported in Figure S9B, whereas the relationship between CN status and coefficient is 
reported in Figure S9C.  
 
However, it is important to consider that in general CNAs are causing relatively small 
changes in the ATAC-seq signals compared to bona fide SCAA (example in Figure S10, 
with significant SCAAs indicated in red). This was demonstrated by the strong correlation 
of the recurrence number in the model with CN adjustment versus the one without (Figure 
S11). Where this approach was most relevant was in the identification of lost chromatin 
accessibility in regions with a CN gain and gained chromatin accessibility in regions with a 
CN loss.  
 
3.11.3 Identification of recurrently altered peaks across patients 
Analysis was restricted to samples with purity 𝜌 > 0.4. Peaks proximal (£ 1000 bp) to a 
transcription start site (i.e., promotors) and those more distant to a TSS (i.e., putative 
enhancers) were considered separately to account for the possibility of differential 
dispersion. Whereas we relied on proximity for promoters, we used the GeneHancer 
database for enhancers89. An overdispersed Poisson model was fitted to each peak 
edgeR v3.30.391,92, and per sample set normalisation factors were calculated using the 
TMMwsp method93, estimated a global dispersion estimate across sets from all cancers 
and compared each set of pure glands (per-patient) against a large pool-of-normal tissue 
ATAC-seq samples. Recurrently altered peaks were identified as those that were 
significantly altered at a level of p £ 0.01 in at least 4/26 (i.e., 20%) of cases. 
 
3.11.4 Identification of associated changes in gene expression 
The basic processing of matched RNA-seq data is described in the associated manuscript 
TRANSCRIPTOME. A subset of 27,699 peaks that where either adjacent to a known 
transcription start site (TSS) of a gene94 or overlapped a previously characterised 
enhancer element described in the GeneHancer database89 were identified. Of these 
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456/27699 (@ 1.65%) were recurrently altered. Changes in gene-expression of genes 
associated with these sites were tested for using DESeq295 to compare coefficients of the 
fitted beta-binomial regression model (design: ~Patient, with all normal samples as 
‘Normal’) with the contrast argument being a list of vectors containing the significant and 
non-significant patient sets.   
For promotors, a one-tailed hypothesis test was applied by setting the altHypothesis 
argument to ‘less’ (for closed peaks) or ‘greater’ (for opened peaks). For enhancers a two-
tailed hypothesis test on all associated genes was applied by setting the altHypothesis 
argument to ‘greaterAbs’. P-values were from all tests were adjusted for multiple 
hypothesis testing using FDR method96 associations at FDR<0.1% were reported. For the 
visualisation of gene expression values, the average gene expression values across 
samples from a given cancer and all normal samples on variance stabilised (log-
transformed) FPM values (counts per million reads in gene) were calculated. 
 
3.11.5 Identification of subclonal changed is recurrently altered peaks 
Subclonality was assessed only for a set of recurrent somatic accessibility changes, 
comprising recurrent events affecting driver genes and the top 25 most recurrent in each 
of the of the 4 categories: gained promoter, lost promoter, gained enhancer, lost enhancer 
(total of 521 sites assessed).  
 
Our previous analyses recognised that sample purity was highly correlated with tumour 
piece (regions A-D). To distinguish subclonal chromatin accessibility alterations from 
variability in ploidy, regression to account for purity was performed. Specifically, a log ratio 
test from DESeq297 was used to compare a “full model” ~purity + region to a reduced 
model ~purity. Samples from the same region were used as biological replicates. Events 
were considered putatively subclonal when the adjusted p-value was below 0.05 and if the 
direction of log fold change from analysis of matched bulk tissues was correlated with that 
observed in individual samples. In the case of gained events, subclonal events were 
filtered out if MACS peak-calling (see above) had not called a peak within 500 bp of the 
location of the putative gain event (this removed 33 sites). For losses, 5/45 subclonal 
events were removed as the log fold change was in the wrong direction. 
 
For visualisation of peaks, coverage per region was calculated 1 kb upstream and 1kb 
downstream from the centre of the peak. Coverage was normalised per million reads in 
peaks and was plotted using functions from GenomicRanges97 and Gviz98. 
 
3.12 TF Binding site prediction  
The motifmatchr package for R99, a reimplementation of the C++ library MOODS100,101, 
was used to identify binding sites for all human TF motifs defined in a curated version of 
the CIS-BP database102. The list of predicted binding sites was filtered using a minimum 
significance value of p £ 10-6, followed by removal of binding sites in centromeric regions 
and non-autosomal (i.e., sex and non-canonical) chromosome. After this initial filtering 
predicted binding sites were split into six distinct groups based on i) there distance to the 
next TSS (proximal: d £  2000 bp, close: 2000 bp < d £ 10,000 bp, distal d > 10,000 bp) 
and ii) whether they overlapped with a peak observed in the ATAC-seq data. For a number 
of TF homotypic clustering of binding sites in specific intervals was observed; to account 
for this binding sites that where closer than d £ 1000 bp to the next predicted binding site 
of the same TF were removed.  
 
Extraction of signal values  
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For each of the TF sets described above, the counts of insertions around the centre of the 
TF binding site (±1000 bp) as well as the insertion size of the read pair (i.e., the distance to 
the second nick) for each sample97 were tabulated. The insertion-sizes (rows) were binned 
into intervals of 5 bp and divided by total count of reads with an equivalent size in the 
entire genome. After this the background signal was estimated to be the average number 
of insertions 1000 bp – 750 bp from the centre of TF binding site per insertion size and 
subtracted from the counts. The difference between these “normalised and background 
corrected TF signals” in each sample and a pool of normal samples was calculated and 
integrated across the central region of the TF binding sites (insertion size [25;120], 
distances [-100 bp;100 bp]) as a summary statistic. Regression analysis linear regression 
was used to identify associations with purity estimates and in this context signals were 
found to correlated with TSSe (for both nucleosome-free and all reads). For this reason, an 
additional term was added to the regression model of each TF to correct for this effect: 
signal ~ tsse*tssenf + purity:patient where tsse and tssenf are the TSSe differences of the 
sample and the pooled-normal samples) and weighted each observation by the square 
root of the number of reads in the sample. A second linear model in which a region-
specific effect of the purity: signal ~ tsse*tssenf + purity:region was considered was also 
fitted to the data. For both models, the statistical significance of the ‘purity’ coefficient was 
determined. The estimates of the coefficients were also used as a patient specific 
summary for subsequent analysis. 
 
Cluster analysis  
The analysis was focused on the 150 TF for which a significant association with the 
tumour cell content (i.e., the purity) and TF signal was most frequently observed. With the 
aim to identify general patterns in these data, a clustering analysis was conducted 
(hierarchical clustering with Euclidean distance and complete linkage). This method 
identified three major groups of TFs, and to each of these, analysis with String-DB103 was 
applied to identify significantly overrepresented pathways. 
  
 
3.13 Methylation arrays analysis 
A reference normal dataset methylation array dataset was downloaded from104 that including 
normal tissue sampled adjacent to colorectal cancers that was profiled using the 
HumanMethylation450 BeadChip array (Illumina).  
 
Here, 8 bulk samples from 4 patients (C516, C518, C560 and C561) were profiled 
MethylationEPIC BeadChip (Infinium) microarray according to manufactorer’s instructions.  
 
The ChAMP R package pipeline105 was used to analyse the methylation beadarray data. 
Probes that had a detection of P > 0.01 and probes with <3 beads in at least 5% of samples 
per probe, probes that were on the X or Y chromosome, all SNP-related probe as well as all 
multi-hit probes were all removed. Subset-within-array normalization to was used to correct 
for biases resulting from type 1 and type 2 probes on the array. After QC and normalization, 
beta values were calculated for further comparison. 
 
To compare the methylation patterns between our samples and the reference normal 
dataset, the overlapped probes of all samples located in the region of distal to TSS (dTSS), 
close to TSS (cTSS) and proximal to TSS (pTSS) in both on ATAC peak (oPEAK) and not 
on ATAC peak (nPEAK) were compared.  
 
3.14 Processing of RNA-seq 
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After initial quality control with FastQC106 and default adaptor trimming with Skewer61, 
paired-end reads were aligned to GRCh38 reference genome and version 28 of the 
Gencode GTF annotation using the STAR 2-pass method107. Read groups were added 
with Picard v.2.5.0108. Per gene read counts were produced with htseq-count that is 
incorporated into the STAR pipeline42. 
  
 
Filtering of RNA samples 
Raw gene counts were first filtered for reads uniquely assigned to non-ribosomal protein-
coding genes located on canonical chromosomes (chr1-22, X and Y). If samples had less 
than 5M of these ‘usable’ reads they were re-sequenced to improve coverage. Where 
possible, the same library preparation pool was sent again for sequencing. These `top-ups' 
proved to be true technical replicates, since the resulting gene expression of the re-
sequenced samples clustered very closely to their original samples on both a sample-
sample heatmap and a principal component analysis (PCA). It was therefore determined 
that the fastqs of these samples could simply be merged at the start of the pipeline. In 
cases where resequencing was required but insufficient library remained, a new library 
was prepared and the sequencing run that produced the highest read was used in 
subsequent analysis. For 8 samples, the sequencing of the second library contained too 
few reads to enable downstream analysis. 6/8 samples showed per gene read counts that 
were very similar between libraries 1 and 2 (Spearman's rank correlation between 
replicates was significantly higher than the mean; Wilcoxon one-way rank test; FDR<0.01) 
and so read counts were combined across libraries, the other 2/8 samples were discarded. 
Samples were also discarded if matched DNA-sequencing revealed a tumour purity of less 
than 0.05. 
 
 
Gene expression normalisation and filtering 
The number of non-ribosomal protein coding genes on the 23 canonical chromosome 
pairs used for quality control was 19,671. Raw read counts uniquely assigned to these 
genes were converted into both transcripts per million (TPM) and variance-stabilising 
transformed (vst) counts via DESeq295. 
 
A list of expressed genes (n=11,667) was determined by filtering out genes for which less 
than 5% of tumour samples had at least 10TPM. In order to concentrate on tumour 
epithelial cell gene expression, genes were further filtered out if they negatively correlated 
with purity as estimated from matched DNA sequencing data (see associated manuscript 
EPIGENOME for methodology of purity estimation). Specifically, for the 157 tumour 
samples that had matched DNA-sequencing and therefore accurate purity estimates, a 
linear mixed effects model of Exp (vst) ~ Purity + (1|Patient) was compared via a chi-
squared test to Exp ~ (1|Patient). Genes which had a negative coefficient for Purity in the 
first model and an FDR adjusted p-value less than 0.05, suggesting that Purity significantly 
affected the expression, were filtered out. This led to a filtered list of 11,401 expressed 
genes. 
 
 
3.15 Mutational signatures analysis 
Mutational signatures analysis was performed with SparseSignatures51. This method uses 
LASSO regularization109 to reduce noise in the signatures, controlled by a regularization 
parameter lambda (λ). It implements a procedure based on bi-cross-validation110 to select 
the best values for both the regularization parameter λ and the number of signatures. 
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Deconvolution using a maximum of 10 signatures was performed and values of λ of 0.000, 
0.025, 0.050 and 0.100 were tested. Optimal parameters were selected based on the 
median bi-cross-validation error estimated over 1000 iterations, resulting in an optimal 
estimate with minimum cross-validation median error when 6 signatures were fitted and 
λ=0.025. A second analysis with SigProfiler111, with default parameters and a total of 1000 
iterations, confirmed the existence of these signatures. 
Signatures based clustering was performed considering the 6 signatures solution by 
SparseSignatures; the low-rank signatures exposure matrix given as an output by the tool 
was used to compute the pairwise similarity matrix for each patient as 1 - cosine similarity 
of their exposures. Clustering was then performed on the similarity matrix by k-means with 
6 clusters explaining all the variance. Although from a statistical perspective, clusters C3 
and C4 are defined by a few samples (and explain 3/4% of the variance), from the 
biological perspective, we have evidence that in these patients the distribution of 
mutations resembles very different signatures and mutational processes (Figure S36A).  
 
Mutational signatures exposures were also analysed across epigenetic regions. Mutations 
were first grouped in clonal or subclonal across whole genome and then in different 
genomic regions (as described above). Signatures activities in each region was estimated 
by Jackknife sampling112. Specifically, data from each patient were partitioned based on 
their clusters as defined above, and repeated Jackknife sampling performed 100 times 
independently for each of the 3 clusters (including a random sample of 90% of the tissue 
samples each time). For each iteration the mutations within each genomic region were 
used to computed a data matrix normalised against trinucleotide count (across the 96 
channels) in the whole genome versus region specific counts, and signatures assignments 
then performed on the normalized data by LASSO51,109. Finally, relative signature activities 
estimated over the 100 Jackknife samples were normalized based on total size of each 
region. Moreover, since clusters C3 and C4 represent rare and very distinct mutational 
patterns, we excluded these samples from the estimation of mutational processes in the 
epigenetic regions by Jackknife and instead we focused on MSS (cluster 1) vs MSI 
(clusters 2 and 5) tumour, as samples in clusters C3 and C4 would have probably biased 
the Jackknife estimation for these two groups. 
 

Supplementary Figure Legends 
 
Figure S1. Colectomy specimen collection images. Resection specimens were 
collected from UCLH and sampled with the supervision of a pathologist. Spatial 
information on different regional samples was retained and indicated in the images. A, B, 
C, D are cancer regions. E is distant normal epithelium. Eventual concomitant adenomas 
are reported as F, G, H, etc. 
 
Figure S2. Correlation between gene expression in TCGA normal colon samples vs 
our normal samples. 
 
Figure S3. Gland and bulk collection from each tumour region. We collected individual 
glands from cancer and normal samples from different regions of each tumour. We also 
collected ‘minibulks’, composed by agglomerate of a few dozen glands. Each sample was 
imaged individually. 
 
Figure S4. Copy number alteration profiles. We estimated absolute copy number 
alterations for each sample in each patient, both for deep WGS and low-pass WGS. 
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Figure S5. Chromosomal differences between adenomas and carcinomas. (A) Ploidy 
and (B) PGA (Percentage Genome Altered) of adenomas vs carcinomas, separated by 
MSI/MSS status. (C) Comparison of the two values. 
 
Figure S6. Single nucleotide variant profiles. We called point mutations and Indels in 
each sample and identified clusters of mutations found at the same frequency in the same 
samples. Values in Cancer Cell Fraction (CCF) are represented. 
 
Figure S7. Mutations in chromatin modifier genes for all samples. 
 
Figure S8. Images of all the normal samples used for ATAC-seq reference. 
 
Figure S9: Association between CNA and the observed ATAC-seq signals. (A) As 
expected, association between CNA and the coefficients of the negative-binomial 
regression with edgeR was found. Black line indicates CNA profile determined by WGS. 
(B) This relationship was generally explained by the expected effect of CNA under a given 
ploidy and purity. The black crosses show the average signal of sides with a given 
rounded CN and the black line the expected relationship. (C) A consistent variability of the 
signal at different CN states was observed. 
 
Figure S10. Identified SCAAs after adjustment for CNAs. A subset of highly recurrent 
SCAAs are labelled in the figure. Significantly differential SCAAs are show in red. 
 
Figure S11. Number of significant SCAA before and after adjustment of the test for 
the expected effects of CNA alterations. 
 
Figure S12. Peak densities for promoter gained loci in Figure 3D.  
 
Figure S13. Peak densities for promoter lost loci in Figure 3D. 
 
Figure S14. Peak densities for enhancer gained loci in Figure 3E.   
 
Figure S15. Peak densities for enhancer lost loci in Figure 3E.   
 
Figure S16. Peak densities for promoter gained peaks found subclonal from Figure 
3D,E. 
 
Figure S17. Peak densities for promoter lost peaks found subclonal from Figure 
3D,E. 
 
Figure S18. Peak densities for enhancer gained peaks found subclonal from Figure 
3D,E. 
 
Figure S19. Peak densities for enhancer lost peaks found subclonal from Figure 
3D,E. 
 
Figure S20. Comparison of peak calling in our cohort from reanalysed TCGA ATAC-
seq data.  
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Figure S21. Peak densities for peaks found in cancers but not in concomitant 
adenomas in Figure 3D,E.   
 
Figure S22. SCAA burden of adenomas vs carcinomas. (A) Purity of adenomas and 
carcinomas are comparable, excluding the differences in chromatin accessibility are due to 
cellularity. (B) Coverage differences are appreciable between cancers and adenomas, 
however when adjusted for number of reads in peaks (C) it is the case that SCAA burden 
is significantly higher in carcinomas. 
 
Figure S23. SCAAs identified in individual normal glands. (A) Heatmap of recurrent 
losses and gains promoter SCAAs identified in normal glands. This figure is equivalent to 
that shown in Figure 3 of the main manuscript. The last column of each patient shows if 
reads showed significantly differentially accessibility in a pool of all normal glands of 
patient. (B) Shows the distribution of losses and gains for all peaks. (C) Shows the lack of 
correlation of the recurrence of SCAAs in normal glands and the cancers. 
 
Figure S24. Gene expression differences for all the recurrent peaks that correlated 
with gene expression.  
 
Figure S25. Some of the eQTL somatic variants from a related analysis (Househam, 
Heide et al.) were associated with changes in chromatin accessibility at the locus. 
Here we show the significant examples of this phenomenon for each patient, with the SNV 
phylogenetic tree (left) versus changes in chromatin accessibility (right). 
 
Figure S26. Transcription Factor binding sites density plots for annotations in 
Figure 4D.  
 
Figure S27. Overlapping of TF annotations in Figure 4D. 
 
Figure S28. Correlation of the TF signal in Figure 4D between all versus only unique 
loci. 
 
Figure S29. Gene expression of TFs from cluster 1 of heatmap in Figure 4A. 
 
Figure S30. Methylation levels of CIMP (CpG Island Methylation Phenotype) markers 
of cancers and normal. 
 
Figure S31. Demethylation in reactivated TF binding sites. (A) We selected genomic 
regions in cluster 3 (enriched in developmental genes like SOX and HOX families) and 
verified their methylation status with CpG methylation arrays in EPICC samples versus 
normal. (B) In particular regions corresponding to binding sites of DLX5, HOXA4, HOXB4, 
ISL1, SOX5 and SOX6 showed decreased methylation in cancer vs normal.  
 
Figure S32. Methylation levels of cancer vs normal for housekeeping genes and 
genes that are usually methylated in normal. These results exclude a global 
hypomethylation pattern in the cancers. 
 
Figure S33. Heritability of chromatin accessibility. (A) We compared ATAC distance 
(euclidean on promoter peaks) between glands from the same region (within-region) and 
glands of different regions (between-regions) to evaluate divergence of chromatin against 
space and genetic distance. (B) For the large majority of patients within-region ATAC 
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distance is significantly lower than between region, indicating heritability of the chromatin 
that follows the spatial and phylogenetic structure of the tumour. Here we plot the F 
statistics of the ANOVA model on TSSe, number of reads, and region. (C) The distances 
between and within regions (left) and correlations with the genetic distance (right). (D) 
Cases in which no correlation with the genetic distances existed data were often from low 
purity samples or sparse. 
 
Figure S34. Coefficients of the ANOVA model for the correlation between genetic 
and epigenetic distance for each region. 
 
Figure S35. Clonality of TF binding site accessibility. A significant proportion of TF 
binding site accessibility changes were ‘clonal’ within the tumour, with distant regions 
showing the same pattern, again testimony of the heritability of chromatin accessibility. In 
this example CTCF loop and promoter loci in C548. However, there were some 
exceptions, as in this example of C543. 
 
Figure S36. Mutational signature discovery with SparseSignatures. (A) Mutational 
signature discovery with sparse signatures identified 6 signatures in our cohort. (B) 
Principal Component Analysis divided the patients into 5 clusters depending on 
contribution from each signature. (C) Signature activity varied between clusters 
 
Figure S37. Mutational signature deconvolution with SigProfiler. 
 
Figure S40. Accumulation of different mutational signatures in distinct epigenetic 
regions. 
 
Figure S39. Predicted versus observed mutational signatures that cause gain and 
loss of CTCF. 
 
Figure S40. Proportion of each signature contributing to mutations affecting CTCF 
binding. 
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