

Final analysis of the phase 3 non-inferiority COLUMBA study of subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma

by Saad Z. Usmani, Hareth Nahi, Wojciech Legiec, Sebastian Grosicki, Vladimir Vorobyev, Ivan Spicka, Vania Hungria, Sibirina Korenkova, Nizar J. Bahlis, Max Flogegard, Joan Bladé, Philippe Moreau, Martin Kaiser, Shinsuke Iida, Jacob Laubach, Hila Magen, Michele Cavo, Cyrille Hulin, Darrell White, Valerio De Stefano, Kristen Lantz, Lisa O'Rourke, Christoph Heuck, Maria Delioukina, Xiang Qin, Ivo Nnane, Ming Qi, and Maria-Victoria Mateos

Received: June 25, 2021. Accepted: March 23, 2022.

Citation: Saad Z. Usmani, Hareth Nahi, Wojciech Legiec, Sebastian Grosicki, Vladimir Vorobyev, Ivan Spicka, Vania Hungria, Sibirina Korenkova, Nizar J. Bahlis, Max Flogegard, Joan Bladé, Philippe Moreau, Martin Kaiser, Shinsuke Iida, Jacob Laubach, Hila Magen, Michele Cavo, Cyrille Hulin, Darrell White, Valerio De Stefano, Kristen Lantz, Lisa O'Rourke, Christoph Heuck, Maria Delioukina, Xiang Qin, Ivo Nnane, Ming Qi, and Maria-Victoria Mateos. Final analysis of the phase 3 non-inferiority COLUMBA study of subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma. Haematologica. 2022 Mar 31. doi: 10.3324/haematol.2021.279459. [Epub ahead of print]

Publisher's Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.

Final analysis of the phase 3 non-inferiority COLUMBA study of subcutaneous versus

intravenous daratumumab in patients with relapsed or refractory multiple myeloma

Saad Z. Usmani,¹ Hareth Nahi,² Wojciech Legiec,³ Sebastian Grosicki,⁴ Vladimir Vorobyev,⁵ Ivan Spicka,⁶ Vania Hungria,⁷ Sibirina Korenkova,⁸ Nizar J. Bahlis,⁹ Max Flogegard,¹⁰ Joan Bladé,¹¹ Philippe Moreau,¹² Martin Kaiser,¹³ Shinsuke Iida,¹⁴ Jacob Laubach,¹⁵ Hila Magen,¹⁶ Michele Cavo,¹⁷ Cyrille Hulin,¹⁸ Darrell White,¹⁹ Valerio De Stefano,²⁰ Kristen Lantz,²¹ Lisa O'Rourke,²¹ Christoph Heuck,²¹ Maria Delioukina,²¹ Xiang Qin,²² Ivo Nnane,²¹ Ming Qi,²¹ and Maria-Victoria Mateos²³

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA;

²Karolinska Institute, Department of Medicine, Division of Hematology, Karolinska University Hospital at Huddinge, Stockholm, Sweden;

³Center of Oncology of the Lublin Region, St. Jana z Dukli, Lublin, Poland;

⁴Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland;

⁵S. P. Botkin City Clinical Hospital, Moscow, Russian Federation;

⁶1st Medical Department – Department of Hematology, First Faculty of Medicine, Charles

University and General Hospital in Prague, Prague, Czech Republic;

⁷Clinica Medica São Germano, São Paulo, Brazil;

⁸Kiev Center for Bone Marrow Transplantation, Kiev, Ukraine;

⁹Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada;

¹⁰Department of Internal Medicine, Falun General Hospital, Falun, Sweden;

¹¹Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain;

¹²Hematology Department, University Hospital Hôtel-Dieu, Nantes, France;

¹³Division of Genetics and Epidemiology, The Institute of Cancer Research and The Royal Marsden Hospital, London, UK;

¹⁴Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan;

¹⁵Department of Hematology and Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA;

¹⁶Department of Hematology Chaim Sheba Medical Center, Ramat-Gan, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel;

¹⁷IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica, e Sperimentale, Università degli Studi, Bologna, Italy;

¹⁸Department of Hematology, Hôpital Haut Lévêque, Pessac, France;

¹⁹Dalhousie University and Queen Elizabeth II Health Science Centre, Halifax, NS, Canada;

²⁰Institute of Hematology, Catholic University, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy;

²¹Janssen Research & Development, LLC, Spring House, PA, USA;

²²Janssen Research & Development, LLC, Raritan, NJ, USA;
 ²³University Hospital of Salamanca/IBSAL/Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.

Corresponding author:

Saad Z. Usmani Memorial Sloan Kettering Cancer Center 530 E. 74th St., New York, NY 10021 Email: <u>usmanis@mskcc.org</u> Phone: 248-225-5642

Abstract word count (limit 250): 258 Word count (main text; limit 4000): 3004 Tables/Figures (limit 8): 1 table, 5 figures Supplementary material (no limit): 4 supplementary tables References (limit 50): 19

Running title: Non-inferiority of DARA IV vs SC in RRMM

ClinicalTrials.gov Identifier: NCT03277105.

Author contributions

Contributions: All authors contributed to the study design, study execution, data analysis, and manuscript writing. All authors provided a full review of the article and are fully responsible for all content and editorial decisions, were involved in all stages of manuscript development, and have approved the final version.

Acknowledgments

This study (ClinicalTrials.gov Identifier: NCT03277105) was sponsored by Janssen Research & Development, LLC. Medical writing and editorial support were provided by Austin Horton, PhD, of Cello Health Communications/MedErgy, and were funded by Janssen Global Services, LLC.

Data sharing statement

The data sharing policy of Janssen Pharmaceutical Companies of Johnson & Johnson is available at https://www.janssen.com/clinical-trials/transparency. As noted on this site, requests for access to the study data can be submitted through Yale Open Data Access (YODA) Project site at http://yoda.yale.edu

Declaration of interests

SZU has received grants and personal fees from Amgen, Celgene, GSK, Janssen, Merck, Sanofi, Seattle Genetics, SkylineDX, and Takeda; personal fees from Abbvie and MundiPharma; and grants from Bristol Myers Squibb (BMS) and Pharmacyclics.

HN has nothing to disclose.

WL has nothing to disclose.

SG has nothing to disclose.

VV has received honoraria for lectures and advisory boards from Janssen, Bristol-Myers Squibb, Celgene, Amgen, Takeda, AbbVie, Roche, and AstraZeneca.

IS has received honoraria and consulting and lecture fees from Celgene, Amgen, Janssen-Cilag,

Takeda, and Novartis; consulting and lecture fees from Sanofi; and lecture fees from Bristol-Myers Squibb.

VH has received fees for lectures and advisory boards from AbbVie, Amgen, BMS, Janssen, Sanofi, and Takeda.

SK has nothing to disclose.

NB has received honoraria from and served as a consultant for AbbVie, Amgen, BMS, Celgene, Genentech, GSK, Janssen, Karyopharm, Sanofi, and Takeda; and received researching funding from Celgene.

MF has nothing to disclose.

JB has received personal fees from Janssen, Celgene, and Amgen.

PM served as consultant for and received honoraria from Janssen, Celgene/Bristol Myers Squibb, Amgen, Sanofi, and AbbVie; and received honoraria from Novartis and Takeda. AC served as a consultant for Janssen, Celgene, Novartis, Amgen, Bristol Myers Squibb, Karyopharm, Sanofi, Genzyme, Seattle Genetics, Oncopeptides, Millennium/Takeda, Antengene, GlaxoSmithKline, and Secure Bio; and received research funding from Janssen, Celgene, Novartis, Amgen, Pharmacyclics, Seattle Genetics, and Millennium/Takeda.

MK has consulted for Abbvie, Amgen, BMS/Celgene, GSK, Janssen, Karyopharm, Seattle Genetics, and Takeda; received honoraria from BMS/Celgene, Janssen, and Takeda; received research funding from Janssen and BMS/Celgene; and travel support from BMS/Celgene, Janssen, and Takeda.

SI has received honoraria and reserch grants from Celgene, Daiichi-Sankyo, Janssen, Ono, Sanofi, and Takeda; and also received research grants from Abbvie, BMS, Chugai, GSK, and Kyowa Kirin.

JL has nothing to disclose.

HM has nothing to disclose.

MC has received honoraria from AbbVie, GlaxoSmithKline, Bristol Myers Squibb, Adaptive Biotechnologies, Takeda, Janssen, and Celgene.

CHul has received honoraria from Celgene/Bristol Myers Squibb, GlaxoSmithKline, Janssen Pharmaceuticals, and Takeda.DW has received honoraria from Amgen, Antengene, BMS/Celgene, GSK, Janssen, Karyopharm, Sanofi, and Takeda.

VDS reports grants, personal fees, and non-financial support from Amgen, Celgene, and Novartis.

KL is an employee of Janssen Research & Development, LLC and owns equity in Janssen.

LO is an employee of and owns equity in Janssen Research & Development, LLC.

CHeu is an employee of and owns equity in Janssen Research & Development, LLC.

MD was an employee of Janssen Research & Development, LLC at the time of the analysis.

XQ is employed by and owns equity in Janssen Research & Development, LLC.

IN is an employee of Janssen Research & Development, LLC.

5

MQ is employed by and owns equity in Janssen Research & Development, LLC.

M-VM has received honoraria for lectures and advisory boards from Abbvie, Adaptive, Amgen, bluebird bio, BMS/Celgene, GSK, Janssen, Oncopeptides, Pfizer, Regeneron, Roche, Sanofi, Sea-Gen, Takeda.

Abstract

In the primary analysis of the phase 3 COLUMBA study, daratumumab by subcutaneous administration (DARA SC) demonstrated non-inferiority to intravenous administration (DARA IV) for relapsed or refractory multiple myeloma (RRMM). Here, we report the final analysis of efficacy and safety from COLUMBA after a median of 29.3 months follow-up (additional 21.8 months after the primary analysis). In total, 522 patients were randomized (DARA SC, n=263; DARA IV, n=259). With longer follow-up, DARA SC and DARA IV continued to show consistent efficacy and maximum trough daratumumab concentration as compared with the primary analysis. The overall response rate was 43.7% for DARA SC and 39.8% for DARA IV. The maximum mean (standard deviation) trough concentration (cycle 3, day 1 pre-dose) of serum DARA was 581 (315) µg/mL for DARA SC and 496 (231) µg/mL for DARA IV. Median progression-free survival was 5.6 months for DARA SC and 6.1 months for DARA IV; median overall survival was 28.2 months and 25.6 months, respectively. Grade 3/4 treatment-emergent adverse events occurred in 50.8% of patients in the DARA SC group and 52.7% in the DARA IV group; the most common ($\geq 10\%$) were thrombocytopenia (DARA SC, 14.2%; DARA IV, 13.6%), anemia (13.8%; 15.1%), and neutropenia (13.1%; 7.8%). The safety profile remained consistent with the primary analysis after longer follow-up. In summary, DARA SC and DARA IV continue to demonstrate similar efficacy and safety, with a low rate of infusion-related reactions (12.7% vs 34.5%, respectively) and shorter administration time (3-5 minutes vs 3-7 hours) supporting DARA SC as a preferable therapeutic choice. ClinicalTrials.gov Identifier: NCT03277105.

Introduction

Daratumumab is a human immunoglobulin Gκ monoclonal antibody targeting CD38 with a direct on-tumor¹⁻⁴ and immunomodulatory⁵⁻⁷ mechanism of action. Daratumumab by intravenous administration (DARA IV) is approved for use in many countries for the treatment of relapsed or refractory multiple myeloma (RRMM) as a monotherapy or combined with standard of care for RRMM or for newly diagnosed multiple myeloma.^{8,9}

A subcutaneous formulation of daratumumab (DARA SC: daratumumab 1800 mg co-formulated with recombinant human hyaluronidase PH20 [rHuPH20; 2000 U/mL; ENHANZE[®] drug delivery technology; Halozyme, Inc., San Diego, CA, USA]) was developed to reduce the duration of treatment administration (3-5 minutes for DARA SC vs 3-7 hours for DARA IV) without compromising efficacy and safety. Based on the previously published primary analysis of the COLUMBA study,¹⁰ DARA SC was approved for use in the United States, European Union, and other countries globally as monotherapy for RRMM and combination therapy for RRMM or newly diagnosed multiple myeloma.^{9,11}

The primary analysis of the phase 3 COLUMBA study demonstrated that DARA SC was noninferior to DARA IV in terms of the co-primary endpoints of efficacy (overall response rate [ORR]) and pharmacokinetics (maximum trough concentration measured pre-dose cycle 3, day 1 [C_{trough}]). With a median follow-up time of 7.5 months, the ORRs for DARA SC and DARA IV were 41% and 37%, respectively (relative risk 1.11; 95% confidence interval [CI], 0.89-1.37). Maximum C_{trough} was chosen as a co-primary endpoint because this parameter was strongly correlated with efficacy.¹² The maximum C_{trough} in the DARA SC group was 593 (standard deviation [SD], 306) µg/mL and in the DARA IV group was 522 (SD, 226) µg/mL; the geometric means ratio was 107.93% (90% CI, 95.74-121.67). DARA SC was well tolerated with a safety profile comparable to that of DARA IV, and DARA SC had a lower rate of infusion-related reactions (IRRs) compared with DARA IV (13% vs 34%, *P*<0.0001).¹⁰ Herein, we report the final analysis of the COLUMBA study, with a longer follow-up of 29.3 months (additional 21.8 months after the primary analysis).

Methods

Study design and participants

The study design, including complete eligibility criteria, of the multicenter, open-label, noninferiority, randomized phase 3 COLUMBA study (NCT03277105) has been previously published with the pre-specified co-primary endpoint analysis.¹⁰ Briefly, COLUMBA evaluated DARA SC or DARA IV in patients with RRMM. Patients had RRMM with a multiple myeloma diagnosis according to International Myeloma Working Group criteria,¹³ had received \geq 3 previous lines of therapy including a proteasome inhibitor and an immunomodulatory drug, or were refractory to both a proteasome inhibitor and an immunomodulatory drug. All patients provided written informed consent. The study was approved by independent ethics committees/institutional review boards and was conducted in accordance with the Declaration of Helsinki and the International Conference on Harmonisation Good Clinical Practices guidelines.

Randomization and study treatment

Eligible patients were randomly assigned in a 1:1 ratio to receive either DARA SC or DARA IV, stratified by baseline body weight (\leq 65 kg, 66-85 kg, >85 kg), previous therapy lines (\leq 4 or >4), and myeloma type (immunoglobulin G vs non–immunoglobulin G). Treatment groups were not masked to patients or investigators. Patients in the DARA SC group received a flat dose of 1800 mg of daratumumab co-formulated with rHuPH20 at 2000 U/mL, and patients in the DARA IV group received 16 mg/kg of daratumumab. Patients received daratumumab once weekly for cycles 1-2, once every 2 weeks for cycles 3-6 (all cycles, 28 days), and then once every 4 weeks thereafter until disease progression or toxicity.

Endpoints and analyses

The non-inferiority co-primary endpoints of the COLUMBA trial were overall response and the maximum C_{trough} . Major secondary endpoints were tested sequentially in the following order: rate of IRRs, progression-free survival (PFS), rate of very good partial response or better (\geq VGPR), and overall survival (OS). Additional endpoints included rate of complete response or better (\geq CR), time to next therapy, median PFS on the next line of therapy (PFS2; defined by time from randomization until disease progression or death on the next line of therapy), duration of response, and time to response. Disease assessments were conducted every 28 (\pm 7) days until disease progression in accordance with International Myeloma Working Group response criteria¹⁴ and a validated computer algorithm. The primary and final analyses occurred approximately 6 and 22 months, respectively, after the last patient was randomized.

10

Results

Patients and treatment

In total, 522 patients were randomized (DARA SC, n=263; DARA IV, n=259). Baseline and disease characteristics were generally well balanced and previously published.¹⁰ At the time of the final analysis, among patients who received \geq 1 treatment dose, a similar percentage in each group discontinued study treatment (DARA SC, 90.0% [n=234]; DARA IV, 91.1% [n=235]). Consistent with the primary analysis, progressive disease (75.4% [n=196]; 75.6% [n=195]) was the most common reason for treatment discontinuation in both groups. At the time of the clinical cutoff for the final analysis, 26 (10%) patients in the DARA SC group and 23 (8.9%) in the DARA IV group remained on study treatment. The median numbers of treatment cycles received were comparable for the DARA SC and DARA IV groups (7.0 [range, 1-38] and 7.5 [range, 1-37], respectively). The median daratumumab relative dose intensities were similar for the DARA SC group at 100.0% (range, 25.0-100.0) and for the DARA IV group at 99.9% (range, 1.3-106.2), with a median duration of treatment of 5.6 months (range, 0.03-33.4), respectively.

Efficacy

Efficacy results at the final analysis were generally consistent with those at the primary analysis. The ORR continued to improve in both treatment groups, from 41.1% to 43.7% in the DARA SC group and from 37.1% to 39.8% in the DARA IV group. In comparison to the primary analysis, the depth of response continued to deepen over time, as shown with rates of \geq VGPR based on the computerized algorithm increased from 19% to 23.6% for the DARA SC group and from

17% to 21.6% for the DARA IV group (odds ratio, 1.13; 95% CI, 0.74-1.72; **Figure 1**) and the rates of \geq CR increased from 1.9% to 4.6% for the DARA SC group and 2.7% to 5.4% for the DARA IV group. Median time to \geq VGPR was consistent with the primary analysis (DARA SC: 2.0 months [range, 1.0-19.4]; DARA IV: 1.9 months [range, 0.9-22.8]). Responses for DARA SC were generally similar across patients in each body weight subgroup (\leq 65 kg, >65-85 kg, and >85 kg; **Table S2**). The median time to \geq CR increased from 4.2 to 9.3 months for the DARA SC group, and from 3.8 to 7.2 months for the DARA IV group. The median duration of response was similar in both groups: 10.2 (range, 9.2-13.8) months for the DARA SC group and 10.6 (range, 9.2-15.6) months for the DARA IV group.

With a median follow-up of 29.3 months, the median PFS was consistent with the primary analysis in both treatment groups, with 5.6 (95% CI, 4.7-7.5) months and 6.1 (95% CI, 4.7-7.5) months for the DARA SC and DARA IV groups, respectively (hazard ratio [HR], 0.98 [95% CI, 0.81-1.19]; **Figure 2**). The median OS was similar in both arms with 28.2 (95% CI, 22.8-not evaluable) months for the DARA SC group and 25.6 (95% CI, 22.1-not evaluable) months for the DARA IV group, (HR, 0.92 [95% CI, 0.72-1.18]). The estimated 24-month OS rates were 55.8% (95% CI, 49.4-61.7) for DARA SC and 51.6% (95% CI, 45.1-57.6) for DARA IV (**Figure 3**). Median OS outcomes were generally similar for DARA SC and DARA IV groups across baseline body weight subgroups ($\leq 65 \text{ kg}$, > 65-85 kg, and > 85 kg; **Table S2**).

The median times to next therapy were similar, with 8.8 (95% CI, 7.6-10.9) months for the DARA SC group and 9.4 (95% CI, 8.2-10.7) months for the DARA IV group (HR, 0.99 [95%

CI, 0.81-1.21]). PFS2 also remained similar with 19.0 (95% CI, 16.6-21.7) months for the DARA SC group and 18.1 (95% CI, 15.1-21.0) months for the DARA IV group (HR, 0.87 [95% CI, 0.70-1.10]; **Figure 4**). The estimated 24-month PFS2 rates were 42.1% (95% CI, 35.8-48.4) and 37.1% (95% CI, 30.9-43.4) for the DARA SC and DARA IV groups, respectively.

Pharmacokinetics and immunogenicity

The final pharmacokinetic and immunogenicity results are consistent with those of the primary analysis.¹⁰ Among patients in the pharmacokinetic analysis set (DARA SC, n=259; DARA IV, n=257), serum trough concentrations of daratumumab following treatment with DARA SC were consistently higher or comparable with those from the DARA IV group for all visits at which concentrations were measured in both treatment groups (Figure 5). Following weekly dosing, trough serum concentrations of daratumumab increased to the maximum C_{trough}, which occurred immediately prior to dosing on cycle 3 day 1 for both treatment groups. The mean maximum C_{trough} concentration was 581 (SD, 315) µg/mL for the DARA SC group and 496 (SD, 231) µg/mL for the DARA IV group. As expected for monoclonal antibody administered SC as a flat dose and consistent with results in the primary analysis,¹⁰ higher serum daratumumab concentrations were observed in patients with lower body weight ($\leq 65 \text{ kg}$) and lower serum daratumumab concentrations were observed in patients with higher body weight (>85 kg), compared with exposures in the total pharmacokinetic analysis set in the DARA SC group. For patients treated with DARA IV, lower serum daratumumab concentrations were observed in patients with lower body weight (≤ 65 kg) and higher serum daratumumab concentrations were observed in patients with higher body weight (>85 kg), compared with exposures in the total pharmacokinetic analysis set (Table S1).

Two methods were used for detection of anti-daratumumab antibodies for the final analysis: initial drug tolerance (DT) method and enhanced DT method. The enhanced DT method was developed to detect anti-daratumumab antibodies in the presence of a high concentration of daratumumab (4000 µg/mL versus 630 µg/mL in the initial DT assay). After the enhanced DT method became available, all samples were tested using the new enhanced DT method (including samples that had been previously tested with the initial DT method during the primary analysis). Based on cumulative incidence in the daratumumab -immunogenicity-evaluable analysis set (n=228 for both DARA SC and DARA IV) of anti-daratumumab antibodies (ie, patients positive for anti-daratumumab antibodies in either initial DT method or enhanced DT method), 1 (0.4%) patient tested positive for anti-daratumumab antibodies in the DARA SC group compared with 6 (2.6%) patients in the DARA IV group. The peak titer (based on enhanced DT method) was 1:192 in 1 patient who tested positive for treatment-emergent anti-daratumumab antibodies in the DARA SC group. For the 6 patients who tested positive for treatment-emergent antidaratumumab antibodies in the DARA IV group, the peak titer was 1:6 in 3 patients, 1:24 in 1 patient, and 1:192 in 1 patient based on the enhanced DT method, and 1:20 in 1 patient based on the initial DT method. The 1 patient in the DARA SC group who tested positive for antidaratumumab antibodies also tested positive for neutralizing antibodies, and 5 of 6 patients in the DARA IV group who tested positive for anti-daratumumab antibodies also tested positive for neutralizing antibodies.

Based on the updated rHuPH20 immunogenicity evaluable analysis set (including the primary and final analysis), 15 (6.7%) of 224 patients in the rHuPH20 immunogenicity-evaluable

analysis set had treatment-emergent anti-rHuPH20 antibodies post DARA SC administration. For patients who tested positive for treatment-emergent anti-rHuPH20 antibodies, the peak titer was 1:5 in 10 patients, 1:10 in 3 patients, and 1:80 in 2 patients. None of the 15 patients with treatment-emergent anti-rHuPH20 antibodies tested positive for neutralizing antibodies to rHuPH20.

Safety

The overall safety profiles of the DARA SC and DARA IV groups were similar and consistent with the primary analysis after longer follow-up, with 91.5% (n=238) and 93.0% (n=240) patients, respectively, experiencing treatment-emergent adverse events (TEAEs) of any grade and the most common (>15%) in both groups being anemia, thrombocytopenia, and pyrexia (**Table 1**). The incidence of grade 3 or 4 TEAEs for both groups was similar to the data previously reported in the primary analysis, with the final analysis reporting 50.8% (n=132) of patients in the DARA SC group and 52.7% (n=136) of patients in the DARA IV group; the most common (\geq 10%) were thrombocytopenia, anemia, and neutropenia (**Table 1**). The overall incidence of serious TEAEs for both treatment groups also remained consistent with data previously reported in the primary analysis, with the final analysis reporting 31.9% (n=83) of patients in the DARA SC group and 34.5% (n=89) of patients in the DARA IV group, the most common SAE being pneumonia (4.6% [n=12]; 5.0% [n=13]). Second primary malignancies occurred at a low rate of 3.8% (n=10) of patients in the DARA SC group and 3.9% (n=10) patients in the DARA IV group. TEAEs led to treatment discontinuation in 7.3% (n=19) patients in the DARA SC group and 8.5% (n=22) patients in the DARA IV group. TEAEs resulting in death occurred in 6.2% (n=16) patients in the DARA SC group and 7.4% (n=19) patients in the DARA IV group. Treatment modifications due to any grade TEAEs occurred in 30.0% (n=78) of DARA SC and 32.6% (n=84) of DARA IV patients.

There was no clinically meaningful difference in the overall tolerability and safety profiles between DARA SC and DARA IV in the \leq 65 kg subgroup. Patients in each body weight subgroup (\leq 65 kg, >65-85 kg, and >85 kg) experienced any grade and grade 3/4 TEAEs at frequencies similar to those of the overall population (**Table S3**). Consistent with data previously reported in the primary analysis, a higher incidence of neutropenia in the \leq 65 kg subgroup in the DARA SC group compared with the DARA IV group was reported, including neutropenia of all grades (DARA SC, 25.8%; DARA IV, 14.1%) and grade 3/4 neutropenia (DARA SC, 20.4%; DARA IV, 8.7%) (**Table S3**). In the \leq 65 kg DARA SC subgroup there was no increase in the overall incidence of infections (DARA SC, 57.0%; DARA IV, 57.6%), grade 3 or 4 infections (10.8% and 17.4%, respectively), or serious infections (10.8% and 18.5%, respectively).

With longer follow-up, no new IRRs occurred, and the rate of IRRs remained significantly reduced with DARA SC compared to DARA IV (12.7% [n=33] vs 34.5% [n=89]; odds ratio 0.28; 95% CI, 0.18-0.44; *P*<0.0001). For patients in the DARA SC group, 1 injection-site reaction occurred with longer follow-up. Among patients who switched from DARA IV to DARA SC (n = 13), none experienced IRRs with DARA SC.

The results from the modified-Cancer Therapy Satisfaction Questionnaire (CTSQ) at the time of the final analysis confirmed that with the longer follow-up patients receiving DARA SC continued to have a more positive perception of their cancer therapy and greater satisfaction with therapy compared with patients receiving DARA IV (**Table S4**).

Discussion

In this final analysis of the non-inferiority phase 3 COLUMBA study, with 29.3 months of median follow-up (approximately 22 months after the primary analysis), DARA SC and DARA IV continued to demonstrate similar efficacy and trough daratumumab concentrations, as measured by co-primary endpoints ORR and maximum C_{trough} , and supported by depth and duration of response, PFS, and OS. With longer follow-up, no new safety concerns were identified, and DARA SC maintained a lower rate of IRRs versus DARA IV. Together, these data are consistent with the primary analysis of COLUMBA.¹⁰

The results from the final analysis of COLUMBA are consistent with those seen for GEN501 and SIRIUS, which were two early-phase open-label studies that established the efficacy and safety of DARA IV monotherapy in RRMM patients.^{15,16} In a pooled, post hoc final analysis of GEN501 and SIRIUS, the combined ORR rate was 30.4%, median PFS was 4.0 months, and median OS was 20.5 months with a combined median follow-up of 36.6 months.¹⁷ These data are similar to the final COLUMBA analysis: ORR rates were 43.7% and 39.8%, median PFS values

were 5.6 months and 6.1 months, and median OS values were 28.2 months and 25.6 months for DARA SC and DARA IV, respectively.

Pharmacokinetic analyses demonstrate that serum trough concentrations of daratumumab following treatment with DARA SC were consistently higher than or comparable with those from the DARA IV group, including the mean maximum C_{trough} concentration (DARA SC, 581 µg/mL; DARA IV, 496 µg/mL); these values exceed the previously identified threshold (236 µg/mL) established for DARA IV to reach 99% target saturation for clinical effect.¹² Analyses of pharmacokinetics by body weight subgroup were consistent with body weight analyses from the primary COLUMBA analysis.¹⁸ Of note, there were only a small number of patients with body weight >120 kg who were treated with DARA SC in COLUMBA; therefore, the data should be interpreted with caution. Overall, DARA SC (1800 mg) achieved adequate and consistent exposure across body weight subgroups (≤65 kg, 66-85 kg, and >85-120 kg), suggesting that dose adjustments are not required for DARA SC.

With longer follow-up at the final COLUMBA analysis (median follow-up, 29.3 months), no new safety concerns were noted. There was no clinically meaningful difference in the overall tolerability and safety between DARA SC and DARA IV in the ≤ 65 kg subgroup. While a higher incidence of neutropenia in the ≤ 65 kg subgroup in the DARA SC group was reported, it did not result in an increased rate of any grade or grade 3 or 4 infections. These findings are consistent with those of the primary analysis. Overall, DARA SC was shown to be non-inferior to DARA IV through the primary analysis,¹⁰ a finding that was supported with an extended follow-up. In addition, DARA SC provides several advantages compared with DARA IV. DARA SC reduces the treatment burden for patients because of its considerably shorter duration of administration, while it confers a more positive perception and greater patient satisfaction with treatment compared with DARA IV.¹⁹ The final analysis of COLUMBA provides long-term efficacy and tolerability data on daratumumab monotherapy and strongly supports the use of DARA SC to achieve clinical outcomes comparable to those with DARA IV, with a low rate of IRRs, short administration time, and without dose adjustment. Based on these results, DARA SC is considered a preferable treatment option relative to DARA IV for the patients with multiple myeloma.

References

 de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840-1848.

2. Lammerts van Bueren J, Jakobs D, Kaldenhoven N, et al. Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. Blood. 2014;124(21):3474.

3. Overdijk MB, Verploegen S, Bogels M, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7(2):311-321.

4. Overdijk MB, Jansen JH, Nederend M, et al. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcγ receptor-mediated cross-linking. J Immunol. 2016;197(3):807-813.

Krejcik J, Casneuf T, Nijhof IS, et al. Daratumumab depletes CD38⁺ immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood.
 2016;128(3):384-394.

6. Adams HC III, Stevenaert F, Krejcik J, et al. High-parameter mass cytometry evaluation of relapsed/refractory multiple myeloma patients treated with daratumumab demonstrates immune modulation as a novel mechanism of action. Cytometry A. 2019;95(3):279-289.

 Casneuf T, Adams HC III, van de Donk NWCJ, et al. Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab. Leukemia.
 2020;35(2):573-584.

20

8. DARZALEX[®](daratumumab) injection, for intravenous use [packet insert]. Horsham, PA: Janssen Biotech, Inc.; October 2021.

Eurpoean Medicines Agency. Darzalex 20 mg/mL concentrate for solution for infusion.
 Summary of product characteristics.

http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-

Product_Information/human/004077/WC500207296.pdf. Accessed 11 March 2021.

10. Mateos MV, Nahi H, Legiec W, et al. Subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma (COLUMBA): a multicentre, open-label, non-inferiority, randomised, phase 3 trial. Lancet Haematol. 2020;7(5):e370-e380.

DARZALEX FASPRO[™] (daratumumab and hyaluronidase-fihj) [package insert].
 Horsham, PA: Janssen Biotech, Inc; November 2021.

12. Xu XS, Yan X, Puchalski T, et al. Clinical implications of complex pharmacokinetics for daratumumab dose regimen in patients with relapsed/refractory multiple myeloma. Clin Pharmacol Ther. 2017;101(6):721-724.

 Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working
 Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538e548.

14. Rajkumar SV, Harousseau JL, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691-4695.

15. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207-1219.

21

16. Lonial S, Weiss BM, Usmani S, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387(10027):1551-1560.

17. Usmani SZ, Nahi H, Plesner T, et al. Daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma: final results from the phase 2 GEN501 and SIRIUS trials. Lancet Haematol. 2020;7(6):e447-e455.

18. Mateos MV, Usmani SZ, Grosicki S, et al. Randomized, open-label, non-inferiority, phase 3 study of subcutaneous (SC) versus intravenous (IV) daratumumab (DARA) administration in patients (Pts) with relapsed or refractory multiple myeloma (RRMM): body weight subgroup analysis of COLUMBA. Blood. 2019;134(suppl 1):1906.

19. Usmani SZ, Mateos MV, Hungria V, et al. Greater treatment satisfaction in patients receiving daratumumab subcutaneous vs. intravenous for relapsed or refractory multiple myeloma: COLUMBA clinical trial results. J Cancer Res Clin Oncol. 2021;147(2):619-631.

Table 1. Adverse event incidence and most common adverse events of any grade ($\geq 10\%$)and grade 3/4 ($\geq 5\%$) in the safety-evaluable population.^a

	DAR	A SC	DARA IV		
	(n =2	260)	(n=258)		
Any TEAE, n (%)	238 (91.5)	240 (93.0)		
Serious TEAE, n (%)	83 (3	31.9)	89 (3	34.5)	
Maximum toxicity grades of TEAE, n (%)					
Grade 1	13 (5.0)	19 ((7.4)	
Grade 2	92 (3	35.4)	85 (3	32.9)	
Grade 3	93 (3	35.8)	88 (3	34.1)	
Grade 4	24 (9.2)	29 (1	11.2)	
Grade 5	16 ((6.2)	19 (7.4)		
TEAEs leading to treatment discontinuation, n (%)	19 (7.3)	22 (8.5)		
TEAEs resulting in death, n (%)	16 (6.2)	19 (7.4)	
TEAE, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
Hematologic					
Anemia	72 (27.7)	36 (13.8)	66 (25.6)	39 (15.1)	
Neutropenia	52 (20.0)	34 (13.1)	35 (13.6)	20 (7.8)	
Thrombocytopenia	51 (19.6)	37 (14.2)	50 (19.4)	35 (13.6)	
Lymphopenia	21 (8.1) 14 (5.4)		17 (6.6) 16 (
Non-hematologic					
Upper respiratory infection	44 (16.9)	0	30 (11.6)	2 (0.8)	
Diarrhea	41 (15.8)	2 (0.8)	33 (12.8)	1 (0.4)	
Pyrexia	39 (15.0)	2 (0.8)	39 (15.1)	2 (0.8)	

Fatigue	33 (12.7)	3 (1.2)	28 (10.9)	3 (1.2)
Arthralgia	33 (12.7)	1 (0.4)	18 (7.0)	0
Back pain	31 (11.9)	5 (1.9)	38 (14.7)	7 (2.7)
Nasopharyngitis	28 (10.8)	1 (0.4)	21 (8.1)	0
Cough	25 (9.6)	2 (0.8)	36 (14.0)	0
Nausea	24 (9.2)	0	32 (12.4)	2 (0.8)
Hypertension	16 (6.2)	11 (4.2)	23 (8.9)	15 (5.8)
Pneumonia	16 (6.2)	13 (5.0)	19 (7.4)	13 (5.0)
Chills	15 (5.8)	1 (0.4)	32 (12.4)	2 (0.8)
Dyspnea	15 (5.8)	2 (0.8)	28 (10.9)	2 (0.8)
IRRs	33 (12.7)	$4(1.5)^{b}$	89 (34.5)	14 (5.4) ^b

DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; TEAE, treatment-emergent adverse event; IRRs, infusion-related reactions. ^aThe safety-evaluable population includes all patients who underwent randomization and received ≥ 1 dose of study treatment. ^bNo grade 4 IRRs were reported for either DARA SC or DARA IV.

Figure legends

Figure 1. Response rates over time. Response rates from the primary COLUMBA analysis¹⁰ (median follow-up, 7.5 months) and the final COLUMBA analysis (median follow-up, 29.3 months) for patients in the intent-to-treat population. Response rates are shown for the DARA SC and DARA IV groups. ORR, overall response rate; VGPR, very good partial response; PR, partial response; DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; CR, complete response; sCR, stringent complete response.

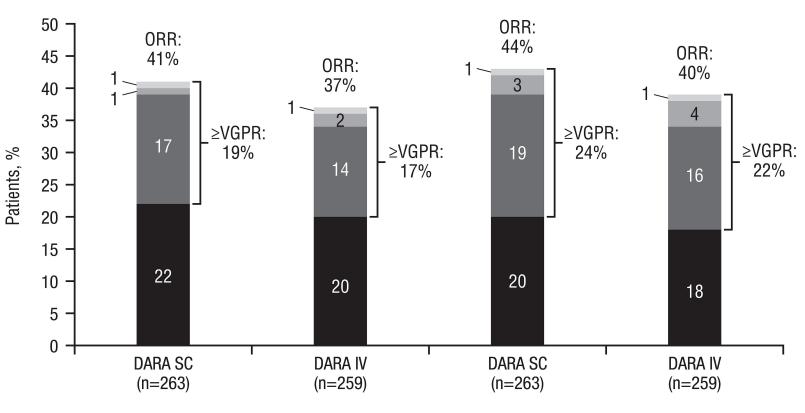

Figure 2. Kaplan-Meier estimates for PFS in the intent-to-treat population. Data included all patients who underwent randomization. Estimated 12-month PFS rates are shown. PFS, progression-free survival; DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; CI, confidence interval.

Figure 3. Kaplan-Meier estimates for OS in the intent-to-treat population. Data included all patients who underwent randomization. Estimated 24-month OS rates are shown. OS, overall survival; DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; CI, confidence interval.

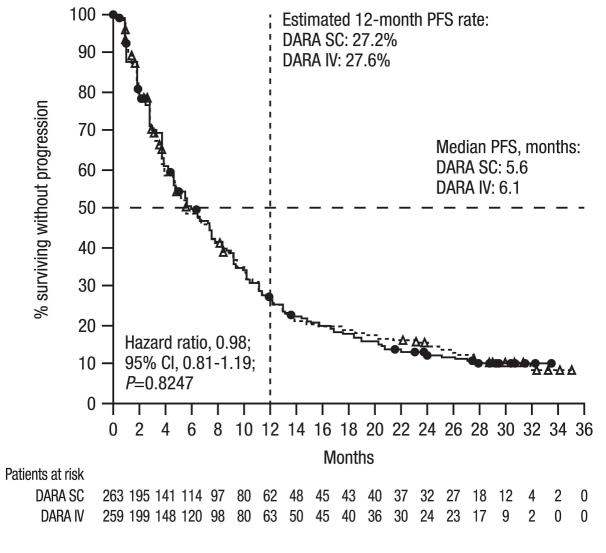
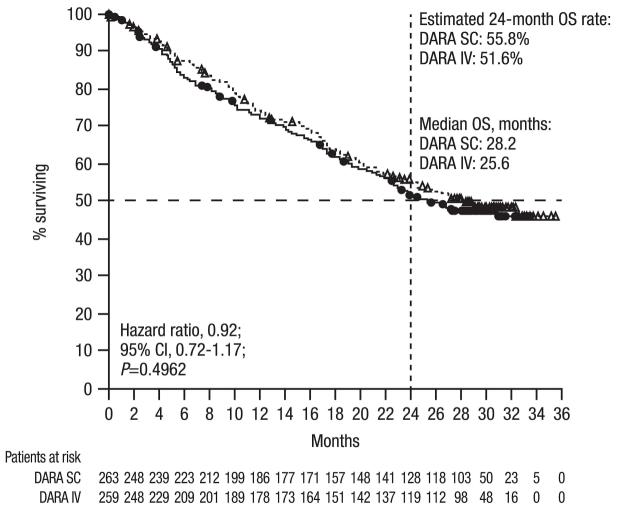
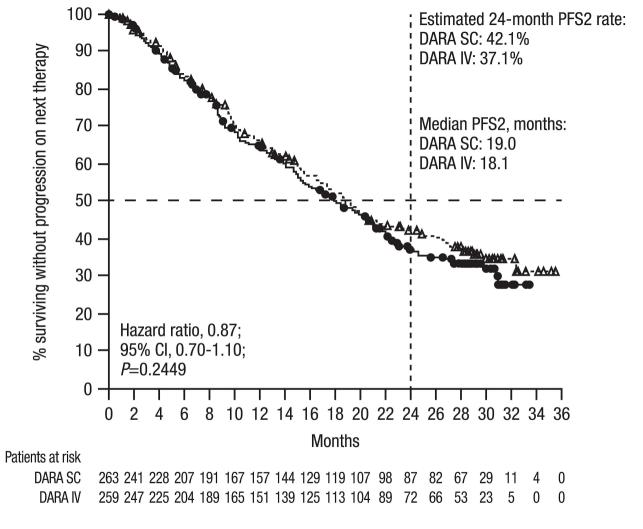
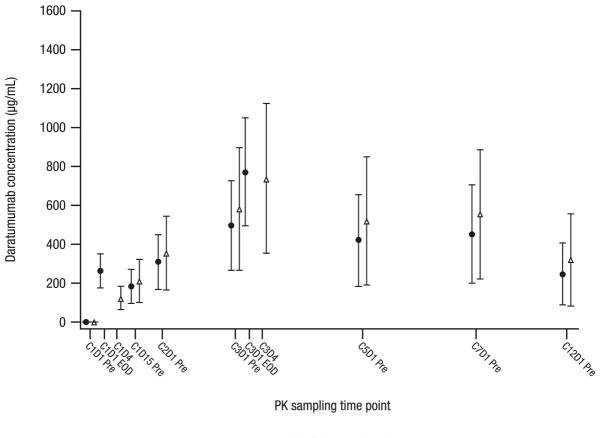

Figure 4. Kaplan-Meier estimates for PFS2 in the intent-to-treat population. Data included all patients who underwent randomization. PFS2, time from randomization to progression on next line of therapy or death, based on investigator assessment; DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; CI, confidence interval.

Figure 5. Plot of mean (SD) daratumumab serum peak and trough concentrations over time. Data represented as mean with error bars denoting standard deviation for patients who received ≥ 1 administration of study therapy and had ≥ 1 pharmacokinetics sample concentration value after the first dose administration. SD, standard deviation; C, cycle; D, day; Pre, pre-dose; EOD, end of dose; DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration.


Primary analysis Median follow-up: 7.5 months Final analysis Median follow-up: 29.3 months


PR 📕 VGPR 📕 CR 📃 sCR


-A- DARA SC - DARA IV

-A- DARA SC - DARA IV

-A- DARA SC - DARA IV

[△] DARA SC ● DARA IV

Supplemental Materials

Table S1. Serum concentration of daratumumab by baseline body weight subgroup.

			DARA SC (n=259)					DARA IV (n=257)		
Serum concentration (µg/mL)	≤50 kg	>50-65 kg	>65-85 kg	>85-120 kg	>120 kg	≤50 kg	>50-65 kg	>65-85 kg	>85-120 kg	>120 kg
Pharmacokinetic analysis set, N	21	71	102	61	4	21	70	105	58	3
Cycle 1, day 1 (C _{trough}) N	20	69	101	59	4	21	70	102	57	3
Mean (SD)	BQL (NE)	BQL (NE)	BQL (NE)	BQL (NE)	BQL (NE)	BQL (NE)	BQL (NE)	BQL (NE)	BQL (NE)	BQL (NE)
Cycle 1, day 1 (end of dose; C _{max} for IV) N	NA	NA	NA	NA	NA	21	66	100	53	3
Mean (SD)	NA	NA	NA	NA	NA	225 (56.3)	236 (88.5)	260 (80.6)	318 (82.0)	331 (251)
Cycle 1, day 4 (C _{max} for SC) N Mean (SD)	20 151 (79.4)	67 145 (58.3)	97 124 (58.6)	58 96.9 (44.0)	4 66.1 (55.5)	NA NA	NA NA	NA NA	NA NA	NA NA
Cycle 1, day 15 (C _{trough}) N Mean (SD)	20 325 (181)	63 250 (92.6)	93 191 (95.9)	58 176 (72.5)	4 77.5 (75.7)	19 159 (69.9)	61 167 (74.5)	94 186 (78.4)	55 208 (87.1)	3 221 (115)
Cycle 2, day 1 (C _{trough}) N Mean (SD)	17 522 (278)	62 428 (195)	92 319 (160)	56 296 (131)	3 110 (121)	20 274 (132)	65 287 (125)	95 313 (150)	53 338 (138)	3 363 (153)
Cycle 3, day 1 (C _{trough})										

N Mean (SD)	17 888 (449)	59 673 (303)	80 515 (277)	45 493 (218)	3 143 (219)	20 466 (195)	56 458 (228)	90 515 (248)	45 513 (215)	2 657 (205)
Cycle 3, day 1 (end of dose; C _{max} for IV)			. ,							
Ν	NA	NA	NA	NA	NA	19	54	84	45	2
Mean (SD)	NA	NA	NA	NA	NA	714 (235)	727 (279)	763 (283)	846 (265)	1136 (330)
Cycle 3, day 4 (C _{max} for SC)						(100)	(27)	/00 (200)	0.10 (200)	
Ν	16	51	74	43	3	NA	NA	NA	NA	NA
Mean (SD)	1114 (450)	871 (353)	660 (364)	613 (285)	203 (273)	NA	NA	NA	NA	NA
Cycle 5, day 1 (C _{trough}) N	13	45	59	38	0	17	47	70	33	2
Mean (SD)	871 (419)	591 (338)	458 (304)	423 (211)	-	418 (221)	388 (221)	432 (255)	438 (238)	471 (125)
Cycle 7, day 1 (C _{trough}) N	11	35	46	34	0	14	37	57	25	2
Mean (SD)	1069 (356)	589 (334)	474 (296)	464 (205)	-	470 (196)	429 (250)	464 (269)	457 (263)	427 (163)
Cycle 12, day 1 (C _{trough}) N	9	18	26	22	0	10	23	37	12	1
Mean (SD)	679 (219)	378 (250)	254 (180)	206 (112)	-	242 (139)	264 (183)	232 (171)	274 (101)	218 (-)
End of treatment	· · ·			· · ·		<u>```</u>		· · ·	· · ·	
Ν	9	29	44	32	0	11	31	38	25	1
Mean (SD)	315 (405)	260 (224)	238 (284)	163 (137)	-	214 (166)	128 (124)	228 (202)	198 (196)	71.7 (-)
Follow-up week 8										
Ν	10	24	39	24	0	9	31	35	26	1
Mean (SD)	128 (213)	153 (173)	146 (218)	111 (158)	-	179 (147)	118 (196)	141 (160)	146 (209)	BQL (NE)

DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; C_{trough} , trough concentration; SD, standard deviation; BQL, below quantitation limit (0.2 µg/mL); NE, not estimable; C_{max} , maximum concentration; NA, not available.

Table S2. Efficac	y endpoints by	baseline body	weight subgroup. ^a

		DARA SC (n=263)		DARA IV (n=259)			
	≤65 kg (n=94)	>65-85 kg (n=102)	>85 kg (n=66)	≤65 kg (n=92)	>65-85 kg (n=105)	>85 kg (n=61)	
Overall response rate, n (%)	46 (48.9)	38 (37.3)	31 (47.0)	39 (42.4)	44 (41.9)	20 (32.8)	
Overall survival, median (95% CI), months	NR (18.5-NE)	28.1 (18.4-NE)	28.8 (22.8-NE)	23.8 (20.5-NE)	NR (19.9-NE)	23.0 (16.9-NE)	

DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; CI, confidence interval; NR, not reached; NE, not estimable.

^aBaseline body weight was not recorded for one patient in each treatment group.

Table S3. Most common^a any grade (≥10%) and grade 3/4 (≥5%) TEAEs in the safety-evaluable population by body weight

subgroup.

		DARA SC (n=260)					DARA IV (n=258)					
	≤ 65	5 kg (93)		85 kg 102)		5 kg :65)		5 kg 92)		85 kg 105)		5 kg 61)
TEAE, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
Any event	89 (95.7)	49 (52.7)	92 (90.2)	51 (50.0)	57 (87.7)	32 (49.2)	87 (94.6)	52 (56.5)	98 (93.3)	54 (51.4)	55 (90.2)	30 (49.2)
Hematologic												
Anemia	28 (30.1)	14 (15.1)	31 (30.4)	15 (14.7)	13 (20.0)	7 (10.8)	22 (23.9)	15 (16.3)	30 (28.6)	16 (15.2)	14 (23.0)	8 (13.1)
Neutropenia	24 (25.8)	19 (20.4)	16 (15.7)	10 (9.8)	12 (18.5)	5 (7.7)	13 (14.1)	8 (8.7)	13 (12.4)	9 (8.6)	9 (14.8)	3 (4.9)
Thrombocytopenia	21 (22.6)	15 (16.1)	21 (20.6)	16 (15.7)	9 (13.8)	6 (9.2)	17 (18.5)	12 (13.0)	20 (19.0)	14 (13.3)	13 (21.3)	9 (14.8)
Lymphopenia	12 (12.9)	9 (9.7)	5 (4.9)	3 (2.9)	4 (6.2)	2 (3.1)	7 (7.6)	6 (6.5)	7 (6.7)	7 (6.7)	3 (4.9)	3 (4.9)
Non-hematologic												
Upper respiratory infection	18 (19.4)	0	14 (13.7)	0	12 (18.5)	0	6 (6.5)	0	12 (11.4)	2 (1.9)	12 (19.7)	0
Diarrhea	21 (22.6)	2 (2.2)	6 (5.9)	0	14 (21.5)	0	15 (16.3)	1 (1.1)	15 (14.3)	0	3 (4.9)	0
Pyrexia	17 (18.3)	1 (1.1)	12 (11.8)	0	10 (15.4)	1 (1.5)	16 (17.4)	0	13 (12.4)	1 (1.0)	10 (16.4)	1 (1.6)
Fatigue	10 (10.8)	1 (1.1)	10 (9.8)	2 (2.0)	13 (20.0)	0	8 (8.7)	1 (1.1)	14 (13.3)	2 (1.9)	6 (9.8)	0
Arthralgia	15 (16.1)	0	12 (11.8)	1 (1.0)	6 (9.2)	0	3 (3.3)	0	11 (10.5)	0	4 (6.6)	0
Back pain	15 (16.1)	1 (1.1)	12 (11.8)	2 (2.0)	4 (6.2)	2 (3.1)	17 (18.5)	3 (3.3)	12 (11.4)	2 (1.9)	9 (14.8)	2 (3.3)
Nasopharyngitis	14 (15.1)	0	6 (5.9)	0	8 (12.3)	1 (1.5)	11 (12.0)	0	10 (9.5)	0	0	0
Cough	9 (9.7)	1 (1.1)	9 (8.8)	1 (1.0)	7 (10.8)	0	11 (12.0)	0	15 (14.3)	0	10 (16.4)	0
Nausea	11 (11.8)	0	7 (6.9)	0	6 (9.2)	0	14 (15.2)	1 (1.1)	11 (10.5)	1 (1.0)	7 (11.5)	0
Hypertension	7 (7.5)	4 (4.3)	4 (3.9)	4 (3.9)	5 (7.7)	3 (4.6)	7 (7.6)	4 (4.3)	10 (9.5)	6 (5.7)	6 (9.8)	5 (8.2)
Pneumonia	5 (5.4)	5 (5.4)	1 (1.0)	1 (1.0)	10 (15.4)	7 (10.8)	10 (10.9)	7 (7.6)	4 (3.8)	3 (2.9)	5 (8.2)	3 (4.9)
Chills	5 (5.4)	0	7 (6.9)	1 (1.0)	3 (4.6)	0	9 (9.8)	0	8 (7.6)	0	15 (24.6)	2 (3.3)
Dyspnea	7 (7.5)	1 (1.1)	4 (3.9)	0	4 (6.2)	1 (1.5)	6 (6.5)	0	13 (12.4)	0	9 (14.8)	2 (3.3)

TEAEs, treatment-emergent adverse events; DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; ^aOccurring among the total DARA SC and DARA IV groups.

Table S4. Modified-CTSQ satisfaction with therapy domain scores among the intent-to-

treat population^a

	DARA	A SC (n=263)	DAR	A IV (n=259)	
					Mean difference
	Ν	Mean (SD)	Ν	Mean (SD)	(DARA SC-DARA IV)
Cycle 1, day 8	230	76.9 (14.64)	227	70.5 (15.98)	6.4
Cycle 1, day 15	238	78.8 (14.95)	226	72.1 (16.72)	6.7
Cycle 1, day 22	239	78.7 (15.75)	226	72.8 (16.20)	5.9
Cycle 2, day 1	238	79.7 (16.58)	239	74.2 (16.44)	5.5
Cycle 2, day 8	232	80.1 (17.24)	227	74.8 (15.57)	5.3
Cycle 2, day 15	224	80.0 (17.37)	228	74.3 (16.94)	5.6
Cycle 2, day 22	214	79.3 (18.65)	221	75.2 (16.47)	4.1
Cycle 3, day 1	224	80.4 (17.78)	217	76.0 (17.39)	4.4
Cycle 4, day 1	209	79.5 (19.88)	205	76.6 (17.22)	2.9
Cycle 5, day 1	188	79.6 (18.95)	187	77.1 (17.11)	2.5
Cycle 6, day 1	159	81.9 (18.34)	169	76.1 (17.79)	5.8
Cycle 7, day 1	137	85.0 (16.87)	150	78.6 (16.01)	6.4
Cycle 8, day 1	128	85.0 (15.13)	135	79.2 (15.54)	5.8
Cycle 9, day 1	118	85.0 (15.10)	124	79.3 (15.60)	5.7
Cycle 10, day 1	109	84.8 (15.35)	114	79.0 (15.02)	5.8
Cycle 11, day 1	100	84.1 (15.26)	103	78.5 (15.70)	5.6
Cycle 12, day 1	88	84.6 (16.53)	91	79.1 (16.48)	5.5
Cycle 13, day 1	82	83.4 (17.07)	87	79.0 (16.49)	4.4
Cycle 14, day 1	74	82.8 (17.18)	71	80.0 (14.77)	2.7
Cycle 15, day 1	64	84.9 (15.84)	64	79.4 (14.81)	5.5
Cycle 16, day 1	59	85.8 (14.90)	58	79.3 (14.42)	6.5
Cycle 17, day 1	54	85.9 (15.33)	54	80.8 (15.05)	5.2
Cycle 18, day 1	54	85.7 (16.25)	49	81.6 (13.68)	4.1
Cycle 19, day 1	49	85.3 (16.34)	46	81.2 (14.65)	4.1
Cycle 20, day 1	46	85.0 (14.75)	45	81.6 (13.41)	3.4
Cycle 21, day 1	45	85.4 (15.13)	44	79.9 (15.65)	5.5
Cycle 22, day 1	45	87.1 (13.65)	39	82.5 (13.08)	4.6
Cycle 23, day 1	42	85.7 (15.68)	34	81.5 (14.05)	4.2
Cycle 24, day 1	42	87.4 (14.89)	33	81.1 (14.38)	6.4
Cycle 25, day 1	40	88.2 (13.61)	30	81.2 (12.86)	7.0
Cycle 26, day 1	36	86.4 (19.54)	27	79.2 (14.89)	7.2
Cycle 27, day 1	31	87.2 (12.67)	26	78.8 (13.21)	8.4
Cycle 28, day 1	33	89.5 (13.06)	24	77.4 (11.13)	12.1
Cycle 29, day 1	31	88.6 (13.34)	24	80.2 (14.59)	8.4
Cycle 30, day 1	27	86.9 (14.49)	20	80.0 (10.65)	6.9
Cycle 31, day 1	24	84.7 (15.10)	20	80.4 (14.45)	4.3
Cycle 32, day 1	20	84.1 (14.31)	17	82.4 (12.47)	1.8
Cycle 33, day 1	13	87.4 (11.35)	11	78.6 (14.46)	8.8

Cycle 34, day 1	12	89.3 (13.79)	8	84.4 (14.78)	4.9
Cycle 35, day 1	7	90.8 (12.69)	6	84.5 (13.30)	6.3
Cycle 36, day 1	5	92.1 (9.58)	2	92.9 (10.10)	-0.7
Cycle 37, day 1	3	95.2 (5.46)	1	85.7	9.5
Cycle 38, day 1	3	89.3 (15.57)	0	NE	NE

CTSQ, Cancer Therapy Satisfaction Questionnaire; DARA SC, daratumumab by subcutaneous administration; DARA IV, daratumumab by intravenous administration; SD, standard deviation; NE, not estimable. ^aIncludes all patients who were randomized.