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The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally,

morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic

changes and signaling pathway activity. Delineating the interface between morphology and signaling is important to under-

stand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently

metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we

used a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allowed the dis-

covery of unbiased and context-specific gene expression signatures and cell signaling subnetworks relevant to the regulation

of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By

constructing a cell-shape signaling network from shape-correlated gene expression modules and their upstream regulators,

we found central roles for developmental pathways such as WNT and Notch, as well as evidence for the fine control of NF-

kB signaling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expres-

sion module enriched in the RAP1 signaling pathway as a mediator between the sensing of mechanical stimuli and regulation

of NF-kB activity, with specific relevance to cell shape in breast cancer.

[Supplemental material is available for this article.]

The study of cancer has long been associated with changes in cell
shape as morphology can be a reliable way to subtype cancer and
predict patient prognosis (Wu et al. 2020). Recent research has im-
plicated cellularmorphology inmore than just a prognostic role in
cancer, with shape affecting tumor progression through the mod-
ulation of migration, invasion, and overall tissue structure
(Krakhmal et al. 2015; Baskaran et al. 2020). The unique mechan-
ical properties of the tumor tissue (primarily driven by changes in
cell shape and the extracellular matrix) are hypothesized to con-
tribute to the “stem cell niche” of cancer cells that enables them
to self-renew as they do in embryonic development (Cooper and
Giancotti 2019). Cell morphology and tumor organization have
been found to be a factor in modulating the intracellular signaling
state through pathways able to integrate mechanical stimuli from
the extracellular environment (Orsulic et al. 1999; Miralles et al.
2003; Zheng et al. 2009; Olson and Nordheim 2010). The discov-
ery of mechanosensitive pathways in various tissues has revealed
a complex interplay between cell morphology and signaling
(Kumar et al. 2016). Further studies have revealed that cell mor-
phology can also be a predictor of tumorigenic and metastatic po-
tential as certain nuclear and cytoplasmic features enhance cell
motility and spread to secondary sites (Wu et al. 2020), aided by
the epithelial-to-mesenchymal transition (EMT). This process is
the conversion of epithelial cells to a mesenchymal phenotype,
which contributes to metastasis in cancer and to worse prognosis
in patients (Roche 2018).

Breast cancer is themost common cancer amongwomen and,
in most cases, is treatable, with a survival rate of 99% among pa-

tients with a locally contained tumor. However, among those pa-
tients presenting with a metastatic tumor, this rate drops to 27%
(Siegel et al. 2019). During the development of breast cancer tu-
mors, cells undergo progressive transcriptional andmorphological
changes that can ultimately lead toward EMT and subsequent me-
tastasis (Lee et al. 2015b; Feng et al. 2018; Wu et al. 2020). Breast
cancer subtypes of distinct shapes show differing capacities to un-
dergo this transition. For example, long and protrusive basal breast
cancer cell lines are more susceptible to EMT (Fedele et al. 2017)
with fewer cell-to-cell contacts (Dai et al. 2015). Luminal tumor
subtypes, on the other hand, are associated with good to interme-
diate outcomes for patients (Dai et al. 2015) and have a clear epi-
thelial (or “cobblestone”) morphology with increased cell–cell
contacts (Neve et al. 2006). It is evident that cell morphology plays
significant roles in breast cancer, and a deeper understanding of
the underlying mechanisms may offer possibilities for using these
morphology-determinant pathways as potential therapeutic tar-
gets and predictors of prognosis.

Signaling and transcriptomic programs are known to bemod-
ulated by external physical cues in the contexts of embryonic de-
velopment (Wozniak and Chen 2009), stem-cell maintenance
(Bergert et al. 2021; De Belly et al. 2021), and angiogenesis
(Chatterjee 2018). Numerous studies have flagged NF-kB as a focal
point for mechanotransductive pathways in various contents
(Cowell et al. 2009; Shrum et al. 2009; Tong and Tergaonkar
2014; Ishihara et al. 2019), but gaps in our knowledge remain as
to how these pathwaysmay interact and affect breast cancer devel-
opment. Sero et al. (2015) studied the link between cell shape in
breast cancer and NF-kB activation by combining high-
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throughput image analysis of breast cancer cell lines with network
modeling. They found a relationship between cell shape, mechan-
ical stimuli, and cellular responses to NF-kB and hypothesized that
this generated a negative feedback loop, in which amesenchymal-
related morphology enables a cell to become more susceptible to
EMT, thus reinforcing their metastatic fate. This analysis was ex-
tended by Sailem and Bakal (2017), who combined cell-shape fea-
tures collected from image analysis with microarray expression
data for breast cancer cell lines to create a shape–gene interaction
network that better delineated the nature of NF-kB regulation by
cell shape in breast cancer. This approach was limited, as it only
correlates single genes with cell shapes, thus relying on the as-
sumption that a gene’s expression is always a useful indicator of
its activity (Vogel andMarcotte 2012). Furthermore, the investiga-
tors rely on a list of preselected transcription factors (TFs) of inter-
est, and as such, the approach is not completely data-driven and
hypothesis-free. Givenour knowledge of themultitude of complex
interacting signaling pathways in development and other con-
texts, it is safe to assume that there are many more players in the
regulation of cancer cellmorphology that have yet to be delineated
(Bougault et al. 2012; Rolfe et al. 2014; Robertson et al. 2015;
Horton et al. 2016). Furthermore, how exactly extracellular me-
chanical cues are “sensed” by the cell and passed on to NF-kB in
breast cancer is not clearly understood. From this it is clear that
an unbiased approach is needed to identify novel roles for proteins
in the interaction between cell shape and signaling.

Here we have developed a powerful network-based approach
to bridge the gap between widely available and cheap expression
data, signaling events, and large-scale biological phenotypes
such as cell shape (Fig. 1A). Our study aims to identify a data-de-
rived cellular signaling network, specific to the regulation of cell
shape beyond NF-kB, by considering functional coexpression
modules and cell signaling processes rather than individual genes.

Results

Identification of gene coexpression modules correlated

with cell-shape features

We first sought to identify gene expression modules (GEMs)
that are relevant to the regulation of cell shape. To this end, we
used weighted gene correlation network analysis (WGCNA)
(Langfelder and Horvath 2008) on bulk RNA-seq expression data
from 13 breast cancer cell lines and one nontumorigenic epithelial
breast cell line to identify gene coexpression modules correlated
with 10 specific cell-shape variables (Methods; Sailem and Bakal
2017). These described the size, perimeter, and texture of the cell
and the nucleus (n=75,653). Of 102 GEMs (Supplemental Fig.
S1A), 34 were significantly correlated (P<0.05; Student’s t-test,
Pearson’s correlation) (Supplemental Table S1; Supplemental Fig.
S1B,C) with one of eight cell-shape features (Fig. 1B). A full list of
the genes within the identified modules is presented in
Supplemental Table S2.

We used Enrichr and their suite of gene set libraries (Kuleshov
et al. 2016) to functionally annotate and label some of themodules
using enrichment of genes contained within them.We found that
the “RAP1 signaling” module is also enriched for terms such as
VEGF signaling and hemostasis, whereas the “insulin signaling”
module is also enriched for cell–cell communication, and the
“ECM organization” module is also enriched in terms such as
axon guidance and EPH–ephrin signaling (Supplemental Table
S3). Modules that are most correlated with all features are the

“ARNTKO”module, “ARRDC3−AS1”module, and the “ECMorga-
nization”module (Supplemental Fig. S1B).Modules that could not
be annotated with informative terms were designated as module
“non annotated” (NA) 1, 2, 3, etc.

TF analysis of cell-shape gene coexpression modules reveals

the signaling pathways that regulate them

To link these expressionmodules to the intracellular signaling net-
work, we considered both the regulation of modules as transcrip-
tional units as well as the signaling pathways that significantly
regulate the identified regulons. Specifically, we first found 17 TF
regulons, as defined in the database TRRUST v2 (Han et al.
2018), to be significantly enriched (P<0.1; Fisher’s exact test) in
ourmodules (Supplemental Table S4).We therefore consider these
TFs as potentially relevant for the regulation of cell-shape features
and their activity levels as a read-out of cell signaling activity in
these cells. These TFs include the EMT antagonist FOXA1 (Song
et al. 2010), as well as HOXB7 (Wu et al. 2006) and ZFP36 (Van
Tubergen et al. 2013).

To extend this further, we sought to investigate the pathways
responsible for regulating the identified TFs and, by extension,
the GEMs. For this analysis, we also include ENCODE and ChEA
Consensus TFs from ChIP-X (Lachmann et al. 2010), DNA bind-
ing preferences from JASPAR (Wasserman and Sandelin 2004;
Stormo 2013), TF protein–protein interactions, and TFs from
ENCODE ChIP-seq (Euskirchen et al. 2007) to get a more compre-
hensive picture of the pathways involved in regulation of cell
morphology. Using the identified TFs (Supplemental Table S5)
we then used Enrichr (Kuleshov et al. 2016) to perform a
Reactome signaling pathway (Jassal et al. 2020) enrichment anal-
ysis. Results from this analysis showed that six modules shared
pathways associated with downstream signaling and regulation
of NOTCH (Fig. 1C). To ensure that our approach is not biased
to any particular pathway, we repeated our approach on 1000 re-
sampled GEMs, and created pathway-specific null distributions
for each identified pathway. All pathways we identified frommor-
phology-correlated modules had significantly lower P-values than
randomizedmodules (FDR adjusted P<0.05). The only exceptions
were one association with “signaling by NOTCH” andmodules as-
sociated with “signal transduction,” a spurious pathway contain-
ing the complete intracellular signaling system (Supplemental
Table S6).

Clustering based on morphology reveals distinctive

cell line shapes

To understand key differences in expression patterns and gene reg-
ulation between morphologically distinct breast cancer cell lines,
we clustered them based on 10 morphological features including
area, ruffliness, protrusion area, and neighbor frequency and per-
formed differential expression analysis between the identified
clusters (Fig. 2A; Supplemental Fig. S2A). Cluster A is more hetero-
geneous in its morphology, containing the nontumorigenicmam-
mary epithelial cell line MCF-10A as well as cell lines from both
luminal and basal breast cancer subtypes. Clusters B and C are
more distinctly shaped, roughly composed of luminal and basal
cell lines, respectively, except for HCC1954, which was clustered
morphologically with luminal subtypes, while being characterized
as basal. The basal-like cluster is most morphologically distinct
from cluster A but also differs from the luminal-like cluster in
that it has a lower nuclear/cytoplasmic area (0.133±0.05 [mean
± SD]), higher ruffliness (0.235±0.12), and lower neighbor fraction
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Figure 1. Overview of workflow and resultant gene expressionmodules and pathways. (A) Schematic illustrating the steps involved in phenotype-specific
network construction. Gene expression modules are identified by integrating cell-shape variables (derived from imaging data) with RNA-seq data from
breast cancer cell lines. These gene expression modules are correlated with specific cell-shape features to find morphologically relevant modules. Next,
transcription factors (TFs) are identified whose targets significantly overlap with the contents of the expression modules. These TFs are used to identify
pathways regulating the gene expression modules, which are then integrated to form a contiguous network using PCSF. (B) Heat map of significantly cor-
related gene expression module eigengenes with cell-shape features. Non significant interactions were set to zero for clarity. (C) Dot plot illustrating the
enrichment of pathways among TFs found to regulate gene expression modules. The x-axis shows the module names (as defined by Supplemental Table
S3), and the y-axis shows the signaling pathways found to be significantly (P<0.01) enriched in the TFs that regulate the given module (as defined by
Supplemental Table S5). The y-axis is arranged such that the terms with the highest combined odds ratio are at the bottom. Size of the dot represents
the −log10(P), and the color indicates a log10 transformation of the odds ratio.
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(0.258±0.22). The luminal-like cluster had a higher nuclear/cyto-
plasmic area (0.186±0.1; P<0.001), lower ruffliness (0.213±0.14;
P<0.001), and a higher neighbor fraction (0.338±0.26; P< 0.001,
one-way ANOVA; Tukey HS, n= 75,653). The neighbor fraction
feature corresponds to the fraction of the cell membrane that is
in contact with neighboring cells. The lower number of cell–cell
contacts in basal-like breast cancer cell lines is indicative of more
mesenchymal features associated with worse prognosis owing to
metastasis. Increased cell–cell contacts in both the luminal-like
cluster and the more heterogeneous cluster A correspond to “cob-
blestone” epithelial morphology. We found that these groups are
closely aligned with the expression of the cell adhesion protein
cadherin 2 (CDH2, also known asN-cadherin) (Fig. 2A), the expres-
sion forwhich is closely associatedwith amigratory andmetastatic
phenotype (Shih and Yamada 2012). Representative images of the
morphologically clustered cell lines are shown alongwith the clus-
tering heatmap in Figure 2A (complete data set of images provided
online; https://datadryad.org/stash/dataset/doi:10.5061/dryad
.tc5g4).

Using the identified groups of cell lines in the previous step,
differential expression analysis and TF activity analysis were used
to study gene regulation signatures specific to cell linemorpholog-
ical clusters. The results are shown in Supplemental Table S7, with
gene set enrichment analysis showing up-regulation of genes in-
volved in the extracellular matrix, collagens, integrins, and angio-

genesis in the basal-like cluster. Significantly enriched terms (P<
0.05) in down-regulated genes include “fatty acid and beta-oxida-
tion” and “ERBB network pathway.” In the genes up-regulated in
the luminal-like cluster, we observed enrichment of terms such
as “hallmark-oxidative phosphorylation,” down-regulated genes
were enriched in “integrin-1 pathway,” “core matrisome,” and
genes linked to “hallmark epithelial–mesenchymal transition
and migration.” For the remaining B/L group, the term with the
highest normalized enrichment score was “targets of the transcrip-
tion factor MYC” followed by terms associated with ribosomal
RNA processing. Down-regulated terms include “cadherin signal-
ing pathway” (Supplemental Table S7).

We also calculated the differential expression for theWGCNA
GEMs and found distinct patterns of expression between luminal-
like and basal-like clusters of cell lines (Fig. 2B). Among these, the
RAP1 signaling module is up-regulated in basal-like clusters and
down-regulated in luminal-like clusters. This is consistent with
the fact that this GEM is negatively correlated with neighbor frac-
tion, a feature that is observed to decrease inmesenchymal-like cell
shapes (Dai et al. 2015). Other modules whose expression distin-
guishes basal-like from luminal-like include the MAL2-AS1 mod-
ule (enriched in desmosome assembly), ARNT/KO module
(enriched in TNF-signaling by NF-kB), and ECM organization
module (enriched in focal adhesion proteins) (see Supplemental
Table S3).

BA

C

Figure 2. Clustering breast cancer cell lines into groups of similar morphology. (A) Heatmap of Euclidean distance between cell lines for shape features to
illustrate clusters arising from k-means method. The colored lines on the bottom show the assigned cluster and the cadherin expression and assigned ca-
nonical cancer subtype. (B) Dot plot showing the enrichment of gene expressionmodules in the different cell line clusters. Along the y-axis are the names of
the clusters, faceted by whether they are included in the PCSF-derived regulatory network on the bottom and whether they are correlated with cell-shape
variables, but not included in the network on the top. The x-axis shows the cell-shape clusters, with letters corresponding to the groups in A. (A) A hetero-
geneous mix of breast cancer subtypes, (B) luminal-like cell lines, (C) basal-like cell lines. Dots are colored based on the normalized enrichment value, with
down-regulated modules in blue and the up-regulated modules in yellow. Size corresponds to significance [−log10(P)] with the shape illustrating which
changes are significant (adjusted P<0.01, Benjamini–Hochberg). (C) Images (see Methods) showing morphology of representative cell lines from each
respective cluster. Colors indicate labeling with DAPI (blue), anti-p65 (green), and DHE (red).
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To link the observed gene expression differences (Supplemen-
tal Fig. S2B,C) to cell signaling, we used the tool DOROTHEA (Gar-
cia-Alonso et al. 2019) to calculate TF activities, as their
modulation is one of the main results of cell signaling processes.
We corroborated that the heterogenous B/L group had signifi-
cantly activated MYC levels. In the luminal-like cluster, estrogen-
related receptor alpha (ESRRA) is the most significantly overrepre-
sented regulome, followed by EHF, KLF5, and ZEB2. Underrepre-
sented regulomes include KLF4, SMAD4, SMAD2, SOX2, and
RUNX2. For the basal-like cluster, the regulome with the highest
normalized enrichment score is SOX2, as well as MSC and
HOXA9. Down-regulated regulomes include ZEB2, MYC, ESRRA,
and KLF5 (Supplemental Fig. S2D).

Assembly of a data-driven cell-shape regulatory network

To integrate our data-driven GEMs with signaling pathways, we
used the prize-collecting Steiner forest (PCSF) algorithm
(Akhmedov et al. 2016). This is an approach that aims tomaximize
the collection of “prizes” associated with inclusion of relevant
nodes, while minimizing the costs associated with edge-weights
in a network. This allowed for the integration of theWGCNAmod-
ules, the Reactome pathways that regulate them, the TRRUST TFs,
and the differentially expressed DOROTHEA regulons into a
contiguous regulatory network describing the interplay between
cell-shape and breast cancer signaling. The network used for this
process was extracted from the database OmniPath (Türei et al.
2016) to provide a map of the intracellular signaling network de-
scribed as a signed and directed graph. We incorporated identified
GEMs into the network by interlinking them as nodes with the rel-
evant TFs and signaling pathways.

The resulting network of 691 nodes included 97.11% of the
genes identified by our analysis. The new proteins that were in-
cluded by the PCSF algorithm tomaximize prize collection showed
gene set enrichment of common terms (Pathways fromPANTHER)
(Mi et al. 2013) relative to the original prizes (includingWNT, EGF,
angiogenesis, RAS, cadherin, and TGFB pathways) but also includ-
ed are some new terms (VEGF, integrin, and endothelin pathways;
P< 0.001) (Supplemental Fig. S3A).

Studying the network properties of our PCSF-derived regula-
tory network, we found that the degree distribution is typical for
a biological network (Supplemental Fig. S3B–D). The proteins in
the network can be ranked by betweenness centrality to dis-
seminate them based on network importance. Nodes with high
centrality lie between many paths and can control information
flow. Proteins with the highest centrality are primarily prizes
(GSK3B, ESR1, TP53, SMAD3) (Supplemental Fig. S3E), indicating
that the PCSF solution was not achieved by the inclusion of new
hub proteins that are not of interest to our analysis. Nevertheless,
a small minority of high centrality nodes were not in the original
prizes, implicating them as mediating the cross talk between path-
ways identified in Figure 1C. These include the proteins PAX7,
PTEN, and PPARGC1A.

Small-molecule inhibitors targeting kinases in our network

significantly perturb cell morphology

To validate our network, we used an independent data set to eval-
uate whether perturbing the function of kinases within our pre-
dicted network would produce a significant effect on
morphological features. For this, we used the Broad Institute’s
Library of Integrated Network-Based Cellular Signatures’ (LINCS)
small-molecule kinase inhibitor data set (Subramanian et al.

2017). Here, they measured morphological changes in the breast
cancer cell line Hs 578T in response to various small-molecule ki-
nase inhibitors using high-throughput imaging techniques
(Hamilton et al. 2007). The morphological variables measured in
this data set are mostly analogous to the ones used to construct
the network; however, there are some discrepancies that we used
as negative controls to ensure our networkwas phenotype-specific.

We combined this with data from a target affinity assay
(Moret et al. 2019) describing the binding affinities of small mole-
cules to kinases. This enabled us to sort the kinase inhibitors into
those that target proteins we predict regulate cell shape (through
their inclusion in the PCSF-derived network) and those that do
not. We found that there is a statistically significant (n=37,
Wald test P<0.05) deviation from the control between drug treat-
ments targeting kinases within the predicted network and those
targeting other proteins for cytoplasmic area, cytoplasmic perime-
ter, nucleus area, nucleus length, nucleus width, and nucleus pe-
rimeter (Fig. 3A; Supplemental Fig. S4A). This difference is
insignificant for features thatwere not correlatedwith gene expres-
sionmodules in our initial analysis (such as number of small spots
in the cytoplasm and nucleus, as well as nuclear compactness), in-
dicating that our network is phenotype-specific to the features
used in network generation.We also repeated this analysis in other
cell lines (SK-BR-3, MCF-7, and nontumorigenic mammary cell
line MCF-10A) with results with limited statistical significance
(Supplemental Table S8). We additionally used a positive control
in which the control cells had been treated with TNF-related apo-
ptosis-inducing ligand (TRAIL) to ensure that the observed mor-
phological effects were not caused by apoptotic factors
(Supplemental Fig. S4B; Supplemental Table S8).

We found that there is greater variance in the effect size for
kinase inhibitors targeting proteins contained within the predict-
ed regulatory network than those outside. The individual effect on
cellmorphology for each drug is shown in Supplemental Figure S4,
A and B. We hypothesized that it was the network properties of ki-
nases within our network that dictated their effect on morpholog-
ical features, with some targets being on the periphery of our
predicted network and therefore having limited influence over
the regulation of cell shape. To test this, we studied the extent to
which the effect of a kinase inhibitor was correlated with the com-
bined centrality of its targets as defined by our network. For this we
used the centrality algorithm PageRank (Brin and Page 1998) and
accounted for off-target effects of the kinase inhibitors using the
Szymkiewicz–Simpson index (describing the overlap of a kinase in-
hibitor’s targets and the proteins that constitute the network)
(Methods).

Figure 3B shows moderate correlations between target cen-
trality and the effect size for each feature, illustrating that kinase
inhibitors targeting proteins with high centrality in our network
modulate cell shape more than inhibitors with peripheral targets.
As with studying the effect of targeting kinases contained within
our network versus those outside of it, this correlation is higher
among morphological variables that are the same or similar to
those cell-shape features correlated with GEMs used to construct
the network. The correlation between combined centrality and
drug absolute effect on cell area (n=37) was moderate but signifi-
cant for cytoplasm area, cytoplasm perimeter, nucleus area, nucle-
us length, nucleus half-width, and nucleus perimeter (with
Spearman’s correlation coefficient between 0.34–0.37 for all of
them, with P<0.05). This correlation in change in morphological
features with the centrality of the targeted kinases illustrates the
relevance of our constructed network in regulating cell shape.
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For variables that were not correlated to any GEM, we see visibly
lower correlation coefficients and insignificant associations
(Spearman’s correlation coefficients of 0.05–0.29, P> 0.05). These
results illustrate that the topology of our network explains some
of the variation in the effect of kinase inhibitors tested in amanner
that is feature specific to the ones that were used to construct the
network model.

Network propagation of activated TFs reveals differentially

activated processes in the cell-shape regulatory network

As TF activity remains the most reliable indicator of signaling that
can be extracted from transcriptomics data (Szalai and Saez-

Rodriguez 2020), we applied network propagation to identify sub-
networks and nodes of which differentially regulated TFs have an
effect. The algorithm random walk with restart (RWR) (Tong et al.
2008) was used to diffuse from activated and inactivated TFs in our
network reflected by the normalized enrichment scores of TFs
identified by DOROTHEA (Methods; Fig. 4A,B; Supplemental
Table S9; Garcia-Alonso et al. 2019).

Themost relevant supernode in both luminal and basal diffu-
sions was the GEM, RAP1 signaling, a module that is correlated
with several cell-shape variables (neighbor frequency, ruffliness,
nuclear by cytosolic area, and cell width to length) and is enriched
in members of the mechanosensitive RAP1 signaling pathway. By
performing RWR diffusions on each of the seed nodes separately

B

A

Figure 3. Effect of drug perturbation of derived network on breast cancer cell line morphology. (A) Box plots showing the absolute log10 fold changes
after treatment with a drug relative to a control for each cell-shape variable. The drugs are grouped by those targeting kinases within the predicted reg-
ulatory network (blue) and those targeting other kinases not predicted to be associated with cell shape (red). P-values (Welch two-sample t-test) are shown
with asterisks indicating significance. (B) Bar plot showing the absolute difference in log fold changes of cell-shape variables after treatment with a drug
relative to a control. Here, each drug is shown separately (with the LINCs ID shown on the x-axis) and colored based on the drug influence score (DIS), and
each data point represents a single cell. Insets are plots showing the correlation between this influence score and the difference betweenmean treated cells
and mean control cells in each of the 10 measured cell-shape features for each drug. Spearman’s correlation coefficients are shown above the inset plots.
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(Supplemental Fig. S5A,B), we can see that the source of this mod-
ule’s probability is mainly from the TFs JARID2 and RUNX2
in luminal-like cell lines and from JARID2 for basal-like.
However, the TFs KLF5 and ESRRA in bothmorphological subtypes
also contribute to the ranking of RAP1 signaling via GSK3B and
DVL1 (Fig. 4C).

Specific proteins that were top ranked after performing the
network propagation in basal-like cell lines include the orphannu-
clear receptor NR0B2. Individual RWR found three seed TFs re-
sponsible for this node’s high probability: AR, ESRRA, and
NR1H3. Other proteins flagged by the propagation were SMAD4,
which is regulated by TGFB; IKBKB, which is an activator of NF-
kB; and YAP1. For luminal-like cell lines, NR0B2 is also signifi-
cantly ranked from the network propagation (as a result of
ESRRA activity), as well as transcriptional coactivator PPARGC1A
and CREBBP.

The RAP1 GEM correlates with known morphologically relevant

TFs in both cell culture and clinical samples

To explore the significance of the RAP1 GEM in breast cancer, we
measured its activity (Methods) in 78 BRCA cell lines. This enabled
the correlation of its combined activity with the activity of known
TFs predicted by DOROTHEA (Supplemental Fig. S6; Holland et al.
2020). We found that RAP1 GEM activity was significantly corre-
lated (Kendall; P<0.01, FDR adjusted) with the activity of 19 TFs.
Among these are RUNX2 (consistent with the results from our net-
work propagation), TEAD1 (TF mediating the function of YAP1/
TAZ), and NFKB1. We also correlated TF activity using the same
method on tumor samples extracted from The Cancer Genome
Atlas (TCGA; https://www.cancer.gov/tcga). Using this publicly
available data set, we studied 1090 BRCA tumors and performed
differential expression on each sample. We found 40 TFs

BA

C

Figure 4. Network propagation of active TFs within cell-shape network. (A,B) Bar plot showing network propagation in a predicted cell-shape network
from activated and inactivated TFs in basal-like cell lines (A) and luminal (B). The y-axis is a steady-state probability (or the “heat” of the nodes in the network
after the diffusion) over the graph imposed by the starting seeds, ordered by size. Red bars represent propagation from TF seeds that are predicted to be
inactivated, and blue bars show propagation from TF seeds that are predicted to be activated. Red asterisks along the x-axis indicate supernodes that rep-
resent gene expression modules. Only those nodes with combined probability > 0.0001 are shown, with the full results available in Supplemental Table S9.
(C ) Subnetworks illustrating the paths between activated TFs (in basal-like and luminal-like) and the “RAP1 signaling” gene expression module. TFs are
shown as diamond-shaped nodes, with their color representing their activity. The “RAP1 signaling” gene expression module is shown as a gray rectangle.
Signaling proteins are shown as black nodes.
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significantly correlated (Kendall; P< 0.01, FDR adjusted) with
RAP1 GEM (Fig. 5A,B). The intersection of this analysis between
in cell lines and the clinical data were the TFs: SP3, NFKB1,
ZNF589, ZC3H8, HIF1A, STAT1, ZNF584, ZNF175, and KLF5.

We studied the expression of the module in tumor samples
and compared different groups of clinically annotatedmorpholog-
ical subtypes. The morphological subtype with the highest overall
RAP1-GEM activity was metaplastic carcinoma, a subtype charac-
terized by poorly cohesive sheets (Schwartz et al. 2013) and a
high propensity to metastasize (Fig. 5C; Reddy et al. 2020). This
morphological subtype has a distribution significantly greater (P
<0.005; two-sample Kolmogorov–Smirnov test) than the most fre-
quently assignedmorphological subtype (infiltrating duct carcino-
ma, NOS). This subtype is a common and homogenous breast
cancer grouping characterized by its failure to exhibit morpholog-
ical features that might allow it to be classified as anything more
specific (Makki 2015).

Content of RAP1 GEM and its network neighborhood shed light

on signaling events relevant in the regulation of cell shape

To understand latent processes driven by components within our
GEM, we also studied interactions between the Gene Ontology
(GO) terms enriched within RAP1 GEM (Fig. 5D). This revealed
that, as well as RAP1 signaling, the GEM is enriched in the AGE-
RAGE signaling pathway and HIF1 signaling pathway (consistent
with HIF1A’s activity correlating highly with RAP1 GEM in both
cell line patient data). HIF1A is known to be regulated downstream
fromRAP1 (Menon et al. 2012; Li et al. 2021), although not explic-
itly in breast cancer.

NF-kB has been previously linked to the regulation of cell
shape in breast cancer. To explore the interface of RAP1 GEM
with NF-kB in terms of intracellular signaling, we identified a sub-
network of our network responsible for mediating “information
flow” between those two nodes using the algorithm maximum
flow (Fig. 5E). By studying the flow of information from RAP1 sig-
naling, we can see that a LATS2/WWTR1/DVL1 (all ofWNT signal-
ing) lies between the target and source nodes with much of the
flow being carried via these edges. This implicates YAP1/TAZ as be-
ing a key effector of the identified GEM. This finding is supported
by TEAD1 (mediating gene expression of YAP1 andWWTR1/TAZ)
being among the most highly correlated of TFs with RAP1 GEM
(Fig. 5B; Supplemental Fig. S6A).

Discussion

We present a method that uses transcriptomics and phenotypic
data to derive a concise subnetwork describing the signaling in-
volved in the regulation of cell shape. This analysis recovered
known processes like “adherens junction proteins,” “cadherin”
(Eslami Amirabadi et al. 2019), and “integrin” (Taherian et al.
2011; Filer and Buckley 2013), as well as pathways responsible
for the regulation of cell shape in development, such as WNT
(Wildwater et al. 2011; Kadzik et al. 2014), TGFB (Lee et al.
2013), and NOTCH (Kontomanolis et al. 2018). All of these path-
ways have previously been linked to the development of metastat-
ic phenotypes in breast cancer cells (Imamura et al. 2012;
Kontomanolis et al. 2018; Yin et al. 2018). Moreover, individual
TFs identified include the known promoters of metastasis: SOX2
(Liu et al. 2018, 2; Li et al. 2019, 2), HOXA9 (Ko and Naora
2014), and ESRRA (Berman et al. 2017). Also, among these TFs
were known regulators of cell shape and EMT, including KLF5

(Chen et al. 2015), ZEB2 (DaSilva-Arnold et al. 2019), and MYC
(Cowling and Cole 2007; Lourenco et al. 2019).

Importantly, this analysis also sheds light on processes with
less-characterized associations with cell shape in cancer.We found
that a GEM enriched in RAP1 signaling is significantly correlated
with cell shape and is the most differentially expressedmodule be-
tween luminal-like and basal-like cell line clusters. We found that
it was up-regulated in basal-like cell lines and down-regulated in lu-
minal, consistent with its negative correlation with neighbor frac-
tion, a cell-shape feature most contributing to the “cobblestone”-
like features of an epithelial and nonmetastatic cell type. This GEM
was also an important node in our identified signaling network,
being at the network confluence of multiple activated TFs. We
also showed this GEM to be expressed in patient data, with its ac-
tivity being correlated with known developmental and morpho-
logically related TFs, as well as those used to identify it in the
network propagation analysis. In this way, our methodology
uses cell line data for network construction and validation, but
through our network approach, we focus on more general effects
that can be tested and successfully validated in a wider breast can-
cer clinical context. Hence, we believe these results to be relevant
in more general breast cancer applications but are also reflecting
the inherent context specificity that exists in biology.

The namesake of our identified module, RAP1, is a small
GTPase in the RAS-related protein family that has been shown to
be involved in the regulation of cell adhesion and migration
(Boettner and Van Aelst 2009; Zhang et al. 2017). Specifically,
RAP1 has been shown to modulate and activate NF-kB activity in
response to TNF stimulation in mesenchymal stem cells (Zhang
et al. 2015) and to modulate migration and adhesion (Sawant
et al. 2018). RAP1 is able to regulate IκB kinases (IKKs) in a spatio-
temporal manner (Ohba et al. 2003) and is crucial for IKBK to be
able to phosphorylate the NF-kB subunit RELA to make it compe-
tent (Teo et al. 2010). Here, we used our network-centric method-
ology to highlight a transcriptomic module, characterized in part
by RAP1 signaling, and this is a key node in our phenotype-specific
signaling network. It is possible that our observations of the signif-
icance of RAP1 are as a result of a more “direct” interaction be-
tween RAP1 and the cytoskeleton. However, the transcriptomic
module that we observed accounts for a much larger system-
wide rewiring than simply the modulation of cytoskeletal pro-
teins. This implies more complex transcriptional changes that
are characteristic of a more robust breast cancer niche.

The RAP1 signaling GEM identified in the network analysis
represents a subset of the transcriptome observable among our an-
alyzed cell lines. Although it is enriched in RAP1 signaling, it is im-
portant to note that it represents a collection of latent biological
processes rather than a single pathwayassigned to it by gene set en-
richment. From our network analysis, we hypothesize that it is
able to interact with intracellular signaling pathways in order to
modulate TF activity and consequently cell shape. Other pathways
enriched in the expression module include the HIF1 signaling
pathway, which is known to be activated by RAP1 in melanoma
(Lee et al. 2015a), but this has not been shown in breast cancer.
Hypoxia inducible factor 1 (HIF1) is also of special relevance in tu-
morigenesis because hypoxia is one of the key stimuli that a cancer
cell is able to process in order to determine its fate and maintain
the cancer stem cell niche (Plaks et al. 2015). AGE-RAGE signaling
was also enriched in ourmodule of interest. The AGE-RAGE signal-
ing pathwayhas recently been shown to overlapwith the RAP1 sig-
naling pathway in cardiac fibroblasts to alter the expression of NF-
kB (Burr and Stewart 2021), although this cross talk has also not
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Figure 5. Expression of RAP1 gene expressionmodule in further breast cancer cell lines and in clinical samples. (A) Plots showing the correlation between
the RAP1 gene expression module activity (normalized enrichment score) (see Methods) and the activity (NES) of various TF (JARID2, NF-kB1, RELA, RELB,
RUNX2, and TEAD1). The line of best fit according to linear regression is shown in red, with the confidence interval in gray. Color of the points in the plot
represents the FDR adjusted P-value of the RAP1 NES as calculated by DOROTHEA. (B) Volcano plot illustrating the correlation (Kendall’s rank correlation)
between activity of RAP1 gene expressionmodule and TF activity, with Kendall’s tau coefficient along the x-axis and -log2(FDR adjusted P) along the y-axis.
(C ) Bar plot showing RAP1-GEM activity across different breast cancer samples, separated by clinically assigned morphology. The y-axis shows RAP1 gene
expression module activity as calculated by DOROTHEA in NES. Mean values for each group are shown by a red dot. (D) Network showing gene set en-
richments of the contents of RAP1 gene expression module. Genes are shown in pale blue, and pathways are shown by nodes whose color indicates sig-
nificance of the associated term [−log2(P)]. (E) Subnetwork showing the top flow-carrying edges (99th percentile) calculated using the maximum-flow
algorithm between RAP1 gene expression module and NFKB1.

Barker et al.

758 Genome Research
www.genome.org



been illustrated in breast cancer. Here, we observed genes of RAP1
signaling and AGE-RAGE functioning as a cohesive unit while also
being correlatedwithNF-kB activity. The combined enrichment of
AGE-RAGE, HIF1, and RAP1 signaling is of particular interest
because it implies a novel interaction between these three process-
es, common to all our cell lines, in amanner that has not been pre-
viously described in breast cancer.

We also observed that our GEMof interest is significantly cor-
related with NF-kB in both clinical samples and cell culture. Other
investigators have flagged the direct effect of RAP1 on the cytoskel-
eton and NF-kB (Mun and Jeon 2012; Zhang et al. 2015), but here
we go further, using our unbiased systems approach to link RAP1
signaling with multiple TFs and pathways. Based on known func-
tions of RAP1, alongwith the functions of pathways that we found
interact with it, we hypothesize that the identified transcriptomic
unit is key in relaying information from a cell’s physical environ-
ment to modulate and maintain the cancer stem cell niche (Roy
Choudhury et al. 2019).

Previous studies have established a connection between the
NF-kB signaling pathway and regulation of cell shape in breast can-
cer (Sero et al. 2015; Sailem and Bakal 2017). Our findings also il-
lustrate the significance of this pathway in the regulation of cell
morphology, with multiple NF-kB regulators and transcriptional
coactivators being flagged in our results. Some morphology-corre-
lated GEMs were significantly differentially expressed between
cell-shape subtypes with the ARNT KOmodule being significantly
up-regulated in basal-like cell shapes relative to luminal. We also
found this GEM to have the highest total correlation with all of
the morphological features, indicating a strong association with
cell shape. By studying terms enriched in this module from the
Enrichr library, we found “TNF-alpha signaling via NF-kB” to be
enriched as well as genes down-regulated during AHR nuclear
translocator (ARNT) shRNAKO. Signaling by TNF is able to activate
NF-kB, a TF known to control the expression of many EMT related
genes (Pires et al. 2017), which has shown to be more sensitive to
TNF stimulation in mesenchymal-like cellular morphologies than
epithelial. This was hypothesized to generate a negative feedback
that reinforces a metastatic phenotype of breast cancer cells (Sero
et al. 2015). Here we observed also that an ARNT KO/TNF module
is up-regulated in basal-like cell lines, consistent with these find-
ings. ARNT is a protein shown to be involved in regulating tumor
growth and angiogenesis along with its binding partner aryl hy-
drocarbon receptor (AHR) (Huang et al. 2015). Previous studies
have also shown its ability to modulate NF-kB signaling with the
activated form possibly interfering with the action of activated
RELA (Øvrevik et al. 2014). Our findings that the up-regulation
of aGEM that is associatedwithARNT knockdown further give cre-
dence to NF-kB being positively regulated in mesenchymal-like
cell morphologies. Furthermore, the results of our network propa-
gation yielded activators and transcriptional coactivators of NF-kB
(IKBKB [Teo et al. 2010], NR0B2 [Zou et al. 2015], and CREBBP
[Bhatt and Ghosh 2014]). These findings indicate that NF-kB is
modulated by both phosphorylation (through stimulation by
TNF), spatial-temporal location (through RAP1), and transcrip-
tional coactivation (through NR0B2 and CREBBP) in breast cancer
in a shape-dependent manner.

Aside from the biological findings of this study, we illustrate
an approach for network analysis of a specific course-grained phe-
notype through expression, a notoriously poor (if cheap andwide-
ly available) proxy for gauging intracellular signaling (Piran et al.
2020). In contrast to existing methods that use gene expression
as a direct proxy for signaling (Guan et al. 2012; Ben-Hamo et al.

2014; Soul et al. 2015; Padi andQuackenbush 2018), our approach
infers TF activities from the expression data and uses these as an
anchor to infer upstream signaling networks relevant to the regu-
lation of our phenotypes. TF activities can represent the outcome
of a signal transduction process comparedwith the expression pro-
files and are thus a better proxy for cell signaling activities of the
cell (Szalai and Saez-Rodriguez 2020). Such an approach has
been previously used, for example, by the tool CARNIVAL (Liu
et al. 2019). However, this and other available tools neglect the
propensity for the transcriptome to be regulated in a highly con-
text-specific and modular structure (Kitano 2002; Sharma and
Petsalaki 2019). Moreover, their reliance on annotated pathways
to describe cell signaling undermines their ability to spot novel
functional units specific to a given phenotype. Here, using con-
text-specific GEMs, we produced a network connecting the genes
of interest from diverse analyses and used a network propagation
algorithm to further focus on signaling proteins of novel interest.
Although there inevitably remains a level of bias stemming from
the TF regulon andpathway annotations, our bottom-up approach
seeks to identify unbiased latent modular structures within tran-
scriptomic data first. This puts the emphasis on data-driven
GEMs rather than on literature-derived regulons and pathways.
This approach takes an important step toward reducing the bias as-
sociated with previously annotated pathways and allows the iden-
tification of important regulatory units and their function with
respect to cell shape from a system biology point of view. Our net-
work approach allows us to map the interface between two graph-
ically presented systems in the cell: the transcriptome and
intracellular signaling. Both can be easily combinedwith complex,
multivariate phenotypic data, which here has revealed a clearer
picture of how signaling regulates cell morphology in breast
cancer.

The interoperability of this approach is obvious, with any
number of continuous variables measured with gene expression
able to be correlated with module eigengenes using WGCNA.
Here, we used OmniPath as a base network, but other network-
based representations of the cellular environment can be used
based on the appropriate context. Thus, our method represents a
data-driven, network-based approach compatible with many dif-
ferent multiscale phenotypes that are driven by intracellular sig-
naling. Overall, our unbiased network-based method highlights
potential “missing links” between sensing extracellular cues and
transcriptional programs that help maintain the cancer stem cell
niche and ultimately push breast cancer cells into EMT andmetas-
tasis. These represent starting points for further experimental stud-
ies to understand and therapeutically target the links between cell
shape, cell signaling, and gene regulation in the context of breast
cancer.

Methods

WGCNA analysis

Using weighted correlation network analysis, we performed coex-
pression module identification using the R package WGCNA
(Langfelder and Horvath 2008). We used bulk RNA-seq data from
ArrayExpress (in FPKM; E-MTAB-2770 andE-MTAB-2706) acquired
from commonly used cancer cell lines of various cancer types and
with the alignment performed to the NCBI Human Reference
Genome GRCh38 (Papatheodorou et al. 2020). We collated 13
breast cancer and one nontumorigenic cell line for which imaging
data were available (BT-474, CAMA-1, T-47D, ZR-75-1, SK-BR-3,
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MCF-7, HCC1143, HCC1954, HCC70, Hs 578T, JIMT-1,MCF-10A,
MDA-MB-157, and MDA-MB-231) (Sero et al. 2015). We acquired
representative images of each cell line from Sero et al. (2015;
https://datadryad.org/stash/dataset/doi:10.5061/dryad.tc5g4).
Cell imaging segmentation was performed using Acapella software
(PerkinElmer) with an automated spinning disk confocal micro-
scope. The presented images (Fig. 2) are taken from the above
link, stained with DAPI (blue), anti-p65 (Abcam ab16502); Alexa
Fluor 488 (anti-rabbit; Invitrogen) (green), and DHE (red). Using
Ensembl-BioMart, we filtered genes to only include protein-coding
genes (Kinsella et al. 2011) and genes whose FPKM was greater
than one, leaving a total of 15,304 genes.

We created a signed, weighted adjacency matrix using log2
transformed gene expression values and a soft threshold power
(beta) of nine. We translated this adjacency matrix (defined by
Equation 1) into a topological overlap matrix (TOM; a measure
of similarity), and the corresponding dissimilarity matrix (TOM
−1) was used to identify modules of correlated gene expression
(minimum module size of 30). Jackknife cross-validation was
used to assess the robustness of the identified modules to the re-
moval of different cell lines from the analysis (Supplemental Fig.
S1C), and all showed a highdegree of conservation between resam-
pled runs.

aij = |(1 + cor(xi, xj))/2|b. (1)

We took morphological variables referring to breast cancer
cell lines from Sero et al. (2015), which include 10 significant fea-
tures shown to be predictive of TF activation. We correlated these
features with module eigengenes using Pearson’s correlation, and
we tested these values for significance by calculating Student as-
ymptotic P-values for given correlations. Multiple hypothesis test-
ing was performed using a permutation based procedure, whereby
we recalculated the correlation matrix 1000 times with resampled
data.We then generated null distributions for each ranked correla-
tion statistic in our matrix and compared them with our real data
of the same rank.We include in Supplemental Table S1 confidence
intervals of our permutation-basedmultiple-correction procedure.
For the modules that correlated with morphological features
(Pearson correlation coefficient 0.5 and Student P<0.05), we iden-
tified enriched signaling pathways using the R package Enrichr
(Kuleshov et al. 2016) and the signaling database Reactome
(Jassal et al. 2020). Reactome was used in preference to other path-
way databases because of the more consistent inclusion of TFs
within the annotated pathways. Using the database TRRUST v2
(accessed July 1, 2018) (Han et al. 2018), we identified TF regulons
that significantly overlap (Fisher’s exact test, P<0.1) with the GEM
contents. This was performed separately for inhibitory and activa-
tory expression regulons for each TF, with regulatory relationships
of unknown sign being used in the significance calculations for
both.

We named gene expression clusters using significantly en-
riched terms identified by the Enrichr analysis (Supplemental
Table S3). As some clusters were very obscure, we used the entire
Enrichr list of libraries (https://maayanlab.cloud/Enrichr/#stats
for full list) with precedence going to the signaling databases of
KEGG, Reactome, PANTHER, and Wikipathways (accessed April
1, 2020) (Mi et al. 2013; Kanehisa et al. 2016; Martens et al.
2021). Some modules could not be assigned informative terms
and so were named “not annotated” (NA).

Clustering and differential expression

Using the k-means algorithm,we classified the 14 breast cancer cell
lines by the median values of each of their shape features (k = 3)
(see Supplemental Fig. S2A). We performed differential expression

analysis using the R package DESeq2 (Love et al. 2014). We filtered
genes so that only protein-coding genes and those with >0.5
counts permillion in at least eight cell lines were included.We cal-
culated log2 fold changes with the cluster of interest as the numer-
ator and the remaining cell lines acting as a control. Using the R
package FGSEA (Korotkevich et al. 2021), we performed gene set
enrichment analysis of the differentially regulated proteins using
the complete pathways gene set (release April 1, 2020) from
MSigDB (Liberzon et al. 2015) and the WGCNA GEMs identified
in previous analysis. We calculated TF regulon enrichment using
the software DOROTHEA (accessed April 1, 2020) (Holland et al.
2020).

Network generation

Using a PCSF algorithm, we generated a cell-shape regulatory net-
work implemented through the R package PCSF (Akhmedov et al.
2016). For the prize-carrying nodes to be collected by the PCSF al-
gorithm, we used the TFs significantly regulating the WGCNA
modules using TRRUST v2 (P<0.1), the differentially activated
TFs identified by DOROTHEA (P<0.1), and the signaling proteins
included in the REACTOME pathways that were enriched in TFs
identified (P<0.05). We identified these pathways by using the
TRRUST TFs identified in the previous steps, as well as ENCODE
and ChEA Consensus TFs from ChIP-X (Lachmann et al. 2010),
DNA binding preferences from JASPAR (Wasserman and Sandelin
2004; Stormo 2013), TF protein–protein interactions, and TFs from
ENCODE ChIP-seq (Euskirchen et al. 2007). Using Enrichr, we
identified pathways that were enriched in the identified TFs, and
the proteins that were included in these pathways were extracted
from Pathway Commons using the R package paxtoolsr (Luna
et al. 2016). This was tested for bias to specific pathways by gener-
ating pathway-specific null distributions from 1000 resampled
GEMs. Distributions of P-values for each Reactome pathway were
generated, in which failed tests (because of no TF enrichment)
were given a P-value of one. Results of this were corrected for mul-
tiple-hypothesis testing using FDR correction.

The “costs” associated with each edge in the regulatory net-
work were the inverse of the number of sources linked to each reg-
ulatory connection scaled between one and zero, such that the
more the number of citations for an edge, the lower the cost. For
the base network used by the algorithm, we used the comprehen-
sive biological prior knowledge database, OmniPath (accessedMay
6, 2020) (Türei et al. 2021), extracted using the R package
OmnipathR (Türei et al. 2016). We set each prize for significant
TFs or signaling pathways to 100 and used a random variant of
the PCSF algorithmwith the result being the unionof subnetworks
obtained on each run (30 iterations) after adding random noise to
the edge costs each time (5%). The algorithm also includes a hub-
penalization parameter, which we set to 0.005. Other parameters
include the tuning of node prices (set to one) and the tuning of
trees in the PCSF output (40).

We included theWGCNAmodules themselves as supernodes
in the network by adding incoming edges from the TFs contained
within the regulatory network whose regulomes (as described in
TRRUST v2) (Han et al. 2018) significantly overlap (Fisher’s exact
test; P<0.1) with the gene content of the module in question.
We represented the respective cell-shape phenotypes as nodes in
a similar fashion by including undirected edges from expression
modules and phenotypes in which there was significant correla-
tion (|PCC| > 0.5 and P<0.05) between them. To account for ex-
pression modules’ effect on upstream signaling, we added edges
from the WGCNA modules back up to proteins that were them-
selves included within the modules. We set the edge weight of
these to 1, such that any predicted activity of the GEM would be
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translated directly into its constituent signaling proteins and thus
account for feedback between cell-shape signaling networks and
the context-specific expression modules identified in the first
step. We identified enriched terms in the network using the
2016 release of the database PANTHER (Mi et al. 2013) and GSE
package Enrichr (Kuleshov et al. 2016).

Network propagation of functional TFs

We examined the potential effect of significantly activated (FDR<
0.05) and deactivated TFs in different cell line clusters using net-
work propagation in our generated network. We replaced edge
weight with the Resnik best-match average (BMA) semantic simi-
larity (Resnik 1995) between the biological process GO terms of
the two interacting pairs, with the sign of the interaction being in-
herited from Omnipath (Türei et al. 2016). We then scaled the
semantic similarity edge weights between one and minus one.

We used the differentially activated TFs identified using
DOROTHEA (P<0.05) as seeds for a RWR algorithm using the R
package diffuseR (available at https://github.com/dirmeier/
diffusr). We judged a node to be significantly ranked if its affinity
score relative to the inputted seeds was greater than the same
node’s affinity score with a random walk simulation performed
with randomized seeds. We performed this randomized simula-
tion 10,000 times, from which a P-value was determined to judge
significance (P<0.1). We performed this propagation by RWR for
both luminal-like and basal-like morphological clusters on signifi-
cantly activated and deactivated TFs separately in addition to sim-
ulations in which each seed was considered in isolation. We
implemented these simulations with a restart probability of 0.95.
We generated a graphical representation of the network edges
and TFs responsible for the ranking of RAP1 signaling by plotting
all the shortest paths between RAP1 and the TFs that caused it to
have a non-zero affinity score when each TF was considered in
isolation.

Breast cancer cell morphology following kinase inhibitor

treatment

We used single-cell, small-molecule kinase inhibition data from
the Harvard Medical School (HMS) LINCS Center (Stathias et al.
2020), which is funded by NIH grants U54 HG006097 and U54
HL127365 (available from https://lincs.hms.harvard.edu/mills-
unpubl-2015/, accessed August 1, 2020). This data set is derived
from the treatment of six cell lines with a panel of 105 small-mol-
ecule kinase inhibitors. They measured textural and morphologi-
cal variables following treatment by high-throughput image
analysis (Haralick et al. 1973; Hamilton et al. 2007). We combined
this assay with another data set from HMS-LINCS: a target affinity
spectrum (TAS) for compounds in the HMS-LINCS small-molecule
library measuring the binding assertions based on dose response
affinity constants for particular kinase inhibitors (https://lincs
.hms.harvard.edu/db/datasets/20000/, accessed August 1, 2020).
Using this data set, we filtered for only molecule-binding target
pairs with a binding class of one (representing a KD<100 nM affin-
ity). Further to this, we removedmolecules that hadmore than five
targets with a KD of 100 nM. Consequently, the remaining kinase
inhibitors were relatively narrow spectrum, thus simplifying anal-
ysis of their phenotypic effect.We expressed these results as batch-
specific log fold changes of 10-µm drug treatment relative to the
mean of the control set (untreated and DMSO-treated cells).
Spearman’s rank correlation was calculated between the drug tar-
get’s network centrality and the absolute log fold change of the
morphological variable. We also used the Kolmogorov–Smirnov
statistic to assess significance between cell morphology after treat-

ment with drugs targeting kinases inside versus outside our pre-
dicted network. This was also repeated on other breast cancer
cell lines and using a TRAIL control (Supplemental Table S8).

The morphological data in the kinase inhibition screen were
measured using two dyes (DRAQ5 and TMRE), the intensity of
which we used to normalize textural features and the measure-
ment of cytoplasmic and nuclear small spots. We reported counts
for small-nuclear or cytoplasmic spots as a mean of the individual-
ly normalized readings fromboth dyes.We considered a treatment
perturbing our network if at least one of the kinase inhibitors tar-
geted a protein that was represented by a nodewithin the network.

Quantifying kinase inhibitor influence

We incorporate information from the TAS assay, as well as graph-
based properties of kinase inhibitor targets, using the product of
the Szymkiewicz–Simpson similarity (measured between the cell-
shape network nodes and the drug targets) and the centrality of
the targeted nodes in the predicted networkwith semantic similar-
ity edge weights. The product of these generates, for a given kinase
inhibitor, the statistic

∑

x[ K>N

PR(x)× K>N

min(|K|, |N|) , (2)

where K is the set of kinases an inhibitor is predicted to target, N is
the nodes of the network, and the function PR() is the centrality of
a particular node in the network as defined by the PageRank algo-
rithm (Brin and Page 1998). This centrality measure has been
shown to be effective in prioritizing proteins by relative impor-
tance in signaling or protein–protein interaction networks (Iván
andGrolmusz 2011).We used this statistic as ameasure of a kinase
inhibitor’s influence on cell shape.

Analysis of BRCA cell line and TCGA sample RNA-seq data

For the cell lines, we used RNA-seq data from the ArrayExpress (in
FPKM; E-MTAB-2770 and E-MTAB-2706) (Papatheodorou et al.
2020). This was analyzed using DESeq2 (Love et al. 2014) per the
methodology in the “Clustering and Differential Expression” sec-
tion. Both TF and module activity were calculated using the algo-
rithm VIPER (Alvarez et al. 2016). For patient data, the results
shown here are based on data generated by The Cancer Genome
Atlas (TCGA) Research Network (https://www.cancer.gov/tcga, ac-
cessed 01/04/21). For computational efficiency, we used gamma-
Poisson models to predict differentially expressed genes from our
samples using the package glmGamPoi (Ahlmann-Eltze and
Huber 2021). We used the sample of interest as the numerator
with the remaining tumor samples acting as a control. For quanti-
fying correlation between RAP1 GEM and different TFs, we re-
moved samples with insignificant activation of either the TF in
question or RAP1 GEM (FDR adjusted P-value<0.05). Correlation
was quantified using the Kendall rank correlation coefficient.
Differences in distributions of morphological subtypes was quan-
tified by the Kolmogorov–Smirnov test.

Maximum-flow network analysis

For maximum-flow calculations, we used the Resnik BMA seman-
tic similarity (Resnik 1995) as themaximum “carrying capacity” of
an edge in the network. To visualize the optimized solution (as im-
plemented by the R package igraph) (Csardi and Nepusz 2006), we
selected only those edges in the 99th percentile of the flow-carry-
ing edges in the network. Visualization was performed using the
softwareCytoscape (Shannon et al. 2003).Maximum flowwas per-
formed with the R package igraph (Csardi and Nepusz 2006).
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Quantification and statistical analysis

Statistical tests were performed in base R (R Core Team 2021) un-
less otherwise mentioned in the Methods, and P-value cut-offs
are shown in parentheses after reporting an effect as significant.
A weighted Pearson’s correlation with t-test for significance was
used to correlate eigengenes and cell-shape features using the
RNA package WGCNA. We used a one-way ANOVA test for com-
paring themeans of the shape variables among the identified three
cell line clusters (n=75,653) and a Tukey honest significant differ-
ence test to perform multiple-pairwise comparison among the
means of the groups. The same tests were performed on the differ-
ences in 10 cell-shape variables when Hs 578T was treated with 37
kinase inhibitors (n=23,128). A Fisher’s exact test was used to test
significance of overlap between TRRUST regulons and identified
GEMs (for size of the overlap, see Supplemental Table S4).

Enrichment of gene sets was performed by Enrichr, an enrich-
ment library that uses a hypergeometric test to identify signifi-
cantly enriched terms in a gene list. This tool (described by Chen
et al. 2013) calculates a score combining the Fisher’s exact test P-
value of the enrichment with the z-score deviation from the ex-
pected rank. The preranked gene set enrichment algorithm
FGSEAwas used for the identification of enriched terms in the dif-
ferentially expressed genes, allowing for accurate estimation of ar-
bitrarily low P-values that occur in expression data sets.

Spearman rank correlation was used to measure the strength
of the association between target network centrality and the mea-
sured effect of its perturbation by inhibition. Spearman was cho-
sen because the centrality (combined with Szymkiewicz–
Simpson) according to Equation 2 does not follow an exact normal
distribution. Kendall rank correlation coefficient was used when
calculating the correlation between TF activity and RAP1 GEM ac-
tivity because confidence intervals for Spearman’s rS are less reli-
able and less interpretable than confidence intervals for
Kendall’s tau parameters. When trying to distinguish between
many correlations of similar quality, this becomes more impor-
tant. FDR adjustment for multiple testing correction was always
used when multiple tests were performed in the same analysis.

Kolmogorov–Smirnov test was used to measure differences in
distributions of clinically assigned tumor morphologies. This was
because clinical groupings aremixed (i.e., infiltrating duct and lob-
ular carcinoma), and others are characterized by an absence of fea-
tures over their presence. This means that the assumption of
normality required for a t-test is not fulfilled.

For differential expression analysis, the DESeq2 R package
(Love et al. 2014) was used. DESeq2 fits negative binomial general-
ized linear models for each gene and uses the Wald test for signifi-
cance testing. The package then automatically detects count
outliers using Cooks’s distance and removes these genes from
analysis.

Significance was determined for RWR network propagation
by randomizing seed nodes (preserving their values) 10,000 times
and selecting only the nonseed nodes that were significantly
ranked relative to the randomized simulations (P<0.1). Figures
were presented using ggplot (Wickham 2009).

Software availability

The complete R scripts and data used for this methodology are
available as Supplemental Code and at GitLab (https://gitlab.ebi
.ac.uk/petsalakilab/phenotype_networks).
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