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Abstract……. 
 

Oncogenic KRAS influences several cancer hallmarks including autonomy from 

growth promoting signals, enhanced cell survival and altered tumour 

metabolism. Beyond these, it is now established that oncogenic KRAS can 

polarise the tumour immune microenvironment, aiding tumour immune evasion.  

 

Tristetraprolin (TTP) is an RNA-binding protein, which destabilises its targets 

through binding to AU-rich elements in their 3’-untranslated regions. It is 

important in the resolution of macrophage responses to inflammatory stimuli. 

Additionally, it can bind and destabilise targets in tumour cells. Oncogenic 

KRAS, through inhibitory phosphorylation of TTP, can prevent it from 

destabilising its targets, resulting in upregulation of oncogenic proteins including 

programmed death-ligand 1.  

 

We interrogated the transcriptome-wide effect of TTP overexpression in an 

immunogenic KRAS-mutant murine colon carcinoma model. Using RNA-seq, 

we showed that TTP targets are involved in several tumourigenic hallmarks. We 

discovered that many such targets overlap with those of KRAS, and that this 

relationship extends across model systems. Co-perturbation of KRAS and TTP 

in a single model system resulted in modest effect.  

 

Next, we used single-cell profiling to understand the effect of mutant-specific 

oncogenic KRAS inhibition in an orthotopic murine lung carcinoma model. We 

showed that such inhibition results in compositional change in the repertoire of 

macrophages with concomitant alteration of gene expression including 

downregulation of several immunosuppressive transcripts. Furthermore, we 

showed that tumour cell proliferation is altered, and that the expression of many 

oncogenic transcripts are reduced. Conversely some oncogenic transcripts, 

including the emerging clinical target CD47, are upregulated upon KRAS 

inhibition and may represent potential strategies for combination therapy.  
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Chapter 1. Introduction 

1.1 Biology of RAS  

1.1.1 RAS and downstream signalling cascades 

The RAS superfamily of GTP-binding proteins consists of over 150 small 

GTPases divided into several subfamilies. The members KRAS, HRAS and 

NRAS (hereafter, RAS proteins) are membrane-associated molecules which 

participate in the transduction of external signals to intracellular cascades 

influencing diverse processes. Canonically, activation of these proteins 

promotes cell proliferation and survival. More broadly, RAS-induced signals 

affect metabolism, motility and immune polarisation of the local 

microenvironment (Pylayeva-Gupta, Grabocka and Bar-Sagi, 2011a) . 

 

The name RAS stems from the discovery that certain viruses were able to 

induce sarcoma in rats (rat sarcoma virus). These viruses had incorporated 

host sequences into their genome. Later, probes from these viral sequences 

were found to hybridize with human tumour DNA capable of transforming NIH-

3T3 cells, and this led to the discovery that the transforming oncogenes 

contained in the rat viruses (Hras and Kras) had human homologues 

(Malumbres and Barbacid, 2003). A third member of this gene subfamily, 

NRAS, was identified shortly thereafter.  

 

As small GTPases, these proteins exist in two conformations. The GTP-bound 

form is ‘on’, capable of binding and activating downstream effectors while the 

GDP-bound form is ‘off’, unable to trigger downstream signalling. The switch 

between them is mediated by two main classes of proteins. GTPase activating 

proteins (GAPs, e.g. NF1) accelerate the otherwise low intrinsic GTPase activity 

of the RAS proteins while guanine nucleotide exchange factors (GEFs, e.g. Son 

of Sevenless 1 (SOS1)) promote exchange of GDP for GTP. Binding of GTP 

induces conformational change in the proteins, specifically in two ‘switch 

regions’ important for effector binding (Mccormick, 2018).  
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Effector binding following this conformational change activates intracellular 

signalling cascades with diverse outcomes. The most-well characterised 

cascade, the mitogen activated protein kinase/ extracellular signal regulated 

kinase (MAPK/ERK) cascade is the prototypical example of a MAPK cascade 

which, in this case, culminates in activation of ERK (Plotnikov et al., 2011). In 

such cascades a series of proteins phosphorylate and activate one another in 

sequence. Thus, RAS activates the Rapidly Activated Fibrosarcoma (RAF) 

kinases (MAP3Ks) which in turn activate the MAPK/ERK kinases (MEK 1/2 or 

MAP2K) which culminate with ERK 1/2 activation. Activated ERK can act 

cytosolically or translocate to the nucleus where it may phosphorylate 

transcription factors. These include Ets family transcription factors (e.g. Elk-1) 

forming part of the serum response factor (SRF). The net result of ERK-driven 

transcription includes proliferative signalling networks involving cell cycle 

regulators such as cyclin D1 (Gimple and Wang, 2019). Beyond the ERK-MAPK 

cascade, RAS is able to activate several other pathways including the 

PI3K/AKT/mTOR pathway and effectors such as RAL guanine nucleotide 

dissociation stimulator (RALGDS) with effects including promotion of cell 

survival and reorganisation of the actin cytoskeleton respectively (Downward, 

2003) (Figure 1). 
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Figure 1. Simplified schema of RAS signalling Adapted from (Downward, 2003; 
Malumbres and Barbacid, 2003) 
 

1.1.2 RAS proteins and cancer 

RAS proteins are frequently mutated in cancer. Across cancers as a whole, the 

prevalence of RAS mutations is difficult to accurately quantify but is somewhere 

between 15-30% (Prior IA; Lewis, 2012). Amongst the three proteins, mutations 

in KRAS are the most common, accounting for around 80% of all RAS protein 

mutations (Prior, Hood and Hartley, 2020). KRAS is most frequently mutated in 

pancreatic, colorectal (CRC) and non-small cell lung (NSCLC) cancers with 

estimated frequencies (in Western populations) of around 85%, 40% and 30% 

respectively (Moore et al., 2020). Beyond these, KRAS mutations also occur in 

around 30% of cholangiocarcinoma and 10% of ovarian & endometrial 

carcinomas (Timar and Kashofer, 2020). Conversely NRAS is most commonly 
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mutated in melanoma and acute myeloid leukaemia (around 20% and 15% 

respectively) while HRAS shows predilection for bladder and head & neck 

cancers (around 5% each) (Prior, Hood and Hartley, 2020).  

 

Most oncogenic mutations in RAS isoforms are missense gain-of-function 

mutations in codons G12, G13 or Q61 (Hobbs, Der and Rossman, 2016). 

Different RAS isoforms differ in their frequency of such alterations. In KRAS, 

G12 and G13 mutations predominate. In contrast, Q61 mutations are rare in 

KRAS but common in NRAS, while the frequencies in HRAS lie in between the 

other two isoforms. Furthermore, within a given isoform and codon, the 

frequency of amino acid substitutions varies by cancer type. For example, in 

lung cancer, the commonest KRAS G12 mutation is G12C, possibly associated 

with tobacco smoke exposure (Dogan et al., 2012), while in colon and pancreas 

cancers, G12D is the commonest.  

 

Impaired GTP hydrolysis, resulting in increased signalling through downstream 

pathways, is a key property of oncogenic RAS (Gibbs et al., 1984; Scheffzek et 

al., 1997). However, different mutations result in distinct biochemical and 

structural properties. Differences occur in (a) GTP binding affinity, (b) intrinsic 

and GAP-mediated GTP hydrolysis and (c) effector binding affinity (Hunter et 

al., 2015). In fact, analysis of intrinsic GTP hydrolysis rates of various KRAS 

mutations showed that while G12A, G12R, Q61H and Q61L mutations resulted 

in 40–80% reduction compared to wild type, G12C was an outlier, with a rate 

almost comparable to wild type. This is consistent with observations that KRAS 

G12C isoforms maintain demonstrable GTP–GDP cycling, a phenomenon 

exploited by recently developed inhibitors (Patricelli et al., 2016).  

 

Though these different variants may affect signalling differently, several 

processes are affected by oncogenic RAS regardless of the variant in question 

(Pylayeva-Gupta, Grabocka and Bar-Sagi, 2011a). Canonically, oncogenic RAS 

promotes cellular proliferation. This effect occurs through several mechanisms 

including the transcriptional induction and stabilisation of the G1 cyclin, cyclin 



Chapter 1 Introduction 

 

19 

 

D1 (Filmus et al., 1994). The relationship between RAS and apoptosis is more 

complex, with studies demonstrating both pro and anti-apoptotic effects 

(Downward, 1998). Nonetheless, as discussed below, direct RAS inhibitors 

induce hallmarks of apoptosis in sensitive cells, suggesting an apoptosis-

suppressing role for oncogenic RAS in these cells (Patricelli et al., 2016). 

Oncogenic RAS also reconfigures metabolism, supporting the shift from 

oxidative phosphorylation to aerobic glycolysis. This process involves the 

upregulation of hypoxia inducible factor 1𝛼 and enhances the transport and 

glycolytic capture of glucose (Blum et al., 2005). Beyond these effects on 

proliferation, survival and metabolism, oncogenic RAS also influences the 

processes of invasion and metastasis. Through a constellation of changes 

including; reduced expression of the cell-cell adhesion molecule E-cadherin; 

downregulation of integrins that promote matrix attachment; and polarisation of 

the cytoskeleton to generate the front-rear asymmetry necessary for motility, 

oncogenic RAS promotes invasion (Pollock et al., 2005; Schmidt et al., 2005). 

Of note epithelial-to-mesenchymal transition, a process involving 

downregulation of E-cadherin, is a feature of certain pre-clinical KRAS-mutant 

models and may suggest unique vulnerabilities of these cells in conjunction with 

direct KRAS inhibition, as discussed below (Solanki et al., 2021).  

 

1.1.3 Targeting KRAS 

1.1.3.1 Historical efforts 

Given the prevalence of RAS mutations in cancer, decades of research have 

focussed on attempts at inhibition of this pathway. Direct targeting of KRAS has 

proved challenging, in part because of its shallow surface with limited 

opportunity for allosteric binding, and its picomolar affinity for GTP (Mccormick, 

2018). Initial approaches focussed on inhibiting RAS prenylation using farnesyl 

transferase inhibitors (FTIs) (Kohl et al., 1995). This modification, at the c-

terminus, influences membrane localisation and is essential for activity. 

However, clinical trials were initially disappointing because both KRAS and 

NRAS (but not HRAS) can also be prenylated by geranylgeranyltransferase 
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and, unfortunately, the clinical studies focussed patients with KRAS and NRAS 

mutations. Subsequently, focus on HRAS-mutated cancers has led to 

Breakthrough Therapy Designation by the FDA for the FTI tipifarnib for patients 

with HRAS-mutant head & neck squamous cell carcinoma (Kura Oncology 

Receives FDA Breakthrough Therapy Designation for Tipifarnib in Head and 

Neck Squamous Cell Carcinoma, 10/09/2021). 

 

Beyond direct targeting of RAS, other efforts focussed on inhibition of 

downstream effectors within the RAF/MEK/ERK and PI3K/AKT/mTOR 

pathways fuelled by in vitro observations demonstrating sensitivity of KRAS-

mutant cell lines to such inhibition (Garnett et al., 2012). However, as 

monotherapy, such agents are poorly efficacious in patients. This can be partly 

explained by their mechanism of action. Following allosteric MEK inhibition, 

feedback reactivation of MEK by wild-type (WT) RAF can occur. While some 

MEK inhibitors can prevent this, clinically available inhibitors such as 

cobimetinib fail to do so, and thus lack utility in the WT RAF population 

(Hatzivassiliou et al., 2013). Furthermore, BRAF targeting agents, in cells with 

oncogenic RAS and WT BRAF, also cause paradoxical activation of the MAPK 

pathway (Hatzivassiliou et al., 2010). These nuanced pitfalls of MEK and BRAF-

specific agents in RAS-mutated cells are compounded by complex parallel 

downstream signalling cascades influenced by RAS. Inhibition of one pathway 

(and suppression of negative feedback mediators) may simply increase flux 

through parallel pathways, maintaining the transformed cell state and meaning 

that even inhibitors that can prevent feedback reaction of MEK, for example, 

may lack efficacy. To compensate, one could attempt to target multiple 

pathways, but this is likely to increase the risk of toxicity even if doses are 

carefully optimised to maximise synergy.  
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1.1.3.2 Covalent KRAS inhibition 

A much needed paradigm shift in RAS targeting came in 2013, when Shokat 

and colleagues developed ‘compound 12’, a covalent inhibitor of KRAS(G12C) 

(Ostrem et al., 2013). They exploited both the ‘novel’ switch-II pocket 

(discovered close to the switch-II region and only accessible in the GDP-bound 

state) and also the presence of cysteine (an inherently reactive amino acid) in 

the mutant protein. Screening 480 tethering compounds, they discovered that 

compound 12 bound at the switch-II pocket and covalently modified the reactive 

cysteine. Subsequently, SOS-mediated nucleotide exchange and RAS-RAF 

interaction are both blocked such that the protein is effectively trapped in its 

inactive conformation (Ostrem et al., 2013). The propensity of the drug to bind 

only in the GDP-bound state requires a sufficient concentration of cellular KRAS 

to be present in this conformation. As discussed above, biochemical studies 

indicate that KRAS(G12C) protein has an intrinsic hydrolysis rate similar to WT. 

This means that 25% of the protein is GDP-bound at steady-state compared to 

<5% for other common mutations (Hunter et al., 2015; Mccormick, 2018).  

 

These parameters were sufficient for robust effects on signalling as shown by 

development of ARS-853, an agent closely related to compound 12 (Patricelli et 

al., 2016). Treatment of a panel of KRAS-mutant cell lines with ARS-853 

demonstrated inhibition of downstream signalling specifically in G12C-mutant 

cells. Of note there was heterogeneity in the depth and durability this across 

lines, implying factors beyond the G12C mutation itself capable of modulating 

intrinsic sensitivity. In addition to effects on signalling, ARS-853 resulted in G1 

arrest, reduced expression of cyclin D1 and hallmarks of apoptosis (e.g. PARP 

cleavage) in H358 cells (a human lung cancer line). Concomitantly, H358 

growth in vitro was inhibited, and rescued by ectopic expression of 

KRAS(G12V).  

 

While H358 cells were sensitive, when ARS-853 was tested across a panel of 

lines grown as monolayers (2D) some were insensitive to the drug. The same 

lines were also insensitive to siRNA-mediated KRAS knockdown despite 
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inhibition of RAF-RBD (Ras binding domain) pulldown in all lines tested 

(Patricelli et al., 2016). This is consistent with previous data showing that some 

lines are independent of KRAS for growth in 2D culture systems (Singh et al., 

2009). Despite this, all G12C-containing lines were robustly inhibited in 3D 

culture, consistent with the increased dependence on KRAS in this format.  

 

Following the study of ARS-853, ARS-1620 was developed; engineered for 

improved in vivo potency (Janes et al., 2018). The authors again demonstrated 

that several KRAS(G12C) cell lines were relatively insensitive in 2D culture but 

sensitive in 3D systems. The same lines responded in vivo suggesting that 3D-

spheroid systems best predict in vivo tumour responses. Since the description 

of ARS-1620, further compounds with enhanced drug-protein interaction 

(relative to compound 12) have been developed and described including AMG 

510 (Canon et al., 2019) and MRTX849 (Hallin et al., 2019).  

 

Like ARS-1620, AMG 510 is able to inhibit KRAS signalling and generate 

hallmarks of apoptosis in vitro, specifically in KRAS(G12C) lines, with 

heterogeneity in depth and durability of effect (Canon et al., 2019). However, 

potency was higher than for ARS-1620 both in terms of signalling and effects on 

viability. This translated to its in vivo effect where the dose required to achieve 

regression of MIA PaCa-2 xenografts was over 3-fold lower than for ARS-1620. 

In addition, using subcutaneous CT26 tumours (murine colorectal carcinoma), 

these authors examined the effect of AMG 510 in an immunogenic 

KRAS(G12C) model. Intriguingly, durable remissions were seen only in mice 

with a replete lymphocyte compartment. The effect of KRAS (and its inhibition) 

on the antitumour immune response is discussed in a later section of this 

introduction.  

 

Characterisation of MRTX849 included assessment of the difference in drug 

sensitivity across a panel of 17 KRAS(G12C) mutant lines in both 2D and 3D 

culture (Hallin et al., 2019). While target engagement was comparable between 

the most and least sensitive lines, there was a difference in suppression of 
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downstream signals. The least sensitive lines showed only partial inhibition of 

phosphorylated ERK (pERK) and pS6235/236 and no effect on the mTOR targets 

p70 s6 kinase (T412) or pS6S240/44. This suggests maximising inhibition of 

KRAS-dependent ERK and S6 signalling may be required for optimal 

suppression of viability. Furthermore, in vivo analysis of 26 cell line or patient-

derived xenografts (with a range of sensitivity to drug) showed that none of the 

genetic co-alterations tested (including TP53, STK11 and CDKN2A) correlated 

with response. Gene expression studies suggested that baseline expression of 

human epidermal receptor (HER) family receptor tyrosine kinases (RTKs) and 

early cell cycle regulators trended with tumour response. Together the data 

suggested that durable and robust ERK inhibition may associate with apoptosis 

induction and maximal treatment response (Hallin et al., 2019). 

 

To begin to understand what may drive therapeutic response or resistance 

beyond the correlative analyses above, the authors also performed 

CRISPR/Cas9 screens using the H2122 KRAS(G12C) model. Both in vitro and 

in vivo, depleted single guide RNAs (sgRNAs) included those for MYC, SHP2 

and several cell cycle regulators. Enriched sgRNAs included those for KEAP1 

and CBL – known tumour suppressor genes (TSGs). Intriguingly, objective 

response rate to both AMG 510 (sotorasib) and MRTX849 (adagrasib) in clinical 

trials appear lower in patients with KEAP1 co-mutations (Riely et al., 2021; 

Skoulidis et al., 2021). This data from clinical studies adds credence to this pre-

clinical work on MRTX849 (Hallin et al., 2019) suggesting that KEAP1 is 

important for maintaining response to treatment.  

 

Following on from this pre-clinical work, both sotorasib and adagrasib are not 

only being studied in clinical trials, but the former has been approved by the UK 

Medicines and Healthcare products Regulatory Agency under project orbis for 

provision within the National Health Service (Lung cancer patients to get 

breakthrough drug on NHS, 2021). Adagrasib has been granted Breakthrough 

Therapy Designation by the US Federal Drug Administration (Mirati 

Therapeutics’ Adagrasib Receives Breakthrough Therapy Designation from 
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U.S. Food and Drug Administration for Patients with Advanced Non-Small Cell 

Lung Cancer Harboring the KRASG12C Mutation, 2021). Both approvals 

concern patients with NSCLC who previously received platinum chemotherapy 

and checkpoint inhibitor therapy. Data showed that the agents could achieve an 

objective response rate (ORR) in this patient cohort of between 35 – 45% with a 

median duration of response of just under a year (Riely et al., 2021; Skoulidis et 

al., 2021). Of note, responses in other cancers are lower than for NSCLC (Hong 

et al., 2020; Johnson, Ou and Barve, 2020). For example, ORR in colorectal 

cancer was between 5-20% in the phase I studies. This was particularly 

disappointing given the high prevalence of this disease. The reasons for the 

disparity are not fully understood but in one study, colorectal cancer cell lines 

were found to have higher basal receptor tyrosine kinase (RTK) expression 

than NSCLC lines (Amodio et al., 2020). This affected pERK rebound following 

AMG 510 treatment and, though several RTKs contributed, EGFR had a 

dominant effect. Consistently, treatment of KRAS(G12C) patient derived 

organoids with AMG 510 alone had little or no effect while combination with 

cetuximab yielded significant suppression of proliferation. Indeed, the 

combination of adagrasib and cetuximab (EGFR inhibitor) yielded an ORR of 

43% compared to 22% for adagrasib monotherapy (Weiss et al., 2021) and is 

now being studied in a phase III trial in patients with CRC (NCT0479358). Since 

the initial trials with sotorasib and adagrasib, trials with other G12C inhibitors 

have commenced. Table 1 summarises some of the KRAS(G12C) inhibitors 

currently/previously in clinical development.  
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Drug Manufacturer Phase  Key trials Combination 
partners 

AMG510 
(sotorasib) 

Amgen III NCT04933695 
NCT05054725 
NCT05198934 
NCT03600883 

SHP2i, Cpi, 
EGFRi etc.  

MRTX1257 
(adagrasib) 

Mirati III NCT04685135 
NCT04613596 
NCT04793958 
 

CDK4/6i, Cpi, 
SOS1i, EGFRi 
etc. 

GDC-6036 Roche/Genetech I NCT04449874 Cpi, EGFRi, 
VEGFAi, 
SHP2i 

JNJ-
74699157 
(ARS-3248)* 

Janssen I NCT04006301 
 

 

D-1553 Inventis Bio I/II NCT04585035 
 

Several (not 
specified) 

JDQ443 Novartis I/II NCT04699188 SHP2i, Cpi 
 
Table 1. KRAS(G12C) inhibitors in clinical development Phase refers to phase 
of the most advanced trial. CDK4/6 = cyclin dependent kinase 4/6, Cpi = 
checkpoint inhibitor, EGFR = epidermal growth factor receptor, SHP2 = Src 
homology-2 domain-containing protein tyrosine phosphatse-2, SOS = son of 
sevenless, VEGFA = vascular endothelial growth factor A. *JNJ-74699157 has 
ceased clinical development 
 

 

1.1.3.3 Intrinsic and acquired resistance to KRAS(G12C) inhibitors 

Despite the encouraging efficacy of KRAS(G12C) inhibitors in second-line for 

NSCLC, most patients with objective responses to sotorasib in a phase II trial 

(including 4 with complete responses) eventually relapsed (Skoulidis et al., 

2021). Several studies, both pre-clinical and clinical, have generated 

hypotheses for how such resistance is generated. In terms of intrinsic 

resistance, studies have focussed on baseline characteristics of cells.  

 

As already discussed, characterisation of MRTX849 included baseline gene 

expression studies suggesting that expression of HER-family RTKs or cell cycle 
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regulators may correlate with response (Hallin et al., 2019). Consistently, their 

drug screen showed synergy with afatinib (EGFR inhibitor), palbociclib (cyclin 

dependent kinase (CDK) 4/6 inhibitor) and the Src homology region 2-

containing protein tyrosine phosphatase (SHP2) inhibitor RMC-4550 in partially 

sensitive/refractory KRAS(G12C) models. Other studies have shown high basal 

PI3K/AKT signalling in KRAS mutated pancreatic cell lines that showed KRAS-

independence after genetic knockdown (Muzumdar et al., 2017). In support of 

this, another drug screen investigating synergy with ARS-1620 discovered that 

PI3K/AKT targeting provided the most consistent synergy across a panel of 

KRAS(G12C)-mutant lung cancer lines (Misale et al., 2019). While inhibition of 

KRAS(G12C) and the PI3K/AKT/mTOR pathway can provide robust inhibition, 

more complete pathway shut-down can be achieved through concomitant 

targeting of IGF1R (Molina-Arcas et al., 2019). This triple combination (KRAS, 

PI3K and IFG1R targeting) produced robust regression in several in vitro and 

murine models of KRAS(G12C)-mutant lung carcinoma. These effects are 

consistent with previous data showing that PI3K pathway activity is dependent 

on basal IGF1R signalling, specifically in KRAS-mutant lines (Molina-Arcas et 

al., 2013).  

 

As a separate approach to identifying intrinsic resistance mechanisms, gene 

expression profiling of both KRAS(G12C)-containing cell lines and human 

tumours revealed a baseline dichotomy between those expressing an epithelial 

versus a more mesenchymal signature (Solanki et al., 2021). The latter 

expressed both high basal and feedback activation of FGFR and AXL, 

suggesting the possibility of biomarker-driven synergies in this population of 

EMT-high tumours. Other recent work on EMT and resistance to KRAS(G12C) 

inhibition reinforced the aforementioned KRAS-independent activation of PI3K 

by IGF1R, as mentioned above (Molina-Arcas et al., 2019; Adachi et al., 2020). 

In the more recent work, induction of EMT resulted in G12C inhibitor resistance, 

an effect partly mediated by IGF1R-activation of PI3K. These authors used also 

used a triple combination (using SHP2 instead of IGF1R inhibition) to drive 

synergy in various models.  
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Many cell lines with intermediate sensitivity or refractoriness to KRAS(G12C) 

inhibitors demonstrate rebound of pERK despite continued drug administration 

(Ryan et al., 2020). This is associated with increased activation of several 

RTKs. While no single RTK inhibitor consistently provided synergy across the 

lines, inhibition of SHP2 (a protein tyrosine phosphatase that functions 

downstream of multiple RTKs to promote RAS activation (Nichols et al., 2018)) 

synergised with G12C-inhibition to impair viability across all lines tested (Ryan 

et al., 2020). In a more recent study, not only was this synergy reinforced but 

the combination was shown to result in profound tumour microenvironment 

(TME) remodelling, as discussed later (Fedele, Li, Teng, Connor J.R. Foster, et 

al., 2021).  

 

The studies above are likely to provide rational synergies to prevent intrinsic (or 

delay acquired) resistance. When acquired resistance does eventually occur, 

other strategies may be needed. Many clinical studies that have focussed on 

genetic mechanisms of acquired resistance have recently come to light (Awad, 

Liu and Arbour, 2021; Tanaka et al., 2021; Zhao et al., 2021). There are some 

recurrent themes across these. Firstly, despite careful profiling of tissue and/or 

circulating free DNA (cfDNA) many patients had no discernible resistance 

mechanisms. In one study of 38 patients who had initially responded and then 

relapsed on adagrasib, 21 had no putative resistance mechanisms identified by 

genomic profiling (Awad, Liu and Arbour, 2021). Of note, however, the original 

G12C mutation was not identifiable in 6/38 of these patients, all of whom had 

cfDNA (rather than tissue analysis). Thus, the sensitivity of this assay may be a 

limiting factor for detection. In a separate analysis of 43 patients treated with 

sotorasib, 16 had no identifiable treatment-emergent alterations (Zhao et al., 

2021). The second pervading theme was that resistance was associated with 

acquired mutations in MAPK pathway members. These included switch II 

pocket mutations including those that confer resistance to both inhibitors (e.g. 

Y96S) and those which result in heterogenous sensitivity between the two (e.g. 

R68M and H95D) (Awad, Liu and Arbour, 2021). The latter finding raises the 
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possibility of biomarker-driven switching of G12C inhibitors although this is 

unlikely to ever be formally studied in clinical trials.  Thirdly, resistance 

mechanisms were heterogenous both across and even within patients, with 

some demonstrating alterations in several members of the pathway. This raises 

questions about the optimum strategy to both prevent and treat resistance when 

it occurs. Next, and intriguingly, many putative resistance mechanisms occurred 

at low variant allele frequencies (VAF). While this was in part attributed to the 

sensitivity of cfDNA, there is incomplete understanding of the extent to which 

the resistant clones drive the overall clinical picture and whether they may even 

be able to influence surrounding cells which do not harbour the same 

alterations (Zhao et al., 2021). Finally, resistance with some patients was 

associated not with genomic alterations but with cell state changes (e.g. from 

adenocarcinoma to squamous cell carcinoma). There was a paucity of tissue 

biopsy at relapse (most patients had cfDNA analysis alone) so it is difficult to 

estimate the true prevalence of this change.  

 

An intriguing study of a single patient who developed resistance to adagrasib 

demonstrated, amongst other variants, de novo occurrence of the resistant 

KRAS(Y96D) allele (Tanaka et al., 2021). Using structural modelling, the 

authors demonstrated that this disrupts drug interaction with KRAS, allowing 

nucleotide cycling to proceed. In order to circumvent this resistance 

mechanism, they used the structurally and functionally distinct KRAS(G12C) 

inhibitor RM-018. This molecule forms a ‘tri-complex’ structure with the GTP-

bound KRAS molecule, sterically occluding the interaction with downstream 

effectors. They showed that, in terms of viability, H358 cells bearing 

KRAS(G12C/Y96D) were 100-fold less sensitive to adagrasib relative to those 

harbouring KRAS(G12C) mutations alone. Conversely, KRAS(G12C) and 

KRAS(G12C/Y96D) cells were equally sensitive to RM-018. This suggests a 

potential therapeutic strategy to overcome this mechanism of resistance.  

 

Thus, in conclusion, RAS proteins are important oncogenes across cancers. 

KRAS in particular is frequently mutated in tumours that are prevalent (lung and 
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colon) or highly lethal (pancreatic). Targeting KRAS has undergone a paradigm 

shift in recent years with the advent of covalent inhibitors against KRAS(G12C). 

This approach needs to be optimised but bears great potential for treatment of a 

significant proportion of patients with NSCLC in particular. Optimal synergies 

are required to maximise the benefit of this approach.  
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1.2 Antitumour immunity 

1.2.1 Introduction  

William Coley’s observation in 1891 that injection of bacterial toxin was 

associated with regression of advanced sarcoma, is one of many examples of 

primitive cancer immunotherapies being used to induce tumour response 

(Hoption Cann, Van Netten and Van Netten, 2003). Since then, our 

understanding of the influence of the immune system on cancer behaviour has 

advanced considerably. One widely-regarded hypothesis, the immunoediting 

hypothesis, proposes that most clinically apparent tumours have progressed 

through three stages – elimination, equilibrium and escape (Schreiber, Old and 

Smyth, 2011). The theory surmises that throughout our lifetimes, we develop 

tumours that never become clinically apparent because our immune system 

eliminates them at an early stage. In some cases, immune elimination is 

incomplete, and the tumours enter a state of equilibrium where the rates of 

immune clearance and tumour growth are similar. Tumours may regress 

(immune elimination eventually prevails) or ‘escape’. 

 

Immune escape can occur through several mechanisms. One mechanism of 

‘escape’ from immune control is by inducing an immunosuppressive state within 

the tumour microenvironment (TME). This can occur through recruitment of 

immunosuppressive cells or subversion of cells already present. Subversion 

may be secondary to tumour-intrinsic expression of surface and/or soluble 

mediators, metabolic factors, nutrient deprivation or altered pH amongst others. 

Therapeutic modulation of this tumour immune cross-talk can tip the balance of 

this interaction in favour of the immune system, facilitating tumour elimination. 

For example, tumour and tumour-associated immune cells can upregulate 

expression of programmed death-ligand 1 (PD-L1) a cell-surface molecule that 

can bind programmed cell death-1 (PD-1) which can be expressed on antigen-

experienced T-cells. This interaction negatively regulates T cell activation, 

contributing to tumour immune evasion (Freeman et al., 2000; Wei, Duffy and 

Allison, 2018). Consistent with its role in tumour immune evasion, antibodies 
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against programmed death-ligand 1 (PD-L1) or its receptor programmed cell 

death-1 (PD-1) have revolutionised the treatment of several malignancies 

(Robert, 2020). Nonetheless, such immunotherapy is ineffective in many 

cancers and where responses do occur, they are often incomplete and 

transient. Therefore, an improved understanding of tumour immune evasion 

mechanisms could help design novel synergies to improve the efficacy of 

immune targeting approaches, and ultimately improve patient outcome. 

 

 

1.2.2 Components of the tumour immune microenvironment 

1.2.2.1 Macrophages 

Tumour associated macrophages (TAMs) are the most abundant immune type 

across several primary tumour sites, and generally correlate with worse 

prognosis (Gentles et al., 2015). A summary of their role in the TME, and of 

other cells, is shown in Table 2. In a non-malignant context they may be either 

tissue-resident (TRM), undergoing self-renewal and adopting specialised local 

functions, or they may derive from circulating monocytes (MDM) usually under 

inflammatory conditions (Ginhoux and Guilliams, 2016). Ontogeny of 

macrophages in tumours is less well understood (Lahmar et al., 2016). In some 

models of lung cancer at least, it appears that monocyte-derived macrophages 

form the majority of TAMs (Sawanobori et al., 2008) and that impairment of 

CCR2-dependent monocyte recruitment can impair tumour growth (Cortez-

Retamozo et al., 2012). These studies, however, did not explore the temporal or 

spatial heterogeneity of TAM ontogeny. Using orthotopic KP tumours injected 

into Map17-creER transgenic mice crossed with the Rosa26-LSL-tdTomato 

strain (to label adult haematopoietic stem cells and their progeny), it has been 

shown that TRMs accumulate close to tumour cells early in tumour 

establishment, influencing their invasiveness and tumour immune composition 

(Casanova-Acebes et al., 2021). However, as the tumours develop, TRMs 

move to the periphery while MDM accumulate within tumour stroma. Therefore, 

it is likely that in any given model TAM ontogeny varies temporally and spatially.  
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Type Function 
Macrophages Pro-tumourigenic macrophages can inhibit T cell function, 

stimulate angiogenesis, liberate growth factors and remodel 

the ECM. Anti-tumour macrophages can stimulate Th1 and 

CD8+ T cells responses and directly phagocytose tumour 

cells 

Dendritic 
cells (DC) 

Conventional type I DCs (cDC1) cross-present antigen to T 

cells and liberate cytokines contributing to their activation. 

cDC2 cells interact with CD4+ T cells. 

T cells Exist as 𝛼𝛽 or 𝛾𝛿 T cells dependent on receptor structure. 

𝛼𝛽 are predominantly CD4+ or CD8+. The latter are an 

important final effector mechanism of immune-mediated 

tumour killing. 

 
Table 2. Major immune cell types in the TME 

 

Phenotypically, TAMs are often described as either M1-like or M2-like. This 

nomenclature stemmed from studies of macrophage activation in vitro (Stein et 

al., 1992; Dalton et al., 1993). M1 macrophages, activated by a priming stimulus 

(IFN-𝛾) followed by a (microbial) trigger (lipopolysaccharide (LPS) or tumour 

necrosis factor alpha (TNF-𝛼)), are often described as ‘classically activated’ 

macrophages. They liberate pro-inflammatory cytokines such as IL-1b and IFN-

𝛾 as well reactive oxygen and nitrogen species (ROS & RNI) in order to mount 

an effective response against intracellular pathogens, and tumours. M2 or 

‘alternatively’ activated macrophages are a more heterogenous group, activated 

by diverse stimuli including the Th2 cytokines IL-4 and IL-13. They may express 

high levels of arginase and liberate IL-10 and transforming growth factor beta 

(TGF-𝛽)	(Martinez and Gordon, 2014). In the TME, however, TAM subtyping is 

complex and may not fit neatly into these categories. In a recent single cell 

analysis of human and mouse lung tumours, of nine human macrophage 

clusters and four murine macrophage clusters none exhibited an ‘M1-like’ gene 
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expression signature, suggesting limited utility of this paradigm in vivo (Zilionis 

et al., 2019). 

 

Macrophages are notoriously plastic cells and, correspondingly, have been 

ascribed diverse intratumoural functions which may be pro- or anti-tumoural in 

nature (Noy and Pollard, 2014; Cassetta and Pollard, 2018). Anti-tumoural 

macrophage function can be conceptualised into those relevant during tumour 

initiation, during local tumour progression and those during tumour metastasis.  

 

Oncogene signalling or chronic inflammation (e.g. autoimmune, infective, 

irritant) can activate transcription factor networks (e.g. via NFkB) that result in 

tumour-intrinsic cytokine signalling that engages innate immunity from tumour 

initiation (Crusz and Balkwill, 2015). Specifically, macrophages may respond to 

such signals by secreting factors that initiate and/or promote tumor growth 

through mitogenic cytokines (e.g. TNF-𝛼), growth factors (e.g. EGF/family 

members, WNT ligands) or mutagens (ROS and RNI) (Canli et al., 2017; 

Cassetta and Pollard, 2018). Beyond this, macrophages can facilitate the 

angiogenic switch through production of vascular endothelial growth factor A 

(VEGFA), WNT7B, CXCL8 and other secreted factors (Lin et al., 2006; Yeo et 

al., 2014). In addition, macrophages are able to directly interact with the 

endothelial compartment. For example, expression of angiopoietin 2 receptor 

(TIE2) on monocytes facilitates binding to angiopoietin 2-expressing endothelial 

cells, and subsequent angiogenesis in a paracrine manner (De Palma et al., 

2005).  

 

TAMs also play a role in tumour immune evasion and therefore local tumour 

progression. The ability of TAM to subvert the host immune response can occur 

via surface receptors, secreted factors or metabolic dysregulation. TAM 

expression of non-classical class I MHC, or co-inhibitory checkpoints including 

PD-L1, can negatively modulate natural killer (NK) and T cell activation (Kochan 

et al., 2013; DeNardo and Ruffell, 2019). Immunosuppressive secreted factors 

include IL-10 and TGF-𝛽, the latter being able to induce Treg formation 
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(Cassetta and Pollard, 2018), and chemokines such as CCL2 which can further 

recruit immunosuppressive myeloid cells via its receptor CCR2. A well-studied 

metabolic consequence of alternative macrophage activation is depletion of 

microenvironmental L-arginine via overexpression of the enzyme arginase 1 

(Arg1). Using Lewis Lung carcinoma cells injected subcutaneously, it was 

shown that a subpopulation of TAM expressed high levels of Arg1, and that 

injection of an arginase inhibitor was able to block tumour growth (Rodriguez et 

al., 2004). In vitro, these Arg1-expressing macrophages inhibited proliferation of 

antigen-specific T cells and blocked re-expression of the TCR CD3𝜁chain. In a 

similar vein, TAM depletion of the amino acid tryptophan through expression of 

indoleamine 2,3-dioxygenase (IDO), can inhibit T cell proliferation and effector 

function (Viola et al., 2019). 

 

Finally, in some models, macrophages have been shown to aid the latter stages 

of metastasis formation – extravasation, seeding and subsequent tumour 

growth. In several models of breast cancer, tumour and stromal-derived CCL2 

recruited inflammatory monocytes (which subsequently differentiated to MDM) 

to sites of lung metastases (but not primary tumours). Blocking CCL2/CCR2 

interaction inhibited lung metastasis formation and prolonged survival. In 

addition, myeloid-derived VEGFA was important in enhancing endothelial 

permeability to facilitate extravasation (Qian et al., 2011). In a separate study 

using Lewis lung carcinoma, tumour-secreted veriscan acted via macrophage 

TLR2 to facilitate metastases to distant sites (Kim et al., 2009).  

 

Given their association with poor prognosis and evidence of tumour-promoting 

activity, efforts have been made to target the TAM compartment. Conceptually 

this may be achieved by depleting or repolarising TAMs. Administration of a 

colony stimulating factor 1 receptor (CSF1R) inhibitor to patients with 

tenosynovial sarcoma, a tumour type characterised by high CSF1 and CSF1R, 

produced objective responses in the majority of patients (Tap et al., 2015). This 

provides proof-of-concept that TAM-targeting, in a carefully selected cohort, is 

efficacious. This recently led to the first FDA approval in this tumour type (FDA 
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approves pexidartinib for tenosynovial giant cell tumor, 14/08/2021). CSF1R 

targeting, while effective in selected tumour types, potentially depletes the 

systemic macrophage repertoire, risking toxicity. Repolarisation of TAMs has 

the potential for reduced toxicity. To this end, several strategies have 

therapeutic potential including CD40 agonistic antibodies, toll-like receptor 

(TLR) stimulators and PI3K-𝛾 inhibition (Kaneda et al., 2016; Cendrowicz et al., 

2021). The most clinically successful strategy thus far, however, has been 

targeting the CD47-SIRP𝛼 interaction. CD47 is overexpressed on several 

cancer types and serves to protect against autophagocytosis while also 

affecting macrophage polarisation (Jaiswal et al., 2009; Cassetta and Pollard, 

2018). Early phase trials in haematological malignancy have been encouraging, 

leading to FDA orphan drug status and a current phase III trial for patients with 

myelodysplastic syndrome (Garcia-Manero et al., 2021). Another agent, RRx-

001, is a nongenotoxic alkylating agent whose anticancer mechanism is not well 

understood but partly involves inducing M1 to M2 repolarisation via a complex 

mechanism involving phagocytosis of drug-bound, oxidatively stressed, 

erythrocytes in hypoxic tumour (Oronsky et al., 2021). It is being tested in a 

phase III trial for patients with small cell lung cancer (Oronsky et al., 2019).  

 

1.2.2.2 Dendritic cells 

 
Several dendritic cell (DC) subsets exist based on ontogeny, phenotype and 

function (Wculek et al., 2020). In both mice and humans, the first major division 

of these cells is into conventional vs non-conventional subtypes. In mice, 

conventional DCs (cDCs) can be subdivided into CD11b+ vs CD11b- DCs. The 

latter (CD11b-) subgroup is also known as the cDC1 subtype and include DCs 

that express the transcription factor BATF3. These have been shown to have a 

crucial role in antitumour immunity. DCs from Batf3-/- mice show defective 

cross-presentation and impaired antitumour responses to highly immunogenic 

syngeneic tumours (Hildner et al., 2008). Non-conventional subsets include 
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B220+ plasmacytoid DCs and monocyte-derived DCs which differentiate from 

CCR2+ monocytes under inflammatory conditions.  

 

On encountering specific cues, dendritic cells undergo maturation. Whilst this is 

a heterogenous process dependent on divergent environmental cues, it 

involves certain fundamental changes including enhanced antigen processing, 

migratory and co-stimulatory capacity plus liberation of various cytokines, 

influencing T cell differentiation (Dalod et al., 2014). This process is a critical 

part of the cancer immunity cycle. For example, upon activation-induced CCR7 

expression, DCs can enter tumour draining lymph nodes and effectively prime 

antitumour T cell responses (Chen and Mellman, 2013). The aforementioned 

cues which activate DCs can vary. For example, in one study, WT mice as well 

as those deficient for TLR4, TLR6 or MyD88 all generated spontaneous 

antitumour immune responses to subcutaneous (SC) B16.SIY melanoma 

tumours suggesting they are dispensable for DC activation. Conversely, those 

deficient in interferon regulatory factor 3 (IRF3) or stimulator of interferon genes 

(STING) did not, and further analysis in vitro and in vivo suggested failure of T 

cell priming by antigen presenting cells, including DCs, was responsible (Woo 

et al., 2014).  Conversely, immunogenic cell death, for example that elicited by 

chemotherapy, does require intact DC TLR4 signalling to generate a productive 

anti-tumour response (Kroemer et al., 2013) suggesting that routes to DC 

activation differ according to external conditions. 

 

Given their role in initiation of adaptive immune responses, tumours have 

evolved mechanisms to subvert DC recruitment or function. For example, in a 

BRAFV600E/PTEN-/- melanoma model, introduction of a stabilising 𝛽-catenin 

mutation resulted in a lack of tumour CCL4 and consequent reduction in 

tumour-infiltrating Batf3+ DCs (Spranger et al., 2017). These tumours lacked a T 

cell infiltrate and failed to respond to immune checkpoint blockade. Similarly, in 

a separate model of BRAFv600E melanoma, Ptgs1/2 KO resulted in NK-mediated 

cDC1 recruitment in a CCL5 and XCL1 dependent manner (Böttcher et al., 

2018). In both studies, gene expression analyses of human tumours identified 
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analogous mechanisms of immune subversion suggesting that cDC targeting 

could be a viable strategy to synergise with checkpoint blockade. Beyond DC 

recruitment, the TME can subvert DC differentiation and activation thereby 

affecting function. Such mechanisms include tumour-intrinsic expression of 

CD47, veriscan, IL-10, lactic acid or induction of ER stress within DCs. In 

addition, a novel extracellular mechanism of DC modulation has recently been 

reported (Giampazolias et al., 2021). This study showed that secreted gelsolin 

can inhibit the binding of cDC1-expressed DNGR-1 to F-actin (exposed on dead 

cell debris). Usually, DNGR-1 engagement by F-actin promotes cross-

presentation, and hence CD8+ T cell priming. Consistently, mice deficient in 

secreted gelsolin were able to better control the growth of various tumour 

models compared to WT mice and also responded better to treatment with 

various immunotherapy.  

 

Several strategies have been used to exploit DCs for therapeutic purposes. The 

first group of strategies aim to stimulate DC maturation/activation. Imiquimod, a 

TLR7/8 agonist is used clinically for non-melanomatous skin cancers and has 

shown efficacy for the treatment of cutaneous breast cancer metastases 

although patient numbers were small (Adams et al., 2012). An obvious limitation 

of such a strategy is route of administration, although oral agonists for TLR7 

and other TLRs are being developed (Gardner, de Mingo Pulido and Ruffell, 

2020). As mentioned previously, sensing of tumour DNA via the cGAS-STING 

pathway can activate DCs. It should be noted, however, that this pathway is 

active in other TME cells and so the precise mechanism of action will be 

context-specific. However, clinical activity has been limited so far; challenges 

include the metabolic stability of such drugs, concerns of systemic toxicity, their 

effect on effector T cells and mitigation of compensatory feedback loops 

following STING targeting (Amouzegar et al., 2021). A separate group of 

strategies involves blocking inhibitory signals. As an example, it has been 

shown that DC TIM3 can interact with the alarmin HMGB1 and therefore 

interfere with the innate response to chemotherapy-induced cell death (Chiba et 

al., 2012). TIM3 inhibition may therefore be an attractive strategy in combination 
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with chemotherapy. Finally, dendritic cell vaccines have been tested in over 200 

clinical trials.  Evidence of CD8+ T cell responses have been seen, but these 

have rarely translated into meaningful clinical benefit (Wculek et al., 2020). 

Nonetheless this is a strategy with huge potential. It is possible, perhaps even 

likely, that an optimal combination of DC subtype, targeted antigen, DC 

adjuvant and method of delivery will eventually be successful in the right 

patients.  

 

1.2.2.3 T cells 

 
T cells form a diverse group of cells of the lymphoid lineage. Those that express 

an 𝛼𝛽 T cell receptor (TCR) can broadly be subtyped into CD8+ cytotoxic T 

cells, CD4+ T helper cells and CD4+ T regulatory cells (Tregs). Within each of 

these strata are yet further subtypes (differentiation fates) and transcriptional 

states.  

 

Although tumour cells can be phagocytosed, for example by TAMs (Gordon et 

al., 2017), CD8+ T cells are often considered the most important final effector 

mechanism for immune-mediated cancer killing (Raskov et al., 2021). This 

process requires CD8+ T cell activation and proliferation. This involves: a) 

recognition of its cognate antigen in the context of class I MHC on a 

professional antigen presenting cell (APC), b) secondary (co-stimulatory) 

signals beginning with ligation of T cell CD28 with CD80/86 on the APC and c) 

liberation of cytokines, which may be autocrine, to enhance T cell proliferation 

and survival (Waldman, Fritz and Lenardo, 2020). Following activation in this 

way, the CD8+ T cell is able to kill cognate antigen-expressing target cells.  

 

Despite the potential for adaptive immunity to eliminate neoplastic cells, 

clinically apparent tumours have not succumbed in this way. Several 

mechanisms may be responsible, most of which ultimately affect the capacity of 

effector CD8+ T cells to recognise, reach or kill tumour cells (Sharma, Hu-
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Lieskovan et al., 2017; Christian U. Blank, John B. Haanen, 2016). As a first 

requirement, tumours must present antigens likely to generate an adaptive 

immune response. Such antigens are either tumour-specific, being generated 

from somatic genomic alterations, viruses or cancer-germline gene products, or 

they are tumour-associated, including overexpressed proteins or differentiation 

antigens only expressed in the tumour cells and its tissue of origin (Coulie et al., 

2014). Presentation of such antigens requires intact antigen processing 

machinery. Thus, lack of immunogenic antigens or the machinery necessary to 

process them may prevent tumour immune rejection.  

 

Nonetheless, many clinically apparently tumours do present potentially 

immunogenic antigens, yet escape CD8+ T cell mediated destruction. One 

mechanism of tumour escape, involves the action of inhibitory checkpoint 

molecules that restrain/alter CD8+ T cell activation, proliferation, effector 

function and metabolism (Waldman, Fritz and Lenardo, 2020). For example, 

ligation of CD8+ T cell-expressed PD-1 with stromal or tumour cell-expressed 

PD-L1 can inhibit T cell proliferation and affect survival (Raskov et al., 2021). As 

discussed later, PD-L1 upregulation on tumour cells can be secondary to 

oncogenic signalling (Coelho et al., 2017) while PD-1 upregulation on T cells 

may be part of a broader hyporesponsive state in these cells (Philip and 

Schietinger, 2021). Such T cell dysfunction is still not completely understood in 

terms of its causes, molecular programs, phenotype and functional 

consequences. One theory proposes that early in tumorigeneses, low levels of 

tumour antigen combined with lack of co-stimulation lead to a dysfunctional 

state akin to anergy (early dysfunction). As the tumour progresses, the 

combination of a continuous antigen stimulation along with a hostile TME with 

immunosuppressive cells, cytokines, nutrient deprivation and metabolic stress 

results in a more profound, ‘late dysfunctional state’. Phenotypically, this is 

characterised by upregulation of various inhibitory immune checkpoints 

including PD-1, LAG3 and TIM3 while functionally, cells progressively lose 

effector abilities in a well-described hierarchical manner, including effector 
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cytokine secretion and proficiency in target cell killing (Philip and Schietinger, 

2021). 

 

Given the negative role of PD-1/PD-L1 signalling in T cell activation, inhibitors 

of this checkpoint have been used therapeutically with success in specific 

tumour types (Robert, 2020). Nonetheless, the precise mechanism and nature 

of the cells that execute the response is not known (Wei, Duffy and Allison, 

2018). There is evidence to suggest that terminally dysfunctional T cells are 

epigenetically fixed, and therefore unable to reinvigorated by checkpoint 

blockade (Philip et al., 2017). Nonetheless specific T cells, for example those in 

tumour draining lymph nodes (TDLNs) or that have recently entered the TME 

may be in a more progenitor-like state and therefore have capacity to increase 

effector function in response to checkpoint blockade (Philip and Schietinger, 

2021). In support of this, a recent study extracted tumour infiltrating 

lymphocytes (TIL) from patients with NSCLC who had progressed on nivolumab 

(an anti-PD-1 antibody), expanded and activated them ex vivo before reinfusion 

(Creelan et al., 2021). Several patients showed complete responses. Although 

the extracted and reinfused TIL products were heterogenous, it is possible that 

the cells that responded to IL2 ex vivo were the progenitor-like or ‘less’ 

dysfunctional T cells that had retained proliferating capacity.  

 

 

Beyond CD8+ T cells, the contribution of CD4+ T helper cells (hereafter CD4+ 

cells) to tumour immune responses cannot be overlooked. Indeed, the TIL 

products for many patients in the aforementioned NSCLC study contained 

tumour-specific CD4+ cells, and a durable antitumour response was observed in 

a patient with cholangiocarcinoma after infusion of a tumour-specific CD4+ 

product (Tran et al., 2014). CD4+ T cells are a heterogenous population. Their 

most studied role is in the provision of ‘help’ to CD8+ T cells directly (e.g. 

through secretion of IL2) and indirectly (e.g. through the maintenance of cross-

presenting DCs, for example by upregulation of CD40L). In addition, if polarised 

towards a TH1 phenotype, they can liberate IFN𝛾 and TNF𝛼, both of which can 
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have direct antitumour effects. Furthermore, it has also been shown that these 

cells are capable of direct cytotoxicity, dependent on the transcription factor 

BLIMP1 (Śledzińska et al., 2020). In this study, melanoma-specific (tryp-1-

specific) CD4+ cell transfer into lymphodepleted mice injected with the B16 

melanoma line resulted in CD4+ tumour infiltration and upregulation of GzmB in 

these cells. Loss of Blimp-1 prevented this expression while loss of T-bet 

prevented IFN-𝛾 expression suggesting different transcriptional regulators of 

polyfunctionality.  

 

In the study above, acquisition of CD4+ cell cytotoxicity was restrained through 

the presence of regulatory T cells (Tregs). Tregs are a subset of CD4+ cells 

characterised by the transcription factor FOXP3 and the high affinity IL2 

receptor subunit CD25 which, in physiology, are indispensable for the 

maintenance of self-tolerance (Vignali, Collison and Workman, 2008). Such 

cells are able to exert immunosuppression via several mechanisms (Togashi, 

Shitara and Nishikawa, 2019). These include competition for IL2, inhibition of 

antigen presenting cells (e.g. through CTLA-4 expression), secretion of soluble 

factors including cytokines (e.g. IL10) and adenosine and even direct 

cytotoxicity against immune effectors through perforin and granzyme secretion. 

In support of this, lack of CTLA4 specifically in murine Tregs leads to fatal 

autoimmunity (Wing et al., 2008). As further evidence for the importance of 

Tregs in cancer it is notable that the aforementioned study interrogating the 

ontogeny of TAM in lung cancer (Casanova-Acebes et al., 2021) demonstrated 

that TRMs recruit Tregs early in NSCLC and that deletion of such TRMs not 

only reduced Treg numbers but likely also their immunosuppressive capacity as 

evidenced by reduced CTLA4 and CD73 expression.  

 

1.2.2.4 Other immunosuppressive TME populations 

The TME is of inordinate complexity and several other cell types including NK 

cells, neutrophils, B cells and non-immune types including cancer-associated 

fibroblasts (CAFs) and endothelial cells amongst others all mediate 
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immunosuppressive functions. It is likely that the relative importance of these 

cell types, and the ones previously mentioned, depend on diverse factors 

including the primary or metastatic tissue site, histology and stage of the 

cancer, systemic immune status, the microbiome, any anti-cancer treatment 

received and more (Christian U. Blank, John B. Haanen, 2016).  

 

NK cells are strictly cells of the innate system, since their receptors are 

germline-encoded, however their effector mechanisms overlap profoundly with 

those of cytotoxic CD8+ T cells. Discharge of their killing mechanisms depends 

on the balance between activation inflammatory signals mediated by diverse 

cell surface receptors (Miller and Lanier, 2019). In humans, activating receptors 

include CD16, NKp30, NKp44 and NKp46 while inhibitory receptors include 

certain killer inhibitory receptors (KIRs), NKG2A and LILRB1. Besides the 

activating receptors, co-activating receptors which enhance NK cell activation, 

include DNAM1, 4-1BB and 2B4. Co-inhibitory receptors including PD-1, LAG3 

and TIM3 are also relevant (Cózar et al., 2021). Many such inhibitory receptors 

recognise MHC class I whose genes are often downregulated in human 

melanoma and lung cancer, for example (Rodig et al., 2018; Rosenthal et al., 

2019). NK cells are capable of eliminating some tumours that lack class I MHC 

(Karre et al., 1986) however this mechanism is subverted in many tumours. 

Mechanisms of subversion include the immunoediting of activating NK ligands, 

the expression of alternative inhibitory receptors and a hostile TME leading to 

ineffective NK persistence after killing (Cózar et al., 2021). Mechanisms to re-

engage NK cells leading to effective killing include the use of antibodies against 

inhibitory receptors (e.g. anti-NKG2A), stimulation of ADCC by tagging tumour 

cells with IgG1-containing antibody, the use of bispecific antibodies able to 

ligate NK activating receptors and tumour antigen or therapies to upregulate 

stress-ligands on tumours (Miller and Lanier, 2019). 

 

Like macrophages, neutrophils are plastic cells of the myeloid lineage. Much 

interest in the role of neutrophils in cancer has stemmed from the negative 

association between tumour associated neutrophils (TAN) and survival plus the 
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use of the neutrophil-lymphocyte ratio as a promising biomarker for checkpoint 

inhibitor therapy (Havel, Chowell and Chan, 2019). However, given their 

plasticity, neutrophils have been ascribed both anti and pro-tumourigenic 

function and, accordingly, been given the nomenclature N1 and N2 neutrophils 

respectively. As such, the relationship between neutrophils and cancer 

prognosis is complex. Although the majority of studies describe a negative 

association between TAN and overall survival, the relationship depends on 

diverse factors including the type of tumour and its stage, neutrophil phenotype 

and location within the tumour (Shaul and Fridlender, 2019). As an example of 

the anti-tumour effect of TAN, in a study of early NSCLC patients TAN 

interacted with T cells to induce T cell proliferation and IFN𝛾 liberation 

suggesting that rather than being immunosuppressive, these TAN promoted 

anti-tumour responses (Eruslanov et al., 2014). In a follow-up study, a 

neutrophil subset with APC characteristics, able to cross-present antigen, was 

found in patients with early-stage NSCLC dependent on the synergistic action 

of TME-derived IFN𝛾 and GM-CSF (Singhal et al., 2016). Conversely TAN can 

inhibit anti-tumour immunity by secreting chemokines (e.g. CCL17 recruiting 

Tregs and CXCL8 which recruits further neutrophils and promotes tumour cell 

proliferation), upregulating ARG1, promoting angiogenesis and metastases 

through MMP9 secretion and contributing to the metastatic niche through 

neutrophil extracellular trap (NET) formation (Shaul and Fridlender, 2019; 

Mukaida, Sasaki and Baba, 2020). 

 

The role of B cells in cancer has not been as thoroughly studied as their T cell 

counterparts. However, recent publications focussing on tertiary lymphoid 

structures (TLSs) in melanoma showed that at the very least, B cell markers 

have the potential to be prognostic (Cabrita et al., 2020; Helmink et al., 2020). 

In one such study it was shown that co-occurrence of CD8+ and CD20+ cells in 

the TME of patients with metastatic melanoma independently predicted 

improved overall survival (Cabrita et al., 2020). These tumours contained TLSs 

and increased numbers of TCF7+ (naïve or memory) T cells compared to non-

TLS bearing tumours, suggesting ongoing recruitment of such cells to the TLS-
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bearing TME . Separately, a study looking at patients with metastatic melanoma 

who were treated with neoadjuvant checkpoint blockade, found that B cell 

markers (in bulk RNAseq) were the most differentially expressed between 

responders and non-responders and validated this in a renal cell carcinoma 

cohort. Histological analysis showed these B cells were part of TLS structures 

and single cell analysis of these cells revealed enrichment of class-switched 

memory B cells in responders suggesting direct contribution to the improved 

outcome (Helmink et al., 2020). Beyond their positive influence within TLSs, B 

cells have also been shown to have immunosuppressive functions too (Michaud 

et al., 2021). Mechanisms of B cell immunosuppression include the expression 

of inhibitory checkpoints such as PD-L1 and the liberation of 

immunosuppressive cytokines including IL-10 and IL-35. The signals which 

promote such immune regulatory function of B cells are still being explored.  

 

1.2.3 Classification of the tumour immune microenvironment 

Techniques that allow spatial profiling of tumours have resulted in 

classifications of different types of TME. In one such classification based on 

moderate-resolution TME analysis, three broad-classes were described 

(Binnewies et al., 2018).  
 
Name Description 
Infiltrated-excluded Lack cytotoxic lymphocytes, poor response to 

immunotherapy 

Infiltrated-inflamed Activated lymphocyte infiltration. Often PD-L1 high 

Tertiary lymphoid 
structure containing 

Presence of cellular aggregates of lymphoid cells 

architecturally resembling lymphoid tissue 

 
Table 3. Types of tumour immune microenvironment  

 

Infiltrated-excluded TMEs (I-E) are those broadly populated with immune cells 

but void of cytotoxic lymphocytes. In such TMEs, cytotoxic cells are often 

located at the tumour periphery or within fibrotic nests. Such I-E tumours have 
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also been called ‘cold’, and demonstrate poor response to immunotherapy 

when compared with T-cell-infiltrated lesions (Daud et al., 2016). In addition to 

the altered spatial distribution of T cells in this TME class, the T cells lack 

expression of activation markers such as granzymes and interferon-gamma 

(IFN-𝛾) (Binnewies et al., 2018). Importantly, the presence of a ‘cold’ TME does 

not necessarily imply lack of immunogenic antigen expression by tumour. 

Instead, such a TME may be secondary to various tumour-intrinsic or extrinsic 

mechanisms which affect innate immune sensing, or modulate T cell 

recruitment, survival, proliferation or function (Gabrilovich and Nagaraj, 2009; 

Feig et al., 2013; Beatty et al., 2015; Spranger, 2016). In addition, in some 

tumours characterised by a desmoplastic stroma the physical barrier imposed 

by the matrix, plus fibroblast-secreted immunosuppressive factors, may be the 

primary mechanism of lymphocyte exclusion (Pickup, Novitskiy and Moses, 

2013). 

 

The next subtype of TME, infiltrated-inflamed (I-I), is characterised by infiltration 

of activation marker-expressing CD8+ T cells into the tumour core. The co-

existence of viable tumour with such T cells implies the presence of immune 

escape mechanisms. As evidence of this, tumour and stromal cells in many 

such tumours express high levels of PD-L1.  

 

The third class of tumours, essentially a subclass of I-I tumours, have tertiary 

lymphoid structure (TLS)-bearing TMEs. TLSs are cellular aggregates primarily 

composed of lymphoid lineage cells such as naïve and activated T cells 

(including T follicular helper cells), B cells, plasma cells and follicular dendritic 

cells arranged in a manner architecturally similar to secondary lymphoid organs 
(Sautès-Fridman et al., 2019). Evidence for the relevance of TLSs in human 

malignancies includes two recent studies which looked at separate cohorts of 

patients with melanoma or renal cancer and found association between 

improved overall survival and the presence of tertiary lymphoid structures 

(Cabrita et al., 2020; Helmink et al., 2020).  
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While alternative TME subtyping has also been described (Hegde, Karanikas 

and Evers, 2016), there is overlap with the classes above. Furthermore, there is 

consistent evidence that tumour immune composition (which reflects TME 

structure) can be both prognostic, and predictive of therapeutic response to 

anti-PD-1 or PD-L1 antibodies (Herbst et al., 2014; Tumeh et al., 2014). 

Therefore, an understanding of the factors influencing TME structure may 

suggest therapeutic targets that could be used to remodel the tumour 

contexture and generate clinical responses. Tumour intrinsic factors polarising 

the tumour microenvironment can be conceptualised in four (potentially related) 

categories: a) Antigen load/landscape, b) Antigen presentation, c) ‘Genetic’ T 

cell exclusion (e.g. oncogenic signalling altering the tumour secretome) and d) 

Resistance to (T cell) effector mechanisms (Sharma et al., 2017) . The latter 3 

may all be affected by oncogenes and TSGs some of which are discussed later.  

 

The effect of antigenic load on microenvironment composition is illustrated well 

by the consensus molecular subtypes of colorectal carcinoma (CRC), a tumour 

type that is generally insensitive to checkpoint inhibition as monotherapy 

(Guinney et al., 2015). Consensus subtype 1 of this international classification 

is characterised by microsatellite instability and a high mutational burden. This 

is hypothesized to explain the high expression of CD8+ & TH1 T cell genes and 

high PD-1 expression seen in these tumours. Consequently, this subtype of 

CRC is uniquely sensitive to anti-PD-1 therapy despite having poor survival 

after conventional therapies (Guinney et al., 2015).  

 

Tumour ‘extrinsic’ factors polarising the microenvironment include various 

immune-polarising cell types such as those of the myeloid lineage, regulatory T 

cells (Tregs), cancer associated fibroblasts and endothelial cells (Wong et al., 

2020; Arwert et al., 2021). Of note, these ‘intrinsic’ and ‘extrinsic’ factors, rather 

than being independent, interact such that immunosuppressive cell types can 

modulate tumour cell-intrinsic signalling and vice-versa. As just one example, 

oncogenic STAT3 suppression can result in liberation of cytokines that induce 

activation of innate immune cells. These cells, in turn released further pro-
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inflammatory mediators contributing to anti-tumour cytotoxicity (Wang et al., 

2004). 

 

1.2.4 Tumour-intrinsic mechanisms of immune escape 

1.2.4.1 Introduction 

The TME consists of a variety of cell types which shape the immune response 

to the tumour. However, arguably the most important cell type in shaping 

immune responses are the tumour cells themselves. Tumour cells can influence 

tumour immunity in several ways. Firstly, these cells may harbour tumour-

associated or tumour-specific antigens capable of activating adaptive immunity 

while conversely they may, often epigenetically, suppress expression of such 

molecules or the machinery required to present them on the cell surface. 

However, beyond the ‘intrinsic’ immunogenicity of a tumour cell, oncogene and 

tumour-suppressor gene (TSG)-mediated signalling pathways for example by 

KRAS (and other RAS family members), TP53, WNT, PI3K and STK11 

amongst others have been shown to have diverse effect on TME immune 

polarisation (Nguyen and Spranger, 2020). This can be via a variety of 

mechanisms including alteration of cell-surface molecules (Coelho et al., 2017), 

secreted factors (Luke et al., 2019) or altered metabolism (Scharping et al., 

2021).  

 

Given the clonal nature of many of these, it is likely that this influence extends 

throughout the disease course, from the earliest invasive (or even pre-invasive) 

lesion until metastatic dissemination to various sites. As an example, work in 

pre-invasive squamous cell lung cancer in patients demonstrated altered cancer 

cell-intrinsic antigen presentation and expression of 4-1BBL in lesions that 

progressed to invasive cancer versus those that regressed (Pennycuick et al., 

2020). Furthermore, a study in murine NSCLC demonstrated that early lesions 

co-opt alveolar macrophages to influence immunosuppressive cell composition 

(Casanova-Acebes et al., 2021).  
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Here we describe some of the immune effects that oncogenes and TSGs can 

have.  

 

1.2.4.2 KRAS and other RAS family members 

Although the canonical roles for KRAS pertain to its influence on proliferation 

and survival, it is becoming clearer that it also influences the hallmarks of 

immune evasion and tumour-promoting inflammation (Hamarsheh et al., 2020). 

The ability of oncogenic KRAS to produce these effects may not be surprising. 

Firstly, RAS family members including KRAS have been shown to activate 

NFkB signalling in the epithelial compartment; this influences transcription of 

various pro-inflammatory cytokines (Finco et al., 1997; Kim et al., 2002). 

Furthermore, MAPK signalling is responsible for many downstream effects of 

TLR signalling in macrophages, and AP-1 (a key downstream mediator of 

KRAS signalling) is necessary for proper T cell activation and cytokine 

production (Kawasaki and Kawai, 2014; Atsaves et al., 2019). In wound healing, 

a process necessitating proliferation of the epithelial compartment, there is 

abundant epithelial-immune cross-talk and evidence that the epithelial 

compartment proliferates in response to cytokines such as IL6 (Kuhn et al., 

2014; Brazil et al., 2019).  

 

With this in mind, there is accumulating literature demonstrating the ability of 

oncogenic RAS to induce cytokine production that can influence tumorigeneses 

and antitumour immunity. One well-studied example is IL6. This is a pleiotropic 

cytokine most commonly associated with acute inflammation. Multiple studies 

have demonstrated that oncogenic RAS can liberate IL6 from various cell types 

and that this required for tumourigenesis (Ancrile, Lim and Counter, 2007). The 

direct mechanism of IL6 leading to this effect is likely to be context dependent 

and, indeed, in one study IL6 deficiency promoted tumour initiation through 

influx of iNOS-expressing macrophages (Qu et al., 2015). In fact, the effects of 

most cytokines are difficult to summarise succinctly and will depend on whether 

the tumour is early or advanced, the concentration and temporal properties of 
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the cytokine, the cells present in the TME, their receptor expression patterns, 

other cytokines present etc. For this reason, with the exception of a few, most 

cytokines are capable of being both pro or anti-tumourigenic. Taking this into 

account, it is notable that while IL6 can act to directly stimulate tumour cell 

proliferation and angiogenesis, it can also remodel the TME to be more 

immunosuppressive. Studies in murine pancreas and lung cancer models have 

shown that the IL6/STAT3 axis increases influx of immunosuppressive myeloid 

cells, although it is not always clear upon which cell types the IL6 acts to 

mediate this effect (Fukuda et al., 2011; Caetano et al., 2016).  

 

Beyond IL6, oncogenic RAS can affect expression of the ELR+ CXC 

chemokines which generally recruit cells of the myeloid lineage. Across a 

variety of cell lines, it was shown that all RAS isoforms could induce secretion 

of the entire family of ELR+ CXC chemokines although the extent of increase 

over control varied between the cell lines (O’Hayer, Brady and Counter, 2009). 

Furthermore, mice deficient in CXCR2 were resistant to spontaneous, typically 

RAS-mutated, skin tumours (O’Hayer, Brady and Counter, 2009). Thus, similar 

to IL6, CXCL chemokines have been implicated in RAS-driven tumorigeneses, 

for example by acting in the TME. Using subcutaneously injected HeLa cells it 

was shown that CXCL8 was tumorigenic by promoting myeloid cell recruitment 

and neovascularisation without direct tumour autonomous effect (Sparmann 

and Bar-Sagi, 2004). Similarly, in a lung carcinoma model, treatment with an 

anti-CXCR2 antibody affect tumour growth in vivo only (Wislez et al., 2006).  

 

Beyond IL6 and the ELR+ CXC chemokines, RAS-mutated tumours have been 

linked to secretion of several further cytokines/chemokines with potentially 

immunomodulatory properties, including IL1𝛽, IL10, TGF−𝛽, CCL5 and 

recruitment of Th17 lymphocytes secreting tumour-promoting IL17 (Carvalho et 

al., 2018).  As usual, the quantity of liberated cytokines and their effects vary 

between models, and this has to be borne in mind when making generalisations 

about the potential for targeting the TME-modulating effects of RAS 

therapeutically. It is likely that a biomarker or tumour type-specific approach 
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would maximize the likelihood of therapeutic benefit. Lack of such patient 

selection may underscore the failure of these therapies thus far (Hamarsheh et 

al., 2020). As mentioned above, given the pleiotropic nature of such cytokines, 

their effects may differ during the time course of the disease (e.g. be pro-

tumourigenic or anti-tumourigenic at different times). Intriguingly, in an 

exploratory analysis of a trial in which the IL1𝛽 inhibitor canakinumab was used 

to prevent recurrent vascular events after myocardial infarction, patients who 

received the drug had a lower incidence and mortality rate from lung cancer 

than those who received placebo (Ridker et al., 2017). Conversely, they had a 

higher rate of infections. This provides an intriguing hypothesis for the utility of 

IL1𝛽 inhibition early in the course of disease and, to this end, ongoing trials are 

taking place in early stage or adjuvant disease (NCT03968419, NCT03447769).  

 

Beyond cytokines and chemokines, RAS-mutated tumours have also been 

shown to liberate various growth factors including GM-CSF. In the models 

studied, GM-CSF was shown to promote the expansion of immunosuppressive 

myeloid populations in the primary tumour (Bayne et al., 2012; Pylayeva-Gupta 

et al., 2012). Tumour secretion of GM-CSF was also shown to be important in a 

model of metastases from pancreatic adenocarcinoma where it influenced the 

differentiation of monocytes to immunosuppressive DCs capable of recruiting 

Tregs and suppressing CD8+ T cells (Kenkel et al., 2017). This data is 

somewhat paradoxical given the immunostimulatory effect of GM-CSF in other 

contexts. Indeed, it has been used as an adjuvant in anti-cancer vaccines. As 

with many cytokines, the pleiotropic nature of GM-CSF effect may depend on its 

relative concentration plus tumour and host tissue-intrinsic factors and 

therefore, once again, the context-specific effect of RAS’ ability to liberate these 

cytokines needs to be borne in mind.  

 

As well as secreted factors, membrane-bound molecules may influence tumour 

immune evasion. In various model systems, oncogenic RAS has been shown to 

upregulate PD-L1 expression. For example, transformation of human lung 

bronchial epithelial cells resulted in PD-L1 upregulation while blocking MEK 
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activity in this line or the human lung adenocarcinoma line H358 reduced PD-L1 

expression (Chen et al., 2017), consistent with work in H1373 and H441 KRAS-

mutant lung adenocarcinoma lines (Sumimoto et al., 2016). Our lab later 

demonstrated that this effect was, at least in part, due to the ability of oncogenic 

RAS to inhibit the RNA-destabilising function of tristetraprolin (TTP) (Coelho et 

al., 2017). As a result, PD-L1 mRNA stability, and protein expression, 

increased. TTP and its ability to destabilise target mRNA is discussed later in 

this introduction.  

 

Of note in the cell lines interrogated in the aforementioned studies, AKT 

inhibition did not have the same effect on PD-L1 expression as inhibiting MEK. 

However, other studies have shown a role for the PI3K/mTOR pathway in PD-

L1 regulation (Lastwika et al., 2016). This is consistent with work on an 

extensive panel of melanoma cell lines (with varying BRAF, NRAS or PTEN 

status) which showed variable effect of inhibitors against BRAF, MEK or AKT 

on PD-L1 expression, even when considering lines with common genetic 

alterations (Atefi et al., 2014). This suggests that the genomic and epigenomic 

background likely modulates the effect of KRAS signalling on PD-L1 

expression. Consistent with the pre-clinical data, there is also suggestion that 

KRAS upregulates PD-L1 in patients, although it is difficult to exclude smoking 

and tumour extrinsic PD-L1 induction by IFN𝛾 as the predominant mechanism 

of PD-L1 upregulation (Huynh et al., 2016; Ji et al., 2016)  

 

While many studies show the effect of oncogenic RAS in isolation, human lung 

tumours have a high tumour mutational burden and contain aberrations in 

multiple oncogenes and TSGs. As an example of the potential for co-operation 

between oncogenes to influence the TME, a study looking at co-activation of 

MYC in a lung model driven by KRAS(G12D) demonstrated dramatic TME 

alteration upon MYC activation (Kortlever et al., 2017). This included CCL9-

driven TAM recruitment, IL-23 mediated NK exclusion and a dramatic increase 

TAM-driven angiogenesis. More commonly, however, human KRAS-mutated 

lung cancer is partitioned according to aberrations in TSGs such as P53, 
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KEAP1 and STK11 so efforts on understanding how these co-operate with 

KRAS may be useful. To this end several studies have looked at STK11/LKB1 

loss in KRAS-mutant lung adenocarcinoma models, fuelled by observations in 

patients that these tumours have a poor prognosis and have features of an 

excluded TME (Skoulidis et al., 2018). Mechanistically, it has been suggested 

that STK11 loss results in enhanced epigenetic plasticity and, under selective 

pressure, silencing of STING (Kitajima et al., 2019). STING silencing led to 

reducing IRF3-mediated transcription and increased NFkB signalling, including 

enhanced immunosuppressive myeloid cell recruitment.  

 

Much previous data relating to the ability of RAS to influence tumour immunity 

relied on the ability to switch RAS on/off in vitro, or by studying the importance 

of identified RAS-targets by knockdown. Often, when such experiments were 

performed in vivo, the perturbation was instigated from the onset of tumour 

implantation (or spontaneous generation in GEMMs). As alluded to above, the 

effect of cytokines such as IL6 and, indeed, mechanisms that a tumour uses to 

evade immunity, may change as the tumour develops. So, while innate immune 

effects regarding IL6 and CXC chemokines may be important at tumour 

initiation there may be additional RAS-mediated immune effects in established 

tumours.  

 

The advent of mutant-specific KRAS(G12C) inhibitors, as discussed above, has 

allowed us to flexibly inhibit tumour-specific oncogenic KRAS in vitro and in vivo 

giving the opportunity to study the immune-modulatory effects in manner not 

possible before. In five human xenograft models of NSCLC, inhibition of 

oncogenic KRAS using MRTX849 induced downregulation of CXCL1, CXCL8, 

NT5E and VEGFA mRNA, downregulation of CD274 (PD-L1) mRNA and 

upregulation of class I MHC (Briere et al., 2019). In a syngeneic model (CT26, 

colon carcinoma), treatment reduced myeloid-derived suppressor cell 

infiltration, increased macrophage ‘M1’ polarisation, recruited dendritic cells and 

increased T cell number (including T regulatory cells). Furthermore, the 

magnitude and duration of response to MRTX849 treatment of CT26 tumours in 
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immune compromised mice was diminished relative to wild-type mice. This data 

suggests that even as monotherapy, therapeutic MRTX849 efficacy is partially 

due to the generation of an adaptive anti-tumour immune response.  

 

In a separate study, long-term cures induced by AMG 510 in a subcutaneous 

CT26 model were also suggested to rely on anti-tumour immunity (Canon et al., 

2019). Similar to the experiments with MRTX849, only 1/10 mice had durable 

regression with AMG 510 alone, however combination with anti-PD-1 therapy 

resulted in complete responses in 9/10 mice. Again, KRAS(G12C) inhibitor 

treatment resulted in an increase of T cells, CD103+ cross-presenting dendritic 

cell and macrophage infiltration while also increasing T-cell chemoattractant 

cytokines, such as CXCL9-11. MEK inhibitor treatment in the same model did 

not have this effect and furthermore, MEK inhibition but not AMG 510 was 

shown to impair T cell proliferation in a co-culture system in vitro. This may 

partly explain the lack of clinical success when combining MEK or BRAF 

inhibition with immunotherapy while also suggesting that use of mutant-specific 

inhibitors such as AMG 510 could overcome this.  

Further evidence for the potential of KRAS(G12C) inhibition to reduce the 

immunosuppressive tumour microenvironment produced by oncogenic KRAS 

and potentially sensitize tumours to immune checkpoint blockade came from 

our lab, using the 3LL-ΔNRAS murine lung carcinoma model (van Maldegem et 

al., 2021). Using imaging mass cytometry (IMC), significant changes in tumour 

immune contexture induced by KRAS inhibition were clearly evident. These 

included infiltration of CD8+ cells which displayed PD-1 upregulation especially 

when in close proximity to tumour cells, suggesting tumour-driven activation.  

 

In a pancreatic cancer model, KRAS(G12C) inhibition again resulted in an 

increase in T cell chemoattractants and reduction in myeloid-derived 

suppressor cells but intriguingly, these changes were more pronounced with 

SHP2/KRAS-G12C dual inhibitor treatment (Fedele et al., 2021). Moreover, 

these effects were enhanced yet further when anti-PD-1 therapy was also 
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included, raising the intriguing possibility of using a triple combination of dual 

targeted therapy with checkpoint blockade in the clinic.  

 

Consistent with the increase in T cell chemoattractants, class I MHC and PD-L1 

mentioned in various studies above, in mouse models of pancreatic ductal 

adenocarcinoma KRAS-dependent evasion of NK and B cell responses was 

found to be due to (MYC-mediated) repression of the Type I Interferon pathway 

(Muthalagu et al., 2020).  

 

Based on such pre-clinical evidence, trials combining KRAS(G12C) inhibitors 

and immunotherapy are underway. CodeBreak 101, a multi-arm phase I trial, is 

investigating several combinations involving AMG 510, including a combination 

arm with checkpoint blockade. The combination of MRTX849 and 

pembrolizumab cleared the dose-limiting toxicity observation period in the 

phase I/II KRYSTAL-1 trial and is now formally entering the phase II stage, as 

the KRYSTAL-7 trial where MRTX849 will be combined with pembrolizumab in 

two arms, according to PD-L1 tumour proportion score. Finally, GDC-6036 is 

being combined with atezolizumab (anti-PD-L1) in a phase Ia/Ib trial and 

JDQ443 with the anti-PD-1 antibody spartalizumab in a phase Ib/II trial that 

opened in February 2021.  

 

1.2.4.3 Other tumour intrinsic pathways influencing the immune TME 

Besides RAS specifically, individual components of downstream signalling 

pathways can also affect tumour-intrinsic programs promoting immune evasion. 

For example, vemurafenib (an inhibitor of BRAF(V600E)) increases the 

expression of MHC class I in sensitive cells and thus renders them more 

susceptible to CD8-mediated killing (Boni et al., 2010; Frederick et al., 2013). 

Furthermore, BRAF inhibition in melanoma cell lines reduced production of IL6, 

IL-10 and VEGF (Sumimoto et al., 2006). Following such preclinical data, trials 

have attempted to combine immunotherapy with BRAF and MEK inhibition. 

Recent early phase clinical trials have attempted the triple combination of 
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BRAF, MEK and PD-(L)1 inhibition in patients with advanced, untreated, 

melanoma (Ribas et al., 2019, 2020). While this led to a high proportion of 

objective response (> 70%), the grade 3/4 toxicity rate was also very high (upto 

73%). Thus, although potentially efficacious, the tolerability of such 

combinations will have to be assessed in larger scale trials. Furthermore, its 

benefit over and above sequencing the therapies is currently uncertain.  

 

The next best studied RAS effector pathway is the PI3K/AKT/mTOR axis. Loss 

of PTEN, a negative regulator of PI3K signalling, in melanoma models inhibited 

T-cell mediated killing and trafficking into tumours (Peng et al., 2016). The 

same authors showed that patients with melanoma and PTEN loss had reduced 

T cell infiltration within their tumours and, , ex vivo, their T cells were less likely 

to expand successfully. Functionally, they demonstrated that PTEN loss 

resulted in tumour-intrinsic upregulation of immunosuppressive cytokines 

including CCL2 and VEGFa. Other studies supporting the hypothesis for a role 

of PTEN in anti-tumour immunity include interrogation of The Cancer Genome 

Atlas (TCGA) sarcoma data set showing that PTEN deletion correlates with 

reduced expression of genes encoding T cell markers and second study 

showing PTEN loss in an isolated progressing tumour in a patient with uterine 

cancer on checkpoint inhibition (Kalbasi and Ribas, 2020). 

 

The tumour suppressor p53 is mutated in 50% of all cancers and, like the RAS 

family, it is being increasingly appreciated that this profoundly affects tumour 

immune composition (Blagih, Buck and Vousden, 2020). Understanding its 

biology is especially important in lung cancer where tumours co-mutated in 

KRAS and p53 cluster separately, display higher expression of PD-L1 and 

markers of T cell infiltration and respond better to immune checkpoint inhibition 

than other KRAS-mutated tumours (Skoulidis et al., 2015). Nonetheless, the 

knockout of P53 in pancreas and lung cancer models already carrying KRAS 

pathway mutations, resulted in further infiltration of immunosuppressive myeloid 

cells, Tregs and systemic T cell dysfunction (Blagih et al., 2020). The same 

authors showed in another model, using doxycycline-inducible KRAS(G12D), 
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that removal of doxycycline reduced myeloid cell numbers but not Tregs 

suggesting that while KRAS and p53 co-operate to develop an 

immunosuppressive TME, some effects (at least in this model) are specific to 

p53.  

 

Beyond the MAPK pathway and related components, the WNT-𝛽-catenin 

pathway has also received attention for its ability to affect tumour immune 

responses (Kalbasi and Ribas, 2020). Its role in the CCL4-mediated recruitment 

of cross-presenting dendritic cells has already been discussed (Spranger, Bao 

and Gajewski, 2015) but beyond this, several studies have shown associations 

between activation of the pathway and the presence of an immune-excluded 

TME across several cancers (Kalbasi and Ribas, 2020). Furthermore, secretion 

of WNT-ligands by tumour cells can alter dendritic cell metabolism and affect T 

cell function (Zhao et al., 2018).  

 

As a separate strategy, several studies have studied the effect of cell-cycle 

checkpoints on tumour-intrinsic immunity. In one, the authors interrogate 

several murine models of breast and other solid tumours and found that 

CDK4/6 inhibitors were able to increase tumoural antigen presentation (Goel et 

al., 2017). This was in part due to increased intracellular dsRNA stimulating 

production of type III interferons. Using a different approach, another group 

single-cell profiled 33 melanoma tumours and identified a tumour cell-intrinsic 

expression program that associated with T cell exclusion and predicted worse 

survival (Jerby-Arnon et al., 2018). This program included many CDK target 

genes. Expression was suppressed by CDK4/6 inhibition both in vitro and in 

vivo.  

 

Thus, in conclusion, several oncogenic and tumour suppressor cell-intrinsic 

programs are able to influence the tumour immune response through 

influencing the secretion of soluble factors, cell surface molecules or cell-

intrinsic programs such as interferon response pathways. A deeper 
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understanding of the effect of such pathways will allow the development of 

rational synergies with the potential for clinical benefit.  
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1.3 Biology of tristetraprolin 

1.3.1 RNA degradation and tristetraprolin 

Gene expression profiles are often used to infer the functional state of a cell, 

driven predominantly by underlying transcriptional networks. However, steady-

state gene expression reflects the net result of transcription and mRNA 

degradation. In relative terms, transcription is much slower than degradation. To 

this end, ‘housekeeping’ genes tend to have relatively long half-lives (stable 

mRNA) while gene groups such as transcription factors, cytokines and growth 

factors are enriched for short-half-life mRNAs (unstable) (Yang et al., 2003). 

This instability gives the cell a mechanism of rapidly lowering mRNA levels by 

ceasing transcription. Conversely, increasing their stability can quickly increase 

their steady-state levels potentially more rapidly than may be achieved by 

stimulating transcription. In either case the cell is able to rapidly respond to 

external stimuli such as infection.  

 

Mature mRNAs contain stability-promoting structures including the 5’-cap and 3’ 

poly(A) tail. Degradation of mRNA must commence with disruption of one of 

these structures or endonucleolytic cleavage however, in eukaryotes, initiation 

by poly(A)-shortening is the commonest mechanism (Garneau, Wilusz and 

Wilusz, 2007). Regardless of the pathway through which degradation occurs, 

stability is primarily a function of the repertoire of proteins that associate with an 

mRNA, forming messenger ribonucleoprotein (mRNP). mRNP composition in 

turn, depends in large part on sequence-specific determinants found largely in 

the 5’ and 3’ untranslated regions (UTRs) of the message (Garneau, Wilusz and 

Wilusz, 2007). Of such sequence-specific determinants, AU-rich elements 

(AREs) are the most well characterised (Barreau, Paillard and Osborne, 2005). 

These consist of 50-150 nucleotide sequences rich in both adenine and uridine 

and, crucially, containing a core pentamer of AUUUA. Beyond the core 

pentamer, flanking A and U nucleotides are necessary for functional 

stabilisation or destabilisation by ARE-binding proteins although there is no 

consensus on the exact requirements here (Bakheet et al., 2001; Bakheet, Hitti 
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and Khabar, 2018). Furthermore, while AREs were initially discovered and 

characterised in terms of their 3’ UTR location, it has recently been discovered 

that they are also prevalent within intronic regions (Sedlyarov et al., 2016).  

 

Several proteins capable of binding to AREs have been described including 

tristetraprolin (TTP), human antigen R (HuR) and AU-rich element RNA-binding 

protein 1 (AUF1). TTP is the founding member of a family of CCCH tandem zinc 

finger-containing RNA binding proteins (Brooks and Blackshear, 2013a). 

Following binding to its target, TTP recruits deadenylase machinery to initiate 

the process of message degradation (Marchese et al., 2010). Importantly, TTP 

binding does not guarantee destabilisation and therefore other factors are 

important, although these have not been well-defined at present (Sedlyarov et 

al., 2016).  

 

1.3.2 TTP regulation 

TTP (gene name ZFP36) was first identified as an immediate early gene. Gene 

expression could be induced in response to a variety of stimuli including insulin, 

phorbol esters, serum and a variety of growth factors (Lai, Stumpos and 

Blackshear, 1990). Its gene locus is small, consisting of 2 exons (49/28bp & 

962/932bp) and one intron (381/681bp) in the human (GRCh38) and mouse 

(GRCm10) genomes respectively (data from University of Santa Cruz genome 

browser). Despite this, its transcriptional and post-transcriptional regulation is 

complex.  

 

Initial promoter analysis of TTP identified consensus elements for the 

transcription factors early growth response 1 (EGR-1), activator protein-2 (AP-2) 

and specificity protein 1 Sp1 which were all shown to contribute to serum 

induction of Zfp36, although absence of their putative binding elements did not 

completely abolish serum responsiveness, suggesting further mechanisms of 

regulation (Lai et al., 1995). Further work indicated that Smad proteins 

downstream of TGF-𝛽1 could also induce TTP transcription via Smad-
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responsive elements in the promoter (Ogawa et al., 2003). In fact methylation of 

a CpG island within the TGF-𝛽1 responsive region results in epigenetic 

downregulation of TTP in a panel of hepatocellular carcinoma cell lines, and 

consequent stabilisation of c-Myc mRNA (Sohn et al., 2010). Furthermore, a 

putative NF-𝜅B binding site within the 5’ regulatory region of Zfp36 was shown 

to contribute to the LPS induced upregulation of TTP seen in macrophages.  

 

As above, TTP can be induced via a variety of external stimuli mediated 

through various transcription factors. The example of epigenetic silencing of 

TGF−𝛽1-induced TTP expression in hepatocellular carcinoma suggests that 

heterogenous epigenetic modulation of the TTP promoter could modulate TTP 

responsiveness to external stimuli in different cell types. Beyond transcriptional 

regulation, TTP is extensively regulated at the post-transcriptional level. To this 

end, TTP is extensively phosphorylated. The best known phosphorylation sites 

are at serines 52 and 178 in the mouse (80 and 186 in humans) (Clement et al., 

2011). Phosphorylation at these sites, by the enzyme MAP kinase-activated 

protein kinase 2 (MK2 ,downstream of p38 MAPK), can inhibit deadenylase 

recruitment and thus the ability of TTP to destabilise its targets (Clement et al., 

2011). Simultaneously, such phosphorylation promotes nuclear export of TTP to 

the cytoplasm (where it will be ready to act once dephosphorylation occurs) and 

also mediates recruitment of protein 14-3-3, shielding TTP from proteasomal 

degradation (Brooks and Blackshear, 2013a). This triplet of effects (impaired 

function, nuclear export and stability) ensures accumulation of a cytoplasmic 

reservoir of TTP. This is important for resolution of an acute inflammatory 

response as discussed in the next section.  

 

The importance of serines 52 and 178 has been shown through the generation 

of mice in which both are mutated to (nonphosphorylatable) alanine residues 

(Zfp36aa/aa mice) (Ross et al., 2015). As discussed below, TTP is important in 

the destabilisation of various inflammatory cytokines, including those induced 

by LPS. To this end, Zfp36aa/aa mice appear healthy and are protected from 

the cytokine storm that normally occurs post-LPS challenge (consistent with 
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super-active (‘non-phosphorylatable’) TTP destabilising LPS-induced cytokines) 

(Ross et al., 2015). Interestingly, TTPaa is expressed at a lower level than WT 

TTP for two reasons (Ronkina et al., 2019). Firstly, as above, phosphorylation 

protects TTP from proteasomal degradation and secondly TTP destabilises its 

own mRNA. Hence, since TTPaa is more active than WT TTP, its mRNA (and 

protein) levels are lower (Lee et al., 2020). Further evidence for the importance 

of these residues in TTP function came from a study which examined the 

response of bone marrow-derived macrophage (BMDM) derivatives to LPS 

(Ronkina et al., 2019). These derivatives included WT, TTPaa, MAP kinase-

activated protein kinase 2/3 (MK2/3) double KO (DKO) and TTPaa/DKO 

BMDMs. In this study, expression of various cytokines including TNF𝛼, IL6 and 

CXCL1 was reduced in LPS-stimulated TTPaa, DKO or TTPaa/DKO BMDMs 

compared to wild-type. However, the reduction was more profound in DKO and 

TTPaa/DKO mice compared to TTPaa mice suggesting MK2/3 roles beyond 

phosphorylation at S52/S178. While this may be secondary to MK2/3 substrates 

other than TTP, the authors showed that MK2 can phosphorylate TTP at S316, 

an effect that has been shown to inhibit TTP interaction with de-adenylase 

machinery (Fabian et al., 2013).  

 

Finally, it should be noted that TTP has been shown to be phosphorylated at 

various other sites, but the functional outcome of this is unknown (Rezcallah, 

Al-mazi and Ammit, 2021). Furthermore, while many kinases have been 

predicted to phosphorylate TTP in silico, direct (in vitro or in vivo) evidence for 

this is lacking. Studies have suggested co-operation between ERK and p38 in 

phosphorylating (and inhibiting) TTP (Deleault, Skinner and Brooks, 2008; 

Brooks and Blackshear, 2013a) however a direct action of ERK on TTP has not 

been definitely ascribed in these. Thus, the effect of ERK inhibition or activation 

on TTP activity may be via its ability to affect p38 activation, as shown by our 

lab (Coelho et al., 2017). 
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1.3.3 TTP function in physiology, including putative targets 

As above, TTP is capable of destabilising target mRNA, and its action can be 

inhibited through p38/MK2-dependent phosphorylation. The p38-MAPK 

pathway is activated in macrophages following inflammatory stimuli, for 

example via LPS (Yi et al., 2014), and indeed these are the cells in which TTP 

has been most studied. To this end, its function was first elucidated through 

observation of the phenotype of Zfp36-/- mice (Taylor et al., 1996). These mice 

develop normally but later develop a spontaneous inflammatory phenotype 

including cachexia, arthritis and weight loss in a manner that phenocopies 

TNF𝛼 excess. Treatment with infliximab (anti-TNF𝛼 monoclonal antibody) 

abolishes much of the clinical syndrome. It was then shown that TNF𝛼 mRNA 

decays more slowly in TTP KO macrophages and that TTP could bind directly 

to TNF𝛼 mRNA (Carballo, Gilkeson and Blackshear, 1997). This was the first 

clue to the physiological role of TTP. Nonetheless, myeloid cells are not the 

sole effectors of the inflammatory phenotype in Zfp36-/- mice. This is evident 

given that mice with myeloid-specific TTP deficiency do not develop 

spontaneous inflammation, although they are hypersensitive to low doses of 

LPS (Qiu, Stumpo and Blackshear, 2012).  

 

The dominant effect on TTP localisation, stability and activity by the p38-MAPK 

pathway led to a working model of TTP function and expression, which has 

been validated experimentally (Clark and Dean, 2016). This model proposes 

that pro-inflammatory stimuli such as LPS promote TTP expression but, 

simultaneously, synthesized TTP is phosphorylated (at serines 52, 178 and 

316) in a p38-MAPK dependent manner. This phosphorylation stabilises TTP, 

ensures its cytoplasmic location and also renders it inactive. Thus, both 

inflammatory mRNA and a pool of inactive cytoplasmic TTP accumulate. As the 

inflammatory stimulus wanes the strength of p38 signalling falls such that the 

balance of phosphorylation/dephosphorylation of TTP swings in favour of the 

latter (e.g. through phosphatases such as protein phosphatase 2 PP2A). As 

TTP is dephosphorylated it becomes active, contributing to destabilisation of 

inflammatory mRNA such as TNF𝛼,	IL6 and IL-1𝛽 while also destabilising its 



Chapter 1 Introduction 

 

63 

 

own mRNA until its level falls to resting values. A summary of this process is 

shown in Figure 2. 

 

 

 

 
Figure 2. Schema of TTP effect Inflammatory stimuli result in increased 
tristetraprolin (TTP) expression, p38 phosphorylation and expression of 
inflammatory mRNA species (not shown). Expressed TTP is quickly 
phosphorylated by MAP kinase-activated protein kinase 2 (MK2), and accumulates 
(inactive) in the cytoplasm. Waning of the inflammatory stimulus allows 
phosphatases such as protein phosphatase 2 (PP2A) to shift the equilibrium toward 
dephosphorylated TTP resulting in destabilisation of inflammatory transcripts.  
 

As described above, TNF𝛼 was the first TTP target identified but several more 

have been proposed since, both in human and murine macrophages but also 

fibroblasts, B cells, T cells and cancer cells (Brooks and Blackshear, 2013a). 

Thus, while the canonical function of TTP concerns the resolution of 

inflammation in macrophages, it is expressed and functional in several other 

cells and tissues.  
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Of note, most studies examining TTP and its targets have focussed on a single 

(or few) model systems and describe one (or few) TTP targets that seem to 

have dominant effects in that system. Therefore, it may be that the ability of 

TTP to degrade various target transcripts varies between models, contingent on 

factors including the genomics and epigenomics of the system (which may 

influence, for example, the expression of proteins that interact with TTP or of 

other RNA-binding proteins) and the stimulus being studied. Beyond this, 

however, several studies have interrogated TTP effects at a transcriptome-wide 

level.  

 

The first such study to do this looked at TTP binding and its effect on gene 

expression in human embryonic kidney (HEK-293) cells (Mukherjee et al., 

2014). They used photoactivatable ribonucleoside-enhanced crosslinking and 

immunoprecipitation (PAR-CLIP) to interrogate TTP binding throughout the 

genome, and then RNAseq in the context of TTP overexpression to interrogate 

its effect on target destabilisation. Binding-site analysis demonstrated 

enrichment of known TTP target sequences (e.g. the AUUUA pentamer) 

although only 47% of targets contained this sequence suggesting added 

complexity in TTP binding specificity. Furthermore, many bound sites were 

intronic rather than located in the 3’ UTR. Nonetheless, when correlation with 

gene expression studies were performed, downregulated genes correlated with 

presence of the octamer UAUUUAUU, suggesting its importance in functional 

binding. Pathway analysis of genes downregulated upon TTP binding showed 

enrichment for immune genes, but also those involved in proliferation and 

epithelial-to-mesenchymal transition.  

 

Similar studies have been performed in murine bone marrow-derived 

macrophages (BMDMs) (Sedlyarov et al., 2016; Tiedje et al., 2016). Intriguingly, 

in one such study, only 32 of the 1587 binding positions identified for TTP 

overlapped with the 2731 positions from the aforementioned study in HEK-293 

cells (Sedlyarov et al., 2016). This considerable difference in TTP binding 

between model systems was hypothesized to be due to a combination of lack of 



Chapter 1 Introduction 

 

65 

 

many immune targets in HEK-293 cells and differential regulation of TTP 

binding between the two systems. Nonetheless, it highlights the lack of 

understanding of factors that modulate TTP binding to its targets and whether 

such binding is ‘functional’ (i.e. causes destabilisation).  

 

Beyond comparison to the previously established HEK-293 dataset, the two 

studies using murine BMDMs examined the effect of LPS stimulation on TTP 

binding and destabilisation at different phases of the inflammatory response. 

The findings corroborated the functional model of TTP described above (Clark 

and Dean, 2016) by confirming that TTP is unable to destabilise its targets early 

after an inflammatory stimulus, but becomes active later, when the inflammatory 

stimulus subsides.  

 
 

1.3.4 TTP in cancer 

TTP targets suggested in the literature include MYC, cyclin D1 (CCND1), IL6 

and prostaglandin-endoperoxide synthase 2 (PTGS2), all of are associated with 

cancer. Given the ability of TTP to destabilise these messages, it is not 

surprising that it has been labelled as a tumour suppressor and investigated as 

such. To add support to this hypothesis, it has also been shown that TTP is 

directly transcriptionally repressed by Myc in a lymphoblastoid B cell line  

(Rounbehler et al., 2012). ChIP assays showed direct binding of Myc to the 

regulatory region of the Zfp36 gene while furthermore, Myc induction reduced 

nascent Zfp36 mRNA expression. To support this observation, the authors also 

interrogated expression profiles across several human malignancies from Gene 

Expression Omnibus Series and found an inverse correlation between MYC 

and ZFP36. Conversely, the bona-fide tumour suppressor p53 has been shown 

to enhance TTP promoter activity, again suggesting that TTP may be repressed 

in cancer and function as a tumour suppressor (Lee et al., 2013). 
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Further support for the labelling of TTP as a tumour suppressor relates to the 

plethora of studies showing suppression of TTP in various malignancies, either 

at the level of gene expression or protein (Saini, Chen and Patial, 2020). The 

causes of such suppression are not well described but individual studies have 

highlighted examples where TTP is suppressed through promoter methylation, 

microRNA-mediated deregulation or post-translational modification (Sohn et al., 

2010; Sun et al., 2015; Coelho et al., 2017). Furthermore, analysis of gene 

expression from TCGA lung adenocarcinoma and breast cancer datasets 

suggest that TTP is part of a 50 gene signature that predicts poor prognosis in 

low-expressors (Fallahi et al., 2014). In this study, luminal A breast cancers (a 

more indolent subgroup) were enriched in the TTP-high cohort while in lung 

cancer, the TTP-high cohort was associated with earlier stage disease.  

 

Beyond evidence showing that TTP expression is reduced in cancer, individual 

studies have demonstrated the ability of TTP to influence specific hallmarks of 

cancer. For example, in various systems, TTP has been shown to affect 

proliferation via targeting c-Myc, cyclin D1 and E2F1 while also being able to 

inhibit c-Jun expression through inhibition of the nuclear translocation of the p65 

subunit of NF-𝜅B (Marderosian et al., 2006; Lee, Lee and Leem, 2014; Xu et al., 

2015) ; of note, although the canonical role of TTP is to destabilise target 

mRNA, it is appreciated that it also acts at the transcriptional level (Ciais, 

Cherradi and Feige, 2013). As well as its effect on proliferation, TTP also 

influences apoptosis. In one glioma model, it destabilised urokinase 

plasminogen activator (uPA) and urokinase plasminogen activator receptor 

(uPAR) while in another, it destabilised proto-oncogene serine/threonine-protein 

kinase pim1/2 and X-linked inhibitor of apoptosis proteins (XIAP) (Selmi et al., 

2012; Ryu et al., 2015). In both cases the effects of TTP on these transcripts 

included induction of apoptosis.  

 

Given the fairly recent installation of tumour-associated inflammation as an 

‘enabling characteristic’ of cancer (Hanahan and Weinberg, 2011), the 

contribution of TTP to this process cannot be ignored. Indeed, the function of 
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TTP was discovered following observation of the phenotype of TTP KO mice, 

who develop a pervasive inflammatory phenotype (Brooks and Blackshear, 

2013a). Several studies have described the importance of TTP and 

inflammation in cancer. Putative targets include CXCL1, CXCL2, IL-1𝛽, IL-6, IL-

8 and PTGS2 amongst others (Saini, Chen and Patial, 2020). Once again, 

these observations were made across many different model systems with most 

studies describing the modulation of just one or a few of these targets in each 

system. Besides inflammation, TTP has also been implicated in the regulation 

of angiogenesis through its targeting of VEGFa and epithelial to mesenchymal 

transition (EMT) via its effects on various EMT regulators including ZEB1, 

SOX9, TWIST1 and SNAIL1 (Montorsi et al., 2016; Yoon et al., 2016).  

 

 

While various evidence points to TTP as a tumour suppressor, it is important to 

appreciate that it has many targets, not all of which are oncogenic. For 

example, the tumour suppressor LATS2 is a TTP target. However, in one model 

of colorectal cancer, TTP was shown to downregulate LATS2 but also E2F1 

and inhibitor of apoptosis 2 (cIAP2) (Lee et al., 2018). Thus, despite its effect on 

LATS2, the net effect of TTP activation was suppression of proliferation, 

invasion and metastasis. We also note that the studies above tended to focus 

on one, or just a few, TTP targets in a given system. Taking a broader 

approach, one study interrogated expression of ARE-containing mRNAs across 

multiple cancer types (Hitti et al., 2016). They showed that ARE-mRNAs were 

over-expressed in tumours and that this correlated with TTP expression. In 

further analyses, a cluster of 11 overexpressed ARE-mRNAs that participate in 

the M phase of the cell cycle were interrogated and found to physically interact 

with TTP in validation experiments, suggesting direct regulation. Patients with 

high expression of these genes had worse survival.  This suggests that while 

individual studies identify isolated TTP targets, TTP may act at a broader level 

within cancers, to modulate networks of targets and affect outcome.  
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1.4 Thesis objectives 

Oncogenic KRAS has been shown to contribute to tumour immune evasion but 

the mechanisms behind such effects remained ill-defined (Cullis, Das and Bar-

Sagi, 2018). Previous work from our lab explored a mechanism by which 

oncogenic KRAS signalling can result in immune polarisation; TTP was shown 

to be phosphorylated in a RAS-dependent manner resulting in stabilisation of 

PD-L1 mRNA with potential contributions to tumour immune evasion. In this 

thesis we aim to further elucidate the role of TTP, first by exploring its 

expression in human tumours, next by exploring the effects of its over-

expression (at the transcriptomic level) in an immunogenic murine carcinoma 

model (CT26) and finally by further exploring its relationship to oncogenic KRAS 

using in silico and in vitro analysis.  

 

The effects of oncogenic RAS are complex and diverse and likely to be 

mediated by more than simply its effect on TTP. Beyond understanding the 

mechanistic basis of oncogenic KRAS activity, further elucidation of its 

phenotypic effect will give us insight into the diversity of cell types affected and 

generate hypotheses for synergistic combinations with the recently developed 

KRAS(G12C) inhibitors. Using IMC, researchers from our lab have shown a 

profound spatial effect of KRAS inhibition on the myeloid repertoire of 3LL 

tumours (van Maldegem et al., 2021). While IMC can generate detailed spatial 

characterisation and limited phenotypic information it lacks the ability to 

generate hypotheses about function characterisation through transcriptomic 

evaluation. In this thesis we aim to use CITE-seq to better understand 

phenotypic effects that KRAS inhibition has in this model and to generate 

hypotheses about the functional state of the immune repertoire with the aim of 

generating insights into potential therapeutic synergy. The 3LL model has a 

high neoantigen burden (edurne paper) yet is refractory to the effect of check-

point inhibition making it an intriguing model for exploration of such synergy.  
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Chapter 2. Materials & Methods 

2.1 ZFP36 analysis from TCGA 

Analysis was performed using R version 4.0.5. TCGA data was downloaded 

using TCGAbiolinks (version 2.18.0). Duplicated patient IDs were removed and 

genes with an average raw count of < 1 per sample were discarded. Data was 

normalised using variance stabilising transformation (VST) from the DESeq2 

package (version 1.30.1). Log-fold changes (LFCs) of tumour vs. normal tissue 

were calculated as a difference of means from the normalised data while p-

values were the result of corresponding t-tests. Boxplots were generated using 

default settings in base R and histograms of tumour versus normal log-fold 

changes (LFCs) were generated using ggplot2 (version 3.3.3).  

 

In order to generate survival curves, VST-normalised samples were grouped 

according to ZFP36 expression quantiles. Survival data was obtained from the 

TCGA Clinical Data Resource (Liu et al., 2018) and Kaplan-Meier curves were 

plotted using the survival package (version 3.2-10) with log-rank tests 

conducted using the coin package (version 1.4-1).   

 

Heatmaps were plotted using gplots (version 3.1.1). For annotation of 

correlation plots, the RAS activity group (RAG) annotations were provided by an 

inventor (Sophie De Carne) of the signature, a member of the lab. Mutation 

data was obtained from cBioPortal (https://www.cbioportal.org). Finally, the 

Venn diagram was generated using the VennDIigram package (version 1.6.20).  

 

2.2 Cell culture 

A summary of the cell lines used in this thesis is given in Table x. Further 

details regarding CT26 derivatives are given in the results section. Cells were 

grown in RPMI medium (CT26 and 3LL-ΔNRAS) or DMEM (KPAR(G12C)), 
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supplemented with 10% fetal calf serum, 4mM glutamine (Sigma), 100units/ml 

penicillin and 100mg/ml streptomycin (Sigma). Sub-culturing was performed by 

first removing the medium and then washing with PBS. Detachment was 

induced through application of trypsin (sigma) followed by re-seeding at a 

dilution appropriate for the given cell line. Passage number was recorded, and 

cells were not grown for more than 20 passages. Cells were kept in a 

humidified, 37oC incubator with 5% ambient CO2.  

 

Cell line Source 
CT26 (parental) The Francis Crick Institute cell services  

CT26 (TTP KO) The Francis Crick Institute cell services 

(Coelho et al., 2017) 

CT26 (Tet-On TTP(WT)) The Francis Crick Institute cell services 

(Coelho et al., 2017) 

CT26 (Tet-On 

TTP(aamt)) 

The Francis Crick Institute cell services 

(Coelho et al., 2017) 

CT26 (G12C) Mirati Therapetuics 

3LL-ΔNRAS	 The Francis Crick Institute cell services 

(Molina-Arcas et al., 2019) 

KPAR(G12C) Downward lab (de Carné Trécesson et al., 

2020) produced KPAR1.3 (G12D) 

subsequently modified by Pablo Romero 

(Downward lab), who used PRIME-editing 

to generated KPAR(G12C) 

 
Table 4. Cell lines and source 
 

 

2.3 Quantitative real-time PCR (qPCR) 

RNA was extracted using the RNeasy Mini Kit (QIAGEN), following 

manufacturer’s instructions. RNA was eluted in 30𝜇𝐿. For in vivo tumour 
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samples, tumours were individually isolated from the lungs, lysed and 

homogenised using the QIAshredder (QIAGEN) following manufacturer’s 

instructions prior to RNA extraction using the commercial kits described above. 

After quantification, 500ng of RNA was used to generate cDNA using 

SuperScript II Reverse Transcriptase (Life Technologies). Briefly, 3μl of RNA 

were incubated with 1μl of 50μM Random Hexamers and 0.5μl of 10mM pre-

mixed dNTPs at 65°C for 5min. Subsequently, the reaction was incubated with 

1μl of 0.1M DTT (ThermoFisher), 2μl of 5x First Stand Buffer (ThermoFisher) 

and 0.5μl (20 units) of the RNase inhibitor RNaseOUTTM (ThermoFisher) at 

25°C for 10min and 42°C for 50min before reaction inactivation by incubating at 

70°C for 15min. cDNA was diluted to 1.25ng/ml and real-time PCR (qPCR) 

reactions were performed using either Quantitect Primer Assays (QIAGEN) or 

custom-made primers (Table 5). For qPCR, 5ng of cDNA, 1μl of 2μM primer 

and 5μL of SYBR Green mastermix (Life technologies) were dispensed into 384 

well plates. Relative gene expression was calculated using the ∆∆CT method 

with Gapdh and Hsp90 used as housekeeping genes.  

 

Gene Sequence Source Cat. No. 

Areg 

Fw: 
TGCCTTCTGGCAGTGAACTC 
Rev: 
CCTTGTCATCCTCGCTGTGA 

  

Cd274 

Fw: 
CGCCACAGCGAATGATGTTT 
Rev: 
AGGATGTGTTGCAGGCAGTT 

  

Dusp5 

Fw: 
GGATGCAGCTCCTGTAGTACC 
Rev: 
TCCGAGAAGCGTGATAGGCA 

  

Gapdh 

Fw:  
CAAGCTCATTTCCTGGTATGACA 
Rev:  
GGATAGGGCCTCTCTTGCTC 

  

Hsp90 

Fw:  
AGATTCCACTAACCGACGCC 
Rev:  
TGCTCTTTGCTCTCACCAGT 
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Ier3 
Fw: CGCGTTTGAACACTTCTCGC 
Rev: 
ATGTTGGGTTCCTCGGTTGG 

  

Lif 

Fw: 
ACAACTGTGCAGACTGTGGA 
Rev: 
TGCAGGCCGTTTTCAGAAGT 

  

Myc 
Fw: 
CCGGGGAGGGAATTTTTGTCT 
Rev: GAGGGGCATCGTCGTGG 

  

Plaur 

Fw: 
GTGTTGCAACTACACCCACTG 
Rev: 
TGGAAGCCATTCGGTGGAAA 

  

Plk3 

Fw: 
CGGTCATCCAGATGTCAGGC 
Rev: 
TGGCCACAGTCAAACCTTCT 

  

Ptgs2 
Fw: TGGGTTCACCCGAGGACTG 
Rev: 
GGGGATACACCTCTCCACCAA 

  

Vegfa 
Fw: CACTGGACCCTGGCTTTACT 
Rev: 
GCAGTAGCTTCGCTGGTAGA 

  

Zfp36  Qiagen QT01060962 

 
Table 5. Primer sequences for qPCR 

 

2.4 Cytokine array  

105 CT26(aamt) cells were plated in a 6 well plate followed by administration of 

doxycycline (1μg/ml) or DMSO (1μl/ml) 24 hours later. Twelve hours later, 

medium (including doxycycline or DMSO at appropriate concentrations) was 

changed. After a further 12 hours, supernatant from the wells was harvested 

and used in the Proteome Profiler Mouse Cytokine Array Kit, Panel A (R&D 

Systems), as per manufacturer’s instructions. Briefly, pre-coated array 

membranes were blocked using 2ml of Array Buffer, rocking for 1h before 

addition of a pre-mixed solution containing a maximum of 1ml of each sample 

and 15μl of the detection antibody cocktail. Samples and antibodies were 

incubated overnight at 4°C on a rocking platform shaker. The following day, 
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membranes were washed using the Wash Buffer supplied before addition of 

Streptavidin-HRP. After adding the chemiluminescent substrate provided, 

membranes were developed using standard film techniques. Images were 

analysed using ImageJ (NIH).  

 

 

2.5 ELISA 

105 CT26(aamt) cells were plated in a 6 well plate followed by administration of 

doxycycline (1μg/ml) or DMSO (1μl/ml) 24 hours later. Twelve hours later, 

medium (including doxycycline or DMSO at appropriate concentrations) was 

changed. After a further 12 hours, supernatant from the wells was harvested 

and used in ELISA protocols. DuoSet ELISA, Mouse CXCL1/KC (R&D 

Systems) was used, following manufacturer’s instructions. Briefly, 96-well 

polystyrene plates for ELISA (R&D) were coated overnight with the coating 

antibody provided by the Kit, diluted in 0.1M NaHCO3 buffer. The following day, 

plates were washed using a solution of 0.01% Tween (Sigma) in PBS. Plates 

were then blocked with a solution of 10% fetal calf serum (Sigma) in PBS for 

1h. After washes as before, experimental samples and recombinant cytokines 

to be used as standards were added to the plate and incubated for 2h. Plates 

were then washed and a biotinylated detection antibody, diluted in blocking 

buffer, was added at the concentration instructed and incubated for 2h. After 

washing, plates were incubated with a solution of Streptavidin-HRP for 20 

minutes before addition of a chemoluminescent substrate. After incubating for 

10-20min (depending on signal intensity), absorbance at 450nm was measured 

using a Tecan microplate reader. 

 

2.6 In vivo experiments 

All studies were performed under a UK Home Office approved project license 

and in accordance with institutional welfare guidelines. 

 



Chapter 2 Materials & Methods 

74 

 

For subcutaneous experiments, CT26 (TTP KO or aamt) cells were harvested 

using trypsin and re-suspended in PBS at (105 cells/50μL) for injection. These 

cells were mixed 1:1 with GeltrexTM matrix (ThermoFisher) and injected in a 

total volume of 100μl subcutaneously in one flank of BALB/c mice. Injection was 

performed on day 0, and mice subsequently received either 2% sucrose control 

or doxycycline in 2% sucrose (50mg/L administered at a dose of 50mg/kg) via 

oral gavage. Treatment was given daily from day 3 onwards, with breaks at 

weekends. Tumour growth was followed twice a week by caliper measurements 

and tumours were left to grow not larger than 1.2cm in diameter following a UK 

Home Office approved project license. Mice were culled using an approved 

schedule 1 method when tumour diameter exceeded this set point, if protocol-

defined endpoints were breeched or on day 20 of the experiment.  

 

For orthotopic growth using 3LL-ΔNRAS cells, the cells were harvested as 

before, and 1 million 3LL-ΔNRAS cells were injected in PBS in a total volume of 

100μl in the tail vein of C57Bl/6 mice. If mice were planned to receive treatment 

then, after 21 days, they were scanned using computed tomography (CT) and 

allocated into one of two groups. One group received MRTX1257 (Mirati 

Therapeutics) at 50mg/kg or 10% Captisol (Ligand) in 10mmol/L citrate buffer 

(pH 5.0) as vehicle control daily via oral gavage for a total of 7 days. Mice were 

culled (using an approved schedule 1 method) on the 7th day of treatment, 

within 4 hours of drug administration. Mouse weight was monitored regularly as 

a measure of tumour growth and mice were sacrificed (early than the 7th day of 

treatment) if weight loss was over 10% as per the UK Home Office approved 

project license.  

 

Figure 3 below represents an overview of the experimental schema.  
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Figure 3. Experimental schema for orthotopic experiments 
 

For CT scanning, mice were anaesthetised by inhalation of isoflurane (Abbott 

Labs) and scanned using the Quantum GX2 micro-CT imaging system (Perkin 

Elmer). Breathing rate and body temperature were measured throughout the 

scan using in-built physiological monitoring devices. 

 

2.7 In vitro G12C treatment for RNAseq 

For RNAseq experiments interrogating the transcriptome-wide effect of 

KRAS(G12C) inhibition, 3LL- ΔNRAS or KPAR(G12C) cells were treated with 

100nM MRTX1257 or MRTX849 respectively, for 0, 8 or 28 hours (3LL- 

ΔNRAS) or 0, 8 or 24 hours (KPAR(G12C)) before extraction of RNA for RNA-

sequencing. Experiments were performed by Edurne Mugarza (3LL- ΔNRAS) or 

Jesse Boumhela (KPAR(G12C)) 

 

2.8 Viability assay 

 

For viability assay, the CellTiter-Blue assay (Promega) was used. 

CT26(KRAS(G12C)) cells were grown in 96-well plates and treated for 72 hours 

with varying concentrations of the appropriate agents (serial diltuions of 
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trametinib (LC labs), AZ-8037 (Astrazeneca) or MRTX1257 (Mirati 

Therapeutics) beginning at 2500nM for a total of 9 two-fold dilutions) for 72 

hours. At the end of the experiment, 5μl of the CellTiter-Blue reagent was 

added to each well and the reaction was incubated for 90 minutes at 37°C. 

Fluorescence was subsequently measured using and EnVision plate reader 

(Perkin Elmer) with excitation/emission wavelengths of 560/590nm. For data 

analysis, medium containing wells were used as a background and subtracted 

from the values of the cell-containing wells. 

 

 

2.9 Western blotting 

 

105 CT26 (KRAS(G12C)) cells were cultured in 6-well plates for 24 hours before 

application of control (DMSO), 100nM MRTX1257 or 250nM AZ-8037 (both 

KRAS(G12C) inhibitors) for 6, 24 and 48 hours prior to protein isolation. At the 

end of the experiment, plates were placed on ice, medium was removed and 

cells were washed with ice cold PBS. Lysis buffer was prepared using 10X Cell 

Lysis Buffer (Cell Signaling Technologies), supplemented with EDTA-free 

protease inhibitor cocktail tablets (Roche), 1mM PMSF and 25mM NaF. Cells 

were de-attached using a rubber scraper and collected in tubes which were left 

on ice for approximately 10 minutes for lysis. Tubes were then centrifuged at 

4°C for 15 minutes at 14,000rpm, after which the pellet was discarded and the 

supernatant was transferred to a new tube. Protein abundance was measured 

using the Lowry-based DC Protein Assay (BioRad) using bovine serum albumin 

as a standard. Equal amounts of protein were taken for each sample and 

NuPAGE LDS Sample Buffer (4X, Thermo Fisher) was added. Samples were 

incubated at 95°C for 5 minutes for protein denaturation and either stored at -

20°C or loaded (20-30mg per sample) onto NuPAGE 4-12% Bis-Tris protein 

gels (Thermo Fisher). Protein transfer to PVDF membranes was performed 

using the Trans-Blot Turbo Transfer System (BioRad) or standard manual 

transferring techniques. For antibody detection, horseradish peroxidase 
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conjugated antibodies were used (GE Healthcare) and data was developed 

using standard film techniques. Primary antibodies used are listed in Table 6. 

 

Target Source Cat. no 
pAKT473 Cell Signalling Technology 4060 

pERK Cell Signalling Technology 9101 

pS6 Cell Signalling Technology 2211 

KRAS Sigma WH0003845M1 

Vinculin Sigma-Aldrich V9131 

 
Table 6. Antibodies for Western blots 
 

2.10 Bulk RNA sequencing (RNAseq) 

105 CT26 cells (all four derivatives, see results section 3.3) were plated in 6 well 

plates for 24 hours, before application of 1𝜇g/ml of doxycycline or 1𝜇l/ml DMSO. 

RNA was subsequently extracted using the RNeasy Mini Kit (QIAGEN). RNA 

quality was measured using the 2100 Bioanalyzer (Agilent). Libraries were 

prepared using the KAPA Hyper Prep kit (Roche). 25 million reads were 

sequenced per sample at a single read length of 75bp, in an Illumina HiSeq 

4000 system. Library preparation and sequencing were performed by the 

Advanced Sequencing Facility at the Francis Crick Institute.  

 

Fastq files generated from sequencing were processed using the nfcore 

RNAseq pipeline (https://github.com/nf-core/rnaseq) using the following 

command: 
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nextflow run nf-core/rnaseq \ 

    --genome GRCm38 \ 

    --reads '<path to directory containing reads>' \ 

    --singleEnd \ 

    --email <my_email> \ 

    -profile crick \ 

    -r 1.4.2 \ 

 

Following the generation of count matrices using the pipeline above, data was 

pre-processed by first removing genes expressed at a mean of <1 read per 

sample before normalisation using variance stabilising transformation (DESeq2, 

version 1.22.2). Differential expression was also performed using DESeq2, and 

results reported as the interaction term between Condition and Cell Line, thus 

representing the effect of treatment specifically in that line using CT26 (TTP 

KO) cells treated with DMSO as the baseline factors. Once differential 

expression was performed, shrinkage of log-fold changes were performed using 

the APEGLM method (Zhu, Ibrahim and Love, 2019). MA plots (M = log ratio 

and A = mean (average)) were made using the plotMA function from DESeq2 

while Venn diagrams used the VenDiagram package (v1.6.20).  

 

In order to perform gene set enrichment, we used the fgsea package (version 

1.16.0) with msigdbr (version 7.2.1) used to derive murine equivalents of the 

hallmark gene sets. To derive the gene signature, genes significantly 

downregulated (adjusted p < 0.1) at a log-fold change <-0.5 after induction of 

TTP were extracted from the data and mapped to human homologues using 

information from Ensembl via the BioMart package (v 2.46.3). TCGA data for 

lung and colon adenocarcinoma was obtained from TCGAbiolinks (version 

2.18.0). For each tumour type, a loess curve was fitted to the data and genes 

with a log-coefficient of variance below the curve or a VST-normalised 

expression level <7.5 were discarded. The remaining genes were used to 

cluster the data and partition for survival. Survival analysis was performed as 

described in section 2.1.  
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2.11  siRNA experiments 

siGENOME siRNAs against murine Zfp36 (Dharmacon) were dissolved in 

siRNA resuspension buffer (Dharmacon) and stored at -20°C. On the day of 

use, siRNAs were thawed on ice and diluted in HBSS (ThermoFisher) to reach 

a concentration of 250nM (10μl of siRNA per well). This solution was mixed with 

10μl HBSS (Gibco) containing 0.1μl DharmaFECT 1 transfection reagent 

(Dharmacon) per well. The transfection complex was incubated for 20-40 

minutes before adding dropwise (200μl per well) to freshly seeded cells (not 

more than 10 minutes prior to transfection). As a control, cells were either 

Mock-transfected (no siRNA) or transfected with a siGENOME non-targeting 

pool (siScr, Dharmacon). The procedure was repeated 24 hours later, for a total 

of two transfections.  

 

2.12  Optimisation of antibody concentration for CITE-seq 

C57Bl/6 mice were injected with 106 3LL-ΔNRAS cells and tumours harvested 

on day 28. Mice were untreated with the rest of the protocol being as previously 

described (section 2.6). 

 

2.12.1 Tumour dissociation 

2.12.1.1 Method 1 

Tumours (on ice) were chopped into 2-4mm pieces and placed into 2.35mL of 

serum-free RPMI premixed with the appropriate quantities of proprietary 

digestion enzymes (Tumour Dissociation Kit, mouse; Miltenyi Biotec) in 

gentleMACSTM C tubes (Miltenyi Biotec). The tubes were then placed in a 

gentleMACSTM Octo Dissociator and the mixtures subjected to a hybrid 
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enzymatic/mechanical dissociation (programme 37C_m_TKD_1 (soft)). 

Following dissociation, RPMI was topped up to 5mL and 200U/ml DNase added 

(Sigma-Aldrich D4263) and left for 5 minutes at room temperature (RT). The 

suspension was then passed into a 15mL Falcon tube through a 70𝜇m MACS® 

SmartStrainer, and washed with a further 10mL of RPMI. Cells were centrifuged 

at 300g (4°C) for 7 minutes before being resuspended in 5ml eBioscienceTM red 

blood cell lysis solution for 5 minutes at RT before stopping the reaction with 

5mL RPMI, this time with 2% FBS. Cells were then washed a resuspended in 

Cell Staining Buffer (BioLegend) at a concentration of 2 x 107 cells/ml. 

2.12.1.2 Method 2 

To optimise the protocol, the proprietary method above was compared to a 

dissociation method developed in house usually used for the study of immune 

cells. Tumours (on ice) were chopped into 2-4mm pieces and placed into 2ml of 

digestion solution consisting of 1mg/ml collagenase type I (Thermofisher) and 

50 U/ml of DNase in HBSS (both Life technologies). The mixture was incubated 

at 37°C for 30min before homogenisation by passing through a needle. This 

was followed by further incubation at 37°C for 20 minutes. Cell were then 

filtered through a 70𝜇m MACS® SmartStrainer and red blood cells were 

shocked using ACK lysing buffer (Life Technologies) and finally washed three 

times in fluorescence-activated cell sorting (FACS) buffer (2nM EDTA, 0.5% 

BSA in PBS pH 7.2) before resuspension at 2 x 107 cells/mL  

 

2.12.2 Flow cytometry 

First, FC receptors of dissociated cells in staining buffer or FACS buffer, as 

above, were blocked (BioLegend TruStain FcXTM) at 4°C for 10 minutes. 

Subsequently, cells were co-stained with fluorophore-conjugated antibodies 

against the putative CITE-seq targets (in six-step serial dilution) and CD45 

(Table 7). Finally, 4’,6-diamidino-2-phenylindole (DAPI) was used as a viability 

dye and added immediately before cells were passed through the cytometer. 

Cytometry was performed on a BD LSRFortessaTM cytometer (BD Biosciences) 
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for antibody titration experiments and on a BD InfluxTM (BD Biosciences) for 

sorting cells prior to CITE-seq (section 2.13). Cell sorting was performed by the 

Flow Cytometry science technology platform (STP) at the Francis Crick 

Institute. FlowJo (version 10, LLC) was used for analysis.  

 

Target Clone Fluorophore Concentration 
(𝝁g/ml) 

Source Cat. no 

CD103 2.00E+07 PE 16 BioLegend 121405 

CD11b M1/70 PE 4 BioLegend 101207 

CD11c N418 PE 40 BioLegend 117307 

CD206 C068C2 PE 32 BioLegend 141705 

CD223 C97BW PE 40 BioLegend 125207 

CD24 M1/69 PE 16 BioLegend 101807 

CD25 PC61 PE 40 BioLegend 102008 

CD274 MIH6 BV605 40 BioLegend 153606 

CD279 RMP1-30 PE 20 BioLegend 109103 

CD366 RMT3-23 PE 40 BioLegend 119704 

CD4 RM4-5 PE 32 BioLegend 100511 

CD44 IM7 PE 5 ThermoFisher 12-044 

CD45 30-F11 APC 1 (not titrated) BioLegend 103111 

CD62L MEL-14 PE 4 BioLegend 104407 

CD64 X54-5/7.1 PE 32 BioLegend 139304 

CD69 H1.2F3 PE 40 BioLegend 104507 

CD73 TY/11.8 PE 16 BioLegend 127205 

CD8 53-6.7 PE 32 BioLegend 100707 

F4/80 BM8 PE 32 BioLegend 123109 

Ly6C HK1.4 PE 16 BioLegend 128007 

Ly6G 1A8 PE 4 BioLegend 127607 

MHCII M5/114.15.2 PE 4 BioLegend 107607 

Table 7. Antibodies used in flow cytometry Concentration refers to the highest 
concentration of the six-step serial dilution. APC = Allophycocyanin, BV605 = 
Brilliant VioletTM 605, PE = phycoerythrin 
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2.13  CITE-seq sample processing 

Preparation of samples for CITE-seq was done in conjunction with Sophie de 

Carne (post-doctoral scientist, Francis Crick Institute).  

 

Mice with orthotopic 3LL-ΔNRAS tumours were treated as described (section 

2.6) and tumours dissociated (section 2.12.1.1). While tumours were 

dissociating, we prepared our TotalSeqTM-A (BioLegend) antibody cocktail by 

adding individual antibodies at the determined concentrations (Table 8 and 

results section 4.3) in Cell Staining Buffer (BioLegend) to a total volume of 50𝜇L 

kept on ice.  

 

Following single cell dissociation of tumours, 106 cells were resuspended in 

50𝜇L of Cell Staining Buffer and FC receptors of cells were blocked (BioLegend 

TruStain FcX) for 10 minutes at 4°C while the antibody cocktail was centrifuged 

at 14000g also for 10 minutes at 4°C. Cells were then incubated with the 

antibody cocktail for 11.5 minutes at 4°C followed by 3 cycles of washes with 

Cell Staining Buffer.  

 

Finally, cells were resuspended in 400𝜇L for FACS. DAPI was added prior to 

FACS, and DAPI -ve cells were sorted, for further analysis. Of note, ensuring 

high cell viability prior to single cell sequencing is important for optimising data 

quality (Haque et al., 2017). The decision to sort for viable cells was a 

considered decision made despite the trade-off of increased processing time. 

 

Following cell sorting, DAPI -ve cells were washed once before resuspension at 

1000 cells/𝜇L in RPMI with 2% FBS, and submission to the Advanced 

Sequencing Facility at the Francis Crick Institute for processing. In brief this 

consisted of first confirming viability post-FACS. Next, both RNA and ADT 

libraries were prepared using the 10x 3’ mRNA-Seq v3.1 with CITE-Seq for 
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TotalSeqTM-A antibodies technique (10x genomics). Finally, libraries were 

sequenced using paired end sequencing (100 base pairs) on a HiSeq 

sequencer. Approximately 4000 cells per sample were sequenced to a depth of 

50,000 gene expression and 5,000 ADT expression reads.   

 

Target Clone 
Concentration 

(𝝁g/ml) 
Cat. No. 

CD103 2E7 0.5 121437 

CD11b M1/70 0.0625 101265 

CD11C N418 5 117355 

CD206 C068C2 1 95052 

LAG3 (CD223) C9B7W 2.5 125229 

CD24 M1/69 4 101841 

CD25 PC61 2.5 102055 

PD-L1 MIH6 10 153604 

PD-1 (CD279) RMP1-30 2.5 109123 

TIM3 (CD366) RMT3-23 2.5 119729 

CD4 RM4-5 0.5 100569 

CD44 IM7 0.5 103045 

CD62L MEL-14 0.0625 104451 

CD64 X54-5/7.1 8 139325 

CD69 H1.2F3 1.25 104546 

CD73 TY/11.8 0.5 127227 

CD8 53-6.7 2.5 100773 

F4/80 BM8 5 123153 

Ly-6G/ly-6C RB6-8C5 0.125 108459 

Ly6G 1A8 0.125 127655 

MHCII M5/114.15.2 0.125 107653 

 
Table 8. CITE-seq antibodies All antibodies were TotalSeqTM-A (BioLegend) 
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2.14  CITE-seq data processing 

FASTQ files had already been generated by the Advanced Sequencing Facility 

at the Francis Crick Institute. Alignment, filtering, barcode count and UMI 

counting were performed by using Cell Ranger (version 3.0.2, 10x Genomics) 

resulting in the generation of matrices containing either mRNA or ADT counts 

for each cell. Such processing was performed for each sample individually. 

Quality control metrics produced by Cell Ranger were interrogated to assess 

sample adequacy.  

 

Matrices were then read using R (version 4.0.0).  

 

2.14.1 Pilot sample analysis 

Pilot matrices were read into R (version 4.0.0) and crude analysis was 

performed by normalising using log-transformation (mRNA) or Centred Log-

Ratio (CLR) followed by PCA and t-distributed stochastic neighbourhood 

embedding (t-SNE) using Seurat (version 4.0.1). Low quality cells were not 

filtered out. 

 

For comparison to bulk samples, bulk data was processed as above (section 

2.10) while the single cell data was processed by combining counts from all 

cells per sample, and then processed using DESeq2 (version 1.30.1).  

 

2.14.2 Cell-level quality control 

Quality control metrics (including PCA and outlier detection) were generated 

using scater (version 1.18.6) while doublet detection was performed using 

scDblFinder (version 1.4.0). Visualisation was performed using Seurat (version 

4.0.1).  
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The distribution of various QC metrics were visualised, whilst the same QC 

metrics were also overlaid on UMAP (Uniform Manifold Approximation and 

Projection) plots to look for clusters within UMAP space. Following interrogation 

of the various metrics in this way, it was decided to filter cells using the 

percentage of the transcriptome occupied by mitochondrial genes according to 

sample-specific thresholds. The cut-off range across samples varied from 12-

16% with cells expressing mitochondrial genes above this level being removed.  

 

2.14.3 Sample integration 

Following cell filtering as above, the mRNA data from each sample was 

normalised using scTransform (SCT) (Hafemeister and Satija, 2019) after 

removing genes which were not expressed in any sample. ADT data was 

normalised using CLR. 

In order to integrate the 10 samples we first used RNA expression alone. This 

was performed using Seurat (version 4.0.1). The steps involved: 

 

1) Selecting a list of 3000 variable features common to as many of the 

datasets as possible  

2) Performing pairwise joint dimension reduction using canonical correlation 

analysis (CCA) in a hierarchical manner determined by the pairwise 

distances between individual datasets. CCA finds shared gene-gene 

correlation structures between the datasets and uses this to embed cells 

within the dimension-reduced space (Stuart et al., 2019) . Within CCA 

space, cell-cell anchors were then determined using the proximity of 

reference and query cells in this shared space, as well as their nearest 

neighbours. Anchors join analogous cell types between reference and 

query data sets, within the low dimensional space.  

3) Anchors were used to determine a ‘correction matrix’ to correct for type-

specific batch effects between the datasets (i.e. different correction 

vectors for different cell types) whilst preserving biological differences. 
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This produced an integrated expression matrix which can be treated as a 

single normalised scRNAseq matrix for downstream analysis.  

 

Next, integration was performed for the same samples but this time using ADT 

expression values. Once integrated expression matrices were produced for 

both samples, we then needed to integrate information from both modalities to 

produce a joint definition of cellular state. This integration was performed using 

the weighted nearest neighbours (WNN) approach also from the Seurat 

package (Hao et al., 2021). In brief, the algorithm: 

 

1) Clusters the data using either RNA or ADT expression alone. Then, for 

each cell, it identifies how similar that cell is to its 20 closest neighbours 

(in RNA or ADT space).  

2) This information is used to calculate cell-specific modality weights (i.e. 

assign a weighting for the relative importance of RNA vs. ADT 

information in that cell).  

3) Use the weights to create a WNN graph. 

4) Use this graph as input to downstream algorithms including clustering, 

UMAP and trajectory inference methods 

 

In all analyses, clustering was performed using the FindClusters function from 

Seurat. The original Louvain algorithm was used to cut the graph and generate 

clusters. For clusters generated on the integrated dataset containing all cells, 

the resolution was set to 0.5. For other cell types, the resolution was set as 

indicated in the relevant results chapter. Where clusterings at different 

resolutions were displayed in a tree, the tree was generated using the Clustree 

package (version 0.4.4) 

 

2.14.4 Automated assignment of cell identity 

Automated assignment of identity was performed by using SingleR (version 

1.4.1) and a reference dataset of single cell profiled CD45+ cells from orthotopic 
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KP1.9 tumours (Zilionis et al., 2019). The algorithm assigns identities via the 

following steps: 

 

1) Calculate Spearman correlation between each cell from a cell in the 

query dataset and each cell from a given label in the reference dataset, 

using label-specific marker genes (determined by pairwise comparisons 

between labels in the refence).  

2) Define the per-label score (of each query cell) as the 80th percentile 

Spearman correlation for that label.  

3) Repeat for each label in the query 

4) Fine-tune data by subsetting the reference data to only include cells of 

the top scoring labels, and re-defining label markers. The repeat the 

above process, iterating until only one label is left. 

5) Repeat for all cells in the query 

 
The table below contains a very brief description of some of the labels from the 

reference study (Zilionis et al., 2019). In general, descriptions from the study 

focussed on tumour/normal tissue discrimination and marker genes, rather than 

making functional assumptions or assessment.  

 

Label Description 
N1 Enriched in normal lung. High canonical neut markers (e.g. S100A8) 

N2 Enriched in normal lung. Form subpopulation separate to rest. High 
type I IFN genes 

N3 Exclusive to tumour. Siglecf low. Intermediate state between N1 and 
N4/5 

N4 Tumour enriched 

N5 Tumour enriched. Ctsb high 

N6 Tumour exclusive. Adamdec1, Fcnb and Ngp high (differentiates from 
N4) 

Dendritic cells (DC) 
DC1 Expressed classical DC1 markers e.g. Itgae). Lack Ccr7 expression 

DC2 Express cDC2 markers (e.g. Lilrb4, H2-DMb2) 

DC3 Markers of activated DCs including Ccr7 
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pDC Cluster distinctly. Siglech and Ccr9 - expressing 

Monocytes (and monocytic DCs) 
Mon1  Markers of classical monocytes (Ly6c1, Ly6c2, Ccr2) 

Mon2 Markers of alternatively activated monocytes (Itgal, Ace) 

Mon3 Expression of neutrophil-related genes (S100a8, S100a9, Il1b) 

MonoDC Some DC-related genes (Clec10a, MHC II) but low markers of mature 
DC (Xcr1, Cd1a, Tcf4) 

Macrophages 
Mac1 Tumour exclusive. C1qb, Cd86 

Mac2 Tumour exclusive. Gpnmb high 

Mac3 Tumour exclusive. Alox15, Saa3 and Prg4 high 

Mac4 Also present in normal tissue. Markers of alveolar macs. (Krt19, 
Krt79) 

T and natural killer (NK) cells 
T1 CD8a high 

T2 Foxp3 & Il2ra high 

T3 Mki67 high  

NK High expression of several killer lectin-like receptor genes (Klrs) 

 
Table 9. Automated cell labels (Zilionis et al., 2019) 
 

 

2.14.5 Differential abundance 

Differential abundance testing was performed using EdgeR (version 3.32.1). 

For each cell type, a quasi-likelihood negative binomial generalised linear 

model (GLM) was fit using both condition (control vs treated) and batch (pilot 

vs. post-pilot) as coefficients in the model. Once model parameters had been 

estimated, empirical Bayes quasi-likelihood F-tests were used to generate FDR 

p-values to ascribe significance.   
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2.14.6 Manual annotation of clusters 

For manual annotation of clusters, differential expression (DE) testing was 

performed between each cluster and all other clusters combined using the 

FindMarkers function from Seurat with the ‘Wilcoxon’ method. For pairwise 

differential expression between each cluster and all other clusters, DE testing 

was performed using the findMarkers function from scran (version 1.18.7) with t-

tests, Wilcoxon signed rank sum tests and binomial tests all being used to find 

appropriate markers. The results of each test were inspected to find the most 

appropriate markers. In general, we tried to find markers with a high log-fold 

change between the cluster of interest and all other clusters and/or a high log-

fold change between the proportion of cells expressing said marker in the 

cluster of interest vs. all other cells.  

 

Where cell cycle phase was used to guide manual annotation, this was 

calculated using Seurat (version 4.0.1). In brief, the algorithm took a list of s-

phase and g2m-related genes (provided by Seurat) and calculated their 

average expression. From that average expression, the algorithm then 

subtracted the average expression of 100 control genes. The control genes 

were selected by first assigning all genes in the genome into one of 25 bins 

according to their average expression in the entire dataset. Next, for each gene 

in the s-phase and g2m-related sets, 100 control genes were selected from the 

same bin. The average expression of these control genes in the cell of interest 

was calculated, and it was this value that was subtracted from the average 

expression of the s-phase or g2m-related genes.   

 

2.14.7 Differential expression between conditions 

Differential expression between conditions within a cluster was performed using 

the FindMarkers function from Seurat, this time using the Model-based Analysis 

of Single-cell Transcriptomics (MAST) method corrected for batch (pilot vs. 

post-pilot). As sensitivity analysis, we also used the likelihood ratio test after 
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performing batch-corrected logistic regression, also via Seurat. Where 

indicated, DE between conditions within a cluster was also performed using the 

findMarkers function from scran, using t-tests, Wilcoxon signed rank sum tests 

and binomial tests. 

 

To determine specific DE within a cluster, we used scran (version 1.18.7). In 

brief, the function created a pseudo-bulk dataset for each unique combination of 

cluster and treatment and then tested the null hypothesis that, for any given 

gene, the log fold-change between treated and control conditions lay between 

zero and the average log-fold change of that gene (treated vs control) in all 

other clusters.  

 

Gene set enrichment analysis (GSEA) on the lists of DE genes was performed 

using the fgsea package (version 1.16.0) while murine gene sets were obtained 

from the msigdbr package (version 7.4.1). 
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Chapter 3. Results 1: Role of TTP in regulation of gene expression and 
growth in RAS mutant tumours 

3.1 Introduction 

While there is increasing appreciation of the final effectors that mediate tumour 

immune evasion, the cell-intrinsic programs that control production of such 

effectors are less well understood. In human cancers, tumour-intrinsic 

expression of TTP is generally suppressed relative to normal tissue 

counterparts. In murine models, modulation of TTP has been associated with 

altered expression of specific immune effectors with immune-evasive 

properties. Despite such reports of TTP modulation on individual immune 

effectors, there is little understanding of the transcriptome-wide effects of TTP 

modulation in an immunogenic carcinoma model system. 

 

Here, we interrogate the effects of TTP overexpression in an immunogenic 

murine KRAS-mutant colon carcinoma model (CT26). Using analysis of gene 

expression, secreted cytokine profiles and subcutaneous in vivo tumour growth 

we show that TTP overexpression in this model has broad transcriptomic 

effects and results in reduced tumour growth in vivo. Later, using other RNAseq 

datasets, we examine whether the genes affected by TTP overexpression are 

also associated with KRAS modulation before looking for evidence of co-

regulation of these genes by TTP and KRAS.  

 

Of note, to avoid confusion, it is worth stating that the gene for TTP is ZFP36. 

There are some contexts in this chapter where either term is appropriate for use 

and thus the terms were used interchangeably in these cases.  

 

3.2 TTP expression across human malignancies 

TTP has been labelled as a tumour suppressor, in part due to studies 

demonstrating that its gene expression is reduced (relative to normal tissue 

counterparts) in several malignancies (Saini, Chen and Patial, 2020). Most such 
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reports describe individual tumours types, so we sought to systematically 

investigate this across several malignancies using gene expression data from 

TCGA. We interrogated ZFP36 expression in 9 primary tumour types including 

bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon 

adenocarcinoma, head and neck squamous cell carcinoma (HNSC), renal clear 

cell carcinoma (KIRC) lung adenocarcinoma (LUAD), lung squamous cell 

carcinoma (LUSC), pancreatic adenocarcinoma (PAAD) and prostate 

adenocarcinoma (PRAD). As shown in Figure 4, ZFP36 expression was 

reduced relative to normal tissue counterparts in several malignancies. This 

was most pronounced for BLCA where malignant tissue demonstrated a 3 log-

fold reduction in ZFP36 gene expression compared to normal. The only tissue 

type where there was no significant different was PAAD, although the sample 

size was small (4 patients). Similarly, Figure 5 shows that except for pancreas 

cancer, ZFP36 is consistently amongst the most downregulated genes in 

tumour vs normal tissue. This is most pronounced for BLCA and BRCA but also 

for HNSC, KIRC, LUAD and LUSC. 
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Figure 4. TTP expression in malignant and normal tissue counterparts 
Boxplots denoting ZFP36 expression in normal tissue counterparts vs. tumour 
tissue, across primary sites (TCGA data). Thick black lines within boxes represent 
median expression, box edges set at interquartile range (IQR) while whiskers 
extend to maximum and minimum values not exceeding a distance of 1.5*IQR from 
median. Log-fold change (LFC) and corresponding p-value refer to tumour vs. 
normal tissue. P-values calculated using unpaired T-tests.  
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Figure 5. Log-fold change distributions of tumour vs. normal ZFP36 
expression across cancers (TCGA)For each tumour type, log-fold changes (LFC) 
for every gene (tumour vs normal tissue) were calculated and plotted as 
histograms. Grey bars with red arrows denote ZFP36-containing bin 
 

Given the propensity for ZFP36 to be underexpressed across a variety of 

tumour types, we next examined the effect of ZFP36 expression on survival. If 

ZFP36 is indeed a TSG, and if its gene expression correlates with its protein 

activity, then downregulation of ZFP36 may predict worse survival. Surprisingly, 

as per Figure 6, across our 9 tumour types, there was no consistent association 

between ZFP36 expression and survival 
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Figure 6. Overall survival by ZFP36 expression quantile (TCGA)For each 
tumour type, samples were split into low (bottom 25%), medium (middle 50%) or 
high (top 25%) ZFP36-expressing tumours. HR = hazard ratio. P-value represents 
log-rank test of high vs low quantiles.   
 

 

Given the lack of consistent association between ZFP36 expression and 

survival we looked at whether ZFP36 expression may actually be an unreliable 

indicator of its activity. For each cancer, we looked at log-fold change of 

established TTP targets (Brooks and Blackshear, 2013a) between ZFP36 high 

and low-expressing quantiles. Because TTP destabilises its targets, high ZFP36 

expression would be expected to associate with low expression of its targets (if 

indeed ZFP36 expression correlates with its activity). Contrary to expectation, 

TTP targets tended to be more highly expressed in ZFP36-high quantiles and 

had lower expression in the ZFP36-low quantiles as shown in Figure 7.  
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Figure 7. Log-fold change of established TTP targets between ZFP36 
expression quantiles  (TCGA)Heatmap showing the log-fold change of TTP 
targets between high and low ZFP36-expressing quantiles. Red indicates 
upregulation in ZFP36-high quantile. HNSCC = head & neck squamous cell 
carcinoma.  
 

 

Given the paradox that many TTP-targets appeared positively rather than 

negatively correlated with its gene expression, we looked more closely at which 

genes were most strongly positively correlated with ZFP36. As an example, in 

LUAD, several immediate early genes (Bahrami and Drabløs, 2016) were highly 

correlated with ZFP36 gene expression across samples (Figure 8). 

Furthermore, these same genes were repressed across primary tumour sites 

(relative to normal tissue) in a manner similar to ZFP36 (data not shown).  
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We also used the ‘RAS84’ gene set, a transcriptomic signature of RAS activity 

developed in our lab by Sophie De Carne and Philip East (East et al., 2021), we 

identified tumours with the lowest RAS activity - RAS activity group 0 (RAG-0) 

and then superimposed this annotation on the plots (Figure 8). As shown, these 

tumours have low of expression of ZFP36 and its correlated genes. While 

ZFP36 is a component of the RAS84 signature, it is evident that the other 

positively correlated genes, while not all part of the signature, also show 

association with low RAS84 index. As support of this link, when examining the 

mutational spectra between ZFP36 expression quantiles, it is evident that the 

frequency of various oncogene or TSG aberrations show trends across the 

quantiles (Figure 9). In particular, KRAS mutations are almost three times more 

frequent in the highest ZFP36-expression quartile (45.67%) versus the lowest 

(15.75%).  

 
Figure 8. Most strongly positively correlated genes with ZFP36 in LUAD Plots 
show the most highly correlated genes with ZFP36 in LUAD (TCGA), using VST-
normalised data. Red circles indicate samples belonging to RAS activity group 0 
(lowest RAS transcriptional activity, (East et al., 2021)) 
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Figure 9. Mutation frequencies across ZFP36 expression quantiles in LUAD 
For each tumour type, samples were split into low (bottom 25%), medium (middle 
50%) or high (top 25%) ZFP36-expressing tumours. Oncogenic or TSG mutations 
per quantile were plotted as bars.  
 

We next looked for overlap in the module of genes that are highly correlated 

with ZFP36, between four tumour types; LUAD, COAD, PAAD and BLCA. Of 

the 50 genes most highly correlated with ZFP36 in the individual tumour types, 

22 overlapped between all four (Figure 10).  

 

 
 
Figure 10. Overlapping ZFP36-correlated genes across cancers 
The 50 most-highly correlated genes with ZFP36 in four TCGA tumour types 
are shown in the Venn diagram. Intersect genes refer to the 22 overlapping 
genes across all four types.  
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Given the failure of ZFP36 expression to reliably predict survival when used in 

isolation, we instead looked at whether expression of this ‘ZFP36 co-

expression’ module (of 22 genes correlated with ZFP36 expression across 4 

different tumour types) may be predictive instead. Across the four tumour types 

in which the genes were selected, there was no consistent nor significant 

association with survival. 

 

 
 
Figure 11. Survival by ZFP36 co-expression module cluster For each tumour 
types, samples were clustered into three groups according to mean expression of 
the ZFP36 co-expression module (low, medium or high). Survival for each was 
plotted along with the hazard ratio (HR) between high and low-expressors. P-value 
indicates significance of log-rank test between high and low cohorts.  
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To conclude this section, ZFP36 gene expression is reduced across a broad 

range of malignancies relative to normal tissue. Nonetheless, its expression 

alone does not predict survival. Furthermore ZFP36, rather than being 

anticorrelated with its targets, shows a positive association instead. In fact, 

several genes including various immediate early genes, are positively 

correlated with ZFP36 across malignancies. These genes tend to associate with 

RAS transcriptional activity (according to the RAS84 gene signature) 

suggesting that RAS may transcriptionally drive TTP and related gene 

expression. To this end, tumours with mutations in KRAS had higher TTP 

expression than wild-type KRAS LUAD. Even when all these genes are 

considered together, there was no obvious impact on patient survival. Given 

that ZFP36 shows tumour suppressor characteristics in pre-clinical studies, it is 

unlikely that ZFP36 gene expression in isolation (nor as part of a simple 

correlated gene module) is a reliable surrogate of its activity. Instead, a better 

surrogate of TTP activity, for example looking at its targets directly, may be 

more likely to predict survival in cancers where inhibition of TTP activity is an 

important tumour-suppressive mechanism.  

 

3.3 TTP modulates gene expression in CT26 cells 

While ZFP36 expression in human tumours was not able to predict survival nor 

appeared a good surrogate of its activity, there is still pre-clinical evidence of 

tumour-suppressive activity of TTP warranting further study. Despite this, its 

global transcriptomic effect in tumour cells is not well described. In order to 

assess the ability of TTP to regulate tumour-intrinsic expression of 

immunomodulatory genes in an immunogenic model, we used CT26 (murine 

colon carcinoma) derivatives that had previously been generated in the lab 

(Figure 12) (Coelho et al., 2017). These included:  

 

1) Parental CT26 cells transfected with ‘empty’ Cas9 (hereafter called 

‘parental’ cells) 
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2) CT26 cells where Zfp36 had been functionally knocked out using 

CRISPR/Cas9 (hereafter called ‘TTP KO’ cells) 

 

3) TTP KO cells transduced with doxycycline-inducible, wild-type, murine 

Zfp36 (hereafter ‘Tet-On TTP(WT)’ cells) 

 

4) TTP KO cells transduced with doxycycline-inducible murine TTP with 

serine to alanine mutations at positions 52 and 178, precluding 

phosphorylation at these sites (hereafter ‘Tet-On TTP(aamt)’ cells) 

 

As alluded to in the introduction, TTP is phosphorylated at serines 52 

and 178 by p38 MAPK. This phosphorylation stabilizes the protein but 

inhibits its function. Mutation of these residues from serine to alanine 

precludes phosphorylation, rendering TTP constitutively active. Mice with 

constitutional serine to alanine mutations at these residues are protected 

from certain inflammatory pathology (Ross et al., 2015). 

 
Figure 12 CT26 derivatives Figure adapted from (Coelho et al., 2017). Derivatives 
include a) parental CT26 cells; b) parental cells with CRISPR/Cas9-mediated 
knockout of Zfp36; c) as per b) but reconstituted with doxycycline-inducible wild-
type TTP; d) as per b) but reconstituted with doxycycline-inducible phosphosite-
mutant TTP 

a) Wild-type (WT) b) TTP KO

c) Tet-On TTP(WT)

d) Tet-On TTP(aamt)

No doxycycline (Zfp36 
not transcribed)

Doxycylcine (Zfp36 
overexpressed)
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We validated the system by measuring induction of Zfp36 mRNA and its effect 

on Cd274 upon stimulation of cells with 1𝜇g/𝜇l doxycycline. Cd274 acted as our 

positive control given the established effect of TTP on its stability (Coelho et al., 

2017). As below, application of doxycycline resulted in robust induction of Zfp36 

mRNA only in derivatives with doxycycline-inducible TTP. In the same lines, 

Cd274 mRNA was reliably reduced (Figure 13).  

 

 
 
Figure 13. Validation of CT26 derivatives 105 cells were plated per well of a 6-
well plate for 24 hours before adding doxycycline (1𝜇g/ml) or vehicle (DMSO). After 
a further 24 hours, cells were harvested and RNA was extracted for qPCR. Data 
represent means ± SD of three biological replicates. Statistical comparisons 
performed using independent t-tests.  
 

To test the effect of TTP induction beyond Cd274 we performed qPCR on 

putative TTP targets, as described by Brooks et al.(Brooks and Blackshear, 

2013a), specifically focussing on those with known roles in tumour immune 

evasion. We showed that induction of TTP resulted in downregulation of Ptgs2 

and Vegfa mRNA, but not Myc (Figure 14).  
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Figure 14. Effect of TTP induction beyond Cd274 105 cells were plated per well 
of a 6-well plate for 24 hours before adding doxycycline (1𝜇g/ml) or vehicle 
(DMSO). After a further 24 hours RNA was extracted for qPCR. Data represent 
means ± SD of three biological replicates. Statistical comparisons performed using 
independent t-tests. 
 

The canonical function of TTP involves regulation of the resolution phase of the 

inflammatory response, where it contributes to destabilisation of cytokine 

mRNA. We tested the effect of TTP induction on the levels of various cytokine 

mRNA in CT26 cells. The effect of TTP on cytokine mRNA levels was difficult to 

appreciate due to the low expression of many such mRNA species in this model 

(data not shown). Nonetheless, the relationship between cytokine mRNA and 

liberated protein levels is complex. Therefore, in order to examine the breadth 

of TTP effect on the cell secretome, we performed a cytokine array (Figure 15) 
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A. 

 
B. 

 
 
Figure 15. Cytokine array: effect of TTP induction in CT26 Tet-on TTP(aamt) 
A. Cytokine array; Tet-On TTP(aamt) cells were treated with doxycycline (1 μg/ml) 
or vehicle control (DMSO) for 24 hours prior to supernatant harvest. Fresh medium 
(with doxyxcyline or control) was added overnight prior to harvest. Data 
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represented as relative pixel density of treatment/control for the 5-minute exposure 
time, x-axis ordered by control pixel density. B.  Exposure film at 10-minute time-
point. Red arrows: CXCL1; green arrows: representative molecules not affected by 
TTP induction. 
 

Although TTP induction appeared to have a broad effect, reducing levels of 

several secreted molecules, many were not expressed very strongly. 

Conversely, many which were expressed at higher levels (e.g. CXCL10, CCL5 

and CSF1) were relatively unaffected. However, we identified CXCL1 as 

downregulated by TTP overexpression and also liberated at relatively high 

quantities. Interestingly, CXCL1 is also a known KRAS target (Cullis, Das and 

Bar-Sagi, 2018).. Its expression in all four CT26 derivates following doxycycline 

exposure was validated by ELISA Figure 16). CXCL1 expression was reduced 

in the TTP-inducible lines, but not in the parental or TTP KO lines. Therefore, 

TTP overexpression is able to modulate the secreted levels of CXCL1 in our 

system.  

 

 
 
Figure 16. CXCL1 ELISA ELISA for CXCL1 following treatment of CT26 cells with 
doxycycline (1 μg/ml) or vehicle control (DMSO) for 24 hours prior to supernatant 
harvest. Fresh medium (with doxycycline or control) was added overnight prior to 
harvest. (n=2). Data represented as means and SD. Bars represent significant 
different in means (p < 0.05) using t-test.  
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While TTP can influence transcription, its major mechanism of action on gene 

expression is through destabilisation of target mRNA. To examine the effect of 

TTP on transcript half-life, actinomycin-D was used to block transcription after 

TTP overexpression. While Vegfa transcript half-life was not clearly different 

between doxycycline and control-treated conditions, half-life of Ptgs2 mRNA 

was reduced following TTP induction, consistent with the notion that TTP 

affects steady-state expression by reducing transcript stability.  

 

 
Figure 17. Zfp36 induction increases Ptgs2 instability Tet-On TTP(aamt) cells 
were treated with doxycycline (1 μg/ml) or vehicle control (DMSO) for 24 hours 
prior to administration of 5 μg/ml of actinomycin D. RNA was harvested at 0, 30, 60, 
120 and 240 minutes after administration. For Ptgs2 and Vegfa, ANOVA was used 
to test all time points together (p < 0.05 for both) and then t-tests used for individual 
time-points (p <0.05 denoted by asterisks) 
 

 

Thus, TTP overexpression modulates gene expression in CT26 cells. Across 

three previously-described TTP targets – Ptgs2, Vegfa and Myc – expression of 

the former two was reduced in response to induction of the TTP gene, Zfp36. 

Furthermore, in a cytokine array panel, CXCL1 expression was reduced upon 

TTP induction, and effect confirmed with ELISA. The effect (on Ptgs2 at least) 

was likely due to transcript destabilisation, as shown by time course 

experiments after application of actinomycin D to block transcription.  
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In order to gain a broader understanding of the transcriptomic effect of TTP 

overexpression in this system we conducted an RNAseq experiment, as 

discussed next.  

 

3.4 TTP induces downregulation of gene modules involved in 
oncogenic processes 

 

CT26 derivatives were treated with either doxycycline (1𝜇g/ml) or DMSO 

(1𝜇l/ml) for 24 hours before RNA extraction. Experiments were done in triplicate 

and validated for Ptgs2 effect, as a positive control (Figure 18) before 

submission for RNA sequencing.  

 

 

 
 
Figure 18. qPCR: validation of samples submitted for RNA sequencing 105 
cells were plated per well of a 6-well plate for 24 hours before adding doxycycline 
(1𝜇g/ml) or vehicle (DMSO). After a further 24 hours RNA was extracted. Data 
represent means ± SD of three biological replicates.  
 

 

Following library preparation, sequencing and pre-processing (see methods), 

data was first screened using principal component analysis (PCA). Data from 

CT26 Tet-on TTP(aamt) cells, where phosphosite-mutant TTP is inducible upon 
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addition of doxycycline, showed separation by treatment (doxycycline vs 

control) along principal component 2 (PC2) in contrast to CT26 WT cells, where 

no obvious separation by treatment effect was obvious in the first two PCs 

(Figure 19). 

 

 

 
Figure 19. Principal component analysis of RNAseq data. PCA plots of CT26 
(wt) and Tet-on (aamt) lines showing separation by treatment in PC2 for the latter.  
 
 

Next, differential expression analysis was performed to specifically look at the 

genes downregulated upon TTP induction in both CT26 Tet-On TTP(wt) and 

CT26 Tet-On TTP(aamt) lines. As shown below, 116 and 105 genes were 
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significantly downregulated below an LFC of < -0.5 (equivalent to approximately 

≥30% reduction) upon TTP induction, in the Tet-On TTP(wt) and Tet-On 

TTP(aamt) lines respectively. Only 15 and 10 genes respectively were 

significantly decreased by more than 50%.  

 

 CT26 Tet-On TTP (wt) CT26 Tet-On TTP (aamt) 
LFC Number %  Number %  
>2 9 0.06 8 0.05 

>1.5 13 0.09 12 0.08 

>1 24 0.16 31 0.21 

>0.5 108 0.72 136 0.91 

> 0 514 3.44 509 3.41 

< 0 761 5.09 727 4.87 

<-0.5 118 0.78 106 0.70 

<-1 15 0.10 10 0.07 

<-1.5 2 0.01 2 0.01 

<-2 0 0.00 0 0.00 

 
Table 10. Summary of Log Fold Changes upon TTP induction in Tet-On 
TTP(wt) and Tet-On TTP(aamt) lines. For each log2 fold change (LFC) the 
number of genes under or overexpressed upon induction of TTP is shown. 
Percentages refer to the percentage of all genes tested. All genes had an adjusted 
p value of < 0.1.  
 

 

A graphical summary these changes is given by the MA plot in Figure 20. 

Fortuitously, Ptgs2 (which had been our positive control previously) was the 

most strongly downregulated gene in the Tet-On TTP(aamt) line and the 3rd 

most strongly downregulated in the Tet-On TTP(wt) line. Exact values for the 

most strongly downregulated genes in either line, are shown in Table 11 
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CT26 (Tet-On TTP(wt) 

 
 

CT26 (Tet-On TTP(aamt) 

 
Figure 20. MA plot displaying effects of TTP induction in Tet-On TTP(wt) and 
Tet-on TTP(aamt) linesHere, the log2 fold change for each gene is plotted against 
its mean expression. Only genes with an adjusted p value of <0.1 are shown, and 
the 10 most strongly downregulated genes are highlighted. 
 

  



Chapter 3 Results 

 

111 

 

 

 CT26 Tet-On TTP (wt)  CT26 Tet-On TTP 
(aamt) 

Name Mean 
expr. 

LFC Adj. p 
val. 

Name Mean 
expr. 

LFC Adj. p 
val. 

Mamdc2 74.8 -1.6 0.014 Ptgs2 6457.5 -1.66 <0.001 

Areg 209.9 -1.5 <0.001 Mamdc2 74.8 -1.59 0.016 

Ptgs2 6457.5 -1.42 <0.001 Mllt11 279.6 -1.46 <0.001 

Plk3 351.1 -1.22 <0.001 Amn1 71.7 -1.29 <0.001 

Srrm4 69.2 -1.21 <0.001 Areg 209.9 -1.28 <0.001 

Cd274 114.2 -1.15 0.002 Tmcc2 432.6 -1.21 <0.001 

Omd 10.1 -1.09 0.023 Il23a 9.5 -1.16 0.025 

Il11 59.46 -1.02 <0.001 Rab3a 101.6 -1.1 <0.001 

Tmcc2 432.57 -1.01 <0.001 Cdh17 18.9 -1.05 0.005 

Gnas 80.82 -1 <0.001 Asb1 351.8 -1 <0.001 

 
Table 11. Most strongly downregulated genes upon TTP induction 
The 10 most strongly downregulated genes following TTP induction (adjusted p-
value < 0.05) are shown for each line.  
 

 

We next looked at the overlap between genes downregulated in both lines. Of 

118 and 106 genes significantly downregulated below a LFC of -0.5 in Tet-On 

TTP(wt) and Tet-On TTP(aamt) lines respectively, 39 overlapped between the 

two groups (Figure 21). The 10 genes with the strongest mean reductions are 

shown in Table 12. Of note, several established RAS targets including Ptgs2, 

Areg, Lif and Plk3 appeared in this overlap.   
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Figure 21. Overlap of downregulated genes Genes downregulated by <-0.5 
(adjusted p-value < 0.1) following TTP induction  
 

  Tet-ON TTP (WT) Tet-ON TTP (aamt) 
 Mean 

expression 
Log2 fold 
change 

Adjusted 
p value 

Log2 fold 
change 

Adjusted 
p value 

Ptgs2 6457.52 -1.42 <0.001 -1.66 <0.001 

Mamdc2 74.77 -1.60 0.014 -1.59 0.016 

Areg 209.86 -1.50 <0.001 -1.28 <0.001 

Mllt11 279.64 -0.97 <0.001 -1.46 <0.001 

Tmcc2 432.57 -1.01 <0.001 -1.21 <0.001 

Hist1h2bc 41.97 -1.31 <0.001 -0.63 0.022 

Asb1 351.83 -0.91 <0.001 -1.00 <0.001 

Lif 387.00 -0.89 <0.001 -0.98 <0.001 

Amn1 71.75 -0.58 0.004 -1.29 <0.001 

Plk3 351.12 -1.22 <0.001 -0.50 0.032 

 

Table 12. Top genes underexpressed in both datasets Results (adjusted p < 
0.05) are ordered by mean log2 fold change across the two lines 
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We next wanted to see whether the genes identified in our dataset are 

consistent with those known to be validated by TTP. We used the manually 

curated TTP-target genes list from Brooks et al (Brooks and Blackshear, 

2013a). Table 13 shows these putative TTP targets and their log2 fold changes 

in our TTP-inducible cell lines. Highlighted in bold are those that were 

significantly underexpressed in our dataset. The table shows that many known 

TTP targets were significantly downregulated. A Fischer’s exact test looking for 

enrichment of TTP targets in amongst the downregulated genes in our dataset 

was highly significant (p < 0.0001). The distribution of these literature-curated 

targets for the Tet-On TTP(aamt) line is shown in an MA plot (Figure 22). As 

shown, most genes are downregulated, and many are significant (fall within the 

red points on the graph) at an adjusted p-value of < 0.1.  

 

  Tet-ON TTP (WT) Tet-ON TTP (aamt) 
 Mean 

expression 
Log2 fold 
change 

Adjusted 
p value 

Log2 fold 
change 

Adjusted 
p value 

Ccnd1 7290.5 0.00   0.991 -0.10   0.292 

Ptgs2 6457.5 -1.42 <0.001 -1.66 <0.001 
Serpinh1 6140.1 -0.02   0.827 -0.08   0.356 

Myc 2782.4 -0.18   0.165 -0.22   0.064 

Hif1a 2746.7 -0.19   0.007 -0.16   0.021 
Cdkn1a 2697.3 -0.43   0.009 -0.26   0.076 

Vegfa 2591.9 -0.35   0.002 -0.47 <0.001 
Ube3a 2526.2 -0.23   0.071 -0.27   0.069 

Dusp6 1828.1 -0.17   0.123 -0.11   0.335 

Plaur 1651.9 -0.39 <0.001 -0.70 <0.001 
Lats2 1157.0 -0.29   0.010 -0.27   0.019 

Tcf3 794.0 0.04   0.800 0.10   0.438 

Ier3 571.1 -0.59 <0.001 -0.65 <0.001 
Lif 387.0 -0.89 <0.001 -0.98 <0.001 
Tlr4 355.0 0.12   0.317 0.22   0.139 
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Plk3 351.1 -1.22 <0.001 -0.50   0.032 
Pim1 122.1 -0.39   0.016 -0.33   0.032 

Cd274 114.2 -1.15   0.002 -0.05   0.675 

Thbd 74.2 -0.05   0.511 -0.47   0.057 

Ecscr 49.8 0.97 <0.001 0.64   0.005 
Cxcl1 11.0 0.00   0.972 0.05   0.405 

Il23a 9.5 -0.03   0.407 -1.16   0.025 

Il6 6.7 0.00   0.667 -0.01   NA 

Clmp 6.2 0.03   NA 0.02   NA 

Nos2 3.6 -0.02   NA 0.00   NA 

Ccl2 2.2 -0.02   NA -0.03   NA 

Csf2 1.2 -0.01   NA -0.03   NA 

 
Table 13. Literature-curated TTP targets Data shows log2 fold change (and 
adjusted p-values) after 24 hours of Zfp36 induction for the two cell lines as 
indicated. Bold entires indicate thoe with am adjusted p-value < 0.01.  
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Figure 22. MA plot showing distribution of literature-curated TTP targets in 
Tet-On TTP(aamt) cells TTP targets shown in black. Those with a log2 fold change 
<-0.3 are annotated. Grey dots indicate genes that are not significantly changed 
(adjusted p value > 0.1), red dots are significant 
 

Significant enrichment of TTP targets within the downregulated compartment of 

our data suggested that our system was performing as intended. In order to 

further interrogate the nature of the underexpressed genes, we performed gene 

set enrichment analysis looking at Tet-On TTP(wt) and Tet-On TTP(aamt) lines. 

We initially looked at hallmark gene sets from the Molecular Signatures 

Database (MSigDB). Given the canonical role of TTP in destabilising TNF𝛼, it 

was reassuring that the gene sets pertaining to “TNF𝛼 signalling via NF𝜅B” and 

the “inflammatory response” were high amongst the most significantly 

downregulated gene sets for both lines (Table 14, Figure 23). MYC target 

genes, genes in the PI3K/AKT/mTOR pathway and genes involved in the 

unfolded protein response were also amongst those with the lowest normalised 

enrichment scores  
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 Tet-ON TTP (WT) Tet-ON TTP (aamt) 
Hallmark Pathway Rank NES Adj. p 

val. 
Rank NES Adj. p 

val. 
MYC_TARGETS_V1 1 -1.880 0.000 2 -1.844 0.000 

UNFOLDED_PROTEIN_RESP

ONSE 4 -1.901 0.000 1 -2.072 0.000 

TNFA_SIGNALING_VIA_NFKB 3 -1.836 0.000 4 -1.677 0.003 

MTORC1_SIGNALING 7 -1.676 0.001 3 -1.856 0.000 

INFLAMMATORY_RESPONSE 10 -1.721 0.002 6 -1.600 0.013 

MYC_TARGETS_V2 8 -1.852 0.002 10 -1.517 0.100 

 
Table 14. Gene set enrichment analysis Table shows the most significantly 
downregulated gene sets following TTP induction. Sets were ordered by their 
adjusted p value in each line and ranks were then averaged between lines. The 6 
highest mean ranks are displayed.  
 
Of note, when gene sets were overlaid on MA plots, other patterns emerged. 

For example, while the MTORC1 gene set was significantly down-regulated 

according to its normalised enrichment score (NES), only few genes displayed 

a log2 fold change of <-0.5. Conversely, while the NES for “TNF𝛼 signalling via 

NF𝜅𝛽" was similar, many more genes showed a log2 fold change of <-0.5. A 

similar distribution was seen for genes within the “Hallmark inflammatory 

signalling” gene set (several genes with <-0.5 log2 fold change) vs. the 

“Hallmark Myc targets v1” (only one gene with log2 fold change <-0.5 despite 

low NES, data not shown). Thus, in the sets related to signalling, a high 

percentage of genes were downregulated but the magnitude of this effect was 

small. Conversely, with the inflammatory gene sets, a smaller percentage was 

downregulated (log2 fold change <0) but there were more genes with a 

relatively higher magnitude of downregulation (log2 fold change < -0.5) (Figure 

24).  
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a) Tet-On TTP(wt) 

 
 

b) Tet-On TTP(aamt) 

 
Figure 23. Gene set enrichment analysis - all downregulated sets All 
downregulated gene sets in a) Tet-On TTP(wt) and b) Tet-On TTP(aamt) lines, 
following TTP induction. Red bars indicate an adjusted p value < 0.05.  
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a)  

 
b)  

 
Figure 24. MA plots: selected gene sets MA plots for a) Hallmark MTORC1 
genes and b) Hallmark TNF𝛼 signalling via NF𝜅𝛽. Red dots represent genes 
belonging to pathway. Genes with an absolute log2 fold change >0.5 are annotated.  
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Given the importance of these downregulated gene sets in oncogenic 

processes, we next looked to see whether such TTP-downregulated genes may 

be important in human cancers. To this end, we attempted to build a signature 

of genes, and examine whether such a signature may be prognostic. We first 

selected genes with a log2 fold change of < -0.5 and an adjusted p-value of < 

0.1 after induction of TTP in Tet-On TTP(aamt) cells. In order to only keep 

genes that varied sufficiently we plotted the mean of each gene in the TCGA 

LUAD dataset against its log coefficient of variation (ratio of standard deviation 

to mean). To this data, a smooth ‘best fit’ curve was fit using local regression 

(loess procedure). Genes which lay above the best fit line, are those with a high 

variability in the dataset (relative to their mean). These genes are more likely to 

be informative in terms of outcome metrics like prognosis. Genes with a low 

coefficient of variation vary little between patients and thus may not inform 

much yet could add noise to the data, as may genes with low expression. 

Therefore only genes which lay above the loess curve and had an arbitrarily 

high enough expression were retained in the signature.  

 

Retained genes for each tumour type were used to cluster TCGA samples into 

three groups, which were labelled according to average expression of genes in 

each group (Figure 26).  
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Figure 25. Selection of genes for signature Each dot represents a gene from the 
TCGA LUAD data set. The darker dots are those downregulated with an Log2 fold 
change < -0.5 after induction of TTP in Tet-ON TTP(aamt). The darkest dots are 
those with sufficient expression and variance to be included in the signature. 
Similar analysis was done for the TCGA COAD dataset 
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Figure 26. Clustering on 'TTP signature' genes Heatmaps demonstrating 
clustering of a) LUAD and b) COAD samples on ‘TTP signature’ genes. Clusters 
were annotated according to mean expression of signature genes.  
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Using such cluster annotations, we next looked at survival. As shown in Figure 

27, samples with a high expression of signature genes had worse overall 

survival than those with lower expression. Those with a high expression of TTP 

signature genes had a 54% and 63% higher risk of death in LUAD and COAD 

respectively than those in the cluster with the lowest expression.  

 
 

 
 
Figure 27. Overall survival by signature cluster For each tumour type samples 
were split into high and low groups depending on mean expression of TTP 
signature genes. Hazard ratios (cox proportional hazards model) and p-values (log-
rank) between the two groups are shown 
 
Thus, overexpression of TTP in CT26 cells results in downregulation of a 

number of gene sets including those related to MYC and mTOR signalling and 

in inflammatory pathways. Individual gene targets included known RAS-related 
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genes such as Ptgs2, Areg and Lif. Patients with LUAD and COAD who cluster 

in groups with lower expression of some of these TTP ‘targets’ exhibit better 

survival than those with higher mean expression of these genes. Although 

various factors could (and likely do) contribute to reduction in expression of our 

signature genes, the association of low expression of these genes with 

improved survival is nonetheless consistent with the pre-clinical evidence 

suggesting the putative role of TTP as a tumour suppressor.  
 

3.5 TTP overexpression modulates CT26 tumour growth in 
vivo  

Given the ability of TTP to downregulate genes known to be important for 

oncogenesis, we investigated whether overexpression of TTP may modulate 

tumour growth in vivo. CT26 TTP KO and CT26 TetOn TTP(aamt) cells were 

injected subcutaneously into BALB/c mice and, after tumours were established, 

mice were administered doxycycline (50mg/kg) or vehicle control daily, by oral 

gavage (see methods for details). Tumour growth was measured with callipers 

three time per week. In the TTP KO cells, addition of doxycycline had no effect 

on tumour growth dynamics. Conversely, in the Tet-On TTP(aamt) group, 

addition of doxycycline resulted in and approximately 40% reduction in tumour 

growth (768 mm3 vs. 465mm3 at the final time point). Induction of TTP therefore 

appears to slow tumour growth in this SC model.  
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Figure 28. Effect of TTP induction on SC CT26 growthSC injection of 1x105 CT26 
cells followed by control (water) or doxycycline (50mg/kg) treatment by oral gavage (OG). 
Tumours injected on day 0 and doxycycline was administered from day 3, five days per 
week. Error bars represent 95% confidence intervals 
 

3.6 TTP and KRAS targets overlap but TTP fails to modify 
KRAS effect during simultaneous perturbation 

Given the observed overlap between TTP and KRAS targets, both from 

published TTP targets (Brooks and Blackshear, 2013a) and our own data, we 

sought to investigate this more formally. We began by interrogating in vitro 

RNAseq data from our lab, where the KRAS(G12C)-mutated 3LL-ΔNRAS or 

KPAR(G12C) lines were treated with the KRAS(G12C) inhibitors MRTX1257 or 

MRTX849 respectively. Details of the experimental schema are given in section 

2.7. We sought to compare the set of downregulated genes after KRAS 

inhibition in these lines, with the genes downregulated by TTP induction in 

CT26 cells, specifically asking whether the overlap was significantly higher than 

that expected by chance. As shown in Figure 29 and Table 15, there was a 

significant overlap in the genes downregulated by KRAS inhibition and TTP 

overexpression. For example, at a log2 fold-change of <-0.5 (and an adjusted p 

value of <0.1) the overlap between these genes was around 4 times higher than 
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that expected by chance when considering KPAR1.3 versus CT26 Tet-ON 

TTP(aamt), and almost 12 times higher than that expected by chance when 

considering 3LL-ΔNRAS versus CT26 Tet-ON TTP(aamt). 
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Table 15. Overlap between genes differentially expressed after KRAS 
inhibition and TTP overexpression 3LL-ΔNRAS cells and KPAR1.3 cells were 
treated with MRTX1257 or MRTX849 for 8 hours in vitro before RNA extraction. 
Differential expression reported relative to control (DMSO) treatment. CT26 cells 
treated as previously described. Odds ratios and p-values calculated using 
Fischer’s exact test.  
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a) 

 
b)  

 
Figure 29. Venn plots: overlap between genes differentially expressed after 
KRAS inhibition and TTP overexpression a) 3LL-ΔNRAS cells and b) KPAR1.3 
cells were treated with MRTX1257 or MRTX849 in vitro before RNA extraction. 
Differential expression reported relative to control (DMSO) treatment. CT26 cells 
treated as previously described. Odds ratios and p-values calculated using 
Fischer’s exact test.  
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Individual genes downregulated with a log2 fold-change of <-0.5 (adjusted p 

value <0.1) in at least one KRAS(G12C) line and one CT26 derivative are 

shown in Table 16. These include genes encoding growth factors (e.g. Areg 

and Ereg), inflammatory/immunoevasive mediators (e.g. Ptgs2), cell cycle 

regulators (e.g. Plk3), transcription and translation mediators (e.g. Eef1e1, 

Zc3h8), Stat3 inducers (e.g. Il11 and Lif) and an ECM re-modeller (Plaur).   

 

Gene 3LL-ΔNRAS KPAR1.3 
CT26 Tet-

On TTP(wt) 
CT26 Tet-On 
TTP(aamt) 

Mean 
LFC 

Areg -3.65 (0) -2.66 (0) -1.5 (0) -1.28 (0) -2.27 
Ptgs2 -1.92 (0) -1.58 (0) -1.42 (0) -1.66 (0) -1.64 
Plk3 -2.26 (0) -1.3 (0) -1.22 (0) -0.5 (0.03) -1.32 

Eef1e1 -1.2 (0) -0.64 (0) -0.75 (0) -0.88 (0) -0.87 
Zfp36l2 -0.65 (0) -1.1 (0) -0.54 (0) -0.83 (0) -0.78 
Zc3h8 -0.68 (0.01) -0.54 (0.02) -0.56 (0.01) -0.96 (0) -0.68 

      
Il11 -0.14 (0.43) -2.49 (0) -1.02 (0) -0.62 (0) -1.07 
Lif 0.14 (0.33) -1.71 (0) -0.89 (0) -0.98 (0) -0.86 

Mllt11 -0.76 (0) -0.15 (0.27) -0.97 (0) -1.46 (0) -0.84 
Ier3 -1.02 (0.01) -0.46 (0) -0.59 (0) -0.65 (0) -0.68 

Plekha3 -0.92 (0) -0.39 (0) -0.6 (0) -0.82 (0) -0.68 
Inhba 0.07 (0.68) -1.53 (0) -0.59 (0) -0.54 (0) -0.65 

F3 -0.68 (0) -0.3 (0) -0.55 (0) -0.85 (0) -0.59 
Clcf1 -0.67 (0) 0.05 (0.83) -0.82 (0) -0.87 (0) -0.58 

Slc25a25 -0.55 (0.04) -0.1 (0.48) -0.66 (0) -0.72 (0) -0.51 
Tmem68 -0.61 (0) -0.04 (0.82) -0.6 (0) -0.6 (0) -0.46 

      
Ereg -2.56 (0) -1.68 (0) -0.63 (0.01) -0.48 (0.04) -1.34 

Phlda1 -1.97 (0) -1.19 (0) -0.43 (0) -0.64 (0) -1.06 
Gdf15 -0.82 (0.04) -1.48 (0) -1.4 (0.02) -0.06 (NA) -0.94 
Pim3 -0.91 (0) -0.78 (0) -0.45 (0) -0.75 (0) -0.72 
Yrdc -0.98 (0) -0.58 (0) -0.24 (0.02) -0.57 (0) -0.59 

Epha2 -0.88 (0) -0.61 (0) -0.35 (0.01) -0.5 (0) -0.58 
Polr3d -0.67 (0) -0.53 (0) -0.43 (0) -0.57 (0) -0.55 
Dimt1 -0.72 (0) -0.51 (0) -0.27 (0.02) -0.61 (0) -0.53 
Mak16 -0.64 (0) -0.52 (0) -0.42 (0) -0.56 (0) -0.53 
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Sele -5.47 (0) -0.01 (NA) -0.17 (0.19) -0.54 (0) -1.55 
Dynap -0.01 (NA) -1.67 (0) -0.87 (0) -0.04 (0.71) -0.65 
Plaur -1.02 (0) -0.41 (0) -0.39 (0) -0.7 (0) -0.63 
Ctgf -0.02 (NA) -1.33 (0) -0.58 (0.02) -0.43 (0.05) -0.59 

Slc4a7 -0.9 (0) -0.42 (0) -0.19 (0.08) -0.6 (0) -0.52 
Hspa5 -0.35 (0.1) -0.89 (0) -0.27 (0.06) -0.54 (0) -0.51 
Cbwd1 -0.53 (0) -0.31 (0) -0.35 (0) -0.78 (0) -0.5 
Atp2a2 -0.52 (0) -0.49 (0) -0.4 (0) -0.54 (0) -0.49 

Mtrr -0.57 (0.01) -0.44 (0) -0.28 (0.01) -0.58 (0) -0.47 
Pfdn4 -0.66 (0.02) -0.38 (0) -0.25 (0.03) -0.55 (0) -0.46 
Mafk -0.51 (0.01) -0.39 (0) -0.52 (0) -0.35 (0.01) -0.44 
Syt4 0 (NA) -0.99 (0.02) -0.65 (0.01) -0.08 (0.36) -0.43 

Bpnt1 -0.68 (0) -0.14 (0.32) -0.24 (0.05) -0.64 (0) -0.42 
Tmem158 -0.11 (0.64) -0.61 (0) -0.58 (0) -0.25 (0.13) -0.39 

Tmed5 -0.17 (0.17) -0.53 (0) -0.54 (0) -0.11 (0.34) -0.34 
 
Table 16. Genes modulated by KRAS inhibition and TTP overexpression 
Numbers show the log2 fold changes (LFCs) after 8 hours of KRAS inhibition (3LL-
ΔNRAS or KPAR1.3) or 24 hours of TTP overexpression (CT26 derivatives). 
Adjusted p-values are in brackets. Genes grouped according to whether LFCs 
were: all <-0.5 (top), < -0.5 in both CT26 derivatives and one KRAS(G12C) line 
(second), <-0.5 in both KRAS(G12C) lines and one CT26 derivate (third) or <-0.5 in 
exactly one KRAS(G12C) and CT26 line each (bottom).  
 

In addition, we looked at genes in the RAS84 signature and assessed whether 

they were downregulated upon TTP overexpression in our CT26 cells. The 

normalised enrichment score (NES) following GSEA was -1.48 for the Tet-On 

TTP(aamt) line (Figure 30) indicating that downregulated genes were enriched 

in this gene set. Leading edge genes (those that contributed the most to the 

NES) common to both lines included Lif, Clcf1, Plaur, Ier3, Bmp2, Epha2, Ereg, 

Slc20a1 and Junb. The significant NES in the GSEA analysis again adds 

support to the hypothesis that TTP targets are enriched in the set of KRAS-

modulated genes. Note that the normalised enrichment score (NES) is a metric 

of enrichment which is normalised for the size of the gene set. High values 

indicate that genes in the gene set are enriched in the over-expressed portion 

of one’s data, while low (negative) scores indicate that genes in the gene set 

are enriched in the under-expressed portion of one’s data. 
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a)  

 
b)  

 
Figure 30. RAS84 GSEA Differentially expressed genes following Zfp36 
overexpression in a) CT26 Tet-On TTP(wt) or b) CT26 Tet-On TTP(aamt) were 
ranked according to their shrunken log2 fold-change (most positive to most 
negative) and then used as input to GSEA against the RAS84 gene set 
 

Given the overlap between genes related to KRAS inhibition and TTP 

overexpression, even across different models, we sought to perturb both KRAS 

and TTP in the same system to explore whether modulation of TTP could 

abrogate the effect of KRAS inhibition. We used a CT26(G12C) cells which 

enabled us to directly inhibit KRAS with the specific inhibitor MRTX1257. These 

cells were a gift from Mirati Therapeutics where the homozygous KRAS(G12D) 
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alleles had been edited to KRAS(G12C) alleles using CRISPR-CAS9 

technology.  

 

We first validated the ability of MRTX1257 to affect proliferation and MAPK 

signalling in these cells. Initially we assessed inhibition of signalling using 

Western blot (Figure 31). Cells were treated with MRTX1257 or, for comparison, 

the G12C inhibitor AZ8037 for 6, 24 or 48 hours. With both drugs, phospho-

ERK levels at 6 and 24 hours were suppressed, with rebound starting to 

emerge by 48 hours. Phospho-S6 remained suppressed even at 48 hours.  

 

 
Figure 31. CT26(G12C) Western blot Cells were treated with the indicated drugs 
(250nM AZ8037 (AZ) or 100nM MRTX1257 (MRTX)) for varying durations.  
 

To examine the impact of treatment on viability, parental or CT26(G12C) cells 

were treated with serial dilutions of either the MEK inhibitor trametinib (positive 

control), AZ8037 or MRTX1257 and viability was measured 72 hours later. 

Trametinib resulted in a 50% reduction in viability in both the WT and 

CT26(G12C) lines, while AZ8037 and MRX1257 affected viability only in the 

latter. MRTX1257 appeared more potent, with maximal effect on viability 

22-01-2020 CT26 G12C treated with AZ KRAS inh (250nM) and MRTX (100nM) for 6, 24 and 48hrs.
Exp S79

D          6         24       48         6         24        48 hr
AZ 250nM MRTX 100nM

P-AKT473

P-ERK

P-S6

KRAS

Vinculin

Protocol:
Day 0: Plate out cells 1.8x105 cell/well in 2ml media(6 well plate)
Day 1: Change media, add AZD 250nM, MRTX 100nM and DMSO      

to 24/48hrs  
timepoint

Change media to 6hr time point
Day 2: Add drugs to 6hr timepoint. Harvest 6hr and 24hr 

timepoints (DMSO 24 hr only)
Day 3: Harvest 48hr timepoint
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occurring at just 10nM, consistent with the stronger pathway inhibition observed 

in the Western blot.   

 

 
 
Figure 32. Viability: effect of MEK or KRAS(G12C) inhibitors CT26(G12C) cells 
treated with trametinib, AZ8037 or MRTX1257 at concentrations between 10 and 
5000nM before viability was measured following addition of CellTiter-Blue. Viability 
is given as percentage of control. 
 
 
Once we had established the effect of KRAS(G12C) inhibition on signalling and 

viability in CT26(G12C), we next assessed the effect of MRTX1257 

monotherapy on the expression of selected genes identified as being potentially 

regulated by both KRAS and TTP in our RNAseq analyses Figure 33. This 

effect was compared to the analogous effect in 3LL-ΔNRAS cells. As expected, 

most genes were downregulated with inhibition of KRAS(G12C). 
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a) 

 
b)  

 

 

 

 

 

 

 

 

 
Figure 33. Effect of MRTX1257 monotherapy on selected gene expression a) 
CT26(G12C) or b) 3LL-ΔNRAS cells were treated with MRTX1257 for 0, 6 or 24 
hours before harvest of RNA and analysis with qPCR. Means compared with 
independent t-tests. Significance bars indicate p < 0.05 (t-tests).  
 

 

We next assessed whether knockdown of TTP using siRNA- could abrogate the 

effect of KRAS(G12C) inhibition. As shown by our lab, oncogenic KRAS can 

induce inhibitory phosphorylation of TTP via activation of the P38-MAPK 

pathway (Coelho et al., 2017). Therefore, inhibition of oncogenic KRAS may, at 

least partly, result in downregulation of KRAS targets through 

dephosphorylation and subsequent activation of TTP. Through such a 

mechanism, the ability of KRAS inhibition to downregulate common TTP/KRAS 
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targets, including Ptgs2, may be abrogated if TTP is knocked down prior to 

KRAS inhibition.   

 

To this end, we treated cells with siRNA against TTP and subsequently 

inhibited KRAS(G12C) (Figure 34). Knockdown of Zfp36 was robust, resulting in 

gene expression that was around 30% that of controls. In the presence of 

DMSO, Zfp36 suppression with siRNA against TTP (siTTP) resulted in a 

modest, but significant 25% rise in Ptgs2 mRNA compared to mock treated 

cells. When treated with MRTX1257, mock-treated cells showed a 38% relative 

decrease in Ptgs2 expression (p = 0.02) while the 15% decrease in Ptgs2 

expression upon KRAS(G12C) inhibition in siTTP treated cells was not 

significantly different (p = 0.51). As a comparison, in the presence of DMSO, 

Myc expression was not increased upon addition of siTTP, compared to mock 

treated cells. Furthermore, the addition of MRTX1257 had a similar magnitude 

of effect regardless of whether cells were pre-treated with ‘mock’ or siTTP 

suggesting the inability of siTTP to abrogate the inhibition of Myc by 

MRTX1257.  

 

 
Figure 34. Perturbation of TTP and KRAS(G12C) within same system Cells 
were treated with mock mixture (HBSS alone), non-targeting siRNA (siScr) or 
siRNA against Zfp36 (siTTP) for 48 hours before the addition of 100nM MRTX1257 
or DMSO control. (n = 4). Groups compared with independent T-tests, asterices 
indicate p < 0.05 
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3.7 Concluding remarks 

In conclusion, in silico analysis using disparate models suggested a significant 

enrichment between KRAS and TTP targets, including known pro-tumourigenic 

transcripts such as Areg, Ereg, Ptgs2, Lif and Plaur. Knockdown of Zfp36 using 

siRNA resulted in a modest rise in Ptsgs2 mRNA and partially abrogated the 

effect of KRAS inhibition on the downregulation of this transcript although the 

magnitude of this effect was variable between replicates possibly because of 

the powerful and diverse transcriptional effects of KRAS inhibition. The fact that 

KRAS inhibition was able to downregulate Ptgs2 even in the presence of siTTP 

suggests other mechanisms by which KRAS affects Ptgs2 expression, or 

insufficient knockdown of TTP. Further work would require looking in other 

models and validating this result, for example using CRISPR-Cas9 technology 

to knock out the endogenous TTP locus and potentially lead to a more profound 

and durable suppression of Zfp36. This is alluded to in the discussion.  
 
 
 
 
 



Chapter 4 Results 

 

136 

 

Chapter 4. Results 2: Using Cellular Indexing of Transcriptomes and 
Epitopes (CITE-seq) to interrogate gene expression and cell identity in an 
orthotopic KRAS(G12C) model 

4.1 Introduction 

While it’s possible that some actions of KRAS are mediated through its effect on 

TTP, there are several other mechanisms through which KRAS operates and 

which result in diverse tumour-cell and microenvironmental change. 

Interrogation of both of these compartments at the single cell level would 

deepen our understanding of the effects of KRAS inhibition in vivo and 

potentially generate hypotheses concerning additive or synergistic 

combinations.  

 

CITE-seq is a fairly novel technique, allowing simultaneous profiling of 

transcriptomes and surface protein expression from single cells (Stoeckius et 

al., 2017). In CITE-seq, antibodies are attached to an nucleotide barcode 

(antibody-derived tag – ADT) which is specific for its target (e.g. all CD4 

antibodies have the same tag). Single cells are then stained with such 

antibodies before further processing where cells are encapsulated within an 

emulsion droplet and subsequently lysed such that both antibody-derived tags 

(ADTs) and cellular mRNA are captured on a bead within the droplet. The 

ensuing chemical reaction adds a cell-specific barcode to each mRNA and ADT 

molecule from a given cell before the droplet is dissolved and all barcoded 

mRNA and ADTs mix together. This is followed by several rounds of 

amplification via PCR. Finally, this amplified library is size-separated to produce 

separate mRNA and ADT libraries for sequencing.  

 

Because of the sequencing depth limitation, single-cell RNA sequencing suffers 

from the problem of ‘drop-out’ whereby lowly expressed RNA are not detected. 

This can impact on clustering and, potentially, cellular identification. Because of 

this, CITE-seq has the potential to increase resolution of cell states above that 
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achieved through single-cell RNAseq alone since the ADT signal is less subject 

to drop-out because of the reduced number of targets to sequence 

 

We sought to use CITE-seq to understand the cell type-specific effects of 

KRAS(G12C) inhibition in an orthoptic murine lung carcinoma model. In this 

chapter we describe selection of our antibody panel, determination of antibody 

concentrations, quality control (QC) of our data and an overview of the 

landscape of cell types within our chosen system.  

 

4.2 Antibody panel selection 

As previously mentioned, data from our lab using IMC has shown that 

KRAS(G12C) inhibition of orthotopic 3LL-ΔNRAS tumours results in remodelling 

of the tumour immune microenvironment (van Maldegem et al., 2021). Using 

detailed phenotypic characterisation and preserved tissue architecture, this 

enabled an understanding of the baseline and post-inhibition location of various 

cell types/states, and work is ongoing to understand the effect of KRAS 

inhibition on cell-cell interaction patterns using neighbourhood analysis. To 

complement this approach, CITE-seq would give us an insight into the 

transcriptional changes within the various types/states and thus may allow us to 

infer functional effects, something not possible with IMC alone.  

 

To this end, we used the same model system (orthotopic 3LL-ΔNRAS tumours) 

and treatment schema (section 2.6) that was adopted in the IMC experiments. 

The murine Lewis lung carcinoma line (LL/2 or 3LL) was derived from a 

spontaneous lung carcinoma in the C57Bl/6 mouse, and serially passaged via 

SC implants of tumour fragments (Mayo, 1972). Data from our lab has shown 

that it possesses a very high non-synonymous mutation burden (over 2000 

predicted) of which many are expressed and predicted to bind H2-Db (H2-Kb is 

not expressed in the 3LL cells used in our lab) (Mugarza et al., 2021). This 

suggests potential for immune recognition. Data from our lab also established 

that alongside the homozygous KRAS(G12C) variants, 3LL cells possess an 
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NRAS(Q61H) variant capable of inducing resistance to KRAS(G12C) inhibition 

(Molina-Arcas et al., 2019). Molina-Arcas et al. edited out the oncogenic NRAS 

using CRISPR/Cas9 technology, generating a 3LL-ΔNRAS line sensitive to 

KRAS(G12C) inhibition.  

 

We designed a custom antibody panel aiming to overlap as much as possible 

with the IMC panel while taking into account various factors. Firstly, intracellular 

antibodies used in IMC could not be used for CITE-seq, where the cells are 

intact. Secondly, some antibodies were unable to be validated for use in IMC 

but could be used for CITE-seq characterisation. Finally, financial cost (up-front 

purchase plus any additional sequencing required per antibody) was a limiting 

factor as to how many antibodies could be selected. The overall goal was to 

represent the most diverse range of cell types possible, bearing in mind the 

aforementioned caveats.  

 

The final selection of antibodies is detailed in Table 17. Thus, marker selection 

included a range of markers for various T cell types/states, monocytes, 

macrophages, dendritic cells and miscellaneous markers. These were chosen 

given the importance of T cells as final effectors of certain antitumour immune 

responses and the predominance of myeloid infiltrate in 3LL tumours 

(Waldman, Fritz and Lenardo, 2020; van Maldegem et al., 2021). Given the 

caveats previously mentioned, and their low abundance within 3LL tumours, 

markers for B cells, natural killer cells and gamma-delta T cells were omitted as 

were certain intracellular markers present in the IMC panel including CD68, 

CXCL9, 𝛼-smooth muscle actin, vimentin, type I collagen, forkhead box P3 

(FOXP3), pAKT, pS6, cleaved caspase 3 and Ki-67. Broadly staining markers 

such as CD45 and CD3 were felt to be redundant given our inclusion of more 

specific markers, and hence were also omitted. Finally, certain markers useful 

for T cell characterisation or monocytes/neutrophils were not present in the IMC 

panel, but added to the CITE-seq repertoire (CD25, CD62L, CD69, LAG3 and 

Ly6C/Ly6G).  
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Target Main cell type In IMC? In CITE-Seq? 
T cell 

CD3 Pan T cell Yes No 

CD4 CD4+ lymphocytes Yes Yes 

CD8a CD8+ lymphocytes Yes Yes 

FoxP3 Treg Yes1 No 

CD25 Treg, T activation No Yes 

CD279 (PD-
1) 

Activated/exhausted T cells Yes Yes 

TIM3 T cell, macrophage Yes Yes 

LAG3 T exhaustion No Yes 

CD62L Naïve T No Yes 

CD69 T activation (acute) No Yes 

   Monocyte/macrophage     

Ly-6C/Ly-6G 
Classical 

Monocytes/neutrophils 
No Yes 

CX3CR1 Alternative monocytes Yes No 

F4/80 Macrophages  Yes Yes 

CD68 Macrophages  Yes1 No 

CD206 
(MMR) 

Macrophages (‘M2’-like) Yes  Yes  

CD274 (PD-
L1) 

Tumour, myeloid Yes Yes 

CD11c Macs (peripheral) Yes Yes 

   Dendritic cell     

CD103 Conventional dendritic cells 1 Yes Yes 

MHC-II (IA-
IE) 

Antigen presenting cells 

(APCs) 
Yes Yes 

CD80 (B7-1) APCs Yes No 

CD86 (B7-2) APCs Yes No 

CD24 Dendritic, T cell activation Yes Yes 
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   Miscellaneous     

CD44 
Tumour stemness, T cell 

activation 
Yes Yes 

PVR Various Yes No 

CD335 
(Nkp46) 

NK Yes No 

CD45R 
(B220) 

B cells Yes No 

CD31 
(PECAM-1) 

Endothelial Yes No 

EpCAM Epithelial Yes No 

CD73 Several Yes Yes 

CD45 All immune Yes No 

 
Table 17. Comparison of IMC and CITE-seq antibody selection Table crudely 
split according to cell types likely to express highest levels of given markers, 
although many markers extend beyond the cell types indicated. Superscript 1 = 
intracellular markers  
 
 
 

4.3 Antibody titration 

Overabundance of an antibody-derived tag (ADT - i.e. the oligonucleotide 

conjugated to the antibody) in a CITE-seq experiment has the potential to 

consume a lot of reads, therefore reducing signal from other ADTs. Hence, 

titration of antibody concentrations is important. It has been shown that oligo-

conjugated antibody signal is similar to fluorochrome-conjugated antibodies (of 

the same clone) in terms of the signal-noise ratio and the ‘saturation plateau’ 

(Stoeckius et al., 2018). 

 

Thus, in order to identify the optimum concentrations for use in CITE-seq 

experiments, antibodies were titrated using flow cytometry. As far as possible, 

antibodies used in flow cytometry (section 2.12.2) were the same clones as the 
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antibodies available for CITE-seq. Furthermore, most antibodies were 

conjugated to PE. As a ‘bright’ fluorophore providing a clear, strong, signal the 

use of PE helps mitigate the risk of choosing unsuitably high antibody 

concentration for CITE-seq purposes. In addition to titrating antibodies to obtain 

concentrations for use in CITE-seq, we also sought to compare two methods of 

tumour dissociation (section 2.12.1). Our in-house method (2.12.1.2) employs a 

manual mechanical dissociation step (dissociating cells via repeated passages 

through a fine bore needle) and there were concerns over maintenance of 

tumour cell viability. We therefore compared this method to the use of a 

commercial kit (Tumour Dissociation Kit, mouse; Miltenyi Biotec, section 

2.12.1.1) which contains a proprietary enzymatic mix that has been proposed to 

preserve the majority of cell surface epitopes (Miltenyi Biotec, 2016) and 

employs an automatic mixed mechano-enzymatic dissociation step.  

 

In order to obtain tumours for antibody titration, orthotopic 3LL-ΔNRAS tumours 

were grown in untreated mice and harvested after 28 days (section 2.6). 

Tumours were dissociated using one of the two methods discussed above, and 

results compared. Antibody concentrations were obtained through serial 

dilution. The concentration range over which serial dilutions were performed 

was decided using prior experience of flow cytometry in our lab and evidence 

from the literature (Buus et al., 2020).  

 

As shown in Figure 35, our in-house method of tumour dissociation resulted in a 

higher percentage of events being labelled as debris/non-cellular (74.5%) 

compared to the commercial method (54.8%). Furthermore, of those events that 

were retained after this step, viability was 96% with the commercial dissociation 

method compared to 87.8% with our in-house dissociation protocol. For this 

reason, we opted to take forward the commercial method to dissociate tumours 

for use in CITE-seq experiments.  
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Figure 35. Comparison of tumour dissociation methods using flow 
cytometry3LL tumours grown for 7 days in untreated mice were processed and 
then dissociated with a proprietary (1) or in-house (2) mechano-enzymatic 
technique (section 2.12.1) 
 

 

Following selection of the dissociation protocol, antibodies were titrated using 

flow cytometry to determine an optimum concentration to take forward for CITE-

seq. An example of data used to optimise antibody concentrations is shown for 

CD11b (Figure 36). Two clearly distinct populations are seen. As the antibody 

concentration falls, signal from the ‘positive’ population falls, and moves close 

to that of the ‘negative’ population. Nonetheless, the two are still distinguishable 

even at the lowest antibody concentration. In this example, the lowest antibody 

concentration would be taken forward for use in CITE-seq analysis. Similar 

titration was performed, and concentrations determined, for all antibodies 

(section 2.13).  
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Figure 36. Antibody titration example - CD11b 3LL Cells were stained with 
CD11b antibodies at various concentrations (0.0625-4 ug/ml). Plots show 
percentage of CD11b+ cells per concentration with gating based on unstained 
controls (not shown).  
 

 

4.4 CITE-seq pilot 

In order to generate sufficient power, enabling robust detection of the effects of 

KRAS(G12C) inhibition, we chose to treat five mice with vehicle and five mice 

with MRTX1257. Given that the technique was new to our lab, and to generate 

biological replicates, we initially performed the protocol using four mice (two in 

each group, the ‘pilot’ experiment) and subsequently using three mice in each 

group (post-pilot) generating a total of ten samples for the final analysis.  
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Mice were treated as described (section 2.6). In brief, mice were injected with 

3LL-ΔNRAS cells via their tail vein and, after 21 days of tumour growth, were 

treated with MRTX1257 or vehicle control for 7 days before tumours were then 

dissociated and processed for CITE-seq. 

 

Parameters for the dissociation and sorting process are shown in Table 18. As 

shown, viability post-FACS was high indicating successful sorting.  

 

Treatment No. of 
sorted 
cell 

% of 
cells 
sorted 

Viability(%) 

Control 201,301 56.4 86 

Control 220,502 74.4 87 

MRTX1257 221,789 74.5 87 

MRTX1257 230,346 76.8 87 

 
Table 18. Parameters for pilot CITE-seq protocol  
Following dissociation and sorting of live events (DAPI +ve), cells were 

processed for sequencing of mRNA and ADTs (section 2.13). Cells were initially 

sequenced at a shallow depth, enabling estimation of cell number to guide 

deeper sequencing. Given that this was a novel technique in our lab, we also 

used this shallow sequencing of pilot samples to interrogate our data to ensure 

that antibody binding had worked and to obtain sample QC characteristics.  

 

As shown in Table 19 below, QC characteristics were acceptable and generally 

consistent between samples. Of note, dead or dying cells can leak mRNA, 

resulting in high ambient RNA concentrations that can both increase 

sequencing cost and create noise. Reassuringly, in our pilot, the majority of 

mRNA reads were found in cell-containing droplets (rather than empty droplets) 

suggesting good quality cells. The background for ADTs was higher with around 

70% of ADTs being found in cell-containing droplets in three out of the four 

samples. This is however an acceptable level and should still allow detectable 
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signal. One sample, however, had notably fewer ADTs in cells (38.4%, in a 

control sample). Given this was isolated to one sample, it was not a protocol-

related issue. In our protocol, we stained cells with CITE-seq antibodies before 

washing three times and then performing FACS (which also acts to wash the 

cells). Upon troubleshooting, no reason for the spurious finding was elucidated. 

Furthermore, when clustering samples using ADT information alone, we were 

able to resolve expected populations in all samples (e.g. CD4+ and CD8+ cells, 

see below - Figure 39).  

 

 Control Control MRTX1257 MRTX1257 
Sequencing     
Number of reads 61,870,663 72,710,549 70,108,425 81,213,275 
Valid Barcodes 98.80% 98.80% 98.90% 98.80% 
Mapping     
Reads Mapped to 
Genome 89.70% 90.00% 90.40% 89.70% 
Reads Mapped 
Confidently to 
Transcriptome 71.80% 72.50% 72.60% 72.00% 
Cells     
Estimated Number of 
Cells 3,459 3,391 5,071 4,077 
Fraction Reads in Cells 96.20% 96.30% 96.60% 95.60% 
Mean Reads per Cell 17,886 21,442 13,825 19,919 
Median UMI Counts per 
Cell 5,953 9,784 5,648 8,079 
Antibody Sequencing     
Antibody: Number of 
Reads 5,843,960 11,206,099 8,044,252 4,908,389 
Antibody: Mean Reads 
per Cell 1,689 3,304 1,586 1,203 
Antibody: Valid 
Barcodes 99.30% 99.20% 99.30% 99.20% 
Antibody application     
Antibody: Antibody 
Reads in Cells 71.80% 38.40% 74.10% 73.90% 

 
Table 19. QC characteristics of pilot samples Single cell analysis of 3LL 
tumours treated with vehicle control or MRTX1257. QC characteristics of pilot 
samples were generated using Cell Ranger.  
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In addition to inspection of sample QC, we also analysed the shallow-

sequenced pilot samples to check that results were as expected. We first 

looked at the distribution of ADT counts in our samples (Figure 37) and its 

dynamic range (Figure 38). ADT count distribution was similar between 

samples, with a peak at around 100 counts/cell. A plot of the dynamic range of 

our antibody repertoire showed very few reads occupied by T cell markers (e.g. 

CD4, CD8, CD69) and a cDC1 marker (CD103). This is consistent with our 

knowledge that these tumours have a paucity of these immune subtypes and 

that expression of these markers is fairly cell-type specific. Furthermore, as 

shown later (e.g. Figure 39), binding of these antibodies was still sufficient to 

identify ‘positive’ clusters.  

 
Figure 37. Distribution of ADT counts – QC check3LL tumours were treated with 
vehicle control or MRTX1257 and processed for CITE-seq. For each sample, the 
ADT counts per cell are represented as a density plot.  
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Figure 38. Dynamic range of ADT proportion 3LL tumours were treated with 
vehicle control or MRTX1257 and processed for CITE-seq. For each sample, the 
percentage of ADT reads occupied by each target antibody was calculated and 
plotted on a cumulative frequency plot. The x-axis is arranged by highest mean 
frequency. 
 

We then generated tSNE plots for each sample in one of two ways - using 

either mRNA or ADT expression. We then overlaid expression of CD4 and 

CD8a ADTs onto these tSNE plots to visualise how cells expressing high levels 

of these tags (‘expressing’ cells) were embedded in the plot (Figure 39). When 

we overlaid CD4 or CD8a ADT expression on the tSNE plots generated using 

mRNA expression alone, cells that expressed high levels of these tags were 

embedded closely in tSNE space, but within this area there was clear 

separation of CD4 and CD8a expressing cells. When we overlaid the same 

ADTs on the tSNEs generated using ADT expression, CD4 and CD8a-

expressing cells were embedded distinctly. This is both because ADT binding is 

more robust, and because there are far fewer ADT markers compared to genes. 

Thus, despite shallow sequencing, both mRNA and ADT expression resulted in 

biologically plausible embeddings using tSNE and, furthermore, performing 

tSNE using ADT expression values alone led to distinct separation of CD4 and 

C8a expressing cells in tSNE space suggesting utility of this modality in 

distinguishing the two cell types.  
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Figure 39. CD4 and CD8a ADTs in tSNE space 3LL tumours were treated with 
vehicle control or MRTX1257 and processed for CITE-seq. tSNE plots were 
generated using either mRNA or ADT expression. CD4 and CD8a ADT values 
were then overlaid. Red arrows indicate highest expressing cells.  
 

As a final screen of our pilot data, we created a ‘pseudo-bulk’ dataset from the 

single cell data, and compared this to previously generated bulk RNAseq data 

from our lab, where mice with orthotopic 3LL-ΔNRAS tumours were treated with 

MRTX1257 for 28 hours or 8 days, or vehicle control (Mugarza et al., 2021). We 

reasoned that, if successful, our pilot data would overlap significantly with bulk 

data. Reassuringly, the correlation between gene expression from the single 

cell and bulk in vivo datasets was high in both untreated and (8 day) treated 

samples ( 

Figure 40). Nonetheless correlation was not perfect, an effect partly expected 

given technical differences between the two experiments, batch effects and 

differences in processing of raw counts (filtering and alignment).  
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Figure 40. Correlation between bulk and single cell data of control or 
MRTX1257-treated 3LL tumoursExpression values for untreated (n = 2 & 3 for 
single cell & bulk respectively) and treated (n = 2 & 3 for single cell & bulk 
respectively) mice were averaged by taking the mean expression values for each 
gene.  
 

We next looked at the set of differentially expressed genes after treatment with 

MRTX1257 and asked whether these genes in the single cell dataset 

significantly overlapped with those genes downregulated after MRTX1257 in the 

bulk data. Indeed, there was significant enrichment between the two (Table 20). 

For example, the overlap between genes with a log2 fold change <-1.5 was far 

higher than that expected by chance (odds ratio 48.1).  

 

Log2 fold 
change 

Single 
cell 

Bulk (in 
vivo) 

Changed 
in both 

Background p-value Odds 
Ratio 

< -1.5 182 137 34 14985 < 0.001 48.06 

< -1 264 273 70 14985 < 0.001 28.59 

< -0.5 316 800 121 14985 < 0.001 14.76 

< 0 316 1779 124 14985 < 0.001 5.15 

> 0 305 1716 176 14985 < 0.001 11.75 

> 0.5 305 1174 156 14985 < 0.001 17.24 

> 1 239 585 94 14985 < 0.001 28.19 

> 1.5 138 291 54 14985 < 0.001 78.46 
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Table 20. Enrichment of up and downregulated genes in bulk and single cell 
data for control or MRTX1257-treated 3LL tumoursTable shows number of 
genes with a given differential expression after MRTX1257 treatment.  
 

 

As a final screen of consistency with previous lab data, we examined bulk 

RNAseq from in vitro 3LL-ΔNRAS cells (generated by Edurne Mugarza and 

Miriam Molina-Arcas) and looked at the genes most strongly downregulated 

after 28 hours of MRTX1257 treatment (Table 21).  

 

Gene 
Mean 

expression 
Log2 fold 
change 

Adjusted p 
value 

Sele 53.29 -7.50 < 0.001 

Etv4 889.83 -7.08 < 0.001 

Etv5 956.57 -6.70 < 0.001 

Prkg2 280.60 -6.33 < 0.001 

Dusp6 569.68 -5.59 < 0.001 

Prkcb 10.34 -5.44 < 0.001 

Ccl2 1385.97 -5.32 < 0.001 

Areg 64.24 -4.99 < 0.001 

Styk1 183.66 -4.73 < 0.001 

Spry4 465.21 -4.68 < 0.001 

 
Table 21. Differential expression after 28 hours of MRTX1257 treatment of 3LL 
cells grown in vitro 
 
We reasoned that these tumour-intrinsic genes should also be downregulated 

(upon MRTX1257 treatment) within the tumour compartment of the single cell 

space. We thus identified tumour clusters by visualisation of the sTSNE plot 

(generated using mRNA expression), as the H2-K1 (gene for H2-Kb) negative 

clusters given the lack of H2-K1 expression in this tumour model. An example 

of this, for the first control sample, is shown in Figure 41. 
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Figure 41. Identification of putative tumour clusters for a control sample 3LL 
tumour treated with vehicle control and clustered using Seurat.In this example, 
clusters 0, 1, 8, 9, 10 and 14 were identified as tumour clusters through 
absence of H2-K1 expression 
 

By amalgamation of such clusters, we generated tumour meta-clusters in each 

sample. Within these meta-clusters, expression of Sele, Etv4 and Etv5, the 

three most strongly downregulated genes in the bulk in vitro data, were clearly 

reduced in the mice treated with MRTX1257 (Figure 42). As shown in this 

figure, the log2 fold change of these genes in the single cell pilot was very 

similar to the log2 fold change in the bulk in vivo data. Furthermore, the 

expression and log2 fold change specifically in the tumour compartment was 

very similar to the log2 fold change of all cells in the single cell dataset 

suggesting that the effect of MRTX1257 on these genes is driven by its 

suppression of expression in tumour cells. This is illustrated on the tSNE plots 

for Etv4 (Figure 43). In these plots, one can also appreciate that downregulation 

of Etv4 appears restricted to a subset of tumour cells suggesting some tumour 

cell-intrinsic heterogeneity in response to drug.   
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Figure 42. Effect of MRTX1257 on selected genes in 3LL cells/tumoursPlots 
show effect of MRTX1257 on expression of different genes. T = treatment (for 
given hours/days). Colours represent different replicates (in vitro or single cell) or 
different mice (bulk in vivo). Note, for bulk in vivo, several tumours were harvested 
per mouse, and sequenced individually.  
 

 

  

Sele

In vitro In vivo Single cell (all) Single cell (tumour)

Co
un

ts

Control T (8h) T (28h) Control T (28h) T (8d) Control T (8d) Control T (8d)
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Figure 43. Tumour Etv4 expression in 3LL tumours treated with control or 
MRTX1257Data clustered using Seurat. Red arrows indicate all tumour cell 
clusters 
 
 

4.5 Characterisation of orthotopic 3LL-ΔNRAS tumours using 
CITE-seq 

Given the acceptable QC of pilot samples and consistency with bulk RNAseq 

data, a further three mice were treated in each group, and all samples were 

sequenced to an increased depth. Once all samples had been acquired, 

processed and sequenced in this way, the data was analysed. Analysis began 

with a more thorough quality control of the data, aiming to identify poor quality 

cells to remove from further analysis. We then integrated samples using both 

mRNA and ADT information before aiming to characterise the landscape of the 

tumours using both automated and manual annotation of cells. For the following 

text, the following nomenclature applies  
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Name Batch Alias 
Control 1 Pilot Sample 1 

Control 2 Pilot Sample 2 

Control 3 Post-pilot Sample 3 

Control 4 Post-pilot Sample 4 

Control 5 Post-pilot Sample 5 

Treated 1 Pilot Sample 6 

Treated 2 Pilot Sample 7 

Treated 3 Post-pilot Sample 8 

Treated 4 Post-pilot Sample 9 

Treated 5 Post-pilot Sample 10 

 
Table 22. Sample nomenclature of 3LL samples Control samples treated with 
vehicle control for 7 days, treated samples with 50mg/kg MRTX1257 for 7 days.  
 

4.5.1 Removal of poor-quality cells 

Poor quality cells, for example those that were dying during processing, add no 

information and can mislead downstream analysis. Thus, filtering is advised. 

Various per cell metrics can be informative when deciding which cells to filter 

out. Low quality cells often have a low transcript count, a low transcript diversity 

and a high percentage of transcripts from the mitochondrial genome. In addition 

to poor quality cells, doublets can also confound analysis. These cells may 

have an abnormally high transcript count and/or express an unusual 

combination of genes not found in singlets (for example genes specific to both 

myeloid and lymphoid cells). There is no ‘gold standard’ threshold of identifying 

poor quality cells or doublets, therefore individual samples need to be carefully 

interrogated and manual thresholds set (Luecken and Theis, 2019).  

 

We looked at various metrics in the ten samples submitted for CITE-seq. As an 

example, one can see the distribution of some of these in Control 1. There was 

a trimodal distribution in the number of expressed genes and, similarly, in the 
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unique molecular identifier (UMI) count per cell, likely indicating three dominant 

populations in the sample. Also evident, is the fact that most cells have <10% of 

their transcriptome made up from mitochondrial genes, with a population of 

outliers above this. The distribution for ribosomal genes was similar, but with a 

higher peak.  

 

 
Figure 44. Violin plot showing distribution of QC metrics in single cell 
analysis of a control sample (3LL tumours) 
 

In order to make clearer the appropriate threshold for filtering, these metrics can 

be plotted against one another. Poor quality cells with a high percentage of 

transcripts from the mitochondrial genome are likely to have few reads per cell 

and have a low transcriptional diversity. The latter can be quantified by looking 

at the percentage of the transcriptome occupied by the 50 most highly 

expressed genes. Good quality cells with a broad transcriptome are likely to 

have a low percentage of their transcriptome occupied by the 50 most highly 

expressed genes. Of note, however, tumours are likely to be heterogenous and 

therefore what constitutes ‘normal’ for one cell type may be abnormal for 

another.  
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In order to visualise key metrics together, we interrogated samples using a by 

plotting combinations of QC metrics against one another. Two such examples 

are shown in Figure 45, for two control samples (1 and 2). As is seen on the 

left-hand side, most cells had a low percentage of mitochondrial genes however 

in both samples there were outlier cells which lay above the bulk of the 

distribution. These outlier cells, with a higher percentage of mitochondrial 

genes, also tended to have a low gene count (number of different genes 

expressed). On the right, one can see that those cells with a high percentage of 

the transcriptome from the mitochondrial genome also had a low transcript 

diversity (a high percentage of the transcriptome occupied by just 50 genes). Of 

note, the plots on the right-hand side also show a population of cells with low 

gene counts, low transcript diversity and a low percentage of mitochondrial 

genes. When looking at the most highly expressed genes in this subpopulation 

of cells (those with >50% of their transcriptome from the top 50 genes and a 

mitochondrial gene percentage of <5%), neutrophil-associated genes (e.g. 

Cxcl2, S100a8, S100a9 and Il1b) highly expressed. This is consistent with 

evidence that neutrophils are relatively transcriptionally silent with a low 

diversity (Zilionis et al., 2019) and exemplifies the heterogeneity of our sample 

with variations in ‘normal’ QC parameters between subpopulations. Thus, 

filtering all cells with low gene counts (without regard to other metrics such as 

mitochondrial percentage) would risk excluding neutrophils, for example.  
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Figure 45. QC plots with multiple parameters of two 3LL tumours treated with 
vehicle controlCells processed for CITE-seq. The left-most plots simply show the 
percentage of the transcriptome occupied by mitochondrial reads versus the 
number of different genes detected, per cell. The right-most plots show the 
percentage of the transcriptome occupied by the 50-most highly expressed genes 
versus gene count. In addition, cells are coloured according to mitochondrial gene 
percentage.  
 

As a final screen for outlier cells, we performed principal component analysis 

(PCA) using four metrics – read count, the number of different genes 

expressed, the percentage of the transcriptome made up of mitochondrial 

genes and the percentage of the transcriptome occupied by the 50 most highly 

expressed genes. An example of a PCA plot using these metrics is shown in 

(Figure 46). The plot is annotated with ‘outliers’ that were detected using an 

automated method that takes into account the distribution of the dataset with 

respect to all 4 QC metrics (rather than looking at them individually) (section 

2.14.2). The plot on the right gives an intuition of parameter values for the 

outliers. As shown, many but not all ‘outlier’, cells had a high percentage of 

mitochondrial genes. Conversely, some cells called as outliers had a low 

mitochondrial gene percentage but appeared to have high transcript counts. 

 

 

% mt. genes
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Figure 46. PCA on QC metrics, example for control 2 3LL tumours were treated 
with vehicle control and processed for CITE-seq. Four metrics (read count, the 
number of different genes expressed, the percentage of the transcriptome made up 
of mitochondrial genes and the percentage of the transcriptome occupied by the 50 
most highly expressed genes) were used to generate PCA plots. An automatic 
outlier-detection algorithm was used to identify putative outliers (coloured orange 
on left-most plot). On the right, outliers are shown as triangles while cells are 
coloured by the % of the transcriptome made up of mitochondrial genes while the 
size of the dot represents read count. 
 

Thus, in the final step before deciding which cells to filter out, doublet detection 

was attempted using an algorithm that simulated synthetic doublets. Real cells 

in the data were then classified as singlets or doublets according to how the 

simulated doublets clustered within the real data (section 2.14.2). This algorithm 

estimates the number of doublets as a function of the total number of cells in 

one’s dataset.  It then automatically labels this many cells (corresponding to the 

highest doublet scores) as being doublets.  

 

Once we had assigned said doublet scores to the cells, we then proceeded to 

decide how to filter the data. In order to decide which cells to exclude from the 

final analysis, it is useful to visualise the cells (labelled with QC metrics) on a 

two-dimensional plot. Poor quality cells or doublets may cluster together, and 

this would add credence to the decision to exclude these cells from downstream 

analysis.  

 

read count
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Shown below is a UMAP visualisation of two control samples annotated with 

certain QC metrics in a step-wise fashion (Figure 47). The plots on the left show 

all cells and highlights those with a high percentage of mitochondrial genes 

(threshold was set sample-wise) and a low transcript diversity (more than 50% 

of the transcriptome from the 50 most highly expressed genes). These cells 

cluster together, supporting their removal. Once removed, cells with a 

mitochondrial count above the sample specific threshold (regardless of 

transcript diversity) were visualised (middle panel). As shown, many of these 

cells occupied a similar area in UMAP space (i.e. compared to the previously 

removed cells) and were thus also removed. Finally, cells that had been 

labelled as outliers by the automated detection method described above were 

highlighted. Most automated ‘outlier’ cells would have been removed in the 

preceding filtering steps. The few cells that remained (coloured blue in the right-

sided panels below) did not cluster discretely. It was therefore decided that they 

were not to be removed as they were unlikely to significantly affect downstream 

analysis and may not be true ‘outliers’ given the heterogenous nature of our 

sample. (Of note, the automated outlier detection method used does not take 

into account sample heterogeneity. Thus, suggested ‘outliers’ may in fact be 

normal cells representative of sample heterogeneity). 
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Figure 47. UMAP: removal of poor-quality cellsOn the left, cells with a high 
percentage of mitochondrial genes (>12% or 16% respectively for control 2 & 3) 
and >50% of the transcriptome from the 50 highest genes are highlighted. After 
removal, remaining cells with a high percentage of mitochondrial genes (regardless 
of transcript diversity) are highlighted (middle). Finally, after removal of these cells, 
automated ‘outliers’ are highlighted (right).  
 

Finally, we visualised cells that had been labelled as doublets (not shown). 

Once again, these cells did not form a discrete cluster. Often, true doublets will 

form a cluster occupying space intermediate to two  singlet clusters (Luecken 

and Theis, 2019). Given that we did not see this in our data, we could not be 

confident that we would not be throwing away valuable data, and these cells 

were retained. As mentioned, the doublet detection tool we used is mandated to 

call a certain number of cells as doublets (based on the ‘expected’ doublet rate, 

itself a function of the total number of cells sequenced). Therefore, the true 

doublet rate may be lower than this, and over-calling could result in loss of 

signal. In addition, as shown later, the majority of cells in our data were either 

tumour or myeloid cells. Thus, homotypic doublets, which are difficult to detect, 

would make up a significant number of the doublet population. We thus decided 

not to filter doublets at this stage, with the potential to revisit this in downstream 

analysis should issues arise.  
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4.5.2 Sample integration 

Once data had been filtered as above, the filtered data set was normalised 

before samples were integrated (section 2.14.3). In brief, the 10 samples were 

first integrated using RNA expression and then using ADT expression. Finally, 

these two integrated datasets were used to create a weighted nearest 

neighbour (WNN) graph in order to enable joint definitions of cell state. A visual 

schematic of this procedure is shown in Figure 48.  

 

 
 
Figure 48. Schematic of integration procedure 3LL tumours from 10 mice (5 
control, 5 treated with MRTX1257). The first step involves integrating all samples 
using their RNA expression, to produce an integrated matrix that is projected in the 
UMAP shown in 1). Next a similar procedure is done for ADT expression, shown in 
2). Finally, both of these integrated representations are themselves integrated, to 
generate a ‘WNN graph’. Such a graph can be used to cluster the cells and 
represent them in UMAP space, as is shown in 3).  
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As an illustration of the utility of such weighting, Figure 49 shows UMAP 

projections of integrated data using RNA expression alone, ADT expression 

alone or the WNN approach. Using RNA expression alone, CD4 and CD8a cells 

project very close to one another in UMAP space while when using ADT 

information alone they project distinctly. Likewise, using a WNN approach (and 

thus information from both RNA and ADTs), the cells project distinctly in UMAP 

space. Indeed, when we applied a clustering algorithm using RNA alone, one of 

the resulting clusters (number 9) contained both CD4 and CD8a positive cells. 

Conversely, applying a clustering algorithm using ADT alone or a WNN 

approach yielded distinct clusters for these cell types (e.g. clusters 19 and 22 

for CD4 positive cells and cluster 9 for CD8a positive cells using a WNN 

approach). Thus, certain information (e.g CD4 and CD8a positivity) is not 

optimally captured using RNA sequencing alone. Conversely, other information 

(e.g. for intracellular markers such as Foxp3) would not be captured at all by 

ADTs yet would be informed by RNA. Thus, a WNN approach allows us to 

capture and use both sources to gauge cellular state.  

 

 
Figure 49. T lymphocyte representation across modalities 3LL tumours from 10 
mice (5 control, 5 treated with MRTX1257). The top panels show UMAPs 
generated from RNA expression alone, ADT alone or from the WNN graph created 
using both RNA and ADT expression. The UMAPs are coloured according to their 
expression of CD8a (red) or CD4 (green) ADTs, with amber indicating both ADTs 
expressed within a cell. For the bottom panels, green arrows indicate CD4+ cell-
containing clusters while red indicates CD8a+ cell-containing.  
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Once the data were integrated in this way, we were able to learn about the 

tumour landscape. Initially we overlaid manually curated gene sets representing 

broad cell types (Table 23) in order to gain an appreciation for the composition 

of our sample (Brown et al., 2019; Zilionis et al., 2019; Goveia et al., 2020; Muhl 

et al., 2020). As shown in Figure 50, myeloid cells including macrophages, 

monocytes and DCs made up a significant proportion of our landscape. 

Neutrophils, NK cells and T cells were present at lower frequencies while B 

cells, endothelial cells and mesenchymal cells were very uncommon. The 

remaining large cluster, which did not express any of the aforementioned 

markers was the tumour cell cluster as evidenced by its lack of expression of 

Ptprc (gene for CD45) and specific lack of H2-K1 expression (Figure 41).  
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Neutrophils NK 
cells 

Monocytes Macrophages DCs 

Cxcl8 Gzma Ly6c2 Apoe Clec9a 

G0s2 Klrb1c Vcan Mrc1 Ccr7 

Cxcr2 Ncr1 Ace C1qa Batf3 

S100a8 Klra4 Fcgr4 Fn1 Itgae 

S100a9 Eomes Chil3 Gpnmb Irf4 

Csf3r Fasl 
 

Cd68 H2-

DMb2 

Ffar2 Klrk1 
 

Saa3 
 

 

Lymphocytes B cells Endothelial Mesenchymal  

Cd3d Ms4a1 Pecam1 Col1a1  

Cd3e Cd19 Cdh5 Col1a2  

Cd3g Bank1    

Cd28 Cr2    

Table 23. Gene sets for manual annotation used to name single cell 
clustersDCs = dendritic cells 
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Figure 50. Marker genes sets expression in integrated 3LL dataMarker gene 
lists were manually curated. Per cell scores were calculated (see methods) and 
projected onto UMAP plots using the WNN graph. Red arrows indicate highest 
expressing cells. NK = natural killer, DC = dendritic cell, EC = endothelial cell 
 

Following overlay of marker gene sets as above, we sought to initially annotate 

cell types using an automated approach. We used single cell data from the 

literature (Zilionis et al., 2019) where mice were injected with the KP1.9 tumour 

cell line and CD45+ cells were isolated for single cell sequencing. In this study, 

cells were first ascribed a broad identity using a Bayesian classifier and 

previously annotated transcriptional states from the IMMGEN consortium (Heng 

et al., 2008). Following this, cells were subclustered and manually annotated. 

Brief descriptions of some labels from this study are shown in Table 9. We used 

the labels from this study and assigned each cell in our dataset to one of these 

labels using SingleR (version 1.4.1). In brief, the algorithm uses Spearman 

correlation to assess similarity between our data and labels in the reference 

dataset followed by fine tuning to resolve labels with similar scores (section 

2.14.4).  
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Labels obtained by this method are overlaid on the WNN UMAP in Figure 51. 

Of note, the labels only apply to immune cells, so putative tumour, endothelial 

cell and mesenchymal cell clusters were excluded from labelling.  

 

As shown in Figure 51, automated labelling largely agreed with the structure 

suggested by our overlay of manually curated genes. Furthermore, automated 

labelling suggested further substructure to the data. For example, alternatively 

activated monocytes (Mono2) occupied a distinct part of UMAP space from 

classically activated cells (Mono1). For macrophages, alveolar macrophages 

(Mac4) were seen to cluster separately. Substructure was also evident in the 

dendritic cell population with conventional type I (DC1) and II (DC2) dendritic 

cells and activated dendritic cells (DC3) all projecting distinctly within the space.  

 

Nonetheless, some differences were also evident. For example, when our data 

was used to drive clustering (Seurat v 4.1.0, resolution = 0.5), DC2s and 

monocytic DCs were merged into a single cluster. Conversely there was more 

substructure in the macrophage/monocyte metacluster than was suggested by 

automated labelling. Of note, such substructure is somewhat dependent on 

parameters of the clustering algorithm however the current substructure seen 

was robust to reduction of the resolution parameter of said algorithm. Myeloid 

clusters are explored in Chapter 5. 

 

In essence, the congruence of cells in our WNN UMAP space with literature-

curated labels suggested that we had a robust and reproducible dataset, thus 

adding credibility to insights drawn from downstream analysis.  
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Figure 51. Automated cell labels and data-driven clusters 
3LL tumours from 10 mice (5 control, 5 treated with MRTX1257). Data 
integrated using weighted nearest neighbours (Seurat). The left panel shows 
automated annotation of clusters using the SingleR package and reference data 
from Zilionis et al.  
 

4.5.3 Composition analysis of integrated data 

Once our data was integrated, we sought to identify the composition of the 

dataset, specifically observing this by sample and treatment. We did this for all 

cells, and separately for the immune compartment. For immune cells, we used 

the labels from automated annotation (and amalgamated cell types as 

indicated) whilst for non-immune cells (tumour, endothelial and mesenchymal) 

we manually annotated clusters based on marker expression (Figure 52).  

 



Chapter 4 Results 

 

168 

 

 
 
Figure 52. Amalgamated cell labels of integrated 3LL dataImmune labels from 
automated analysis were combined while tumour, endothelial and mesenchymal 
clusters were annotated based on marker expression. ‘DC’ = DC1-3, pDC & 
monoDC; ‘Macrophage’ = Mac1-4; ‘Monocyte’ = Mono1-3; ‘Other’ = B cells & 
basophils; ‘Neutrophil’ = N1-5; ‘T & NK’ = T1-3 & NK.  
 
 

As shown in Figure 53 there was per sample heterogeneity in composition, but 

some patterns emerged when looking at immune cells specifically.  
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a) 

 
 
b)  

 
Figure 53. Distribution of cell types across samples Samples are arranged from 
1-10 on the x-axis, with samples 1-5 representing 3LL control samples while 6-10 
represent MRTX1257-treated samples. Samples 1,2 & 6,7 are pilot samples. 
Figures are labelled for cell types with a >7% composition. Top-panel includes all 
cells. Bottom panel only includes immune cells.  
 

 

Of note, sample five was an outlier with few tumour cells and a much higher 

proportion of neutrophils compared to the other samples. This sample was not 
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noted to be macroscopically different during sample preparation. The high 

proportion of neutrophils suggests the presence of necrosis. We did not feel 

that it would be valid to simply exclude this sample from further analysis, 

however where relevant (for example during composition analysis below) 

sensitivity analysis was performed by excluding this sample and verifying that 

results were consistent.  

  

When looking at all cells, there was a higher percentage of tumour cells in the 

treated samples than the control samples. There may be several reasons for 

this observation. Firstly, when allocating mice into treatment groups, the 

distribution of tumour volumes in the control arm was lower than those in the 

treatment arm. Furthermore, observations in our lab indicate that MRTX1257 

has a cytostatic effect on 3LL-ΔNRAS tumours rather than being obviously 

cytotoxic. In addition, some mice in the control arm showed indications of 

tumour progression (weight loss, behavioural change, laboured breathing) and 

were culled according to protocol stipulations. Therefore, the remaining control 

mice (including those sampled) were those whose intrinsic tumour growth rate 

was, by definition, not sufficient to warrant culling of the mice prior to the 

experiment end point. Finally, the treated samples are likely to have had a 

different consistency to control samples and therefore may have been easier to 

dissociate, accounting for the higher proportion of these cells seen. These 

caveats are properties of the tumour model and are borne in mind during the 

discussion.  

 

When looking at immune cell distribution specifically, the percentage of 

macrophages (within the immune compartment) was generally higher in the five 

treated samples (range 37% to 50%) than the five control samples (range 20% 

to 37%). Conversely, the percentage of monocytes was generally lower in the 

treated samples (range 19% to 39%) than the control samples (range 26% to 

52%). This was consistent with previous data from the lab (Mugarza et al., 

2021). Exact figures for compositional changes are shown in Table 24. In this 

table, composition is also given per condition (in addition to per sample).  
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Table 24. Compositional change across samples 3LL tumours across 10 mice 
were treated with control (1-5) or MRTX1257 (6-10). Numbers in cells indicate the 
number of cells classified as the given cell type in the given sample (percentages in 
brackets).  
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In order to discern whether compositional changes across samples were 

significant, we used edgeR (version 3.32.1) to model the dispersion of cell 

abundance between samples and perform statistical testing for differential 

abundances (DA) between conditions. As shown in Table 25, when all cell 

types were included, neutrophils were the most significantly differentially 

abundant population, being reduced by a log2 FC of -5.6 (p < 0.001). Monocytes 

were also significantly reduced, by a log2 FC of -0.95 (p = 0.04) while 

endothelial cells more than doubled with treatment (log2 FC of 1.25, p = 0.04).  

 

Of note, tumour cells were abundant within our samples, and were numerically 

more common in treated compared to control samples. Given their abundance, 

changes in tumour cell proportion per sample can affect the outcomes of 

compositional analysis on other cells even in the absence of ‘true’ (biological) 

changes. One approach to dealing with this is to repeat the DA analysis after 

removing the offending population. To this end, the analysis was re-run on non-

tumour cells alone. As shown below, the change in neutrophils and endothelial 

cells was still significant. Conversely, while monocytes were still less common 

after treatment (log2 FC -0.57) this was no longer significant (p = 0.199). 

Meanwhile, the increase in macrophages became more apparent (log2 FC 0.52) 

although the result was not statistically significant (p = 0.16).  

 

Finally, given the outlier nature of sample 5 (control 5), we performed a 

sensitivity analysis by repeating the above with sample removed. Despite its 

removal, the downregulation of neutrophil abundance with treatment was still 

evident (log2 FC = -3.53) and significant (p = 0.002).  
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 Log2 FC p-value Adj. p (FDR) 
Neutrophil -5.61 0.00 0.01 
Endothelial 1.25 0.01 0.04 
Monocyte -0.95 0.01 0.04 
Other 0.65 0.15 0.32 
Mesenchymal -0.61 0.19 0.32 
DC -0.45 0.21 0.32 
Tumour 0.45 0.27 0.35 
T & NK 0.51 0.41 0.46 
Macrophage 0.06 0.88 0.88 

No tumour 
Neutrophil -4.87 0.00 0.01 
Endothelial 1.58 0.01 0.03 
Other 1.01 0.04 0.12 
Macrophage 0.52 0.08 0.16 
Monocyte -0.57 0.12 0.20 
T & NK 0.81 0.23 0.30 
DC -0.18 0.68 0.70 
Mesenchymal -0.19 0.70 0.70 

 
Table 25. Differential abundances of cell populations Log2 fold changes 
represent change in abundance in treated 3LL tumours (MRTX1257) vs. control 
mice. Analysis repeated after removing tumour cells (bottom table). p-value 
adjustment performed using the Benjamini Hochberg method.  
 
Therefore, we can conclude that treatment results in significant reductions in 

neutrophil abundance. Furthermore, although endothelial cells were 

uncommon, they appear to increase with treatment. Macrophages, T & NK cells 

appear to increase with treatment and monocytes appear to decrease, but the 

effects were not significant (at an adjusted p threshold of < 0.05) with evident 

sample-sample variability. Much of this is reassuringly consistent with previous 

data from the lab, adding credibility to any inferences drawn from downstream 

analysis (Mugarza et al., 2021). While tumour cell abundance increased slightly 

with treatment (log2 fold change of 0.19) this may be an artefact of tumour 

volume at initiation of treatment/control and because some mice in the control 

group were culled after triggering endpoints in the protocol. The transcriptional 

effect of treatment on the tumour cell compartment is discussed later.  
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4.6 Concluding remarks 

We were able to generate a CITE-seq dataset of an orthoptic murine 

KRAS(G12C)-mutant lung carcinoma model treated with MRTX1257. We 

optimised the dissociation procedure by using a commercial dissociation 

method and, after sorting for viable cells, we obtained a good quality dataset 

where only a minority of the data appeared to be of poor quality. Analysis of the 

remaining cells revealed congruence with bulk sequencing experiments 

previously done by the lab, increasing confidence of inferences from 

downstream analysis. This includes both gene expression data and composition 

analysis where we saw a significant reduction in neutrophil proportion and an 

increase in endothelial percentage. In addition, through the example of Etv4, we 

saw an example of a gene downregulated by treatment but in only a subset of 

tumour cells, exemplifying the potential for single cell methods to characterise 

the behaviour of subpopulations in a way not possible with bulk methods.  

 



Chapter 5. Results 

 

176 

 

Chapter 5. Results 3: Analysis of specific cell types 
in an orthoptic KRAS(G12C) model of lung cancer 
using CITE-seq 

5.1 Introduction 

Following sample acquisition, data pre-processing and interrogation of the 

tumour landscape, we sought to understand the cell type-specific effects of 

MRTX1257 in orthotopic 3LL-ΔNRAS tumours.  

 

In this chapter we subset and analyse two individual cell types within these 

tumours, aiming to understand how treatment with MRT1257 specifically affects 

myeloid cells and tumour cells.  

 

5.2 Myeloid cell effects 

5.2.1 Subsetting and clustering 

According to our preliminary analysis of the tumour landscape, myeloid cells are 

the dominant immune type within the orthotopic 3LL-ΔNRAS TME. In order to 

analyse myeloid cells specifically, marker genes (Table 23) were overlaid on an 

integrated WNN UMAP representation and cells within clusters expressing 

myeloid genes were subsetted. Of note, to maintain congruence with any 

downstream publications, the integrated WNN UMAP representation used here 

was pre-processed in a modified way from the pre-processing described in 

section 4.5.1. Pre-processing for the integrated WNN UMAP representation 

used here was performed by Phil East from the Bioinformatics Science 

Technology Platform at the Francis Crick Institute. The same principles were 

used (using QC metrics such as mitochondrial gene percentage and transcript 

diversity to subset cells) however the exact thresholds used varied from the 

examples given in chapter 4. This integrated dataset, and the overlay of 

myeloid genes within it, is shown in Figure 54. 
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Figure 54. WNN integrated dataset and overlay of myeloid genes3 10 mice 
with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). Data 
integrated using WNN (Seurat). Overlay of myeloid genes, including but not limited 
to the ones shown here, were used to subset cells for downstream analysis.  
 

Subsetted cells were then split by sample (i.e. according to their membership of 

the 5 control or 5 treated samples) before normalisation, scaling and variable 

feature selection was performed again (section 2.14). This was followed by the 

same schema for integration as used previously (i.e. integrating each sample 

on SCT-normalised mRNA expression, then separately on CLR-normalised 

ADT expression before finally creating an integrated WNN representation of the 

data). A schema for this workflow is shown in Figure 55.
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Figure 55. Subsetting and integration of the myeloid compartment 10 mice 
with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). Data 
integrated using WNN (Seurat). Myeloid cells were extracted from the integrated 
dataset containing all cells, split by sample and then re-integrated (after selection of 
variable features) using both mRNA and ADT information separately. Finally, the 
mRNA and ADT integrated objects were used to generate a WNN representation of 
the myeloid compartment that takes into account information from both mRNA and 
ADT expression.

Data now split into 10 objects containing 
myeloid cells only. Repeat per-sample 

normalization

Extract myeloid 
clusters and split per 
sample

3) Integrated both modalities 
using a WNN approach

1) Integrate samples on RNA 2) Integrate samples on ADT
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Once cells were subsetted and reintegrated, clustering was performed. The 

algorithm used for clustering takes a ‘resolution’ parameter which affects the 

granularity of clustering. Low resolutions lead to coarse larger clusters while higher 

resolutions result in smaller, finer groups. There is no ‘correct’ number of clusters 

and one may use a priori biological knowledge along with inspection of the data to 

decide.  

 

In order to help decide on a suitable number of clusters we used a sequence of 

different clustering ‘resolutions’ and interrogated the results graphically (Figure 56). 

In this tree, each horizontal line of nodes represents the clusters at a given 

resolution. Edges (arrows) represent where the cells from that cluster end up at the 

next resolution.  

 

 

 
Figure 56. Effect of varying resolution on generation of clusters 10 mice with 
3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). Data 
integrated using WNN (Seurat) and myelod cells extracted using myeloid-specific 
markers. Myeloid data re-integrated and interrogated with different clustering 
resolutions (Clustree package) as shown above 

Resolution

Proportion

Cluster size
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As shown, as the resolution was increased, clusters tended to split fairly 

‘cleanly’ with little mixing of cells (i.e. cells that were in different clusters at a 

lower resolution did not tend to merge at higher resolutions). This suggested 

that we were not ‘overclustering’ our data. We decided to us a resolution of 0.5 

to annotate our data. There were 16 clusters at this resolution, a number 

consistent with what one may expect from the literature (Brown et al., 2019; 

Zilionis et al., 2019). A visual intuition of how clusters evolved with increasing 

resolution is shown in Figure 57. 

 

 

 
Figure 57. Evolution of clusters with increasing resolution 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Data integrated using WNN (Seurat). Different clustering resolutions 
were interrogated to ascertain optimal resolution for downstream analysis. 
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5.2.2 Cell-type annotation 

Once this provisional cluster resolution had been set, we sought to annotate the 

clusters. In order to do this, we performed differential expression (DE) testing. 

For each cluster, we performed DE testing between that cluster and all other 

clusters combined. We then also performed pairwise DE between each cluster 

and every other cluster. For each cluster, DE was performed using different 

pairwise tests (t-tests, Wilcoxon signed rank sum tests or binomial tests) to give 

enough information to optimally select ‘marker’ genes.  

 

The marker genes selected, and notes about the various clusters, are shown in 

Table 26 while a heatmap depicting expression of said markers over all myeloid 

cells is shown in Figure 58.  
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Cluster no. (brief 
description) 

Genes 
expressed 

Notes 

0 (Chemokine-
expressing 
macrophages) 

Ccl7, Ccl8, Ccl12, 

Selnop 

High expression of chemoattractant 

molecules (Ccl7, Ccl8, Ccl12) and 

‘M2’-like markers e.g. Mrc1 (CD206), 

Folr1 & Gas6 

1 (Classical 
monocytes) 

Vcan, Ly6c2, Hp, 

Ccr2, Chil3 

Expression of classical monocyte 

markers 

2 (Antigen 
Presentation high 
macs) 

H2-Ab1 (and 

other MHC II 

gens), Cd74 

Clusters 6 and 12 also express these, 

however they lack macrophage genes 

(e.g. C1qa). Conversely, cluster 2 lacks 

DC genes (e.g. Cd209a) 

3 (Arg1 high macs) 
Arg1, Cxcl3, 

Inhba, Vegfa, 

Ptgs2 

Subset of this cluster express high 

Hsp1a/b (HSP70 family).  

4 (ISG high 
mon/macs) 

Cxcl10, Ifit1, Irf7, 

Isg15 

Mixture of monocyte and macrophage 

markers. Uniquely high expression of 

IFN-stimulated genes  

5 (Gpnmb high) 
Gpnmb, Fabp5, 

Creg1, Syngr1 

Gpnmb is specific to this cluster except 

for expression in a fraction of cluster 

13 cells.  

6 (cDC2 -like) 
Cd209a, Ifitm1, 

Klrd1, H2-DMb2 
Expression of known cDC2 markers 

7 (Cycling macs) 
Stmn1, Top2a, 

Mki67, Birc5 

Uniquely expresses cell cycle genes. 

Also express some markers of cluster 

0 cells. No monocyte genes 

8 (Activated DCs) 
Ccr7, Ccl5, 

Fscn1, Ccl22 
Expresses markers of DC maturation 

9 (Alt monocytes) 
Ace, Cd300e, 

Itgal, Treml4 

Expresses markers of alternatively 

activated monocytes 
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10 (Mesenchymal) 
Cald1, Col3a1, 

Krt8, Sparc 

Expresses mesenchymal genes. Also 

express the TF Rhox5. Express high 

levels C1qa and Apoe.  

11 (mt. genes) 
mt-Nd2, mt-Atp6, 

mt-Nd3 

Small cluster with high mitochondrial 

gene counts 

12 (cDC1-like) 
Batf3, Itgae, 

Naaa, Clec9a 

Expresses canonical cDC1 markers 

without markers of maturation 

13 (Alveolar mac-
like) 

Marco, Ear2, 

Chil3, Lpl 

Expresses markers of alveolar 

macrophages 

14 (Saa3 high 
macrophage) 

Saa3, Alox15, 

Serpinb2, Prg4 

Striking similarity to the mac3 cluster 

from Zilionis et al.  

15 (Unknown) 
Mrc1, Cxcl3, 

Hspa1a 

Expresses genes from clusters 0 

(Mrc1), 3 (Cxcl3) & 1 (Vcan). No 

specific markers detected. Both treated 

and untreated cells & cells from all 

samples represented  

 
Table 26. Myeloid cluster labels, markers and notes 10 mice with 3LL tumours 
were treated with control (5 mice) or MRTX1257 (5 mice). Data integrated using 
WNN (Seurat) and subsequently clusterd. Clusters were manually annotated – 
nomenclature as above. DC = dendritic cell, IFN = interferon, ISG = interferon-
stimulated genes, HSP = heat shock protein, macs = macrophages, mt. = 
mitochondrial, TF = transcription factor 
 

Thus, we identified 8 macrophage clusters (0,2,3,5,7,10,13,14), 2 monocyte 

clusters (1,9), 3 dendritic cell clusters (6,8,12) 1 cluster containing both 

macrophages and monocytes (4) and 1 cluster which could not be defined (15). 

Distinct cells within cluster 15 expressed either macrophage (Mrc1 and Cxcl3) 

or monocyte (Vcan) genes. It was a small cluster of only 63 cells with some 

cells from each sample, and both conditions (37 control and 26 MRTX1257). 

Cells within this cluster were not outliers for mRNA count, ADT count or the 

percentage of mitochondrial genes. Overall, no marker nor metadata 

characteristic was found to distinguish this cluster.  
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Figure 58. Heatmap showing expression of myeloid cluster markers10 mice with 
3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). Myeloid 
cells were extracted and clusters. Cluster markers generated using manual Seurat 
and manual selection. Normalised expression values of cluster markers. Numbers 
above map indicate clusters.  
 
Once clusters had been annotated in this way, we looked for effects of 

treatment. To this end, we looked at the compositional effects of treatment and 

also performed DE testing per cluster.  

 

5.2.3 Composition distribution and analysis 

The compositional distribution of clusters per sample and per condition is 
shown in Figure 59 with the breakdown also shown in  

Table 27. As shown within the figure and table, there were certain differences 

apparent. For example, the proportion of myeloid cells labelled as macrophages 

with a high expression of antigen presentation machinery (AP-hi-mac) was 

higher in the treated samples (17%) than in the control samples (12%). 

Conversely the proportion of cells labelled as arginase 1-high macrophages 

(Arg1-hi mac) was higher in control samples (14%) than in treated samples 

(8%).   
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a) 

 
 

b) 

 
Figure 59. Distribution of clusters per sample & condition 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Myeloid cells 
were extracted, clustered and a manual nomenclature applied. Numbers inside the 
bars = (cluster number) number of cells (% of subset occupied by that cluster). 
Samples 1-5 are control, 6-10 are MRTX1257-treated.  
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 1 2 3 4 5 Control 
Mac (Ccl8-
high)  298 (19) 

156 
(12.1) 174 (13.7) 180 (12.9) 667 (25.1) 1475 (18) 

Mon (classical) 
347 
(22.1) 

226 
(17.6) 219 (17.2) 180 (12.9) 500 (18.8) 1472 (18) 

Mac (AP-high) 
186 
(11.8) 

159 
(12.4) 171 (13.5) 257 (18.4) 245 (9.2) 1018 (12.4) 

Mac (Arg1-
high) 

229 
(14.6) 

181 
(14.1) 147 (11.6) 152 (10.9) 474 (17.8) 1183 (14.4) 

ISG-high 149 (9.5) 101 (7.9) 118 (9.3) 225 (16.1) 353 (13.3) 946 (11.6) 
Mac (Gpnmb-
high) 78 (5) 118 (9.2) 44 (3.5) 123 (8.8) 97 (3.6) 460 (5.6) 
cDC2-like 103 (6.6) 100 (7.8) 144 (11.3) 65 (4.6) 52 (2) 464 (5.7) 
Mac (cycling) 31 (2) 48 (3.7) 27 (2.1) 57 (4.1) 7 (0.3) 170 (2.1) 
DC (activated) 24 (1.5) 42 (3.3) 46 (3.6) 33 (2.4) 59 (2.2) 204 (2.5) 
Mon 
(alternative) 30 (1.9) 15 (1.2) 21 (1.7) 19 (1.4) 11 (0.4) 96 (1.2) 
Mac 
(mesenchymal) 13 (0.8) 29 (2.3) 34 (2.7) 10 (0.7) 66 (2.5) 152 (1.9) 
mt. genes high 17 (1.1) 13 (1) 27 (2.1) 25 (1.8) 85 (3.2) 167 (2) 
cDC1-like 20 (1.3) 32 (2.5) 42 (3.3) 23 (1.6) 6 (0.2) 123 (1.5) 
Mac (alveolar-
like) 8 (0.5) 22 (1.7) 2 (0.2) 21 (1.5) 25 (0.9) 78 (1) 
Mac (Saa3-
high) 33 (2.1) 42 (3.3) 44 (3.5) 23 (1.6) 3 (0.1) 145 (1.8) 
Unknown 6 (0.4) 2 (0.2) 11 (0.9) 6 (0.4) 12 (0.5) 37 (0.5) 
 
 6 7 8 9 10 MRTX1257 
Mac (Ccl8-
high)  

407 
(21.9) 

443 
(26.5) 271 (24.2) 175 (16.6) 252 (18.4) 1548 (21.9) 

Mon (classical) 
229 
(12.3) 

325 
(19.4) 82 (7.3) 128 (12.1) 206 (15) 970 (13.7) 

Mac (AP-high) 
408 
(21.9) 

246 
(14.7) 191 (17) 117 (11.1) 212 (15.5) 1174 (16.6) 

Mac (Arg1-
high) 87 (4.7) 136 (8.1) 42 (3.7) 67 (6.4) 111 (8.1) 443 (6.3) 
ISG-high 142 (7.6) 124 (7.4) 125 (11.1) 74 (7) 160 (11.7) 625 (8.8) 
Mac( Gpnmb-
high) 148 (8) 73 (4.4) 62 (5.5) 173 (16.4) 135 (9.9) 591 (8.3) 
cDC2-like 87 (4.7) 98 (5.9) 95 (8.5) 68 (6.5) 49 (3.6) 397 (5.6) 
Mac (cycling) 117 (6.3) 70 (4.2) 43 (3.8) 34 (3.2) 32 (2.3) 296 (4.2) 
DC (activated) 23 (1.2) 24 (1.4) 51 (4.5) 39 (3.7) 26 (1.9) 163 (2.3) 
Mon 
(alternative) 67 (3.6) 37 (2.2) 59 (5.3) 17 (1.6) 26 (1.9) 206 (2.9) 
Mac 
(mesenchymal) 40 (2.1) 24 (1.4) 28 (2.5) 27 (2.6) 28 (2) 147 (2.1) 
mt. genes high 21 (1.1) 21 (1.3) 22 (2) 21 (2) 32 (2.3) 117 (1.7) 
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cDC1-like 30 (1.6) 29 (1.7) 37 (3.3) 31 (2.9) 18 (1.3) 145 (2) 
Mac (alveolar-
like) 34 (1.8) 2 (0.1) 5 (0.4) 79 (7.5) 67 (4.9) 187 (2.6) 
Mac (Saa3-
high) 14 (0.8) 17 (1) 3 (0.3) 1 (0.1) 8 (0.6) 43 (0.6) 
Unknown 7 (0.4) 2 (0.1) 6 (0.5) 3 (0.3) 8 (0.6) 26 (0.4) 

 
Table 27. Composition of clusters within sample & conditions Numbers indicate 
how many cells in that sample fall within the given cluster (percentage in brackets). 
Samples 1-5 are control, 6-10 are MRTX1257-treated.  
 
Similar to the analysis performed prior to subsetting macrophages (section 

4.5.3), we performed differential composition analysis to assess whether the 

differences in composition were unlikely to be due to chance (Table 28). As 

shown, after adjustment for multiple hypothesis testing, only the change in the 

Arg1-hi-mac group remained significant. While Saa3-hi-mac and classical 

monocytes reduced in number, the changes were not significant after p-value 

adjustment. Likewise, the increase in AP-hi-mac with treatment was not 

significant either. As previously, given the outlier nature of sample 5, we 

performed a sensitivity analysis with this sample removed. Reassuringly, the 

reduction in Arg1-hi-mac remained significant after p-value adjustment (log2 FC 

-1.01, FDR 0.037) while the reduction in Saa3-hi macrophages was more 

pronounced (log2 FC = -2.23) and significant (FDR = 0.002).  
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 Log2 FC p-value Adj. p (FDR) 

Mac (Arg1-hi) -1.15 0.00 0.048 

Mac (Saa3-hi) -1.99 0.02 0.146 

Mon (alternative) 1.19 0.03 0.146 

Mon (classical) -0.43 0.16 0.482 
Mac (alveolar-
like) 1.36 0.18 0.482 

Mac (Ccl8-hi) 0.37 0.23 0.482 

Mac (cycling) 0.69 0.23 0.482 

Mac( Gpnmb-hi) 0.52 0.27 0.482 

ISG-hi -0.30 0.27 0.482 

Mac (Arg1-hi) 0.29 0.33 0.523 

 
Table 28. Differential abundance testing of myeloid clusters 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Myeloid cells 
were clustered and a manual nomenclature applied. Log2 FC represents the 
differential abundance, in the given cluster, after treatment with MRTX1257. p-
value adjustment performed using the Benjamini Hochberg method.  
 

Given the significant reduction in the proportion of Arg1-hi macrophages with 

treatment, and the immunosuppressive effect of arginine depletion within the 

TME, we describe this cluster in more detail here. When performing DE 

between this cluster and all other clusters combined, Arg1, Cxcl3, Vegfa and 

Cxcl2 were amongst the 12 most significantly upregulated genes in this cluster 

versus all others. Three of these genes are visualised on a UMAP plot in Figure 

60.  
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Figure 60. UMAP visualisation of cluster 3-high genes 10 mice with 3LL tumours 
were treated with control (5 mice) or MRTX1257 (5 mice). Myeloid cells were 
clustered separately. UMAP shows gene expression in cluster 3 myeloid cells (Arg-
1 high myeloid cells). Scale represents log-normalised expression values 
 

Other significantly upregulated genes included Spp1 (secreted phosphoprotein 

1), Ptgs2, Nt5e, Ccl6, Ccl9, Tnfrsf9 (4-1BB), Mif (macrophage inhibitory factor) 

and Nos2 (nitric oxide synthase 2). Downregulated genes included class II MHC 

genes (e.g. H2-Eb1, H2-Ab1, H2-Aa), Cd74, Ccl8, Ccl5 and Cxcl9 and Cxcl10. 

The ten most significantly up and downregulated genes are shown in Table 29. 
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Upregulated Downregulated 
Name Log2 FC Adj. p Name Log2 FC Adj. p 
Arg1 2.38 < 0.001 Cst3 -1.05 < 0.001 

Fn1 1.52 < 0.001 H2-Aa -1.59 < 0.001 

Cxcl3 2.10 < 0.001 H2-Eb1 -1.77 < 0.001 

Spp1 1.79 < 0.001 Tmem176b -0.97 < 0.001 

Vegfa 1.14 < 0.001 Psmb8 -0.75 < 0.001 

Gapdh 0.67 < 0.001 Tmem176a -0.91 < 0.001 

Hilpda 1.33 < 0.001 Fcgrt -0.68 < 0.001 

Mif 0.85 < 0.001 Samhd1 -0.86 < 0.001 

Pgk1 0.82 < 0.001 H2afz -0.74 < 0.001 

Thbs1 1.00 < 0.001 H2-DMb1 -0.97 < 0.001 
 
Table 29. The most significantly DE genes in cluster 3 (Arg1-high) 10 mice with 
3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). Myeloid 
cells were clustered separately. Log2 fold-change refers to myeloid cluster 3 vs all 
other myeloid clusters combined (pseudocount = 1). Adjusted p value based on 
Wilcoxon signed rank sum test, Bonferroni correction.  
 

In order to provide a more objective assessment of the differentially expressed 

genes in this cluster, we performed GSEA. Using the MSigDB hallmark gene 

sets (Liberzon et al., 2015) the most upregulated genes related to hypoxia (e.g. 

Vegfa, Slc2a1) and epithelial to mesenchymal transition (e.g. Cxcl3, Spp1, 

Inhba). Amongst the most downregulated sets were those related to the 

interferon response (both alpha and gamma e.g. Ifit3, Rsad2, Cxcl10) and 

proliferation.  
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Figure 61. Most up and downregulated hallmark gene sets in myeloid cluster 3 
(Arg1-high) 10 mice with 3LL tumours were treated with control (5 mice) or 
MRTX1257 (5 mice). Myeloid cells clustered separately. Log2 fold changes for gene 
expression in cluster 3 compared to all other clusters combined were calculated 
and then ranked from highest to lowest for GSEA. Significance refers to adj. p-
value < 0.05.  
 

Given that Arg1, a marker of M2-like macrophages, was upregulated in cluster 

3, we next looked at other M1 and M2-related genes. We obtained M1 and M2 

gene signatures from a meta-analysis of published data (Orecchioni et al., 

2019) and used these as input to GSEA. This time, as input to the GSEA 

algorithm, we calculated log2 fold-change between gene expression in cluster 3 

and all other macrophage clusters combined (0, 2, 5, 13, 14). Thus, we are 

essentially asking whether cluster 3 is more M1 or M2-like than other 

macrophage clusters rather than whether it is M1/M2-like per se. The results of 

the procedure are shown in Figure 62. Surprisingly, given its high expression of 

Arg1 and Vegfa, overexpressed genes in this cluster were enriched in gene 

sets pertaining to classical (M1) macrophage activation. For example, the 

‘classic_vs_untreated’ gene set represents those genes upregulated after 

classical macrophage activation in vitro. Overexpressed genes in cluster 3 that 

were part of this gene set included Nos2, Cxcl3, Ihnba and Ptgs2. Conversely, 

the ‘alt_vs_classic_up’ gene set represents genes upregulated in alternatively 



Chapter 5. Results 

 

192 

 

activated macrophages (M2, activated by IL-4) vs. classically activated (M1, by 

LPs) in vitro. Genes downregulated in cluster 3, that were enriched in this gene 

set, include Ccl8, Mgl2 and Fcrls.  

 

 
Figure 62. M1/M2 signature GSEA (cluster 3 vs. other macrophage clusters) 10 
mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). 
Myeloid cells extracted and clustered separately. Macrophage clusters manually 
selected based on marker gene expression. Log2 fold changes for gene expression 
in cluster 3 compared to all other macrophage clusters (0,2,5,13,14) combined 
were calculated and then ranked from highest to lowest for GSEA. Significance 
refers to adj. p-value < 0.05.  
 

Despite the GSEA results above, the enrichment plot below illustrates the 

dichotomy of differential gene expression in cluster 3 (Figure 62). The illustrated 

gene set represents genes upregulated in alternatively activated macrophages 

compared to untreated macrophages in vitro. As shown, some such genes are 

upregulated in cluster 3 compared to other macrophage clusters (and these 

included Arg1, Ccl24 and Mmp12) while others are downregulated (e.g. Ccl8, 

Lpl and Mrc1).  
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Figure 63. Alternatively activated macrophage enrichment plot (cluster 3, Arg1-
high) 10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Myeloid cells were extracted and clustered separately. Log2 fold changes for 
gene expression in myeloid cluster 3 compared to all other macrophage clusters 
(0,2,5,13,14) combined were calculated and then ranked from highest to lowest for 
GSEA against the ‘alt_vs_untreated’ gene set. Significance refers to adj. p-value < 
0.05.  
 
 

The other cluster whose composition was significantly altered, was cluster 14, 

which we termed the ‘Saa3-high’ cluster. This represented a small proportion of 

cells in each condition (1.8% in untreated vs 0.6% for treated samples). 

However, given its significant change in frequency upon treatment, its distinct 

projection in UMAP space and its presence in the Zilionis dataset as their 

‘Mac3’ cluster (Zilionis et al., 2019), illustrating conservation across model 

systems, we felt it was worthy of further attention. This cluster was specific in its 

expression of Saa3, Prg4, Alox15 and Cd5l. The 10 most up and down-

regulated genes are shown in Table 30.  
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Upregulated Downregulated 
Name Log2 FC Adj. p Name Log2 FC Adj. p 
Prg4 3.97 < 0.001 Lst1 -2.03 < 0.001 

Selp 1.59 < 0.001 Coro1a -1.47 < 0.001 

Fcna 2.67 < 0.001 Marcks -1.58 < 0.001 

Garnl3 1.30 < 0.001 Lcp1 -1.11 < 0.001 

Lbp 1.21 < 0.001 Ms4a6c -1.41 < 0.001 

Ptgis 1.66 < 0.001 Aif1 -1.68 < 0.001 

Cd5l 3.15 < 0.001 Ms4a6b -1.51 < 0.001 

Padi4 1.31 < 0.001 Anxa5 -1.06 < 0.001 

Mlxipl 0.70 < 0.001 Plbd1 -1.57 < 0.001 

Wnt2 0.48 < 0.001 Malat1 -1.13 < 0.001 

 
Table 30. The most significantly DE genes in myeloid cluster 14 (Saa3-high) 10 
mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). 
Myeloid cells were clustered separately. Log2 fold-change refers to myeloid cluster 
14 vs all other clusters combined (pseudocount = 1). Adjusted p value based on 
Wilcoxon signed rank sum test, Bonferroni correction.  
 

The gene sets most enriched for up or downregulated genes in this cluster are 

shown in Figure 64. 
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Figure 64. Most up and downregulated hallmark gene sets in myeloid cluster 14 
(Saa3-high) 10 mice with 3LL tumours were treated with control (5 mice) or 
MRTX1257 (5 mice). Myeloid cells were clustered separately. Log2 fold changes for 
gene expression in cluster 14 compared to all other clusters combined were 
calculated and then ranked from highest to lowest for GSEA. Significance refers to 
adj. p-value < 0.05.  
 
 

Adipogenesis genes that were significantly upregulated included Ltc4s 

(leukotriene C4 synthase), Acly (ATP citrate lyase) and Idh1 (7-

dehydrocholesterol reductase). While not significant, the oxidative 

phosphorylation gene set was also enriched for upregulated genes, including 

Idh1 (isocitrate dehydrogenase 1). Conversely, the cholesterol homeostasis 

gene set was enriched for downregulated transcripts including Fabp5 (fatty acid 

binding protein 5) and Cxcl16 which has been shown to influence high-density 

lipoprotein uptake and cholesterol efflux in macrophages (Barlic, Zhu and 

Murphy, 2009). Thus, this cluster appeared to have an altered metabolic 

phenotype relative to other cells in the myeloid compartment, specifically 

demonstrating an increased propensity for adipogenesis.  
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5.2.4 Per-cluster differential expression 

After performing differential abundance testing, we next looked at differential 

expression between MRTX1257-treated and control cells, per cluster. A 

summary of these results is shown in Table 31. 

 
LFC Ccl8-hi 

mac 
Classi
cal 
mon 

AP-hi-mac Arg1-
hi-
mac 

ISG-hi Gpnmb-
hi-mac 

cDC2-
like 

Cycling 
mac 

< -2 10 3 4 12 7 2 0 2 

< -1.5 22 7 9 19 13 4 3 5 

< -1 63 36 23 48 38 13 6 5 

< -0.5 215 141 118 178 142 74 47 65 

< -0.25 618 344 340 343 304 204 93 181 

> 0.25 383 337 200 350 229 85 60 31 

> 0.5 113 54 58 98 65 21 14 21 

> 1 25 5 11 16 17 4 1 4 

> 1.5 8 3 3 9 5 1 0 1 

> 2 4 0 0 4 0 0 0 0 

 
LFC Activated 

DC 
Alt 
mon 

Mesenchymal mt. 
genes 

cDC1-
like 

Alveolar 
mac-like 

Saa3-
hi mac 

 

< -2 1 0 13 6 0 3 5  

< -1.5 2 0 37 8 4 5 12  

< -1 8 0 60 15 9 20 24  

< -0.5 29 6 139 15 31 61 41  

< -0.25 30 8 274 15 33 109 45  

> 0.25 10 0 605 5 12 53 13  

> 0.5 6 0 163 5 9 20 13  

> 1 2 0 23 4 2 1 9  

> 1.5 1 0 7 2 0 0 2  

> 2 0 0 1 1 0 0 2  

 
Table 31. Summary of myeloid per cluster differential expression (MRTX1257 vs 
control)10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 
(5 mice). Myeloid cells were clustered separately. Figures refer to numbers of 
genes exceeding the given log2 FC at an FDR of < 0.1. Note, consistent with 
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previous figures/tables, clusters are ordered by size (Ccl8-hi macs the largest, Saa-
hi macs the smallest).  
 

As shown in the table, there were many differentially expressed genes in the 

larger clusters, with numbers tending to become smaller as cluster sizes 

reduced.  

 

In order to gain better intuition for the distribution of effect sizes and the nature 

of up and down-regulated genes, we plotted gene expression, per cluster, split 

by condition. Examples are shown for some of the macrophage clusters (Figure 

65) and some of the DC clusters (Figure 66). 

 

 

 
Figure 65. Selected macrophage cluster gene expression (MRTX1257 vs. Control) 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Myeloid cells were clustered separately and macrophages annotated within 
these clusters. Expression values represent log2 normalised values (pseudocount 
0.5) using library sizes to calculate normalisation factors. Red dots indicate genes 
with an absolute log2 FC of > 1.  
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Figure 66. Selected dendritic cell cluster gene expression (MRTX1257 vs. 
Control) 10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 
(5 mice). Myeloid cells were clustered separately. Expression values represent log2 
normalised values (pseudocount 0.5) using library sizes to calculate normalisation 
factors. Red dots indicate genes with an absolute log2 FC of > 0.5 
 

As shown, the effect of treatment on macrophage gene expression was more 

pronounced than that on DCs, consistent with the summary shown in Table 31. 

Furthermore, many of the over and underexpressed genes in the macrophage 

compartment were consistent across different macrophage clusters. As shown 

in the plots, class II MHC and complement genes were frequently upregulated 

while Arg1, Cxcl3, Ccl24, Mmp9/12/13 and Spp1 were consistently 

downregulated in these clusters. A similar pattern was seen in the cluster 1 

(classical monocytes) cells and the other macrophage clusters (not shown).  
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Despite analysis to look for genes specifically differentially expressed in one 

cluster versus another (method in 2.14.7) we were unable to detect many genes 

whose differential expression was obviously specific to one cluster. We 

therefore manually interrogated the lists of DE genes, first focussing on the 

macrophage clusters (0,2,3,4,5,7,13,14) and the classical monocyte cluster (1). 

In this way, we were able to identify several genes, known to affect the tumour-

immune interaction, that were DE upon treatment (Figure 67). This figure 

displays the macrophage clusters, along with the classical monocyte cluster, 

and shows the impact of treatment within each. 
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Figure 67. Log fold-change of selected genes in monocyte/macrophage clusters 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Myeloid cells were extracted and sub-clustered. Pseudo-bulk datasets were 
created per-cluster and log2 fold-change (pseudocount 0.1) was calculated 
between treated and non-treated cells. Cluster 0 = ‘Ccl8-high’, 1 = ‘Classical 
monocytes’, 2 = ‘Antigen presentation-high’, 3 = ‘Arg1-high’, 4 = ‘Interferon-
stimulated-genes-high’, 5 = ‘Gpnmb-hi’, 7 = ‘Cycling macrophages’, 13 = ‘Alveolar 
macrophages’, 14 = ‘Saa3-high’  
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As shown, in general, genes whose protein products are purported to be 

tumourigenic, were downregulated. Along with those mentioned above, we saw 

downregulation of Vegfa, Vcan (veriscan), Tnfrsf9 (4-1BB) and Ptgs2. 

Upregulated genes tended to be antitumorigenic and, in addition to those 

aforementioned, included Cxcl9 and (less strongly) Cxcl10.   

 

Following interrogation of the lists of DE genes as above, we performed GSEA 

using the list of per-cluster DE genes as input to the algorithm. When tested 

against the hallmark gene sets, most gene sets showed a negative NES score 

across the clusters. The most negative scores were related to genes involved in 

TNF𝛼 and inflammatory signalling. The most downregulated genes within these 

sets (across the clusters) included Hbegf, Cxcl3, Lif and Il1a. Gene sets with 

generally positive NES scores included those related to adipogenesis and fatty 

acid metabolism. Upregulated genes, across clusters, in these sets included 

Apoe, Cd302 and Lpcat.  

 

 



Chapter 5. Results 

 

202 

 

 
Figure 68. Heatmap of GSEA NES scores per myeloid cluster for hallmark sets 10 
mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). 
Myeloid cells were extracted and sub-clustered. GSEA was performed per-cluster 
using the log2 fold-changes between MRTX1257 and control treated cells. NES 
scores displayed as a heatmap. Gene sets are arranged by mean NES score 
across the clusters. Cluster 0 = ‘Ccl8-high’, 1 = ‘Classical monocytes’, 2 = ‘Antigen 
presentation-high’, 3 = ‘Arg1-high’, 4 = ‘Interferon-stimulated-genes-high’, 5 = 
‘Gpnmb-hi’, 7 = ‘Cycling macrophages’, 13 = ‘Alveolar macrophages’, 14 = ‘Saa3-
high’  
 

Next, we used the previously mentioned gene sets pertaining to M1 and M2 

macrophage polarisation in vitro (Orecchioni et al., 2019) to interrogate the 

effect of MRTX1257 in the macrophage clusters. Surprisingly, genes 

downregulated by MRTX1257 were enriched in the ‘classic_vs_untreated’ gene 

set (mean NES across the clusters = -1.57, FDR < 0.01 in 7/9 macrophage 

clusters) suggesting that MRTX1257 downregulates classically activated 
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macrophage genes. When looking at the ‘leading edge’ of this gene set (the 

downregulated genes that most strongly contributing to the NES) they included 

Cxcl3, Vegfa, Ptgs2 and Il1a.  While these genes may be part of this gene set, 

they are known to have anti-tumourigenic functions, and this is alluded to in the 

discussion. Other genes downregulated by MRTX1257 and part of this gene set 

include Slpi, Serpinb2 and Inhba, which have less clear functions in the tumour 

microenvironment. Conversley, when we looked at the NES scores for the 

‘alt_vs_untreated’ cluster, the scores were closer to 0 suggesting that 

MRTX1257 does predominantly up or downregulates alternative monocyte 

genes. When we looked at genes in this set, those that were most strongly 

downregulated included Arg1, Mmp9, Mmp12 and Ccl24. Those that were most 

strongly upregulated include Tmem176a and Tmem176b. The effect of 

Mrtx1257 on these two genes, Arg1 and Vegfa is shown in Figure 69. 
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Figure 69. Effect of MRTX1257 on selected myeloid genes 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). Myeloid 
cells were extracted and sub-clustered. Figure shows a UMAP representation of control (left) 
and treated (right) myeloid cells overlaid with given gene expression. 
 

Beyond the macrophage compartment, we also looked at DCs. The repertoire 

of gene differentially expressed in the dendritic cell clusters was much narrower 
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than that in macrophages, but nonetheless distinct. As shown in (Figure 66) 

interferon-induced transmembrane (Ifit) genes were downregulated across the 

DC clusters. Conversley, upregulated genes in the activated DC subset 

included Il12b and Ccl5. The former is important for the generation of Th1-

polarised immune response including the production of IFN𝛾 while Ccl5 is 

known to act as a cDC1 chemoattractant (Böttcher et al., 2018). Lyz2 and Mgl 

were specifically upregulated on cDC2 cells. The latter is a C-type lectin 

receptor that functions as a carbohydrate recognition molecule. As well as 

serving to recognise pathogens, it may also recognise alternatively-glycosylated 

tumour antigens (Saeland et al., 2007). Changes in these Mgl2 and Il12b are 

visualised in Figure 70. 

 

 

 
 
Figure 70. Effect of MRTX1257 on selected DC genes 10 mice with 3LL tumours 
were treated with control (5 mice) or MRTX1257 (5 mice). Myeloid cells were 
extracted and sub-clustered. Red arrows in top panels indicate location of the 
activated-DC cluster where Il12b was expressed. Arrows in bottom panel indicate 
location of cDC2-like cells.  
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5.3 Tumour cell effects 

While myeloid cells make up the bulk of the immune infiltrate, MRTX1257 acts 

directly on tumour cells. For this reason, we next sought to understand the 

specific effects the drug was having in this compartment.  

 

To begin to understand this effect, tumour cells were subsetted from the overall 

dataset. Tumour cells were identifiable by their lack of expression of H2-K1. 

These cells projected together in UMAP space (Figure 71) facilitating their 

segmentation.  

 

 
Figure 71. Lack of expression of H2-K1 in tumour clusters 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice) and cells 
projected in UMAP space after WNN integration (Seurat). Green arrows indicate 
tumour cell clusters. H2-K1-expressing cells (red arrows) projected nearby in 
UMAP-space expressed endothelial or mesenchymal markers and were not 
subsetted 
 

Once cells were subsetted, they were integrated using the schema described 

for myeloid cells (Figure 55). Of note, often, cell cycle effects are not informative 

to the question being asked of a single-cell experiment, and they can be 

regressed out during data pre-processing. However, in this case, the drug was 

expected to have an (informative) effect on the cell cycle in tumour cells, and 

therefore its effects were not removed during pre-processing. 
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This resulted in a WNN graph representation incorporating all 10 samples and 

information from both mRNA and ADT, that was used to generate clusters and 

a UMAP representation (Figure 72). 

 

 
Figure 72. UMAP representation of tumour cells 10 mice with 3LL tumours were 
treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells were extracted 
and subclustered as above. Both the UMAP representation and clusters (resolution 
0.2) were generated based on the WNN graph 
 

Once integration had been performed and clusters assigned, we sought to 

manually annotate the clusters. During such annotation it was discovered that 

cells in cluster 3 all had a high expression of mitochondrial genes (Figure 73a) 

while also having a low gene counts (not shown) consistent with poor 

quality/dying cells. Cells in cluster 5 expressed myeloid-specific genes including 

Lyz2, class II MHC and complement genes amongst others (Figure 73b,c). 

These cells likely represented doublets. When these cells were annotated on 

the original WNN UMAP representation containing all cells (Figure 73d) it was 

evident that they had not clustered separately, and instead were dispersed 

within the tumour clusters. This is possibly because the tumour cells were more 

transcriptionally active (higher read counts) and therefore dominated cluster 
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assignment. Only when sub-clustering these cells did their myeloid gene 

expression become apparent as a separate cluster.  

 

 
Figure 73. Poor quality clusters 10 mice with 3LL tumours were treated with 
control (5 mice) or MRTX1257 (5 mice). Tumour cells were extracted and 
subclustered as above. UMAPs demonstrating poor quality clusters. a) Cluster 
expressing high % of mitochondrial genes (example shown for mt-Nd4l); b & c) 
Cluster expressing many myeloid-specific genes (two examples shown) d) Cells 
from the cluster shown in ‘b & c)’ (‘Cluster 5’) were projected back onto the original 
WNN UMAP – cells did not cluster discretely and instead were scattered 
throughout the tumour cells (green arrow), possibly explaining lack of detection by 
doublet-detection algorithms 
 

The poor-quality clusters were therefore removed, and the data was re-

processed to generate a new integrated representation containing information 

from both ADT and RNA. Various cluster resolutions were interrogated using 

this new representation. One example, using a cluster resolution of 0.15, is 

shown in Figure 74a on a WNN UMAP. The adjacent panel (Figure 74b) instead 

shows a UMAP representation generated solely from gene expression data (i.e. 

without using the WNN graph that incorporates ADT information). The clusters 

in the latter object (generated solely from RNA data) appear to be projected 
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more distinctly in UMAP space. One explanation for this observation was that 

our ADT panel was designed primarily to help resolve immune states. 

Therefore, many of the antibodies would not be useful when defining tumour 

cell states and, instead, could generate noise. In fact, clustering and UMAP 

visualisation using ADT information alone (not shown here) appeared to yield 

little useful information. In order to circumvent the possible problem of noise 

from unhelpful (immune-specific) ADTs, one could simply discard them and only 

keep those more relevant to tumour cells (CD44, CD73 and CD274) before re-

running the integration pipeline. Alternatively, it is possible just use RNA 

information alone to integrate the 10 samples and generate clusters. Given the 

strong transcriptional effect of MRTX1257 on KRAS(G12C)-mutant cells, we 

chose that latter option and therefore this thesis focuses on the integrated 

dataset that used gene-expression data alone.  

 

 
Figure 74. WNN UMAP vs gene expression UMAP 10 mice with 3LL tumours were 
treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells were extracted 
and subclustered as above using two different methods: the UMAP in a) was 
generated using integrated RNA and ADT information. The UMAP in b) was 
generated using only RNA information.  
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After deciding to focus on gene expression alone, cluster resolution was 

determined using the same logic as described for myeloid cells. This included 

producing a tree of cluster relationships at various resolutions (Figure 75).  

 

 

 
Figure 75. Effect of varying cluster resolution on cluster structure (tumours) 10 
mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). 
Tumour cells were extracted and subclustered at various resolutions as above. 
Each horizontal row of nodes represents the clusters at a given resolution. Arrows 
indicate how the cells from clusters at one resolution are distributed in clusters at 
the next.  
 

Given the relatively ‘clean’ tree up until a resolution of 0.4, this resolution was 

chosen for manual annotation. UMAP visualisation of clusters at different 

resolutions is shown in Figure 76. 
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Figure 76. Effect of varying cluster resolution visualised using UMAP 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered at various resolutions as 
above. 

5.3.1 Tumour cluster annotation 

Following this decision, clusters were manually annotated by performing DE 

between each cluster and all other clusters combined. Where two or more 

clusters were closely related, DE was performed between the clusters in 

question. In addition, cell cycle phase was predicted using Seurat, and the 

results of this were used to help annotate clusters. As shown (Figure 77) there 

were clear cell-cycle effects in the data, and we used these to contribute to 

cluster nomenclature. Beyond this, we also used gene-set enrichment analysis 

(GSEA) to provide further supporting evidence for naming clusters. A brief 

description of clusters including improvised nomenclature and overexpressed 

genes is shown in Table 32. 

 

 
.  
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Figure 77. Tumour clusters vs predicted cell cycle phase 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered at a resolution of 0.4 using Seurat. Cell cycle 
phase was also predicted using Seurat, and appeared to segregate closely with 
clusters 
 

 

Cluster (name) Overexpressed 
genes 

Notes 

0 (G0) Dcn, Ramp2, Cited2 & 

IEGs (Fos, Fosb, 

Jund) 

Lack expression of cell 

proliferation markers seen in 

clusters 1-4 

1 (Early cycle) Mcm3/5/6/7, Hells, 

Cdt1, Ung, Dtl 

Lack histone genes expressed in 

cluster 2 

2 (Histone 
high) 

Hist1h1b, Hist1h2ap, 

Hist1h1e 

 

3 (Late G2M) Cdc20, Cenpa, Cenpe, 

Ccnb2, Cdkn3 

Genes not specific (also in cluster 

4). Lacks cluster 4 genes 

4 (Early G2M) Ubec2, Prc1, Cenpf, 

Top2a 

Lack histone genes.  

5 (Metabolic) Cyp11a1, G0s2, Idh1, 

Fdx1, Fdxr 

Genes related to (lipid) 

metabolism 
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6 (ER-stress) Trib3, Slc3a2, Myc, 

Areg, Atf5, Gdf15 

Several genes related to ER-

stress and the unfolded protein 

response 

7 (ISG High) Isg15, Ifi203, Ifitm3, 

Irf6, Irf7, Stat1 

High expression of interferon-

stimulated genes 

8 (Unknown) Gm26917, Lars2, 

Tmsb4x, Nfib 

Small population, low transcript 

count, unclear identity 

9 (Rp high) Rps26, Rpl35, Rpl38 Many ribosomal protein genes 

 
Table 32. Manual annotation of tumour cells 10 mice with 3LL tumours were 
treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells were extracted, 
subclustered and manually annotated as above. ER = endoplasmic reticulum, IEG 
= immediate early genes, ISG = interferon-stimulated genes, Rp = ribosomal 
protein 
 

 

The largest cluster, 0, was enriched for cells in G0/G1. It lacked expression of 

the proliferation markers seen in clusters 1-4. Accordingly, when performing 

GSEA analysis on the genes DE in this cluster versus all others combined, the 

most strongly downregulated MSigDB hallmark gene sets (Liberzon et al., 

2015) were those pertaining to the cell cycle and MYC signalling (Figure 78). 

While the most upregulated genes included Dcn, Ramp2 and Cited. Despite 

interrogation of GSEA analysis of various gene sets beyond the hallmark 

collection, there was no consistent theme(s) that emerged to help functionally 

group the upregulated genes in this cluster. The five most upregulated hallmark 

gene sets are shown in (Figure 78).  
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Figure 78. Cluster 0 GSEA 10 mice with 3LL tumours were treated with control (5 
mice) or MRTX1257 (5 mice). Tumour cells were extracted and subclustered prior 
to GSEA analysis per cluster. The five most strongly up or downregulated hallmark 
gene sets based on DE between cluster 0 and all others combined. Positive 
normalised enrichment score indicates an upregulated set 
 

 

In addition, given that these cells were in G0, we looked specifically at gene 

sets related to KRAS signalling to see if these indicated reduced KRAS 

signalling in cluster 0. There are two such gene sets in the hallmark collection, 

23 such gene sets in the MSigDB v4.0 C6 ‘oncogenic signature’ collection 

(including the Singh-Settleman signature of KRAS dependency (Singh et al., 

2009)) and we also looked at the Sweet-Cordero KRAS signature (Sweet-

Cordero et al., 2005). Essentially, while the majority of gene sets within the C6 

collection suggested reduced KRAS signalling in cluster 0 compared to all other 

clusters combined, this was not consistent across all sets. The two hallmark 

gene sets gave opposing results (one suggested increased while the other 

decreased KRAS signalling) while the Ras84 signature (East et al., 2021) 

suggested increased RAS signalling in this cluster (Figure 79). Across these 

signatures/sets, notable genes upregulated in cluster 0 included Cxcl1, Cxcl2, 
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Hbegf, Ntrk1 and Ptgs2 as well as immediate early genes (IEGs) such as 

Dusp1, Dusp4, Junb, Jund and Zfp36. Some of these are shown in Figure 80 

where one can see expression restricted to a subset of this cluster. Thus, while 

cluster 0 represented cells that were not cycling, we were not able to say (using 

GSEA of various gene sets) that these cells had lower KRAS activity than cells 

in other clusters.  

 

 
Figure 79. Ras84 GSEA (cluster 0) 10 mice with 3LL tumours were treated with 
control (5 mice) or MRTX1257 (5 mice). Tumour cells were extracted and 
subclustered prior to GSEA analysis per cluster. Normalised enrichment score = 
1.79 (adj. p < 0.001) suggesting these genes are upregulated in this cluster 
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Figure 80. Selected RAS-related gene expression  
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered. Figure shows selected gene 
expression in tumour compartment 
 

While cluster 0 lacked expression of cell-cycle genes, clusters 1-4 expressed 

genes associated with cell cycle processes. These included minichromosome 

maintenance (Mcm) genes, which were most highly expressed in cluster 1 and 

replication-dependent histone genes, which were specific to cluster 2. Amongst 

other genes, clusters 3 and 4 had high expression of centromere-related genes 

(Cenp genes) and Cdc20 however cluster 4 also expressed Top2a, Prc1 and 

Cdk1 which cluster 3 did not (Figure 81) 
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Figure 81. Cell cycle gene expression 10 mice with 3LL tumours were treated with 
control (5 mice) or MRTX1257 (5 mice). Tumour cells were extracted and 
subclustered. UMAP visualisation of cell-cycle related genes, illustrating 
progressive expression from clusters 1 -> 2 -> 4 -> 3.  
 

Cluster 5 represented a small group of cells within the non-cycling 

compartment. Many of the most strongly overexpressed genes in this cluster 

code for proteins involved in metabolic processes including Cyp11a1, Idh1, 

G0s2 and Fdx1/Fdxr. When performing GSEA, hallmark gene sets for 

adipogenesis (NES = 2.40), bile acid metabolism (NES = 1.87), oxidative 

phosphorylation (NES = 1.85) and fatty acid metabolism (NES = 1.72) were the 

most strongly upregulated here, suggesting metabolism may be altered in this 

cluster (Figure 82). 
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Figure 82. Cluster 5 GSEA - most strongly enriched gene sets 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered prior to GSEA analysis per cluster. Significance 
refers to an adjusted p value of < 0.05  
 

Cluster 6 was another small cluster. Amongst the most strongly overexpressed 

genes in this cluster were Hspa5, Sdf21l, Manf and Atf5 which are all involved 

in protein folding in the endoplasmic reticulum (ER). This was reflected in its 

high NES (FDR < 0.001) for the hallmark unfolded protein response gene set 

during GSEA testing (Figure 83). Cluster 7 overexpressed many interferon-

stimulated genes and also had a high NES (FDR < 0.001) for the corresponding 

gene sets (Figure 83). 
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a)  

 
b)  

 
c)  

 
Figure 83. Representative GSEA enrichment plots 10 mice with 3LL tumours were 
treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells were extracted 
and subclustered prior to GSEA analysis per cluster. Cluster 6 – Hallmark unfolded 
protein response, b) Cluster 7 – Hallmark interferon alpha response, c) Hallmark 
interferon gamma response  
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We were unable to assign a confident name to cluster 8. The genes most 

strongly overexpressed in this cluster included the long non-coding RNA 

(lncRNA) Gm26917, the mitochondrial tRNA leucyl-transferase Lars2 and the 

pleiotropic Tmsb4x. This cluster was also unique in its expression of H2-K1 

which could suggest a non-tumour cell type given the lack of expression of this 

gene in tumour cells. As is evident in Figure 84, gene expression in this cluster 

appeared to suggest two distinct patterns of co-expression, one at the tip of the 

cluster (where cells expressed Tmsb4x, H2-K1, Col1a1, Sparc and Sox4 

amongst others) and the other at the opposite end (expressing Lars2 and 

Gm26917). While this cluster could represent contamination, it is notable that all 

10 samples were represented (i.e. it was not rogue cells from a single sample). 

When looking at other QC metrics, cells from this cluster expressed a lower 

number of genes (i.e. low transcript diversity) compared to cells from other 

clusters. We also performed differential expression between cluster 8 and all 

other clusters using ADTs to see if any immune ADTs were overexpressed. No 

immune markers were overexpressed here, however there was a significant 

reduction in CD44, CD73 and CD274 binding in this cluster. We overlaid these 

antibodies onto the UMAP and saw reduced expression mostly at the tip of the 

cluster. The significance of the reduced antibody expression in this cluster is 

uncertain. Incidentally, we noted high expression of CD274 in cluster 7, 

consistent with its high expression of ISGs. This information about cluster 8 is 

summarised in Figure 84. 
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Figure 84. UMAP visualisation of cluster 8 characteristics  
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered. From top-left, the first panel 
represents tumour cell clusters. The next four panels show representative mRNA 
expression. Gene count refers to the number of different genes expressed per cell, with 
lighter shades representing fewer genes expressed. The bottom three panels represent 
normalised ADT expression.  
 
 
 
Finally, cluster 9 expressed high levels of ribosomal genes in conjunction with 

low transcript counts, and was therefore deemed to represent poor quality cells.  
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5.3.2 Tumour cluster composition analysis 

Once we had proposed a suggested nomenclature, we began to look at the 

effect of treatment. We initially looked at the distribution of clusters within each 

sample and then by condition (Figure 85). 

 
a)  

b)  

 
Figure 85. Distribution of tumour clusters per sample & condition 10 mice with 
3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour 
cells were extracted and subclustered. Numbers inside the bars = (cluster number) 
number of cells (% of subset occupied by that cluster). Samples 1-5 are control, 6-
10 are MRTX1257-treated.  
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As evidenced by the figure above, cluster 0 cells made up a higher proportion of 

treated tumours (31-51%, median 46%) than control tumours (21-29%, median 

23%). Conversely, clusters 1-4 made up a smaller proportion of treated tumours 

than control tumours although the caveat that this is somewhat inevitable, given 

the high proportion of cluster 0 cells in the treated samples, needs to be borne 

in mind. Also, strikingly, as shown in Table 33 below, cluster 5 cells (the so-

called ‘metabolic’ cluster) were virtually absent in control tumours but present in 

treated samples.  

 

 1 2 3 4 5 Control 
G0 284 (21.2) 374 (23.2) 781 (28.5) 331 (21.4) 68 (24.5) 1838 (24.5) 

Early cycle 359 (26.8) 428 (26.6) 635 (23.2) 354 (22.9) 62 (22.3) 1838 (24.5) 
Histone high 383 (28.6) 411 (25.5) 625 (22.8) 416 (26.9) 58 (20.9) 1893 (25.2) 

Late G2M 167 (12.5) 182 (11.3) 272 (9.9) 207 (13.4) 38 (13.7) 866 (11.5) 
Early G2M 64 (4.8) 105 (6.5) 207 (7.6) 97 (6.3) 18 (6.5) 491 (6.5) 
Metabolic 2 (0.1) 4 (0.2) 2 (0.1) 7 (0.5) 0 (0) 15 (0.2) 
ER-stress 29 (2.2) 57 (3.5) 61 (2.2) 38 (2.5) 7 (2.5) 192 (2.6) 
ISG high 12 (0.9) 14 (0.9) 33 (1.2) 51 (3.3) 7 (2.5) 117 (1.6) 
Unknown 24 (1.8) 19 (1.2) 102 (3.7) 33 (2.1) 7 (2.5) 185 (2.5) 
Rp high 17 (1.3) 16 (1) 22 (0.8) 13 (0.8) 13 (4.7) 81 (1.1) 

 
 6 7 8 9 10 MRTX1257 

G0 1063 (45.3) 614 (30.7) 1541 (51.4) 1411 (46.5) 1348 (45.5) 5977 (44.8) 
Early cycle 381 (16.2) 386 (19.3) 447 (14.9) 538 (17.7) 532 (18) 2284 (17.1) 

Histone high 379 (16.1) 462 (23.1) 433 (14.5) 454 (15) 439 (14.8) 2167 (16.2) 
Late G2M 201 (8.6) 234 (11.7) 206 (6.9) 239 (7.9) 263 (8.9) 1143 (8.6) 
Early G2M 92 (3.9) 80 (4) 83 (2.8) 122 (4) 115 (3.9) 492 (3.7) 
Metabolic 84 (3.6) 108 (5.4) 67 (2.2) 111 (3.7) 104 (3.5) 474 (3.6) 
ER-stress 59 (2.5) 34 (1.7) 54 (1.8) 36 (1.2) 49 (1.7) 232 (1.7) 
ISG high 44 (1.9) 19 (1) 95 (3.2) 57 (1.9) 78 (2.6) 293 (2.2) 
Unknown 22 (0.9) 33 (1.7) 61 (2) 39 (1.3) 26 (0.9) 181 (1.4) 
Rp high 22 (0.9) 29 (1.5) 9 (0.3) 26 (0.9) 8 (0.3) 94 (0.7) 

 
Table 33. Distribution of tumour clusters per sample & condition 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered. Values in cells represent 
number of cells per cluster in given condition (brackets indicate percentage). 
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As before, to formally analyse composition differences, we performed 

differential abundance testing. As shown (Table 34) the increases in cluster 0 

(the ‘G0’ cluster) and 5 (the ‘metabolic’) cluster were both significant. As 

previously, we performed a sensitivity analysis by removing sample 5 and re-

performing compositional analysis; results were consistent with the table below. 

 

Cluster name 
(no.) Log2 FC p-value Adj. p (FDR) 
Metabolic (5) 4.14 < 0.001 < 0.001 

G0 (0) 0.88 < 0.001 < 0.001 

Early G2M (4) -0.77 0.001 0.002 

Histone high (2) -0.60 0.001 0.003 

Early cycle (1) -0.50 0.001 0.003 

Late G2M (3) -0.46 0.015 0.026 

ER-stress (6) -0.53 0.022 0.031 

Unknown (8) -0.76 0.033 0.041 

Rp high (9) -0.69 0.213 0.237 

ISG high (7) 0.38 0.259 0.259 

 
Table 34. Differential abundance testing of tumour clusters 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered. Log2 FC represents the differential abundance of 
the given cluster after treatment with MRTX1257. p-value adjustment performed 
using the Benjamini Hochberg method.  
 

 

5.3.3 Tumour per-cluster differential expression (DE) 

Once we had carried out formal composition analysis, we performed per-cluster 

DE between treated and non-treated cells. Given that cluster 9 was poor quality 

cells and cluster 8 could not be assigned a suitable nomenclature and 

expressed H2-K1, we focussed our analysis on the remaining clusters. 
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A summary of the number of DE genes at various different log2 fold-changes is 

given in Table 35.  
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LFC G0 
Early 
cycle 

Histone 
high Late G2M Early G2M 

< - 2 285 73 47 20 23 

< -1.5 501 158 96 43 44 

< -1 925 319 164 91 102 

< -0.5 1996 740 341 237 202 

< 0  2511 999 408 266 216 

> 0 2807 1209 520 381 247 

> 0.5 2203 879 401 332 225 

> 1 870 282 150 114 80 

> 1.5 366 127 73 37 36 

> 2 192 62 45 23 20 

 
LFC Metabolic ER-stress ISG high Unknown Rp high 
< - 2 32 47 112 6 4 

< -1.5 57 121 216 15 5 

< -1 85 266 495 85 12 

< -0.5 85 559 1161 158 13 

< 0  85 564 1194 158 13 

> 0 161 606 1200 220 25 

> 0.5 161 598 1181 220 25 

> 1 161 241 512 151 23 

> 1.5 111 68 183 59 8 

> 2 74 23 81 27 1 

 
Table 35. Summary of differential expression per cluster 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered. Figures refer to numbers of genes exceeding the 
given log2 FC at an FDR of < 0.1.  
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As shown in the table, there were many DE genes across the clusters, including 

285 genes with a log2 FC of <-2 in cluster 0 (the largest cluster) with 192 genes 

displaying a log2 FC of > 2. The landscape of gene expression in this cluster is 

shown in Figure 86. Illustrated on the plot are several KRAS-regulated genes 

known to play a role in oncogenesis that are downregulated in cluster 0 by a 

log2 FC of < -1. These include Ccl2, Ptgs2, Vegfa, Plaur, Myc and the growth 

factors Areg & Ereg. Conversely, upregulated genes included Dcn, Col3a1, 

Sparc and Ramp2. As previously mentioned, Ramp2 is thought to have a pro-

apoptotic effect in lung cancer while Dcn, Col3a1 and Sparc were all part of a 

TGF-𝛽 signature found to be upregulated upon KRAS knockout in a pancreas 

cancer model (Ischenko et al., 2021). Thus, some of the effects we saw (in 

terms of upregulated genes) were consistent with previous single cell data 

exploring the effect of KRAS inhibition/knockdown. Despite this, the Tgfb1 gene 

itself was downregulated upon treatment (section 5.3.3.3) and furthermore gene 

sets relating to TGF-signalling were not enriched when we later performed 

GSEA (section 5.3.3.1).  
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Figure 86. Cluster 0-specific gene expression (MRTX1257 vs. Control) 10 mice 
with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). 
Tumour cells were extracted and subclustered. Expression values represent log2 
normalised values (pseudocount 0.5) using library sizes to calculate normalisaton 
factors. Red dots indicate genes with an absolute log2 FC of > 1.  
 
 

Manual comparison of the list of DE genes in cluster 0 with other DE lists of 

other clusters revealed a generally consistent pattern, with similar genes being 

up or down-regulated. One exception, was cluster 5 (‘metabolic’), where several 

genes appeared to be specifically regulated in this cluster. Genes upregulated 

after treatment included Kctd14, Crxos, G0s2, Cyp11a1, Hsd11b1 and Acsbg1 

of which all are involved in lipid biogenesis except Kctd14 (unknown function) 

and Crxos (possible involvement in murine embryonic stem cell self-renewal 

(Saito et al., 2009)). Four of these genes are visualised in Figure 87. As shown, 

they are mostly expressed in cluster 5 and increase markedly after treatment.  

  

Ccl2
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Figure 87. Visualisation of cluster 5-specific gene DE using UMAP10 mice with 
3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour 
cells were extracted and subclustered. Red arrow in top panel shows location of 
cluster 5 cells 
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After performing DE and manually interrogating the lists, we looked for genes 

that were specifically DE in one cluster and not others (method in section 

2.14.7). Similar to the results that we encountered for the myeloid compartment, 

the majority of genes that were DE in one cluster tended to be DE in the same 

direction, and of similar magnitude, in several other clusters. Nonetheless, there 

were some genes that exhibited a magnitude of DE in one cluster that was 

significantly different from other clusters. Here, we focus on describing such 

genes in cluster 0. 
 
In cluster 0, such ‘specific’ DE genes tended to adopt one of two patterns when 

visualised using UMAP. One group of genes was expressed equally or more 

strongly in other clusters, but tended to be DE only (or much more strongly) in 

cluster 0. For example, Birc5, Mcm2, Mcm3, Dnph1 (a MYC-target gene), Gins2 

and Cdt1 were all genes expressed at similar or higher levels in other clusters 

(mostly in cycling clusters) but exhibited DE at significantly stronger level in 

cluster 0 (Table 36). This group of genes all have roles in the cell cycle, so it is 

notable that they were expressed in cluster 0 (‘G0’ cluster) predominantly in 

control cells. Of note, some of these genes may have additional functions. For 

example, Birc5 is thought to play a role in apoptosis inhibition (Nie et al., 2015). 

It’s downregulation after treatment may increase the susceptibility of treated 

cells to apoptosis. Expression of Birc5 before and after treatment is visualised 

on a UMAP plot in Figure 88a. Like the other genes mentioned above, it is 

evident on this plot how treatment appears to modulate expression mainly in 

cluster 0, with other clusters affected very little. 
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Gene LFC (clust 0) LFC (other) 
Mean expr 
(clust 0) 

Mean expr 
(other) FDR 

Birc5 -2.81 -0.51 0.20 2.65 < 0.01 
Cdca7 -1.73 -0.30 0.20 0.50 < 0.01 
Cdt1 -1.86 0.05 0.13 0.44 < 0.01 
Dnph1 -2.04 -0.16 0.10 0.48 < 0.01 
Gins2 -1.56 0.28 0.12 0.50 < 0.01 
Mcm2 -2.24 0.06 0.13 0.49 < 0.01 
Mcm3 -2.10 0.07 0.42 1.94 < 0.01 
Spc24 -2.43 -0.31 0.10 0.92 0.01 

 
 
Table 36. DE of selected genes in cluster 0 vs other clusters 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered. LFC (other) represents the mean log2 FC of that 
gene (MRTX1257 vs control) in all other clusters combined. Mean expr represents 
the normalised mean expression per cell. FDR = false discovery rate (Benjamini-
Hochberg procedure) – representing the significance test of the null hypothesis that 
the cluster 0 LFC lies between zero and the average LFC in all other clusters (e.g. 
for Birc5, that the LFC is in the interval -0.51 – 0).  
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Figure 88. UMAP: DE of selected genes with cluster 0-specific effects  
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered.  Birc5, b) Hilpda, c) Adm, d) 
Ypel3. Red arrows either indicate cluster 0 (a & d) or highest expressing area of 
UMAP space (b & c) 
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The other group of genes whose DE was significantly different in cluster 0 

compared to other clusters, were those that were expressed at a higher (or 

similar) levels in cluster 0 than in other clusters. Within this group of genes, 

there was one module of genes that were most strongly expressed in a similar 

area within UMAP space, and which were highly correlated with one another. 

This group of genes included Hilpda (Hypoxia-inducible lipid droplet-

associated), Scl2a1 (codes for GLUT1 transporter) and Ndrg1 (N-myc 

downstream-regulated gene 1). All of these genes were significantly more 

strongly downregulated (in treted cells) in cluster 0 than in other clusters. 

Visualisation on a UMAP plot is shown for Hilpda and Scl2a1 in Figure 88 b&c. 

This same group of genes was also correlated with other genes known to be 

modulated by hypoxia including Vegfa and Adm (adrenomedullin) amongst 

several others. While these latter two genes were more strongly downregulated 

upon treatment in cluster 0 than other clusters (e.g. for Vegfa, log2 FC = -1.76 in 

cluster 0 vs. -1.17 in all other clusters combined), this difference in DE did not 

reach statistical significance (FDR = 0.18 for Vegfa). Of note, this area of the 

UMAP contained cells from all samples (plot not shown) demonstrating that this 

group of cells was not an outlier group from a single sample, but rather 

reproducible over replicates.  

 

Conversely there were some genes expressed most strongly in cluster 0 which 

exhibited an increase (rather than decrease) in expression after treatment that 

was significantly stronger in cluster 0 than other clusters. Some of these genes 

are shown in Table 37. Of note, both Mgp (Sterzyńska et al., 2018) and Bmp7 

(Cortez et al., 2020) have been associated with pro-tumourigenic properties. 

Conversely, other genes  that were most strongly upregulated after treatment in 

cluster 0 compared to other clusters include Ypel3 (a p53-regulated gene that 

induces cellular senescence, (Kelley et al., 2010)),  Cdkn1b (P27), Gstm2 

(Glutathione S-transferase Mu 2), Foxn3 (inhibition of the WNT pathway (Dai et 

al., 2017)), and Deptor (inhibition of the MTOR pathway (Peterson et al., 2009)). 

These genes are individually associated with antitumour function and the 

dramatic increase in Ypel3 is shown in Figure 88d.  Also, Cdkn1b, Gstm2 and 
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Dcn are members of the MsigDB Hallmark apoptosis gene set, possibly 

suggesting an increased propensity for apoptosis in these cells after treatment. 

Finally, we also noticed that many immediate early genes including Fos, Fosb, 

Jun, Zfp36, Dusp1 were also expressed most highly in cluster 0 relative to other 

clusters, and their expression went up with treatment most strongly  in cluster 0 

compared to other clusters (e.g. for Fos, log2 FC = 1.01 in cluster 0 vs. 0.60 in 

all other clusters combined). However, this difference in DE was not statistically 

significant (e.g. FDR = 0.30 for Fos).  

 

Gene LFC (clust 0) LFC (other) 
Mean expr 
(clust 0) 

Mean expr 
(other) FDR 

Mgp 3.78 1.25 0.23 0.18 0.08 
Bmp7 3.83 1.40 0.23 0.08 <0.01 
Dhrs3 3.98 1.97 0.51 0.08 0.01 
Foxn3 3.65 2.04 0.33 0.09 0.05 
Idh1 2.40 0.93 0.99 0.55 <0.01 
Rgs10 2.15 0.76 0.67 0.30 0.05 
Ghr 1.48 0.15 0.36 0.14 0.03 
Atp1b3 1.89 0.67 4.66 1.96 0.01 
Apold1 1.64 0.46 0.53 0.24 0.03 
Cmbl 2.91 1.76 0.57 0.17 <0.01 

 
Table 37. Selected cluster 0 genes upregulated after treatment 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered. LFC (other) represents the mean log2 FC of that 
gene (MRTX1257 vs control) in all other clusters combined. Mean expr represents 
the normalised mean expression per cell. FDR = false discovery rate (Benjamini-
Hochberg procedure) – representing the significance test of the null hypothesis that 
the cluster 0 LFC lies between zero and the average LFC in all other clusters. 
 

 

While cluster 0 displayed some specific patterns of DE as described above, 

such specificity was not immediately obvious in other clusters except cluster 5, 

which has already been discussed above. We therefore next sought to explore 

the results of our DE analysis using established gene sets and other relevant 

data from the literature.  
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5.3.3.1 Gene set enrichment analysis 

First, for each cluster, we ranked genes according to their log2 fold-change 

(MRTX1257 vs control) and then performed GSEA, initially using the hallmark 

gene sets (Liberzon et al., 2015). Then, for each cluster, we ranked the 

normalised enrichment score (NES) of each gene set from lowest (most 

downregulated) to highest. The results of such ranking are shown for clusters 0-

7 in heatmap form, in Figure 89. 

 

 
Figure 89. Heatmap of MSigDB hallmark ranks using GSEA10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered before GSEA analysis. For each cluster, DE 
analysis (MRTX1257 vs control) was performed, and results used for GSEA on the 
MSigDB hallmark collection. Resulting normalised enrichment scores were ranked 
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per-cluster and displayed as above. Gene sets ordered by mean rank across 
clusters 
 

As shown, several gene sets were consistently downregulated in all clusters, 

including those for MTORC1 signalling and TNF𝛼 signalling (via NFkB). 

Intriguingly, the E2F-target gene set had the lowest NES in 5 of the 8 clusters 

tested (0,1,6-8) but paradoxically had the highest NES in clusters 2 and 4 

(Histone-high and Early G2M). In those clusters, where the E2F-target NES was 

negative, genes downregulated after MRTX1257 included Mki67, Ccnb2 and 

Top2a amongst others. In the clusters where the E2F-target set had the highest 

NES, upregulated gens included Ung (uracil DNA glyclosylase) and Stmn1 

(stathmin – important for microtubule dynamics). Both of these were 

upregulated in MRTX1257 treated cells in clusters 2 (Histone-high) and 4 (Early 

G2M) but downregulated in MRTX1257 treated cells in clusters 0 (G0), 5 

(Metabolic), 6 (ER-stress) and 7 (ISG). Of note, Myc-related and G2M gene 

sets showed the same pattern of rank (as the E2F-target set) across the 

clusters – with low NES scores in most clusters except clusters 2 and 4.  

 

Genes in the leading edge (i.e. those most responsible for) the negative NES 

scores in the inflammatory and TNF𝛼 gene sets included Areg, Ereg, Plaur, 

Dusp5 Cxcl2 and Myc amongst others. Reassuringly, the 

‘KRAS_SIGNALLING_UP’ gene set (representing genes that increase when 

KRAS is switched on) had negative NES scores across the cluster while the 

opposite gene set (those KRAS genes which decrease when KRAS is switched 

on) had positive NES scores across all clusters.  

 

The other obvious outliers in the heatmap were the cluster 5 (‘Metabolic’) ranks 

for the EMT and angiogenesis sets. Most clusters had positive NES scores for 

these sets while cluster 5 had negative NES scores (-0.57 for the EMT set, FDR 

= 0.004 and -0.69 for the angiogenesis set, FDR = 0.11). For the EMT set, in 

clusters where the NES was positive, leading-edge genes included Col3a1, 

Col1a1, Dcn, Mgp, Sparc and Tgfbi. In cluster 5, the upregulation of many of 

these genes was much weaker (e.g. log2 FC for Col3a1 of just 0.5 compared to 



Chapter 5. Results 

 

237 

 

a mean of 3.1 in all other clusters and a LFC of 0.23 for Sparc compared to a 

mean of 1.47 across other clusters). For this reason, underexpressed genes 

such as Areg, Plaur, Vegfa and Timp1 (which were in fact underexpressed 

across all clusters) and Spp1 (uniquely downregulated in cluster 5) resulted in a 

negative NES for the EMT gene set in cluster 5. The difference in the hallmark 

EMT gene set enrichment plots for clusters 0 and 5 can be seen in Figure 90. 
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Figure 90. Hallmark EMT enrichment plots for tumour clusters 0 and 5 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered before GSEA analysis.  
 

While the gene sets with the most negative NES ranks included those relating 

to MTORC1, NFkB and MYC signalling, the gene sets with the most positive 

NES scores across clusters included those pertaining to bile and fatty acid 

metabolism, genes encoding peroxisome components, genes encoding 
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components of the apical junction complex and those involved in the interferon 

alpha response.  

 

Some of the common leading-edge genes for these gene sets are shown in 

Table 38.  

 

Gene set Leading edge genes 
Bile acid metabolism Idh1, Fdxr, Abcd1, Abca2, Abca3, Scp2 etc. 

Fatty acid metabolism Pcdb1, Idh1, Acaa2, Acadl, Cpt1a etc.  

Apical junction Vcam1, Tgfbi, Skpa2, Actn2, Jup etc.  

Adipogenesis Ddt, Cmbl, Atp1b3, Idh1, Apoe, Acaa2 etc.  

Peroxisome Dhrs3, Ech1, Lonp2, Acaa1a, Abcd1 etc. 

Myogenesis Col3a1, Fxyd1, Itgb5, Sparc, Actn2 etc. 

Interferon alpha Irf7, Herc6, Samd9l, Casp1, Ifi27 etc. 

 
Table 38. Leading edge genes for sets with the most positive NES scores 10 mice 
with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). 
Tumour cells were extracted and subclustered before GSEA analysis per cluster. 
The leading-edge genes that appeared across the most clusters are listed 
(maximum of 5 per set are listed in the table above). All genes listed above were in 
the leading edge for at least 9 (out of the 10) clusters.  
 

 

Of note, there was some redundancy in the leading-edge genes for some of the 

gene sets. For example, as shown in the table, Idh1, Actn2 and Acaa (acetyl-

CoA acyltransferase) genes appear across multiple sets. Leading edge genes 

for the interferon alpha set were, however, distinct and included (not shown in 

the table above) Cd47, Cxcl10 and H2-D1, all of which could have implications 

for the antitumour immune response.  

 

Next, we focussed on some specific gene sets pertinent to our experimental set 

up. Firstly, to add credence to our results, we looked at gene sets pertaining to 

KRAS signalling. There are two such sets in the Hallmark collection and several 

more in the C2 and C6 collections including the aforementioned Sweet-Cordero 
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and Singh-Settleman signatures. Full details of the MSigDB gene sets are 

available online (http://www.gsea-msigdb.org/gsea/msigdb/). We extracted all 

gene sets pertaining to RAS signalling, and removed any which solely focussed 

on a non-lung tumour type (e.g. prostate and kidney) before also adding the 

RAS84 signature (East et al., 2021). For the remainder, per-cluster, we 

performed GSEA and have displayed the resulting NES scores in heatmap form 

(Figure 91). 

 

 

 
Figure 91. Heatmap of GSEA NES scores per tumour cluster for RAS-related sets 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered before GSEA was performed 
per-cluster using the log2 fold-changes between MRTX1257 and control treated 
cells. NES scores displayed as a heatmap. For reference, the lowest NES across 
the data was – 1.91 and the highest was 1.76. RAS84 signature indicated with red 
arrow. Gene sets are arranged by mean NES score across the clusters. 
 

Although full details are available online, many of the gene sets represent 

differentially expressed genes following induction of oncogenic KRAS. The 

gene-set suffix ‘DN’ refers to sets containing genes whose expression 

decreased after such induction and vice-versa for the suffix ‘UP’. Therefore, our 

data is as expected – sets containing genes that increase with KRAS induction 
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have mostly negative NES scores and vice-versa. Of note, the 

‘SWEET_KRAS_TARGETS_DN’ set, which had the most negative mean NES 

score across clusters, represents genes that were upregulated in control vs 

KRAS knockdown cells, and therefore we would expect these genes to 

decrease (as seen above) with MRTX1257 treatment.  

 

GSEA using the RAS84 signature showed consistently negative NES scores 

across the clusters. An example enrichment plot for cluster 1 (‘Early cycle’) is 

shown below (Figure 92).  

 

 
 
Figure 92. Enrichment plot for RAS84 genes in cluster 1 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered before GSEA was performed 
per cluster 
 

Next, we looked at gene sets related to apoptosis. There are several such gene 

sets across the C2 and C6 spectrum. While NES scores across clusters were 

generally quite homogenous (for any given gene set) we could not identify a 

clear pattern where gene sets all showing a similar effect (e.g. gene that go up 

with apoptosis) had similar NES scores. Of note, the gene sets relating to 

apoptosis often measured the effects of apoptosis induced by diverse stimuli 

e.g. serum starvation, TGF-𝛽, CD40, TRAIL etc. and also across different cell 
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lines. For this reason, it may not be surprising that we did not see consistent 

effects in our data.  

 

Nonetheless, the two gene sets with the highest mean NES scores (i.e. 

enriched for upregulated genes) across the data both represented genes that 

increase with apoptosis. The ‘ALCALA_APOPTOSIS’ set represents genes able 

to induce cell death in an expression cDNA library screen (Alcalá et al., 2008) 

while the ‘GRAESMANN_APOPTOSIS_BY_SERUM_DERPRIVATION_UP’ 

represents genes upregulated in a cancer line (ME-A, murine breast) 

undergoing apoptosis upon serum starvation. Leading edge genes from the 

Alcalá set included Casp1, Casp4, Cd48  and Temem106c. Leading edge 

genes from the Graessman GSEA analysis incuded Irf7, Ogn and Gstm2 

amongst others. 

 

Furthermore, analysis of gene expression of the Kyoto Encyclopedia of Genes 

and Genomes (KEGG, (Kanehisa et al., 2021)) apoptosis gene set revealed 

that of the 86 genes in the pathway, the 5 most upregulated genes after 

MRTX1257 treatment (mean log2 FC across the clusters) were Bad, Birc2, 

Tradd, Bcl2 and Ripk1 in that order. While Bad, Tradd and Ripk1 are pro-

apoptotic, Birc2 and Bcl2 are pro-survival. The impact of treatment on 

expression of Bad and Bcl2 is shown in Figure 93. It is evident that although the 

expression of both increases, Bad is expressed at a higher level pre and post-

treatment. In any case, the fact that both pro-and anti-apoptotic gene 

expression increased with treatment may make it difficult to infer clear effects 

with gene expression studies alone.  
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Figure 93. Effect of treatment on Bad and Bcl2 expression 
10 mice with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 
mice). Tumour cells were extracted and subclustered. Figure shows expression of 
selected apoptosis genes in tumour compartment between untreated (left) and 
treated (right) cells.  
 

5.3.3.2 Comparison to published data 

Next, we compared our data to some published data in the hope that parallels 

between the two could help suggest robustness and external validity of our 

results.  

 

Xue and colleagues (Xue et al., 2020) performed single cell profiling of three 

KRAS(G12C) human lung cancer lines grown in vitro treated with a 

KRAS(G12C) inhibitor for varying durations. Separately, they used bulk RNA 

sequencing to devise two signatures. One represented genes induced by 

KRAS(G12C) (derived from those genes downregulated after KRAS(G12C) 

inhibition) and the other consisted of genes suppressed by KRAS(G12C) 

(derived from those genes upregulated after KRAS(G12C) inhibition).  
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They then applied the signatures to their single cell data. They found that, in 

vitro, single cells treated with KRAS G12C were mostly sequestered in a low 

output state (characterised by high scores on the ‘KRAS suppressed’ signature 

and vice-versa for the ‘KRAS induced’ score. However, some treated cells had 

a high output (high ‘KRAS induced’ score) which they described as 

heterogeneity of response. We therefore used their signature genes to generate 

signature scores for each of our treated and untreated cells. As shown in the 

density plots below (Figure 94), treated cells displayed a bimodal distribution of 

‘KRAS induced’ signature scores, mirroring the data seen in Xue et al. 

Concomitantly, untreated cells, although also bimodal, were clearly shifted 

towards the higher end of the induced spectrum indicating that the majority of 

cells were in the induced rather than suppressed state. A similar conclusion 

could be reached when we projected the scores (for both the induced and 

suppressed signatures) onto UMAP plots (Figure 95).  

 

 

 
Figure 94. Density plot: 'KRAS induced' module scores 10 mice with 3LL tumours 
were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells were 
extracted and subclustered. Each tumour cell was assigned a module score based 
on the ‘KRAS induced’ gene set (Xue et al., 2020) 
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Figure 95. Visualisation of KRAS output module scores in UMAP space 10 mice 
with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). 
Tumour cells were extracted and subclustered. Each cell was assigned a module 
scores for the ‘KRAS induced’ and then the ‘KRAS suppressed’ gene sets from 
Xue et al. (Xue et al., 2020).These scores were overlaid on the UMAP 
representation 
 

As part of their investigation into the heterogeneity of response to KRAS(G12C) 

inhibition, they performed in vitro experiments where they used a non-cyclin-

dependent-kinase binding p27 mutant as a marker of quiescence. This was 

based on observations that both p21 and p27 were induced (at the protein 

level) upon G12C inhibition in their models. In our single cells, we found that 

while Cdkn1b (gene for p27) was upregulated in treated cells, Cdkn1a (the 

gene for p21) was decreased in treated cells (Figure 96). Of note Xue 

measured p21 at the protein level, used different (human) KRAS(G12C) 

models, used ARS1620 for inhibition and operated in vitro – all of which could 

explain the differences seen here and indeed for any comparisons made.   
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Figure 96. Pseudo-bulk expression of Cdkn1a/b across clusters 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered. For each tumour cluster, a pseudo-bulk dataset 
was created for each sample (control samples in blue). Log2 normalised expression 
(normalisation using library size). was plotted for each sample, within each cluster. 
Numbers in grey bars indicate the cluster number.  
 

Xue et al. also generated trajectories from their single cell data. They suggested 

that many treated cells fall along an inhibited trajectory while others along an 

‘adapting’ trajectory that may progress toward treatment insensitivity. They 

compared different clusters along these trajectories and identified DE genes 

between them. Some of these genes, including Hbegf (heparin binding 

epidermal growth factor), Aurka (Aurora kinase a) and Kras were also identified 

in a separate sgRNA screen they had performed to look for modifiers of 

treatment response. They showed that expression of these genes could be 

localised to different areas of their low-dimensional representation of single 

cells. We also looked at expression of these genes in our data to see if we 

could identify isolated clusters of cells which may draw parallel with their 

observations.  

 

Figure 97 shows that Hbegf is expressed in all clusters although within cluster 0 

specifically, its expression is highest in a locality of UMAP space. This could be 

consistent with the observations of Xue et al, where Hbegf expression was 

highest in cells that were ‘adapting’ to treatment although we cannot say this for 

certain without also running trajectory inference. In addition to being localised to 

this area of low-dimensional space, we also noted that Hbegf expression was 
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moderately increased in treated vs. control cells in non-cycling clusters (clusters 

0,5,6,7 e.g. log2 fold-change = 0.43 in cluster 0). In correlation analysis, Hbegf 

gene was most highly correlated with several immediate early genes (IEGs) 

including Fos, Fosb, Klf6 and Dusp1. These genes also showed highest 

expression in a similar area of UMAP space ( 

Figure 98) and were upregulated after MRTX1257 although unlike Hbegf they 

were upregulated in all clusters and not just non-cycling ones. Of note, Dusp1, 

Fos, Klf6 and Zfp36 (as well as Hbegf) are all part of the RAS84 signature. As 

shown above, the signature tended to show a negative per-cluster NES when 

using GSEA on the DE genes between MRTX1257-treated and control cells 

(suggesting most genes are downregulated by treatment). However our data 

show that, in this model, this module of genes (containing IEGs) increases with 

KRAS(G12C) inhibition suggesting they may be co-regulated . Finally, when 

exploring genes correlated with Hbegf, as well as the IEGs listed we noted that 

Wee1 also had one of the highest correlations. Its expression also increased 

with treatment. For example, the log2 fold-change of Wee1 between MRTX1257 

and control treated cells in cluster 0 was 0.79 (p < 0.001). Interestingly, an 

inhibitor of Wee1 is being used to treat KRAS-mutated colorectal carcinoma 

(Seligmann et al., 2021). 

 

Figure 97 also shows localised expression of Aurka. In Xue et al this gene was 

most highly expressed at the end of their adapting trajectory, which they 

showed consisted mostly of cycling cells. In our dataset, expression was 

highest in clusters 4 (early G2M) and 3 (late G2M) which is not surprising given 

the role of the protein product of this gene in the cell cycle (Willems et al., 

2018). It is also not surprising that, as an important component of the cell cycle, 

it was identified as being a modifier of the therapeutic response to ARS1620 in 

the sgRNA screen by Xue.  

 

Finally, Xue et al had identified Kras as being upregulated in the most quiescent 

cells in their data. We did not detect any gradient of Kras expression in our 

data. When looking at DE between each cluster and all other clusters, Kras 
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expression was not increased in any one cluster. However, cluster 5 

(‘metabolic’ cluster) had a lower Kras expression compared to all other clusters 

(log2 fold-change = -0.43, p < 0.001). In addition, Kras expression was not 

significantly different in MRTX1257 treated cells vs control cells (in any cluster) 

and the same was true for the other ras isoforms (data not shown).  

 

 
 
Figure 97. UMAP visualisation of key genes from Xue et al. 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered. Red arrow in top panel indicates the area of 
tumour cluster 0 with highest expression 
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Figure 98. UMAP visualisation of selected IEGs 10 mice with 3LL tumours were 
treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells were extracted 
and subclustered. Red arrows indicate area of tumour cluster 0 with highest 
expression 
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5.3.3.3  Expression of immune-related genes 

The analysis above focussed mainly on unbiased approaches by generating 

lists of DE genes or using GSEA. In addition, below, we chose to specifically 

look at genes known to be involved in immune responses.  

 

First we looked at a set of genes that was generated in our lab by Edurne 

Mugarza who performed RNA sequencing on 3 cell lines grown in vitro: H358 

and H23 lines (KRAS(G12C)-mutated human lung cancer) treated with control 

or ARS-1620 and AT2 cells (human type II pneumocyte) that were engineered 

in our lab to express a  tamoxifen-inducible KRAS(G12V) allele (Molina-Arcas 

et al., 2013). DE analysis was performed to discern which genes were 

significantly downregulated (p <0.05) when KRAS was inhibited (H358/H23) or 

not switched on (AT2). Of the 485 genes in common between the 3 lines, 84 

were members of one of more immune gene sets from GSEA.  

 

We looked at the per-cluster log2 fold-change of these 84 genes (Figure 99). As 

shown in the heatmap, the majority of genes were downregulated across 

tumour clusters indicating consistency with the in vitro data across the three 

other lines and supporting the hypothesis that some genes are robustly 

suppressed when inhibiting KRAS across models. Suppressed genes included 

Lif, Plaur, Vegfa, Pvr and Cxcl2, all with known immunosuppressive function.  
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Figure 99. Log fold-change of KRAS-regulated immune genes per cluster 10 mice 
with 3LL tumours were treated with control (5 mice) or MRTX1257 (5 mice). 
Tumour cells were extracted and subclustered. Pseudo-bulk datasets were created 
per-cluster and log2 fold-change calculated between treated and non-treated cells. 
White spaces indicate inability to calculate log2 fold-change due to low counts.  
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After demonstrating that many of the same genes are downregulated by KRAS 

across models, we next looked at specific groups of genes involved in defined 

immune functions (Figure 100, Figure 101). The headings used to group these 

genes have been loosely applied. 

 

As shown, many genes related to interferon signalling were upregulated upon 

KRAS(G12C) inhibition. The effect was generally consistent across clusters. 

While the changes did not often reach statistical significance (FDR < 0.1) the 

consistent change across clusters (and the agreement with other data from the 

lab (Mugarza et al., 2021)) gives us confidence in the DE is a reflection of true 

biological effect. Exceptions to the rule included Tap1 (which was generally 

expressed at low levels in any case) and Stat3, both of which tended to 

decrease while the other genes related to interferon signalling trended toward 

increased expression upon KRAS(G12C) inhibition. In addition Myc, which has 

recently been shown by our lab to contribute to the ability of oncogenic KRAS to 

suppress intrinsic interferon-related signalling (Mugarza et al., 2021) was 

robustly and significantly suppressed across clusters (Figure 101, bottom panel) 

as was Socs1 (suppressor of cytokine signalling 1), a negative mediator of the 

interferon pathway.  

 

In terms of inflammatory genes, both Il1b and Il6 were suppressed as was 

Cxcl2, albeit to a lesser degree. Immunosuppressive mediators were generally 

downregulated too, with Vegfa in particular showing robust and significant 

suppression. 

 

Finally, given the copious myeloid infiltration in these tumours, we looked at two 

targets pertinent to myeloid biology in tumours. Secreted gelsolin has recently 

been shown to be important in tumours’ ability to subvert dendritic cell function 

(Giampazolias et al., 2021) while tumour-expressed CD47 is known to 

contribute to tumour-avoidance of macrophage phagocytosis (Tseng et al., 

2013). We therefore looked at expression of both of these genes. To our 

surprise, treatment induced an increase in both genes. Cd47, in particular, was 
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significantly upregulated in 7 of the 8 clusters where DE testing was performed. 

Given the re-polarisation of the macrophage compartment in MRTX1257-

treated samples that we have seen in our dataset, our observation raises the 

question whether anti-CD47 therapy could help mediate more effective anti-

tumour response when given with KRAS(G12C) inhibitor therapy. Clinical trials 

of CD47-blocking therapy are already underway (Lakhani et al., 2020; Garcia-

Manero et al., 2021). 
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Figure 100. Per-cluster log fold-change of immune mediators (1)10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered. Pseudo-bulk datasets were created for each 
tumour cluster and log-fold changes between treated and control cells calculated. 
Red bars indicate significant DE (FDR < 0.1) using a quasi-likelihood negative 
binomial model. Missing bars indicate not enough data to compute DE.  
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Figure 101. Per-cluster log fold-change of immune mediators (2) 10 mice with 3LL 
tumours were treated with control (5 mice) or MRTX1257 (5 mice). Tumour cells 
were extracted and subclustered. Pseudo-bulk datasets were created for each 
tumour cluster and log-fold changes between treated and control cells calculated. 
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Red bars indicate significant DE (FDR < 0.1) using a quasi-likelihood negative 
binomial model. Missing bars indicate not enough data to compute DE.  
 

5.4 Concluding remarks 

Treatment of 3LL-ΔNRAS tumours with MRTX1257 resulted in compositional 

and gene expression changes within the macrophage compartment and, to a 

lesser extent, gene expression changes within the DC compartment. In general, 

putative protumourigenic genes such as Arg1, Vegfa and Ptgs2 were 

downregulated while anti-tumourigenic ones such as class II MHC genes were 

upregulated. Although we identified several different clusters with unique gene 

expression patterns, the effect of treatment on gene expression within each 

cluster was fairly congruent.  

 

We also identified distinct clusters within the tumour compartment, which 

showed parallels with cell cycle state prediction. Differential expression in the 

tumour compartment was more marked than in the myeloid compartment, an 

expected effect given the mutant specific nature of the drugs. MRTX1257 

treatment resulted in most treated cells being in the G0/G1 cluster, however a 

significant proportion of tumour cells remained in the cell cycle. This is 

consistent with previously published data in this field although our data was in 

vivo in contrast to the in vitro data previously published (Xue et al., 2020). 

Finally we saw that many immunosuppressive transcripts are downregulated in 

tumour cells after MRTX1257 treatment, with the notable exception of Cd47 and 

Gsn, raising the possibility of combination treatments targeting these proteins.  
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Chapter 6. Discussion 

6.1 Tristetraprolin, cancer and KRAS 

Our interest in TTP stemmed from work done by Matthew Coelho in the 

Downward lab, who showed that it could destabilise PD-L1 transcripts and that 

its function was inhibited by signalling downstream of oncogenic RAS. 

Furthermore, several transcripts that have been suggested to be regulated by 

TTP are also established RAS-targets (Brooks and Blackshear, 2013b; Cullis, 

Das and Bar-Sagi, 2018). 

 

TTP has been suggested to be a tumour suppressor (TSG). This assertion is 

based on two classes of observation (Sanduja, 2011; Guo et al., 2017). Firstly, 

TTP mRNA expression is suppressed, relative to normal tissue, across many 

human malignancies. Secondly, TTP has been shown to reduce the mRNA 

stability of oncogenic transcripts across the spectrum of cancer hallmarks. 

Despite these observations, studies investigating TTP in the context of 

malignancy have mainly focussed on just one, or a few, targets in any given 

model studied. We sought to first investigate the expression of TTP at the 

mRNA level across several human malignancies, and secondly to investigate 

the transcriptome-wide effect of TTP in an immunogenic KRAS-mutant tumour 

model.  

 

Using publicly available data from TCGA, we confirmed that TTP is indeed 

reliably suppressed across several human malignancies. We extended this 

observation to show that, across the genome, the magnitude by which TTP is 

suppressed is amongst the highest of all genes, in several tumour types. As 

above, these types of observation have contributed to suggestions that TTP is a 

tumour suppressor. However, in an exploratory observation of bona fide tumour 

suppressors including tumour protein 53 (p53) and breast cancer type 1 

susceptibility protein (BRCA1), across the same tumour types, we noted a 

paradoxical increase in their expression in several malignancies compared to 

normal tissue (data not shown). This is consistent with studies suggesting that 
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both increased p53 or BRCA1 expression actually correlate with worse 

prognosis and/or more aggressive disease (Huang et al., 2014; Chang et al., 

2022). Therefore, TSG expression is not necessarily a reliable guide to function. 

We also note that TTP is capable of destabilising its own transcripts (Tchen et 

al., 2004) therefore confounding attempts to correlate its expression with its 

functional capacity. Furthermore, review of repositories containing data about 

mutation frequencies within cancers, for example the catalogue of somatic 

mutations in cancer (COSMIC, cancer.sanger.ac.uk, (Tate et al., 2019)) show 

low mutation rates without any hotspots at the ZFP36 locus. It has been shown 

that TTP is completely inactivated by mutations of its zinc finger domain (Lai et 

al., 2017) however these are not seen in human cancers. While none of this 

refutes the possibility that TTP is a tumour suppressor, it cautions against using 

its reduced expression as supportive evidence.  

 

We also noted that ZFP36 expression tended to correlate with its targets, rather 

than anticorrelate as one might expect. We discovered that across 

malignancies, there were several genes with very high correlations with ZFP36 

and one another. Immediate early genes (IEGs) formed the bulk of this module, 

an observation not necessarily unexpected given that the discovery of ZFP36 

followed investigation of a gene induced by serum and phorbol esters – both 

stimuli known to induce IEGs (Bahrami and Drabløs, 2016). These same genes 

are repressed in malignant tissue compared to normal, in a similar manner to 

ZFP36, suggesting that the reduced ZFP36 expression we see across cancers 

may be part of a repressed module. Studies in the literature had mostly looked 

at ZFP36 expression in cancer in isolation without any comment on 

concomitantly suppressed genes. We believe that in the majority of tumours 

where ZFP36 is suppressed relative to normal tissue, this occurs as part of a 

broader gene expression program. We note that EGF has been shown to 

promote TTP expression via ELK-1 and EGR-1 (Florkowska et al., 2012) and 

that ELK-1 can promote IEG expression (Sgambato et al., 1998) suggesting 

that this could be part of the mechanism co-ordinating their expression. 

Furthermore, as mentioned in the introduction, RAS can activate Elk-1, 



Chapter 6. Discussion 

 

259 

 

therefore linking RAS to this mechanism. Further work would require co-

expression network analysis, for example using weighted gene co-expression 

network analysis (Zhang and Horvath, 2005) to more formally identify the 

module of genes co-expressed with ZFP36. In addition, transcription factor 

binding site analysis may suggest shared motifs and possible transcriptional 

regulators.  

 

One apparent paradox is that while this module of genes appears to be 

repressed across malignancies, within LUAD samples expression was lowest in 

KRAS wild-type tumours (and samples with low RAS84 signature scores) and 

highest in RAS-mutant cancers. This is compounded by the fact that 

traditionally, the protein products of IEGs promote proliferation (Healy, Khan 

and Davie, 2013) and indeed work from another lab at the Francis Crick 

Institute showed that dysregulated FOS expression (via a mutant transcript 

lacking AU-rich and other 3’ UTR regulatory sequences) is a ubiquitous 

hallmark of osteoblastoma (Fittall et al., 2018). Nonetheless, it is also known 

that IEG expression is tightly regulated, temporally such that although they may 

rise acutely after mitogenic stimuli, this rise is short-lived. Furthermore there is 

some evidence that deregulated expression of FOS can lead to chromosomal 

instability and replicative failure suggesting that repression of IEG expression in 

cancers may be a protective mechanism (Guo et al., 2021).  

 

 

Following exploration of ZFP36 expression across human malignancies we 

looked at the effects of overexpressing Zfp36 in CT26 cells, an immunogenic 

murine colorectal carcinoma model. Initially we assayed individual transcripts 

using qPCR and showed that Ptgs2 was robustly suppressed by ZFP36 

overexpression, but Myc (another literature-defined TTP target (Marderosian et 

al., 2006)) was not, underscoring the model-dependent nature of TTP 

specificity. After demonstrating that ZFP36 overexpression affected target 

transcript stability, we performed RNA-sequencing to interrogate the 

transcripome-wide effect of TTP overexpression. While Ptgs2 was robustly 
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suppressed, to our surprise amphiregulin (gene Areg) was also robustly 

suppressed by TTP overexpression using both Tet-On TTP(wt) and Tet-On TTP 

(aamt) lines. At the time of conducting the experiments, Areg was not a known 

TTP target although it has since been described by a single group looking at 

TTP expression in keratinocytes (Assabban et al., 2021). 

 

Using gene set enrichment analysis, we showed that several of the most 

downregulated gene sets were those important in oncogenic processes, 

including MYC targets, TNF𝛼 signalling-related genes, inflammatory response 

genes, those involved in MTORC1 or PI3K/ATK/mTOR signalling and cell cycle-

related gene sets including E2F targets and G2M checkpoint genes. All of these 

gene sets had a negative NES and were significantly enriched for 

downregulated transcripts in the CT26 Tet-On TTP(aamt) line and were 

downregulated (but not all reached significance) in the CT26 Tet-On TTP(wt) 

line. Conversely, the gene set pertaining to EMT was significantly enriched for 

downregulated transcripts in the CT26 Tet-On TTP(wt) line and was enriched 

for downregulated transcripts (but not significantly) in the CT26 Tet-On 

TTP(aamt) cell line.  

 

The breadth of gene sets related to oncogenic processes that were enriched for 

downregulated transcripts upon TTP overexpression would add credence to the 

suggestion that TTP functions as a tumour suppressor. In addition to the sets 

mentioned above, the unfolded protein response (UPR) set was significantly 

enriched for downregulated transcripts in both cell lines. The UPR can help 

tumour cells adapt to nutrient and oxygen deprivation, and thus promote cell 

survival (Madden et al., 2019). Conversely, overactivity of this pathway can 

promote apoptosis (Huang et al., 2021). It is therefore difficult to predict the 

functional consequences of TTP’s effect on this pathway. Perhaps less 

ambiguous, is the potential consequence of TTP’s effect on tumour intrinsic 

interferon-signalling. The interferon alpha and gamma sets were both enriched 

for downregulated transcripts in the Tet-On TTP(aamt) line, but not in the Tet-

On TTP(wt) line. We cannot therefore be sure about the robustness of this 
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effect. Tumour-intrinsic interferon signalling can increase expression of antigen 

presentation components and T cell chemoattractants such as CXCL9 and 

CXCL10 (Mugarza et al., 2021) and therefore suppression of such signalling 

may have pro-tumourigenic consequences. However, the effect is likely more 

nuanced, depending on the concentration and chronogenicity of signalling as 

evidenced by two studies which suggest that sustained type I or II interferon 

signalling can mediate resistance to immune therapy (Benci et al., 2016; 

Jacquelot et al., 2019). 

 

The effect of TTP overexpression on gene sets that are both potentially pro and 

anti-tumour suggests that the overall effect may be determined net balance of 

the two processes. This was alluded to in the introduction by reference to a 

study where TTP destabilised LATS2 (a TSG) yet also E2F1 and cIAP2 (Lee et 

al., 2018) with consequential suppression of proliferation, invasion and 

metastasis in that model. Our data support the idea that TTP does not purely 

affect classical oncogenic transcripts but instead has a broad, non-specific 

effect which may favour destabilisation of oncogenic transcripts, but not 

exclusively. The other point of note here, is that we did not see any obvious 

difference in the magnitude of downregulation of key oncogenic transcripts (e.g. 

Ptgs2 ,Areg, Lif) between the Tet-On TTP(aamt) and Tet-ON TTP(wt) lines. 

While the aamt-TTP should be less sensitive to inactivation by p38-mediated 

signalling, we note that evidence in the literature suggests that serine 316 can 

also be phosphorylated by MK2 (Ronkina et al., 2019) while our aamt-TTP was 

only mutated at serines 52 and 178. Furthermore, the forced overexpression of 

TTP in our system may overwhelm the capacity of the relevant kinases to 

inactivate it.  

 

After exploring the transcriptome-wide effects of TTP overexpression using 

GSEA, we sought to create a ‘signature’ of genes downregulated by TTP 

overexpression and test whether this could predict survival in TCGA data. In a 

previous section, we were unable to show any effect of expression of TTP and 

its correlated genes on survival (Figure 11) and so we reasoned that a better 
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predictor may be to look at the functional effects of TTP, by using expression of 

the genes that it regulates in our system. We found that this did in fact predict 

survival in both LUAD and COAD cohorts from TCGA. We therefore feel that 

any attempts to use TTP for prognostication should focus on the expression of 

its downstream targets rather than of TTP and/or its co-regulated genes 

themselves. We appreciate that these targets are regulated by other mediators 

too, and therefore we could never attribute the survival effect seen with our 

signature directly to TTP. We have therefore shown that lower expression of 

genes regulated by TTP in our system is associated with improved survival in 

the LUAD and COAD TCGA cohorts.  

 

Finally, we sought to look at the overlap between genes regulated by TTP and 

those by KRAS. As well as Areg and Ptgs2, two other known KRAS targets 

(polo-like kinase 3 (Plk3) and leukaemia inhibitory factor (Lif)) were also in the 

top 10 most strongly downregulated targets across both inducible-TTP cell 

lines. Beyond these most strongly downregulated genes, many other genes 

known to be regulated by KRAS were also significantly downregulated upon 

TTP overexpression, including plasminogen activator urokinase receptor 

(Plaur), Vegfa, immediate early response 3 (Ier3), cardiotrophin-like cytokine 

factor 1 (Clcf1), Ereg and Bmp2 amongst others. While Clcf1 has previously 

been identified as a TTP target in a single study (Ross et al., 2015), to our 

knowledge Ereg and Bmp2 have not. Nonetheless, one study identified that the 

3’-UTR of Bmp2 is highly conserved across mammalian species, and the same 

group identified a protein that bound to the 3’-UTR of the Bmp2 transcript, with 

a molecular weight similar to TTP, without explicitly identifying said protein (Fritz 

et al., 2006). While Ereg has not been shown to be regulated by TTP, it does 

contain TTP consensus motifs in its 3’-UTR (Qiu et al., 2015). Both Bmp2 and 

Ereg have pro-metastatic/tumourigenic properties and so their identification as 

potential TTP targets is relevant to the link between TTP and tumorigenesis 

(Sunaga et al., 2013; Huang et al., 2017). 
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Given the circumstantial overlap between TTP and KRAS targets, and the 

biological plausibility that the effect of KRAS on many of these genes is driven, 

at least in part, by TTP we sought to perturb both in the same model to identify 

whether one could modify the effect of the other. Using siRNA we achieved 

between 70-80% knockdown of Zfp36 and observed for effects on the ability of 

KRAS(G12C) inhibition to downregulate its targets. Despite good knockdown of 

Zfp36, there was only a modest rise in Ptgs2 expression (the most strongly-

regulated TTP target in this system) and no significant difference in Ptgs2 

suppression upon addition of KRAS(G12C) inhibitor. Other genes (Lif, Areg) 

behaved similarly. There are several reasons for the failure to see an obvious 

effect of Zfp36 knockdown on gene expression changes following KRAS(G12C) 

inhibition. Firstly, in this system, the effect of KRAS(G12C) inhibition on Ptgs2 

expression was small (around a 40% reduction in expression) meaning that a 

subtle effect of TTP knockdown may be hard to see. Secondly, the Zfp36 

knockdown itself was incomplete. While we attempted western blots to confirm 

decreased protein expression, these were technically challenging with the 

available antibodies and ultimately we could not draw firm conclusions. We also 

attempted to knock out the endogenous Zfp36 locus using CRISPR/Cas9 but 

did not achieve this, again due to technical reasons. Beyond these technical 

challenges, we also note that KRAS signalling networks are broad, complex 

and redundant such that any effect of Zfp36 knockdown may be compensated 

for through bypass signalling. Finally, ZFP36 is part of a family of three RNA-

binding proteins (the other being ZFP36L1 and ZFP36L2) and there is 

incomplete understanding of their binding specificity. As an example, while our 

lab showed that TTP can destabilise Cd274 transcripts (Coelho et al., 2017), it 

has also been shown that deletion of Zfp36l2 and Zfp36l2 loci results in 

increased PD-L1 mRNA suggesting some redundancy in certain systems.  

 

In conclusion, TTP expression is robustly suppressed across several 

malignancies, likely as part of a module of immediate early genes. It 

destabilises several targets with oncogenic properties, but more evidence is 

needed to confirm whether it is truly a relevant TSG in human malignancies. In 
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an immunogenic colorectal carcinoma model, its overexpression results in 

downregulation of several gene sets related to tumourigenic hallmarks and also 

slows tumour growth in vivo. Targets in said model include established TTP 

targets (Ptgs2, Areg, Lif and Plaur amongst others) and the putative novel 

targets Bmp2 and Ereg. Its targets significantly overlap with those of KRAS, and 

this effect is seen across model systems. To determine whether TTP directly 

contributes to the ability of KRAS(G12C) inhibitors to downregulate certain 

shared targets, TTP would need to be robustly suppressed at the protein level 

and suitable targets will need to be assayed to establish a relationship.  

 

6.2 CITE-seq analysis 

We sought to use CITE-seq to understand the single cell effect of KRAS(G12C) 

inhibition in an orthotopic murine lung cancer model. This was the first time this 

technique had been used in our lab. Through our attempts to optimise antibody 

concentration using flow cytometry, we discovered that our in-house 

dissociation protocol resulted in preservation of fewer immune cells than the 

commercial dissociation method that we used. Our in-house method uses a 

variably prolonged mechanical dissociation step. It has been shown that such 

techniques can cause disproportionate cell death due to differential sensitivity of 

individual cell types (Leelatian et al., 2017). For this reason, we took forward the 

commercial dissociation protocol for the CITE-seq experiment proper.  

 

When planning our experiment, we discussed whether or not to sort our 

dissociated cells using a live/dead marker. This was based on the trade-off 

between the prolonged ‘scalpel-to-sequencer’ time required to incorporate a 

sorting step (we estimated roughly 60-120 minutes extra time required for 

sorting) versus potentially sequencing dissociated cells with a high proportion of 

dead/dying cells if we did not sort. We elected to incorporate a sorting step 

based on variable viability after tumour dissociation during our antibody-

concentration optimisation exercise, and the high percentage of dying cells 

debris that we saw during flow cytometry. Nonetheless we have also performed 
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a separate experiment where we have bulk-sequenced tumours and cells in 

suspension at various steps of our single-cell protocol, so that we can better 

understand the effect that our dissociation procedure has on the transcriptome. 

This is based on evidence that certain genes, including IEGs, may be sensitive 

to the dissociation procedure (Denisenko et al., 2019). This is borne in mind 

during analysis of our CITE-seq data. Of note, both treated and untreated cells 

were dissociated using the same procedure, but it is impossible to rule out 

treatment-specific vulnerabilities to the dissociation procedure. This is an 

inherent caveat of single cell procedures that require tissue dissociation.  

 

Once we had decided on the dissociation protocol, we performed a pilot 

experiment. By showing consistency between our pilot data and bulk 

sequencing data previously acquired by our lab (Edurne Mugarza and Miriam 

Molina-Arcas) we felt more confident in inferences made downstream. 

Nonetheless, the correlation between the datasets was not perfect. Some of 

this is expected from random batch effects while other discrepancies will be 

systematic (bias) from the different techniques (bulk vs single cell). As above, 

we are investigating this, and data has been submitted to the bioinformatics 

core at the Francis Crick Institute. Our pilot data also demonstrated the ability of 

CITE-seq to help resolve distinct populations otherwise similarly clustered in 

RNA-space. We used the example of CD4+ and CD8+ T cells but the principle is 

best applied to separate states whose biology was previously unknown 

(Stoeckius et al., 2017) . Although, downstream, we did not obtain myeloid 

clusters from RNA-data alone and compare with those clusters we discerned 

from the WNN data, it is probable that these clusters would have differed (given 

our antibody panel containing several myeloid-relevant markers). Therefore, 

using CITE-seq, we are likely to have identified clusters which are more 

appropriately resolved from one another.  

 

After performing basic processing of the pilot data, we acquired the post-pilot 

data. During QC, the data from most cells appeared to be of good quality, 

consistent with our decision to sort cells prior to sequencing. During 
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composition analysis we noted one sample was an outlier, with a much higher 

proportion of neutrophils relative to other samples. We decided to keep this 

sample but ensure that we performed sensitivity analyses by excluding this 

sample where relevant. Given that we were integrating all 10 samples anyway, 

we reasoned that if cells from this sample were truly different from other 

samples, they would have integrated separately. In downstream analysis we did 

not notice any clusters enriched for cells from this sample. Of note, we have not 

analysed the neutrophil compartment. Future analyses of this compartment will 

need to bear in mind that the majority of cells will be from this ‘outlier’ sample.  

   

In terms of composition analysis of all cells, we noted a decrease in neutrophil 

proportion and an increase in endothelial cell proportion with treatment, both of 

which were statistically significant and robust to removal of sample 5. These 

observations are consistent with other work from our lab using either flow 

cytometry or imaging mass cytometry (Mugarza et al., 2021; van Maldegem et 

al., 2021). We also noted the unexpected finding that the proportion of tumour 

cells in the sample increased with treatment. This is likely explained by our 

study protocol, rather than being a reflection of truly increased tumour cell 

proportion or a reflection of a treatment-induced reduction in immune infiltrate.  

 

6.2.1 The myeloid compartment 

Myeloid cells made up the majority of the TME. In this thesis we chose to focus 

on the macrophage and DC compartments given their well-established role in 

anti-tumour immunity. Nonetheless, the neutrophil compartment was also 

sizeable, and significantly reduced after treatment. Analysis of this subset will 

therefore form a part of future work with this data.  

 

Once the myeloid cells had been subsetted, we had to decide on a suitable 

clustering algorithm and suitable parameters for said algorithm. Many 

algorithms for clustering single cell data exist, with advantages and 

disadvantages of each (Kiselev, Andrews and Hemberg, 2019). We chose to 
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use Seurat’s graph-based clustering method given that it has performed well in 

benchmarking reviews (Duò, Robinson and Soneson, 2020). Furthermore, 

imaging mass cytometry data on orthotopic 3LL-ΔNRAS tumours from our lab 

(van Maldegem et al., 2021) was clustered using PhenoGraph (Levine et al., 

2015), a graph-based clustering method. The similar methods used for 

clustering across the two data types may be useful for any attempts to integrate 

or make hypotheses across the two datasets in the future. Our choice of cluster 

resolution was justified in the results section. We are however aware that a 

different clustering algorithm with different parameters may have produced 

alternate cell-state definitions to the ones that we described. This is an inherent 

problem of high-dimensional data, with multiple ways of reducing dimensionality 

and partitioning the data. Validation of our subsets would come from 

reproducibility in other model systems or from human data. To this end, we 

have also collected and single cell-sequenced data from several human non-

small cell lung carcinomas. Although the analysis of that data was not part of 

this thesis, it may form part of any future work with the single cell data 

discussed here.   

 

Once clusters had been formed and annotated, we undertook composition 

analysis. We found that the population of Arg1 high macrophages significantly 

decreased after treatment and that its significance was robust to removal of 

data from sample 5 (a control sample), an outlier in terms of its composition. 

The reduction in proportion of the Arg1-high macrophages was notable given 

the established negative effect of increased macrophage Arg1 expression on T 

cell function (Bronte et al., 2003; Viola et al., 2019). In one study, Arg1 

expression was increased in a KRAS(G12C) genetically engineered mouse 

model (GEMM), relative to normal tissue, and treatment with an arginase 1/2 

inhibitor resulted in tumour regression with increased T-cell infiltration (Miret et 

al., 2019). Also consistent with our findings, a recent pre-print exploring a model 

of pancreatic cancer with inducible and reversible oncogenic KRAS expression 

found that KRAS inactivation resulted in a reduction in the proportion of Arg1+ 

macrophages (Velez-Delgado et al., 2021). Given that we have demonstrated a 
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reduction in the proportion of Arg1-high macrophages upon treatment with 

KRAS(G12C), it is possible that this effect underlies some of the therapeutic 

effect of clinical KRAS(G12C) inhibitors. Nonetheless, the clinical efficacy of 

Arg1 inhibitors is yet to be proven, although trials are ongoing (NCT02903914, 

NCT03314935). 

 

These Arg1-high macrophages also expressed a number of other potentially 

tumour-suppressive genes more strongly than other clusters. Amongst these, 

Cxcl3 was the most strongly upregulated in this cluster compared to others. Its 

receptor is Cxcr2 which, in our dataset was expressed in the neutrophil 

compartment (data not shown). Of note, we saw a reduction of neutrophil 

composition in treated tumours compared to control tumours raising the 

question whether this mechanism is secondary to the reduction in Cxcl3-high 

macrophages upon treatment. Indeed, neutrophil recruitment to the lung has 

been shown to be influenced by CXCL3 (Sokulsky et al., 2020). Beyond Cxcl3, 

other genes overexpressed in this cluster included Ccl24, Mmp12, Vegfa, Nos2, 

Il6 and Spp1. Nos2 and Il6 are interesting as they are often considered to be 

‘classically activated’ macrophage genes (Orecchioni et al., 2019). However, 

data also shows that Il6 can polarise to an alternatively activated phenotype 

(Fernando et al., 2014) and that tumours often simultaneously induce Nos2 and 

Arg1 in macrophages, to their advantage (Viola et al., 2019).  

 

The specific expression of Spp1 in this cluster was intriguing as it has recently 

been identified as a marker of a subset of macrophages in single cell analyses 

of colon cancer (Zhang et al., 2020). In this same study, VEGFA expression 

was restricted to this SPP1-high population, while C1QC and other complement 

genes and antigen presenting genes were not expressed, mirroring what we 

saw. While there are some differences (their SPP1-high macrophages 

expressed the marker MARCO, while ours did not), future work on our data 

could aim to investigate the link between our macrophages and the 

macrophages in that study, particularly as they showed that anti-CSF1R 

therapy was minimally effective in targeting the SPP1-high population while we 
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have shown that MRTX1257 therapy resulted in robust reduction of these cells. 

This suggests that, for example, combinations of MRTX1257 and CSF1R-

targeting therapy may provide a broader depletion of the tumour macrophage 

compartment than either therapy alone.  

 

As well as the Arg1 (and Spp1)-high macrophages, we also saw a reduction in 

Saa3-high macrophages that was significant after removal of sample 5 (the 

outlier in terms of composition). Although this cluster is small, it is intriguing 

given its distinct projection in UMAP space and the fact that it is conserved 

across models – an analogous subtype was seen in a KP (Kras-Lox-STOP-Lox-

G12D p53 flox/flox) murine lung cancer model (Zilionis et al., 2019). Very little 

literature exists about this subtype, however three genes only or predominantly 

expressed in this subtype of macrophage – Alox15, Ltc4s and Ptgs1 - are 

involved in leukotriene or prostaglandin synthesis. Like many soluble mediators 

in lung cancer, the role of leukotrienes is complex and pleiotropic (Tian et al., 

2020) but it is conceivable that these cells, which are more prevalent in 

untreated tumours, could contribute to the inflammatory milieu by production of 

leukotrienes.  

 

Following composition analysis we performed DE, looking at the effect of 

treatment within clusters. Although there was a similar pattern of DE across the 

macrophage clusters, it was striking that the most downregulated genes, 

including Arg1, Vegfa and Mmp9 have putative protumour genic functions while 

those genes consistently upregulated across clusters, including class II MHC 

genes are those which should aid immune rejection of tumours. 

 

There were of course some exceptions. The Apoe gene, which codes for 

apoplipiprotein E, was upregulated after treatment and has been shown to 

promote immune suppression in pancreatic tumour models (Kemp et al., 2021). 

Nonetheless, ApoE in this study acted through production of CXCL1, which is 

unlikely to be relevant here as we saw a decrease in CXCL1 upon treatment. 

Other notable exceptions were Ccl8 and Gpnmb (glycoprotein nonmetastatic 
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B). The former is a monocyte chemoattractant (Farmaki et al., 2020) and may 

contribute to the high myeloid infiltration in these tumours. Of note while Ccl2 

was robustly suppressed across clusters, Ccl7 (another monocyte 

chemoattractant) showed variable effect, being downregulated in some clusters 

and upregulated in others. Gpnmb has been shown to induce tumour stemness 

in a fibrosarcoma model, via action on CD44 (Liguori et al., 2021) and there are 

many other reports linking it to tumourigenic processes. Finally, we also noted 

that transmembrane proteins 176a and 176b (Tmem176a and Tmem176b) 

were strongly upregulated with treatment. A large study which included the use 

of 3LL and CT26 models showed that knockdown of Tmem176a/b could 

augment the efficacy of checkpoint inhibitor therapy.  

 

As well as macrophages, we interrogated the DC compartment.  There were far 

fewer DCs than macrophages, and this may partly explain why there were far 

fewer DE genes in this compartment. Of the DE genes that we did see, the 

upregulation of Il12b in Ccr7-high (activated) DCs was intriguing given its 

fundamental role in Th1 immunity and antitumour immune responses (Garris et 

al., 2018).  

 

To conclude, we saw both compositional and gene expression effects in the 

macrophage compartment following MRTX1257 treatment. In general, the gene 

expression changes were robust across clusters and indicative of polarisation 

toward a more favourable tumour immune environment. Nonetheless, some 

entities with reported pro-tumourigenic properties increased with treatment, as 

described above. Knowledge of these sorts of changes is important as they can 

help suggest combinations to augment the efficacy of KRAS(G12C) inhibition. 

In order to build evidence, future work could include looking across other model 

systems and at human data to observe which of these effects are robust and 

which are model-specific. Furthermore, given the few changes we saw in the 

DC compartment, we would like to cluster and analyse these cells separately to 

see whether other effects of MRTX1257 become apparent. Finally, given the 

changes in secreted factors such as Vegfa and Cxcl3 seen here, it would be 
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prudent to apply cell-cell communication analysis where one looks at the 

expression of their cognate receptors amongst all cells within the tumour 

ecosystem, and how this changes with treatment. This would enable 

hypotheses about the possible functional effects of the changes that we see.  

 

6.2.2 The tumour compartment 

Pre-processing of data for analysis of the tumour compartment was similar to 

the pre-processing used to analyse myeloid cells. One difference, was that 

clustering the tumour cells alone appeared to yield a distinct population 

enriched for myeloid transcripts. This was consistent with doublets. These cells 

had not been identified by the doublet-detection algorithms that were previously 

used when all cells (immune/stromal and tumour) were clustered together. 

Doublet detection is a difficult problem in single-cell analysis with variability 

between the available methods (Xi and Li, 2021). Our data suggests that in 

heterogenous samples with a transcriptionally dominant subtype (tumour cells 

were more transcriptionally active than myeloid cells), doublet detection may be 

difficult when applied to the whole dataset. When sub-clustering the 

transcriptionally dominant type, doublets may become apparent.  

 

We chose not to regress out cell-cycle effects, something that is commonly 

done in single cell analysis. This is because we expected effects on the cell-

cycle to be biologically relevant. Nonetheless, future analyses will also look at 

the data after regressing out cell-cycle effects as there may be additional 

information to be gained.  

 

By not regressing out cell-cycle effects, we found that our clusters closely 

aligned with cell-cycle phase prediction. For example, cluster 0 cells were 

almost all predicted to be in G0/G1. Nonetheless, the most strongly upregulated 

genes in this cluster tended to have anti-tumourigenic effects unrelated to the 

cell cycle. For example, Dcn (decorin) is a putative TSG (Järvinen and Prince, 

2015), Ramp2 is involved in calcitonin signalling but also suggested to have a 



Chapter 6. Discussion 

 

272 

 

pro-apoptotic effect in lung cancer (Yue et al., 2007) and Cited2 although less 

clear, has the ability to decrease tumour invasiveness (Bai and Merchant, 

2007).  

 

Given that cluster 0 cells were in G0, we wondered whether they may have a 

lower ‘KRAS activity’ than other clusters. We assayed this by performing GSEA 

using several gene sets in the MSigDB collection pertaining to KRAS 

modulation. The results were inconsistent. Of note, many genes associated with 

oncogenic KRAS signalling (including Dusp1 and Dusp4) were actually 

increased in this cluster relative to others. Later in the analysis, we used 

another metric of KRAS activity that was based on a gene set that was derived 

from bulk sequencing of cells growth in vitro treated with a KRAS(G12C) 

inhibitor (Xue et al., 2020). When we overlaid this score onto UMAP plots, cells 

in cluster 0 clearly had lower KRAS activity scores than other clusters (). It is 

possible that this signature seemed to reflect our data better because it was 

derived from cells specifically treated with a KRAS(G12C) inhibitor while other 

signatures used heterogenous means to perturb KRAS along with 

heterogeneity in other aspects of these signatures e.g. whether they were 

derived from in vitro or in vivo data (where immune cells may have confounded 

effects). 

 

One intriguing outcome of our clustering procedure was the formation of a 

cluster predominantly composed of treated cells (cluster 5). We termed this the 

‘metabolic’ cluster as cells showed upregulation of several genes whose protein 

products are involved in adipogenesis and oxidative phosphorylation. 

Oncogenic KRAS is known to promote a shift from oxidative phosphorylation to 

aerobic glycolysis (Pylayeva-Gupta, Grabocka and Bar-Sagi, 2011b) and 

therefore and increase in gene expression related to oxidative phosphorylation 

may not be surprising. Nonetheless, the magnitude of change in this cluster 

was markedly different from other treated cells, marking them as a separate 

state. The significance of this is not clear however it was also notable that they 

had reduced expression of several genes relative to cluster 0 (which contained 
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the bulk of the treated cells) including Ccnd1 and Areg suggesting perhaps that 

they were in more ‘quiescent’ state. In addition, treatment induced an 

upregulation of the gene Crxos, purported to be involved in embryonic stem cell 

renewal (Saito et al., 2009), specifically in this cluster. 

 

 

Analysis of composition demonstrated, as expected, that the proportion of 

treated cells in cluster 0 (non-cycling, 44% of treated cells) was higher than the 

proportion of untreated cells in this cluster (24% of untreated cells). Conversely, 

it may be surprising that a cumulative 45.6% of treated cells were in clusters 2-

5, which we deemed to be clusters in the cell cycle. The 3LL-ΔNRAS model 

does not regress with MRTX1257 treatment and our data suggest that perhaps 

the bulk of cells are outside the cell cycle (where perhaps they are subject to 

immune attack or susceptible to apoptosis) but also that many cells are still able 

to enter the cycle.  

 

Differential expression analysis of the clusters revealed many expected 

changes. This included downregulation of bona fide KRAS-related genes 

including Areg, Ereg, Myc, Vegfa and Plaur. Beyond this however, other 

interesting observations were noted. One, was a consistent upregulation of 

genes related to TGF-𝛽 signalling including Col3a1, Sparc and Dcn. Although, 

during GSEA, TGF-𝛽 gene sets did not consistently have negative NES scores, 

this triplicate of genes were the three most strongly upregulated genes when 

KRAS was knocked out in a KPC pancreas cancer model (Ischenko et al., 

2021). This observation is even more pertinent in the light of recent data 

showing that upregulation of  TGF-𝛽 signalling can contribute to resistance to 

KRAS(G12C) inhibitors (Tsai et al., 2022).  

 

 

When looking at DE specific to the clusters, there were a few interesting 

observations. One module of genes downregulated after treatment were genes 

related to hypoxia, which were specifically reduced in cluster 0. This could 
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suggest that treated tumours (perhaps because of their size, or because of their 

vessel integrity) are more susceptible to hypoxia, and that KRAS inhibition 

normalises this process. Of note, Spp1 (which was specifically high in the Arg1-

high macrophage population) is known to be induced by hypoxia in tumours 

(Wei et al., 2021). Perhaps the cluster 3 (Arg1-high) macrophages and the 

hypoxia-gene-high group of untreated cells in cluster 0 (‘G0’) of the tumour 

compartment may have shared a hypoxic niche in their respective tumours. Of 

note, these cells did not just come from one sample, suggesting that whatever 

the underlying process, it is reproducible across biological replicates. Another 

interesting observation was the very strong, and cluster specific, induction of 

Ypel3 after treatment. This is a p53-responsive gene that has been shown to 

induce tumour senescence (Kelley et al., 2010) and was only upregulated in 

non-cycling clusters (including cluster 0 and the treatment-specific cluster 5).  

 

The final part of our analysis involved looking at immune-related transcripts. We 

first noted consistency with data previously generated in the lab in vitro using 

different models. Most genes that were suppressed in those models were also 

suppressed in our data. A notable exception was Plau, the pro-tumourigenic 

gene for urokinase-type plasminogen activator. Nonetheless, its receptor (gene 

Plaur) was suppressed, and this could mean that any negative functional effects 

of Plau induction are, to some extent, mitigated by the reduced expression of its 

receptor. In general the gene expression changes induced by MRTX1257 are 

those thought to be favourable in the sense of generating a successful 

antitumour response. However, possibly the most surprising and relevant 

discovery from this analysis, was the robust increase in Cd47 across all tumour 

clusters upon treatment. Given the generally anti-tumourigenic effects on the 

myeloid compartment that we discussed above, the increased expression of 

Cd47 could be relevant. Tumour expression of CD47 has been shown to help 

protect against phagocytosis (Jaiswal et al., 2009). If indeed, the increased 

expression of Cd47 is part of an adaptive mechanism to the repolarised TME, 

combination MRTX1257/anti-CD47 therapy could provide additive or even 

synergistic efficacy.  



Chapter 6. Discussion 

 

275 

 

 

To conclude, we have shown that KRAS(G12C) inhibition in the 3LL-ΔNRAS 

model repolarises the myeloid compartment and has profound effect on tumour 

intrinsic signalling. In general, these effects are those which are believed to be 

antitumorigenic, most profoundly the reduction of Arg1 and upregulation of 

class II MHC in macrophages and the reduction in tumour-intrinsic expression 

of various KRAS-targets including growth factors and genes involved in 

angiogenesis and tumour immune evasion. Nonetheless, given the breadth of 

effect, some gene expression changes have the potential to be 

protumourigenic. An understanding of how generalisable these effects are, 

across models and in patients, will enable the design of rational combinations 

with the potential to be additive or even synergistic. 
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