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Abstract: Synovial sarcoma is a rare translocation-driven cancer with poor survival outcomes, partic-
ularly in the advanced setting. Previous synovial sarcoma preclinical studies have relied on a small
panel of cell lines which suffer from the limitation of genomic and phenotypic drift as a result of being
grown in culture for decades. Patient-derived xenografts (PDX) are a valuable tool for preclinical re-
search as they retain many histopathological features of their originating human tumour; however, this
approach is expensive, slow, and resource intensive, which hinders their utility in large-scale functional
genomic and drug screens. To address some of these limitations, in this study, we have established
and characterised a novel synovial sarcoma cell line, ICR-SS-1, which is derived from a PDX model
and is amenable to high-throughput drug screens. We show that ICR-SS-1 grows readily in culture,
retains the pathognomonic SS18::SSX1 fusion gene, and recapitulates the molecular features of human
synovial sarcoma tumours as shown by proteomic profiling. Comparative analysis of drug response
profiles with two other established synovial sarcoma cell lines (SYO-1 and HS-SY-II) finds that ICR-SS-1
harbours intrinsic resistance to doxorubicin and is sensitive to targeted inhibition of several oncogenic
pathways including the PI3K-mTOR pathway. Collectively, our studies show that the ICR-SS-1 cell line
model may be a valuable preclinical tool for studying the biology of anthracycline-resistant synovial
sarcoma and identifying new salvage therapies following failure of doxorubicin.

Keywords: synovial sarcoma; patient-derived xenograft; cancer therapeutics; soft tissue sarcoma;
doxorubicin

1. Introduction

Synovial sarcoma is a rare mesenchymal tumour type that accounts for 8–10% of
all soft tissue sarcomas [1]. As with many other sarcoma subtypes, synovial sarcoma
can occur in any anatomical site, but is most commonly found in the extremities [2]. It
typically arises in adolescents and young adults although can affect patients of any age [3,4].
Synovial sarcoma is characterised by a pathognomonic translocation between chromosome
X and 18 (X:18), which results in the expression of fusion proteins including SS18-SSX1,
SS18-SSX2, and SS18-SSX4 [5–7]. Extensive work has shown that these fusion proteins
play important roles in driving sarcomagenesis, such as regulating the biology of the
SWI/SNF chromatin remodelling complex [8–10]. Patients with synovial sarcoma have poor
outcomes with a 5-year survival of 50–60% [4,11,12] and have limited treatment options in
the advanced/metastatic setting, including anthracyclines, ifosfamide, trabectedin, and
pazopanib [13].

In order to identify new therapeutic strategies and gain a better understanding of the
biology of this disease, it is necessary to develop preclinical models of synovial sarcoma.
Given its rarity, there are very few synovial sarcoma cell line models available in public
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repositories, with only five identified in the most recent census of sarcoma cell line mod-
els [14]. Established cancer cell lines have been cultured on plastic for decades and due to
genomic and phenotypic drift during serial passaging have diverged from the tumours
for which they were derived [15]. This has contributed to poor reproducibility in preclin-
ical findings which is likely to have played a role in the high failure rate of translating
therapeutic discoveries into oncology clinical trials and regulatory approvals [16,17].

To bridge this gap, patient-derived xenografts (PDX), where tumours obtained from
patients are serially passaged in mice, have emerged as a valuable tool for preclinical
research as they retain much of the molecular and histopathological features of the original
human tumour [18,19]. Several sarcoma PDX collections have been described encompassing
multiple subtypes including synovial sarcoma [20–22]. However, PDX models have certain
limitations including high costs required for animal maintenance, slow tumour growth, and
variable engraftment rate, which collectively diminish the feasibility of undertaking large-
scale genetic and drug screens. These limitations can be overcome by the establishment
of matched PDX-derived cell lines which retain many of the genomic features of the
PDX tumours, are easier to grow and manipulate in culture, and are amenable to high-
throughput screens [18]. The development of matched PDX-derived cell lines is non-trivial
due to the relatively high failure rate associated with establishing cell lines from tumour
specimens [23,24] and there are only a few reported studies demonstrating success using
this approach, including in breast, colorectal, and pancreatic cancers [21,25–27]. In sarcomas,
matched PDX-derived lines have been established in osteosarcoma, Ewing’s sarcoma, clear
cell sarcoma, and CIC::DUX4 sarcoma [23,28–30].

In this study, we established a novel synovial sarcoma cell line, ICR-SS-1, which was
derived from a PDX model from The Jackson Laboratory biorepository. We have further under-
taken a comparative analysis of the drug response profiles of ICR-SS-1 versus two established
commercially available synovial sarcoma cell lines (SYO-1 and HS-SY-II). To our knowledge,
this is the first study to report a matched PDX-derived cell line for synovial sarcoma.

2. Materials and Methods
2.1. Patient-Derived Xenograft Model

ICR-SS-1 was established from a publicly available PDX model (J000104314) deposited
in The Jackson Laboratory biorepository (The Jackson Laboratory, http://tumor.informatics.
jax.org/mtbwi/pdxDetails.do?modelID=J000104314, accessed on 17 June 2022). This PDX
was derived from a tumour obtained from a 21-year-old male diagnosed with a grade
3 metastatic synovial sarcoma. This PDX model has been shown by The Jackson Laboratory
to harbour the SS18::SSX1 fusion gene. PDX tumours were serially passaged in NOD scid
gamma (NSG) mice and tumour volume calculated by 1

2 × length × width2 (Figure 1A).
Histology showed a hypercellular neoplasm composed of sheets of uniform spindle and
ovoid cells, with nuclear overlapping, scanty cytoplasm, and minimal surrounding stroma.
There was no discernible pleomorphism. This is in keeping with monophasic synovial
sarcoma (Figure 1B). These tumours maintain the same histological features as the histology
images deposited in The Jackson Laboratory biorepository database.

http://tumor.informatics.jax.org/mtbwi/pdxDetails.do?modelID=J000104314
http://tumor.informatics.jax.org/mtbwi/pdxDetails.do?modelID=J000104314
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Figure 1. (A) Tumour growth curve of the J000104314 patient-derived xenograft model. N = 5. (B) 
H&E stain of tumour section from the J000104314 patient-derived xenograft model. Scale bar = 50 
µm. 

2.2. PDX Dissociation 
To generate a cell suspension from the xenograft tumour, the tissue was minced and 

digested for 2 h at 37 °C in DMEM/Ham’s F12 1:1 with 15 mM HEPES, 0.1× insulin-trans-
ferrin selenium A (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), 1× penicil-
lin/streptomycin, 10 ng/mL EGF (Peprotech, London, UK), 10 µg/mL hydrocortisone 
(Sigma Aldrich, St. Louis, MO, USA), 0.5 mg/mL collagenase (Sigma Aldrich), 0.1 mg/mL 
hyaluronidase (Sigma Aldrich), 100 units/mL DNase I (Sigma Aldrich), 10 µM Y-27632 
(LC Laboratories, Woburn, MA, USA), and 5% FBS (Gibco). Red blood cells were lysed 
using RBC lysis buffer (Invitrogen, Waltham, MA, USA) and remaining cells were incu-
bated with 0.05% trypsin-EDTA (Gibco) at 37 °C. After trypsinisation, cells were treated 
with 1 mg/mL DNase I (Sigma Aldrich) at 37 °C, before passing through a 70 µm strainer. 
Mouse cell depletion beads (Miltenyi Biotec, Surrey, UK) were used to remove contami-
nating murine cells. 

2.3. Cell Culture 
Dissociated and mouse cell depleted PDX tumour cells were cultured in 

DMEM/Ham’s F12 1:1 with 15 mM HEPES, 1× penicillin/streptomycin, 2.4 mM L-gluta-
mine, 5 µM Y-27632 (LC Laboratories), 5 µg/mL insulin (Sigma Aldrich), 400 ng/mL hy-
drocortisone (Sigma Aldrich), 10 ng/mL EGF (Peprotech), 250 ng/mL amphotericin B 
(Thermo Fisher Scientific), 9.62 ng/mL cholera toxin (Sigma Aldrich), and 10% FBS 
(Gibco). Following successful continuous growth for >10 passages in culture, the cell line 
was designated ICR-SS-1. HS-SY-II (from RIKEN BioResource Centre, Kyoto, Japan), SYO-
1 (obtained from Dr Chris Lord, Institute of Cancer Research, London, UK), and NIH-3T3 
(obtained from Dr Matilda Katan, University College London, London, UK) cells were 
cultured in DMEM supplemented with 1× penicillin/streptomycin and 10% FBS (Gibco). 
SK-UT-1 cells (obtained from Dr Priya Chudasama, German Cancer Research Centre, Hei-
delberg, Germany) were cultured in MEM supplemented with 1× penicillin/streptomycin 
and 10% FBS (Gibco). Cells were grown at 37 °C with 5% CO2. Medium was replenished 
twice weekly. 

For spheroid formation, ICR-SS-1 cells (1000/well) were seeded into 96-well, round-
bottom, ultra-low attachment plates (Corning). Plates were spun at 1000× g and grown at 
37 °C with 5% CO2 for 3 days before imaging. 

  

Figure 1. (A) Tumour growth curve of the J000104314 patient-derived xenograft model. n = 5. (B)
H&E stain of tumour section from the J000104314 patient-derived xenograft model. Scale bar = 50 µm.

2.2. PDX Dissociation

To generate a cell suspension from the xenograft tumour, the tissue was minced and
digested for 2 h at 37 ◦C in DMEM/Ham’s F12 1:1 with 15 mM HEPES, 0.1× insulin-
transferrin selenium A (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), 1× peni-
cillin/streptomycin, 10 ng/mL EGF (Peprotech, London, UK), 10 µg/mL hydrocortisone
(Sigma Aldrich, St. Louis, MO, USA), 0.5 mg/mL collagenase (Sigma Aldrich), 0.1 mg/mL
hyaluronidase (Sigma Aldrich), 100 units/mL DNase I (Sigma Aldrich), 10 µM Y-27632 (LC
Laboratories, Woburn, MA, USA), and 5% FBS (Gibco). Red blood cells were lysed using RBC
lysis buffer (Invitrogen, Waltham, MA, USA) and remaining cells were incubated with 0.05%
trypsin-EDTA (Gibco) at 37 ◦C. After trypsinisation, cells were treated with 1 mg/mL DNase
I (Sigma Aldrich) at 37 ◦C, before passing through a 70 µm strainer. Mouse cell depletion
beads (Miltenyi Biotec, Surrey, UK) were used to remove contaminating murine cells.

2.3. Cell Culture

Dissociated and mouse cell depleted PDX tumour cells were cultured in DMEM/Ham’s
F12 1:1 with 15 mM HEPES, 1× penicillin/streptomycin, 2.4 mM L-glutamine, 5 µM Y-27632
(LC Laboratories), 5 µg/mL insulin (Sigma Aldrich), 400 ng/mL hydrocortisone (Sigma
Aldrich), 10 ng/mL EGF (Peprotech), 250 ng/mL amphotericin B (Thermo Fisher Scientific),
9.62 ng/mL cholera toxin (Sigma Aldrich), and 10% FBS (Gibco). Following successful
continuous growth for >10 passages in culture, the cell line was designated ICR-SS-1. HS-
SY-II (from RIKEN BioResource Centre, Kyoto, Japan), SYO-1 (obtained from Dr Chris Lord,
Institute of Cancer Research, London, UK), and NIH-3T3 (obtained from Dr Matilda Katan,
University College London, London, UK) cells were cultured in DMEM supplemented
with 1× penicillin/streptomycin and 10% FBS (Gibco). SK-UT-1 cells (obtained from Dr
Priya Chudasama, German Cancer Research Centre, Heidelberg, Germany) were cultured
in MEM supplemented with 1× penicillin/streptomycin and 10% FBS (Gibco). Cells were
grown at 37 ◦C with 5% CO2. Medium was replenished twice weekly.

For spheroid formation, ICR-SS-1 cells (1000/well) were seeded into 96-well, round-
bottom, ultra-low attachment plates (Corning). Plates were spun at 1000× g and grown at
37 ◦C with 5% CO2 for 3 days before imaging.

2.4. Cell Proliferation

ICR-SS-1 cells (1000/well) were seeded into 96-well, flat-bottom, black-walled plates
(Greiner Bio-One, Frickenhausen, Germany). Plates were fixed in 10% neutral-buffered
formalin solution (Sigma Aldrich) at respective timepoints and stained with 5 µg/mL
Hoechst 33342 (Tocris, Tocris Bioscience, Bristol, UK). Plates were scanned and cells were
counted using a Celigo imaging cytometer. Cell counts were normalised to day 1 and an



Cells 2022, 11, 2418 4 of 15

exponential growth equation was fitted to the data using GraphPad Prism (GraphPad,
v8.2.1) in order to determine doubling time.

2.5. SS18::SSX Fusion PCR

RNA was extracted from J000104314 tissue and ICR-SS-1 cells using RNeasy mini
and QIAshredder kits (Qiagen, Germantown, MD, USA), following the manufacturer’s
instructions, and used to generate cDNA via a Superscript III kit (Invitrogen). The HS-SY-II
cell line was used as a positive control. PCR mixtures were made containing the common
SS18 forward primer and one of SSX1, SSX2, or SSX4 reverse primers. ACTB was used as a
loading control. Primer sequences are provided in Table 1 below.

Table 1. Primer sequences for SS18::SSX and ACTB.

PCR
Amplicon Forward Primer Reverse Primer

SS18::SSX1 5′-AGACCAACACAGCCTGGACCAC-3′ 5′-ACACTCCCTTCGAATCATTTTCG-3′

SS18::SSX2 5′-AGACCAACACAGCCTGGACCAC-3′ 5′-GCACTTCCTCCGAATCATTTC-3′

SS18::SSX4 5′-AGACCAACACAGCCTGGACCAC-3′ 5′-GCACTTCCTTCAAACCATTTTCT-3′

ATCB 5′-GACAGGATGCAGAAGGAGATCAC-3′ 5′-TGATCCACATCTGCTGGAAGGT-3′

Thermocycler conditions used for SS18::SSX or ACTB amplification are presented in
Tables 2 and 3 below. PCR products were run on 2% agarose gels with SYBR safe DNA gel
stain (Invitrogel, Invitrogen) or ethidium bromide (Sigma Aldrich) and visualised using
UV illumination.

Table 2. Thermocycler conditions for SS18::SSX.

SS18::SSX

PCR Step Time Temperature Comments

Denaturation 7 min 95 ◦C

Touchdown Amplification 45 s 94 ◦C 10 cycles, reducing
annealing temperature by
1 each cycle, from 66 to 57

45 s 66 ◦C

1 min 30 s 72 ◦C

Amplification 45 s 94 ◦C
30 cycles45 s 56 ◦C

1 min 30 s 72 ◦C

Final Extension 5 min 72 ◦C

Table 3. Thermocycler conditions for ATCB.

ATCB

PCR Step Time Temperature Comments

Denaturation 2 min 95 ◦C

Amplification 15 s 95 ◦C
40 cycles15 s 60 ◦C

1 min 72 ◦C

Final Extension 5 min 72 ◦C

2.6. Human and Mouse PTGER2 PCR

DNA was extracted from ICR-SS-1, NIH-3T3, and SK-UT-1 cells using a DNeasy blood
and tissue kit (Qiagen), following the manufacturer’s instructions. NIH-3T3 was used as a
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mouse positive control and SK-UT-1 was used as a human positive control. PCR mixtures
were made containing either a human- or mouse-specific PTGER2 forward primer and a
common reverse PTGER2 primer. Primer sequences are provided in Table 4 below.

Table 4. Primer sequences for PTGER2.

PCR Amplicon Forward Primer Reverse Primer

Human PTGER2 5′-GCTGCTTCTCATTGTCTCGG-3′ 5′-GCCAGGAGAATGAGGTGGTC-3′

Mouse PTGER2 5′-CCTGCTGCTTATCGTGGCTG-3′ 5′-GCCAGGAGAATGAGGTGGTC-3′

Thermocycler conditions used for human or mouse PTGER2 amplification are pre-
sented in Table 5 below. PCR products were run on 1.5% agarose gels with SYBR safe DNA
gel stain (Invitrogel) and visualised using UV illumination.

Table 5. Thermocycler conditions used for human or mouse PTGER2 amplification.

SS18::SSX

PCR Step Time Temperature Comments

Denaturation 5 min 98 ◦C

Amplification 5 s 98 ◦C
40 cycles5 s 60 ◦C

20 s 72 ◦C

Final Extension 1 min 72 ◦C

2.7. Short Tandem Repeat (STR) Analysis

Genomic DNA was harvested from J000104314 PDX tissue and ICR-SS-1 cells using a
DNeasy blood and tissue kit (Qiagen), following the manufacturer’s instructions. DNA
was quantified using a Qubit dsDNA HS assay kit, and STR profiles were then analysed
via Eurofins cell line authentication service.

2.8. Proteomic Analysis

ICR-SS-1, HS-SY-II, and SYO-1 cells were seeded in T25 culture flasks and incubated
for 72 h in order to reach 80% confluence. Cells were then lysed in 8 M urea and 0.1 M
ammonium bicarbonate (ABC), and protein concentration was measured by bicinchoninic
acid (BCA) assay. For each cell line, 40 ug of total protein was reduced with 10 mM
dithiothreitol at 56 ◦C for 40 min and alkylated with 55 mM iodoacetamide at 25 ◦C for
30 min in the dark. After dilution to final concentration of 2 M urea and 0.1 M ABC, each
sample was digested with 0.4 g of trypsin (Thermo Scientific) at 37 ◦C overnight. The
resulting digest was acidified to pH < 4 by trifluoroacetic acid (TFA), desalted on Pierce
C18 Spin Columns (Thermo Scientific) according to the manufacturer’s protocol, and dried
in a SpeedVac.

Dried samples were resuspended in mobile phase A (2% acetonitrile, 0.1% formic
acid), spiked with iRT peptides (Biognosys AG, Schlieren, Switzerland), and 2 ug of total
peptides were loaded onto a 2 cm × 0.1 mm trap column self-packed with ReproSil Pur
C18AQ (120 Å, 10 µm) beads. Sequential window acquisition of all theoretical mass spectra
(SWATH)-mass spectrometry data were acquired using the same instrument parameters
as previously described in Milighetti et al. [31]. The acquired data were integrated with a
previously published dataset of synovial sarcoma, leiomyosarcoma, undifferentiated pleo-
morphic sarcoma, and dedifferentiated liposarcoma FFPE tissue samples from Milighetti
et al. [31], and all data were analysed by DIA-NN (v1.8) software (accessed on 17 June
2022) [32] using a publicly available pan-human library [33]. The default settings with
“match between runs” and “unrelated runs” was used for data processing. Oxidation of
methionine, carbamidomethylation of cysteines, and N-term methionine excision were
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included as possible amino acid modifications with a maximum number of 5 modifica-
tions per peptide sequence. Quantified protein data were log2 transformed and quantile
normalised in R using the proBatch package [34] and further processed in Perseus [35]. Pro-
teins with >75% values in at least one sarcoma subtype or across all cell lines were retained.
Missing values were imputed using the “replace missing values from normal distribution”
tool in Perseus using default settings. The imputed dataset was then median-centred across
all samples and visualised using two-way unsupervised clustering based on Pearson’s
correlation coefficient.

Proteomic profiles of the three synovial sarcoma cell lines and FFPE tissue samples
were analysed by significance analysis of microarrays (SAM) using the samR package [36]
in R. For this, the log2 transformed and quantile normalised dataset was used. Data for cell
lines and tissue samples were selected, technical replicates averaged, and proteins with
more than 30% of missing values were removed. The resulting dataset was processed by
samR using a delta score threshold of 0.77 to reach 1% FDR. Lists of positively and nega-
tively regulated proteins were then separately subjected to over-representation analysis us-
ing the online tool g:Profiler [37] with the g:GOSt module for functional profiling (g:Profiler,
https://biit.cs.ut.ee/gprofiler/gost, accessed on 17 June 2022) and the following setup: full
list of identified proteins used as a background; Benjamini–Hochberg FDR method with
0.1 FDR threshold; GOBP and Hallmark gene set databases downloaded from MSigDB
(Molecular Signatures Database, v7.5.1, http://www.gsea-msigdb.org/gsea/msigdb, ac-
cessed on 17 June 2022) [38,39].

Proteomic profiles of ICR-SS-1 and the other two synovial sarcoma cell lines were com-
pared by a two-tailed t-test in Perseus. For this analysis, the log2 transformed, quantile
normalised dataset was used. Technical replicates for individual cell lines were kept as sepa-
rate samples and proteins with no valid values across the three cell lines were removed. A
permutation-based FDR threshold of 0.05 and artificial within-group variance of 0.1 were ap-
plied in Perseus to identify significant differentially regulated proteins [36]. Lists of identified
up- and down-regulated proteins were further analysed by g:Profiler as described above.

2.9. Drug Screen and Dose Response Assays

ICR-SS-1 (2000/well), HS-SY-II (3000/well), and SYO-1 (2000/well) cells were seeded
in clear 96-well, flat-bottom plates (Corning Inc., Corning, NY, USA). Plates were incubated
for 24 h before replacing media with a panel of small molecule inhibitors at a concentration
of 500 nM for all drugs except NVP-AUY922, which was at a concentration of 50 nM
(details and source of inhibitors are shown in Supplementary Table S1). After 72 h, cell
viability was determined using CellTitre-Glo (Promega, Madison, WI, USA), following the
manufacturer’s instructions. Dose response assays were conducted by seeding ICR-SS-1
(2000/well), HS-SY-II (3000/well), and SYO-1 (2000/well) cells in clear 96-well, flat-bottom
plates (Corning). Plates were incubated for 24 h, after which the medium was replaced
with increasing concentrations of doxorubicin hydrochloride (Sigma Aldrich) or pazopanib
(LC Laboratories) at the indicated dose. Data points from dose response assays were used
to fit a four-point non-linear regression curve via Graphpad Prism and the drug screen
data were subjected to hierarchical clustering using Perseus software [35] with Euclidean
distance as the distance metric.

3. Results
3.1. Authentication of Established Cell Line

We established a cell line ICR-SS-1 which was derived from a PDX model of synovial
sarcoma J000104314 deposited in The Jackson Laboratory biorepository. The ICR-SS-1 cell
line was authenticated by short tandem repeat (STR) analysis at 16 loci (Table 6). There was
a 100% match between the cell line and originating J000104314 PDX tumour, confirming that
the cell line was established from the original tumour and that there was no contamination
with other cell lines.

https://biit.cs.ut.ee/gprofiler/gost
http://www.gsea-msigdb.org/gsea/msigdb
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Table 6. Short tandem repeat profile of J000104314 PDX tumour and ICR-SS-1 cell line.

Samples

Locus J000104314 ICR-SS-1

D8S1179 13, 13 13, 13
D21S11 29, 31.2 29, 31.2
D7S820 7, 8 7, 8
CSF1PO 10, 12 10, 12
D3S1358 17, 17 17, 17

TH01 6, 9.3 6, 9.3
D13S317 12, 14 12, 14
D16S539 9, 12 9, 12
D2S1338 20, 23 20, 23
D19S433 13, 15 13, 15

vWA 16, 16 16, 16
TPOX 8, 9 8, 9

D18S51 12, 15 12, 15
AMEL X, Y X, Y
D5S818 11, 13 11, 13

FGA 24, 24 24, 24

3.2. Molecular Assessment of SS18::SSX Fusion Status

Synovial sarcoma is characterised by the SS18::SSX fusion gene. To evaluate if this
fusion was present and retained in the ICR-SS-1 cell line, we undertook PCR analysis
of SS18 and the three different possible fusion partners (SSX1, SSX2, SSX4). Using the
HS-SY-II cell line, which has the SS18::SSX1 fusion gene as a positive control [40], we show
that both ICR-SS-1 and its originating PDX tumour J000104314 harbour the SS18::SSX1
fusion gene (Figure 2A), confirming the diagnosis of synovial sarcoma.
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3.3. Verification That ICR-SS-1 Is Not Contaminated with Murine Cells

Given that the ICR-SS-1 cell line was derived from a PDX model, we sought to verify
that the cell line was not contaminated with murine cells originating from the host. We
performed PCR analysis with species-specific primers for the prostaglandin E receptor
2 (PTGER2) gene as previously described [41]. Using the SK-UT-1 leiomyosarcoma cells
as a human cell line control and NIH-3T3 cells as a murine cell line control, we show that
ICR-SS-1 only expressed the human and not the murine version of PTGER2 (Figure 2B),
confirming that this cell line is comprised of a pure population of human cells.

3.4. In Vitro Characteristics of the Cell Line

The ICR-SS-1 cell line is adherent and composed of elongated spindle cells when
grown in 2D (Figure 3A). The cells have been grown for 18 passages over 4 months.
Furthermore, the cells are able to form 3D spheroids when grown in ultra-low attachment
plates (Figure 3B). Assessment of the growth rate of ICR-SS-1 showed exponential growth
with a population doubling time of 93 h (Figure 3C).
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3.5. Comparative Proteomic Profiling by Mass Spectrometry

We have previously undertaken proteomic profiling by SWATH-mass spectrometry of
tumour specimens from a cohort of soft tissue sarcoma patients (n = 36) comprising four
histological subtypes including synovial sarcoma [31]. This study showed that different
sarcoma histological subtypes are characterised by distinct proteomic profiles [42,43]. To
determine if ICR-SS-1 faithfully recapitulates the molecular characteristics found in hu-
man synovial sarcoma tumours, we subjected the ICR-SS-1, as well as two established
commercial synovial sarcoma cell lines (SYO-1 and HS-SY-II), to proteomic analysis by
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SWATH-mass spectrometry. Integrating these cell line proteomic data with the cohort of
36 patients across 4336 proteins shows that the three synovial sarcoma cell lines cluster
closely together with the synovial sarcoma patient specimens, but separate from the three
other histological subtypes (leiomyosarcoma, dedifferentiated liposarcoma, and undiffer-
entiated pleomorphic sarcoma) (Figure 4). These data provide evidence that ICR-SS-1
faithfully reproduces the key molecular features found in synovial sarcoma patient speci-
mens which are distinct from other subtypes.
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Figure 4. Heatmap displaying hierarchical clustering of proteomic data from synovial sarcoma cell lines
and patient specimens of four histological subtypes (dedifferentiated liposarcoma—DDLPS, undifferen-
tiated pleomorphic sarcoma—UPS, leiomyosarcoma—LMS, and synovial sarcoma—SS). Proteomic data
were clustered with two-way unsupervised clustering based on Pearson’s correlation coefficient.

Although the cell lines clustered together with the synovial sarcoma patient speci-
mens, there were differences between the proteomic profiles of the human tumours and cell
lines (Figure 4). We undertook a significance analysis of microarray (SAM) to identify the
proteins that are significantly different between the synovial sarcoma cell lines and tumour
specimens. Over-representation analysis using the g:Profiler tool showed that biological
processes involved in protein translation and biosynthesis were significantly enriched in
patient specimens compared to the cell lines (Figure 5A). These ontologies include the
“cytoplasmic translation”, “peptide biosynthetic”, “peptide metabolic”, “amide biosyn-
thesis”, and “organonitrogen compound biosynthesis” ontologies. In contrast, ontologies
upregulated in cell lines versus patient tissue specimens comprised proteins involved in
the regulation of lipoprotein particle clearance and RNA splicing.
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We further sought to better understand the biological differences between ICR-SS-1
and the two commercially available synovial sarcoma cell lines SYO-1 and HS-SY-11 by
performing a t-test to identify the proteins that are significantly different between these two
groups. g:Profiler over-representation analysis finds that ICR-SS-1 cells had an upregulation
of proteins involved in epithelial-to-mesenchymal transition (EMT), while the commercial
SS cell lines showed elevated levels of proteins which are E2F targets (Figure 5B). These
data demonstrate that there are distinct biological pathways operating in ICR-SS-1 versus
the SYO-1 and HS-SY-II cell lines.

3.6. Characterisation of Response to Anticancer Agents

The current standard of care for synovial sarcoma in the first line is anthracycline therapy.
We therefore assessed the effect of doxorubicin on ICR-SS-1 compared to SYO-1 and HS-SY-II.
ICR-SS-1 was significantly more resistant to doxorubicin (ICR-SS-1 IC50 = 613 ± 299 nM)
compared to the other cell lines (SYO-1 IC50 = 13 ± 1 nM, HS-SY-II IC50 = 31 ± 14 nM)
(p < 0.01) (Figure 6A). Pazopanib is a tyrosine kinase inhibitor which is approved for the
treatment of SS following failure of doxorubicin. Dose–response assessment finds that all
three cell lines are resistant to this drug (IC50 > 5 µM) (Figure 6B). Furthermore, we undertook
a comparative screen of the three cell lines to a panel of 58 small molecule inhibitors that target
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a broad range of oncogenic signalling pathways (Supplementary Table S1 and Figure 6C,D).
The screen showed that ICR-SS-1 had a distinct drug response profile compared to the other
two synovial sarcoma cell lines and was generally more resistant to the vast majority of small
molecule inhibitors tested (Figure 6C). An evaluation of shared vulnerabilities across all three
synovial cell lines identified three compounds, the dual PI3K-mTOR inhibitor NVP-BEZ235,
the PLK1 inhibitor BI 2536, and the BET bromodomain inhibitor JQ1 (Figure 6D), suggesting
that targeting these pathways may have broad therapeutic utility in synovial sarcomas.
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Figure 6. (A) Dose–response curves of ICR-SS-1, SYO-1, and HS-SY-II treated with doxorubicin. n = 3.
(B) Dose–response curves of ICR-SS-1, SYO-1, and HS-SY-II treated with pazopanib. n = 3. (C) A
heatmap of drug response of ICR-SS-1, SYO-1, and HS-SY-II cell lines upon treatment with 58 targeted
small molecule inhibitors at 500 nM or in the case of NVP-AUY922, 50 nM. n = 3. (D) Venn diagram
of shared and unique targeted inhibitor sensitivities (<65% viability) across the three cell lines.

4. Discussion

Synovial sarcoma is a rare cancer type with poor outcomes in the advanced setting de-
spite multidisciplinary clinical management. There is a lack of effective systemic therapies
for these patients and therefore an urgent need to develop new approaches to tackle this
disease. Key to the identification of novel agents is the availability of well-characterised
preclinical cell line models. To date, only five synovial sarcoma cell lines are available in
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public biorepositories [14], all of which have been cultured for decades. Here, we present
and characterise a new synovial sarcoma cell line ICR-SS-1, which has been established
from a PDX model held in The Jackson Laboratory biorepository. This cell line retains
the SS18::SSX1 fusion gene and faithfully recapitulates the molecular features of human
synovial sarcoma tumours as shown by mass spectrometry analysis.

Despite being driven by a single translocation (the SS18::SSX fusion gene), it is well-
established that in synovial sarcoma patients there is a wide heterogeneity in observed
clinical responses to systemic therapies. For instance, only a subset of advanced synovial
sarcoma patients benefits from treatment with chemotherapeutic agents such as doxorubicin
and trabectedin [44–46]. The mechanistic basis for this heterogeneity is currently unknown
and there are no predictive biomarkers available for stratification in order to rationally
target the right drugs to the appropriate patient population. Notably, our data show that the
ICR-SS-1 cell line is significantly more resistant to doxorubicin compared to two established
synovial cell lines SYO-1 and HS-SY-II. Our proteomic analysis finds that when compared
to the established cell lines, the ICR-SS-1 line shows significantly upregulated expression
of proteins involved in EMT. In line with this observation, previous studies have shown
that the induction of EMT drives doxorubicin resistance in multiple cancer types [47]. This
suggests that ICR-SS-1 could serve as a useful model to study the biology of anthracycline-
resistant synovial sarcoma and identify new salvage therapies, such as those that target the
EMT pathway, following the failure of doxorubicin treatment.

By subjecting ICR-SS-1 to a targeted small molecule inhibitor panel and comparing
the drug responses to the two other synovial sarcoma cell lines, we identified agents from
three different drug target classes which are effective in all three cell lines. Of these, both
SYO-1 and HS-SY-II have previously been shown to be sensitive to PLK-1 inhibition [48]
while BET bromodomain inhibitors [49]. In addition, we show that the dual PI3K-mTOR
inhibitor NVP-BEZ235 (also known as dactolisib) reduces the cell viability of ICR-SS-1 and
the two other synovial sarcoma cell lines. Our data are consistent with previous reports
of short-term patient-derived sarcoma modelling studies which demonstrate that tumour
cells from synovial sarcoma patients are sensitive to drugs that block this pathway [50,51].
Taken together, our data suggest that targeting the PI3K-mTOR pathway may have utility
particularly in the context of chemotherapy-resistant synovial sarcoma.

5. Conclusions

In summary, we have developed and characterised a matched PDX-derived cell line
for synovial sarcoma which will add to the arsenal of preclinical tools available for the
study of this rare cancer. In particular, the ICR-SS-1 cell line model may be valuable for
studies focused on the biology of anthracycline-resistant sarcoma and identifying novel
ways to tackle this clinically challenging problem.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11152418/s1, Table S1: Small molecule inhibitor screen with
associated primary target(s) and supplier.
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