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Abstract 

Background 

Prostate cancer is a very prevalent disease in men. Patients are monitored regularly 

during and after treatment with repeated assessment of prostate-specific antigen 

(PSA) levels. Prognosis of localised prostate cancer is generally good after treatment, 

and the risk of having a recurrence is usually estimated based on factors measured at 

diagnosis. Incorporating PSA measurements over time in a dynamic prediction joint 

model enables updates of patients’ risk as new information becomes available. We 

review joint model strategies that have been applied to model time-dependent PSA 

trajectories to predict time-to-event outcomes in localised prostate cancer. 

Methods  

We identify articles that developed joint models for prediction of localised prostate 

cancer recurrence over the last two decades. We report, compare, and summarise the 

methodological approaches and applications that use joint modelling accounting for 

two processes: the longitudinal model (PSA), and the time-to-event process (clinical 

failure). The methods explored differ in how they specify the association between 

these two processes. 

Results 

Twelve relevant articles were identified. A range of methodological frameworks were 

found, and we describe in detail shared-parameter joint models (9 of 12, 75%) and 

joint latent class models (3 of 12, 25%). Within each framework, these articles 

presented model development, estimation of dynamic predictions and model 

validations.  

Conclusions 

Each framework has its unique principles with corresponding advantages and differing 

interpretations. Regardless of the framework used, dynamic prediction models enable 

real-time prediction of individual patient prognosis. They utilise all available 

longitudinal information, in addition to baseline prognostic risk factors, and are superior 

to traditional baseline-only prediction models.  

Keywords 
Dynamic prediction models, prostate cancer, PSA, joint modelling, dynamic 

predictions, personalised medicine. 
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1 Background 
Prostate cancer is highly prevalent, as the 2nd most diagnosed cancer in men 

worldwide (1.3 million cases in 2018) [1] and the most common cancer among men in 

the UK [2,3]. Within the UK, one in eight men on average are diagnosed with prostate 

cancer, increasing to 1-in-6 for men born after 1960. In the period 2014-16 there were 

almost 48,000 diagnosed per-annum and over 11,500 deaths in 2016 from prostate 

cancer [4–6]. Over half of patients (56.5—61.3%) present at diagnosis with localised 

prostate cancer, where disease is confined to the prostate and has not yet spread to 

the nodes or other organs of the body [7,8]. Many treatment options are available to 

patients with localised prostate cancer, including external-beam radiotherapy (EBRT), 

brachytherapy, radical prostatectomy; or conservative management strategies for 

favourable-risk prostate cancer to delay or avoid aggressive treatment and potential 

side effects [9]. Potential treatment-related toxicities and side effects often affect 

management treatment choices [10]. EBRT is deemed most appropriate for those with 

moderate- or high risk disease [11]. A combination with hormonal therapy (HT) can be 

given for its neoadjuvant efficacy [9]: for low-grade localised prostate cancer, HT can 

be given 3-6 months before EBRT treatment, or longer for higher-risk stages [12].  

Patients are monitored regularly during, and after treatment. In particular, for their 

prostate-specific antigen (PSA), a serine protease protein biomarker secreted by the 

prostate [13]. Repeated PSA readings are taken during patient check-ups. Patients 

present at diagnosis with elevated PSA levels, which decrease upon starting of HT 

and RT. Thus, increased levels of PSA after treatment suggest a growth of prostate 

cancer cells, reflecting a higher risk of prostate cancer recurrence. PSA is used to 

determine biochemical failure (BcF), defined as a PSA concentration greater than the 

nadir (the lowest observed PSA value) plus 2 ng/mL [14].  HT can be used as a salvage 

therapy following BcF, lowering PSA levels and decreasing risk of clinical failure. Local 

or distant recurrence is confirmed by imaging.  

There are known patient and tumour risk factors that affect prognosis of localised 

prostate cancer.  These include PSA levels at diagnosis, tumour stage (as per the 

TNM scoring system) and Gleason score/grade grouping [15]. These risk factors are 

used to categorise patients into the National Comprehensive Cancer Network (NCCN) 

low, intermediate and high risk groups [16] (Table 1). Prognosis of localised prostate 

cancer (T1–T2N0M0) is generally good after treatment, with 5-year disease-free 

survival rates around 76% (95% CI: 75%—76%) [17]. 
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Table 1 – Risk stratification by clinical risk factors: Clinical T-stage, Gleason score, and presenting PSA. Locally 
advance prostate cancer includes high-risk localised patients, as defined by NCCN [16].  

Risk level 
Clinical  

T-stage 

Gleason 

Grading Group 

Presenting 

PSA 

Condition to 

be met 

Low risk T1-T2a 1 < 10ng/mL All three 

Intermediate risk T2b-c 2 or 3 10-20ng/mL Any 

High risk T3a 4 or 5 >20ng/mL Any 

 

Clinical prediction models (CPMs) are developed from patient and tumour features at 

diagnosis, as well as information on short-term treatments, to predict future prognosis. 

To date, a plethora of CPMs guide management decisions for localised prostate 

cancer, visualised in nomograms and online calculators [18–26]. These CPMs only 

consider information available at the time of diagnosis and/or at start/end of treatment, 

and PSA values collected after that timepoint are rarely considered, if only for the 

definition of BcF. However, it is of interest to both patient and clinician to examine the 

association of the biomarker of interest over time to prognosis. Knowing the patient is 

alive and recurrence-free at the new visit, with an updated PSA value, is informative. 

Including this new information into a prediction model can elicit dynamic predictions 

that enable updated prognosis of patients.  

A naïve approach would be to consider PSA as a time-dependent variable in an 

extended Cox/relative risk model [27]. However, this is not appropriate due to the 

endogenous nature of the biomarker of interest [28,29], which contains biological 

variation and measurement error. A further extension is to use landmark modelling 

[28,30–34]: dynamic predictions are obtained by fitting time-dependent Cox models to 

the patient subsample still at risk at several prediction, or landmark times of interest, 

together with the value of the longitudinal biomarker at that time. Landmark models 

are straightforward to fit with standard software, but no measurement error for the 

time-varying biomarker is considered nor is the entire longitudinal history of the 

biomarker utilised (due to using the last observation carried forward) [34]. To improve 

predictions, a two-stage approach to landmarking (also known as mixed model 

landmarking [28,35]) can be considered to model measurement error and incorporate 

the full biomarker history. However, uncertainties in the mixed-effect model estimates 

are not carried through to the survival submodel, resulting in overexact estimates [36].  
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Joint models (JMs) permit dynamic prediction in localised prostate cancer by 

considering two time-dependent processes simultaneously: the repeated longitudinal 

PSA biomarker over time (modelled using a mixed-effects submodel), and the time to 

an event of interest (modelled using a relative-risk, or Cox submodel). The event of 

interest can be BcF, recurrence of disease (either locally in the prostate gland, in the 

regional lymph nodes or in a distant organ), clinical failure (need to re-commence HT), 

death, or a composite of all these events.  The association between these two 

processes can be captured by shared random effects in both the longitudinal and time-

to-event submodels (shared-parameter joint models, SPJMs) or by assuming a latent 

association structure between them (joint latent class models, JLCMs).  

In this paper, we synthesize a review for published applications of joint models to 

localised prostate cancer over the last two decades, focusing on the modelling of the 

time-to-event process(es), the functional form of PSA, validation strategies and 

evaluation of dynamic predictions. We describe the search strategy to identify papers, 

and we briefly describe the joint modelling methodology, as well as how to compute 

dynamic predictions, measures of predictive performance from joint models. Given the 

rapid popularity and use of dynamic prediction models, this article serves as a 

reference to assess and reflect the applied and dynamic methods used in localised 

prostate cancer.  The main review of the identified articles is given in the results section 

and summarised on Table 2. Finally, an appraisal and conclusion of these models are 

given. 

2 Methods 

2.1 Literature search strategy 

Our search strategy included linear combinations of, {“joint model*” OR “individual* 

prediction”} AND {“prostate cancer” OR “prostate-specific antigen” OR “PSA”} in the 

title or abstract, using Web of Science and PubMed databases up to and including 

June 2020. A flowchart depicting the study identification strategy is given in Figure 1. 

A total of 751 articles were identified from the initial search parameters, 703 and 48 

articles came from Web of Science and PubMed respectively. Duplicated articles were 

removed leaving 702 unique papers. Novel and seminal papers that involve the joint 

modelling of the longitudinal biomarker PSA and time-to-event of clinical recurrence in 

localised prostate cancer were selected by the lead author, and selection discussed 

with co-authors, as the focus was to understand the PSA dynamics for this disease, 

which can be quite different from PSA dynamics for advanced prostate cancer. Further 

exclusions were made on inspecting the abstract, these included: advance/metastatic 

disease; different disease; no joint modelling undertaken, or alternative machine 

learning/artificial intelligence methods used; simulated data used; predicting 

alternative endpoints such as time to diagnosis or death; no dynamic predictions 

derived; and whether focus was on methodology development. 
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Records identified via  
Web of Science (n=703) and 
PubMed (n=48) databases 
 

Records removed before 
screening: 

• Duplicate records removed 
(n = 49) 

Records screened (n = 702) 
Records excluded (n = 616): 

• Title nor abstract did not 
reference to ‘joint model’ or 
‘individual prediction’ 

Reports assessed for eligibility 
(n = 86) 

Reports excluded (n=74): 

• Advance / castration-
resistant prostate cancer  

• Different disease – not 
prostate cancer  

• No joint modelling used, or 
ML/AI used  

• Simulated datasets 

• Predicting alternative 
endpoints  

• No dynamic predictions 

• Joint model methodology 
development – extension of 
repeated previous analysis 
 

Studies included in review (n = 12): 
 
- Joint latent class models (n=3) 
- Shared-parameter joint models (n=9) 

• Standard time-to-event submodel (n=3) 

• Extensions to time-to-event submodel (n=6) 
 

Identification of studies via databases 
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Figure 1 – A flowchart for identifying studies of the literature review. 
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2.2 Notation 

In this section, we define the mathematical notation common to SPJMs & JLCMs 

frameworks. Let 𝒚𝑖 = yi(tij); i = 1, … , N;  j = 1, … , n𝑖} be a longitudinal response vector 

of the continuous biomarker measurements for the 𝑖𝑡ℎ patient and 𝑗𝑡ℎ biomarker 

reading taken at time 𝑡𝑖𝑗. There are N patients with 𝑛𝑖  longitudinal measurements per 

patient.  

Let the random variable 𝑇𝑖 be the time-to-failure for the 𝑖th
 patient, where 𝑇𝑖 =

min(𝑇𝑖
∗, 𝐶𝑖).  The true event time is denoted 𝑇𝑖

∗
 and 𝐶𝑖  is the censoring time. An indicator 

variable 𝛿𝑖 = 𝐼(𝑇𝑖
∗ ≤ 𝐶𝑖) is unity if the event of interest is observed for that patient, or 

zero otherwise. 

2.3 Shared-parameter joint model 

Under the shared-parameter joint models framework, random effects are used to link 

the longitudinal and time-to-event components under study, whilst also accounting for 

the correlated repeated measurements within the longitudinal outcome. 

The longitudinal process 𝒚𝑖 is assumed to follow a mixed-effects model, defined by a 

linear combination of possibly time-dependent main- and random effects 𝑌𝑖(𝑡𝑖𝑗) =

𝑚𝑖(𝑡) + 𝝐𝑖(𝑡𝑖𝑗) = 𝜷𝑋𝑖(𝑡𝑖𝑗 ) + 𝒃𝑖𝑍𝑖(𝑡𝑖𝑗 ) + 𝝐𝑖(𝑡𝑖𝑗). The vector 𝜷 are coefficients for the 

main- and time-effect covariates of the design matrix 𝑋𝑖, and the corresponding 

random effects 𝒃𝑖 for the 𝑍𝑖 design matrix. The measurement errors 𝝐𝑖(𝑡𝑖𝑗) =

{𝜖𝑖(𝑡𝑖1), … , 𝜖𝑖(𝑡𝑖𝑛𝑖
)}

𝑇
 are independent and identically distributed and assumed to follow 

𝝐𝑖(𝑡𝑖𝑗) ∼ 𝑁(0, 𝜎𝑒
2), or t-distribution with several degrees-of-freedom, with the fatter tails 

used to accommodate for possible outliers. The random effects, independent of 𝝐𝑖(𝑡𝑖𝑗), 

are usually assumed to follow a multivariate normal distribution, with an unknown 

square covariance matrix structure 𝐷, 𝒃𝑖~MVN(𝟎, 𝐷).  

A relative risk, or proportional hazards model, is used for the parameterisation of the 

survival submodel:  

 ℎ𝑖(𝑡|𝑴𝑖(𝑡),  𝒘𝑖) = lim
Δ𝑡→0

Pr{𝑡 ≤ 𝑇𝑖
∗ < 𝑡 + Δ𝑡 |𝑇𝑖

∗ ≥ 𝑡, 𝑴𝑖(𝑡), 𝒘𝑖}

Δ𝑡
 

                                = ℎ0(𝑡) exp{𝜸𝑇𝒘𝑖 + 𝑓(𝑴𝑖(𝑡), 𝒃𝑖, 𝜶)}. 

Where 𝑴𝑖(𝑡) denotes the true (unobserved) and entire longitudinal biomarker history 

up to time point t, with 𝑚𝑖(𝑡) indicating the true value at t (i.e. the mixed effect model 

not contaminated with measurement error). The baseline covariates in the hazard 

submodel are 𝒘𝑖, with 𝜸𝑇 corresponding to the log-hazard ratio coefficients. An 

example of the parameterisation of the functional form 𝑓(𝑴𝑖(𝑡), 𝒃𝑖, 𝜶) can be a linear 

combination of value and gradient of the longitudinal biomarker, 𝑓(… ) =  𝛼1𝑚𝑖(𝑡) +

𝛼2
d𝑚𝑖(𝑡)

d𝑡
. The corresponding 𝜶 parameters quantify the intensity of association 
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between the two outcomes. Other functional forms of 𝑓 exist, such as the (weighted) 

cumulative effect (1), or random effects association (2),  

𝑓 = 𝛼 ∫ 𝜔(𝑡 − 𝑠) × 𝑚𝑖(𝑠) 𝑑𝑠

𝑡

0

 (1) 

 

𝑓 = 𝜶T𝒃𝑖  (2) 

The former quantifies the risk of recurrence from the area under the biomarker 

trajectory and can allocate greater weights to more recent biomarker observations, 

e.g., using a standard normal density function for 𝜔. The latter parameterisation uses 

only the random effects as a linear predictor, this requires no numerical integration 

which is computationally advantageous. Using a simple random intercept- and slopes 

structure is most interpretable, whereby patient deviations from the population average 

is expressed [37]. More elaborate structures are challenging to interpret [29,38,39]. A 

full parametric specification of the baseline hazard function, ℎ0(𝑡), is recommended 

(e.g. using constant-piecewise, or regression splines models), with an adequate 

number of knots for flexibly modelling the underlying baseline risk. Leaving ℎ0(𝑡) 

unspecified can lead to underestimating the precision of parameter estimates [40].  

Given the random effects 𝒃𝑖, 𝑌𝑖 and 𝑇𝑖 become independent (conditional 

independence). Excellent overviews of shared-parameter joint modelling can be found 

in Rizopoulos [37] and Papageorgiou et al. [29].  

2.4 Joint latent class model 

The joint latent class models framework assumes the existence of latent classes that 

capture the association between the longitudinal biomarker trajectory and the relative 

risk of the endpoint of interest.  Following the same notation as above, we can define 

the JLCM by the mixed-effect- and relative risk submodels for each latent class 𝒄𝑖 ∈

{1, . . , 𝐺}T:  

(𝑌𝑖(𝑡𝑖𝑗)|𝒄𝑖 = 𝑔) = 𝜷𝑔𝑋𝑖
𝑇(𝑡𝑖𝑗 ) + 𝒃𝑖𝑔𝑍𝑖

𝑇(𝑡𝑖𝑗 ) + 𝜖(𝑡𝑖𝑗);  𝜖(𝑡𝑖𝑗) ∼ 𝑁(0, 𝜎𝑒
2), 𝐛ig ~ MVN(𝛍𝑔, D) 

 

ℎ𝑖(𝑡 |𝒄𝑖 = 𝑔) = ℎ0𝑔(𝑡) exp(𝜸𝑔
𝑇𝒘𝑖), 

where assignment to latent class 𝑔 is given by a multinomial submodel,  

Pr(𝒄𝑖 = 𝑔 | 𝑋𝑖) =
exp(𝝀𝑔

𝑇𝑋𝑖)

Σ𝑗=1
𝐺 exp(𝝀𝑗

𝑇𝑋𝑖)
. 

With 𝑋𝑖 a fixed baseline design matrix associated with classification and corresponding 

coefficients 𝝀𝑔
𝑇 = (𝜆0

𝑇 = 0, 𝜆1
𝑇 , … , 𝜆𝐺

𝑇 = 0). Given the latent class 𝒄𝑖, conditional 

independence between the longitudinal and time-to-event outcomes is assumed. 
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The JLCM has some advantages compared to the SPJM: it does not need to specify 

a suitable functional form to link the two processes, and thus the conditional 

independence assumption in the JLCMs results in less onerous computations. 

However, as the number of latent classes are not known a priori, it is another 

component to be estimated, and as these are not observed, the conditional 

independence assumption is nontrivial to evaluate. Jacqmin-Gadda et al. [41], 

proposed a trivariate score test to evaluate this assumption, they showed that their 

score test was uniformly most powerful and simpler than all other considered tests.  

2.5 Dynamic predictions 

Given a sample from the population of interest, joint models permit to compute 

dynamic predictions of the event of interest at a future time 𝑢 given the information 

available up to time 𝑡 > 0. For a specific 𝑖th individual, these are defined by 𝜋𝑖(u|t) =

Pr(𝑇∗ ≥ 𝑢 |𝑇∗ > 𝑡, 𝑋𝑖, 𝒚𝑖(𝑡), 𝑇𝑖, 𝛿𝑖, 𝒘𝑖 , 𝜽). I.e., the conditional probability of being event-

free at time 𝑢 > 𝑡, given that the patient is still at risk of the event at time 𝑡 (𝑇∗ > 𝑡), 

the baseline covariates / fixed effects design matrix 𝑋𝑖, the biomarker longitudinal 

values observed up to time 𝑡, 𝒚𝑖(𝑡), and the parameters 𝜽 estimated from the joint 

model. These predictions, which can be then dynamically updated when new 

biomarker information becomes available at 𝑡’ > 𝑡 [28].  

For the shared-parameter JMs, these are extracted by integrating the conditional event 

probability 𝜋𝑖(u|t) over the random effects. Similarly for the JLCM, the predicted 

probabilities are given by summing over the latent classes. In both frameworks, this is 

difficult to compute analytically, therefore Markov chain Monte Carlo (MCMC) methods 

are implemented. MCMC extracts the predicted event posterior distribution of 𝜋𝑖(u|t) 

and corresponding credible intervals from the Monte Carlo sample percentiles of 

interest [42,43].  

2.6 Predictive performance  

Measuring predictive ability is crucial to assess the proposed model(s) performance in 

producing accurate predictions, the end goal for any DPM (dynamic prediction model). 

Two aspects of modelling performance can be assessed: calibration (how well the 

model predicts the observed data) and discrimination (how well can the model 

distinguish between those patients that do and do not have an event).  

Discrimination is typically assessed by considering the time-dependent AUROC (area 

under the receiver operating characteristic curve) [42,44–46]. Within a particular 

chosen prediction window, AUROC (or simply AUC) values of 0.5 indicate random 

chance assignment and values closer to unity indicate better model discrimination.  

The prediction error (PE) focuses on assessing the calibration of the model, and it is 

defined as the expectation of the difference between the observed event status 

𝑁𝑖(𝑢|𝑡) = 𝐼(𝑇𝑖
∗ > 𝑢|𝑡) and the predicted event occurrence 𝜋𝑖(𝑢|𝑡), at a specific time. A 

loss function can be incorporated within the expectation, e.g., the absolute- or mean 

squared-loss functions. The latter is also known as the Brier score (BS), which is an 
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overall measure of prognostic performance [47,48]. Under any loss function, as the 

difference between these two terms decrease and tends to zero, the closer the 

observed and predicted event align, resulting in better predictive performance of the 

model. In practice, one may want to consider predictions over a window of interest, 

rather than specified time points, by using weighted extensions of these estimators, 

e.g. weighted average absolute prediction error (WAPE) or integrated BS [49,50]. For 

any of these predictive measures to be valid, the censoring distributions need to be 

corrected for, e.g. using inverse probability weighted estimators [28,46,51,52]. 

Alternative measures of accuracy can be utilised, such as the expected prognostic 

observed cross-entropy (EPOCE) [53]. The EPOCE quantifies the prognostic 

information from the joint model at the landmark time of interest. When estimated 

internally, leave-one-out cross-validation of the prognostic observed log-likelihood 

(CVPOL) is used to correct for over-optimism [54]. For external validation, no cross-

validation is required. Proust-Lima et al. [43] argue the advantages of EPOCE over 

the previously stated measures, including no censoring distribution nor a prediction 

window is assumed, direct comparison of two joint models can be made, and that it is 

more reasonable to evaluate directly on the likelihood density functions. Further 

formulation and discussion on this predictive accuracy metric can be found in [43,53].   

3 Results 
We identified 12 relevant full-text papers that best illustrated the joint modelling 

framework and summarised its applications in localised prostate cancer, these were 

selected to be included within this review. Table 2 summarises these twelve papers 

including details of the modelling framework used, sample sizes, parameterisations, 

the prediction windows of interest, whether validation was undertaken, and the 

code/software used.  

Where available, the corresponding software and code with packages can also be 

found [55,56]. Nine papers (9 of 12, 75%) applied the shared-parameter joint modelling 

framework, with three of these presenting the standard joint model for a time-to-failure 

endpoint, while 6 of 9 papers presented extensions to the time-to-event submodel 

incorporating cure, competing risks, and multi-state models for localised prostate 

cancer (e.g., local- and distant recurrence, salvage therapy, and death). Three papers 

(3 of 12, 25%) described the joint latent class approach. In the following, we review 

and summarise these papers in detail around their model specification, estimation of 

dynamic predictions and model validations conducted.  
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Table 2 – Summary table of joint modelling articles applied to localised prostate cancer and clinical failure, in chronological order. Abbreviations include: joint latent class model 
(JLCM); shared-parameter joint model (SPJM); prostate-specific antigen (PSA); external-beam radiotherapy (EBRT); hormonal therapy (HT); expected prognostic observed 
cross-entropy (EPOCE); cross-validated prognostic observed log-likelihood (CVPOL); integrated Brier score (IBS). 

Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

1)  
Pauler & 
Finkelstein, 
2002 [59] 

Bayesian 
change-point 
SPJM. 

N=676, 
E=176 

PSA data during the 
first two years was 
dropped from analysis 
due to rapid drops of 
PSA post-EBRT & 
HT. The random 
effects include the 
intercept and the 
slopes (before & after 
the change-point). 
The change-point 
indicator predicts 
recurrence. 
 
Logged-PSA is 
modelled with 
covariates age, 
presenting PSA, T-
stage, with change-
point indicator. 
 

Change-point 
occurring within 10 
years. Relapse 
landmark by four 
years with a 
prediction horizon 
of 10 years.  

None performed. C routine 
dfpmin, and 
S-PLUS 
surv.fit 
function. 
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Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

2)  
Law et al., 
2002 [63] 

Frequentist 
cure SPJM. 

N=458, E=92 Two models are fitted, 
joint-cure and logistic-
Cox (no longitudinal 
PSA consideration). 
 
Nonlinear 
exponential- decay & 
growth modelled 
longitudinal logged-
PSAs using 
presenting PSA, T-
stage, and Gleason.  

Not specified, 
estimated 
probabilities of 
recurrence are 
given for each 
patient at some 
time in the future.  

Simulation study 
performed showing that 
joint-cure model has 
better sensitivity and 
discrimination compared 
to logistic-Cox model.  

MATLAB 

3)  
Yu et al., 
2004 [64] 

Cure SPJM 
(comparing 
Bayesian 
and 
Frequentist).  

N=458, E=92 Modelled current PSA 
value and the PSA 
gradient trajectory. 
Random effects are 
modelled 
parametrically by 
exponential- decay & 
growth models 
adjusting for 
presenting PSA, T-
stage, and Gleason. 

Not specified, 
estimated 
probabilities of 
recurrence are 
given for each 
patient at some 
time in the future. 

Not done – comparisons 
are made between the 
two estimation methods 
and are shown to be 
similar to one another. 

MATLAB & 
C++ 
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Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

4)  
Taylor et al. 
2005 [62] 

Bayesian 
cure SPJM. 

N=934, 
E=140 
  
 

PSA value & slope 
and time-dependent 
hormone therapy 
commencement 
indicator is 
considered, adjusting 
for baseline 
covariates: presenting 
PSA, T-stage, 
Gleason, age, total 
dose (Gy), and 
treatment duration.  

Landmarks from 
last contact, with a 
prediction window 
of four years. 

Validation performed on 
data of the same 
patients used for 
development, but with 
further follow-up. The 
model is shown to be 
well calibrated and 
accurately predict new 
PSA values and 
recurrence risk. 

C++ 
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Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

5)  
Yu et al., 
2008 [65] 

Bayesian 
cure SPJM. 

N=928, 
E=146 

PSA value & slope 
and time-dependent 
hormone therapy 
commencement 
indicator is 
considered, adjusting 
for baseline 
covariates: presenting 
PSA, T-stage, 
Gleason, age, total 
dose (Gy), and 
treatment duration.  

Landmarks from 
last contact, with a 
prediction window 
of four years.  

Validation performed on 
data of the same 
patients used for 
development, but with 
further follow-up. The 
model is shown to be 
well calibrated and 
accurately predict new 
PSA values and 
recurrence risk. Kaplan-
Meier plot shows the 
higher predicted risks go 
on to have more 
recurrences indicating 
its validity.  

C++ 
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Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

6)  
Proust-
Lima & 
Taylor, 
2009 [61] 

Frequentist 
JLCM. 

Model 
development 
and validation: 

N=2,386, 
E=317 
 

Baseline covariates 
included: presenting 
PSA, T-stage, and 
Gleason. The main- 
and random effects 
are of the biphasic 
initial decline and 
long-term rise. Five 
latent classes were 
identified. 
 

Landmarks taken 
at every six 
months from 1—
3½ years, with a 
prediction window 
of three years.  

External validation of 
prediction is performed 
on two external cohorts. 
A range of models are 
explored, the 5-JLCM 
shows consistently 
lower absolute- and 
weighted prediction 
errors in both cohorts, 
using prediction 
windows of 1 and three 
years.  

Not stated but 
presumably R 
using the 
lcmm 
package. 

7)  
Jacqmin-
Gadda et 
al., 2010 
[41] 

Frequentist 
JLCM. 

N=459, E=74 Similar to [61] with 
biphasic longitudinal 
components for the 
logged-PSA, 
considering 
presenting PSA, T-
stage, and Gleason. 
Four latent classes 
were identified to be 
best fitting where the 
proposed score test 
did not reject the null 
of conditional 
independence.  

Only mean 
evolutions for each 
of the four classes 
are given with 
predicted 
recurrence-free 
survival. No 
windows are 
specified. 

Simulation study 
performed to appraise 
score test, where 
baseline hazard function 
was misspecified. This 
methodology was 
applied to prostate 
cancer cohort. 

Not stated but 
presumably R 
using the 
lcmm 
package. 
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Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

8)  
Taylor et al. 
2013 [57] 

Bayesian 
SPJM. 

Model 
development 
and validation: 

N=3,232, 
E=458 

Covariates include 
presenting PSA, T-
stage, and Gleason 
grade. Longitudinal 
parameterisation 
includes PSA value & 
slope, and time-
dependent HT.  

Landmarks are 
given from most 
recent PSA values 
with a prediction 
window of three 
years.  

External validation is 
performed on fourth 
dataset. Simpler visual 
approaches are 
undertaken, focusing on 
estimated risk of 
recurrence three years 
after treatment using a 
three year prediction 
window. Patients are 
assigned to four risk 
groups, comparing the 
training and testing 
Kaplan-Meier plots, 
treating commencing 
hormone therapy as 
either censored and as 
an event. The model is 
deemed adequately 
calibrated with similar 
patterns being exhibited 
between training & 
testing datasets.  

C 



 

17 
 

Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

9)  
Proust-
Lima et al., 
2014 [43] 

Frequentist 
JLCM & 
SPJM. 

Model 
development 
and validation: 
N=1,178, 
E=200 

Biphasic mixed-effect 
parameterisation of 
longitudinal logged-
PSA. Baseline 
covariates: presenting 
PSA, T-stage and 
Gleason  
Four latent classes 
identified for the 
JLCM, SPJM included 
PSA value and slope 
association structure. 
All other components 
had the same model 
structure for direct 
comparison.  

Landmarks taken 
at every six 
months from 1—
3½ years, with a 
prediction window 
of three years. 

Internal and external 
validation is performed. 
The EPOCE is 
estimated internally 
using CVPOL from 1 – 6 
years after EBRT. The 
difference in EPOCE for 
4-JLCM and SPJM 
shows the 4-JLCM to be 
a better prognostic 
model in the first four 
years. External 
EPOCEs and integrated 
BS are shown over the 
follow-up period. The 
IBSs and EPOCEs 
show reduced errors for 
≥3-JLCM and SPJM 
with little difference 
between the two 
approaches.  

R: using the 
lcmm and JM 
packages – 
code is 
available on 
request from 
authors.  
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Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

10) 
Sène et al., 
2016 [58] 

Frequentist 
SPJM. 

N=2,386, 
E=312 

Similar to [61] with 
biphasic longitudinal 
components for the 
logged-PSA, 
considering 
presenting PSA, T-
stage, Gleason, and 
corrected total EBRT 
dose. Several 
specifications of the 
time-dependent 
initiation of salvage 
HT, and the 
association structures 
of the longitudinal 
value and slope of 
PSA and random 
effects.   

Landmarks from 
1.2, 1.6, 2 and 2.6 
years are given 
with a prediction 
window of 
recurrence within 
the next three 
years. The 
predicted 
recurrence 
probabilities are 
given under four 
scenarios of 
initiating salvage 
HT immediately, in 
1 or 2 years, or not 
at all.  

Internal validation is 
performed using cross 
validation for a 
prediction window of 
three years. The 
CVPOL, CV-BS, and 
CV-IBS are shown for 
the six model structures. 
A simpler random 
effects joint model is 
best and chosen for the 
absence of salvage HT; 
for immediate HT, the 
JM that separated the 
PSA trajectory before 
and after HT is deemed 
best.  

R: JM 
package with 
modifications 
to source 
code. 
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Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

11)  
Ferrer et 
al., 2016 
[67] 

Frequentist 
multi-state 
SPJMs 

N=1,474; 
E=941* 
* sum of all events  

Similar to [61] with 
biphasic longitudinal 
components for the 
logged-PSA, 
considering 
presenting PSA, T-
stage, and Gleason. 
The longitudinal PSA 
value and slope was 
modelled.  

For the multi-state 
process, transition 
probabilities are 
given from each 
transition to any of 
the other four 
transitions from the 
end of treatment 
throughout follow-
up.  

A simulation study was 
undertaken to ensure 
the estimation process 
was correct.  
Diagnostic plots for the 
residuals and 
observed/predicted of 
the longitudinal model.  

R: nlme, 
survival, 
mstate and 
JM packages, 
with 
adaptations. 
Code is 
readily 
available at 
the author’s 
GitHub 
account. 
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Paper [ref] Modelling 
Framework 

Sample 
sizes (N) & 
Events (E) 
for model 
development 
 

Joint model 
parametrisation 

Dynamic 
prediction 
landmark and 
prediction 
window  

Validation undertaken  Code & 
software 
used  

12)  
Ferrer et 
al., 2018 
[66] 

Frequentist 
landmarking 
and cause-
specific 
SPJMs. 

Not explicitly 
stated but as 
above. 
N=1,474; 
E=unknown. 

Longitudinal logged-
PSA modelled 
similarly as to [67]. 
Adjusting for: dataset 
cohort, age, T-stage, 
Gleason and 
presenting-PSA. 

Predicted 
recurrence and 
competing risk of 
death probabilities 
for two patients at 
their landmarks of 
1.3 to 2.5 years 
using a prediction 
window of 1½ and 
three years, 
comparing JM and 
landmark 
modelling.  

Simulation study using 
the prostate patient 
cohorts to generate 
similar data. Evaluating 
robustness of JMs and 
landmark models, under 
different assumptions. 
JMs generally more 
robust to deviations in 
assumptions than 
landmark models, other 
than a strong violation in 
the longitudinal PSA 
biomarker specification 
where the landmark 
model performs better.  

R: nlme, JM, 
survival, 
pseudo, and 
geepack 
packages. 
Code is 
readily 
available at 
the author’s 
GitHub 
account.  
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3.1 Shared-parameter joint models to predict recurrence in localised prostate 

cancer   

In this section, we focus our review on three relevant papers that investigated PSA 

dynamics to predict recurrence in localised prostate cancer using the SPJM 

framework: Taylor et al. [57], Sene et al. [58], and Pauler & Finkelstein [59]. All three 

articles develop models in localised prostate cancer patients treated with EBRT in the 

absence of neoadjuvant HT. Taylor focused on developing a model to creating a 

clinical prediction tool online; Sene explored the effect on initiating salvage treatments 

at different time points and its effect on the predicted dynamic probabilities of 

recurrence. Pauler & Finkelstein use a change-point model to capture any jump in 

PSA. 

3.1.1 Model specification 

In Taylor et al. [57], the functional form over time of the longitudinal PSA mixed model 

assumes three phases: baseline/presenting PSA (Β0), and the short-term (decrease, 

Β1), and long-term (increase, Β2) evolutions of PSA, 𝑌𝑖(𝑡) = log[PSAi(𝑡) + 0.1]  = Β0 +

Β1𝑓1 + Β2𝑓2, with 𝑓1 = {(1 + time)−
3

2 − 1} and 𝑓2 = time. For each of the three phases, 

𝐵𝑘={0,1,2}, are matrices containing linear combinations of the fixed baseline covariates 

T-stage, Gleason grade and presenting pre-treatment PSA, along with subject-specific 

random effects parameters. A t-distribution with five degrees-of-freedom for the error 

term is assumed. Time to prostate cancer clinical recurrence is measured from the 

end of RT. In the survival submodel, the functional form 𝑓(𝑴𝑖(𝑡), 𝒃𝑖, 𝜶) is a linear 

combination of the value of PSA concentration and its slope at time t, 𝑓(𝑴𝑖(𝑡) 𝒃𝑖, 𝜶) =

𝛼1PSA(𝑡) + 𝛼2
𝑑 PSA(𝑡)

𝑑𝑡
. Additionally, the survival submodel included a time-dependent 

indicator variable for when salvage hormonal treatment (ST) is initiated to account for 

the subsequent drop in hazard of clinical failure. PSA values after ST were excluded 

due to the sudden decrease in PSA trajectory and did not feature in the mixed-effect 

model; however, clinical recurrences after ST were considered. A piecewise constant 

function is assumed for the baseline hazard.  

Sene et al. [58] made similar modelling assumptions as Taylor et al. [57] for the 

functional forms in the mixed and survival submodels. The model adjusted for 

presenting PSA, Gleason score, T-stage, and total corrected dose of EBRT (using the 

linear-quadratic model given in [60]).  Initiation of ST was included as a time-

dependent indicator variable to reflect the potential decrease in risk of progression; 

five functional forms of ST were considered. Three different association structures of 

𝑓 were fitted: a linear combination of PSA value and gradient (with and without a 

logistic transformation for PSA), and the random effect structure, which evaluated the 

individual deviations from the overall population’s PSA trajectories. A combination of 

those different parametrisations yielded 12 models with varied complexity.  

Pauler & Finkelstein [59] proposed a change-point parameterisations in the 

longitudinal model for PSA, by incorporating an unknown change-point indicator 
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variable for whether change in PSA has occurred. If a shift is indicated, a likely change-

point time-range is estimated with a uniform distribution for PSA. A narrower posterior 

change-point range with larger differences in the slopes before- and after the change-

point indicate prostate cancer recurrence is likely (before the formal clinical failure 

endpoint). Trivariate normal and uniform priors are used for four random effects, they 

included: intercept; change-point time (uniform); the slope before and after the 

change-point. For the survival submodel, a piecewise exponential hazard function was 

used. Baseline covariates included age, presenting PSA, and disease stage. For the 

joint model, non-informative priors were chosen.  

3.1.2 Estimation, prediction and validation 

In Taylor et al [57], estimation was undertaken under a Bayesian framework using C 

software. The joint model was developed on three pooled cohorts (totalling 𝑁 = 2,386 

patients) and externally tested using a separate fourth dataset (𝑁 = 846 patients). 

Dynamic predictions for an individual patient’s PSA trajectory and risk of recurrence 

for the next three years were shown: no formal validation measures were presented. 

The authors opted for simpler graphical inspections to study the model, owing to the 

complicated nature of the time-dependent ST events within the validation cohort. An 

online prognostic calculator was developed, enabling individual dynamic predictions 

of disease recurrence given PSA trajectories for future patients 

(http://psacalc.sph.umich.edu1).  

In Sene et al [58], estimation was undertaken under a frequentist framework, and R 

software used for model development, again using the same three cohorts as in Taylor 

et al [57]. Internal approximated leave-one-out cross-validation was used to assess 

six of the 12 models’ predictability, using BS and EPOCE accuracy measures [54]. 

The two best fitting models were the logistic-transformed PSA value and slope that 

separated the effect of PSA before- and after ST, whilst the model with the random 

effect association structure performed best when assumed that the patient would not 

start ST within three years. Exemplar individualised dynamic predictions used a 

prediction window of three years on an intermediate risk patient. Different scenarios 

when ST would be initiated were used to illustrate the impact of delays in ST initiation 

on risk of recurrence. External validation was not performed. 

We cannot make direct comparisons between the predictive performances of the two 

papers as they used different assessment methods (graphical approaches in Taylor, 

EPOCE & BS presented in Sene). In Sene et al., patients who did not receive HT nor 

ST within three years were mainly used in order to assess predictive performance. 

Sene noted that this may not be a representative situation for all patients, so they 

performed a sensitivity analysis using Taylor’s approach to widen the sample on HT-

free patients at the landmark prediction time only, then with subsequent ST initiation 

within the three-year prediction window, as either a recurrence event or dependent 

 
1 Last accessed in January 2022. 

http://psacalc.sph.umich.edu/
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censoring. The relative predictive performance was largely unchanged in both papers 

under this approach and therefore can be considered robust.  

In Pauler & Finkelstein [59], estimation was done in a Bayesian  framework, using C 

and S-plus software. The joint model was developed on a cohort of 𝑁 = 676 patients. 

As the majority of patients do not exhibit clinical failure, the slope after the change-

point was non-significantly negative, indicating PSA trajectories generally remain 

constant over the follow-up period. The regression coefficients from the relative risk 

component are not straightforward to interpret due to the number of pairwise and 

three-way interactions, the authors’ noted that coefficients are in the expected 

directions. Sensitivity analysis was done on three differing definitions of recurrence 

based on PSA rises. They showed that regardless of rule followed, there was little 

difference to their optimal joint model. The AIC rose when considering only a relative 

risk model using indicator covariates for each rule, this provided justification on using 

the joint change-point model, as the longitudinal PSAs substantively improve the 

goodness-of-fit. The posterior distributions of four individual patient change-points 

were shown. For two patients who do relapse, sharp change-points are given between 

2-4 years, who then go on to recur at six and four years of follow-up. For stable PSA 

patients, the change-point is imprecise with very wide uniform posteriors. 

Individualised predictions are performed on two hypothetical patients showing each’s 

posterior predictive distributions of time to relapse. Although discussed, the model was 

not validated.  

3.2 Latent class joint models to predict recurrence in localised prostate cancer 

In this section, we focus our review on relevant papers that investigated PSA dynamics 

using the JLCM framework. There are three papers of interest reviewed in this section, 

by Proust-Lima & Taylor [61], Jacqmin-Gadda et al. [41] , and a third paper by Proust-

Lima et al. [43], which is appraised separately in 3.2.1 as compares SPJM and JLCM.  

Proust-Lima & Taylor [61] modelled the functional longitudinal PSA similarly to Taylor 

et al. [57] (described in 3.1). Baseline covariates T-stage, Gleason score, and pre-

treatment PSA were included into both submodels. The survival submodel also 

includes an exogenous time-dependent indicator variable for initiation of ST, and a 

class-specific Weibull baseline hazard function.  

Model development was performed on a single cohort of patients (𝑁 = 1,268), and 

external validation was performed on two additional smaller cohorts (with 𝑁 = 503 and 

𝑁 = 615 patients respectively). Several JLCMs were fitted with ranging classes (2—

6), with the five-class model (5-JLCM) producing the lowest Bayesian Information 

Criterion (BIC); the optimal model included estimation of 75 parameters. Predicted 

PSA evolutions and survival curves for each of the five classes illustrate how PSA 

trajectories with long-term rise of PSA correspond to greater risk of failure.  Dynamic 

predictions were made within a prediction window of three years for two patients with 

contrasting baseline risk factors: a lower-risk patient who recurs and a higher-risk 

patient with no observed recurrence.  
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Within each external validation cohort, measures of predictive accuracy (absolute 

prediction errors EP and WAEP) for the five-class JLCM were computed, and 

compared to a relative risk model with baseline information only, and a two-stage 

landmark model. The JLCM was shown to be the best fitting at various landmark times, 

and accounting for the longitudinal biomarker reduced both the EP and WAEP, 

particularly at earlier landmarks.  

For Jacqmin-Gadda et al. [41], the score test methodology introduced in 2.4 is applied 

to develop a prognostic joint model for prostate cancer recurrence (with the same 

dataset used as in Taylor et al., [62]). They develop the JLCM similarly to  Proust-Lima 

et al., [35,61]. They show that the more flexible 4-class JLCM did not reject conditional 

independence, whereas the less powerful alternative Wald test for dependence failed 

to reject the null for a 3-class JLCM. 

3.2.1 Comparison between latent-class and shared-parameter joint models 

A direct comparison is made between the two types of joint models applied to prostate 

cancer by Proust-Lima and colleagues [43]. Three prognostic baseline factors were 

adjusted for, logged initial-PSA, T-stage, and Gleason score using the same Michigan 

hospital cohort dataset. The three-component parameterisation of PSA in the mixed-

effect model was done in the same manner to Proust-Lima & Taylor, and Taylor et al. 

[57,61] for both joint models for direct comparison. The developed 4-JLCM adjusting 

for PSA value and slope was chosen from information criteria and conditional 

independence being met. The BIC favoured the 4-JLCM compared to the shared-

parameter JM.  

For direct comparisons between the JLCM and SPJM, evaluation of dynamic 

predictions (for the entire follow-up) are made using the cross-validated EPOCE 

framework in the first six years. The 4-JLCM is superior to the SPJM in the first four 

years on internal validation, and also slightly better in the first three years on external 

validation.  

3.3 Extensions to the shared-parameter joint model  

We present some further extensions to the joint model in the following subsections. In 

particular we comment and review four papers with a cured fraction [62–65]; a 

competing risk joint model [66], where clinical recurrence is competing with a non-

related cancer death; and a multi-state joint model [67], whereby patients can go 

through a pathway of disease states throughout follow-up.  

3.3.1 Joint-Cure models 

A natural extension to the SPJM is to incorporate a cure component to the time-to-

event submodel, whereby patients are considered to be susceptible to experience the 

event under study (e.g. recurrence), or, on the contrary, to be cured after initial 

treatment, and thus never susceptible of recurrence. Allocation into the two groups is 

typically modelled using a logistic classifier submodel: 
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Pr(𝐷 = 1| 𝑋𝑖) =
exp(𝜷𝑇𝑋𝑖)

1 + exp(𝜷𝑇𝑋𝑖)
, 

where 𝐷 = 1 refers to the susceptible group (observed only when the event of interest 

occurs), 𝑋𝑖 is the fixed baseline design matrix with their corresponding vector of 

coefficients, 𝜷. Patients that have been allocated to the ‘cured’ group are coded 𝐷 =

0. 

There can be a high proportion of patients that are recurrence-free after long follow-

up, resulting in heavy censoring. This may compromise the predictions of a joint model 

given the lack of events observed. It therefore may be appropriate to model these 

patients that appear to have prolonged event-free survival as ‘cured’, using a cure joint 

model. 

There are four articles that consider a joint cure model for the risk of clinical recurrence 

[62–65]. The four papers have a similar model specification: a nonlinear parametric 

exponential decay-growth (U-shaped) model is used to capture the log PSA trajectory 

𝑚𝑖(t, 𝐫𝑖) = 𝑟𝑖1 exp(−𝑡𝑟𝑖2) + 𝑟𝑖3 exp(𝑡𝑟𝑖4), where 𝑟𝑖1,…,4 are the random effects to be 

estimated. Those that have been allocated to the cure group (from the logistic 

incidence submodel) have 𝑟𝑖4|(𝐷 = 0) = 0, as this assumption reduces the PSA 

trajectory, 𝑚𝑖(𝑡, 𝒓𝑖), to an exponential decay cure SPJM. The conditional failure time 

model is given by ℎ(𝑡|𝐷𝑖 , 𝑋𝑖, 𝒓𝑖, 𝜷, 𝜶, 𝑔(𝑚𝑖)) = ℎ0(𝑡) exp( 𝜷𝑇𝑋𝑖 + 𝜶𝑔(𝑚𝑖|𝐷 , 𝑡)), where 

𝑔(𝑚𝑖) can be given by including the trajectory function and its slope given in [62,65]. 

Baseline covariates included pre-treatment PSA, T-stage, and Gleason score. 

Additionally Taylor et al. [62] considered PSA value & slope as time-dependent 

covariates, age, EBRT total delivered dose (in Gy) and treatment duration as baseline 

covariates. Yu and colleagues [65] included an exogenous time-dependent variable to 

indicate start of salvage HT, similarly to [57], and used a generalised Weibull model 

for the baseline hazard function. Both frequentist and Bayesian approaches are 

directly compared by Yu et al. [64]. 

In Law et al. [63], the joint cure model is compared to the standard cure model without 

longitudinal time-dependent information, and to the shared parameter joint model 

without the cure component. They showed better predictions and discrimination, 

together with reducing biases from informative censoring. Taylor et al. and Yu et al. 

[62,65] compared the predictions of the model with updated information on the same 

patients who were initially used to develop the model, that is whereby more 

longitudinal PSAs and events on the same patients are gathered.  

The extended shared-parameter joint-cure model offers additional flexibility to model 

the inherent heterogeneity of patients that go on to have extended event-free survival. 

Yu et al. directly compared joint models with and without a cure component. They 

showed a standard JM tends to overestimate the number of clinical events. They 

compared the two models using the conditional predictive ordinate and BIC, both 
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favouring the additional cure submodel component, despite an extra 30 parameters 

needed to be estimated [65]. This however may over-parameterise the model without 

adequate event sizes [68]. Also as the prostate cancer disease pathway is 

complicated, clinical input is recommended with regards to plausibility of the cure 

component and its definition.  

3.3.2 Competing risks joint models 

The event of interest may be precluded by the occurrence of a competing event, for 

instance, non-cancer related deaths in the case of recurrence. It is well known that 

biases are elicited by censoring these competing event deaths [69,70]; joint models 

can be extended considering the presence of a competing event.  

Ferrer et al. [66] perform individual dynamic predictions and validate the robustness 

of the estimators in the presence of competing risk of death (from a non-related cancer 

cause), within a frequentist framework. A cause-specific proportional hazards 

submodel is proposed for each competing event, and thus the relationship of the 

longitudinal biomarker with each competing event can be assessed. Individual 

dynamic predictions were estimated and compared to landmarking estimators. Two 

simulation studies were performed using simulated data that was alike to the applied 

prostate cancer dataset. Each approach validated the estimators, then compared and 

assess their robustness to misspecification of the joint model. Both the AUC and 

mean-squared prediction error were employed to characterise the predictive accuracy. 

An extension of the AUC was adapted to the competing risk setting, proposed by 

Blanche et al. [51]. It was shown that in almost all cases, the joint models were superior 

to the landmark models. The landmark models were only superior to the joint models 

when the longitudinal biomarker was heavily misspecified. Ferrer’s competing risk 

paper is the only study to present validation metrics, using simulated studies. Code is 

available at https://github.com/LoicFerrer/Individual-dynamic-predictions2. 

3.3.3 Multi-state joint models 

The evolution of localised prostate cancer over time can be characterised by the 

occurrence of different events of interest, such as biochemical failure, local recurrence, 

distant recurrence and death. One way to jointly model all these events is via multi-

state models, in which the event progressions of interest define the transition between 

different disease states [71]. As longitudinal process such as PSA trajectories can 

have an impact on several of these event transitions, multi-state models can be 

generalised to the joint modelling framework.  

Ferrer et al. [67] proposed modelling the longitudinal PSA process using a mixed-effect 

submodel, similarly to Proust-Lima and Taylor [61], Sene et al. [58], and Ferrer at al. 

[66]. They used a non-homogeneous Markov multi-state model for the intensity of the 

transitions between five states: 0) end of EBRT treatment, 1) local recurrence, 2) 

salvage HT, 3) distant recurrence, and 4) death (the absorbing state). Intermediate 

 
2 Last accessed in January 2022.  

https://github.com/LoicFerrer/Individual-dynamic-predictions
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states could be skipped (e.g. ending EBRT0 → death4), and backward transitions were 

not allowed. Two properties were considered: 1) the Markov property whereby the 

future process is only dependent on the present state and not the preceding transitions 

/ states; 2) the non-homogeneous property ensures the time since entering the study 

influences the evolution of the process.  

Each transition intensity is modelled assuming proportional hazards and incorporated 

the biomarker trajectory. For each transition from state 𝑖 to 𝑗, only patients visiting the 

state 𝑖 are included in the analysis. The baseline intensity function was modelled 

parametrically. The maximum likelihood framework was used to estimate the 

corresponding parameters.  

The multi-state joint model was fitted with the same two study datasets as in Ferrer et 

al. [66]. Four covariates (presenting PSA, Gleason score, T-stage, and study cohort) 

were adjusted for in the models. Worse baseline risk factors were associated with 

higher values in their long-term PSA trajectories, and reaching clinical failure states 

earlier. Higher presenting PSA was associated with a higher instantaneous risk to 

salvage hormone therapy or death. A linear combination of increases in PSA value & 

slope were associated with significant deterioration for all clinical progression 

transitions (local, salvage HT, or distant failures) from the initial state.  

After adjusting for all other covariates and PSA slope, a unit increase in the log PSA 

gave rise to a 43% increase in risk to local recurrence. Patients with continually high 

PSAs or increasingly steep PSA gradients after EBRT treatment, led to earlier and 

higher hazards to clinical failure states. Conversely, higher PSA levels had a protective 

effect on the transition to direct death after EBRT but were more likely to progress 

though the prostate cancer progression states.  

Predictions were compared with the observed data. The observed values were 

averaged at each decile with corresponding predicted values computed, they show 

the observed values lay within the 95% CIs, with very similar predicted values. The 

predicted transition probabilities over time, in a given state to another other feasible 

state are presented, comparing similar parametric estimated probabilities to the 

observed. The only exception was between transitions 1→2 (from local recurrence to 

receiving HT) where the spike after EBRT was not adequately captured with the 

splines, it shows there is a very near-immediate initiation of HT after localised 

recurrence to control the disease. It is worth noting that PSA dynamics were only 

collected until the patient’s first clinical event and not thereafter and were extrapolated 

according to their posterior trajectories. 

Diagnostics of the joint multi-state model were evaluated visually. Residuals vs fitted 

values, observed and predicted PSA trajectories, and predicted vs non-parametric 

transition probabilities between states were presented. In general, they showed the 

model fits particularly well to the longitudinal, and multi-state submodels. The models 

themselves were not externally validated nor stated any predictive performance 
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measures, only the estimation process via simulation studies. Although equations for 

obtaining individual dynamic predictions for patients were presented in the paper, 

these were not demonstrated with specific examples.  

The code to apply these multistate models to a simulated dataset and adapt for use is 

freely available at https://github.com/LoicFerrer/JMstateModel3 and could be used to 

derive patient predictions and be adapted for the reader’s need.  

4 Discussion 
Over the last two decades there has been a plethora of research on PSA protein 

concentration and its association to recurrence, or prolonged event-free survival 

(effectively cure). We have reviewed and assessed 12 papers that report joint models 

of longitudinal PSA trajectories and time-to-event endpoints that aim to describe how 

these trajectories impact and predict prostate cancer recurrence. We found two broad 

frameworks (SPJMs & JLCMs) that were utilised and assessed different 

methodologies. We synthesize these different approaches applied to similar dataset 

cohorts of prostate cancer patients receiving EBRT without HT, which allow the 

methodology to be compared. Due to the long-term nature of prostate cancer 

recurrence and progression, the datasets to develop the DPMs comprise patients 

treated in the 1980s.  As long-term follow-up is necessary the historical nature of the 

datasets is unavoidable but the impact of changes in clinical practice should be 

considered when utilising DPMs for contemporary patients.  

There are limitations to our work, as this report was not initially intended to be a 

systematic review on all the available literature, but a synthesised summary of what 

we considered relevant articles of modelling both PSA longitudinally, and time-to-

recurrence in localised prostate cancer; in preparation for an application for these 

methods in our own dataset (in a publication to follow). For instance, we focused on 

specific key words within the title and abstract only, so we may have missed reports if 

the use of these terms was not explicit in these fields. Further joint modelling papers 

not included here were due to, for instance, no dynamic predictions presented [72], a 

mix of non-radiotherapy treatments (e.g, radical prostatectomy); methodology 

development focused but repeated analysis referred to [53,73,74]; or exclusive use of 

simulated datasets [75]. It was noted that not all papers were expectedly populated by 

the search strategy [76].  In the localised prostate cancer setting, where PSA is used 

to monitor recurrence after radical treatment of disease, joint models have also been 

used in the context of prostate cancer screening [77–82] or advanced (metastatic) 

disease [33,83–87]. We did not consider these scenarios as the PSA dynamics differ 

greatly. These models could also be extended to accommodate more than one 

longitudinal biomarker, such as PSA and testosterone, or the sequential findings on 

digital rectal exams, in a joint multivariate model. Regardless of disease stage, these 

papers highlight and emphasise the use of longitudinal information, such as the PSA 

biomarker. This increases the prognostic power of the prediction model to help inform 

 
3 Last accessed in January 2022.  

https://github.com/LoicFerrer/JMstateModel
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and update predictions of the event of interest, compared to solely using baseline risk 

factors that are imprecise [88]. 

Modern typical first-line treatment of localised prostate cancer include HT before 

(neoadjuvant) and concurrently with external-beam radiotherapy [12,89], and PSA 

trajectories are known to be more homogeneous with combined treatment [57]. 

Furthermore, given recent advances in radiotherapy techniques and the use of 

moderate- and ultra-hypofractionation (fewer but larger doses of radiotherapy) [90,91], 

treatment exposures of RT are less than the average treatment durations presented 

in these papers. The tool in Taylor et al. [57], reviewed in 3.1 was developed in the 

absence of neoadjuvant HT, therefore predictions from these models have limited 

applicability within current treatment pathways. Further development of these models 

for patients receiving HT are needed.  

The papers reviewed provide a very good exposition and rationale to their model 

development and clinical usage. Regardless of the functional form used in the joint 

modelling framework, a fully parametric form was fitted for the mixed-effects model. 

There are possibly more appropriate and flexible forms that may exist, compared to 

the biphasic form for PSA trajectories they postulate throughout 

[35,41,43,57,58,61,66]. Many of the reviewed articles present an appraisal of their 

models, either by validation or contain a simulation study. External validation is seen 

as the gold-standard, to ensure model suitability and generalisability in other patient 

populations and to assess overfitting [92]. However, when rigorous measures of 

predictive performance have not been reported in these papers, these would not be 

considered validated by today’s standards [93].  

As with any specification of modelling, there are pros and cons to the joint modelling 

approach taken and several differences exist. For JLCMs, the maximum likelihood 

approach contains closed-form solutions and are computationally feasible to compute. 

They are advantageous for the use of developing a predictive joint model for dynamic 

predictions, whilst not having to impose specific parametric assumptions for the 

biomarker’s functional form (e.g. current value, slope, area), unlike SPJMs [43]. 

Robustness to deviations of the imposed functional form have been rigorously 

assessed in Ferrer at al. [66]. In this paper, they demonstrated that no method (joint 

modelling nor landmarking) was particularly robust to misspecification in the 

longitudinal biomarker. However, when there was heavy misspecification, landmarking 

methods did perform better than joint modelling.  

The SPJMs assume a homogenous population with a singular average PSA biomarker 

trajectory, whereas JLCMs account for further population heterogeneity through the 

latent classes. Both JLCMs and SPJMs account for the variability of the PSA 

biomarker through the random effects in the longitudinal model. The purpose of the 

random effects in the SPJM is two-fold, accounting for the correlation of the repeated 

measures in the mixed-effect model, and the association between the PSA biomarker 
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and time-to-recurrence, whilst in the JLCM only the latent classes account of the 

association between the biomarker and event.  

Disadvantages of the JLCMs approach include the possibility of having multiple local 

maxima for the maximum likelihood estimates, and several models are needed to be 

fitted in order to find the optimal number of latent classes (by comparing multiple 

information criteria) [37]. Some of these issues can be circumnavigated via 

parallelisation of the computation for more optimal resourcing, e.g., make use of 

parallel computing by using search grid methods for JLCMs as computations are 

independent (see the mpjlcmm function from R package lcmm); or implementing 

multiple MCMC chains performed in parallel using Bayesian SPJMs (jm function from 

R package JMbayes2) [55,94].  

Both Frequentist and Bayesian paradigms were used for the SPJMs, whereas we only 

reviewed frequentist methods for the JLCMs. In their direct comparison of JLCMs and 

SPJMs [43], the authors showed that the JLCMs had less assumptions and performed 

better. However when adjusting for the same patient cohort dataset, baseline 

covariates, prediction times, and biphasic components for the longitudinal PSA 

component: the prognostic accuracy measures for EPOCE in Sene et al. [58] using 

SPJMs appear superior than those obtained with the JLCM in Proust-Lima et al. [43].   

All models reviewed in this paper can produce dynamic predictions for prostate cancer 

prognosis. The JLCMs do not assume a specific association structure nor quantify 

those associations, (like the SPJMs do), they describe the trajectories in a 

heterogeneous population. If the main goal is to quantify the associations assuming a 

homogenous population, then SPJMs are recommended. There is not one overarching 

or standout model to always use by default. The choice of model may be primarily 

driven by the research question and personal choice. If the purpose is solely for 

prediction, then combining several frameworks for dynamic predictions using some 

weighted model averaging methodology could be applied [95]. Indeed one type of 

framework may outperform another at certain time intervals and then vice-versa at 

different time windows. Each model has its own advantages, depending on the end 

goal of the reader. It is hard to compare each model’s framework with another in terms 

of superior predictive performance as not all these papers present these metrics. 

This review focused on radiotherapy, however there are other treatments for prostate 

cancer including hormone therapy, prostatectomy and combinations therein, though 

optimal timing of these combinational therapies appears unclear [96,97]. There have 

been recent advances in using sophisticated machine learning/artificial intelligence 

(ML/AI) techniques on imaging data to predict whether patients require biopsies, or to 

predict clinical failure or death under these alternative treatment pathways. Some 

recent articles include development of artificial neural networks, support vector 

machines, and random forests for predicting diagnoses [98,99], optimal timing of 

biopsies [100] , and clinical failure [101] or death [102]. However, it is not apparent 

that the longitudinal nature of time-varying markers like PSA have been considered, 
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nor produce dynamic predictions. A review of these AI and ML methods is given in 

Tătaru et al [103]. Some authors refer to joint modelling itself is an AI approach [104]. 

Other studies have suggested combining the boosting approaches of machine 

learning to joint models, to create a unified framework using mechanistic data-driven 

approaches [105]. ML/AI techniques are not a panacea and need to be correctly 

developed and incorporate all available information, be rigorously validated, and to 

have clinical utility [106–109]. Reporting guidance, based on TRIPOD & PROBAST 

statements, have been developed for AI & ML (TRIPOD-AI/ML & PROBAST-AI/ML) 

[110–113]. 

5 Conclusions 
To conclude, we reviewed, summarised, and synthesised principal methodologies on 

twelve seminal papers over the last two decades on dynamic prediction joint models 

applied to the prognosis of prostate cancer patients, using PSA to dynamically update 

prognosis. This article supports the use of utilising longitudinally collected PSA, in 

addition to baseline prognostic factors to improve predictions in a joint modelling 

framework. There have been many advancements in computational processing, 

methodologies, with improvements in clinical practice and treatments. Combining all 

these developments together with utilising all available information, the future of 

dynamic prediction models is encouraging. 
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List of abbreviations 
• AI – artificial intelligence 

• AIC – Akaike information criterion 

• AUROC (or AUC) – area under the receiver operating characteristic curve 

• BcF – biochemical failure 

• BIC – Bayesian information criterion 

• (I)BS – (Integrated) Brier score 

• CI – confidence interval (frequentist) or credible interval (Bayesian) 

• (CV)POL – (cross-validated) prognostic observed log-likelihood 

• CPM – clinical prediction model 

• DPM – dynamic prediction model 

• EBRT – external beam radiotherapy 

• EP – prediction error (or error of prediction) 

• EPOCE – expected prognostic observed cross-entropy 

• HT – hormonal therapy  

• JLCM – joint latent class model 

• JM – joint model 

• ML – Machine Learning  

• NCCN – National Comprehensive Cancer Network 

• PSA – prostate-specific antigen 

• SPJM – shared-parameter joint model 

• ST – salvage therapy 

• WAEP – weighted average absolute error of prediction 
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