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The co-occurrence of cancer and heart failure (HF) represents a significant clinical drawback as each disease interferes with the treatment
of the other. In addition to shared risk factors, a growing body of experimental and clinical evidence reveals numerous commonalities in
the biology underlying both pathologies. Inflammation emerges as a common hallmark for both diseases as it contributes to the initiation
and progression of both HF and cancer. Under stress, malignant and cardiac cells change their metabolic preferences to survive, which
makes these metabolic derangements a great basis to develop intersection strategies and therapies to combat both diseases. Furthermore,
genetic predisposition and clonal haematopoiesis are common drivers for both conditions and they hold great clinical relevance in the
context of personalized medicine. Additionally, altered angiogenesis is a common hallmark for failing hearts and tumours and represents a
promising substrate to target in both diseases. Cardiac cells and malignant cells interact with their surrounding environment called stroma.
This interaction mediates the progression of the two pathologies and understanding the structure and function of each stromal component
may pave the way for innovative therapeutic strategies and improved outcomes in patients. The interdisciplinary collaboration between
cardiologists and oncologists is essential to establish unified guidelines. To this aim, pre-clinical models that mimic the human situation,
where both pathologies coexist, are needed to understand all the aspects of the bidirectional relationship between cancer and HF. Finally,
adequately powered clinical studies, including patients from all ages, and men and women, with proper adjudication of both cancer and
cardiovascular endpoints, are essential to accurately study these two pathologies at the same time.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Keywords Heart failure • Cancer • Cardiotoxicity • Inflammation • Clonal haematopoiesis •
Angiogenesis • Metabolism • Cardio-oncology • Extracellular matrix

Introduction
Advances in pharmacological and device therapies of heart failure
(HF), along with a holistic approach provided by multidisciplinary
HF teams, have improved management and reduced cardiovascular
(CV) death and sudden cardiac death in particular.1–3 However,
this has led to a relative shift towards a chronic state of HF
with an increasing burden of comorbidities. Most attention has
been focused on atherosclerosis, renal disease, diabetes mellitus,
and atrial fibrillation as common comorbidities in chronic HF.
However, relatively little awareness has been given to cancer, which
nevertheless appears to be a common disease and the leading cause
of non-CV mortality in chronic HF.2–5

On the other hand, recent improvements in cancer manage-
ment and treatments have substantially reduced mortality associ-
ated with many cancer types, while concomitantly increasing the
comorbidity burden of oncological patients. CV disease is the most
frequent non-cancer cause of death in patients with cancer, and an
increased risk of incident HF has been reported amongst patients
diagnosed with cancer. This is largely attributed to the cardiotoxi-
city of anti-cancer agents and/or radiation therapy.6,7

Cancer and HF share several common risk factors. Beyond this,
the two entities share common systemic pathogenic pathways and ..
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.. mechanisms that partly explain their association.8 Consequently,

the connection between CV disease and cancer emerged as a
new discipline that encourages collaborations between oncolo-
gists and cardiologists at clinical and research levels, and thereby
aims to optimize the management of individuals affected by these
pathologies. The inclusion of both specialties in the design of future
pre-clinical and clinical studies should ensure precise, reproducible,
and meaningful readouts for both cancer and HF.

The present document, derived by an expert panel meeting orga-
nized by the Translational Research Committee of the Heart Failure
Association of the European Society of Cardiology, aims to highlight
the common pathways potentially underlying both HF and cancer.
Moreover, this manuscript summarizes available evidence and
provides guidance to bridge past and future research approaches.

Coexistence of cancer and heart
failure
A large number of epidemiological studies suggest that the inci-
dence of several malignant tumours is higher in patients with HF
compared to age- and sex-matched controls. A community-based
cohort study reported that HF patients carried a 68% higher risk

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 1 Common imaging, laboratory tests or drugs that may reveal or unmask cancer in heart failure patients

Test/drugs Indication/reason Form of cancer
that may be detected

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chest X-ray Dyspnoea
Control for ICD leads

Lung cancer
Lymphoma

Chest CT scan Suspicion for PE
Pre-ablation (LA appendage, anatomy of pulmonary veins)
Anatomy of aorta

Lung cancer
Lymphoma
Oesophageal cancer
Gastric cancer
Liver cancer and metastases

Cardiac MRI Cardiomyopathies
Congenital heart disease

Lung cancer
Lymphoma
Oesophageal cancer
Gastric cancer
Liver cancer and metastases
AL amyloidosis

PET scan Endocarditis (valvular, PM/ICD, PM/ICD leads) All forms of cancer
Lab tests Haemoglobin, MCV, iron, TSAT Gastrointestinal cancers

Genitourinary cancers
Lymphoma, leukaemia

Liver tests Liver cancer
Hepatic metastases of other cancers

BSR CRP Lymphoma, leukaemia
Use of antithrombotic drugs CAD, AF, prosthetic material (valves) Gastrointestinal cancers

Genitourinary cancers

AF, atrial fibrillation; BSR, blood sedimentation rate; CAD, coronary artery disease; CRP, C-reactive protein; CT, computed tomography; ICD, implantable
cardioverter-defibrillator; LA, left atrium; MCV, mean corpuscular volume; MRI, magnetic resonance imaging; PE, pulmonary embolism; PET, positron emission tomography;
PM, pacemaker; TSAT, transferrin saturation.

of incident malignancy compared to the general population,9 and
incident cancer in HF was associated with a 56% excess adjusted
mortality risk. In a subsequent study, the same investigators retro-
spectively evaluated 1081 first myocardial infarction (MI) survivors
and observed that patients who developed HF within 30 days of MI
had a 71% higher incidence of cancer compared to those without
HF.10 These observations were confirmed by a Danish HF cohort
study reporting a higher risk of cancer over a 4.5-year follow-up
period in patients with HF, also even after excluding all cancers
that occurred within a year of HF diagnosis.11 There are conflicting
results however: in the Physicians’ Health Study, (self-reported)
HF was not associated with an increased cancer incidence nor
cancer-specific mortality in 28 341 males enrolled.12 But overall,
data from a large longitudinal HF registry indicate a remarkable
increase in the incidence of cancer deaths among HF patients
over the last decades, and2 several cancer types are consistently
reported to develop in HF patients, such as lung cancer, skin
cancer, haematological malignancies, and colorectal cancer.8

Table 1 summarizes common tests and drugs that may poten-
tially uncover cancer in HF patient. HF patients are typically under
closer medical observation than the non-HF populations. Repeated
radiological examinations [chest X rays and computed tomography
(CT) scans], as well as cardiac positron emission tomography (PET)
scans, and magnetic resonance imaging (MRI) scans, frequently
detect incidental tumours. HF patients also undergo frequent
blood tests, including markers of iron metabolism and haematinics, ..
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. which may trigger workup for suspected cancer. Consequently,
cancer will be detected at early stages due to surveillance. Second,
a large proportion of HF patients are treated with oral anticoag-
ulant drugs or antiplatelet therapies, which are known to cause
bleeding and unmask gastrointestinal and genitourinary cancers,
and this may prompt early detection.13

Discrepancies among the outcomes of numerous cohorts are
a clear drawback, and high-quality data are urgently required. The
apparent inconsistencies are explained by differences in cancer
and HF diagnoses, guidelines, and strategies. Another reason could
be the small sample sizes,9,10 short follow-up period,9–11 lack of
adjustment for smoking status and HF severity,11 availability of
only self-reported data, poor cancer adjudication in HF databases,
or limited data obtained in women.12 It should be pointed out
that most evidence originates from associations identified in ret-
rospective analyses. This has inherent limitations in that causality
is not guaranteed and that retrospective analyses are hampered
by their original design, generally under powered toward specific
cancer outcomes.

Common mechanisms involved
in tumour growth and heart
failure
The association between HF and cancer is partly explained by
common risk factors.14–17 Nevertheless, even when adjusting for

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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these risk factors, the incidence of new-onset cancer in prevalent
CV disease and HF is not fully explained. A growing body of
experimental and clinical evidence is unveiling several mechanisms
potentially underlying both HF and cancer. Inflammation, metabolic
remodelling, clonal haematopoiesis, angiogenesis, as well as the
extracellular matrix (ECM) and stromal cells are of interest in this
ressgard.18

Inflammation
Circulating levels of pro-inflammatory cytokines, including, inter-
leukin (IL)-1β, IL-6 and IL-18, are elevated in chronic as well as
acute decompensated HF.19 Solid malignancies exhibit several fea-
tures that are typical of inflamed tissues, such as the infiltration of
immune cells and the production of pro-inflammatory mediators,
and numerous studies emphasize the key role of inflammation as
a mediator of malignant transformation, epithelial to mesenchymal
transition, and metastasis.20,21 Further, IL-1β and IL-6 have been
reported as important drivers of cancer.22–25

Lending support to this hypothesis, the Canakinumab
Anti-Inflammatory Thrombosis Outcome Study (CANTOS)
demonstrated a favourable impact of the IL-1β-targeting antibody
canakinumab on CV events and HF hospitalization. Strikingly, this
study suggests the possibility that canakinumab could significantly
decrease incident lung cancer and lung cancer mortality. Neverthe-
less, the overall rate of cancer was 1.8 per 100 patient-years and
not significantly different among study intervention arms. Thus,
these results should be interpreted carefully and the replication of
these outcomes is required.26,27

In addition to cytokines and chemokines, lipid mediators such
as prostanoids are involved in inflammatory signalling, but their
role in cancer and CV disease has not been extensively investi-
gated so far. For instance, prostaglandin E2 levels are elevated in
cancer, especially in gastrointestinal tumours, and this prostanoid
promotes cancer initiation and suppresses the immune response
directed against cancer cells.28,29 Prostaglandin E2 can also affect
cardiac function by activating maladaptive gene programs down-
stream of the EP3 receptor on cardiomyocytes, and cardiomy-
ocytes in turn secret chemokines and can induce chemoattractant
signalling .30,31 Prostacyclin and prostaglandin analogues are used to
treat pulmonary arterial hypertension. A pre-clinical study showed
that prostaglandin E2 promotes lung cancer migration.32 Another
study in mice revealed that prostacyclin prevents lung cancer.33

However, cancer incidence has not been assessed in patients
with pulmonary hypertension treated with prostaglandins or
analogues.

Recent reviews have extensively discussed inflammation as a
potential link between cancer and HF, which encourages further
research to provide deeper insights on this topic.

Metabolic remodelling as a common
hallmark for cancer and heart failure
Malignant and cardiac cells undergo metabolic reprogramming
to adapt to physiological transformations, survive, and respond ..
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.. to stress. In tumours and failing hearts, glucose oxidation and
glycolysis are required to ensure ATP provision and to pro-
duce metabolic intermediates that are essential for the synthesis
of macromolecules, such as fatty acids and nucleotides. Specif-
ically, cancer cells tend to be predominantly reliant on glucose
metabolism, but in contrast to differentiated cells they convert glu-
cose into lactate also in the presence of oxygen levels sufficient
to sustain oxidative metabolism, the so-called ‘Warburg effect’.34

This overreliance on this aerobic glycolysis facilitates the incorpo-
ration of nutrients into nucleotides, amino acids, and lipids that
are required to sustain cancer cell proliferation.35 In addition to
glucose, the amino acid glutamine represents an essential carbon
source to support the use of Krebs cycle and glucose-derived inter-
mediates as precursors for the biosynthesis of macromolecules in
cancer cells.36

The healthy myocardium predominantly uses fatty acids to sus-
tain ATP synthesis,37,38 but substrate preference and metabolic
flexibility of the heart are altered under pathological conditions.39

For instance, the switch from fatty acids to glucose during pres-
sure overload remodels metabolic fluxes to support biomass syn-
thesis, thereby contributing to the hypertrophic growth of the
heart, and protein O-GlcNAcylation, thereby contributing to cal-
cium mishandling and cardiac dysfunction.40–43 Thus, metabolic
reprogramming in both cancer cells and cardiomyocytes is directed
toward the synthesis of anabolic precursors that are required
to support cell proliferation and hypertrophy, respectively. How-
ever, important differences in metabolic reprogramming exist
between tumours and the heart; for instance, in contrast to can-
cer cells, cardiomyocytes do not rely on glutamine for aspartate
synthesis.40,44

In the context of cancer, several therapeutic strategies target
pathways that mediate energy homeostasis and macromolecule
biosynthesis. As an example, the inhibition of glucose trans-
porter 1 (GLUT1), in vitro and in vivo, diminished tumour
growth.45 Conversely, cardiac-specific overexpression of GLUT1

in transgenic mice demonstrated preventive capacities against
cardiac hypertrophy.46 Further, sodium–glucose co-transporter
2 (SGLT2) inhibition, which is an effective treatment for type 2
diabetes, exhibits beneficial effects particularly in HF. In addition,
preliminary evidence from animal studies suggests a potential
future role of SGLT2 inhibition for the treatment of particular
cancer types.47 However, more extensive research is required
before definitive conclusions can be drawn regarding this clinical
application.

Other therapeutics targeting lipid metabolism have been
explored. For instance, fatty acid synthase (FAS), which is a key
enzyme of de novo lipogenesis, is up-regulated in many malignan-
cies. Pre-clinical and clinical studies revealed that FAS inhibitors
demonstrated anti-neoplastic properties in solid cancers.48 In
the context of HF, FAS was increased in 2 mouse models of
HF and human hearts with end-stage cardiomyopathy.49 Conse-
quently, FAS represents a potential therapeutic target for both
conditions.

The common metabolic derangements between cancer and
HF provide opportunities to develop intersection strategies and
therapies to combat both diseases.

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Clonal haematopoiesis of indeterminate
potential
Genetic risk factors are also emerging as potential common drivers
of cancer and CV disease (Figure 1).50 Ground-breaking studies
indicate that acquired somatic mutations in haematopoietic cells
are associated with a markedly increased risk of coronary heart
disease in humans.51 The majority (>70%) of these mutations
occur in Ten-eleven translocation-2 (TET2), DNA methyltrans-
ferase 3 alpha (DNMT3α), additional sex combs like 1 (ASXL1),
Janus kinase 2 (JAK2), and tumour protein 53 (TP53),51,52 that
encode for key epigenetic regulators of haematopoiesis and
whose mutation confers a competitive growth advantage lead-
ing to the progressive clonal expansion of the mutated lineage.
Clonal haematopoiesis can progress to leukaemia53 but por-
tends an increased risk of CV disease and stroke independent of
whether it becomes clinically overt.51,54 Furthermore, somatic
mutations in TET2 and DNMT3𝛼 are associated with worse
outcomes in patients with ischaemic HF.55 Whether and how
clonal haematopoiesis promotes atherosclerosis is not completely ..
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.. understood, but pre-clinical studies reported that the expression
of pro-inflammatory cytokines by TET2-deficient macrophages
is exacerbated in atherosclerosis-prone mice, consequently
accelerating plaque formation.51,56 In two murine models of HF,
haematopoietic TET2 or DNMT3α deficiency aggravated cardiac
dysfunction, which was rescued by pharmacological inhibition
of the Nod-like receptor protein 3 (NLRP3) inflammasome.57,58

Elucidating the mechanisms linking somatic mutation-driven clonal
haematopoiesis to CV disease holds great clinical promise in the
context of personalized medicine, as it will provide insight into
the predictive value of these mutations as markers of CV risk and
therapeutic responsiveness.

Angiogenesis
Angiogenesis is the process of new blood vessel formation from
existing vessels and is crucially involved in the pathophysiology
of both HF and malignancies. During the early stage of chronic
pressure overload, cardiomyocyte hypertrophy leads to a mis-
match between capillary density and increased oxygen demand.

Figure 1 Graphic illustration showing somatic mutations in haematopoietic stem cells as a common path for cancer (leukaemia) and
cardiovascular disease.50 In individuals with a single somatic mutation, the development of leukaemia requires additional mutations. These
individuals are exposed to a higher risk of developing heart failure (HF) and atherosclerosis. This may be due to the overproduction of
pro-inflammatory cytokines by cells with somatic mutations. Illustration elements are from Smart Servier Medical Art.

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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The consequent hypoxia stimulates microvascular expansion by
inducing secretion of angiogenic factors, such as vascular endothe-
lial growth factor (VEGF) and angiopoietin-1 and -2.59 With
sustained pressure overload, however, this adaptive angiogenic
response is suppressed, and the subsequent vascular rarefaction
contributes to the transition to decompensated HF.60,61 The phar-
macological or genetic inhibition of VEGF, as well as the blockade of
other key angiogenic signalling pathways, accelerate the transition
to HF.59,60,62,63

In the context of cancer, angiogenesis is crucial for tumour
growth and dissemination.64 New blood vessel formation is
required to nourish cancer cells when tumour growth prevents
the diffusion of nutrients from the pre-existing vasculature. Fur-
thermore, malignant neoplasms take advantage of the dysfunctional
tumour vessels to spread throughout the body.64 Drugs inhibiting
angiogenesis, such as VEGF inhibitors, have been employed in the
treatment of several types of malignancies, including colorectal,
kidney, brain, and lung cancer. The CV toxicities of these agents are
potentially severe, and often unpredictable. Based on these findings,
angiogenesis represents a favourable substrate for both diseases.

Stromal cells and extracellular
environment
In tumours, malignant cells coexist with the ECM and other
cell types that constitute the so-called tumour stroma. The
paracrine interactions between neoplastic cells and stromal cells,
and among stromal cells, promote tumour growth, progression,
and invasiveness.65 Besides cardiomyocytes, the heart contains
diverse cardiac stromal cell lineages that play key roles in heart
repair, regeneration, and disease.66

Cardiomyopathy and HF in cancer patients do not only result
from an intrinsic injury.67 Figure 2 presents the diffuse effects on
the ECM in the heart either from intrinsic injury via cardiotoxicity
related to chemotherapy, or extrinsic to the heart as evidenced
by proteotoxicity seen with AL amyloidosis. Similarly, the ECM in
tumours mediates cancer progression and development and plays
a crucial role in anti-cancer treatment resistance.68,69

The intramyocardial transplantation of FAC-purified human
microvascular pericytes promotes functional and structural recov-
ery post-infarction via paracrine effects and cellular interactions.
These therapeutic pericytes activate cardio-protective mechanisms
that reverse ventricular remodelling, decrease cardiac fibrosis,
reduce chronic inflammation, and promote angiogenesis.70 In the
context of cancer, blocking pericytes has failed to improve out-
come in cancer patients. In fact, targeting pericytes could increase
metastasis under certain circumstances.71

In HF, quiescent fibroblasts are replaced by proliferative fibrob-
lasts that alter the myocardial matrix and convert it to a fibrotic
structure, which makes the myocardium stiffer. In solid tumours,
fibroblasts act similarly and promote structural changes in the
surrounding stroma to allow tumour growth and invasion. In
both conditions, abnormal fibroblasts are characterized by the
co-localization of extra proteins that are associated with various
biological functions. Fibroblast-specific protein 1, platelet-derived
growth factor receptor, fibroblast activation protein, and many ..
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No CMIschemic CM
Non-

Ischemic CMAmyloidosis

Figure 2 Representative scanning electron and photomicro-
graphs of the three-dimensional arrangement of left ventricular
extracellular matrix in the human heart. Samples are from individ-
uals with infiltrative (amyloidosis), non-ischaemic, and ischaemic
cardiomyopathy (CM) compared to an unused non-failing donor
heart. The top two panels show the matrix in cross-section, with
a typical honey-comb structure that is notably less fine and orga-
nized, but with distinct patterns, in CM compared to non-CM
myocardium. H&E stained sections from the same hearts are
shown in the bottom row for comparison. Bars = 40 mm (top
row) and 2 mm (middle row). Tissue is courtesy of the Vander-
bilt Cardiovascular Institute Biobank and images are shown with
permission from Cristi Galindo and Sean Lenihan.

others are unique molecular signatures that allow the identification
of cancer and HF abnormal fibroblasts.72 Given the shared features
between cancer and cardiac fibroblasts, anti-neoplastic drugs tar-
geting fibroblasts could be repurposed to treat HF.

Heart failure driving cancer
An additional mechanistic layer, possibly accounting for the
co-occurrence of cancer and HF, is provided by experimental stud-
ies indicating that HF itself represents a pro-oncogenic condition.
Based on evidence assembled in several reviews, HF is character-
ized by the activation of neurohormonal systems, including the
renin–angiotensin–aldosterone system and the sympathetic ner-
vous system, which are also involved in cancer development and
progression.73,74 Sympathetic nervous system activation induced
by physical stressors, such as cold or restraint, may accelerate
tumour growth and dissemination in numerous mouse models of
malignancy. The modulation of the tumour microenvironment by
neurohormonal mediators, like noradrenaline and angiotensin II,
seems to play a prominent role in this process.8,14,73 The systemic
sympathetic activation, as seen in HF,75 affects all the cells of

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.



2278 R.A. de Boer et al.

the body. Studies to unravel the detailed mechanisms by which
sympathetic activation promotes carcinogenesis are urgently
needed.

Heart failure aetiologies and incident
cancer
A growing body of pre-clinical research indicates that HF-secreted
factors mediate or facilitate the development, progression, and dis-
semination of tumours. In a recent study, failing hearts were shown
to induce tumour growth by secreting pro-oncogenic factors into
the circulation. The authors performed artery ligation in the hearts
of mice genetically prone to develop colorectal cancer. These mice
developed eccentric hypertrophy, dilatation, and reduced ejection
fraction.

The MI group demonstrated a higher number of intestinal polyps
and higher tumour load compared to non-MI mice. The potential
effects of haemodynamic load on tumour growth were excluded
by transplanting either infarcted or healthy hearts in the cervical
region of mice, retaining their native heart in situ. The authors pos-
tulated that the oncogenic activity of the failing heart was mediated
by secreted factors such as SerpinA3, a factor regulating tumour
cell survival pathways, and apoptosis.4 The mechanisms by which
these factors exert their function require further validation and
future research to uncover heart-specific tumour markers and
reveal new therapeutic targets.76 A recent study indicated that
MI accelerates breast cancer growth in mice. The investigators
reported increased circulating Ly6Chi monocyte levels and recruit-
ment to tumours in MI mice compared to sham mice. Interest-
ingly, the depletion of these cells abrogated MI-induced tumour
growth.77

Further validation has been observed in the transverse aortic
constriction (TAC) mouse model after implantation of cancer cells.
The TAC-operated mice demonstrated bigger tumours, higher
proliferation rates, and more metastasis compared to their control.
Also, treating cancer cells, in vitro, with serum derived from
the TAC-operated mice stimulated their proliferation.78 These
results validated the concept of secreted factors in the serum
that promote tumour growth.4,78 The mechanisms by which these
factors exert their function require further validation and future
research to uncover heart-specific tumour markers and reveal new
therapeutic targets.76

In the above-mentioned animal studies, two HF aetiologies have
been investigated: the MI model is characterized by eccentric
hypertrophy and reduced ejection fraction, and the TAC model that
develops concentric hypertrophy with preserved ejection fraction.
The risk of cancer in human HF with reduced ejection fraction
(HFrEF) and HF with preserved ejection fraction (HFpEF), and
whether there is a specific interaction between a specific HF
subtype and incident cancer, has not been investigated yet.

In the setting of HFpEF, there are many comorbidities such
as hypertension, chronic kidney disease, chronic obstructive pul-
monary disease, and diabetes. All of these individual comorbidi-
ties are known to be associated with incident cancer. Thus, these
comorbidities are confounding factors that could affect the associa-
tion between HFpEF and cancer. No dedicated perspective studies ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.. have been published in which these associations were sufficiently
brought to light in the HFpEF setting. Therefore, future studies
should account for the comorbidities in multivariable models to
assess whether there is a causative effect of HFpEF per se on car-
cinogenesis beyond the cumulative effect of the comorbidities.

Safety of heart failure treatments
and medical radiology
The safety of HF treatments with regard to cancer incidence
is still a subject of investigation. Several studies demonstrated
a higher lung cancer incidence among patients treated with
angiotensin-converting enzyme inhibitors, especially in individuals
treated for more than 5 years,79 and a dose–response relationship
between hydrochlorothiazide and both basal and squamous cell
carcinoma.80 But data from a large cohort study could not link can-
cer prevalence to angiotensin receptor blocker (ARB) treatment,
although in subgroup analysis a significant association between ARB
and cancers in male genital organs was reported.81 Large random-
ized clinical trials with irbesartan, valsartan, and losartan did not
show any increase in the overall or site-specific cancer prevalence
in patients associated with ARB use.82 In contrast to the suggestion
that HF treatments are possible factors contributing to carcino-
genesis, several ongoing clinical trials are investigating the efficacy
of CV drugs to prevent cancer or improve outcomes in cancer
patients (Table 2).

Moreover, cancer incidence associated with the exposure to
medical radiation has been previously evaluated. An observational
retrospective cohort detected a correlation between the cumu-
lative dose of CT scan radiation and both leukaemia and brain
tumours.83 Another study reported a cancer risk attributable to
radiation exposure from cardiac catheterization.84 Collectively,
these findings suggest that cancer incidence is relatively low, consid-
ering the substantial diagnostic and therapeutic value of radiation.
However, when considering the annual incidence of CV diseases
necessitating examination with CT scans/cardiac catheterization,
the overall attributable cancer risk does not lead to a negligible
number of cancer cases. It should thus be re-emphasized that
careful consideration by the treating physician should be taken
before any potentially carcinogenic diagnostic/therapeutic options
are considered.

Cancer driving heart failure
The cardiotoxic effects of anti-cancer treatment leading to a wide
spectrum of CV abnormalities including HF have been well estab-
lished and extensively reviewed. In summary, several cancer ther-
apies cause ventricular dysfunction and cardiomyopathy leading to
HF in predisposed individuals.7 The susceptibility of patients to
these toxicities differs markedly, presumably reflecting genetic and
epigenetic factors and pre-existing medical conditions. This applies
to chemotherapeutic and targeted agents, as exemplified by the
anthracycline doxorubicin and trastuzumab. Doxorubicin-related
cardiomyopathy involves multiple cellular perturbations including
DNA damage,85 mitochondrial dysfunction,86,87 activation of cyto-
plasmic proteases,88 impaired autophagic flux,89 and defects in

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 2 A selection of ongoing clinical trials investigating the efficacy of cardiovascular drugs to prevent cancer or
improve outcomes in cancer patients

Title of the clinical trial Intervention(s) Outcome measures Phase Identifier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clinical Research on Treatment of
Gastrointestinal Cancer in the
Preoperative by Propranolol

Propranolol Tumour size I NCT03245554

Hydrochlorothiazide and Risk of Skin
Cancer

Hydrochlorothiazide
ACEi

Non-melanoma skin cancer
Melanoma skin cancer

N/A NCT04334824

Clinical Study of Propranolol
Combined With Neoadjuvant
Chemotherapy in Gastric Cancer

Propranolol Overall response rate II NCT04005365

Colorectal Metastasis Prevention
International Trial 2

Propranolol etodolac
Placebo

5-year disease-free-survival
Biomarkers in extracted tumour tissue

samples assessing pro- and
anti-metastatic processes

Biomarkers in blood samples assessing
pro- and anti-metastatic processes

Number of patients with
treatment-related adverse events

Depression, anxiety, global distress
Fatigue

II NCT03919461

Efficacy of Chemopreventive Agents
on Disease-free and Overall
Survival in Patients With
Pancreatic Ductal
Adenocarcinoma: The CAOS
Study

Aspirin
Beta-blockers
Metformin
ACEi
Statins

Disease-free survival
Overall survival

N/A NCT04245644

Propranolol Hydrochloride in
Treating Patients With Prostate
Cancer Undergoing Surgery

Laboratory biomarker
analysis

Propranolol Hydrochloride
Questionnaire administration
Survey administration

CREB phosphorylation
BAD phosphorylation
Distress score
Levels of transcripts that reflect

ADRB2/PKA activation
Plasma catecholamine levels (including

epinephrine)
Plasma propranolol levels
Self-perceived stress

II NCT03152786

MELABLOCK: A Clinical Trial on the
Efficacy and Safety of Propranolol
80 mg in Melanoma Patients

Propranolol
Placebo

Effect of propranolol on overall survival
for melanoma patients in stage II/IIIA
(T2, N0 or N1, M0)

Effect of propranolol on disease-free
survival for melanoma patients in
stage II/IIIA

Effect of propranolol on specific
mortality for melanoma patients in
stage II/IIIA

Effect of propranolol on long-term safety
in melanoma patients in stage II/IIIA

II/III NCT02962947

Beta Adrenergic Receptor Blockade
as a Novel Therapy for Patients
With Adenocarcinoma of the
Prostate

Carvedilol Change in biomarkers in prostate biopsy
compared to prostatectomy tissues

Change in serum PSA

II NCT02944201

Anti-Cancer Effects of Carvedilol
With Standard Treatment in
Glioblastoma and Response of
Peripheral Glioma Circulating
Tumour Cells

Carvedilol Survival curve of overall survival
Survival curve of progression-free

survival
Quantify circulating tumour cells

I NCT03980249
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Table 2 (Continued)

Title of the clinical trial Intervention(s) Outcome measures Phase Identifier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Use of Propranolol Hydrochloride in
the Treatment of Metastatic STS

Propranolol hydrochloride
Doxorubicin

Progression-free survival
Overall survival

II NCT03108300

Propranolol Hydrochloride in
Treating Patients With Locally
Recurrent or Metastatic Solid
Tumours That Cannot Be
Removed By Surgery

Propranolol hydrochloride Incidence of toxicity graded according to
Common Terminology Criteria for
Adverse Events (CTCAE) V. 4.0

Change in vascular endothelial growth factor
Effect of beta-adrenergic blockade on the

tumour microenvironment
Effect of beta-adrenergic blockade on the

host immune system
Progression-free survival
Overall survival

I NCT02013492

ACEi, angiotensin-converting enzyme inhibitor; N/A, not applicable; PSA, prostate-specific antigen.
Source: ClinicalTrials.gov.

contractile protein expression90 and structure.91 Although the
mechanisms are poorly defined, antagonism of HER2 signalling in
cardiomyocytes by trastuzumab likely results in both cellular dys-
function and loss of cell survival pathways.92–94 Immune checkpoint
inhibitors, such as ipilimumab, nivolumab, and cemiplimab were
developed for multiple tumours. More recently, immune check-
point inhibitors have been associated with immune-related adverse
events and CV complications including pericarditis, vasculitis, and
arrhythmias.95–97

Besides drugs, chest radiotherapy, mainly for mediastinal lym-
phoma, carries a risk of restrictive cardiomyopathy that typically
develops several years after exposure and may lead to HF.98,99 Fur-
ther to the direct toxicity of the aforementioned therapies in the
form of cardiomyopathy, other CV complications of cancer ther-
apy, such as myocardial ischaemia, arterial hypertension, pulmonary
hypertension, myocarditis or valvular heart disease, also contribute
to the development of HF.100 In addition to established approaches
to prevent and/or to treat HF in patients receiving anti-neoplastic
therapy (Table 3), there are several ongoing clinical trials investi-
gating the efficacy of CV drugs in patients undergoing potentially
cardiotoxic anti-neoplastic treatments (Table 4).

Heart failure induced by cancer
metabolic byproducts
Metabolic alterations in HF affect not only the heart but also sev-
eral other tissues such as skeletal muscle and liver.101 Based on
pre-clinical studies, it has been postulated that systemic metabolic
alterations caused by cancer cells impair cardiac function.102,103

Potential mechanisms are not limited to alterations in metabolic
fuelling of the heart since it is now becoming widely accepted
that metabolic intermediates can also act as signalling molecules to
alter gene expression, protein function or contribute to epigenetic
modifications that ultimately result in ventricular remodelling.104

Malignancies characterized by somatic mutations in isocitrate dehy-
drogenase (IDH1/2) gene provide a prominent example of how
byproducts of cancer metabolism could alter cardiac function. ..
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.. Table 3 Summary of therapeutic recommendations

for the management of cancer therapeutic-related
cardiac dysfunction

Anti-neoplastic
drug

Cardioprotective drugs/strategies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Anthracyclines
Daunorubicin
Doxorubicin
Epirubicin
Mitoxantrone
Idarubicin

ACEi/ARBs
Beta-blockers
Statins
Limit cumulative dose of daunorubicin

to <800 mg/m2

Limit cumulative dose of doxorubicin to
<360 mg/m2

Limit cumulative dose of epirubicin to
<720 mg/m2

Limit cumulative dose of mitoxantrone
to <160 mg/m2

Limit cumulative dose of idarubicin to
<150 mg/m2

Dexrazoxane as an alternative
Aerobic exercise

Trastuzumab ACEi/ARBs
Beta-blockers

All anti-neoplastic
drugs

Examine and minimize cardiovascular
risk factors

Treat comorbidities
Avoid QT prolonging drugs
Manage electrolyte abnormalities
Minimize cardiac irradiation

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor
blocker.
Adapted from the 2016 ESC guidelines.98

Specifically, cancer-associated mutations in IDH1/2 result in a
gain-of-function enabling synthesis of 2-hydroxyglutarate (2-HG)
from the Krebs cycle intermediate α-ketoglutarate, and increased
circulating levels of 2-HG cause dilated cardiomyopathy by inducing

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 4 A selection of ongoing clinical trials investigating the efficacy of cardiovascular drugs in patients receiving
potentially cardiotoxic anti-neoplastic treatments

Title of the clinical trial Intervention(s) Outcome measures Phase Identifier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Evaluation and Management of
Cardio Toxicity in Oncologic
Patients

ACEi
Beta-blockers

Echocardiographic global strain
Troponin (ng/mL)
ACEi and beta-blocker treatment
B-type natriuretic peptide (pg/mL)

N/A NCT02818517

Cardiotoxicity Prevention in
Breast Cancer Patients
Treated With Anthracyclines
and/or Trastuzumab

Bisoprolol
Ramipril
Placebo

Left ventricular ejection fraction III NCT02236806

S1501 Carvedilol in Preventing
Cardiac Toxicity in Patients
With Metastatic
HER-2-Positive Breast Cancer

Carvedilol
Patient observation

Time to the first identification of cardiac dysfunction
Incidence of adverse events associated with

beta-blocker treatment
Rate of first interruption of trastuzumab
Rate of death
Time to first occurrence of cardiac event
Drug adherence

III NCT03418961

Carvedilol for the Prevention of
Anthracycline/Anti-HER2
Therapy Associated
Cardiotoxicity Among
Women With HER2-Positive
Breast Cancer Using
Myocardial Strain Imaging for
Early Risk Stratification

Carvedilol
Placebo

Maximum change in left ventricular ejection fraction
Incidence of abnormal left ventricular ejection fraction

II NCT02177175

Prevention of
Anthracycline-induced
Cardiotoxicity

Enalapril The occurrence of cardiac troponin elevation above the
threshold in use at the local laboratory, at any time
during the study

Admissions to hospital for cardiovascular causes
Cardiovascular deaths
Occurrence of hypo- or hyperkinetic arrhythmias

III NCT01968200

Risk-Guided Cardioprotection
With Carvedilol in Breast
Cancer Patients Treated With
Doxorubicin and/or
Trastuzumab

Carvedilol Left ventricular ejection fraction
Treatment adherence as measured by pill count
Adverse events
Diastolic function (E/e′) by echocardiogram
Ventricular–arterial coupling measured by

echocardiogram
Cardiac strain measurements by echocardiogram
Frequency of individuals with clinical heart failure
High-sensitivity troponin level
N-terminal pro B-type natriuretic peptide level

I NCT04023110

STOP-CA (Statins TO Prevent
the Cardiotoxicity From
Anthracyclines)

Atorvastatin
Placebo

Left ventricular ejection fraction
Number of cardiac events
Myocardial fibrosis
Troponin T and global longitudinal strain

II NCT02943590

Statins for the Primary
Prevention of Heart Failure in
Patients Receiving
Anthracycline Pilot Study

Atorvastatin
Placebo

Cardiac MRI measured left ventricular ejection fraction
within 4 weeks of anthracycline completion

II NCT03186404

Detection and Prevention of
Anthracycline-Related Cardiac
Toxicity With Concurrent
Simvastatin

Simvastatin
Doxorubicin/

cyclophosphamide

Change in echocardiographic global longitudinal strain
Number of participants with adverse events as a

measure of safety and tolerability
Recurrence-free survival with concurrent simvastatin

II NCT02096588

ACEi, angiotensin-converting enzyme inhibitor; MRI, magnetic resonance imaging; N/A, not applicable.
Source: ClinicalTrials.gov.
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mitochondrial damage and myocardial glycogen accumulation via
the up-regulation of genes involved in glycogen biosynthesis.105

Whether similar mechanisms apply to other forms of cancer
remains to be explored, but 2-HG accumulation was also observed
in response to cancer-induced hypoxia, although the mechanism
behind this phenomenon remains unclear.106,107 Moreover, ele-
vated 2-HG was observed in mouse hearts during ischaemic
preconditioning.108 Further studies are necessary to investigate
whether strategies targeting these byproducts can be applied in
a clinical setting.

Cachexia and cardiac wasting in cancer
Cachexia describes a state of involuntary weight loss that is
often observed in patients with cancer, particularly in pancre-
atic, gastro-oesophageal, lung, head and neck and colorectal can-
cers, reaching a prevalence of 40% to 70% depending on the type
of malignancy.109,110 Weight loss affects all body compartments,
but skeletal muscle is particularly prone to be affected early in
the course of body wasting. Along with the development of car-
diac fibrosis,111,112 it has been shown in animal models that can-
cer promotes cardiac atrophy.113 In all cases, cancer reduced the
heart weight in animal models,114–116 and cardiac function dete-
riorated in parallel.117,118 The mechanisms behind cardiac wast-
ing started to be understood, and appear to involve activation of
the ubiquitin–proteasome system, autophagy, as well as myocyte
apoptosis.113 Furthermore, tumour necrosis factor, as well as
IL-1β and IL-6, seem to be key mediators in this process.116,119

One study pointed to the direct effects of secreted factors
from cancer cells that induce atrophy and metabolic changes in
cardiomyocytes, but the exact signalling pathways in cardiomy-
ocytes are still poorly understood .118 The identified secreted fac-
tors were named cachexokines. Cachexokines may be useful as
biomarkers for the diagnosis of cancer-induced cardiac complica-
tions and might lead to the identification of new therapeutic tar-
gets. Furthermore, espindolol, a novel non-selective beta-blocker,
demonstrated striking therapeutic and preventive potentials for
cancer-related cachexia. Espindolol reversed weight loss, improved
and maintained fat-free mass in advanced cachexia in patients with
colorectal or non-small cell lung cancer.120 Animal models suggest
that the wasting process affecting the heart is partially attenuated
by HF medications and statins.111,121

Translational outlook and steps
forward
Common pathways in heart failure
and cancer: a clinical perspective
As discussed above, the bidirectional relationship between the
two conditions is promoted by common pathophysiological mech-
anisms (Figure 3). Besides shared environmental and epigenetic risk
factors, and systemic disease interaction, the heightened risk of
cancer in HF might partly be accounted for by a simple surveil-
lance bias. Judging from the fact that HF patients need to perform ..
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.. more hospital visits for their treatment or management, it could
be assumed that surveillance bias could be responsible for the
higher cancer incidence in this patient group. However, no study
has proven this point. On the other hand, the diagnosis of cancer or
HF might be rather delayed, partly by attribution of the symptoms
of the former to the latter and vice versa.122 Furthermore, the CV
function and predictors of exercise capacity have been shown to be
impaired in patients with cancer per se, i.e. even before the initiation
of cancer therapy.123 Circulating CV hormones, such as natriuretic
peptides, are related to cancer progression and severity, which
suggests the presence of subclinical functional and morphological
heart damage. This provides hints for HF therapy in cancer patients
beyond the focus on the prevention of anti-cancer drug-induced
cardiotoxicity.124

Cancer and HF carry an independent risk of mortality, but
also interfere with the optimal treatment of one another, which
increases mortality.122 To overcome these challenges, a close col-
laboration between cardiologists and oncologists is required and
specialists should recognize the benefits of therapy for HF and can-
cer, and the risks of withholding or sub-optimally treating either
or both diseases. The prognostic impact of each condition should
always be well defined and considered in the decision-making
process.122 A multidisciplinary approach is encouraged and should
include other healthcare professionals, including cardiac rehabilita-
tion, psychology, and palliative care where necessary.

The scientific evidence upon which clinical decisions can be
based is very restricted, but epidemiology suggests that the demon-
stration of cancer in HF patients is an increasingly common prob-
lem in an aging population. Recently, the SAFE-HEaRt trial has been
designed to test the efficacy of anti-HER2 drugs in patients with
mildly reduced cardiac function in the setting of ongoing cardiac
treatment.125 Further, well-designed studies are required to clar-
ify the thresholds at which cancer treatment should not be given
to patients with pre-existing HF, and the optimal cardioprotective
and surveillance strategies for patients in whom these two worri-
some conditions coexist. Modern oncology delivers personalized
medicine (e.g. mutation-based) while in cardiology molecular-based
personalized medicine is virtually absent. Cardio-oncology should
be considered as an opportunity to increase the role of per-
sonalized approaches in CV medicine too (e.g. administration of
cardio-protective co-treatments).

The need for appropriate pre-clinical
models
Studies in animal and cell systems have been valuable components
of translational research in many areas, including the investiga-
tion of the biological mechanisms by which cancers interact with
the CV system, and vice versa. Coupled with research in dis-
ease registries, biorepositories, and clinical trials, findings in cel-
lular and animal models can help to weave together a detailed
and mechanistic understanding that paves the way for innova-
tive therapeutic strategies targeting both diseases simultaneously
(online supplementary Table S1). Reproducible pre-clinical models
with both cancer and HF are required to study the interactions
and impact of new therapeutic strategies upon both diseases.

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Inflammation

Metabolic Remodeling

Clonal Hematopoiesis 

Angiogenesis

Extracellular Environment

HF-secreted Factors-Cardiokines

(Natriuretic peptides) 

Anti-Neoplastic Treatment

Cancer Metabolic Byproducts

Cancer Development/Invasion in the CV System

Cachexia/Cancer-secreted Factors

Cancer Heart Failure

Figure 3 Graphical presentation that summarizes the proposed common pathways involved in the development and progression of cancer
and heart failure (HF). CV, cardiovascular. Illustration elements are from Smart Servier Medical Art.

Review of in vitro and pre-clinical work examining the mech-
anisms of anti-cancer therapy-induced cardiotoxicity over the
past 20 or more years demonstrates numerous outcomes.126–129

These models require further investigation, particularly with regard
to understanding the extent to which these findings repre-
sent issues faced by humans presenting cancer and heart dis-
ease. Also, cell-based assays should be used to test and develop
new drugs.

The need for registries and clinical
studies
Specific studies focusing on HF–cancer interactions would be
needed to answer important unsolved questions such as defining
the characteristics of patients who are more susceptible to present
both conditions, identifying some early and specific predictive
biomarkers,130–137 adequately adjusting the management of those
patients, and better understanding of shared mechanisms that
could lead to target common regulators of HF and cancer. To
answer these questions, dedicated registries and studies would
need to reach three main requirements.

The first relates to a sufficient sample size to ensure adequate
power to detect both conditions. Indeed, the incidence rates of
both HF and cancer are strongly related to age, with a steep rise
from around 55–60 and the highest incidence rates being in elderly
people (80+) (online supplementary Figure S1) showing an overlay
of age-specific HF and cancer incidence rates. ..
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. However, the connection between cancer and HF is beyond
aging. A recent registry-based cohort study investigated the associ-
ation of congenital heart disease (CHD) with the risk of developing
cancer.138 The authors found that by the age of 41 years, one out
of 50 patients with CHD developed cancer. They also reported
a twofold higher risk of cancer in children and young adults
with CHD compared to healthy matched controls. A long-term
follow-up study evaluated cancer incidence in patients with chronic
HF from the Danish registries. The cancer incidence rates were
higher in all age groups. However, older HF patients (≥80 years)
had a lower incidence rate than the HF patients of the age group
between 70 to 79 years.11 Also, data from a cohort of peripartum
cardiomyopathy patients from Germany and Sweden reported a
strikingly higher cancer incidence among (very young) women with
peripartum cardiomyopathy compared to age-matched controls
(20–50 years).5 Harmonising national CV and cancer registries is
one path to pursue as exemplified by the Virtual Cardio-Oncology
Research Initiative (VICORI) in the UK. VICORI created a national
linked data resource between the English National Cancer Regis-
tration and Analysis Service and the six national CV audits, and
will link the datasets using unique identifiers such as NHS numbers
to track hospital admission data and mortality for patients in both
cancer and CV registries.

Based on these outcomes, systematic screening for cancer
should be considered for risk stratification in young predisposed
patients, which allows early prevention and optimal management.
Similar studies are of pivotal clinical significance as HF and cancer
are not limited to a specific age group.

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 4 Roadmap that represents the key steps needed to guide and improve future clinical and pre-clinical research and increase the
collaboration between cardiologists and oncologists. Illustration elements are from Smart Servier Medical Art.

Overall, the risk of new cancers is similar or slightly higher
than the risk of new HF (with an average of 5–10 per 1000
person per year for both cancer and HF).139 Consequently, the
answers to many unsolved questions in HF–cancer interactions
will come from large registries or cohorts of patients (estimated
to optimally be >100 000 general comers or>10 000 patients
presenting with one or the other condition). However, cancer
registries usually report CV mortality, but no cardiac morbidity
parameters.140 Community-based databases, such as health data
from the Rochester epidemiological data, have been used to
describe a higher risk of new cancer in patients HF9 or after
MI.10 Similarly, national health insurance registries can offer an
appropriate setting to decipher HF–cancer interactions.11,141

The second relates to the collection of relevant parameters to
better phenotype HF in cancer patients and reciprocally cancer in
HF patients.142 In most clinical studies, both conditions are mutually
exclusive, thus hampering specific investigations on HF–cancer
interactions.143 It would also be needed to define a minimal set of
markers (such as cardiac biomarkers, electrocardiogram, and many
others) that could be simply included in such studies.

The last requirement relates to the constitution of prospec-
tive banking of different biological samples (including blood and
urine). These samples will notably help in describing pathways ..
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.. and targets that sustain the common development of HF and
cancer.

In conclusion, we now have preliminary insights into factors
mediating tumour growth in HF and should not be dismissive of
the epidemiological data. Cancer surveillance in the HF population
is essential. A holistic rather than a disease-based care plan is
essential in HF patients. Future joint research efforts are needed to
identify important mediators to strengthen the connection of HF
with tumour growth (Figure 4).
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