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Abstract

Background: Germline variants explain more than a third of prostate cancer (PrCa) risk,
but very few associations have been identified between heritable factors and clinical
progression.
Objective: To find rare germline variants that predict time to biochemical recurrence
(BCR) after radical treatment in men with PrCa and understand the genetic factors asso-
ciated with such progression.
Design, setting, and participants: Whole-genome sequencing data from blood DNA were
analysed for 850 PrCa patients with radical treatment from the Pan Prostate Cancer
Group (PPCG) consortium from the UK, Canada, Germany, Australia, and France.
Findings were validated using 383 patients from The Cancer Genome Atlas (TCGA) data-
set.
Outcome measurements and statistical analysis: A total of 15, 822 rare (MAF <1%)
predicted-deleterious coding germline mutations were identified. Optimal multifactor
and univariate Cox regression models were built to predict time to BCR after radical
treatment, using germline variants grouped by functionally annotated gene sets.
Models were tested for robustness using bootstrap resampling.
Results and limitations: Optimal Cox regression multifactor models showed that rare
predicted-deleterious germline variants in ‘‘Hallmark’’ gene sets were consistently asso-
ciated with altered time to BCR. Three gene sets had a statistically significant association
with risk-elevated outcome when modelling all samples: PI3K/AKT/mTOR, Inflammatory
response, and KRAS signalling (up). PI3K/AKT/mTOR and KRAS signalling (up) were also
associated among patients with higher-grade cancer, as were Pancreas-beta cells, TNFA
signalling via NKFB, and Hypoxia, the latter of which was validated in the independent
TCGA dataset.
Conclusions: We demonstrate for the first time that rare deleterious coding germline
variants robustly associate with time to BCR after radical treatment, including cohort-
independent validation. Our findings suggest that germline testing at diagnosis could
aid clinical decisions by stratifying patients for differential clinical management.
Patient summary: Prostate cancer patients with particular genetic mutations have a
higher chance of relapsing after initial radical treatment, potentially providing opportu-
nities to identify patients who might need additional treatments earlier.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Prostate cancer (PrCa) is the most common cancer in men in
the developed world. Although the majority of PrCa cases
are diagnosed with low- or intermediate-risk disease,
approximately 10% of patients develop metastatic disease
with poor survival rates [1,2]. Genetic predisposition to
the overall disease risk of PrCa of any severity is well
researched; however, an understanding of potential herita-
ble genetic factors contributing to tumour progression is
limited [3].

Biochemical recurrence (BCR) is often used as a prostate-
specific antigen (PSA)-based predictor of progression to
poor prognosis phenotype and is observed in approximately
25% of patients after radical prostatectomy (RP) [4]. Identi-
fication of men at a high risk for progression to lethal dis-
ease and who are likely to relapse after primary treatment
would present the possibility to triage treatment intensifi-
cation using current or novel systemic therapies. Most
research into BCR to date has focused on gene expression
or mutational signatures in prostate tumour tissue or
specific candidate genes only [5]. In this study, we investi-
gate for the first time whether rare germline variants across
the full exome are predictive of poor prognosis after radical
treatment. This information could aid clinical management
of the disease, particularly at diagnosis, pre- or post-
treatment staging, and prognostication.
2. Patients and methods

2.1. Sequencing of DNA from PrCa patients

Whole-genome sequencing (WGS) data derived from whole blood sam-

ples were collated for PrCa patients from member countries of the Pan

Prostate Cancer Group (PPCG, http://panprostate.org; Australia n = 133,

Canada n = 288, France n = 15, Germany n = 230, and UK n = 184; Table 1,

further characteristics in Supplementary Table 1). The study presented

here combines data from patients following RP and a small subset of

samples with radical radiotherapy (RT; 8%) from the Canadian study

group. We refer to the samples collectively as having radical treatment.

Samples were collected according to the criteria outlined in the Sup-

plementary material. Collection was subject to the International Cancer

Genome Consortium (ICGC) standards of ethical consent. Collection and

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 – Number of samples, genes, and variants contributed, by study, also showing the number of samples with high-Gleason score (>3 + 4;
Gleason grade group 3–5), the numbers of samples in each set with biochemical recurrence (BCR), numbers associated with mutations that are
predicted deleterious, and how many of those are known deleterious/loss of function (LoF) mutations

Study European
Genome-
phenome
Archive ID

Samples used
in
study after QC
(with BCR)

Samples with
high
Gleason score
(with BCR)

Number of genes
with
predicted-
deleterious
mutations (LoF)

Number of predicted-
deleterious mutations
included in analysis
(LoF)

Melbourne, Australian Research Group EGAD00001004182 133 (79) 110 (70) 2917 (1884) 3728 (2473)
Canadian Prostate Cancer Genome Network EGAD00001004170 288 (92) 63 (22) 4579 (2637) 5900 (3154)
French ICGC Prostate Cancer Group EGAD00001003835 15 (10) 15 (10) 409 (255) 393 (243)
Germany ICGC Prostate Cancer Group – Early

Onset
EGAD00001005997 230 (68) 85 (45) 3787 (2160) 4761 (2404)

CRUK-ICGC Prostate Group, UK EGAC00001000852 184 (36) 63 (22) 3365 (2073) 4071 (2401)
Total 850 (285) 336 (169) 8455 (5792) 15, 822 (9006)

QC = quality control.
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analysis of the Australian samples received institutional review board

approval (Epworth Health 34506; Melbourne Health 2019.058). WGS

was performed using Illumina technology to �30� depth. The

Burrows-Wheeler Aligner [6] was used to align sequencing data to the

GRCh37 human genome (human_g1k_v37) with polymerase chain reac-

tion duplicates removed [7]. Sequencing data have been deposited at the

European Genome-phenome Archive (https://ega-archive.org; dataset

IDs in Table 1) and are available upon request.

2.2. Variant calling

Variant calling was performed with the Genome Analysis Toolkit pipe-

line (GATK v4.0) [8] following GATK best practice recommendations

for germline single nucleotide variant and indel calling (Supplementary

material) [9,10], apart from for the German samples that were called

using FreeBayes v1.1.0 [11] and processed as described by Gerhauser

et al [12], normalised with vt v0.5 (Supplementary material) [13]. This

analysis was restricted to variants within protein-coding transcript

sequences according to GENCODE v29 [14].

2.3. Quality control, variant annotation, and prioritisation

Low-quality variants and samples were removed based on established

quality control (QC) protocols [15–17]. We excluded samples from

related individuals (using R package SNPRelate method identity by des-

cent [18]) or those with non-European ancestry (using Principal Compo-

nent Analysis relative to 2504 samples from the 1000 Genomes Project

[19]). We used Picard tools v2.23.8 [20] to remove samples with a mean

insert size of <250 bp, AT or GC dropout >5%, <95% aligned reads, >5%

mismatch rate, <80% with �20� coverage, or >5% missing call rate. Using

verifyBamID v1.1.2 [21], we removed samples with >3% sample contam-

ination. We excluded variants with a missing call rate in >5% of the sam-

ples, those with monomorphic loci, those in repetitive regions (simple

repeats, segmental duplications, and centromeric regions), and those

for which the ExAC minor allele frequency in any population was >1%.

Of the submitted samples, 3% were excluded based on ancestry, whilst

2% were removed because of sequencing quality. One sample was

removed due to relatedness.

Post-QC variants were annotated using the Variant Effect Predictor

(VEP v101) and loss-of-function transcript effect estimator (LOFTEE)

package [22]. For downstream analyses, we retained only variants cate-

gorised as deleterious/loss of function, comprising those with protein-

truncating mutations (nonsense, frameshift, and splice site variants)

occurring in the first 95% of the protein, as well as predicted-

deleterious (PD) missense variants with a CADD PHRED score of >30

(Table 1) [23].
2.4. Pathways and gene sets

For a pathway-level analysis, all 50 ‘‘Hallmark’’ gene sets from GSEA

MsigDB were considered (downloaded April 2017) [24], along with the

BROCA extended panel of 66 genes and 175 curated DNA repair genes

(DRGs; Supplementary Table 2) [16,17].
2.5. Statistical analysis

2.5.1. Software and libraries

All statistical analyses were applied using Python v3.8 [25]. Data in VCF

format were converted using PyVCF v0.6.7 [26] and processed using pan-

das v1.3.0 [27], SciPy v1.4.1 [28], NumPy v1.18.3 [29], IPython v7.14

[30], and Scikits.bootstrap v1.1 [31]. Survival analysis for Cox’s propor-

tional hazard (PH) model and Kaplan-Meier estimates were performed

using the Lifelines v0.25 package [32]. Tables and graphs were output

using Matplotlib v3.3.4 [33], to_precision [34], and Maftools v2.6.5 [35].
2.5.2. Multifactor Cox regression

Analyses were performed on the combined post-QC dataset (Table 1)

and a subset of patients with high Gleason score tumours, with models

stratified by study to compensate for differing baseline hazards. Gene-

set predictors of the Cox PH model were generated by recording the

presence of any gene with PD mutations in the selected gene sets across

all samples. Pathological T stage had a baseline of stage 1–2 and a second

group for stage 3–4. Clinical T stage was used for patients receiving RT.

Preoperative PSA and age at the time of surgery were continuous vari-

ables. Gleason score had a baseline of �3 + 4 (Gleason grade group 1–

2) and a group for �4 + 3 (Gleason grade group 3–5). Time was measured

from radical treatment until BCR, which for samples with RP was defined

as two consecutive post-RP PSA measurements of >0.2 ng/ml on the last

known follow-up date [36]. For the 72 Canadian samples with RT, BCR

was defined as a rise in PSA concentration of >2.0 ng/ml above the nadir,

backdated to first PSA >0.2 ng/ml if PSA continues to rise [37]. We per-

formed a sensitivity analysis on a subset that excluded RT samples,

which did not affect the significant risk-elevating gene sets observed

(Supplementary Table 3).

Variables included in the final models were selected by performing

Cox regression with penalisation based on the least absolute shrinkage

and selection operator (LASSO) [38]. The optimal penalty factor (lambda)

was determined as within 1 standard error of the optimum from the

mean of 100 ten-fold cross-validation models. Only features with a non-

zero coefficient were retained. The final prediction models were then

built using Cox regression without penalisation.

https://ega-archive.org


Table 2 – Multifactor Cox model results for predicted-deleterious mutations in 850 germline samples, grouped into 52 gene sets

HR (95% CI) p value Bootstrap HR (95% CI) Bootstrap p value

Gleason (�4 + 3 : <4 + 3) 1.98 (1.47–2.67) <0.001 2.01 (1.99–2.04) <0.001
Stage (T3–T4 : T1–T2) 1.69 (1.29–2.21) <0.001 1.75 (1.74–1.77) <0.001
PI3K/AKT/mTOR signalling 1.55 (1.06–2.25) 0.023 1.58 (1.56–1.60) 0.012
Age 1.53 (1.20–1.96) <0.001 1.03 (1.03–1.03) 0.001
Inflammatory response 1.35 (1.00–1.82) 0.048 1.37 (1.35–1.38) 0.028
KRAS signalling (up) 1.35 (1.01–1.79) 0.041 1.37 (1.36–1.38) 0.020
Fatty acid metabolism 1.29 (0.96–1.71) 0.087 1.32 (1.30–1.33) 0.040
G2-M checkpoint 1.25 (0.94–1.66) 0.13 1.27 (1.26–1.28) 0.074
Myc targets v2 1.23 (0.84–1.81) 0.3 1.26 (1.24–1.27) 0.16
Mitotic spindle 1.21 (0.94–1.56) 0.14 1.22 (1.21–1.23) 0.10
DRG 1.16 (0.90–1.51) 0.3 1.18 (1.17–1.19) 0.15
p53 pathway 1.16 (0.85–1.60) 0.4 1.18 (1.16–1.19) 0.2
IL-2/STAT5 signalling 1.06 (0.77–1.46) 0.7 1.07 (1.06–1.09) 0.4
Preop PSA 1.04 (1.01–1.06) 0.006 1.01 (1.01–1.01) 0.004
Coagulation 1.01 (0.76–1.36) 0.9 1.01 (1.00–1.02) 0.5
Glycolysis 0.81 (0.61–1.08) 0.16 0.82 (0.81–0.82) 0.080
UV response (dn) 0.71 (0.51–0.99) 0.042 0.72 (0.71–0.73) 0.038
Cholesterol homoeostasis 0.58 (0.34–1.00) 0.048 0.59 (0.58–0.60) 0.013

BCR = biochemical recurrence; CI = confidence interval; dn = down; DRG = DNA repair gene; HR = hazard ratio; PSA = prostate-specific antigen.
Shown are p values and hazard ratios of LASSO-selected gene sets as well as clinical variables reported at the time of BCR or last check-up, impacting the
predicted time until BCR.
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2.5.3. Univariate Cox regression

Each gene set was modelled individually along with clinical covariates

(preoperative PSA, pathological T stage, Gleason score, and age) and p

values were adjusted for multiple testing using false discovery rate

(FDR).

2.5.4. Validation

We performed harmonised variant filtering for PD mutations on germ-

line PrCa samples from The Cancer Genome Atlas (TCGA) PRAD project.

From the original 500 TCGA PRAD samples, those from contributing

institutions with <15 samples were excluded, and models were stratified

by institution, resulting in 383 samples used in the analysis. Of these,

233 were included in the high-Gleason subset analysis. We applied the

variants to the predictors selected from the Cox model built using the

combined PPCG samples, to compare the hazard ratios (HRs) in both

sets.

2.5.5. Kaplan-Meier analysis

A Kaplan-Meier plot measuring time to BCR in the event of a relapse was

used to visualise the impact of mutations within significant gene sets on

the risk of BCR. This was applied separately to the whole dataset and the

high-Gleason subset, and reported alongside log-rank test p values.

We performed a combined analysis, considering mutations in any of

the gene sets significant for the corresponding analyses and subdivided

to ascertain potential additive effects upon a patient’s time to relapse.

2.5.6. Bootstrapping validation

To test model robustness, we produced new datasets of the same sample

size by randomly choosing samples with replacement, without stratifi-

cation, and building a Cox regression model from the resulting dataset.

This was repeated 1000 times to derive a distribution of coefficients.

The p values were computed for each predictor as a percentage of the

iterations where the coefficient was in a different direction than

expected.

3. Results

We analysed germline WGS data from 850 patients across
five studies in the PPCG consortium (Table 1 and Supple-
mentary Tables 1 and 2) for germline predictors of PrCa pro-
gression measured by BCR after radical treatment. This
analysis was restricted to variants within protein-coding
transcript sequences, resulting in 15, 822 rare variants iden-
tified as deleterious or likely deleterious, jointly categorised
as PD. No individual variants or genes demonstrated a sig-
nificant association with time to BCR (Cox regression anal-
ysis; p > 0.05), although the available sample size of 850
cases is underpowered for such an analysis. Therefore, we
focused on finding gene sets or pathways with significant
associations to identify potential biological mechanisms
linked with progression. To this end, we determined
whether there was at least one PD germline alteration in
52 gene sets, including 50 Hallmark gene sets from the
MsigDB database [24], containing over 4000 genes with sets
varying in size from 30 to 200, the DRG panel containing
175 DNA repair genes [16], and the extended BROCA gene
panel containing 65 genes (Supplementary Table 4) [17].

After variable selection by LASSO, the optimal model for
predicting time to BCR contained 14 gene sets, three of
which were significantly associated with time to BCR (Cox
PH model for all samples; p-value threshold <0.05; Table 2
and Fig. 1A). Clinical variables at the time of radical treat-
ment (preoperative PSA, pathological T stage, age, and Glea-
son score) were added to the model as covariates. The
significant risk-elevating Hallmarks were PI3K/AKT/mTOR
(HR = 1.55; 95% confidence interval [CI] 1.06–2.25;
p = 0.023), Inflammatory response (HR = 1.35; 95% CI
1.00–1.82; p = 0.048), and KRAS signalling (up)
(HR = 1.35; 95% CI 1.01–1.79; p = 0.041). These gene sets
are associated with shortened average time to BCR. The
UV response (down) (HR = 0.71; 95% CI 0.51–0.99;
p = 0.042) and cholesterol homoeostasis (HR = 0.58; 95%
CI 0.34–1.00; p = 0.048) gene sets were borderline signifi-
cantly protective. Application of this model to multiple
bootstrap resamplings showed that these results are robust,
with all risk-elevating gene sets having HR >1 in >97% of
resamples and p values indicating the same coefficient
direction.

The clinical covariate-only model built using all the sam-
ples determined that Gleason score, preoperative PSA, age,
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Fig. 1 – Horizontal box plot of the coefficient/log hazard ratios with lower and upper 95% confidence intervals for (A) Table 2, (B) Table 3, and (C) Table 4.
CI = confidence interval; dn = down; DRG = DNA repair gene; HR = hazard ratio; PSA = prostate-specific antigen.
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Table 3 – Multifactor Cox model results for predicted-deleterious mutations in 336 high-Gleason germline samples, grouped into 52 gene sets

HR (95% CI) p value Bootstrap HR (95% CI) Bootstrap p value

Pancreas-beta cells 2.52 (1.01–6.29) 0.047 3.58 (3.43–3.73) 0.034
PI3K/AKT/mTOR signalling 1.95 (1.21–3.15) 0.006 2.13 (2.09–2.17) 0.007
TNFA signalling via NFKB 1.79 (1.19–2.68) 0.005 1.86 (1.83–1.89) 0.005
Hypoxia 1.73 (1.14–2.63) 0.010 1.82 (1.79–1.85) 0.011
Stage (T3–T4 : T1–T2) 1.70 (1.13–2.56) 0.012 1.86 (1.84–1.89) 0.003
KRAS signalling (up) 1.58 (1.08–2.32) 0.019 1.65 (1.63–1.67) 0.016
Myc targets v2 1.54 (0.92–2.60) 0.10 1.60 (1.57–1.63) 0.081
DRG 1.33 (0.92–1.91) 0.13 1.38 (1.36–1.39) 0.071
G2-M checkpoint 1.31 (0.89–1.93) 0.17 1.41 (1.39–1.43) 0.092
Age 1.17 (0.90–1.52) 0.2 1.01 (1.01–1.01) 0.17
IL-6/JAK/STAT3 signalling 1.17 (0.69–1.98) 0.6 1.22 (1.19–1.24) 0.3
Preop PSA 1.06 (1.00–1.11) 0.039 1.00 (1.00–1.00) 0.028
Coagulation 1.05 (0.71–1.55) 0.8 1.08 (1.06–1.09) 0.4
mTORC1 signalling 0.79 (0.50–1.25) 0.3 0.80 (0.79–0.82) 0.17
Androgen response 0.71 (0.41–1.22) 0.2 0.73 (0.72–0.74) 0.12
Glycolysis 0.60 (0.40–0.91) 0.017 0.61 (0.60–0.62) 0.012
Cholesterol homoeostasis 0.564 (0.270–1.18) 0.13 0.586 (0.571–0.602) 0.063

CI = confidence interval; DRG = DNA repair gene; HR = hazard ratio; PSA = prostate-specific antigen.
Shown are p values and hazard ratios of LASSO-selected gene sets impacting the predicted time until biochemical recurrence.

Table 4 – Multifactor Cox model results for predicted-deleterious mutations in 233 high-Gleason TCGA germline samples, stratified by location
and grouped into 52 gene sets

HR (95% CI) p value Bootstrap HR (95% CI) Bootstrap p value

Stage (T3–T4 : T1–T2) 7.85 (1.65–37.3) 0.01 6.24 � 1012 (1.73 � 108–3.73 � 1013) 0.001
Coagulation 3.53 (1.30–9.59) 0.014 11.3 (7.47–28.5) 0.022
Hypoxia 3.18 (1.04–9.74) 0.043 7.88 � 106 (1.14 � 106–3.40 � 107) 0.097
Myc targets v2 2.90 (1.00–8.40) 0.049 5.63 (5.29–6.07) 0.044
TNFA signalling via NFKB 2.12 (0.78–5.79) 0.14 3.95 (3.51–4.97) 0.11
G2-M checkpoint 2.00 (0.79–5.05) 0.14 2.89 (2.75–3.11) 0.10
Androgen response 1.43 (0.52–3.97) 0.5 1.81 (1.70–2.00) 0.3
IL-6/JAK/STAT3 signalling 1.32 (0.36–4.77) 0.7 2.86 � 108 (5.67–1.71 � 109) 0.3
KRAS signalling (up) 0.97 (0.39–2.43) >0.9 1.36 (1.29–1.46) 0.5
PI3K/AKT/mTOR signalling 0.70 (0.08–5.77) 0.7 1.52 � 106 (0.972–7.60 � 106) 0.3
DRG 0.68 (0.31–1.49) 0.3 0.72 (0.70–0.75) 0.18
mTORC1 signalling 0.46 (0.14–1.50) 0.2 0.46 (0.43–0.49) 0.075
Glycolysis 0.27 (0.07–1.09) 0.067 0.34 (0.31–0.36) 0.047

CI = confidence interval; DRG = DNA repair gene; HR = hazard ratio; TCGA = The Cancer Genome Atlas.
Shown are p values and hazard ratios of the same predictors identified by the Pan Prostate Cancer Group Cox model (pancreas-beta cells and cholesterol
homoeostasis were removed, as most samples had a mutation or no mutation in the gene set, respectively, which caused convergence errors).
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and pathological T stage significantly associate with time to
BCR (Cox PH; p value threshold <0.05; Supplementary
Table 5). This model is significantly improved by the addi-
tion of the selected gene sets (likelihood ratio test
p = 0.048; c-index 0.68 vs 0.66).

Within the PPCG set, patients presenting with higher-
grade localised PrCa (a subset of 336 patients where Glea-
son score was �4 + 3; Gleason grade group 3–5) had a
higher proportion of BCR events (50.2% compared with
33.5% for all samples; Table 1). We developed an optimal
multifactor Cox regression model (Cox PH; p value thresh-
old <0.05; Table 3 and Fig. 1B) for this subset of high-
Gleason samples with poorer prognosis disease. After fea-
ture selection by LASSO, we identified five significant risk-
elevating gene sets: Pancreas-beta cells (HR = 2.52; 95% CI
1.01–6.29; p = 0.047), PI3K/AKT/mTOR signalling
(HR = 1.95; 95% CI 1.21–3.15; p = 0.006), TNFA signalling
via NFKB (HR = 1.79; 95% CI 1.19–2.68; p = 0.005), Hypoxia
(HR = 1.73; 95% CI 1.14–2.63; p = 0.010), and KRAS sig-
nalling (up) (HR = 1.58; 95% CI 1.08–2.32; p = 0.019).
PI3K/AKT/mTOR has a higher HR and a lower p value than
in the all-sample model. The Glycolysis gene set is shown
here as significantly protective (HR = 0.60; 95% CI 0.40–
0.91; p = 0.017). The bootstrap resamplings for the signifi-
cant gene sets have the same coefficient direction in >96%
of resamples.

After examining each gene set in individual univariate
models with all samples, none was found to have a signifi-
cant association with outcome after multiple testing correc-
tion (FDR; p value threshold <0.1; Supplementary Table 6).
PI3K/AKT/mTOR signalling (q = 0.14), KRAS signalling (up)
(q = 0.20), and TNFA signalling via NKFB (q = 0.16) had p val-
ues close to the significance threshold and achieve the
threshold of significance in the high-Gleason subset
(Table 3). In the high-Gleason subset, performing a log-
rank test on each gene set revealed four gene sets that
had a significant association with time to BCR: TNFA sig-
nalling via NFKB (p = 0.027), PI3K/AKT/mTOR signalling
(p = 0.025), KRAS signalling (up) (p = 0.013), and
Pancreas-beta cells (p = 0.023). In the multifactor high-
Gleason Cox model, these four gene sets are also statistically
significant (Table 3), alongside Hypoxia.

Application of the all sample Cox multifactor model to
the TCGA validation set results in two significant gene-set
predictors that are not reflected in the PPCG data: Myc tar-
gets v2 (HR = 4.46; 95% CI 1.73–11.5; p = 0.002) and Coag-
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Fig. 2 – Kaplan-Meier plot showing survival probability against time in months until biochemical recurrence for (A) all samples and (B) the 336 samples in the
high-Gleason subset (Gleason score >3 + 4; Gleason grade group 3–5). The impact of mutations in significant sets are subdivided by samples with mutations in
multiple gene sets. Log-rank tests for each category: in Figure A—1 (p = 0.63) and �2 (p = 2.88 3 10–3); and Figure B—1 (p = 0.27), 2 (p = 8.55 3 10–3), and �3
(p = 3.29 3 10–3).
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ulation (HR = 3.49; 95% CI 1.47–8.30; p = 0.005; Cox PH; p
value threshold <0.05; Supplementary Table 7). Performing
the same high-Gleason filtering on TCGA samples and
applying that set to the high-Gleason PPCG model, three
significant risk-elevating predictors are identified: Myc tar-
gets v2 (HR = 2.90; 95% CI 1.00–8.40; p = 0.049), Coagulation
(HR = 3.53; 95% CI 1.30–9.59; p = 0.014), and additionally
Hypoxia (HR = 3.18; 95% CI 1.04–9.74; p = 0.043; Cox PH;
p value threshold <0.05; Table 4 and Fig. 1C). The consistent
significance and same direction of coefficient of Hypoxia in
patients with more advanced disease are compelling evi-
dence that germline variations in genes within this pathway
contribute to clinical progression.

We used Kaplan-Meier plots to visualise the additive
effect of mutations in the corresponding risk-elevating gene
sets for the all-sample and high-Gleason sets (Fig. 2). In
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both plots, we show a significant difference in survival
when multiple gene sets carry PD mutations. In the all-
sample analysis, 285 of 850 patients had a mutation in
one significant gene set and 58 had mutations in two or
more gene sets, whilst in the high-Gleason subset analysis,
129 of 336 patients had a mutation in one significant gene
set, 36 had mutations in two gene sets, and 12 had muta-
tions in three or more gene sets, which was the clearest
detrimental impact (Fig. 2B).

To search for individual genes mutated more frequently
in patients with BCR, we calculated the odds ratio (OR)
between the BCR-positive and BCR-negative groups (Sup-
plementary Table 8). Twelve genes within the significant
gene sets for all samples (PIKFYVE, MYD88, CAB39, RPS6KA1,
IRAK2, IL2RB, MSR1, ITGB8, PIK3R5, MMP10, HKDC1, and
RBM4) and 17 genes within the significant gene sets in the
high-Gleason subset (GAPDHS, GRHPR, PGM1, SELENBP1,
NAGK, SLC6A6, PIKFYVE, MYD88, CAB39, RPS6KA1, DDX58,
KYNU, NR4A1, DENND5A, MMP10, HKDC1, and RBM4) had
an OR at least two-fold higher and a mutation count differ-
ence of �2 between samples with a mutation and BCR and
those with a mutation and no BCR (Supplementary Table 9).
The overwhelming majority (92.7%) of the PD mutations
identified in these combined 22 risk-elevating genes are
missense variants (Supplementary Fig. 2), although patients
with BCR exhibited more protein-truncating variants (Sup-
plementary Fig. 3) than those without BCR (Supplementary
Fig. 4).
4. Discussion

The primary aim of genetic profiling of germline or tumour
DNA is to aid clinical decisions, such as targeted screening
of asymptomatic individuals and treatment options for can-
cer patients. Germline signatures in particular would have
the advantage of helping stratify patients in both pre- and
post-operative settings. Follow-up strategies and decisions
on further treatments could be aided by predicting which
individuals are likely to develop prostate tumours, progress
to clinically significant disease, or relapse. To our knowl-
edge, this study is the first to evaluate the association of
rare germline mutations across the full exome as opposed
to specific plausible candidate genes and provides evidence
that germline mutation status is predictive for BCR after
radical treatment for PrCa. Our multifactor Cox model iden-
tified that rare PD variants in three Hallmark gene sets are
associated with time to BCR after radical treatment (PI3K/
AKT/mTOR, KRAS signalling (up), and Inflammatory
response) and five gene sets associated with BCR in a subset
of cases with more aggressive phenotype at diagnosis (PI3K/
AKT/mTOR, KRAS signalling (up), Hypoxia, TNFA signalling
via NFKB, and Pancreas-beta cells). Importantly, we also
show that these gene sets remained independent predictive
biomarkers of time to BCR, over and above the inclusion of
clinical variables. We further demonstrate that the Hypoxia
gene set was replicated in an independent cohort of high-
Gleason tumour cases from TCGA. With additional confir-
mation and refinement, these signatures could inform prog-
nosis and clinical decision-making.
Among the gene sets associated with a greater risk of
BCR in PrCa patients, genes involved in PI3K/AKT/mTOR
and KRAS signalling (up) remained significant across all
PPCG samples as well as when restricted to patients with
high-Gleason tumours. In somatic analyses, AKT expression
and phosphorylation have previously been linked to the risk
of BCR after RP [39,40] and poorer survival in patients with
metastatic castrate-resistant PrCa [41]. Somatic loss of
PTEN, a tumour suppressor that downregulates the AKT sig-
nalling pathway, is also associated with poorer prognosis
PrCa [5] and disease recurrence [42,43]. The fact that these
gene sets were not significant in the TCGA replication set
could result from power limitations owing to the lower
sample size (383 vs 850 samples), but these signatures will
require validation in independent cohorts.

In the analysis of patients with high-Gleason tumours,
the Hypoxia gene set was established at statistical signifi-
cance in the PPCG cohort and also replicated in the indepen-
dent TCGA validation cohort. This provides strong evidence
that germline mutations within this gene set contribute to
recurrence in patients with more aggressive disease.
Hypoxia has previously been reported to contribute to pro-
gression when analysing tumour samples [44,45], with a
28-gene mRNA signature for hypoxia demonstrated to pre-
dict BCR and metastases after RP or RT and provide inde-
pendent prognostic value after adjustment for clinical
features [46]. Our results indicate for the first time that her-
itable mutations in genes upregulated in response to a low
oxygen environment predispose PrCa patients towards a
greater likelihood of, and shorter time to, BCR.

A small number of additional gene sets also achieved sig-
nificance in a single analysis only (Inflammatory response
in PPCG all samples, TNFA signalling via NFKB, and
Pancreas-beta cells in the PPCG high-Gleason subset, and
Myc targets v2 and Coagulation in the TCGA validation
cohort). Owing to the less consistent selection of these gene
sets, their importance in germline susceptibility towards
BCR is less compelling; however, they would nonetheless
represent potential gene sets of interest for examination
in future larger replication studies.

In this study, we observed significantly shorter time to
BCR among the individuals carrying mutations in more than
one of the risk-increasing gene sets, compared with both
noncarriers and individuals carrying mutations in a single
gene set only. This provides further support that mutations
affecting multiple regulatory networks may co-operatively
serve to negatively influence PrCa prognosis, and that for
some men, intraprostatic features that determine an aggres-
sive tumour environment may be predetermined in the
germline. This has been suggested before, based on hypoxia
associating with genetic instability and aggressive sub-
pathologies as field defects in PrCa, and warrants further
investigation [47]. Fifty-eight out of the 850 total patients
were carriers of mutations in two or more of the three all-
sample gene sets and 48 out of the 336 patients carried
mutations within two or more of the five high-Gleason gene
sets identified through our multifactor analysis.

The limitations of this study include multicohort biases;
relatively small, European ancestry–only sample size, and in
turn, limited statistical power to detect associations at the
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individual gene or variant levels; and the imperfect status of
BCR as a definitive surrogate for clinical recurrence and sur-
vival. In addition, this analysis included only coding vari-
ants with strong evidence for deleterious effect, excluding
variants of uncertain significance, copy number alterations,
and structural variants. It may be necessary to integrate dif-
ferent data types, including expression and methylation
data, to fully understand the mechanisms behind our find-
ings. Although it is very encouraging that genes curated
within PI3K/AKT/mTOR signalling and KRAS signalling
(up) remained significant across both the PPCG all-sample
and the high-Gleason subset analyses, and the independent
validation cohort confirmed evidence for genes curated as
involved in Hypoxia, additional larger studies remain neces-
sary to confirm these findings and disentangle which speci-
fic genes contribute towards an increased risk of PrCa
progression and invasiveness.
5. Conclusions

Our findings have potentially important clinical implica-
tions. Germline DNA can be sequenced at an early stage of
disease or even for healthy individuals, which could enable
the prediction of PrCa progression close to, or even in
advance of, the point of diagnosis. This would allow clini-
cians to stratify and differentiate patients who are more
likely to relapse, putting them on a different clinical treat-
ment pathway comprising more radical intervention or
more frequent follow-up.
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