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Simple Summary: Immune checkpoint inhibitors have been shown to improve survival in patients
with advanced melanoma; however, a proportion of patients do not experience durable clinical
benefit with these agents. Findings from a previous study suggested that the use of proton pump
inhibitors while receiving immune checkpoint inhibitors may lead to worse clinical outcomes. To
validate those results, we performed this retrospective analysis using data from three clinical trials
involving patients with advanced melanoma treated with immune checkpoint inhibitors. We found
that there is not enough evidence to conclude that proton pump inhibitors influence the efficacy of
immune checkpoint inhibitors. Prospective studies are needed to conclusively determine if the use of
proton pump inhibitors has any meaningful impact on the efficacy of immune checkpoint inhibitors
in patients with advanced melanoma.

Abstract: The impact of proton pump inhibitors (PPIs) on clinical outcomes with first-line immune
checkpoint inhibitors (ICIs) in patients with metastatic melanoma was previously analyzed in the
phase II study, CheckMate 069. This retrospective analysis utilized data from three phase II/III
studies of first-line ICI therapy in untreated advanced melanoma: CheckMate 066, 067, and 069.
All randomized patients with PPI use ≤ 30 days before initiating study treatment were included in
the PPI-use subgroup. Possible associations between baseline PPI use and efficacy were evaluated
within each treatment arm of each study using multivariable modeling. Approximately 20% of
1505 randomized patients across the studies reported baseline PPI use. The median follow-up was
52.6–58.5 months. Objective response rate (ORR), progression-free survival (PFS), and overall survival
analyses provided insufficient evidence of a meaningful association between PPI use and efficacy
outcomes with nivolumab-plus-ipilimumab, nivolumab, or ipilimumab therapy. In five of the six
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ICI treatment arms, 95% confidence intervals for odds ratios or hazard ratios traversed 1. Significant
associations were observed in the CheckMate 069 combination arm between PPI use and poorer ORR
and PFS. This multivariable analysis found insufficient evidence to support meaningful associations
between PPI use and ICI efficacy in patients with advanced melanoma.

Keywords: proton pump inhibitors; checkpoint inhibitors; melanoma; pooled analysis

1. Introduction

Immune checkpoint inhibitors (ICIs), such as the programmed death 1 (PD-1) inhibitor
nivolumab, are well established as a treatment for patients with advanced melanoma [1],
either alone or in combination with ipilimumab (a cytotoxic T-lymphocyte-associated
protein 4 inhibitor), with durable survival rates demonstrated in randomized controlled
phase III trials [2,3]. In the phase III CheckMate 066 trial, a 5-year overall survival (OS)
rate of 39% was reported with nivolumab monotherapy in treatment-naive patients with
wild-type BRAF advanced melanoma [3]. In the phase III CheckMate 067 trial, 5-year OS
rates of 52% and 44% were demonstrated with nivolumab with or without ipilimumab,
respectively, in previously untreated patients with advanced melanoma [2]. Despite these
positive results in a disease that historically was regarded as having a very poor outcome, a
proportion of patients with advanced melanoma do not experience durable clinical benefit
with these agents [2,3].

The underlying reasons for heterogeneous responses to ICIs are not well understood.
Indeed, reliable predictors of clinical benefits of these agents have yet to be identified,
and approaches for overcoming innate and acquired tumor resistance to ICI therapies
have yet to be developed [1]. Many factors may adversely affect ICI efficacy, such as the
patient’s immune status [4–8] or co-administration of drugs, such as antibiotics, that reduce
the diversity of the gut microbiome [7–10]. Both preclinical and clinical data suggest an
association between the microbiome and the activity of ICIs against melanoma [7,8,11].

Proton pump inhibitors (PPIs) have also been shown to have an adverse effect on the
gut microbiome [12,13]. A possible mechanism for this effect is the direct impact of PPIs on
gastric pH, which is a major barrier to pathogens invading the GI tract. An effect of PPIs
on the functionality of the immune system was also suggested in a study that found an
increased risk of developing community-acquired pneumonia with PPI use [14].

As part of an effort to evaluate the impact of concomitant medications on clinical
outcomes with ICIs, a previously presented retrospective analysis found that the use of PPIs
reduced the efficacy of nivolumab and ipilimumab combination therapy but not ipilimumab
alone, in 140 treatment-naive patients with metastatic melanoma [15]. That analysis utilized
data from a randomized phase II study, CheckMate 069 [16,17]. Additionally, two large
pooled retrospective analyses evaluated the impact of PPIs specifically on outcomes with
ICIs using phase II/III trial data: one in non-small-cell lung cancer (NSCLC; n = 1512) and
one in urothelial cancer (n = 1360) [10,18]. Both found that PPI use was associated with
poor outcomes with ICIs. In order to validate the prior analysis of CheckMate 069 and
evaluate the prognostic and predictive ability of PPI use in greater detail, in this study, we
performed a retrospective analysis of the impact of PPI use on ICI outcomes across a total
of 1505 treatment-naive patients with metastatic melanoma enrolled in CheckMate 066 and
CheckMate 067, as well as CheckMate 069.

2. Materials and Methods
2.1. Patients, Study Design, and Treatment

This post hoc analysis utilized data from three multicenter, double-blinded, random-
ized studies of treatment-naive patients with advanced melanoma who had received
ICI therapy: CheckMate 066, CheckMate 067, and CheckMate 069. Patient populations,
study designs, and treatment regimens used in these studies have been described exten-
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sively [2,3,16,17,19–23] and are summarized in Table 1. All three studies were conducted
in accordance with the provisions of the Declaration of Helsinki and the International
Conference on Harmonisation Guidelines for Good Clinical Practice. All of the patients
provided written informed consent.

Table 1. Trial overview.

Trial Characteristic CheckMate 066 [3,19,20,24] CheckMate 067 [2,21–23,25] CheckMate 069 [16,17,26]

ClinicalTrials.gov no. NCT01721772 NCT01844505 NCT01927419

Study phase III III II

Study design Multicenter, randomized,
double-blind

Multicenter, randomized,
double-blind

Multicenter, randomized,
double-blind

Key eligibility criteria

Unresected stage III/IV melanoma
Previously untreated

BRAF wild-type
ECOG PS 0/1

Unresected stage III/IV melanoma
Previously untreated

BRAF wild-type or mutant
ECOG PS 0/1

Unresected stage III/IV melanoma
Previously untreated

BRAF wild-type or mutant
ECOG PS 0/1

Randomization 1:1 1:1:1 2:1

Treatment groups
Nivolumab 3 mg/kg Q2W (n = 210)

Dacarbazine 1000 mg/m2 Q3W
(n = 208)

Nivolumab 1 mg/kg +
ipilimumab 3 mg/kg Q3W × 4→
nivolumab 3 mg/kg Q2W (n = 314)
Nivolumab 3 mg/kg Q2W (n = 316)

Ipilimumab 3 mg/kg Q3W × 4
(n = 315)

Nivolumab 1 mg/kg +
ipilimumab 3 mg/kg Q3W × 4→
nivolumab 3 mg/kg Q2W (n = 95)

Ipilimumab 3 mg/kg Q3W × 4
(n = 47)

Primary endpoint(s) OS PFS
OS ORR in BRAF wild-type population

Secondary/exploratory
endpoints a

PFS
ORR

OS by PD-L1 expression
Safety

HRQoL

ORR
Efficacy by PD-L1 expression

Safety
HRQoL

PFS in BRAF wild-type population
ORR in BRAF mutant population
PFS in BRAF mutant population

HRQoL
OS

Safety

Tumor assessment

9 weeks after randomization
Then Q6W through year 1

Then Q12W until PD/treatment
discontinuation

12 weeks after randomization
Then Q6W for 49 weeks

Then Q12W until PD/treatment
discontinuation

12 weeks after first treatment
Then Q6W through year 1

Then Q12W until PD/treatment
discontinuation

Study period 2013–2021 2013–ongoing 2013–2021
a Key; not a comprehensive list. →: followed by; ECOG PS: Eastern Cooperative Oncology Group performance
status; HRQoL: health-related quality of life; ORR: objective response rate; OS: overall survival; PD: progressive
disease; PD-L1: programmed death-ligand 1; PFS: progression-free survival; Q2W: every 2 weeks; Q3W: every
3 weeks; Q6W: every 6 weeks; Q12W: every 12 weeks.

2.2. Assessments

Tumor response was assessed on the schedules shown in Table 1 using Response
Evaluation Criteria in Solid Tumors (RECIST), version 1.1. Objective response rate (ORR)
per investigator was defined as the proportion of patients with a best overall response
of partial or complete response, while progression-free survival (PFS) per investigator
was defined as the time from randomization to first documented disease progression or
death (whichever occurred first), and overall survival (OS) as the time from randomization
to death.

2.3. Statistical Analysis

The aim of the statistical analysis was to evaluate the prognostic and predictive ability
of baseline PPI use in patients who participated in CheckMate 066, 067, or 069. All analyses,
which involved all randomized patients from each study, were performed based on separate
database locks for each study. Baseline PPI use was determined using data entered on
case report forms. The “PPI use” subgroup included patients who used any medication
classified as a PPI (omeprazole, esomeprazole, pantoprazole, lansoprazole, rabeprazole,
or dexlansoprazole) ≤ 30 days before the start of the study treatment. The “no PPI use”
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subgroup was defined as all other patients. The analysis did not consider PPI dosage, PPI
treatment duration, or whether the patient continued to take a PPI during the study.

The association between PPI use at baseline and ORR, PFS, and OS was evaluated
within each treatment arm of each study using multivariable modeling. Each model
included PPI use at screening as a covariate in addition to a number of prognostic variables
(i.e., age, sex, geographic region, race, Eastern Cooperative Oncology Group performance
status [ECOG PS], metastasis stage, American Joint Committee on Cancer stage, history of
brain metastases, PD-L1 status, lactate dehydrogenase level, and BRAF mutation status),
which were based on clinical data from of each of the three studies; the particular prognostic
variables utilized as covariates for each model varied between the studies and between
efficacy outcomes (Supplementary Tables S1–S3). The analyses of ORR were performed
using multivariable logistic regression models, in which odds ratios and corresponding two-
sided 95% confidence intervals (CIs) were determined for all covariates in the model. The
analyses of PFS and OS were performed using unstratified multivariable Cox proportional-
hazards regression models, in which hazard ratios (HRs) and two-sided 95% CIs were
determined for each covariate. In addition, PFS and OS distributions were estimated using
the Kaplan–Meier method. Analyses were performed using SAS 9.2 software (SAS Institute,
Cary, NC, USA).

3. Results

The majority of the 1505 patients across CheckMate 066, 067, and 069 had melanoma
stage IV, M1c, BRAF wild-type disease, and no history of brain metastases (Table 2). Ap-
proximately 20% of patients had used PPIs at baseline across all three studies, and higher
proportions of these patients were at least 75 years of age and/or had a baseline ECOG PS
of 1 or higher than patients who had not used PPIs at baseline. Slight imbalances were also
seen in other parameters, such as baseline lactose dehydrogenase levels, which tended to be
higher in patients on PPIs. Median follow-up, derived as median time from randomization
to database lock, was 58.5 months in CheckMate 066, 53.0 months in CheckMate 067, and
52.6 months in CheckMate 069.

Table 2. Baseline characteristics by PPI usage in CheckMate 066, 067, and 069.

Baseline
Characteristic

CheckMate 066 (n = 418) CheckMate 067 (n = 945) CheckMate 069 (n = 142)

PPI Use No PPI Use PPI Use No PPI Use PPI Use No PPI Use

PPI use status a 97 (23) 321 (77) 161 (17) 784 (83) 33 (23) 109 (77)

Age (y)
<65 36 (37) 163 (51) 74 (46) 491 (63) 16 (48) 52 (48)

≥65–<75 38 (39) 114 (36) 55 (34) 207 (26) 12 (36) 45 (41)
≥75 23 (24) 44 (14) 32 (20) 86 (11) 5 (15) 12 (11)
Sex

Female 45 (46) 127 (40) 52 (32) 283 (36) 11 (33) 36 (33)
Male 52 (54) 194 (60) 109 (68) 501 (64) 22 (67) 73 (67)

Region
Western
Europe/
Canada

62 (64) 228 (71) - - - -

US - - 31 (19) 176 (22) 29 (88) 97 (89)
France - - - - 4 (12) 12 (11)

EU - - 86 (53) 431 (55) - -
Australia - - 25 (16) 90 (11) - -

Rest of world 35 (36) 93 (29) 19 (12) 87 (11) - -
Race

White 97 (100) 319 (99) 157 (98) 764 (97) 32 (97) 107 (98)
Asian 0 1 (<1) 0 10 (1) 1 (3) 0
Other 0 1 (<1) 4 (2) 10 (1) b 0 2 (2)
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Table 2. Cont.

Baseline
Characteristic

CheckMate 066 (n = 418) CheckMate 067 (n = 945) CheckMate 069 (n = 142)

PPI Use No PPI Use PPI Use No PPI Use PPI Use No PPI Use

ECOG PS
0 41 (42) 228 (71) 97 (60) 594 (76) 22 (67) 94 (86)
≥1 c 56 (58) 92 (29) 64 (40) 189 (24) 11 (33) 15 (14)

Missing 0 1 (<1) 0 1 (<1) 0 0
M stage

M0 6 (6) 22 (7) 5 (3) 42 (5) 3 (9) 10 (9)
M1a 6 (6) 37 (12) 21 (13) 113 (14) 2 (6) 21 (19)
M1b 22 (23) 72 (22) 36 (22) 171 (22) 10 (30) 29 (27)
M1c 63 (65) 190 (59) 99 (61) 458 (59) 17 (52) 48 (44)

Not reported 0 0 0 0 1 (3) 1 (1)
AJCC stage

III 12 (12) 37 (12) 8 (5) 55 (7) 4 (12) 15 (14)
IV 85 (88) 284 (88) 153 (95) 729 (93) 29 (88) 94 (86)

History of brain
metastases

No 94 (97) 309 (96) 152 (94) 760 (97) 33 (100) 104 (95)
Yes 3 (3) 12 (4) 9 (6) 24 (3) 0 4 (4)

Not reported 0 0 0 0 0 1 (1)
PD-L1 status

Indeterminate/
negative 50 (52) 157 (49) 76 (47) 379 (48) 13 (39) 61 (56)

Positive 47 (48) 164 (51) 85 (53) 405 (52) 20 (61) 48 (44)
LDH
≤ULN 44 (45) 200 (62) 97 (60) 493 (63) 23 (70) 83 (76)
>ULN 47 (48) 106 (33) 62 (39) 279 (36) 10 (30) 25 (23)

Not
reported/
missing

6 (6) 15 (5) 2 (1) 12 (2) 0 1 (1)

BRAF status
Wild-type 96 (99) 314 (98) 123 (76) 521 (66) 25 (76) 85 (78)

Mutant 0 0 38 (24) 263 (34) 8 (24) 24 (22)
Missing d 1 (1) 7 (2) 0 0 0 0

Data are n (%). a Numbers of patients in this row represent the evaluable population for all subsequent percentages
in the corresponding column. b Includes one patient with missing data. c Four patients in CheckMate 066, one in
CheckMate 067, and two in CheckMate 069 were enrolled in each study despite having an ECOG PS of 2 [16,19,21].
d Two patients in the decarbazine arm of CheckMate 066 tested positive for BRAF V600 mutation following
post-study biopsies [3]. AJCC: American Joint Committee on Cancer; ECOG PS: Eastern Cooperative Oncology
Group performance status; EU: European Union; M stage: metastasis stage; LDH: lactate dehydrogenase; PD-L1:
programmed death-ligand 1; PPI: proton pump inhibitor; ULN: upper limit of normal.

The overall results of the multivariable analyses of efficacy outcomes performed on
each treatment group in each of the three studies are summarized in Figure 1. Detailed
results showing the covariates included to control for confounding in the models are
provided in Supplementary Tables S1–S3. Collectively, these results indicated that there is
no evidence of a meaningful association between PPI use and outcomes with ICI therapy. In
five of the six treatment arms involving ICIs in the three studies, the 95% CIs for odds ratios
or HRs traversed 1. Significant associations were observed only in the nivolumab plus
ipilimumab arm of CheckMate 069: between PPI use and poorer ORR and PFS outcomes
as reported previously [15], with a trend toward poorer OS outcomes as well. Only seven
patients in the ipilimumab arm of CheckMate 069 were on a PPI at baseline, resulting in
multivariable analysis results for this arm that did not converge for ORR.
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Unadjusted results of Kaplan–Meier analyses of PFS by PPI use in the nivolumab-
containing arms of the three studies are shown in Figure 2. In each of the treatment arms 
of CheckMate 066 and 067, PFS curves by PPI usage did not separate, although a trend 
toward improved PFS with PPI use was observed in the nivolumab arm of CheckMate 
067. This trend was not confirmed in multivariable analysis after adjustment for other 
prognostic variables (Supplementary Table S2). In CheckMate 069, however, reduced PFS 
was observed with PPI usage in the nivolumab plus ipilimumab arm, which was 
confirmed in the multivariable analyses. Kaplan–Meier analysis of the dacarbazine and 
ipilimumab arms of the studies showed no discernible effect of PPI use on PFS 
(Supplementary Figure S1). 

Figure 1. Association between baseline PPI use and efficacy in CheckMate 066, 067, and 069. Forest
plot of ORs for objective response rate and HRs for OS and PFS derived from multivariable models.
Error bars indicate 95% CIs. Point estimates and CIs for the association between PPI use (yes
vs. no) and each outcome for all covariates included in the multivariable models are shown in
Supplementary Tables S1–S3. a The logistic regression model for the objective response rate failed to
converge in this group. CI: confidence interval; DITC: dacarbazine; HR: hazard ratio; IPI: ipilimumab;
NIVO: nivolumab; OR: odds ratio; OS: overall survival; PFS: progression-free survival; PPI: proton
pump inhibitor.

Unadjusted results of Kaplan–Meier analyses of PFS by PPI use in the nivolumab-
containing arms of the three studies are shown in Figure 2. In each of the treatment arms of
CheckMate 066 and 067, PFS curves by PPI usage did not separate, although a trend toward
improved PFS with PPI use was observed in the nivolumab arm of CheckMate 067. This
trend was not confirmed in multivariable analysis after adjustment for other prognostic
variables (Supplementary Table S2). In CheckMate 069, however, reduced PFS was observed
with PPI usage in the nivolumab plus ipilimumab arm, which was confirmed in the
multivariable analyses. Kaplan–Meier analysis of the dacarbazine and ipilimumab arms of
the studies showed no discernible effect of PPI use on PFS (Supplementary Figure S1).

Univariate Kaplan–Meier analysis similarly showed no association between PPI use
and OS with nivolumab in CheckMate 066, a possible association (small and negative)
with nivolumab and nivolumab plus ipilimumab treatment in CheckMate 067, and a more
pronounced negative association with nivolumab plus ipilimumab treatment in Check-
Mate 069 (Figure 3). Multivariate analysis showed that there was no significant evidence
for associations in any of the studies, although a directional trend for poorer OS with
nivolumab plus ipilimumab in CheckMate 069 was observed (Supplementary Table S3).
Trends toward associations between PPI use and poorer OS in the dacarbazine arm of Check-
Mate 066 and the ipilimumab arm of CheckMate 067 suggested by Kaplan–Meier analysis
(Supplementary Figure S2) were not supported after adjustment for other variables in the
multivariate analyses (Supplementary Table S3).
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Figure 2. Progression-free survival by baseline PPI use in the nivolumab-containing treatment arms
of CheckMate 066, 067, and 069. Kaplan–Meier estimates of progression-free survival are shown in the
nivolumab arms of CheckMate 066 (A) and CheckMate 067 (B) and in the nivolumab plus ipilimumab
arms of CheckMate 067 (C) and CheckMate 069 (D). Shaded areas are 95% log–log confidence bands.
CI: confidence interval; PFS: progression-free survival; PPI: proton pump inhibitor.
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Figure 3. Overall survival by baseline PPI use in the nivolumab-containing treatment arms of
CheckMate 066, 067, and 069. Kaplan–Meier estimates of overall survival are shown in the nivolumab
arms of CheckMate 066 (A) and CheckMate 067 (B) and in the nivolumab plus ipilimumab arms
of CheckMate 067 (C) and CheckMate 069 (D). Shaded areas are 95% log–log confidence bands. CI:
confidence interval; OS: overall survival; PPI: proton pump inhibitor.

4. Discussion

The collective results of multivariable analyses of CheckMate 066, 067, and 069 in-
volving a total of 1505 patients did not support a meaningful association between baseline
PPI use and the efficacy of ICI treatment in patients with advanced melanoma. No sig-
nificant associations were observed with any study drugs in the large global phase III
studies CheckMate 066 (nivolumab or dacarbazine) or CheckMate 067 (nivolumab alone,
nivolumab plus ipilimumab, or ipilimumab alone). However, PPI use by patients treated
with nivolumab plus ipilimumab in the phase II CheckMate 069 study was associated with
reduced ORR and PFS, with a directional trend observed for OS.

The negative association between PPI use and outcomes with ICIs found in CheckMate
069 in the present analysis confirms similar observations made by several of us in an
earlier analysis in which PPIs were one of a number of concomitant medications that
were evaluated [15]. These results differed substantially from those of CheckMate 066
and 067, however, and the precise reasons for this discrepancy are unclear. CheckMate
069 was carried out predominantly in the United States with some enrollment in France,
while CheckMate 066 and 067 were global studies. Consistent with the diverse geographic
distributions of the three studies, some characteristics of the study populations differed
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between the trials. Compared with patient populations in CheckMate 066 and 067, patients
in CheckMate 069 tended to have better prognostic characteristics: proportions of patients
with an ECOG PS of 0 or PD-L1–positive tumors were higher, and those with elevated
levels of LDH or M1c disease were lower. A case–control analysis of data from matched
patients in CheckMate 067 and 069 might potentially shed light on relevant prognostic
factors, although this would be hypothesis-generating only. Additionally, of note is that,
within the current analysis, the patient populations differed with respect to BRAF mutation
status (a known prognostic factor in melanoma): CheckMate 066 enrolled patients with
BRAF wild-type disease, whereas CheckMate 067 and 069 enrolled patients with both
mutant and wild-type disease. However, with only 46 patients across CheckMate 067 and
069 having BRAF mutant melanoma, the data are insufficient to evaluate the impact of
PPI use on ICI efficacy based on BRAF mutation status. Prospective studies are needed to
conclusively determine the impacts of baseline prognostic characteristics on outcomes with
ICIs in patients reporting PPI use.

A number of studies have examined the impact of PPIs on outcomes with ICI therapy
in patients with various cancers outside of the present study; however, all were retrospective
and involved patients with advanced disease [10,18,27–36]. Overall, the results were
equivocal. The two large pooled retrospective analyses of phase II/III studies in NSCLC
and urothelial cancer described earlier [10,18] found that PPI use was associated with poor
outcomes with ICIs. A large, real-world, multicenter chart review of patients with NSCLC
likewise found a negative impact of PPI use on clinical outcomes with pembrolizumab
but also noted an association between PPI use and higher baseline ECOG PS, as was
also seen in the current analysis [36]. The remainder of the studies were retrospective
single-center chart reviews, each involving approximately 100 to 200 patients with a variety
of advanced cancers, the majority of which found no association between PPI use and
clinical outcomes with ICIs [29,30,32–35]. Several single-center chart reviews that focused
on advanced melanoma found a favorable effect of PPI use on outcomes with ICIs in
two cases and an unfavorable effect in one case [27,28,31]. Recent reviews of this subject
were unable to make robust recommendations about PPI usage in patients being treated
with ICIs, given the inconsistent data available from these studies, many of which were
underpowered [37,38]. Our large analysis is consistent with both a lack of association
between PPI use and ICI outcomes and the heterogeneity of the results obtained between
studies. However, differences in trial design between the present study and previous
analyses preclude broad conclusions from being made. For example, differences in the
immune checkpoint inhibitors evaluated (e.g., anti–PD-1 monotherapy and combination of
anti–PD-1 and anti–CTLA-4 therapy), particularly when comparing studies across tumor
types, complicate the ability to generalize the results of these studies.

PPIs are selective inhibitors of H+/K+ ATPases, and they have multiple effects on
the gastrointestinal (GI) microbiome [13]. PPIs reduce the diversity of GI microbiota and
select for Lactobacilli, especially Streptococcaceae, in the upper GI tract. These pharyngeal
commensals are able to move to the lower GI tract because PPIs disrupt the natural gastric
acid barrier between the upper and lower GI tract. Although a causal link between
aberrations in the GI microbiome, and the efficacy of immune checkpoint inhibitors has
not yet been demonstrated, patients with advanced melanoma who have highly diverse GI
microbiomes have superior systemic and antitumor immunological responses, compared
with those in patients with low-diversity GI microbiomes [7,8]. The negative impact of PPIs
on antitumor therapy observed in several studies has been suggested to be due to effects
on the GI microbiome [29–33,35,39,40]. It has also been suggested that responses to ICIs
can be negatively or positively influenced by the composition of the GI microbiome, which
could explain the heterogeneous results observed in the studies cited above [8,9,11,37,41].
Unfortunately, data regarding patients’ microbiome profiles were not available for the
current analysis within the scope of this manuscript.

The present analysis has some additional inherent limitations. It was an exploratory
post hoc analysis among three studies differing in geographic location, design, and patient
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populations. As this analysis of patient subgroups based on PPI usage was not prespecified,
some patient subgroups were too small for meaningful comparisons (e.g., the subgroup
of patients who used PPIs in the ipilimumab arm of CheckMate 069 (n = 7). Additionally,
PPI use was determined retrospectively using self-reported information from the prior
medication pages of the patient case report form. The assumption that the absence of
self-reported PPI use denotes the absence of PPI use at baseline carries the risk that a
patient could be misclassified into the “no PPI use” subgroup due to a failure to report.
Furthermore, the potential effects of PPI dosage, treatment duration, and discontinuation
were not evaluated in this study. We also acknowledge that significant findings in the
present post hoc analysis should be interpreted with caution, given that the relatively
small sample sizes of patients reporting PPI use may have magnified differences in efficacy.
This limitation is particularly relevant when considering outcomes observed in the “PPI
use” subgroup of the phase II CheckMate 069 study (n = 33), which was substantially
smaller than the corresponding subgroups of the phase III CheckMate 066 (n = 97) and 067
(n = 161) studies.

5. Conclusions

In conclusion, the results of our large multivariable analysis of three phase II/III
studies found insufficient evidence to support a meaningful association between PPI use
and efficacy outcomes with ICI therapy in patients with advanced melanoma. Ultimately,
prospective studies will be needed to conclusively determine the impact of PPI usage on
ICI efficacy in patients with melanoma or other cancers.
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