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Abstract 
 
 
Imaging biomarkers of early response to cancer therapy can facilitate more 

effective treatment adaptation and improve cancer management. These 

biomarkers can detect functional, structural or molecular tumour changes that 

occur shortly after treatment and inform on response. For radiation therapy, such 

indicators of response could be obtained from the tumour vasculature; 

hypofractionated radiation has been shown to lead to tumour vascular damage, 

which is suggested to be an important determinant of overall tumour response. 

This thesis investigated the potential of dynamic contrast enhanced ultrasound 

(DCE-US) imaging to detect vascular changes associated with tumour response 

to radiotherapy in preclinical models of cervical and head and neck cancer.  

 

Longitudinal two-dimensional (2D) DCE-US was used to image xenograft 

tumours prior to, and shortly following, single-fraction radiation. A decrease in the 

DCE-US metrics modified transit time (MTT), washout time (WOUT), and area 

under the curve (AUC) was observed following treatment, indicating radiation-

induced vascular disruption. A greater decrease in these 2D DCE-US metrics 

was observed in tumours with a complete response, compared to tumours with a 

partial response, supporting the potential of DCE-US imaging as a biomarker of 

response. The use of three-dimensional (3D) DCE-US imaging revealed a 

decrease in wash-in time (WIT) is associated with response, which was not 

detected with 2D imaging. However, 3D imaging did not detect changes in any 

other metrics. 

 

The repeatability of 2D and 3D DCE-US was examined through imaging of the 

mouse kidney, and it was revealed that the measurement variation associated 

with both 3D and 2D DCE-US is of the same order of magnitude as the measured 

significant changes. Hence improving repeatability will be important in the 

development of DCE-US for longitudinal monitoring of the tumour vasculature.  
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In summary, DCE-US can detect vascular changes associated with response to 

radiotherapy, and further technical validation could improve its accuracy as a 

biomarker of response to radiotherapy. 
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DCE-US metrics and histopathological markers of vasculature. 
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PCR   Polymerase chain reaction  

PE   Peak enhancement 

PET   Positron emission tomography 

PDX   Patient derived xenografts  

PFB  Perfluorobutane 

PI   Perfusion index  

PSA  Prostate-specific antigen 

PS   Permeability–surface product 

RECIST  Response evaluation criteria in solid tumours 

ROI   Region of interest 

RSI  Relative signal intensity 

RT   Radiotherapy 

SARRP  Small animal radiation research platform  

SaO2  Oxygen saturation  
SD   Standard deviation 

SF2  Surviving fraction at 2 Gy  

S-G  Savitzky-Golay filter  

STR   Short tandem repeat  

TAC   Time amplitude curve 

US   Ultrasound 

UCA   Ultrasound contrast agent 

VEGF  Vascular endothelial growth factor 

VOI   Volume of interest 

WHO   World health organisation 
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WIT   Wash-in time 

WOUT  Washout time 
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1 CHAPTER    Introduction 
1.1 Radiotherapy: potential for personalisation 

 
Radiotherapy is one of the main treatments currently used for cancer along with 

chemotherapy and surgery. Approximately 50% of cancer patients receive 

radiotherapy for curative or palliative purposes [1]. Radiotherapy is key to 

accomplishing local tumour control in both resectable and unresectable tumours. 

Clinical external beam radiotherapy most commonly uses megavoltage energy 

X-ray beams that are directed at the tumour, or tumour bed post-surgery. 

Megavoltage X-rays can transfer their energy to tissue, primarily via inelastic 

scattering, which generates high energy electrons.  Electrons are ionising 

particles which can directly interact with the cellular DNA creating structural 

damage, such as DNA strand breaks, which potentially lead to cell death. More 

frequently, electrons interact with cellular water creating free radicals in tumour 

cells that are highly reactive and react with DNA creating DNA free radicals that 

can also lead to structural damage [1]. When DNA double strand breaks occurs, 

some can be repaired but due to imperfect repair mechanisms that are more 

prevalent in cancer cells, some double strand breaks remain unrepaired and the 

tumour cells undergo programmed cell death, potentially leading to tumour 

control. 

 

1.1.1 Radiotherapy in head and neck cancer 
 

Head and neck (H&N) cancer is the 6th most common cancer worldwide with a 

reported incidence of 890,000 cases in 2018 [2]. H&N cancers are mostly 

squamous cell carcinomas and originate in the different parts of the head and 

neck region including the oral cavity, pharynx nasopharynx, oropharynx, 

hypopharynx and larynx [2]. There are several factors associated with the risk of 

developing head and neck cancer including tobacco and alcohol consumption, 

environmental pollution, and human papillomavirus (HPV) infection.  Head and 

neck cancer often presents at the locally advanced stage and requires 

multimodality treatment including concurrent chemoradiation and surgery. 
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Radiotherapy is involved in the treatment in most cases of H&N cancer, except 

for  early-stage oral cavity cancers that are treated solely with surgery [2]. An 

estimated  43% to 85% of patients receive primary or adjuvant radiotherapy 

depending on the cancer site [3-5], with  a standard curative total dose of 

approximately 70 Gy delivered as 2 Gy per daily fraction (typically 5 fractions are 

delivered per week) [6]. The outcomes of radiotherapy for H&N cancer have been 

aided by technological advances in treatment delivery such as intensity 

modulated and image- guided radiotherapy that more precisely deliver high 

doses to the tumour while sparing nearby organs at risk [3, 7, 8]. 

 

Despite this, local treatment failure, and thus poor survival,  is still probable and 

has been reported to occur in 50 % of cases [9]. Locoregional recurrence rates 

have been estimated at 27 % [10],  30 % [11] , and 35 % [12]. The persistence or 

recurrence of a tumour within the irradiation field indicates that treatment failure 

is caused by tumour radioresistance. Radioresistance in H&N cancer has been 

attributed to intrinsic tumour radiosensitivity [7, 13], tumour cell proliferation [14], 

and hypoxia [15]. All of these factors have been shown to correlate with worse 

treatment outcome [13]. Radioresistant tumours can benefit from treatment 

modification, including dose escalation [16], altered fractionation regimes [17] or 

the addition of radiosensitising agents such as nimorazole [18]. Modifications can 

improve tumour control and overall survival [16], leading to the suggestion that 

radiotherapy dose and/or dose distribution may be adjusted in patients 

(personalised) according to phenotypical or genotypical differences in their 

tumours that are related to their radioresponse [7].   

 

Equally, more radiosensitive H&N cancers might be exposed to a larger than 

necessary dose and increased toxicity as a result. The toxicity level associated 

with radiotherapy in H&N is considered at the tolerance limit and can have a 

substantial impact on quality of life.  As,  such dose de-escalation strategies are 

attractive [19]. This approach was investigated in HPV associated oropharyngeal 

cancer, as this subset of H&N cancers are now understood to be more 

radiosensitive than HPV-negative cancers [15].  A reduced dose of 60 Gy [20, 

21], and even as low as 54 Gy in  patients responding to induction chemotherapy 
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showed similar overall survival outcomes and a reduction in toxicity events  [22, 

23]. This is considered encouraging evidence to support radiotherapy 

personalisation by the oncology community but still better understanding of 

precise stratification of tumours is required as distant metastasis of HPV-positive 

tumours remains a concern and dose de-intensification could lead to 

undertreatment resulting in treatment failure [24-26].  

1.1.2 Radiotherapy for cervical cancer  
 
Cervical cancer is the fourth most common cancer worldwide in females, with an 

incidence of 570,000 new cases in 2018 [27]. Almost all cases of cervical cancer 

are associated with persistent HPV infection [28]. Radiotherapy is administered 

as external beam radiation of 40 to 50 Gy in standard fraction size (2 Gy) and 

additional brachytherapy in the case of advanced disease, accounting for 40 % 

of patients [29]. Locoregional occurrences occurs in 10 % of treated cases while 

distant relapse is at a higher risk of 30 %, especially for advanced stage disease 

[30]. Radioresistance of cervical cancer is primarily attributed to tumour hypoxia, 

and hypoxia has been linked to poor treatment and outcome [30, 31]. Additional 

radioresistance factors predicting poor outcome include the tumour’s ability to 

evade apoptosis, angiogenesis, and high proliferation rate [32]. Thus, the primary 

goal of personalised radiotherapy in the context of cervical cancer would be 

improving the radioresponse in radioresistant tumours through strategies 

including dose escalation using dose painting [31, 33] or radiosensitisation of 

tumours via hyperbaric oxygen or nitroimidazole agents [31]. Clinical trials could 

not demonstrate an improvement in survival by using radiosensitising agents and 

revealed large variation in outcome [34, 35]. This supports the urgent need for a 

personalised treatment approach. 

 

1.2 Biomarkers for prediction and assessment of 
response to radiotherapy  

 
The required information about the tumour to achieve personalised radiotherapy 

can be attained using biomarkers. A biomarker is defined as ‘defined 

characteristic that is measured as an indicator of normal biological processes, 
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pathogenic processes or responses to an exposure or intervention, including 

therapeutic interventions’ [36]. Predictive biomarkers can predict response prior 

to initiation of treatment based on the tumour radiosensitivity, while response 

biomarkers examine response during the course of treatment.  

 

1.2.1 Predictive biomarkers  
 
As discussed above, there are several well recognized causes of radioresistance 

for both head and neck and cervical cancer. Predictive biomarkers can thus be 

developed based on these factors, but so far none have been widely adopted 

clinically. The main challenge in personalising therapy is that the assessment of 

the relevant factors is currently primarily achieved using histopathological 

analysis of tumour biopsies. This is an invasive procedure and can only examine 

a small sample tumour volume, which is known to be spatially heterogenous.  

Furthermore, radiosensitivity is dependent on multiple factors and the complexity 

of the tumour response to treatment is still not fully uncovered  [37], and it is 

difficult to examine all of these factors using biopsy. Additionally, the dynamic 

nature of microenvironmental factors such as hypoxia [30, 38], combined with the 

fractionated nature of treatment suggests that their examination during treatment 

is also of importance for response. Consequently, alternative biomarkers of 

response, that are not reliant on multiple repeat biopsies, are needed to inform 

radiotherapy personalisation. 

 

1.2.2 Biomarkers for response assessment 
 
Biomarkers of response provide information about the tumour’s response to 

standard treatment which can then inform necessary treatment modification. 

Effective personalised radiotherapy requires biomarkers that can assess 

response early during treatment, early enough that changes in treatment may be 

effective or that unnecessary normal tissue toxicity can be avoided. Current 

response criteria standards are inadequate for this purpose; widely adopted 

guidelines, like response evaluation criteria in solid tumours (RECIST) [39] or the 

World Health Organization (WHO) criteria [40] define response based on 

anatomical tumour changes,  typically assessed using computed tomography 
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(CT)  [39],  which are present at later stages of  the radiotherapy. Recent 

incorporation of response definitions based on the tumour metabolic rate using 

positron emission tomography (PET) imaging (discussed in more detail in section 

1.2.3.1) can allow earlier assessment of response [41]. Novel response 

biomarkers that detect early biological changes in the tumour that are associated 

with eventual response as defined clinically are required. These early changes 

may include apoptosis and tumour cell loss, reoxygenation and decreased 

hypoxia, changes in perfusion, and changes in tumour metabolism [42].  This 

project focuses on the identification of biomarkers of vascular changes in 

response to radiotherapy, which may also influence the oxygenation of the 

tumour. 

 

By nature, assessing response involves tumour inspection at multiple timepoints 

before and during treatment. Thus, response biomarkers must be developed from 

techniques with minimal invasiveness and ease of use. This requirement means 

that histopathological tumour biomarkers are unsuitable. Instead, development of 

early response biomarkers has focused on less invasive methods, including 

blood–based tumour biomarkers, or liquid tumour biomarkers. Liquid tumour 

biomarkers are derived from tumour–related material that can be detected in the 

patient’s blood, which includes circulating tumour cells (CTCs), circulating tumour 

proteins, circulating tumor nucleic acids (RNA and DNA), and extracellular 

vesicles [43]. Tumour protein-based biomarkers are used clinically for diagnosis, 

such as the prostate-specific antigen (PSA) in prostate cancer [43], and early 

detection of reoccurrence in colorectal cancer using carcinoembryonic antigen 

(CEA) and in breast cancer using CA 15–3 [44]. Research into developing blood-

based early response biomarkers has primarily focused on circulating tumour 

DNA (ctDNA). This is based on the documented correlation of ctDNA 

concentration with tumour volume [45]. A decrease in ctDNA concentration 20 

days after chemoradiotherapy was seen in patients with successful treatment in 

a small study of H&N cancer [45].  Yet, ctDNA may suffer from low sensitivity [37], 

is expensive [44],  and offers no spatial information that can be used to 

accordingly modify treatment to tumour sub-volumes. Moreover, the decrease in  

ctDNA associated with response can be confounded by a transient  increase in 

ctDNA following treatment–induced tumour cell death [44]. 
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1.2.3 Imaging biomarkers 
 
The discussed requirements of predictive biomarkers and biomarkers of 

response and the highlighted challenges in the available biomarkers suggests 

the suitability of functional imaging biomarkers. Functional imaging refers to 

imaging techniques that can map physiological and/or biological properties of the 

tumour. Precise measurement of functional imaging signals presents the 

opportunity to derive biomarkers that might inform on tumour physiology or 

biology, which can be indicative of response.   The main advantages of imaging 

biomarkers are their relative non-invasiveness (compared to biopsy), the 

opportunity for repeated monitoring, and examining intratumour spatial 

heterogeneity. Moreover, the already widespread use of imaging modalities  for 

response assessment, diagnosis, and staging [46] facilitates the incorporation of 

new functional techniques into the treatment pathway.  

 

Validation of clinically useful imaging biomarkers involves three components [47]; 

technical, biological and clinical. Technical validation assesses the precision of 

the technique, defined as its repeatability and reproducibility. The repeatability of 

an imaging method determines its ability to resolve biological changes, while 

reproducibility dictates its suitability for widespread multicentre use. Biological 

validation refers to correlation of imaging metrics with the proposed underlying 

biological features, typically done using gold standard histopathological metrics 

which are biological correlates themselves. Finally, clinical validation of the role 

of the biomarker examines the benefit of adopting the established biomarker in 

clinical practice. Currently, no imaging metric of early response has completed all 

stages of validation, but research has showed potential in several techniques, 

which are described below. These imaging modalities have been used to both 

assess predictive markers of radioresponse and for identifying early response 

changes. 
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1.2.3.1 Positron emission tomography (PET) 
 
 PET imaging uses radioisotope tracers that can target metabolic and molecular 

components of the tumour. 2-[18F]-fluoro-2- deoxy-D-glucose PET (FDG-PET) is 

used to examine tumour metabolism and has been routinely adopted for 

response evaluation in head and neck cancer at least 3 to 4 months after 

chemoradiation [48, 49]. The recommended timing for FDG-PET (/CT) imaging 

is 8 – 12 weeks after the end of radiotherapy treatment [41], with response 

assessment at earlier timepoints yielding lower accuracy [49, 50]. This makes the 

primary aim of FDG-PET in H&N cancer the detection of residual or recurrent 

disease, rather than early response assessment. In cervical cancer, response 

evaluation has been proposed earlier at 4 weeks after chemoradiation, with low 

FDG uptake shown to correlate to response indicated at later timepoints [48]. The 

use of other PET tracers has been examined for tumour response prediction or 

assessment based on detection of tumour apoptosis [51], changes in tumour 

perfusion using 15O-H2O PET [51, 52] , and hypoxia using  

[18F]fluoromisonidazole ([18F]FMISO) and [18F] fluoroerythronitroimidazole 

([18F]FETNIM) [52]. Except for FDG PET, these tracers are still experimental in 

nature and their clinical utility has yet to be established. Whilst PET shows 

promise in terms of its broad range of functional and molecular targets there are 

several disadvantages to PET imaging.  These include the cost associated with 

the production and handling of radiopharmaceuticals, the time required for patient 

scanning when patients can often be very frail and the capital cost of equipment.  

It also imparts an ionizing radiation dose to the patient, which should be 

considered when patients require longitudinal monitoring, especially in the case 

of younger patients. PET imaging also has inferior spatial resolution of a few 

millimetres compared to sub-millimetre spatial resolution obtained with other 

imaging modalities. 

 

1.2.3.2 Magnetic resonance imaging (MRI) 
 
Several magnetic resonance imaging (MRI) techniques have been utilized for 

prediction and response assessment. Perfusion imaging using dynamic contrast 

enhanced MRI (DCE-MRI) was shown to be predictive of local tumour control 

based on pretreatment perfusion and was also able to assess response based 



 28 

on perfusion changes within 2 weeks after treatment initiation in H&N cancer [53, 

54]. In cervical cancer, DCE-MRI metrics before treatment and changes within 3 

days of chemoradiotherapy were correlated with tumour recurrence [55] .  

 

Diffusion weighted imaging (DWI-) MRI provides information about the tumour 

structure and has been used to quantify tumour cellularity, an indicator of cell 

death. In H&N cancer, a decrease in tumour cellularity 1 week after radiotherapy 

indicated response [51]. Several, novel MRI techniques that may be useful for 

tumour response prediction and assessment are under investigation. For 

example, oxygen enhanced MRI and blood oxygen level dependent (BOLD) MRI 

[56] for the measurement of tumour hypoxia and intravoxel incoherent motion 

MRI for the characterisation of the vasculature without the need for contrast 

agents  [57]. Like PET, MRI is a costly imaging modality with long acquisition 

times and has several contraindications including claustrophobia and risk of 

toxicity associated with gadolinium-based contrast agents used for DCE-MRI [58, 

59]. Access to MRI is also an issue, the UK has one of the lowest numbers of 

MRI machines per million of population in Europe, 6 compared to 16 in Italy or 22 

in Finland [60].   

 

1.2.3.3 Computed tomography (CT)  
 

CT is commonly used with the RECIST criteria to assess response to treatment 

[34]. In terms of functional imaging, perfusion imaging can be used to image 

functional vasculature using iodine-based contrast agents. Changes in tumour 

perfusion within 3 weeks of chemoradiotherapy using perfusion CT imaging 

correlated to response assessed at 3 months in both H&N [61] and cervical 

cancer [62]. The main limitation for longitudinal CT imaging is its use of ionising 

radiation [46]. 

 

1.2.3.4 Ultrasound imaging 
 
Although one of the most widely used imaging modalities, in the context of H&N 

and cervical cancer prediction and response assessment ultrasound (US) 

remains less popular than CT, PET or MRI. Ultrasound has many advantages to 
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offer including wider availability, lower cost relative to MRI, PET and CT and safer 

use with no ionizing radiation or has little risk associated with ultrasound contrast 

agents. This allows more frequent imaging with ultrasound, enabling more 

frequent longitudinal monitoring of cancer both during and after therapy.  

 

Imaging of functional vasculature can be done using several ultrasound 

techniques. Doppler imaging can detect the direction and velocity of blood flow 

based on changes in the ultrasound wave frequency reflected from a moving 

object, in this case blood cells[63]. Dependence on blood flow to identify the 

vasculature limits the ability of Doppler imaging to visualise microvasculature with 

slow blood flow. Dynamic contrast–enhanced ultrasound imaging (DCE-US), on 

the other hand, uses intravenously injected contrast agents that can travel 

throughout the microvasculature and capillaries, and thus offers more sensitive 

imaging of functional vasculature. In addition to the practical advantages of US 

imaging, DCE-US offers higher temporal resolution than DCE-MRI or perfusion 

CT, allowing more precise estimation of blood velocity properties, and uses 

purely intravascular contrast agents and thus can quantify tumour perfusion 

without the confounding effect of contrast agent extravasation, i.e, ultrasound 

contrast signals typically map the vasculature and not tissue.  Moreover, 

ultrasound contrast agents can be functionally modified to bind to receptors on 

endothelial cells [64], thereby establishing molecularly targeted imaging of targets 

such VEGF (vascular endothelial growth factor) as a surrogate for tumour 

angiogenesis [64]. Furthermore, DCE-US is an established diagnostic imaging 

technique, with US available on most clinical ultrasound scanners, and has been 

adopted for the diagnosis of liver lesions.Overall, these factors make it an 

attractive candidate for integration into clinical treatment pathways and the 

monitoring of treatment response. However, there is still significant work required 

to understand if DCE-US can be used to measure biomarkers of response to 

radiotherapy, which will rely on the correlation of DCE-US signals to underlying 

properties of the tumour vasculature, and that early changes in vasculature occur 

in response to radiotherapy and that these changes are detectable using DCE-

US.       
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1.3 The role of functional vasculature in tumour 
response to radiotherapy  

The tumour functional vasculature is hypothesised to be an important 

determinant of response, both prior to treatment and through changes arising 

from treatment. The rationale behind this is the association of the vascular status 

with hypoxia, a well-recognized cause of radioresistance, and the impact of 

radiotherapy on the vasculature, which is essential to tumour survival. The 

following is a review of the evidence supporting the potential role of tumour 

vasculature in the prediction and assessment of response to radiotherapy.  

 

1.3.1 Prediction of response based on pretreatment vasculature 
 
Prediction of the tumour’s response to radiation based on its vascular supply has 

been studied extensively and two conclusions, that may appear contradictory, 

arguing for both good and poor tumour perfusion as a predictor of tumour control, 

have been put forward and will be discussed here. The literature reviewed here 

draws from fractionated and single fraction radiation studies. 

 

The first collection of studies suggests a positive correlation of tumour perfusion 

with tumour response. This supports the idea that the tumour’s functional 

vasculature determines its oxygen supply, and thus oxygenation level. Oxygen is 

a known radiosensitiser, where evidence suggests that following radiation and 

the generation of DNA free radicals, oxygen acts to ‘fix’ DNA damage [65, 66]. 

Further, good perfusion reduces tumour hypoxia, inhibiting the upregulation of 

hypoxia inducible factor-1 (HIF-1) [67] which promotes radioresistance[68]. This 

theory was supported by a clinical study in radiotherapy for cervical cancer. Using 

DCE-MRI and a semi-quantitative analysis,  high signal enhancement compared 

to the precontrast injection baseline signal  and a non-enhancing region of normal 

tissue (termed relative  signal intensity or RSI) in the tumour region of interest 

(ROI) [69] and at the 10th  percentile of enhanced pixels within the tumour ROI 

predicted local tumour control and survival with fractionated radiotherapy [70, 71] 

and chemoradiation treatment  [71]. These metrics were important both before 

treatment [70] and within the first 2 weeks of treatment [69, 71]. The significance 
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of poor perfusion, examined using percentile analysis, was explained as 

indicating the presence of hypoxic tumour subregions which confer 

radioresistance [70, 71]. Similarly,  homogenously enhanced tumours had better 

response than tumours with no enhancement, or peripheral enhancement only 

[72]. Pharmacokinetic DCE-MRI metrics were associated with better tumour 

response, namely greater maximum amplitude obtained from the Brix model  [73] 

and higher vascular permeability calculated using the Tofts model [72].  Both 

semi-quantitative (RSI) and pharmacokinetic metrics (amplitude) were shown to 

correlate to polarographic measurements of  tumour pO2  [73], thereby confirming 

the relationship between vascular status and tumour oxygenation. 

 

Conversely, several studies have reported an opposite effect, with high blood 

volume or flow predicting treatment failure. This was reported in rectal cancer, 

where a greater perfusion index (defined as relative blood flow compared to 

arterial flow) and a large percentage of pixels with a high perfusion index 

enhancement on DCE-MRI were associated with no response to radiotherapy or 

chemoradiation [74, 75]. The association of high perfusion index (PI) with worse 

treatment outcome was explained by the authors as high PI indicating high blood 

flow through arteriovenous shunts, which do not facilitate nutrient or oxygen 

supply, or indicating a high permeability–surface product (PS) caused by 

increased angiogenic activity which suggests an aggressive tumour phenotype. 

In H&N cancer, multiple conflicting results have been reported. For example, 

enhancement with DCE-MRI could not predict response to accelerated 

radiotherapy, but was lower in controlled tumours after completion of 

radiotherapy [76]. Meanwhile, [15O]H2O PET imaging revealed higher blood flow 

before treatment in patients with poor response [52], evaluated using tumour 

control and patient survival, following radiotherapy and chemoradiation. Regions 

of high blood flow were associated with hypoxic regions, imaged using hypoxia 

[18F] FETNIM PET, with the theory that hypoxia induces angiogenesis, leading to 

high blood flow but not necessarily better oxygen delivery due to the abnormal 

tumour vasculature.  Nevertheless, a review of studies using CT perfusion  

imaging for the prediction of treatment outcome in head and neck cancer showed 

a consensus of the correlation of high blood flow, high blood volume and high 

capillary permeability with favourable tumour response in both radiotherapy, 
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chemotherapy and combined treatment [77]. A similar review of DCE-MRI 

imaging for head and neck suggests that  a higher Ktrans metric , which  measures 

the flow of contrast agent transferred between the blood plasma and 

extravascular space and depends on vascular permeability and blood flow, either 

prior to treatment or early during chemoradiation predicted tumour control [78] , 

while  lower Ktrans values were found in hypoxic volumes [78]. Finally, great 

vascular heterogeneity measured through the skewness of Ktrans distribution 

before treatment was predictive of chemoradiation treatment failure [79]. The 

difference between these results may be attributed to the different imaging 

modalities, different or insufficient follow up periods, and the intrinsic differences 

between cancer types.   

 

1.3.2 Radiation-induced vascular changes and association with response 
 
Vascular changes following radiotherapy are well established, with studies 

showing evidence of both increased and decreased vascular function post 

radiation. Contradictory results may be due to the multiple factors affecting 

tumour vasculature and thus, perfusion. First, high dose single-fraction radiation 

was shown to cause endothelial cell apoptosis mainly through ceramide 

generation from sphingomyelin by the acid sphingomyelinase enzyme (ASMase) 

[80].  ASMase- mediated endothelial cell apoptosis increased 1 hour after 

radiation with 15 Gy, with maximum apoptosis at 6 hours in vivo in cancer models 

of fibrosarcoma and melanoma [81, 82]. Additionally, in the same cancer models, 

ASMase-mediated nitric oxide (NO) vasoconstriction has also been observed as 

early as 30 minutes after radiation [83]. This has the effect of causing 

macroscopic vascular damage, or a decrease in perfusion, which was evident as 

early as 24 hours after radiation and up to 11 days [84-90]. Thrombosis, oedema 

and endothelial cell swelling have also been suggested as a mechanism for the 

early decrease in perfusion within 24 hours [91, 92].  

 

Conversely, an increase in tumour perfusion has been observed within the same 

timescale as the reported vascular damage. Using a single-fraction dose of   > 8 

Gy, improved tumour perfusion within 6-24 hours was seen in murine models of 

squamous cell carcinoma [91, 93], mammary carcinoma [85], and fibrosarcoma 
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[84]. This early increase has been suggested to be due to a reduction in the 

tumour interstitial pressure induced by tumour cell kill which relieves compression 

of blood vessels [93-95], or an acute inflammation response causing 

vasorelaxation [95, 96].  

 

Despite the clear evidence of vascular changes early within treatment evidence, 

it remains to be confirmed whether these changes have an impact on overall 

tumour cell death and treatment outcome [97]. The literature provides various 

conclusions, which are likely to be dependent on the cancer type, its 

microenvironment and dose-fractionation. Studies supporting improved 

radioresponse due to vascular response argue that macroscopic vascular 

damage deprives tumours cells of nutrients and oxygen supply, causing a second 

indirect wave of tumour cell kill following radiation. Supporting this hypothesis is 

the finding of greater tumour growth delay in tumour models grown in mice with 

intact ASMase activity compared to ASMase deficient mice lacking an endothelial 

cell apoptosis response [81, 98].  Endothelial cell apoptosis led to ineffective 

neovascularisation and was suggested to prevent tumour growth following 

irradiation and tumour cell recovery in a melanoma murine model [99]. Further, 

ischemic injury can impair repair of DNA double strand breaks [83] . On the other 

hand,  other studies suggest that tumour cell radiosensitivity is the only significant 

determinant of response, which is supported by the good fit of the linear quadratic 

model, which only accounts for cell kill due to DNA damage, to single fraction 

large dose regimes [100]. The lack of  a clear conclusion of the influence of 

vascular response on tumour control may be attributed to evidence that 

endothelial cell apoptosis is not present in all tumours [97], and that vascular 

damage can induce hypoxia which may promote an aggressive tumour 

phenotype [101]. 

 
In addition to the heterogeneity of vascular response across cancer types, intra-

tumour heterogeneity of vascular response is also well established [102, 103]. 

The radiosensitivity of tumour vessels has been found to be dependent on their 

local microenvironment. For example,  [104] reported increased vessel disruption 

within hypoxic regions of murine prostate tumours, suggesting increased 

radiosensitivity of vasculature in hypoxic regions. Greater vascular damage was 
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observed in the core of pancreatic xenograft tumour compared to the rim [92], 

supporting the proposition that vessels near the tumour boundaries that develop 

from surrounding normal tissue are more radioresistant than abnormal tumour 

vessels. In contrast, in glioma and squamous cell carcinoma xenografts, the 

vessel damage was localised to areas of viable normoxic cells with decreased 

signalling of proangiogenic factors [87]. Furthermore, the vessel morphology also 

affects it radiosensitivity, with vessels of smaller diameters thought to be more 

radiosensitive [105] and undergoing  larger damage following radiation [106]. 

 

Imaging modalities used to examine the distribution of imaging metrics of tumour 

vasculature have been able to capture the heterogenous nature of vascular 

changes, and its importance in assessing response. The change in the spatial 

distribution of the contrast wash-in rate in DCE-MR images had higher accuracy 

for the prediction of brain tumour response after radiotherapy compared to Ktrans 

metric averaged over the whole tumour ROI, making it potentially a more powerful 

indicator of response [107]. A positive change in skewness and kurtosis of 

normalised cerebral blood volume histogram obtained from dynamic 

susceptibility contrast MRI was associated with pseudo-progression in 

glioblastomas after chemoradiotherapy compared to real tumour progression 

[108]. The differentiation of treatment outcome was more significant using a 

combination of histogram features.  These studies suggest that analysis of 

subregions and metric maps, might provide more accurate assessment of 

dominant vascular changes that drive tumour response, instead of using whole 

tumour metrics to represent the tumour region of interest [103, 109].  

 

1.4 Dynamic contrast-enhanced ultrasound imaging 

 
Ultrasound imaging is considered to have a number of practical advantages for 

the use in tumour response assessment to treatment which were discussed in 

section 1.2.3.4. DCE-US can be used to image the tumour vasculature and may 

be useful to detect the vascular changes in response to radiotherapy described 

above and establish DCE-US based biomarkers of response to radiotherapy.  
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1.4.1 Clinical use of DCE-US imaging 
 
Currently DCE-US, or contrast enhanced US (CEUS), has two main uses in 

routine clinical practice: cardiac imaging, and focal liver lesion imaging. 

Myocardial contrast echocardiography (MCE) allows delineation of the 

endocardial border, which is necessary for evaluating the left ventricular volume 

and function. MCE has also shown potential for use in the emergency department 

setting for the diagnosis of acute coronary syndromes[110]. 

 

CEUS is used in focal liver lesion imaging for both detection and differential 

diagnosis (benign vs malignant, or type of malignancy). Benign lesions, 

hepatocellular carcinomas (HCCs), and metastatic lesions, show different 

enhancement patterns, specifically during the early arterial phase (rim or nonrim 

enhancement) and the onset of washout, thus allowing their differentiation. CEUS 

has greater diagnostic confidence and accuracy than conventional Bmode 

ultrasonography, mainly through improved specificity [111] . CEUS has also been 

demonstrated to have greater accuracy of diagnosing malignant lesions than 

contrast enhanced CT [112, 113], and is equivalent to MR imaging [113] , thus 

reducing the need for these more costly imaging techniques [111]. As outlined by 

the CEUS Liver Imaging Reporting and Data System (CEUS LI-RADS) guideline, 

a definite diagnosis of hepatocellular carcinomas (HCCs) using CEUS eliminates 

the need for confirmatory CT/MR imaging or biopsy [114, 115] . 

 

1.4.2 Basis of DCE-US imaging 
1.4.2.1 Ultrasound Contrast Agents 
 
DCE-US uses ultrasound contrast agents (UCA) to image the functional 

vasculature. UCAs are microbubbles, with a diameter typically of 1 to 6 µm and 

are made of a gas-filled core surrounded by a shell. The UCA’s structure 

generates a non-linear response to ultrasound waves unlike the approximately 

linear response of tissue, thereby allowing visualisation and observation of the 

vasculature. Due to their size, microbubbles are unable to extravasate to the 

interstitial space and remain intravascular once injected.  
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Over the years many UCAs have been investigated, with currently four clinically 

approved UCAs in different countries: SonoVueTM, OptisonTM, Definity®, 

SonazoidTM [116]. Sonazoid, which was used in this thesis, is composed of 

perfluorobutane (PFB) gas core enclosed with a hydrogenated egg yolk 

phosphatidyl serine (HEPS) lipid shell, with a mean diameter of 2.1 µm. In the 

liver, Sonazoid is taken up by Kupffer cells, around 10 – 15 minutes post injection, 

resulting in late phase enhancement of the liver parenchyma, which is also known 

as post-vascular phase [116]. This phase allows prolonged scanning of the liver 

and facilitates identification of metastatic lesions, that lack Kupffer cells and thus 

would appear hypoenhanced. Compared to SonoVue, a more widely available 

contrast agent which does not produce late-phase enhancement, Sonazoid was 

able to detect a larger number of lesions in a clinical study of 65 patients [117]. 

Another study of 338 patients assessed Sonazoid and SonoVue CEUS to assess 

liver lesions as benign or malignant, and showed greater specificity and area 

under the curve value with Sonazoid but without reaching statistical significance 

[111]. In addition to the advantage introduced by the post-vascular phase, 

Sonazoid is more stable than SonoVue and suffers less bubble destruction during 

imaging. This feature has been suggested to allow reliable observation of 

washout in the lesions, resulting in higher sensitivity and accuracy of diagnosing 

HCCs [118]. Beyond this, clinical studies are investigating the use Sonazoid in 

breast cancer [119] in diagnosis, sentinel lymph node detection, and response 

evaluation to neoadjuvant chemotherapy, diagnosis of endometrial cancer and 

renal tumours, and guidance of tumour ablation [120]. 

 

1.4.2.2 Detection of UCA signal  
 
Detection of the contrast specific signal can be performed using several different 

approaches. Two common approaches include harmonic imaging and pulse 

modulation. The change in pressure caused by a low-pressure ultrasound wave 

causes a change in the microbubbles volume, leading to a nonlinear oscillatory 

refraction and expansion. The frequency of the signal produced by this 

phenomenon differs from the frequency of the transmitted ultrasound, referred to 

as the fundamental frequency. Harmonic imaging makes use of this difference, 

and detects the microbubbles signal by imaging at frequencies different to the 
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fundamental frequency [64]. Pulse modulation techniques use the nonlinearity of 

microbubbles response. Modulation based on the phase of the pulses can be 

achieved through pulse inversion. The nonlinear response of microbubbles to 

positive and negative pressure waves is not equivalent and opposite, unlike the 

linear signals produced by the tissue. Hence, pulse inversion methods sum 

consecutive negative and positive pulses, which cancels out the linear tissue 

signal and leaves microbubbles specific signal [121].  

1.4.3 Quantification of DCE-US imaging 
 
The microbubbles specific signal can be quantified to devise metrics relating to 

the perfusion in a region of interest. Since microbubbles are intravascular agents 

and have similar hemodynamics to red blood cells [122], dynamic imaging of 

contrast microbubbles can provide information about blood volume and blood 

flow. Signal quantification is most often done using a time amplitude curve (TAC) 

of the average contrast signal in a region interest against time from contrast 

administration. Two methods of contrast administration are in routine use and 

produce TACs of different shapes and different perfusion metrics: bolus contrast 

and disruption replenishment imaging. 

 

1.4.3.1 Bolus contrast injection 
 

In this method, the complete contrast dose is injected over a small period to mimic 

an instant injection. Imaging is done using low power mechanical index (MI) to 

avoid microbubbles disruption [123]. Dynamic imaging refers to continuous image 

acquisition typically over the period the wash-in of the contrast, and wash-out as 

it is being eliminated from the body. Commonly calculated metrics from a bolus 

TAC are the maximum signal enhancement following contrast injection, and the 

area under the TAC, which are related to blood volume within the region of 

interest [123]. Blood flow is inferred from time-based TAC metrics, including the 

wash-in time (or rate) to maximum enhancement, the mean transit time of 

microbubbles through the region of interest, and the wash out time (or rate) [123]. 

These metrics are often described as being semi-quantitative metrics since they 

do not provide absolute values of blood volume or flow.  
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1.4.3.2 Disruption replenishment imaging 
 
Using this method, the contrast agent is injected using a slow constant infusion 

to achieve a steady state concentration of microbubbles in the region of interest. 

Once this is achieved, a high MI pulse is applied to destroy microbubbles in the 

field of view. The imaging then returns to low MI scanning to image the re-

entrance of microbubbles into the tissue encompassed by the imaging field of 

view. Blood flow speed is then estimated from the rate of microbubbles wash-in 

after disruption, and the steady state signal enhancement correlates with blood 

volume [124]. The benefit of this method is that it is possible to image at several 

imaging positions using the same injection dose, but it is generally a more 

complicated protocol than the bolus methods and requires longer acquisition. A 

schematic representation of time amplitude curves produced with a bolus 

contrast injection and disruption replenishment imaging is shown in Figure 1-1. 

 

 
 

Figure 1-1 : TACs and their respective metrics obtained with a contrast bolus injection 
imaged with a low MI (left) and using disruption replenishment imaging (right). Adapted 
from [125] 

 

1.4.4 Validation of DCE-US for imaging vasculature 
 
DCE-US metrics obtained from TACs are expected to be able to characterise 

important vascular features based on studies that have validated DCE-US 

metrics against histopathological markers of vascular volume. PE and AUC were 

consistently shown to be related to the vascular volume, typically reported as the 
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mean vessel density (MVD) estimated via immunohistochemistry. MVD is 

typically estimated as the mean vessel count in regions of high vessel density 

and is a considered a maker of angiogenesis [126]. PE and AUC were positively 

correlated with (MVD). Clinical studies showed that peak intensity calculated from 

tumour hotspots (regions with the highest enhancement) was moderately 

correlated (r = 0.43) to MVD in breast cancer [127], as was AUC (r = 0.69) in 

colorectal cancer [128]. Preclinical studies also revealed a correlation between 

PE and AUC and MVD in murine melanoma xenografts (r = 0.7 and 0.52, 

respectively) [129], between PE and MVD in Lewis lung carcinoma (r = 0.43) 

[130] and in breast xenografts (linear regression coefficient = 0.54 and 0.38 

respectively) [131]. The maximum intensity in the tumour relative to the intensity 

in a normal liver tissue in a syngeneic colon cancer model was correlated to the 

number of cells stained by Hoechst, reflecting perfused vessels (r = 0.82 and 

0.63, in the centre and periphery of the tumour respectively) and MVD (r = 0.72 

and 0.38, in the centre and periphery of the tumour respectively) [132]. These 

moderate correlations of MVD with PE and AUC may be explained by noting that 

MVD is usually calculated as the number of vessels counted within densely 

vascularized tissue regions and is thus not a true measure of vascular volume, 

which is expected to be more relevant to PE and AUC. Furthermore, MVD is often 

estimated from sections that have been stained with monoclonal antibodies such 

as CD31 that does not differentiate perfused and non-perfused vessels.  The 

correlation of these metrics with MVD can be improved when accounting for 

different vessel diameters. This is shown in [129], where the correlation of PE 

and AUC with MVD was calculated separately for subregions containing 

microvessels between 0–10 μm, 10 μm – 40 μm, or larger than 40 μm. The 

correlation obtained through this analysis method was as high as 0.92 and 0.98 

for PE and AUC, respectively, greater than correlations obtained without 

considering vessel diameter (r = 0.7 and 0.52 respectively). In murine pancreatic 

tumour models, wash-in time and arrival time were negatively correlated (r = -

0.24 and – 0.47 respectively) to the total haemoglobin (HbT) measured using 

photoacoustic imaging, which is a surrogate of blood volume, while PE and AUC 

were positively correlated (r = 0.49 and 0.40, respectively) [133]. A similar positive 

correlation between AUC and haemoglobin concentration was seen in a prostate 

xenograft tumour model but not in a breast tumour model, which was 
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hypothesised to be due to the presence of blood lakes in that model, resulting in 

non-perfused regions with low AUC and high haemoglobin concentration [134]. 

 

Furthermore, DCE-US metrics may differentiate vascular morphology, 

specifically vessel diameter. TACs generated from ROIs in ovine ovaries 

containing predominately small microvessels (< 30 μm) had smaller PE and 

longer time to peak compared to TACs of ROIs that encompassed both small 

microvessels and larger feeding vessels (> 200 μm) [135]. In carcinogen-induced 

mammary tumours, the proportion of the tumour area with low contrast intensity 

corresponded to the proportion of small vessels (< 80 um2)  identified via 

immunohistochemistry,  while regions of high contrast intensity also showed 

power Doppler signal, reflecting the presence of macrovessels [136]. In another 

study, murine sarcoma tumours with dense vascular networks of small and 

collapsed vessels had slower wash-in and lower contrast enhancement 

compared to a mammary tumour model with larger vessels [137]. The lower 

intensity observed in regions with small vessels and vice versa is reflection of the 

vascular volume occupied by vessels of different sizes. 

 

Moreover, DCE-US metrics have been correlated with angiogenesis assessed 

via the expression of VEGF. In gliomas, the AUC during wash-in  (referred to as 

time integrated intensity) was negatively correlated to VEGF expression (r = -

0.54) [138], but was not correlated to the vascular density as assessed by CD31 

staining. This disagrees with [128] that shows a positive correlation of AUC with 

CD31 staining but not VEGF expression. The discrepancy was attributed to the 

higher biological variability in the clinical study [49]. 

 

Finally, DCE-US metrics have also been correlated with the oxygenation levels. 

Blood oxygen saturation (SaO2)  measured using photoacoustic imaging in 

murine pancreatic tumour models was negatively correlated to the wash-in and 

arrival time (r = -0.50 and -0.56,  respectively) and positively correlated to PE and 

AUC  (r = 0.31 and 0.34, respectively) [133].  A positive correlation between AUC 

and oxygen saturation was also reported in prostate and breast xenograft tumour 

models (r = 0.49 and 0.63, respectively) [134].  
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1.4.5 Current challenges to the use of DCE-US for the prediction and 
assessment of response to radiotherapy 

 

1.4.5.1 Lack of evidence in radiotherapy  
 
Current investigations of DCE-US have generally focused on detection and 

differential diagnosis of tumour lesions in the bladder, kidney, and liver [139]. 

While clinical studies of DCE-US response assessment have confirmed its 

potential use as a response biomarker for anti-angiogenic treatment [140-143], 

there has not been any studies examining DCE-US for radiotherapy response. 

Preclinically, one study investigated vascular changes in a xenograft prostate 

tumour model following single fraction radiotherapy of 7.5 or 10 Gy and showed 

an increase in vascular filling in treated tumours after 3 days but did not report a 

correlation of the vascular changes with response [144]. Similarly, a study of 

DCE-US in a rat fibrosarcoma model showed an initial increase in vascular 

volume following radiation doses of 15 to 25 Gy followed by vascular volume 

regression 5 days after treatment, but failed to differentiate between tumour 

control and failure based on  the magnitude or onset of vascular changes [84].  

 

1.4.5.2 Limits of 2D DCE-US imaging 
 
Imaging modalities undoubtedly provide more spatial information than other 

biomarker types but are usually limited to a single or few cross sections of the 

tumour, leaving the heterogeneity of the entire volume unexplored and providing 

only partial insight of the biological changes inside the tumour. Two-dimensional 

(2D) imaging may also obfuscate the detection of changes longitudinally when 

the initial imaging position cannot be easily reproduced. 

 
Recent technological advances have enabled volumetric or 3D DCE-US imaging, 

which has shown potential in clinical applications. Studies primarily used a 

volumetric ultrasound transducer to image the volume of interest and relied on 

categorial and qualitative assessment of perfusion. Perfusion metrics measured 

by 2D and 3D DCE-US showed significant differences, which was attributed to 

the large intratumour vascular heterogeneity [145]. Compared  to 2D imaging, 3D 
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DCE-US was considered to provide clearer visualization of the vascularisation of 

focal liver lesions, thereby improving the accuracy of diagnosis [146], and more 

accurate assessment of invasiveness in bladder cancer [137]. Moreover, 3D 

DCE-US imaging revealed significant differences in the vascular heterogeneity of 

benign and malignant breast lesions, increasing the diagnostic confidence [147]. 

A decrease in blood volume assessed qualitatively with 3D DCE-US of 

hepatocellular carcinoma after 1 week of angiogenic treatment was correlated to 

a decrease in mean vessel density [148]. Comparison of 3D DCE-US with other 

imaging modalities revealed comparable  accuracy to that of contrast enhanced–

CT imaging for the diagnosis of focal liver lesions  [149] and to DCE-MRI for the 

assessment of response  to chemotherapy in breast cancer [150]. 

 

1.4.5.3 Repeatability of DCE-US 
 

Reliable biological and clinical validation of DCE-US imaging relies on good 

precision of the modality. Repeatability and reproducibility studies examine the 

variation expected due to the imaging modality and define the level of biological 

changes it can detect. For DCE-US imaging, variability can arise from several 

sources. First, the contrast preparation and injection can influence the 

concentration and the size distribution of the injected microbubbles, leading to 

changes in the signal amplitude [151-153]. Secondly, the subject physiology 

including heart rate and blood pressure can affect the non–linear response of the 

microbubbles and their disruption rate, leading to changes in both signal 

amplitude and time–based metrics. Additionally, imaging scanner settings 

including MI, the dynamic range, imaging depth and data compression also affect 

both amplitude- and time-based metrics of DCE-US [153, 154]. Finally, the DCE-

US data analysis workflow, including model fitting and region of interest 

placement, similarly affects the quantification of DCE-US metrics [124, 155, 156]. 

Still, data on the repeatability of DCE-US is scarce and heterogenous, and there 

is no consensus reached on the accepted level of variation since this depends 

on the intended use and the expected measured change. Hence, the variation in 

DCE-US imaging needs to be compared against the detected changes following 

radiotherapy, to judge its potential as an imaging biomarker of response. 
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2 CHAPTER  Thesis Aim and 
Organisation 

 

2.1 Aims 

The overall aim of the work described in this thesis was to investigate the potential 

of imaging metrics measured using dynamic contrast enhanced ultrasound (DCE-

US) imaging as early imaging biomarkers of tumour response to radiotherapy in 

head and neck and cervical cancer. The overall hypothesis was that metrics 

derived from time-amplitude curves acquired using DCE-US could be used to 

indicate radiotherapy response prior to treatment and to measure changes in 

tumour vasculature prior to changes in tumour volume that differed with 

radiotherapy response.   

 

There were also several specific aims:   

 

1. Establishment of preclinical models of H&N and cervical cancer, which are 

practical to use for ultrasound imaging studies of radioresponse. (Chapter 4) 
 

2. Identification of suitable doses of radiation that result in both partial and 

complete tumour response to radiotherapy in preclinical models H&N and cervical 

cancer. (Chapter 4) 
 

3. Evaluation of differences in pretreatment and the change in 2D DCE-US 

metrics and the distribution of pretreatment 2D DCE-US metrics (heterogeneity) 

between tumours with partial and complete response. (Chapter 5) 
 

4. Evaluation of differences in pretreatment and the change in 3D DCE-US 

metrics and the distribution of 3D DCE-US metrics in response to radiotherapy 

between tumours with partial and complete response. (Chapter 7) 
 

5. Assessment of the repeatability of 2D and 3D DCE-US in tumour and normal 

tissue. (Chapter 5,6,7) 
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6. Comparison of the use of 2D and 3D imaging for the measurement of changes 

in DCE-US metrics and the distribution of DCE-US metrics pre- and post-

radiotherapy. (Chapter 7) 
   

2.2 Organisation of thesis 

A description of materials and experimental methods common to multiple 

chapters in the thesis is presented in Chapter 3.  Chapter 4 describes the 

characterization of in vivo models to attain suitable models H&N and cervical 

cancer. This involved evaluation of the model’s tumorgenicity, radioresponse and 

vascularity.  The chapter also investigates the correlation of DCE-US metrics to 

establish how one metric may influence another. Chapter 5 describes a 

preliminary study of the established H&N and cervical models, examining the 

ability of 2D DCE-US imaging to assess radioresponse based on vascular 

changes 48 hours after radiation, and investigates the repeatability of 2D DCE-

US within a single imaging session. The work in Chapter 6 examined the 

repeatability of a 3D DCE-US imaging system developed in–house using the 

kidney as a model of normal vasculature. Repeatability of same day and different 

day imaging was examined. Finally, the assessment of radioresponse using 3D 

DCE-US imaging was assessed in H&N and cervical cancer models and the 

repeatability of tumour imaging in a single session was examined in Chapter 7. 

Chapter 8 provides a summary of the main findings and discusses the limitations 

of this work. 
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3 CHAPTER  Materials & Methods 
3.1 Tumour Models 

3.1.1 Cell preparation 
 
In vivo experiments were conducted under the UK Home Office project licence 

PCC916B22(SR)/01 with the experimental protocols reviewed and approved by 

the ICR Biological Services Unit in line with ARRIVE guidelines and the ICR 

Animal Welfare and Ethical Review Body.  Two cervical cancer cell lines, C33A 

and ME-180, and LICR-LON-HN5 (HN5), a head and neck cancer cell line, were 

provided by Dr. Simon Robinson and Dr. Carol Box, Centre for Cancer Imaging, 

ICR, and their identity authenticated through short tandem repeat (STR) analysis 

using a GenePrint® 10 kit (Promega, UK), and analysed (by Daniela Novo, ICR) 

on a 3730xl DNA analyser (Applied Biosystems, Warrington, UK). The cells were 

tested for mycoplasma by an external provider (Surrey Diagnostics Ltd, UK) using 

a polymerase chain reaction (PCR) method. 

 

All cells were grown in Dulbecco's Modified Eagle's Medium (DMEM) (GibcoTM, 

ThermoFisher, UK) supplemented with 10% foetal bovine serum (FBS) (PAN 

Biotech, UK). While in a stage of exponential growth, at a confluence of 60 to 

80%, cells were harvested and resuspended in Hanks' Balanced Salt Solution 

(HBSS) (GibcoTM, ThermoFisher, UK) at a concentration of 5 x 107 cells/mL for 

injection. Cells were placed on ice until they were injected.  

 

3.1.2 Cell injection 
 
Female Nude-Foxn1nu athymic nude mice bred in-house at the ICR Biological 

Services Unit were used for experiments described in Chapters 4 and 5. Due to 

discontinuation of this supply, NCr-Fox 1\nu athymic nude mice supplied by 

Charles River Laboratories Ltd (Harlow, UK) were used for the experiments 

described in Chapter 7. The mouse target age at inoculation was 6 to 7 weeks, 

with a weight of 18 to 25 g. 
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Mice were injected with 5 x 106 cells, in a volume of 100 µL, subcutaneously in 

the flank under isoflurane anaesthesia. The injected cell number was increased 

to 6 x 106 in one experiment with C33A cells, described in Chapter 4, to increase 

the growth rate of the tumours.  

   

3.1.3 Tumour growth monitoring 
 
Following tumour cell injection, tumour growth was monitored using calliper 

measurements of three orthogonal dimensions. The volume was calculated 

according to the ellipsoid volume equation [157] as follows:  

 
 
																																																										𝑉 = !

"
𝑤 ∙ 𝑙 ∙ 𝑑																		                          Equation 3-1 

 
Where w, l, and	d, represent the width, length and depth of the tumour. The 

uncertainty of volume calculation was estimated as the average (over 69 mice 

and a range of tumour volumes) of the absolute difference between two 

measurements repeated on the same day, which gave an uncertainty of 27.2 

mm3. The distribution of the volume measurement differences is shown in Figure 

3-1. 
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Figure 3-1: Uncertainty was quantified using the absolute difference in repeat tumour 
volume measurement. Each point represents the absolute difference of two repeat 
measurements (n= 69). The bar represents the mean difference, and the error bar 
represents the standard deviation. 

 

3.1.4 Radiation response 
 
The first radiation experiment (described in  section 4.3.2.1) was performed using 

a target treatment tumour volume of 200 mm3, in line with reported treatment 

volumes in preclinical experiments [85, 158, 159], and based upon previous 

radiation-response studies carried out at the ICR [160]. The target volume was 

subsequently reduced to 150 mm3, to ensure the tumour dimensions were small 

enough to yield adequate radiation coverage without the need for prolonged 

treatment times, as well as to allow more time for the tumour to respond to 

treatment before it reached licence limits.  

 

Tumour volume following treatment was used to assess radioresponse. Tumours 

were allowed to almost grow up to the size limit of the project licence; the largest 

tumour dimension not exceeding 15 mm or an average of the two largest 

dimensions not exceeding 12 mm. In some cases, animals had to be culled earlier 

than this endpoint due to welfare concerns, which were mainly weight loss 

following imaging, severe tumour ulceration, or tumour growth impeding the 

animal’s movement. 
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3.2  DCE-US Imaging 

3.2.1  Imaging schedule   
 

Tumours were longitudinally imaged typically ~24 hours before irradiation or 

sham treatment to obtain a pretreatment measure of vasculature, and then at 

multiple timepoints post treatment (from 24 hours to 1 week) to assess vascular 

changes using DCE-US metrics. More details are provided for each study in the 

relevant chapter.  

 

In the first study of HN5 tumours, described in chapters 4 and 5, pretreatment 

imaging was performed on the same day as tumour irradiation. The adjustment 

was made to minimize the difference in tumour volume between pretreatment 

imaging and irradiation after observing a measurable increase in volume over 24 

hours in an earlier C33A study (discussed in Chapter 5). However, subsequent 

studies readopted the original schedule as this was more practical and HN5 

tumours did not show a substantial increase in tumour volume in the 24 h period 

between imaging and irradiation. 

 

The imaging schedules for the kidney repeatability studies described in Chapter 

6 were similar to those used in the tumour studies, with three imaging timepoints 

within 1 week, or imaging separated by 1 week, to investigate the effect of the 

repeated injections of contrast microbubbles and allow tail vein recovery from 

cannulation. The variation in the intervening time between injections was due to 

a restriction in the times at which the animals could be imaged.  
 

3.2.2 Animal anaesthesia and cannulation for imaging 
 
Animals were anaesthetised using an intraperitoneal injection of either: 

- a 8 - 10 µL/g mouse body weight combination of HypnormTM (fentanyl 

citrate and fluanisone) and HypnovelTM (midazolam) diluted in sterile 

water in a ratio of 1:1:2, previously shown to have minimal effect on 

blood flow [161] , or  
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- a 4 µL/g mouse body weight combination of ketamine (100 mg/kg), 

xylazine (10 mg/kg) and acepromazine (3 mg/kg) diluted in sterile 

water.  

 

The animal’s body temperature was maintained using a heated imaging bed 

(Vevo Imaging Station, FUJIFILM VisualSonics Inc., Toronto, Canada). Animals 

were positioned on their side so that the tumour was uppermost and were 

secured with tape to minimise motion. A holder prevented the US transducer from 

moving during imaging. For the kidney studies described in Chapter 6, the animal 

was set up in the prone position to allow imaging of both kidneys. 
 

Contrast microbubbles were injected through a 27 G Terumo Surflo® winged 

infusion catheter (Medisave UK Ltd, Weymouth, UK) inserted in a lateral tail vein. 

To reduce the catheter’s dead space volume, the original 20 cm tubing was 

replaced with 7 cm PolyE® polyethylene tubing (Harvard Apparatus Ltd, 

Cambridge, UK) with an internal diameter of 0.4 mm, giving a dead space volume 

of 9 µL in the tubing. The contrast mixture was loaded in a 1 mL Terumo syringe 

(Medisave UK Ltd) and connected to the catheter using a 27 G BD Microlance 

needle (Medisave UK Ltd). The patency of the cannulation was confirmed by 

injecting a small volume of saline before contrast injection. The tumour imaging 

setup is shown in Figure 3-2. 

3.2.3 Contrast agent 
 
SonazoidTM (GE Healthcare AB, Oslo, Norway) microbubble contrast agent was 

used in all experiments described in this thesis. It was supplied as dry powder 

and the bubbles were reconstituted as follows, within two hours of an experiment. 

Two mL of sterile water for injection was added to the powder, resulting in a 

concentration of 2.1 x 109 microbubbles/mL [162]. The contrast mixture was 

loaded into the injection syringe using a 19 G BD Microlance needle (Medisave 

UK Ltd) to minimise bubble disruption. A bolus of 50 µL was injected 

intravenously for each imaging acquisition. 2D DCE-US studies were performed 

with a manual injection, while for the 3D DCE-US studies, contrast was injected 

using an NE-1010 injection pump (New Era Pump Systems Inc., Farmingdale, 



 50 

NY, USA) using a flow rate of 2.18 mL/min, chosen to mimic the duration of a 

manual injection (approximately 1.5 s).  
 

 
 

 

 

 

 

 

 

 

 

 
Figure 3-2: Set-up for 2D DCE-US imaging. The animal was taped to a heated platform 
and positioned on its side so that the tumour was on top and accessible for imaging. The 
transducer was mounted using a holder clamped to a rigid support. The modified cannula 
with shorter tubing is also shown here, with the contrast syringe connected. 

 

3.2.4  Two-dimensional (2D) DCE-US imaging  
 
2D DCE-US imaging was carried out using an Aplio XGTM system with a PLT-

1204BT linear array transducer (Canon Medical Systems, Tokyo, Japan). The 

system's contrast harmonic imaging (CHI) mode enabled dual viewing of B-mode 

and contrast enhanced images through alternating acquisition. The B-mode 

images were used to locate the tumour and to reproduce the image plane 

between serial imaging timepoints. The scanner settings were central frequency 

= 8 MHz, mechanical index (MI) = 0.3, dynamic range = 55 dB, and a frame rate 

= 10 Hz. The settings were chosen based on a colleague’s expertise (Nigel Bush) 

of using the scanner for preclinical contrast imaging. The transducer was 

positioned and the transmit focus was adjusted between 5 to 8 mm so that it was 

at approximately the same depth as the centre of the tumour, for differing skin-

to-tumour-centre depths. The MI (as displayed by the scanner) was kept 

constant. In addition to the data produced for visualisation in real-time (video 
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data), the scanner provided a ‘raw’ data format of the contrast mode. For data 

analysis, raw data was considered superior to the displayed video data which is 

log compressed for visualisation and needs to be linearised using dedicated 

software for accurate quantification of signal [163]. 
 

Data acquisition was started 20 to 30 seconds prior to contrast injection to 

measure the baseline CHI signal amplitude and lasted 6 minutes overall. A timer 

was started at the time of injection which could be seen on the video data. The 

time of injection was then retrieved from the time stamp by identifying the frame 

at which the timer appears and could thus be automatically retrieved during data 

analysis. The acquisition time was long enough to image the contrast agent's 

arrival, its uptake and its wash out, thereby allowing estimation of the relevant 

flow metrics. Raw DCE-US images at different phases of contrast enhancement 

are shown in Figure 3-3. The imaging data was stored as DICOM files and read 

in MATLABTM (2019b, MathWorksTM, Natick, MA)  using code developed by Nigel 

Bush. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Representative examples of raw contrast-mode images at several stages of 
contrast enhancement in a C33A tumour. The tumour is delineated in yellow. The scale 
bar shown in the top left image represents a length of 4 mm. 
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3.2.5  Three-dimensional (3D) DCE-US imaging  
 
3D DCE-US imaging was used to assess the perfusion of the whole tumour 

volume as an alternative to relying on a single central tumour cross section. This 

technique was developed by Dr. Elahe Moghimirad at the ICR.  DCE-US imaging 

was performed using the Verasonics VantageTM scanner (Verasonics Inc., USA) 

and the Philips ATL L7-4 transducer (Philips Co., The Netherlands). 

Contrast-mode imaging utilised pulse inversion (see 1.4.2), where the echoes 

received from a first pulse and those received from a second pulse that is the 

inverted replica of the first, are summed. This allows the detection of the nonlinear 

microbubble signal [121]. B-mode images were acquired simultaneously, using a 

single pulse from the pulse-inversion sequence. The imaging parameters, chosen 

by experiments in a flow phantom to maximise contrast signal and minimize 

bubble disruption [164], were: central frequency = 4.08 MHz, frame rate = 10 Hz, 

pulse interval of 150 µs, F-number = 4. 

 

3D imaging at baseline and throughout contrast wash-in and wash-out was 

achieved by continuously acquiring 2D image data during a reciprocating 

elevational motion of the transducer. Using a Direct Drive Translation Stage 

(DDSM50, Thorlabs Ltd., UK) and K-Cube motion controller (KBD101, Thorlabs 

Inc., UK), the transducer was moved 20 mm, reaching a speed of 20 mm/s after 

accelerating at 40 mm/s2 for the first 5 mm and decelerating at the same rate for 

the final 5 mm, before turning around to repeat the sequence.  Again, these 

parameters were chosen based on the work described in [165].   On average, 

tumours, which typically had dimension of ~10 mm in the direction of the 

transducer motion, could be imaged using 5 frames in each reciprocation half-

cycle. Each full cycle, returning the transducer to its original position, took 3 

seconds, i.e., 30 frames. The scan range of 20 mm ensured coverage of the 

tumour elevationally at any volume, up to the size limit, whilst ensuring that the 

tumour was not at the scan edges where the speed was not constant.  Of the 30 

frames per scan cycle, 10 were spent in the acceleration and deceleration 

regions, with 20 in the central 10 mm with an elevational sampling interval of 1 

mm. The transducer was coupled to the tumour using a waterbag with a layer of 

ultrasound gel between the waterbag and the animal. This allowed smooth 
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motion of the transducer without loss of contact. The setup is shown in Figure 

3-4.  

 

The start of the transducer motion was synchronized with the beginning of image 

acquisition through a trigger signal from the Verasonics to the K-Cube motion 

controller. Once started in this way, the image acquisition and reciprocating 

motion of the transducer continued with no further synchronization signals. The 

animal was set up so that the tumour was approximately positioned at the centre 

of the scan range at 10 mm. 3D imaging was carried out for 50 seconds before 

contrast agent injection, encompassing 15 motion cycles. Contrast agent was 

then injected, and 3D imaging data were acquired for 5 minutes corresponding to 

100 motion cycles. The start of contrast agent injection coincided with the 

beginning of 3D imaging (baseline imaging saved separately). B-mode and 

contrast mode imaging data were stored as MATLAB MAT files. 

 

 
 

Figure 3-4: 3D DCE-US setup. On the left is the animal setup with the injection pump 
and water bath to allow smooth motion of the Philips ATL transducer. The right picture 
shows the transducer holder and transducer mounted on the translation stage (a different 
transducer is shown here). The direction of motion of the transducer is indicated by the 
white arrow.  

 

Water bath

Motion 
controller

Transducer

Transducer
holder

Heating
bed

Syringe 
pump

Motion



 54 

3.3 DCE -US Data Analysis 

 As outlined in section 1.4.3.1, DCE-US data were used to generate time–

amplitude curves (TACs) to derive semi-quantitative metrics of perfusion. The 

analyses reported in this thesis used the TAC metrics commonly found in the 

literature, outlined in  . Two metrics were modified from common definition; the 

amplitude decrease for the modified transit time was set at 65% instead of the 

typically used 50 % in the mean transit time metric. This definition was adopted 

from the in vitro experiments for consistency. Similarly, the washout time was 

defined at 30 % amplitude decrease instead of zero because the imaging time in 

vivo often was not long enough to observe return to baseline signal. First, TAC 

metrics were estimated using whole-ROI analysis to assess overall blood flow 

changes following treatment, throughout the tumour being imaged (2D or 3D). 

Next, subregion (sub-ROI) analysis was employed to examine whether changes 

in the tumour vasculature occurred predominantly within specific subregions,  

e.g., the rim of the tumour, and could therefore be more accurately detected using 

sub-ROI TACs. Further, spatial metric maps were generated, and histogram 

analysis was used, to investigate intratumour vascular heterogeneity. 

Additionally, these analysis methods were used to explore whether the tumour’s 

initial perfusion at the pretreatment imaging timepoint was predictive of post-

treatment trends. Programs in MATLAB were written for all the analyses 

described below.  

 

 

 Table 3-1 : DCE-US metrics derived from the TAC and their definitions. 

Metric Abbreviation Definition 
Peak enhancement 
(a.u.) 

PE Maximum minus baseline amplitude 

Arrival time 
(seconds) 

AT Time to reach 5 % of PE from the injection time 

Wash in time 
(seconds) 

WIT Time between AT and time of PE 

Modified Transit time 
(seconds) 

MTT Time to amplitude decay to 65% of PE from AT 

Wash out time 
(seconds) 

WOUT Time to amplitude decay to 30% of PE from WIT 

Area under the curve 
(a.u.) 

AUC Sum of area between one signal sample and next 
over a period of 200 seconds from AT 
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3.3.1  2D DCE-US data 
3.3.1.1 Whole-ROI analysis  

 
Whole-ROI analysis quantified the perfusion metrics of the imaged tumour central 

slice to represent tumour perfusion as in previous DCE-US research which tends 

to be in 2D. A region of interest (ROI) was delineated to include tumour tissue 

only, i.e., excluding skin and normal tissues. The mean contrast-signal amplitude 

(across all pixels) in the ROI was calculated, the result for each frame providing 

a sample amplitude value in a TAC that was thus generated from the sequence 

of frames. The TAC was filtered with a temporal median filter with a length of 11 

samples (frames), corresponding to a time interval of 1 second, to reduce 

respiratory and electronic noise modulations and their effect on TAC metric 

calculation. An example TAC is shown in Figure 3-5. 

 

The relative change in a TAC metric was calculated as the difference in the metric 

value (M) between two imaging timepoints (t1 and t2) divided by the metric value 

at the first timepoint as presented in Equation 3-2. 
 
																																																∆M = (𝑀!" −	𝑀!#)/𝑀!#                                  Equation 3-2 
           
  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-5 : A representative example of a whole-ROI 2D TAC, showing calculated TAC 
metrics: baseline (yellow dashed line), arrival time (green cross), peak enhancement 
(yellow cross), the MTT (red range-arrow) and the wash-out time (dark red cross). Not 
shown is the AUC. Injection was at time = 0 s. 
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3.3.1.2 TAC metric maps 
 
TAC metric maps were generated to investigate the intra-tumour perfusion 

heterogeneity through subregion and histogram analysis. TAC metrics were 

calculated for each pixel within the tumour ROI. This involved median spatial 

filtering with a 5 x 5-pixel window of each frame of the contrast-signal data to 

improve the signal to noise ratio of the pixel-wise TAC, corresponding to spatial 

filtering of 5 x 171 µm = 855 µm laterally and 5 x 55 µm = 275 µm axially. A 3 x 

3-pixel window was tried but was insufficient in reducing noise, especially in the 

presence of motion. Moreover, the following criteria were employed to improve 

the estimation of pixel-wise TAC metrics: 
 

• Pixels with no detectable enhancement, defined as a peak enhancement 

5 times larger than the standard deviation of the baseline amplitude, were 

excluded from time-based metric maps, but were assigned a value of zero 

in PE and AUC maps to indicate non-perfused pixels. Example TACs of 

such pixels are shown in Figure 3-6. 

• Pixels that did not reach wash-out (30%) by the end of the acquisition, 

were assigned the maximum WOUT of the total acquisition. This was done 

to avoid excluding pixels with slow wash-out from the spatial map. 

• AT was defined as the time to reach 15% of peak enhancement (vs 5% in 

whole-ROI TAC) to minimise inaccurate AT estimation due to the small 

noisy amplitude changes often seen at the individual contrast-signal pixel 

level (see examples in Figure 3-6). 

• Pixels with a calculated arrival time of 1 second or less were excluded, as 

this was considered physiologically not possible and was an inaccurate 

estimation due to noise.  
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Figure 3-6: Example single-pixel TACs of two non-perfused pixels, where PE was lower 
than the noise level, defined as 5 times the standard deviation of baseline. 

 

3.3.1.3 Subregion analysis 
 
Regions of the tumour that are initially poorly perfused or non-perfused may 

undergo little detectable change in response to treatment whilst regions that are 

well perfused are more likely to undergo greater changes. Consequently, whole-

ROI analyses may be less sensitive to vascular changes because they will 

average out response in all regions. Possible approaches to overcome this 

problem using subregion analysis were discussed in detail in the introduction to 

this thesis. (see 1.3.2). In this thesis, subregion analysis examined pretreatment 

perfusion and perfusion changes in response to treatment in subregions (sub-

ROIs) defined using the pixels with the greatest metric values. These sub-ROIs 

were produced in the pretreatment images independently for each TAC metric. 

The metric-map pixels comprising the highest 10%, 20%, 40% and 50% of pixels, 

each produced their own sub-ROI. A sub-ROI TAC was then generated using 

only these pixels and sub-ROI TAC metrics calculated. This approach enabled 

examination of sub-ROIs that mainly comprise the rim of the tumour, where the 

tumours have a rim/core pattern of perfusion.  
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Two approaches were used to generate sub-ROIs in post-treatment images. The 

first approach, referred to as spatial subregion analysis, attempted to allow pre- 

and post-treatment TAC metric comparisons in spatially matched subregions 

while compensating for changes in the size and shape of the tumour between 

baseline and post-treatment imaging. This approach generated post-treatment 

sub-ROIs from pixels spatially corresponding to the pixels included in the pre-

treatment sub-ROI. This was carried out by mapping the distance and angle 

between each sub-ROI pixel and its nearest boundary vertex. Boundary vertices 

were the (central) pixels at the minimum and maximum x and y coordinates within 

the whole tumour ROI. Using this information, a spatially correspondent pixel in 

a post-treatment image would be found at the same distance and angle from the 

same boundary vertex, while allowing for scaling due to tumour ROI changes. 

This method is shown in Figure 3-7. 

 

The second approach, referred to as functional subregion analysis, defined the 

sub-ROIs in post-treatment images based on the highest percentiles of pixel-wise 

TAC metrics, as is done in the pre-treatment images. Spatial correspondence of 

sub-ROIs obtained using both spatial and functional analyses was assessed 

using the dice similarity coefficient. This can be useful in understanding the 

reproducibility of the imaging plane.  
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Figure 3-7 : Spatial subregion analysis. For each TAC metric, a non-contiguous sub-
ROI was created from pixels of the highest valued 20% of pixels in the pre-treatment 
images (left). The angle and distance between each pixel and its nearest 
tumour-boundary pixel (green arrows show these for example pixels) was calculated 
(black dashed lines show these, for the same example pixels) and used to transform 
the sub-ROI for overlay onto the post-treatment images (right) (orange dashed lines, 
show the new position of the pixels with respect to the tumour-boundary pixel).  

 

3.3.1.4 Histogram analysis  
 
To investigate if the distribution of DCE-US metrics could be used to detect 

changes in the pattern of perfusion in response to treatment, descriptive metrics 

of the histograms were used to quantify the heterogeneity of pixel-wise DCE-US 

metrics. A histogram of each metric map was generated using 400 bins. The 

histogram distribution was characterised using standard deviation (SD), 

coefficient of variation (CoV), modified full-width half maximum (mFWHM), 

skewness, and kurtosis. mFWHM calculation was replicated from [107]. It is the 

range between values covering 38% of the area on either side of the median of 

the distribution. The change in each histogram parameter from baseline following 

treatment was calculated using Equation 3-2. In addition, percentile analysis 

investigated the mean value of each metric at the 5%, 10%, 15% and 20% 

percentiles pretreatment and their change following treatment, similar to the 

analysis in studies discussed in section 1.3.1. 

 

Pretreatment Post-treatment
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3.3.2 3D DCE-US data 
 

3D DCE-US data analysis allowed 3D TAC-metric mapping for quantification of 

the intra-tumour perfusion heterogeneity, simulation of 2D DCE-US whole cross-

section analysis of perfusion for individual tumour slices (whole-ROI TAC), and 

analysis of perfusion for the entire tumour volume of interest (whole-VOI TAC). 

To do so, the analysis required identification of the imaging frames containing the 

tumour (frame selection).  

 

3.3.2.1 Frame selection 
 
Using the 3D DCE-US imaging settings described earlier in 3.2.5, each imaged 

tumour slice had 30 and 200 acquired frames in the baseline and injection 

acquisitions, respectively, with each cycle imaging the tumour twice. Although the 

mechanical motion and the imaging acquisition were initiated at the same time, 

there may have been a small lag between their starts. Indeed, for some 

acquisitions the start of the motion was delayed briefly (~ 1 second) due to a 

mechanical fault. Further, the motion of the platform was not expected to be 

perfect and therefore, even if synchronised at the start of the acquisition, the 

frame rate and motion cycles may have become unsynchronised during the 

scanning. This meant that it was not possible to determine which frame imaged 

which slice of tissue by simply counting the number of frames.  

 

Frames corresponding to a sufficiently similar anatomical location in elevation 

were identified from the 3D imaging data using a frame-selection workflow. This 

involved first identifying a reference frame for each cross section from the B-mode 

images before contrast injection. The similarity between the reference and all 

other B-mode frames within the acquisition was evaluated using the built–in 

MATLAB correlation function (corr2) which yielded a correlation coefficient. A 

frame was selected as a corresponding frame (containing similar anatomy) if its 

correlation coefficient was higher than 0.65 and was the local maximum within 5 

frames. Next, the time between consecutive selected frames was checked for 

any missing frames due to low correlation (time higher than 2.5 s). The correlation 

coefficient criterion was lowered to 0.58 and was confined to frames between the 
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nearest selected frames, while excluding the adjacent 5 frames that would have 

high correlation coefficient (> 0.5). If no frames were selected still, a frame would 

be selected manually, by visual comparison of the reference frame and the 

frames within one sweep. The correlation coefficients chosen were based on the 

typical correlation coefficients seen between tumour frames. A schematic of the 

workflow is shown in Figure 3-8. Frames selected for two or more tumor slices 

would only be kept for the slice with the highest correlation and would be replaced 

in the remaining slices by their adjacent frame with the next highest correlation. 

 

To validate the workflow, selected frames were compared to manually selected 

frames. for two tumour slices based on a visual assessment of similarity. 

Approximately 85 % of frames identified by the workflow were also manually 

selected, and the remaining 15% of frames were adjacent to the manually 

selected frame (1 frame apart). 
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Figure 3-8: Frame selection workflow for 3D DCE-US imaging. a) shows the reference 
frame of each identified slice of a tumour (delineated in yellow). The cross-correlation 
coefficient, computed between each frame and a reference frame of B-mode data is 
shown in b), with the correlation threshold of 0.65 plotted in red. In this example, which 
is for an off-centre slice of the tumour, anatomically similar frames are expected to be 10 
frames and 20 frames apart, alternating between sweeps. Selected frames are identified 
using the correlation coefficient and the time between frames is plotted in c), showing 
several missed frames, where only one frame is identified per cycle (consecutive 
selected frames are 30 frames apart). With the lower correlation coefficient in d) the 
missing frames are selected. 

 

 

a) 
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3.3.2.2 Motion correction 
 
Selected frames were corrected for in-plane motion, i.e., in the axial and lateral 

directions. The optimal transformation between a B-mode frame and the 

reference frame was deduced using a normalised cross correlation method [166] 

using the built- in MATLAB function (xcorr2). The function calculated the 

correlation of the two images at progressively increasing axial and lateral integer 

relative displacements until the images no longer overlapped [167]. The 

correlation was performed using a search region encompassing the skin 

boundary to provide distinct features for the correlation and to minimise incorrect 

transformations based on regions with no features. As much as possible, the 

displacement yielding the highest correlation between the images would be 

accepted. However, a transformation with a sum exceeding 15 pixels was 

considered unrealistic and was replaced with an average of the transformation 

used for the two adjoining frames. The transformation was then applied to the 

corresponding contrast mode images. The result of the motion correction was 

assessed visually by checking the transformation between frames.  

 
3.3.2.3  Whole-tumour ROI analysis 
 

2D tumour ROIs were delineated using the reference frame (used for frame 

selection). Time-amplitude curves were derived for each tumour slice from the 

selected motion-corrected frames. The mean contrast signal amplitude over the 

tumour ROI was calculated for each frame, and the TAC was median filtered with 

a time window of 3 seconds (i.e., 3 frames at the same location).   

 
With the exception of arrival time, the same TAC metric definitions used for 2D 

DCE-US were applied to the individual slices acquired during 3D imaging and the 

data generated from the whole tumour volume. For individual slices, the 

continuous translation of the transducer to generate 3D DCE-US images reduced 

the temporal resolution (1.5 Hz) relative to that for 2D imaging (10 Hz). This 

meant that the arrival of the contrast agent within the tumour ROI could not 

always be defined precisely, with the TAC reliably showing only data points with 

much greater contrast signal amplitude than the 5% of peak enhancement used 

to define AT in 2D DCE-US. Therefore, an approximate AT was estimated 
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through linear extrapolation of two data points within the quick rise period of the 

wash-in phase (Figure 3-9 left). The estimated AT was used in data analysis if it 

was greater than 1.5 seconds, (this threshold was based on the range of ATs 

observed using 2D DCE-US), and if it was earlier than the earliest data point on 

the TAC above 5%. Otherwise, it was not used and recorded as a “failed 

estimate”.  

 

Using the TACs from each tumour slice, a single TAC could be generated to 

represent the perfusion metrics of the whole tumour volume, referred to as 

whole–VOI TAC. The time resolution of the 3D TAC was the same as a tumour 

slice whole–ROI TAC, in that the tumour volume would be captured in full, twice 

in each cycle, i.e., in each sweep of the transducer. The amplitude of the 3D TAC 

was thus calculated as the mean contrast signal of tumour slices acquired in each 

half cycle, plotted against the time at the central frame. The 3D TAC was also 

median filtered with a time window of 3 seconds to keep this filtering the same as 

in the 2D case. 

 

 
Figure 3-9: Estimation of AT by linear extrapolation for a tumour cross section TAC 
acquired during a 3D acquisition (left) and for a 3D TAC that was generated either by 
plotting all individual 2D TACs (all frames - right) or by combining, by averaging, all the 
2D TACs from individual frames (3D TAC - right).  

 

As with TACs of the individual tumour slices, the arrival time for the 3D whole–

VOI TAC could not always be captured and had to be approximated using a linear 

fit. Here, however, there was an opportunity to effectively improve the temporal 

* 2D TAC  
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resolution of the 3D TAC by plotting the 2D whole–ROI TACs for all selected 

frames of the tumour slices, each at their own known time point, rather than 

averaging their mean signal. An example of this type of 3D whole–VOI TAC is 

shown in (Figure 3-9 right). It was hypothesised that AT could be more precisely 

estimated with the greater temporal resolution, assuming that contrast arrival was 

uniform within the tumour and occurred simultaneously across the tumour slices. 

To avoid making these assumptions for all TAC metrics, this type of 3D whole–

VOI TAC (i.e., using all frames individually) was used to calculate AT only and all 

other metrics were derived from 3D whole–VOI-averaged TACs. 

 

3.3.2.4 3D TAC metric maps 
 
Metrics maps were generated on a frame-by-frame basis by median spatial 

filtering of the contrast image data with a 5 x 5-pixel window using motion 

corrected frames, corresponding to spatial filtering of 5 x ~ 148 µm = 740 µm 

axially and laterally. The metrics were calculated using the same definitions as 

whole-ROI metrics. The exclusion criteria for 2D DCE-US described in section 

3.3.1.2 was also implemented. Pixels were considered perfused if the PE was 

larger than 5 times the standard deviation of the baseline (i.e., well above noise 

level). Arrival-time pixels where the AT could not be calculated were instead 

replaced with the AT of the whole ROI. It was decided not to generate metric 

maps in planes orthogonal to the elevational slices due to the large elevational 

width of the images. 

 

3.3.2.5 Subregion analysis 
 

Subregion analysis was not applied to 3D TAC metric maps. Reasons for this are 

discussed in chapter 5. 

 

3.3.2.6 Histogram analysis 
 
A 3D histogram was derived from the pixels of all tumour slices to represent the 

heterogeneity in the entire tumour volume. The same histogram parameters as 

those used for 2D analysis were calculated: standard deviation, coefficient of 

variation, skewness, kurtosis and modified mean width half maximum. 
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3.4 Radiation Treatment 

 
All experiments used single-fraction radiation, with radiation doses of 10, 15, 20, 

or 25 Gy. Radiotherapy was delivered using the Small Animal Radiation 

Research Platform (SARRP, XStrahl Ltd, Camberley, UK) which allows localised 

treatment delivery to the tumour while reducing normal tissue irradiation through 

the use of treatment planning and collimated X-ray beams. Animals were 

anaesthetised with isoflurane delivered through oxygen (2 mL/min, 1-2% 

concentration) and placed on the treatment bed in the prone position. The animal 

was secured to the treatment bed and positioned such that the tumour protruded 

as much as possible to separate it from the animal’s body, therefore minimising 

the likelihood of radiation damage to healthy tissue. 
 

Treatment planning workflow started with acquiring a whole-body cone-beam 

computed tomography (CBCT) image. The image was acquired with voltage = 60 

kV, current = 0.8 mA, a 1 mm aluminium filter, a pixel size of 0.25 x 0.25 x 0.25 

mm, and 360 frames acquired within 67 seconds, resulting in an approximate 

imaging x-ray dose of 1.2 cGy. The CBCT image was then reconstructed in the 

treatment planning software, Muriplan© (XStrahl Ltd, Camberley, UK), where the 

imaging volume was segmented into tissue, lung, air, fat, and bone. This was 

necessary for accurate calculation of radiation doses delivered with kilovoltage 

X-rays where the photoelectric effect is dominant [168]. Fat was excluded from 

the segmentation since athymic nude mice do not have a significant portion of 

fat. The tumour was segmented as tissue. At this stage, the tumour volume was 

also contoured at every 5th axial slice to generate a dose volume histogram (DVH) 

later during dose verification. 
 

Next the isocentre of a 10 mm x 10 mm radiation beam was positioned within the 

tumour, in such a way as to ensure coverage of all the tumour volume and 

minimise normal tissue inclusion within the beam.  To minimise the entry dose at 

the skin, the radiation dose was delivered with two opposite beams (at 180°). The 

radiation beams were angled between 1° to 40° (the opposite beam being -179° 
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to -140°), if needed, to avoid surrounding organs at risk. If the tumour length 

exceeded 10 mm, two additional opposite beams of 5 x 5 mm collimator size were 

incorporated in the treatment. 

 

The planned treatment was assessed through the isodose distributions and a 

dose volume histogram for the tumour. Isodoses were used to assess both 

tumour coverage and any significant irradiation of normal tissue. Using the DVH, 

a plan was accepted if at least 85% of the contoured tumour volume received at 

least 80% of the prescribed radiation dose. Radiation was then delivered using 

voltage = 220 kV, current = 13.0 mA and a 0.15 mm copper filter. The radiation 

workflow is shown in Figure 3-10 . The overall time for the procedure ranged 

between 25 and 40 minutes depending on the radiation dose and number of 

beams needed to provide full tumour coverage. 

  

Animals in the control group were anaesthetised and set-up in the SARRP as 

described above. A CBCT was acquired, and the animals were kept under 

anaesthesia for a similar amount of time as treated animals. All animals were 

allowed to recover on a heated platform.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: Radiation delivery workflow with the SARRP. Top and middle row images 
present the axial view and show : (top left) tissue segmentation with air shown in black, 
lung in red, tissue in green and bone in white, (top right) tumour contouring is carried 
out for each 5th slice, (middle left)10 x 10 mm radiation beams are added to the 
treatment and angled away from the tumour body and (middle right) isodoses for a 
planned treatment. On the bottom row is a typical tumour DVH.  
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3.5 Histopathology 

 
The use of histopathological analysis enables established markers of tumour 

pathology to be compared with the spatial distribution of DCE-US TAC metrics. 

Histopathological markers of potential relevance to DCE-US metrics, and often 

reported in the literature (see section 1.4.4.) , include CD31 for vascular staining, 

Hoechst dye for visualization of perfused vessels and pimonidazole staining of 

hypoxic tissues. In addition, assessing tumour viability using haematoxylin and 

eosin (H&E) staining can be helpful for interpreting results for other markers, e.g., 

identifying necrotic regions. All these markers were thus examined and compared 

to endpoint DCE-US images.  

 

Following imaging and Hoechst and pimonidazole injection (described below), 

animals were sacrificed via cervical dislocation and the tumours excised. 

Tumours were cut in half at the imaging plane, with one half fixed in formalin and 

the other snap frozen in liquid nitrogen. Frozen tumour samples were used for 

fluorescent imaging of Hoechst uptake, CD31 and pimonidazole staining, while 

formalin fixed samples, in which tissue integrity was best preserved, were used 

for CD31 and H&E staining. Kidneys were also excised in the studies described 

in Chapter 6, with the whole organ frozen for Hoechst imaging and CD31 

immunofluorescent staining. Stained sections were imaged using an Axioscan Z1 

(Carl Zeiss Ltd, UK) and the Nano Zoomer XR (Hamamatsu, Japan) digital 

scanners at x 20 magnification.  

 

3.5.1 Frozen tissue processing 
 
Tumour and kidney frozen samples were stored at -80°C until sectioned. Ten-

micron thick frozen tissue sections were cut using a Bright Cryostat (OTF6000, 

Bright Instruments, UK) at a temperature of –15 °C and mounted on SuperFrost® 

slides (VWR, UK). Tissue sections were stored in the dark at -20 °C until they 

were used for staining.  
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3.5.2 Hoechst staining 
 
Hoechst 33342 is a fluorescent dye that binds to DNA. While it is not specific to 

endothelial cells, it has been validated as a marker of the perfused vasculature 

when injected intravenously as it is rapidly taken up by endothelial cells lining 

functional vessels and remains stably bound. [169]. Hoechst 33342 

(bisBenzimide H33342 trihydrochloride, Sigma-Aldrich, UK) was injected 

intravenously (dose of 15 mg/kg, concentration of 6 mg/mL in water). An 

additional 10 µL was injected to account for the dead space of the cannula. It was 

allowed to circulate for 1 min before the animal was sacrificed.  

 

The Hoechst signal was visualized using 4',6-diamidino-2-phenylindole (DAPI) 

fluorescent imaging, which visualizes nuclear DNA, with an excitation filter with a 

wavelength range of 330 – 375 nm and an emission filter with range of 430 – 470 

nm. The exposure time was adjusted according to the intensity of the stained 

sample, with kidney sections requiring shorter exposure times of around 5 – 30 

milliseconds compared to tumour sections with exposures of 50 – 200 

milliseconds. 

 

3.5.3 Pimonidazole  
 
Pimonidazole is an established hypoxia marker that binds to proteins in hypoxic 

tissues with an oxygen partial pressure below 10 mmHg. Pimonidazole 

hydrochloride (HypoxyprobeTM Plus Kit, Hydroxprobe, USA) was injected 

intraperitoneally at least 45 minutes before animal sacrifice to allow sufficient time 

for protein adduct formation (dose of 60mg/kg, concentration of 20 mg/mL in 

PBS). Hypoxia staining could not be completed within the time limit of this project 

but nonetheless pimonidazole was injected in all studies and the sections are 

available to complete the staining at a later date. 

 

3.5.4 Frozen section CD31 staining 
 
CD31 (Cluster of Differentiation 31) is receptor expressed in the membranes of 

endothelial cells and is a well-established marker of vasculature. By combining 
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CD31 staining with Hoechst dye uptake, it is possible to distinguish perfused from 

non-perfused vessels. 

 

Following fixation in ice-cold acetone for 10 minutes, frozen sections were 

outlined with a hydrophobic barrier pen (ImmEdgeÒ Pen, H-4000, Vector 

Laboratories, UK) then incubated with blocking solution containing goat serum 

and bovine serum albumin (BSA) for 30 minutes at room temperature. They were 

then incubated with 100 µL of rat anti–mouse CD31 antibody (5 µg/ml, Catalog 

#557355, BD Biosciences, UK) overnight at 4 °C. Sections were washed with 

PBS–0.1% (v/v) and Tween® detergent, and incubated with 100 µL of goat anti–

rat secondary antibody conjugated to AlexaFluor® 546 (1:500 dilution, Catalog 

#A-11081, ThermoFisher, UK) in the dark (to prevent photobleaching) at 37 °C 

for 2 - 3 hours. Slides were washed again with PBS-Tween and a coverslip added 

with Vectashield Antifade Mounting Medium (Vector Laboratories, UK) before 

microscope scanning.  

 

AlexaFluorTM 546 fluorescence was detected using an excitation filter with a 

wavelength range of 540 – 557 nm and an emission filter of 578 – 640 nm. The 

exposure time was adjusted according to the intensity of the stained sample, with 

a range of 30 – 80 milliseconds for kidney and tumour sections. 

 

3.5.5 Formalin–fixed tissue processing  
 
Formalin–fixed paraffin-embedded tumour sections were processed and stained 

for histopathology by Dr Vaideesh Parasaram, ICR. After formalin fixation for 24 

hours, tumours were stored in 70 % ethanol until processing then washed in PBS 

and embedded in paraffin. Sections for staining were cut at a thickness of 5 µm 

using a Leica manual microtome (Leica Biosystems, UK).  

 

3.5.6 CD31 staining of formalin–fixed samples 
 

For CD31 staining of formalin-fixed paraffin-embedded (FFPE) tissues, sections 

were first de-paraffinised in xylene and hydrated in a series of decreasing ethanol 
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concentrations (100% to 70%). Antigen retrieval was carried out using citrate 

buffer (H3300, Vector Laboratories, UK) and a pressure cooker. The sections 

were incubated with Peroxidase Blocking Solution (S200380, Dako) to prevent 

staining of endogenous peroxidase. The sections were then incubated with 100 

µL rat anti–mouse CD31 (DIA-310, Dianova, 1: 30 in diluent) primary antibody for 

1 hour at room temperature. Following that, sections were washed in TBS–0.025 

% (v/v) Tween 20 3 times for 3 minutes then incubated with 2 drops of Rat 

HistofineÒ  Max PO (414311F, Nichirei Bioscience) for 30 minutes at room 

temperature. HistofineÒ is a polymer comprised of an anti-rat antibody fragment 

and peroxidase. After washing 3 times in TBS-TWEEN, 100 µL of DAB 

chromogen (3,3′-diaminobenzidine) (K3467, Dako) was added to the sections for 

6 minutes. DAB is oxidized by the peroxidase in HistofineÒ, resulting in a dark 

brown color that can then be visualised by brightfield microscopy.   

 

Haematoxylin counterstaining was carried out as outlined in H & E staining below. 

Sections were dehydrated in ethanol and xylene before mounting with coverslip, 

using DPX mountant, for microscopy imaging. 

 

3.5.7 Fixed section H&E staining 
 
Haematoxylin and eosin (H &E) staining was used to characterize the tumours’ 

structure and identify areas of necrosis. Haematoxylin stains nuclei purple/blue, 

while eosin stains cytoplasmic proteins pink.  Regions with high intensity pink 

staining can indicate necrosis. Tumour sections were de-paraffinised and 

rehydrated as described for CD31 staining. They were they then washed in 

running tap water for 2 minutes and stained with Gill’s haematoxylin for 1.5 

minutes. After washing in running tap water for 5 minutes, sections were 

incubated in acid alcohol for 3 seconds to remove excess non-nuclear staining. 

Sections were rinsed again in running tap water for 4 minutes and immersed in 

eosin for 2 minutes then rinsed once again in tap water for 20 seconds. Sections 

were dehydrated and mounted with a coverslip using DPX mountant. 
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4 CHAPTER  In vivo characterisation of 
the radioresponse and vasculature of 
tumour models  

 

4.1 Introduction 

Preclinical tumour models play an indispensable role in cancer research, and 

thus in developing imaging biomarkers of cancer [47]. Models of varying 

complexity have been developed; ectopic, typically subcutaneous, tumour 

models are easy to establish, and show good reproducibility, making them a 

practical model. Orthotopic models, where tumour cells are implanted into the 

equivalent tissue or organ from which the cancer originated may better mimic 

microenvironmental features, whilst genetically engineered models and patient 

derived xenografts (PDX) models can more accurately mimic molecular 

characteristics of human cancer. The model chosen should achieve a balance 

between practicality, the necessary biological features to test the imaging 

biomarker, and the burden on the animal health. 

 

For the aims of the thesis, a subcutaneous xenograft model was considered 

suitable to investigate models of head and neck (H&N) and cervical cancer, 

based on the mentioned considerations. Xenograft models use human cancer 

cell lines implanted in immunocompromised mice, allowing the study of human 

cancer and are the most widely used preclinical model of H&N cancer [170] and 

cervical cancer[171]. Subcutaneous tumours typically have minimal effects on 

the animal’s welfare and are practical for monitoring tumour growth and for 

imaging due to their superficial location. Specifically, the NCr-Foxn1nu nude mice 

strain is ideal because it lacks hair, making it practical for ultrasound imaging. 

Athymic mice such as these are immunocompromised because they lack T–cell 

function but do retain some immune function through natural killer and B cells 

[172] .  

 

H&N and cervical cancer mostly present as squamous cell carcinomas and 

comprise a diverse set of tumour subtypes, with heterogeneous radiosensitivity 
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observed in the clinic [9, 13-15, 32]. As such, the available head and neck and 

cervical cancer cell lines replicate this heterogeneity and differ in characteristics 

that may underlie response or resistance to radiotherapy [170, 172, 173]. The 

choice of cell line firstly relies on achieving good tumourigenicity and growth 

behaviour in athymic mice. An engraftment success rate of 100% and 

reproducible tumour growth minimises the number of mice needed and allows 

more precise experimental planning. Further, tumour growth within a practical 

time period (i.e., weeks, rather than months) keeps experiment durations 

manageable. Secondly, for the purpose of assessing radiotherapy response with 

DCE-US imaging, tumour models need to mimic the heterogeneous overall 

response seen clinically in both cancer types. Radiation doses that yield a range 

of responses and allow distinct classification of response facilitate the 

investigation of the relationship between DCE-US metrics and radioresponse. 

Hence, for the chosen cancer cell line the optimal radiation dose to produce this 

response should be identified. 

 

It was reasonable to start with cell lines previously used at the ICR and for which 

there was local expertise with in vivo studies. For head and neck cancer, LICR-

LON-HN5 head and neck squamous cell carcinoma (HN5) has been established 

as a reliable xenograft model when propagated in athymic mice and used for 

radiotherapy studies [174-176]. The HN5 cell line was derived from a squamous 

carcinoma of the tongue, and was shown to be transplantable in nude mice, 

producing xenografts with similar histological appearance to the patient 

specimen. 

 

Similarly, two cervical cancer cell lines were available and had been grown 

previously as xenografts in athymic nude mice at the ICR. C33A and ME-180 cell 

lines were derived from squamous cell carcinoma, the most common type of 

cervical cancer [177]. ME-180 is HPV-positive, as are almost all cases of cervical 

squamous cell carcinoma [178], while C33A is HPV-negative. Both cell lines were 

shown to be radio responsive in vitro [179-183]. Although there are no reports of 

in vivo radioresponse of tumours grown from these cell lines, these studies 

demonstrate the intrinsic variation in their radiosensitivity, which suggests their 
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potential to produce tumours that would exhibit the desired heterogeneous 

radioresponse in vivo. 

 

As this thesis focuses on assessing tumour response via imaging of its functional 

vasculature, it is also necessary to confirm that the selected tumours models have 

an initial level of perfusion that can be monitored reliably. Further, understanding 

the vascular properties of the tumour model can inform on its growth 

characteristics and radioresponse. Therefore, the vascular phenotype of the 

tumour models was assessed using DCE-US imaging at a nominal radiation 

treatment volume, through analysis of the overall perfusion of the tumour and 

intratumoural vascular heterogeneity    

 

Additionally, the correlation across tumours between DCE-US metrics was 

assessed in each tumour model. Understanding these correlations aids in 

identifying the properties of blood flow and volume affecting each metric and the 

underlying vascular morphology of the tumour model. It can also discern which 

measured radiation-induced changes in the metrics are dependent. For example, 

since PE and AUC are both surrogates of blood volume, they are expected to be 

correlated, and to show coincident changes following radiotherapy. The 

correlation of whole-ROI DCE-US metrics across tumours from each model, was 

used to inspect model-specific correlations and give insight on the perfusion 

pattern of the model. The correlation of pixel-wise DCE-US metrics was also 

assessed in each tumour. Pixel–wise metrics expand the dataset available for 

correlation and examine the correlation between metrics in each tumour 

individually. A pixel-wise analysis is also expected to reveal correlations that 

cannot be detected with whole-ROI metrics as a whole-ROI TAC is an average 

of the heterogeneity of perfusion within the imaging slice. 

 

Finally, to support any inferred conclusions of the tumour vasculature based on 

DCE-US imaging, DCE-US imaging at the endpoint was compared with 

histopathological markers of vascular density and cell viability.   
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4.1.1 Aims 

 
This chapter discusses the work carried out to characterise preclinical models of 

cervical cancer (ME-180 and C33A) and head and neck cancer (HN5) in vivo 

using DCE-US. Specifically, the aims were:  

 

• Establish suitable tumour models of head and neck and cervical cancer 

based on the tumourigenicity of candidate cell lines and tumour growth 

characteristics. 

• Determine suitable radiation doses for each tumour model to achieve the 

desired variable radioresponse within a model. 

• Assess the vascularisation of the tumour models using DCE-US, including 

overall perfusion and spatial heterogeneity. 

• Compare DCE–US metrics of overall perfusion and heterogeneity 

between tumour models. 

• Assess the correlation between DCE-US metrics. 

• Examine the spatial correspondence of perfusion assessed using DCE-

US with histopathological staining of vasculature. 

 

4.2 Materials and Methods 

 
To address the aims stated above, results from several studies were collated for 

each tumour model. The studies discussed here are summarised in Table 4-1 

and are given abbreviations with a letter referencing the cell line name and a 

number corresponding to the study number. The tumorgenicity and growth 

characteristics of ME-180 and C33A cell lines were assessed in studies M1, M2, 

and C1. The radioresponse data for C33A tumour model is collated from studies 

C3, C5, C6 and C7. The radioresponse data for HN5 tumours is collated from 

studies H1, H2, and H3. Studies C5 and H1 inspected the DCE-US 

characteristics of the tumour These studies are discussed in later chapters and 

are referred to using the same abbreviations. Study C4 was excluded as the 

injected cells were subsequently found to be infected with mycoplasma. This had 
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no apparent adverse effects on the mouse health status but may have had an 

effect on tumour growth. 

 

4.2.1 Tumourigenicity studies  

 
The tumourigenicity of the ME-180 and C33A cell lines was assessed in two pilot 

studies (n = 6 mice per cell line), referred to as M1 and C1, respectively.  

Approximately, 5 x 106 cells were injected in these initial studies. All six ME-180 

tumours in the M1 study became ulcerated, therefore an additional study (M2) 

was carried out with the aim of reducing the number of tumours that ulcerated. It 

was hypothesised that this could be achieved by reducing the number of cells 

injected, and thereby slowing tumour growth rate. Mice were injected with either 

1 or 2 x 10 6 cells (n = 3 each), in line with the number of cells used previously at 

the ICR for this model. In this study, tumour measurements were carried out by 

staff of the ICR’s Biological Services Unit (BSU) and only 2 tumour dimensions 

(width and length) were recorded. The tumour volume for the M2 study was 

calculated as:  

 

																																															𝑉 = 0.5	x	max(𝑤, 𝑙) 𝑥	min	(𝑤, 𝑙)"																							Equation 4-1 

 

For the C33A cell line, the tumourigenicity was also assessed from a subsequent 

preliminary study of DCE-US imaging (C2, n = 5). The age of the mice for this 

study was higher than target age of 6 to 7 weeks, with mice at an age of 10 weeks. 
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Table 4-1 Studies discussed in chapter (and whole thesis) 

STUDY Number of 

mice 

TUMOURIGENICITY IMAGING RADIATION 

DOSE 

Cell line: ME-180 

M1 6 ✓   

M2 6 ✓   

Cell line: C33A 

C1 6 ✓   

C2 5  ✓  

C3 7  ✓ 10 Gy 

C5 18  ✓ 15 & 20 Gy 

C6 14  ✓ (3D) 25 Gy 

C7 14  ✓ (3D) 25 Gy 

Cell line: HN5 

H1 18  ✓ 20 & 25 Gy 

H2 14  ✓ 20 & 25 Gy 

H3 14  ✓(3D) 20 & 25 Gy 

 

4.2.2 In vivo radioresponse  

 
The in vivo radioresponse of C33A and HN5 tumour models was assessed from 

C3, C5, C5, C7, H1, H2, and H3 studies. Radiation was delivered as a single 

fraction using the SARRP as described in section 3.4 and response was 

characterised through monitoring changes in tumour progression. The target 

treatment volume was 200 mm3 in the C3 study and was subsequently changed 

to 150 mm3 due to the reasons described in 3.1.4 for all other studies. 

 

For the C33A model, several radiation doses were tested due to the limited 

available information about the model’s in vivo radiosensitivity. Tumours were 

first irradiated with 10 Gy in the C3 study (n = 7), then with 15 and 20 Gy in the 

C5 study (n = 18, 6 treated tumours for each dose), and was further increased to 

25 Gy for C6 (n = 18, with 10 treated tumours) and C7 (n = 14, with 8 treated 

tumours).  



 79 

 

The HN5 model was irradiated with 20 and 25 Gy. Radiation with 20 Gy was 

based on work carried out at the ICR by Dr Marcia Costa and Dr Sarah Brüningk 

[174]. The 25 Gy radiation dose was added to increase the number of tumours 

with complete regression following radiotherapy. All three studies of HN5 tumours 

used both doses; 10 tumors were treated in the H1 study (n =18) and 7 in each 

of the H2 and H3 studies (n =14). 

 

4.2.3 Characterisation of tumour vasculature using DCE-US imaging 

 
The tumour vasculature of C33A and HN5 models was characterised at the 

treatment volume using DCE-US imaging at the pretreatment imaging timepoint 

from studies C5 and H1.  Two dimensional DCE-US imaging was carried out as 

described in section 3.2.4. Animal setup and contrast agent are detailed in 3.2.1 

and 3.2.2.  

 

DCE-US metrics describing the tumour vasculature were generated from whole–

ROI TAC analysis as described in section 3.3.1.2, metric maps detailed in section 

3.3.1.23.3.1.4, and histogram analysis detailed in 3.4.1.4. Whole–ROI TAC 

metrics of the imaged tumour central slice are assumed to represent the overall 

tumour perfusion status, while metric maps and histogram analysis describe the 

intratumour vascular heterogeneity.  

 

4.2.3.1 Correlation of whole-ROI and pixel-wise TAC metrics 
 
The correlation of whole-ROI DCE-US metrics was calculated using metrics 

obtained from all tumours at the pretreatment imaging timepoint for each tumour 

model (n = 17 for C33A tumours and n = 16 for HN5 tumours).  The Pearson 

correlation coefficient (r) was calculated and 95% confidence intervals (95% CI) 

of the correlation coefficient  were calculated using the bootstrap method, which 

is a non-parametric method for calculating CIs through resampling of the data 

[184]. The 95% CI were calculated using 1000 resampling replications. A 

correlation was considered statistically significant if its 95% CI did not include 

zero. Significant differences in the correlations obtained from C33A tumours and 
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HN5 tumours were indicated if their 95% CIs did not overlap. This approach for 

identifying significant correlations was preferred as 95% CIs provide a precise 

estimate about the correlation strength, compared to p-values, which only test 

the correlation coefficient against a null hypothesis of no correlation. 

 

The correlations of pixel–wise DCE-US metrics were calculated for a tumour also 

using the Pearson correlation coefficient. All tumour slices used for this analysis 

consisted of at least 1900 pixels, i.e., 1900 datapoints. The 95% CIs were 

estimated using the bootstrap method with 400 resampled datasets instead of 

1000 to minimise the computation time. A correlation within a tumour was 

deemed significant if its 95% CI did not include zero. The signed Wilcoxon test 

was used to test if a correlation was significant for the tumour type (median 

correlation from all tumours significantly different than zero, p < 0.05).  

 

4.2.3.2 Comparison of C33A and HN5 tumours 
 

The perfusion status of the two tumour models pretreatment was compared using 

whole–ROI DCE-US metrics, intratumoural heterogeneity of metrics and the 

correlations between DCE-US metrics. This analysis was done to provide insight 

into the reasons for any observed differences in the models’ radioresponse as 

well as the change in DCE-US metrics seen post treatment. Significant 

differences in correlations of pixel-wise DCE-US metrics were used to explore 

important differences in the vascular morphology. Statistically significant 

differences in all the above-mentioned metrics were examined using the Mann–

Whitney U test. 

 

4.2.3.3 Validation of DCE-US imaging with histopathology 
 
Biological validation of DCE-US imaging was carried out at endpoint imaging. 

Excised tumours were cut at the imaging slice, fixed in formalin, and stained with 

CD31 and haematoxylin counterstain as described in section 3.5.6. The 

agreement of CD31 staining and the DCE-US metric maps was assessed 

visually.  The results shown here were obtained from the C33A C5 study. 
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Formalin fixed HN5 tumours from the H1 study were difficult to cut and did not 

produce complete sections. 

 

4.3 Results 

4.3.1 Tumourigenicity of cervical cancer cell lines  
4.3.1.1 ME-180 tumour model 
 

Growth curves obtained from ME-180 tumours following subcutaneous injection 

of 5 x106 cells are shown in Figure 4-1. All tumours (n = 6) developed ulcerations, 

that necessitated the animals being killed before the tumour reached the project 

licence limits. Ulcerations appeared at different stages of tumour growth. In two 

animals, the tumour grew up to and beyond the proposed treatment volume (150 

to 200 mm3) before they formed visibly haemorrhagic regions, which 

subsequently led to necrosis, visible as black regions, and tumour collapse. 

Ulceration appeared earlier in the remainder of the cohort, negating growth 

beyond a volume of 100 mm3. An example of a tumour with haemorrhagic regions 

and a collapsed tumour are shown in  

Figure 4-2. Growth curves obtained from ME-180 tumours propagated following 

subcutaneous injection of either 1 x106 or 2 x106 cells (n=3 per cell number) are 

shown in Figure 4-3. A reduction in the injected cell number did not improve the 

tumourigenicity of the model. While the onset of ulceration was delayed, with all 

tumours growing up to the treatment volume, its development could not be 

eliminated and resulted in tumour collapse in three out of the six tumours. Three 

tumours grew to the licence size limits, but only one of these grew within a 

practical timescale, whilst the other two tumours only began to grow at around 60 

days after cell injection. 
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Figure 4-1: Growth curves obtained from ME-180 tumours propagated following 
subcutaneous injection of 5x106 cells (n=6). Each line represents the progression of a 
tumour, measured using callipers. Tumours initially grew and subsequently regressed 
in volume as ulceration developed.  

 

 

 

Figure 4-2:  Characteristic ulceration seen in ME-180 tumours. A large tumour (volume 
= 215 mm3, lateral width = 8.9 mm) is shown on the left with the beginning of a 
haemorrhage. On the right is a smaller tumour (volume = 63 mm3, lateral width =7.2 mm) 
with ulceration and associated tissue collapse evident. 
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Figure 4-3: Growth curves obtained from ME-180 tumours propagated following 
subcutaneous injection of 1 or 2 x106 cells (n=3 each). Each line represents the 
progression of a tumour, measured using callipers. Ulceration and subsequent tumour 
collapse were observed in 3 tumours. The other 3 tumours progressed with no ulceration, 
but the growth rate was slow, with two tumours beginning to grow 60 days after cell 
injection. 

 

4.3.1.2 C33A tumour model 
 

Growth curves for C33A tumours propagated as a pilot study following 

subcutaneous injection of 5 x106 cells are shown in Figure 4-4. Initial tumour 

growth from injection was slow but followed the expected exponential growth 

behaviour once tumours reached ~ 50 mm3, typically around 30 days after cell 

injection. Intertumour variation of growth within this model was minimal, with one 

animal having discernably slower tumour growth.  

 

In a subsequent DCE-US imaging study, C33A tumour growth was considerably 

slower than that observed in the initial (pilot) study, as shown in Figure 4-4. In 

this cohort, only one tumour exhibited a similar growth pattern to those in the pilot 

study, with no tumour development in 2 of 5 mice and slower growth seen in the 

remaining two tumours.  
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Figure 4-4 : Growth curves of C33A tumours propagated following subcutaneous 
injection 5 x106 cells from the pilot study (blue, n = 6) and a following imaging study (red, 
n=5). Each line represents the progression of a tumour, measured using callipers. 
Tumours in the pilot study showed exponential growth within 30 days of injection with 
minimal variation between animals. The imaging study had a lower tumour uptake rate 
and slower growth.  

 

4.3.2 Radioresponse of in vivo tumour models 

4.3.2.1 C33A tumour model  
 
C33A tumours reached the target treatment volume of 150 mm3 within a median 

of 30 days, with an interquartile range (IQR) of 7 days. The number of days to 

reach the target treatment volume for all irradiated C33A tumours is shown in 

Figure 4-6 . Untreated C33A tumours typically approached the Home Office 

licence size limits 8 to 18 days after reaching the target treatment volume. 

 

Growth curves of C33A tumours obtained following treatment with either 0, 10, 

15, 20 or 25 Gy from radioresponse studies C3, C5, C6, and C7 are shown in 

Figure 4-5.  Out of 7 tumours treated with 10 Gy, only 3 exhibited growth inhibition 

and slowed tumour following irradiation. The other 4 tumours continued to grow 

at a rate similar to pretreatment growth and control tumours. Using higher doses 

of 15 or 20 Gy in study C5 elicited a wider range of response; two tumours treated 

with 15 Gy and one treated with 20 Gy exhibited tumour regression within 5 days 
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of radiation. The remaining tumours (9 out of 12 total) demonstrated tumour 

growth delay of varying degrees. Subsequent regrowth was similar to 

pretreatment growth rates in 3 of the tumours and was considerably slower in the 

rest. Regrowth occurred as early as day 7 and was inhibited as late as day 20. 

As no tumour exhibited complete regression following irradiation with either dose, 

it was decided to increase the radiation dose to 25 Gy in subsequent experiments. 

 

Eighteen C33A tumours were treated with 25 Gy in C6 and C7 studies. Two 

animals were culled due to weight loss before day 10, and hence tumour 

response could not be assessed. All treated tumours exhibited response by day 

5, with tumour regression persisting up until day 13. Following this timepoint, two 

tumours continued to regress until complete regression (no visible tumour 

volume), with another regressing and stabilising at a volume lower than the 

pretreatment volume. All other tumours regrew after an initial growth delay, with 

two tumours growing at rates comparable to pretreatment growth. One animal 

had to be culled due to weight loss at day 35 before reaching the size limit. 

Radiation with 25 Gy led to skin erythema near the tumour in small proportion of 

animals, but all cases healed and required no intervention. 

 

In three mice with irradiated tumours, a separate growth was observed beneath 

the forelimb of the mouse during the regrowth stage of the treated tumour. This 

was histologically confirmed as a secondary tumour mass. No effects on the 

animals’ health were apparent. 
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Figure 4-5: C33A tumour growth following treatment with either 0,10,15,20 or 25 Gy 
irradiation.  The  figure shows the average tumour volume ± standard deviation for each 
radiation dose (top left), and the individual tumour growth curves obtained for each dose. 
A dose of 10 Gy caused tumour growth delay but not regression, while a dose of 15 or 
20 Gy led to tumour regression and later regrowth in some tumours. A dose of 25 Gy led 
to variable response, with complete tumour regression in some tumours as is desired. 
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4.3.2.2 HN5 tumour model 
 
HN5 tumours reached the target treatment volume in a median time of 12 days 

and IQR of 5 days, as shown in Figure 4-6. As expected from previous local 

experience with this model, tumours were prone to ulceration.  Ulceration 

manifested as necrosis at the surface of the tumour, near the skin boundary, 

resulting in skin rupture and tumour collapse in severe cases. Complete tumour 

collapse before reaching the target treatment volume occurred in 3 tumours 

across all studies (3 of 46). Untreated tumours grew up to the licence size limits 

typically between 7 to17 days after reaching the target treatment volume as 

shown in  Figure 4-7.  Two untreated tumours had ulcerations which caused 

regression followed by regrowth, and one suffered severe ulceration after 

reaching the target treatment volume, leading to tumour collapse. 

 

 

HN5 tumours treated with either 20 or 25 Gy exhibited similar 

radioresponsiveness and therefore the doses are discussed jointly. One of the 

24 treated tumours did not respond and continued to grow at the same rate as 

before radiation. All other tumours exhibited response defined as growth 

inhibition or regression by day eight, typically arising by day 5. One animal was 

killed due to weight loss and ulceration at day 7, and another did not recover from 

Figure 4-6: The number of days to reach the treatment volume of 150 mm3 for C33A 
and HN5 tumours from cell inoculation. Each datapoint represents one tumour. 
C33A tumours had slower growth to the treatment volume, demonstrated by 
significantly greater number of days compared to HN5 tumours. 
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anaesthesia during imaging, and therefore their radioresponse could not be 

assessed. Two treated tumours had severe ulceration with tumour collapse and 

the animals were culled.  Nine tumours with regression showed no regrowth for 

at least 40 days after treatment, with complete or near complete regression seen 

in 5 tumours, and regrowth after 70 days in the other two. The other 10 treated 

tumours regrew towards the Home Office licence limits. Ulcerations were 

observed in six of these tumours.  

 
 

 

Figure 4-7 : HN5 tumour growth following treatment with either 0 ,20 or 25 Gy irradiation.  
The figure shows the average tumour volume ± standard deviation for each radiation 
dose (top left), and the individual tumour growth curves obtained for each dose. Doses 
of 20 and 25 Gy caused tumour growth delay or regression in most treated tumours, with 
complete regression observed in some tumours, providing the desired heterogenous 
radioresponse. 
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4.3.3 Characterisation of tumour vasculature 
4.3.3.1 Whole-ROI analysis  
 
The whole-ROI DCE-US metrics for C33A and HN5 tumours are presented in 

Table 4-2, and the TACs are shown in Figure 4-8. Contrast enhancement in C33A 

tumours typically occurred over two phases: an initial phase of quick rise following 

contrast arrival, and a slower increase up to peak enhancement (PE). This pattern 

is evident in Figure 4-9 , where it can be seen that the early rise in contrast-

specific image signal amplitude is driven by enhancement in the tumour periphery 

(Figure 4-9, image acquired at t = 5.0 s), while enhancement of the tumour core 

is slower ( Figure 4-9, images at t = 10.0 s and 16.8 s) and results in a delayed 

whole-ROI wash-in time (WIT). On the other hand, HN5 tumours exhibited 

quicker wash-in with a near constant rate of contrast-signal increase without the 

deceleration as the peak enhancement was approached (Figure 1-8, right), which 

was associated with a more spatially homogenous enhancement in the tumour 

slice at times before the PE, followed by a quick wash-out. This pattern is shown 

in Figure 4-10.  

 

Comparison of the whole-ROI DCE-US metrics revealed several significant 

differences between the two models, as shown in Figure 4-11. C33A tumours had 

significantly lower PE (p = 0.031) and AUC (p = 0.001), longer WIT (p < 0.001) 

and MTT (p = 0.021), compared to HN5 tumours. At the same time, the actual 

volume at treatment was higher for C33A tumours (p = 0.033) 
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Table 4-2 : Whole-ROI DCE-US metrics obtained from C33A (n=17) and HN5 (n=16) 
tumours at the target treatment volume, also presented. Data is shown as mean ±  
standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8 : Time amplitude curves obtained at 10 sample points per second (joined in a 
line for visualisation) from C33A tumours (n=17) (left) and HN5 tumours (n=16) (right) at 
the target treatment volume. Each line represents one animal. The signal amplitude is 
shown relative to baseline amplitude before injection. Time = 0 s corresponds to the time 
of injection. 

Metric C33A HN5 
Peak enhancement 
 PE (a.u.) 

999 ± 192 1140 ± 172 

Area under the curve 
AUC (a.u.) 

2.31 ± 0.27 x 

106   

2.66 ± 0.32 x 106  

Arrival time 

AT (s) 
3.32 ± 0.55 3.68 ± 1.52 

Wash-in time 

WIT (s) 
11.1 ± 9.11 3.05 ± 1.43 

Modified transit time 

MTT (s) 
95.6 ± 37.7 72.7 ± 39.5 

Wash-out time 

WOUT (s) 
265 ± 51.3 254 ± 71.8 

Volume at radiation 
(mm3) 

169 ± 32 148 ± 24 
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Figure 4-9: DCE-US images (contrast mode left and B-mode right) of the central 
slice in a C33A tumour at several time points: t = 0 s corresponds to time of contrast 
injection, t= 2.6 s is contrast arrival (AT), t = 5 s corresponds to the end of the early 
quick wash-in, t = 10 s lies within the slower wash-in  phase. Peak enhancement is 
observed at t = 16.8 s, and t = 98 s is the time of modified transit time. The display 
video data is shown here for better visualisation. The corresponding whole-ROI time 
amplitude curve is shown at the bottom with the data points corresponding to the 
images marked (red cross). 
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Figure 4-10 : DCE-US images (contrast mode left and B-mode right) of the central 
slice in an HN5 tumour at several time points: t = 0 s corresponds to injection,  t= 
2.3 s  is contrast arrival (AT), t = 3 s and t = 4 s are during the early quick wash-in. 
Peak enhancement is observed at t = 5.8 s, and t = 61.3 s is the time of modified 
transit time. The display video data is shown here for better visualisation. The 
corresponding whole-ROI time amplitude curve is shown at the bottom with the 
data points corresponding to the images marked (red cross) 
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Figure 4-11: Comparison of the DCE-US metrics obtained from C33A (n=17) and HN5 
(n=16) tumours using whole-ROI analysis. Each data point represents an individual 
tumour, whilst the top of the bar is the median value for each model.   

 

4.3.3.2 Intratumour heterogeneity 
 
Intratumour vascular heterogeneity was examined through metric maps and 

metric histogram parameters. Metric maps of the C33A model exhibited a 

rim/core perfusion pattern with higher PE and AUC in the rim compared to the 

less enhanced core, as shown in Figure 4-12 and displayed slower contrast agent 

AT in the tumour core compared to the rim. This agreed with the enhancement 

pattern seen in the DCE-US images (Figure 4-9). In contrast, metric maps of HN5 

tumours showed no distinct rim/core pattern and displayed more spatial 

homogeneity of metrics, compared to C33A.  

 

The difference in the spatiotemporal enhancement patterns of the two tumour 

models was quantified by the histogram parameters, which point to higher 
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intratumoural vascular heterogeneity in the C33A model. The SD (p = 0.006 and 

p <0.001), CoV (p = 0.023 and p < 0.001) and mFWHM (p = 0.009 and p <0.001) 

of PE and AUC respectively were significantly higher for C33A tumours. 

Moreover, significantly higher SD (p = 0.002), CoV (p < 0.001) and mFWHM (p < 

0.001) of the AT suggest more heterogeneous blood velocities in C33A tumours. 

Significantly higher SD and mFWHM were also detected in WIT and MTT in C33A 

tumours, but not CoV. Since the whole–ROI metric WIT and MTT were also 

significantly higher in the C33A model, the higher SD and mFWHM are likely 

because of the larger value of the metric rather than its distribution.  Histogram 

parameters for AUC and AT in both tumour models are shown in Figure 4-13 and 

Figure 4-14 . Summary data for all other DCE-US metrics can be found in the 

Appendix A1. 
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Figure 4-12 : Spatial metric maps of the central tumour slice ROI in a C33A (left) and HN5 tumour (right) overlaid on contrast 
mode images. The rim/core perfusion pattern of the C33A tumour is evident, especially in PE and AUC maps, while the HN5 
tumour shows a more spatially homogenous perfusion pattern 
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Figure 4-13: Intratumour heterogeneity of AUC for C33A and HN5 tumours. 
Heterogeneity is characterised using SD, CoV, skewness, kurtosis and mFWHM 
of pixel-wise AUC. C33A tumours had greater intratumour heterogeneity 
demonstrated by the significantly bigger SD, CoV, and mFWHM, and smaller 
kurtosis value. 
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4.3.3.3 Correlation of metrics 
 
Correlations between whole-ROI DCE-US metrics for the two tumour models are 

shown in, Table 4-3, Table 4-4, and Figure 4-15  . PE and AUC were positively 

correlated in both models, with r values of 0.61 and 0.92 for C33A and HN5 

tumours respectively. The 95% CIs of the two correlations overlapped, meaning 

the correlations cannot be considered significantly different from each other. 

Each tumour model revealed correlations that were not found in the other. C33A 

tumours showed a positive correlation of WIT and MTT (r = 0.68), in contrast to 

a non-significant correlation across the HN5 tumours. The MTT was calculated 

from the arrival time, and thus included the wash-in time (and the time required 

for the contrast signal to fall to 65% of PE). A significant correlation could reflect 

Figure 4-14 :Intratumour heterogeneity of AT for C33A and HN5 tumours. 
Heterogeneity is characterised using SD, CoV, skewness, kurtosis and mFWHM of 
pixel-wise AT. C33A tumours had greater intratumour heterogeneity demonstrated 
by the significantly bigger SD, CoV and mFWHM. 
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that the observed slow wash-in, and thus long WIT, of the C33A tumours 

constituted a substantial proportion of the overall MTT. 

 

HN5 tumours showed a showed a positive correlation between amplitude-based 

and time-based metrics (Table 4-4). PE and AUC were correlated to MTT (r = 

0.72 and 0.74 respectively) and WOUT (r = 0.67 and 0.69 respectively), indicating 

that tumours with high enhancement displayed persisting enhancement. MTT 

and WOUT were also positively correlated (r = 0.72). This is expected since they 

are calculated from overlapping intervals of the TAC, and both are related to 

microbubble wash-out from the ROI. 

 
Table 4-3 : Correlation matrix of Whole-ROI TAC metrics in C33A tumours. The Pearson 
correlation coefficient is presented with 95 % CIs. Statistically significant correlations are 
shown in bold 

 

 

 

 

 

 

 AT WIT MTT WOUT AUC 

PE -0.08 

[-0.57,0.38] 

-0.39 

[-

0.72,0.34] 

0.05 

[-0.70,0.61] 

-0.12 

[-0.548,0.43] 

0.62 

[0.36,0.86] 

AT  0.14 

[-

0.29,0.54] 

0.4 

[-0.03,0.73] 

0.18 

[-0.34,0.64] 

0.37 

[-0.22,0.64] 

WIT   0.68 

[0.50,0.92] 

-0.01 

[-0.32,0.56] 

-0.26 

[-0.67,0.44] 

MTT    0.28 

[-0.08,0.718] 

0.22 

[-0.35,0.73] 

WOUT     0.05 

[-0.25,0.37] 
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 Table 4-4 : Correlation of Whole - ROI TAC metrics in HN5 tumours. The Pearson 
correlation coefficient is presented with 95 % CI. Significant correlations are shown in 
bold  

 

 

 

 AT WIT MTT WOUT AUC 

PE 0.061 

[-

0.34,0.30] 

0.12 

[-

0.47,0.51] 

0.72 

[0.51,0.90] 

0.67 

[0.30,0.87] 

0.92 

[0.83,0.98] 

AT  -0.12 

[-

0.43,0.43] 

0.21 

[-0.41,0.69] 

-0.14 

[-0.57,0.41] 

-0.11 

[-0.40,0.07] 

WIT   0.13 

[-0.54,0.67] 

0.18 

[-0.62,0.68] 

0.02 

[-0.62,0.48] 

MTT    0.72  

[0.47,0.92] 

0.74 

[0.30,0.94] 

WOUT     0.68 

[0.37,0.92] 

Figure 4-15: Correlation matrices between DCE -US metrics calculated from the 
whole-ROI TAC, showing the significant correlations in the C33A model (left) and HN5 
model (right). Non-significant correlations are not shown (in grey) 
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The Pearson correlation coefficient of pixel-wise DCE-US metrics was calculated 

in each tumour, and the median correlation value was computed for each tumour 

model, shown in Figure 4-16. This analysis revealed similar correlations to what 

was seen using whole-ROI TAC metrics. All C33A tumours and HN5 tumours 

showed a positive correlation between PE and AUC (median r = 0.84 and 0.66 

respectively). HN5 tumours, however, exhibited a significantly lower correlation 

(p < 0.001). To understand this difference, a scatter plot of PE vs AUC for a C33A 

tumour with strong correlation between the metrics, and a HN5 tumour with a low 

correlation coefficient is shown in Figure 4-17 . The two tumours had a similar 

number of pixels, but the HN5 tumour had a narrower range of PE and AUC 

values. PE was also correlated to MTT (median r = 0.57 and 0.67 for C33A and 

HN5 tumours, respectively) and to WOUT (median r = 0.77 and 0.78 for C33A 

and HN5 tumours, respectively), in agreement with the correlation seen for 

whole-ROI metrics in HN5 tumours.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Likewise, AUC revealed similar correlations as seen in whole-ROI TAC metrics. 

AUC was correlated to MTT (median r = 0.66 and 0.54 for C33A and HN5 models 

respectively) with higher correlations seen in the C33A tumour model (p = 0.037). 

Figure 4-16: Correlation matrices of pixel-wise DCE-US metrics, shown as the median 
correlation coefficient obtained from all tumours in the model. Significant correlations are 
shown for C33A model (left) and HN5 model (right) with non-significant correlations not 
shown (in grey).  
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The correlation of AUC with WOUT was also significantly higher (p < 0.0001) in 

the C33A model (median r = 0.88) compared to the HN5 tumours (median r = 

0.66). Both C33A and HN5 tumour models also showed a correlation between 

time-based metrics MTT and WOUT (median r = 0.67 and 0.80 respectively), with 

lower correlation for the C33A model (p = 0.049). MTT and WIT were weakly 

correlated (median r = 0.29 and 0.27 for C33A and HN5 tumours respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-17: Scatter plot of pixel-wise PE and AUC values for a C33A tumour (blue) 
showing a strong correlation (r =0.90), and a HN5 tumour (orange) with a weaker 
correlation (r = 0.23), suggested to be because of the smaller range of values. 

 

Pixel-wise correlations between DCE-US metrics revealed additional correlations 

that were not apparent using the whole-ROI analysis. These correlations were 

not always present in the two tumour models nor in all tumours of a model and 

were typically weak correlations. C33A and HN5 tumours showed a weak 

negative correlation of AT with PE (median r = - 0.17 and -0.24) and AUC (median 

r = -0.25 and -0.20).  AT and WIT were correlated in C33A tumours (median r = 

0.26). AT was negatively correlated to MTT for HN5 tumours only (median r = -

0.17) and with WOUT in both models (median r = - 0.3 for both). WIT was weakly 

negatively correlated with PE, WOUT and AUC in C33A tumours (median r = -
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0.22, -0.22, & - 0.16 respectively). The correlations of pixel-wise TAC metrics for 

all tumours are shown in Appendix A2. 

 

4.3.3.4 Correspondence of DCE-US imaging with CD31 staining 
 
DCE-US metric maps of three C33A tumours and the corresponding CD31 + 

hematoxylin-stained sections are shown in Figure 4-18 for two treated and one 

control tumour. Examples shown here present the best morphological agreement 

between stained section and the tumour imaging slice (Figure 4-18: ultrasound 

contrast image). At this endpoint, DCE-US showed mainly rim enhancement in 

the tumours, and minimal enhancement in the tumour core ( Figure 4-18: AUC 

map). This corresponded with CD31 staining results; vessels were mainly 

detected in the tumour periphery, while the tumour core showed no CD31 or 

hematoxylin staining ( Figure 4-18: CD31 staining), indicating a non-viable core 

which corresponds to the non-enhanced centre of the tumour.   
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Figure 4-18 : Spatial correspondence of DCE-US imaging and CD31. Shown here are the ultrasound images (first column), AUC maps (second 
column), CD31(brown) + haematoxylin (blue) stained tumour slice (third column) and a zoomed region of high CD31staining (fourth column) for three 
C33A tumours (top: control, middle: 10 Gy, bottom 20 Gy). Regions of high AUC mainly in the tumour rim correspond to viable tumour and regions 
with identified vessels, while the tumour core shows poor AUC enhancement and corresponds to non-viable tumour tissue. 
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4.4 Discussion 

 
The work described in this chapter aimed to identify and characterise in vivo 

tumour models of head and neck and cervical cancer that can be used to evaluate 

DCE-US imaging for radiotherapy response assessment. This involved 

investigation of the tumourigenicity, the radioresponse, and the vascular 

properties of subcutaneously grown xenograft tumour models. 

 

Subcutaneous xenograft tumour models propagated in athymic nude mice are 

practical for studying DCE-US in the context of radiotherapy. Subcutaneous 

tumour engraftment is of mild burden on the mouse’s health, and allows for 

accurate tumour irradiation with minimal side effects [185]. Furthermore, the 

location of tumours on the flank and lack of hair facilitates tumour monitoring and 

ultrasound imaging. Athymic nude mice also have higher radioresistance 

compared to other immunosuppressed strains [186], providing higher 

radioprotection of normal tissue. Nevertheless, the practicality of the 

subcutaneous xenograft tumour model limits its ability to recapitulate the in-situ 

tumour environment. Generally the mouse-derived tumour microenvironment 

differs from the original human tumour microenvironment [187]. For example, the 

vascular network of tumour H&N xenografts was more dense, with a shorter 

distance between tumour cells and the nearest vessel, compared to the original 

tumour [188]. Further, the ectopic model introduces differences in the tumour 

microenvironment compared to orthotopic implantation [170]. A comparison of 

orthotopic and a subcutaneous H&N model showed higher vascular density and 

angiogenic activity in the former [189], which can play a crucial part in the 

tumour’s radioresponse. Despite these differences, tumour xenografts can exhibit 

similar perfusion levels as the original human tumours, and similar response to 

treatment [187].  

 

Moreover, the immunocompromised status of the mouse strain alters the 

radiation-induced immune response, another important component of the 

tumour’s radioresponse [101]. However, in this regard, athymic nude mice are 
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less immunosuppressed than other immunodeficient mice and still retain some 

elements of the immune system that can generate an immune response in the 

tumour. For example, athymic nude mice have active macrophages [190], which 

were reported to  cause a pro-tumour radiation response in another nude mouse 

strain with similar immunodeficiency [191]. On the other hand, an innate anti-

tumour immunogenic response can confound estimations of tumour growth and 

response to treatment. A host reaction against some melanoma xenografts in 

nude mice led to greater radiocurability, indicated by a lower tumor control dose 

50% (TCD50) than what was expected in vitro [192]. This was suggested to be 

related to poorer  tumourigenicity, rather than a radiation-induced response, 

supported by the greater number of cells needed to establish tumours compared 

to irradiated athymic mice with depleted immune function [192]. A host immune 

response was also indicated for in a H&N (FaDu) xenograft model  based on the 

higher number of cells needed to propagate tumours in athymic mice compared 

to whole body irradiated mice [193]. This only rarely led to visible tumour 

regression or growth inhibition but may still confound natural tumour growth. 

Thus, the residual immunity of athymic nude mice is useful for mimicking 

radiation-induced tumour immune response but may also diminish tumorgenicity 

of some xenograft models. 

  

4.4.1 Establishing in vivo tumour models of head & neck and cervical cancer 
4.4.1.1 ME-180 tumour model 
 
The first tumourigenicity study of ME-180 tumours grown in athymic nude showed 

100% tumour uptake, but severe ulceration led to tumour collapse in all tumours. 

Using a lower number of tumour cells did reduce the ulceration rate in a 

subsequent study, with 50% of tumours ulcerating. Adopting this tumour model 

would require a large number of mice to account for ulcerating and subsequent 

culling of mice, which contradicts ethical animal research guidelines. Ulceration-

induced tumour collapse also confounds the evaluation of radiation-induced 

volume changes using calliper measurements to assess radioresponse. The poor 

tumorgenicity observed is in agreement with the report of extensive  tumour 

necrosis caused by an inflammatory response  in ME-180 tumours grown in 

athymic nude mice in the thigh [194], and  ties in with the previously discussed 
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effect of the host’s residual immunity on tumour growth.  Yet, ME-180 tumours 

have been grown in vivo previously at the ICR in athymic nudes by injecting 2.5 

x 106 cells with no reported tumour ulceration [195] . One possible explanation 

for this difference are genetic changes in the mouse colony maintained at the 

ICR.  

 

The volumes of ME-180 tumours in the high and low cell number studies were 

calculated using different equations because of difficulty in measuring tumour 

depth in the low cell number study. This was, however, unlikely to affect the 

comparison of tumour growth between the two cohorts. The tumour volume was 

calculated using both equations for the high cell number study and showed 

similar trends in tumour growth, with tumour collapse confirmed using both 

equations. 

 

4.4.1.2 C33A tumour model 
 
The initial tumourigenicity study of C33A tumours showed excellent tumour 

uptake (100%) and uniform growth within the study cohort. However, the tumour 

uptake and growth were considerably lower in the imaging study. The lower 

tumourigenicity may be explained by the difference in animal age at the time of 

cell injection, with 7 to 8 weeks old mice in the pilot study and 10 weeks old in the 

imaging investigation. Older athymic mice have a greater number of active T-cells 

[196] and NK cells [197], which can reduce the tumour uptake rate and delay the 

onset of growth [197]. C33A tumours from all remaining cohorts showed good 

agreement with the C1 pilot study.  A few animals exhibited metastatic tumour 

growth in lymph nodes near the tumour underneath the arm, which was confirmed 

at the time of animal termination. This is in agreement with the reported 

metastasis of subcutaneous C33A tumours, where C33A tumours were found in 

lymph nodes close to the primary tumour in 16 out of 22 animals and coincided 

with enlarging of lymph nodes [198].   

 

Based on the pilot study, the growth characteristics of C33A tumours were 

considered suitable and encouraged further investigation of the model’s 

radioresponse to determine the optimal radiation dose. A range of doses from 10 
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to 25 Gy was examined. There was variation in intertumour response for each 

dose, with tumours regrowing at varying rates. However, only radiation with 25 

Gy led to complete response defined as complete or near complete regression 

with no regrowth in 3 out of 18 tumours (17%), with the other treated tumours 

showing heterogeneous responses. Thus, 25 Gy was considered the optimal 

radiation dose. The radiation dose could have been increased to the maximum 

set out by the Home Office project licence limit of 30 Gy, but this was expected 

to increase the radiation-induced skin irritation, which was already apparent with 

25 Gy, and lead to overtreatment (> 30 Gy) in a tumour subvolume. 

 

Interestingly, the C33A cell line was reported to be the most radiosensitive 

cervical cancer cell line in vitro [179-182]. In vitro radiosensitivity of the C33A cell 

line has been characterised using clonogenic assays, which showed a surviving 

fraction of 0.1 at 4 Gy [180],  surviving fraction at 2 Gy (SF2) values  of 0.5 [181] 

and 0.34 [182] and radiation dose of 0.9 Gy for survival fraction of 0.37 (D37 

value) [183], and using the MTS viability assay [179] which showed a viability of 

30% at 4 Gy. But the tumour model displayed radioresistance in vivo, which may 

be explained by the poor perfusion of the tumour assessed using DCE-US, as 

discussed below.  

 

4.4.1.3 HN5 tumour model 
 

Local experience with the in vivo tumour growth and radioresponse of HN5 

xenografts made it a practical model to use, with no need for tumourigenicity or 

radioresponse studies before beginning DCE-US imaging studies. HN5 tumours 

had consistent tumour growth properties between studies and was similar to 

growth reported by others [174]. Ulceration was observed in 15 of 46 tumours. 

This was expected and was an improvement on the ulceration rate seen 

previously at the ICR of ~60% [174]. Severe ulceration cases, requiring animal 

termination or leading to complete tumour collapse, occurred in 7 tumours out of 

46 across all studies. While not desirable, this was a tolerable rate. It is important 

to note that ulceration can occur in response to radiation [199], but in this model 

ulceration seemed as likely in irradiated and untreated tumours. Instead, the 

probability of ulceration seemed to be related to the depth of the tumour. 
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Superficial tumours growing within the skin layer were more prone to ulceration, 

than tumours located deeper, as tumours outgrew the skin’s ability to stretch, 

leading to skin rupture [200, 201].  

 

The radiosensitivity of HN5 cell line has been characterised in vitro and in vivo. 

Clonogenic assays showed a surviving fraction at 2 Gy (SF2) of 0.53 [174] , ~ 0.6  

[175] or around 0.75 [202]. In vivo, intramuscular HN5 tumours in male nude mice 

treated with 5 x 5 Gy fractions exhibited minimal tumour regression and regrew 

at a slower rate than control tumours at around day 20 [202]. Treatment of 

subcutaneous HN5 tumours with a single fraction of 20 Gy at the ICR resulted in 

growth inhibition within 1 week, and a 86 % survival rate 60 days after radiation 

[174].  

 

HN5 tumours were irradiated with 20 and 25 Gy in this work. This was based on 

the radioresponse seen with 20 Gy which led to tumour regression with no 

regrowth in only 1 tumour out of 7 [174]. Increasing the dose to 25 Gy aimed to 

increase the proportion of tumours with complete response. Complete or near 

complete regression was achieved in 8 of 24 treated tumours (~ 33 %). No 

discernible difference could be made between the two radiation doses. HN5 

tumours were more radioresponsive in vivo compared to C33A tumours, despite 

HN5 cells being more radioresistant in vitro  [174, 176, 202]. Higher in vivo 

radiosensitivity of HN5 tumours than  what is expected in vitro has been 

previously reported [176], and could be explained by the better perfusion of HN5 

tumours prior to radiation as assessed by DCE-US. 

 

4.4.2 Characterisation of tumour vasculature 

 
The functional vasculature in the C33A and HN5 tumour models was examined 

prior to radiotherapy using DCE-US imaging. The aim of the analysis was to 

understand the tumour vascular structure and function, and to highlight features 

of importance for overall radioresponse. A number of studies have shown that 

the presence of perfused tumour vasculature,  indicative of normoxia, is 

correlated with a positive radiotherapy outcome [70, 71, 73], while other studies 

have observed that good tumour perfusion can be  a result of high angiogenic 
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activity, and thus reflect an aggressive hypoxic tumour phenotype with  poor 

response [74, 75]. A detailed review of this literature is presented in section1.3.1. 

The discussion here only aims to describe the perfusion characteristics of the two 

models without discussing the individual tumour response. Single central slice 

whole-ROI TAC metrics were used to assess the overall perfusion of the tumour, 

while spatial metric maps and histogram analysis for that slice were used to 

characterise the intratumour vascular heterogeneity. Both analyses assume that 

characteristics measured for the central slice are representative of those for the 

whole tumour. The relationship between this 2D analysis and a full 3D approach 

is explored in chapter 7. 

 

4.4.2.1 C33A tumour model 
 

DCE-US imaging revealed heterogeneous perfusion in C33A tumours, 

characterised by a rim/core perfusion pattern, a phenotype frequently seen in 

subcutaneously propagated tumour models [131, 134, 203], in which the core of 

the tumour is less perfused than its rim. This perfusion pattern was captured by 

the whole-ROI TAC and the metric maps. The slow contrast wash-in within the 

tumour core compared to the rim produced a biphasic wash-in pattern in the 

whole-ROI TAC, leading to long WIT and low PE.  PE, AUC and AT pixel-wise 

metric maps further demonstrated the rim/core perfusion pattern, which led to 

large standard deviation and coefficient of variation for these metrics.  

 

Based on the literature discussed above, the slower wash-in and lower 

enhancement in the tumour core compared to the rim may suggest that it contains 

less vessels, or smaller and collapsed vessels. Reduced blood flow within the 

core can also be due to an increased flow resistance because of the presence of 

abnormal tumour vasculature [102], coupled with highly permeable vessels 

creating elevated interstitial fluid pressure [63].  Furthermore, the longer wash-in 

time and MTT may also be a consequence of disorganised vasculature. [204] 

looked at the kinetics of a tracer agent in simulated vascular structures of different 

organisation. The transit time was defined as the time for tracer to travel from 

entry point to the terminal vessels of a model and is equivalent to WIT here. The 

transit time of a kidney model, an example of an organised vascular structure, 
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was quicker than that in a tumour model with a chaotic vascular network, despite 

models having a similar vascular volume and flow rate. The disorganised tumour 

model also has a wider distribution of transit times  [204] , an observation similar 

to the large intratumoural heterogeneity of AT calculated from pixel-wise TACs 

seen here. The wider distribution of transit times in chaotic vascular networks was 

reported in another study [205] and was strongly correlated to the shape 

parameter of  disruption-replenishment TACs fitted to the  lognormal model. The 

shape parameter describes the steepness of the TAC between the initial signal 

increase after disruption and the signal plateau at steady state condition; a small 

shape parameter is obtained from a steeper curve.  More chaotic vascular 

networks had larger shape parameter [205]. This result indicates that the vascular 

organisation in a ROI can be inferred from the whole-ROI TAC curve. An 

analogous argument can be made for bolus TAC based on the results presented 

here: the whole-ROI TACs  for C33A tumours showed gradual signal increase 

between initial contrast arrival and maximum enhancement (Figure 4-8 , Figure 

4-9), which is associated with disorganised flow within the tumour core, and a 

wide distribution of blood flow speeds demonstrated as large intratumoural 

heterogeneity of AT calculated from pixel-wise TACs (Figure 4-14). 

 

Poor or disorganised perfusion within the tumour core inhibits sufficient oxygen 

delivery, which can lead to hypoxia. The presence of this perfusion pattern in 

C33A tumours, as inferred by DCE-US imaging before treatment, can explain the 

in vivo radioresistance of the model, despite the high in vitro radiosensitivity 

reported in the literature. 

 

4.4.2.2 HN5 tumour model  
 
DCE-US imaging of HN5 tumours revealed good perfusion. HN5 tumours showed 

more homogeneous perfusion compared to C33A tumours. This was reflected in 

the whole-ROI TAC, which exhibited quicker wash-in up to PE, followed by quick 

wash-out (Figure 4-8). Concurrently, histogram analysis of pixel-wise metric 

maps revealed lower intratumour heterogeneity. The homogeneity in amplitude 

metrics and time-based metrics may indicate that microvessels in HN5 tumours 

are of similar sizes and functionality throughout the tumour. 
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The good perfusion of this tumour model agrees with the low levels of hypoxia 

seen at similar tumour volumes using pimonidazole staining [174]. Moreover, it 

can explain the enhanced radioresponse of the model compared to C33A 

tumours, despite the HN5 cell line being described as radioresistant in vitro [174, 

202] and its HPV negative status.  

 

4.4.2.3 Correlation of DCE-US metrics  
 
Correlation analysis using whole-ROI and pixel-wise TAC metrics revealed 

several key correlations for several metrics. PE and AUC were positively 

correlated in both tumour models using the two analysis methods. This was 

presumed since both metrics can be considered surrogates of blood volume. HN5 

tumours had a lower correlation coefficient between pixel-wise PE and AUC 

compared to C33A tumours, which might be the result of the smaller range of PE 

and AUC values within HN5 tumours ( Figure 4-17). A smaller range of values 

may make the effect of noise on metric estimation more pronounced and hide 

any correlation.  

 

Interestingly, PE and AUC, showed a moderate positive correlation with time-

based metrics MTT and WOUT.  This was present in HN5 tumours for both 

analyses (Figure 4-15) while it could only be detected using pixel-wise TAC 

metrics in the C33A tumours (Figure 4-16). One reason for the lack of correlation 

in whole-ROI metrics is that the long WIT in C33A tumours means that it makes 

up a substantial proportion of the MTT and may obscure the effect of 

microbubbles wash-out from the ROI on the MTT. This explanation is supported 

by the fact that WIT and MTT were positively correlated in C33A tumours (r = 

0.68). The weaker correlation of pixel-wise WIT and MTT in C33A and HN5 

tumours compared to the whole-ROI metrics correlation in the C33A model may 

be due to uncertainty in the metric calculation in the pixel-wise TAC compared to 

whole-ROI TAC as a result of greater noise. 

 

The positive correlations between PE or AUC with MTT and WOUT means that 

regions of high contrast enhancement (high PE / AUC) have slower contrast 
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wash-out (long MTT / WOUT). These regions are hypothesised to be regions with 

large vascular volumes offering low flow resistance that would thus continue to 

be enhanced as the concentration of circulating microbubbles decreases. 

Numerical modelling of microbubble flow through different vascular volumes 

reported an increase in the mean transit time with increasing vascular volume, 

noting the longer path that the microbubbles have to travel to leave the region of 

interest [206]. However, this was a simplistic model and did not account for the 

tortuous vessels that are expected in the tumour. For future analysis, it is 

important to remember that changes in MTT and WOUT could be indicative of 

changes in the PE and AUC, and thus vascular volume.  

 

Moreover, AT and WIT calculated from pixel-wise TACs showed a positive 

correlation in the C33A model. This was somewhat expected and can be 

understood by examining the flow of microbubbles in pixels at tumour centre. For 

a pixel within the tumour centre, AT is dictated by the flow of microbubbles from 

the injection site through the tumour to the site of the pixel, which was 

demonstrated to be substantially prolonged compared to the tumour periphery 

due to slower flow in the centre and the longer distance required to travel. WIT is 

the time from arrival of contrast agent in the pixel to the time of maximum of 

enhancement and depends on flow rate within the pixel. Since the pixel volume 

is small, blood flow within the pixel (affecting WIT) would not be expected to vary 

substantially from the input blood flow to the pixel (affecting AT), and thus the 

metrics would be correlated. 

 

In contrast to the late time-based metrics, a negative correlation of AT and WIT 

was established with PE and AUC. While the correlation was weak, it is sensible; 

low blood flow rate (defined as blood volume per time) within a region will lead to 

long AT and WIT and small PE and AUC values. This relationship was reported 

in a microvessel phantom using contrast power doppler imaging [207] , where the 

flow rate was negatively correlated to arrival time (named onset time in the study) 

and wash-in time, and positively correlated with AUC and PE. 
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4.4.2.4 Biological validation of DCE-US imaging  
 
Biological validation of DCE-US was sought by comparing endpoint imaging with 

CD31 and haematoxylin staining of vessels. Tumours at the endpoint were poorly 

vascularised as indicated by the lack of contrast enhancement and CD31 staining 

in most of the tumour core. The observed spatial correspondence of these 

regions in AUC metrics and staining sections ( Figure 4-18 )  supports the 

biological validation of DCE-US imaging. Moreover, tumour regions with no 

contrast enhancement had no viable tissue as evident by haematoxylin staining. 

Tumour cell death in these regions could have been caused by the lack of 

vascular supply, which may happen due to tumour growth or radiation damage.  

 

4.5 Limitations  

The poor tumour growth of the ME-180 model precluded its use, therefore only 

the C33A tumour model was used as a proxy for cervical cancer. C33A is HPV-

negative, making it quite distinct from the typical presentation of cervical cancer 

clinically and other cervical cell lines such as SiHa, CaSki, and HeLa. Exploring 

and optimizing another model that had not been previously used at the ICR would 

have been time intensive and was not possible within the scope of this project. 

Similarly, the HN5 model suffers ulceration, and an exploration of an alternative 

head and neck tumour model with a lower degree of ulceration would be 

appropriate. However, the local expertise and knowledge about this model, 

particularly in the context of radiotherapy treatment, meant it was the most 

practical model to use. 

 

The initial radiation of 10 Gy used in the C3 study was only carried out at a volume 

of 200 mm3 versus 150 mm3 for later radiation doses. The radioresponse with 10 

Gy at the smaller treatment volume was not tested, and it is possible that the 

difference in tumour volume may have contributed to the minimal radiation 

response seen at 10 Gy. However, radiation with larger doses of 15 and 20 Gy 

was still not sufficient to produce the desired radioresponse and therefore it is 

unlikely that 10 Gy would have had a suitable response at the smaller treatment 

volume.  
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It is possible that the comparison of DCE-US metrics before treatment for HN5 

and C33A tumour models was confounded by the significant difference in their 

treatment volumes at this point. C33A tumours had larger volumes, which may 

have contributed to the poorer perfusion seen in the model. The difference was 

probably caused by the lack of experience with measuring tumour volumes in the 

initial C5 study.  However, the difference in mean volume between HN5 and C33A 

cohorts of  20 mm3 was small,  and is unlikely to  significantly affect the vascular 

properties of the tumours as it has been reported that the ratio of vascular volume 

to viable tumour tissue within this volume range is almost constant [169]. More 

importantly, the difference in DCE-US metrics between the models was seen in 

later imaging studies (Chapter 7) where the mean volume of the C33A and HN5 

cohorts were not significantly different.  It should be noted that the difference in 

volume at radiation was also unlikely to be the reason for the difference in 

radioresponse as C33A tumours displayed a greater level of radioresistance in 

all studies conducted as part of this thesis.  

 

The characterisation of tumour vasculature was performed using 2D DCE-US, 

which was the only DCE-US imaging technique was available at the time. 2D 

imaging may not be reflective of the vascularisation of the whole tumour volume 

as it only sampled a central slice of the tumour.  Further work using 3D DCE-US 

will assess vascular properties of the whole tumour volume.  

 

DCE-US analysis of the vascular properties discussed here requires further 

histopathological validation prior to treatment. As the purpose of the experiments 

carried out during the thesis was to assess radioresponse based on eventual 

tumour growth, histopathological analysis carried out after tumours reached the 

project licence limits was prioritised. Validation of DCE-US was limited by the 

poor vascularisation status of the tumours at this timepoint, which did not allow 

quantification of the vascular density or comparison of metric maps with vascular 

morphology. Further, histopathology could not be successfully carried out for 

HN5 tumours in this study, which tended to collapse and release fluid when 

attempts were made to section them.  
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4.6 Conclusion 

 
The work described here characterised two models of cervical and head and neck 

cancer that can be employed in subsequent studies. The growth and radiation 

response patterns were characterised for C33A and HN5 tumours. HN5 tumours 

showed better radioresponse. The perfusion status of the models was assessed 

using DCE-US imaging prior to treatment and revealed greater perfusion in the 

HN5 tumours with smaller intratumour heterogeneity. Correlations between DCE-

US metrics were identified, the most important of which is the correlation of PE 

and AUC with MTT and WOUT. Finally, the spatial correspondence of AUC metric 

maps and the CD31 stained tumour sections confirms that DCE-US is measuring 

the underlying tumour vasculature. 
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5 CHAPTER  Preliminary investigation 
of DCE-US for assessment of 
response to radiotherapy 

 
5.1 Introduction 

Radiation – induced vascular changes occur within a shortly period after 

treatment as reviewed in section 1.3.2. Several methods and imaging modalities 

have been used to measure these changes, but the ability of detecting such 

changes using DCE-US remains to be explored. In addition, the correlation of 

vascular changes and radioresponse needs confirmation. The two characterised 

models of head and neck (H&N) and cervical cancer can be used to examine 

DCE-US imaging for the assessment of radiotherapy response. The established 

heterogeneous intertumour radioresponse allows comparison of DCE-US 

measured vascular changes with radioresponse. Further, validation of DCE-US 

as an imaging biomarker of response requires assessment of its precision. Thus, 

this chapter presents a preliminary investigation of DCE-US imaging for the 

assessment of response to radiotherapy. 

 

5.2 Study Aim & Design 

The aims of the work described in this chapter were to investigate (1) the potential 

for pretreatment DCE-metrics to predict tumour response to radiation, (2) post-

treatment changes in DCE-metrics that would allow early (within 48 hours of 

treatment) prediction of response and how this relates to changes in tumour size 

(the current clinical measure of response), and (3) the repeatability of the 

measurement of 2D DCE-US metrics.  Specifically, the analysis examined 

differences in the pretreatment DCE-US metrics between groups of tumours that 

had partial or complete response to treatment and differences in the changes in 

DCE-US metrics between groups measured in a region of interest covering the 

whole tumour (whole-ROI), and in spatially and functionally defined subregions 

of the tumour before and after treatment (sub-ROIs). Changes in the distribution 
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of pixel-based metrics (histogram analysis) were also investigated.  The 

repeatability of these metrics was assessed at the final imaging timepoint. All 

these experiments were done early during the period of the PhD before the 3D 

DCE-US methods had been developed. 

 

5.3 Methods 

This investigation into the DCE-US metrics and their relationship to treatment 

response was carried out using both the C33A and HN5 tumour models using 

data from studies C5 and H1 (see Table 4-1). Irradiation was performed at a 

tumour volume of 150 mm3 and 2D DCE-US imaging was carried out shortly 

before irradiation and 48 hours afterwards. Pretreatment DCE-US was carried 

out 24 hours before irradiation for C33A tumours, and around 3 to 6 hours before 

irradiation for HN5 tumours. The change in the pretreatment imaging timepoint 

was made to reduce the likelihood of tumour growth between imaging and 

radiation, as discussed in 3.2.1 

 

Tumour response was evaluated based on tumour volume following radiation. 

Repeatability of 2D DCE-US was assessed by carrying out two DCE-US image 

acquisitions at the study endpoint. The study timeline is shown in Figure 5-1 .The 

evaluation of repeatability presented here also used data from studies C2, C3 

and C4 (Table 4-1), for which repeat imaging was also performed at the study 

endpoint.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-1 : Timeline of studies. For HN5 tumours the, pre-radiation timepoint was done 
on the same day once animals recovered from the anaesthetics used for DCE-US 
imaging. 
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5.3.1 Experimental setup 

5.3.1.1 2D DCE-US imaging  

 

Animals were anaesthetised using HypnormTM/HypnovelTM. Cannulation and 

imaging setup was as described in section 3.2.2 and 2D DCE-US imaging was 

carried out using the Aplio scanner as described in section 3.2.4. 

 

5.3.1.2 Repeat 2D DCE-US  

 
2D DCE-US image acquisitions were performed to calculate the variation of DCE-

US at endpoint imaging. Only two acquisitions were possible based on the 

allowed volume for intravenous injection within 24 hours. Both acquisitions were 

carried out as for the other two timepoints (pre-treatment and 48 hours post 

treatment). Following the first acquisition, saline was injected to flush remaining 

microbubbles in the cannula. In addition, the tumour was exposed to ultrasound 

with a high MI of 1.24 to destroy residual microbubbles. The transducer was 

translated manually to cover the whole tumour volume. The two contrast 

injections were separated by 15 to 20 minutes and used microbubbles from the 

same vial.  

 

5.3.1.3 Irradiation of mouse xenograft tumours  

 
Single fraction radiation was delivered as detailed in 3.4. C33A tumours (C5) 

were irradiated with 15 or 20 Gy, while HN5 tumours (H1) received a dose of 20 

or 25 Gy. 

 

5.3.2 DCE-US analysis for assessment of radioresponse 

DCE-US images from the first two imaging timepoints were analysed using 

whole-ROI analysis (section 3.3.1.1), metric maps (section 3.3.1.2) subregion 

analysis (section 3.3.1.3), and histogram characterisation (section 3.3.1.4). The 

change in metrics between the timepoints was calculated as shown in equation 

3–1. Differences in DCE-US metrics pre–radiation and the change in the metrics 

were compared between response groups using the Mann–Whitney U test. 
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Significance of the change in metrics between the timepoints for each tumour 

were assessed using the Wilcoxon signed rank test.  

 

5.3.3 Repeatability of DCE–US imaging analysis  

5.3.3.1 Variation of whole–ROI metrics 

 
The variation in whole–ROI metrics between repeat injections was calculated as: 

 

																										𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛$(%) = 	
$!	%	$#

'.)	×	($!	,	$#)
	× 	100	%																				𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5 − 1	                   

																				 

 

where 𝑀"		𝑎𝑛𝑑		𝑀# represent the metrics calculated from the second and first 

injection, respectively. The absolute variation was also calculated to evaluate the 

magnitude of variation without regard to the sign of the variation.  

 

5.3.3.2 Variation of whole–ROI metrics due to noise 

 
TACs are affected by noise inherent in ultrasound images and introduced through 

tissue motion, which can contribute to the metric variation. Fitted mathematical 

models can remove the noise and are hypothesised to improve repeatability of 

metrics. To assess this, the whole-ROI TACs generated from the raw data were 

fitted to two mathematical models of perfusion, the Gamma and the Arditi models 

which were previously developed by the ultrasound team [155]. The relative 

quality of the fit was assessed using the adjusted coefficient of determination (R2) 

value and the root mean square error (RMSE). The model with the superior fitting 

was used to calculate whole–ROI DCE-US metrics for the two injections and the 

variation was calculated as for the raw data TACs. 

 

There was also an opportunity to reduce TAC noise using the Savitzky-Golay 

filter which removes TAC noise by fitting segments of the TAC to a polynomial 

model [208]. This analysis was carried out in a subset of tumours (n = 10) by 

Zhiting Xu, a visiting Master’s student, using dedicated software [208] with a 

graphical interface shown in Figure 5-2. The software also performed motion 
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compensation on the data, using the skin boundary in the B-mode images. Due 

to software compatibility issues, only the displayed video data could be used, 

hence the Savitzky-Golay filter was applied to video data TAC. The metrics and 

the variation from the filtered and experimental video TACs were compared. The 

metrics calculated by the software were PE, AUC, AT, WIT, and MTT.  

 
 

5.3.3.3 Variation of whole-ROI metrics TACs due to ROI delineation 

 
The variation in whole–ROI metrics due to ROI drawing was calculated by 

comparing metrics from two ROI delineations for one acquisition done in a subset 

of tumours (n = 7).  Next, the variation in whole–ROI metrics between two repeat 

acquisitions, analysed using the same or different ROIs, was compared.  

 

5.3.3.4 Variation of histogram analysis  

 
Histograms were generated from metric maps of each acquisition as detailed in 

section 3.3.1.4 and the histogram shape parameters were estimated. The 

variation in histogram parameters was calculated using equation 5-1, except for 

Figure 5-2: Screenshot of the software used for Savitzky-Golay filtering. The tumour 
ROI is outlined in green on the contrast image (left image). The white ROI in the B-
mode image (right image) was used to perform motion estimation. The experimental 
and filtered (the line with smoother appearance) TACs are shown in the panel on the 
right side, with the parameters calculated below. 
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skewness. This is because the skewness can change sign, making the numerator 

large and the denominator small and leading to artificially high variation. The 

variation in skewness was calculated as the difference in skewness between the 

two injections divided by the absolute value of skewness of the first injection. 

 

5.3.3.5 Spatial repeatability of DCE-US 

 
The repeatability of the spatial pattern of perfusion was evaluated using metric 

maps. To ensure spatial correspondence, metric maps obtained from the two 

acquisitions were spatially registered. Spatial registration was determined using 

the normalised cross correlation of raw data contrast images before contrast 

injection and was then applied to the metric maps.  The similarity of metrics maps 

was assessed using pixels that were encompassed in both ROIs and were 

perfused in both acquisitions (as detailed in section 3.3.1.2). The similarity of the 

metric maps was assessed using the cross-correlation coefficient. 

 

5.4  Results 

5.4.1  Characterisation of radiation response 

5.4.1.1  HN5 tumour model 

 
Sixteen animals of 18 animals that were inoculated from the H1 study developed 

tumours that grew to the desired treatment volume of 150 mm3. Ten animals were 

treated and 6 were controls and the tumour growth curves are shown in Figure 

5-3. Based on tumour growth post treatment, 4 animals were classified as 

complete responders. These were tumours that regressed and remained at a 

tumour volume below the treatment volume for at least 80 days after radiation 

and showed no signs of regrowth at the time of animal sacrifice. Three animals, 

2 control tumours and 1 treated, had be culled within 14 days of radiation due to 

weight loss or other distress signs. The treated tumour was classed as a partial 

responder as it did not show the degree of volume regression seen in complete 

responders. Two more mice, with 1 treated and 1 control tumour, were culled 

before license size limits, as the tumours were impeding the animal’s movement.  

The treated tumour was also classed as partial responder. Three tumours 
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regressed with the onset of ulceration, and two were culled due to the severity of 

the ulceration. As this regression occurred later than volume regression seen in 

complete responders, it was not considered indicative of response and the 

tumours were classed as partial responders.  A summary of the response groups 

is provided in Table 5-1.Table 5-1: Numbers of HN5 tumours that showed 

complete or partial response at each radiation dose. 

 

 
Table 5-1: Numbers of HN5 tumours that showed complete or partial response at each 
radiation dose. 

 
 
 
 
 

5.4.1.2 C33A tumour model 

 
All mice in the C5 study developed tumours that grew to the treatment target 

volume.  Twelve tumours were irradiated and 6 served as controls, with the 

growth curves shown in Figure 5-4. Tumours tended to grow quicker in one 

Radiation Dose (Gy) Complete response Partial response 
20 3 2 
25 1 3 

Figure 5-3: HN5 tumour growth measured using callipers. Radiation treatment 
was carried out at day = 0 when tumours were approximately 150 mm3. Individual 
tumours are grouped according to radiation dose (left) or response (right).  
Complete responders are tumours that showed no regrowth for at least 80 days 
after radiation 
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dimension, which did not allow substantial volume increase before animals had 

to be culled due to Home Office licence size limits. While none of the tumours 

showed complete response as defined above, responses groups were defined 

based on the tumour model’s behaviour. Complete response was defined as a 

sustained slowed tumour growth or regression for 20 days after irradiation. All 

other treated tumours were defined as partial responders. The response groups 

are summarised in Table 5-2. 

 

 
 
 
 
 
 
 

 
 

 

 

 

 
 
 

 

 

 

Table 5-2: Numbers of C33A tumours that showed a complete or partial response at 
each radiation dose. 

 
 
 
 
 
 

5.4.2 Association of radioresponse with pretreatment DCE-US metrics 

For the HN5 cancer model, complete responders had a shorter wash-in time 

(WIT) than partial and control tumours before treatment. This was true for whole–

Radiation Dose (Gy)  Full response Partial response 
15  5 1 
20  2 4 

Figure 5-4: C33A tumour growth measured using callipers. Radiation treatment was 
carried out at day = 0 when tumours were approximately 150 mm3.  Individual tumours 
are grouped according to radiation dose (left) and response (right). 
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ROI WIT, percentile, and subregion analysis as shown in Figure 5-5. Whole–ROI 

WIT was lower in the complete response group (median WIT of 2.2 s) than in the 

partial response (median WIT of 2.9 s , p = 0.016) and control groups (median 

WIT of 3.0 s , p = 0.010). Sub-ROIs of high WIT, defined through subregion 

analysis, also had significantly shorter WIT in complete responders compared to 

partial responders or control tumours for the 10% (p = 0.048, 0.019 respectively), 

20% (p = 0.019, 0.010), 40% (p = 0.038, 0.010) and 50% sub-ROIs (p = 0.019, 

0.010). Moreover, percentile analysis of the WIT also showed significant 

differences, with smaller WIT for complete responders compared to partial 

responders or control tumours for the 15th and 20th percentiles (p = 0.010 for 

both percentiles). When compared to control tumours, this was also true for the 

5th and 10th percentiles (p = 0.010). 

  

There was no significant difference in the whole-ROI wash-in time for all treated 

tumours (partial and complete responders combined) compared with control 

tumours (p = 0.14) before treatment, confirming that there was no selection bias 

between treated and control tumours. However, a significant difference was 

identified when 5th (p =0.026), 10th (p = 0.026) and 15th (p = 0.036) percentiles 

were analysed. No other pretreatment DCE-US metric was significantly different 

between response groups and there were no differences in the histogram 

parameters. 

 

For the C33A cancer model, there were no pretreatment differences in any of 

DCE-US metrics between response groups, obtained using whole–ROI, 

subregion or percentile analysis. Nor was there any difference in the histogram 

parameters of DCE-US metrics. 
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5.4.3 Association of radioresponse with changes in DCE-US metrics  

5.4.3.1 HN5 tumour model 

 

The change in whole–ROI DCE-US metrics from pre- to post-treatment for HN5 

tumours is shown in Figure 5-6.  Two tumours were excluded from the WOUT 

analysis as the imaging duration was not long enough to capture amplitude 

decrease to 30 %, while contrast wash – in was not saved in WIT in two tumours, 

and the WIT and AT were excluded. Only the change in AUC was significantly 

different between the response groups and control tumours. Partial responders 

had a significantly smaller decrease in AUC compared to complete responders 

(p = 0.038) and control tumours (p = 0.002). Both complete responders and 

controls had a decrease in AUC with no significant difference between the two 

groups, whereas partial responders exhibited no significant change relative to the 

pretreatment value. 

 

Figure 5-5: WIT before treatment for the HN5 cancer model showing significantly lower 
wash-in time in complete responders compared to partial responders and controls 
using whole ROI WIT (left), WIT of the 5th - to 20th percentiles (middle) and the WIT 
from subregion analysis (right). There were significant differences between complete 
responders and control tumours for all percentiles investigated.  
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It was not possible to test the changes in a metric from pre- to post-treatment for 

the complete response group separately due to its small sample number (n = 4).  

No significant changes were identified in the partial response group. However, 

when the partial and complete responder groups were analysed together, a 

significant decrease in PE (p = 0.006), MTT and WOUT (p = 0.037), and AUC (p 

= 0.010) following radiation was detected. Tumours in the control group also 

showed a significant decrease in PE and AUC (p = 0.031 for both).  

 

 
 
 
 
 
 

Metrics obtained from functional sub-ROIs defined using PE, AUC, MTT and 

WOUT reflected the same changes in AUC seen in the whole-ROI analysis. 

Referring to Figure 5-7, sub–ROIs comprised of pixels with the highest WOUT at 

40% and 50% thresholds showed a significantly bigger decrease in AUC of 

complete responders compared to partial responders (p = 0.038 and p = 0.019, 

respectively). Control and partial responders showed significant differences for 

the 20% (p = 0.026), 40% (p = 0.0043) and 50% sub–ROIs (p = 0.015). MTT 

defined sub-ROIs at all levels showed significant differences between tumour 

groups. Complete and partial responders had significant differences at 40% and 

50% sub-ROIs (p = 0.010 for both) while control tumours and partial responders 

Figure 5-6: Percent change in DCE-US metrics between pre-treatment and 48 hours 
post radiation in the HN5 tumour model using whole-ROI analysis. Significant 
differences in the change in AUC were observed between complete and partial 
responders, and partial responders and control tumours.  
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were significantly different for the 20% (p = 0.026), 40% (p = 0.002) and 50% 

sub-ROIs (p = 0.004). The 40% and 50% sub–ROIs defined from PE also 

revealed a significant difference between complete responders and partial 

responders (p = 0.019 for both), while a significant difference between partial and 

control tumours was detected for all PE sub-ROIs (p= 0.026 for 10%, 20% and 

50% sub-ROIs and p = 0.015 for 40% sub-ROI). For AUC defined sub-ROIs, 

complete and partial responders only had a significant difference for the biggest 

sub-ROI at 50% (p = 0.019) while partial responders and control tumours were 

different for 50% (p = 0.002), 40% (p =0.002), and 20% (p = 0.026) sub–ROIs. 

Spatial sub–ROI analysis, where the sub–ROI in the post–treatment images was 

generated from the translation of the pretreatment sub–ROI did not show any 

significant differences between groups.  

 

 

Figure 5-7: Subregion analysis of HN5 tumours. Sub-ROIs defined using PE, AUC, 
MTT, or WOUT detected significant differences in the change of AUC between 
complete and partial responders, as well as between partial responders and control 
tumours. 
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Histogram analysis of HN5 tumours revealed an increase in intratumour 

heterogeneity of PE, AUC, AT and WOUT posttreatment. This was observed in 

all groups, and no significant differences were detected between the different 

groups. When all groups were analysed together, PE, SD and CoV, skewness 

and mFWHM increased significantly (p =0.006, 0.002, 0.002 and 0.010, 

respectively) while the kurtosis decreased (p = 0.004), indicating increased 

heterogeneity. Similarly, the SD, CoV, and mFWHM of AUC increased (p = 0.004, 

0.004, 0.019). The CoV (p = 0.002) and skewness (p = 0.004) of WOUT increased 

significantly. Finally, the mFWHM of AT increased (p = 0.002). Changes in the 

histogram parameters are represented in Appendix A3 

 

5.4.3.2 C33A tumour model 

 
Imaging data was acquired for 16 C33A tumours. The imaging data for two 

tumours during wash-in appeared corrupted upon data transfer from the scanner, 

preventing the estimation of all metrics, and these tumours were excluded. 

Another tumour was excluded from the AT and WIT analysis because of missing 

data.  

 

 The change in whole–ROI DCE-US metrics pre- and post-treatment is shown in 

Figure 5-8. The change in WOUT was significantly different between partial and 

complete responders (p = 0.016), with complete responders exhibiting a 

decrease in WOUT following radiotherapy, whereas WOUT increased in partial 

responders, which was also significantly different from the decrease in WOUT in 

control tumours (p = 0.009). No other whole–ROI metrics showed a significant 

difference between any of the groups. The change in AUC in partial responders 

compared to control tumours approached significance (p = 0.052). Combining 

treated tumours, as was done for HN5 tumours complete and partial responders, 

also did not reveal any trends. 
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Figure 5-8:. Percent change in DCE-US metrics between pre-treatment and 48 hours 
post radiation in the C33A tumour model using whole-ROI analysis. Significant 
differences in the change in WOUT were observed between complete and partial 
responders, and partial responders and control tumours. 

 
As demonstrated in Figure 5-9, subregion analysis similarly revealed signifcant 

differences in the change of DCE-US metrics according to response. As seen in 

whole-ROI WOUT, functional sub–ROIs defined from all metrics showed an 

increase in WOUT in partial responders compared to a decrease in  complete 

responders and control tumours. The most significant difference between 

complete and partial responders was obtained using the 50% AT sub–ROI (p = 

0.008). Additionally, significant decreases in MTT and AUC in complete 

responders compared to partial responders were identified in sub–ROIs defined 

from PE, MTT, WOUT and AUC. The most significant difference for MTT and 

AUC were detected in the  40% and 50% WOUT sub-ROIs (p = 0.016 for both).  

 

DCE-US metrics from spatial sub-ROIs similarly revealed a significant decrease 

in WOUT and AUC in complete responders and control tumours compared to 

partial responders.  Again, the largest significant difference in the change of  

WOUT  was caluculated from 40% and 50% AT sub–ROIs (p = 0.008) while the 

difference in AUC was most significant using the 40% MTT sub ROI (p = 0.016), 

as shown in Figure 5-9.  
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Analysis of the histograms of DCE-US metrics also revealed differences between 

groups. Complete responders showed an increase in the skewness of WOUT 

distribution, that was significantly different to partial responders (p = 0.029) which 

showed a decrease in skewness. Partial responders also showed a decrease in 

the kurtosis of WOUT which was significantly different to the increase seen in 

control tumours (p = 0.032). The magnitude of the change however was small for 

both groups. An example of how the WOUT histogram skewness changes with 

treatment in complete and partial responders is shown in Figure 5-10. The 

change in the WOUT skewness and kurtosis for response groups is shown in 

Figure 5-11.  
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Figure 5-9: Subregion analysis of C33A tumours. The change in MTT (left), WOUT (middle) and AUC (right) with the greatest significance 
are shown for functional (top) and spatial subregion analysis (bottom).  
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Figure 5-10: Representative WOUT metric maps in C33A tumours pre- and post-treatment. The top row shows a complete 
responder demonstrating a decrease in WOUT and increase in histogram skewness, while the partial responder (bottom) 
showed an increase in WOUT following radiation and the distribution became more negatively skewed.  
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5.4.4 Tumour volume changes following treatment  

To examine whether the detected change in DCE–US metrics preceded changes 

in tumour volume which could be used to stratify response, early tumour volume 

changes were compared between response groups. The change in tumour 

volume   2, 4 and 6 days after treatment was calculated as the difference in the 

volume at those timepoints and the volume at treatment, divided by the latter. In 

the HN5 model, complete responders showed a significantly bigger decrease in 

tumour volume compared to partial responders (p = 0.038) on day 2, as shown 

in Figure 5-12 - left. The difference was not apparent on days 4 and 6, when some 

tumours in the partial response group started to regress. 

 

The change in the tumour volume of C33A tumours shortly after radiation is 

shown in Figure 5-12 - right. A significant difference in the decrease in tumour 

volume of complete and partial responders is present at day 6 (p = 0.002). The 

decrease in tumour volume of complete responders was also significantly 

different than control tumours at day 4 (p = 0.022) and day 6 (p = 0.008). 

 

 
 
 

Figure 5-11: Change in WOUT histogram parameters in C33A tumours, showing a 
significant difference in change in skewness of complete and partial responders, and 
kurtosis between partial and control tumours. 
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5.4.5 Repeatability of 2D DCE–US  

Repeat contrast agent injections were performed in 24 mice at endpoint imaging. 

This included C33A tumours (n = 18 compiled from C2, C3, C4 and C5 studies) 

and HN5 tumours (n = 6 from H1 study). Separate analysis of C33A or HN5 

tumours did not reveal any differences in the variation according to tumour model, 

thus the results presented here combine tumour models. The mean tumour 

volume at the point of imaging was 322 mm3 with an interquartile range of 226 – 

408 mm3, as some animals had large tumours approaching the size limit, while 

others were not yet at the size limit but were impeding the animal’s movement 

due to growth near the leg.  

 

5.4.5.1 Variation of whole–ROI DCE-US metrics  

 
The absolute and signed variation, defined as the difference divided by the mean 

expressed as a percentage, of DCE-US metrics obtained from whole–ROI 

analysis for two repeat acquisitions is shown in Figure 5-13 and Table 5-3. 

Figure 5-12: Tumour volume changes shortly following irradiation in HN5 (left) and 
C33A (right) models. The bar represents the median change for each response 
group. In the HN5 model, differences in the tumour volume change between 
complete and partial responders are present at day 2, while they are only detected 
at day 6 for the C33A model. 
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Evaluation of the mean absolute variation indicates the magnitude of the mean 

discrepancy between the two injections irrespective of the sign, whereas the 

mean signed variation indicates if there was a systematic difference between the 

two injections. The mean absolute variation for all metrics was lower than 35 %.  

AUC had the lowest variation of 7.9 % while WIT had the highest variation at 33 

%. PE and AT significantly decreased (p = 0.041, 0.019) while WIT and MTT 

increased (p = 0.0003, 0.004) between the first and second injection. 

 

 
Figure 5-13: Absolute (left) and signed variation (right), defined as the difference 
divided by the mean of the two acquisitions, expressed as a percentage, for DCE-US 
metrics calculated using whole-ROI analysis. The horizontal line is the median 
variation, the box indicates the interquartile range, and the whiskers correspond to 
the minimum and maximum variations, each data point represents the variation 
measured in one tumour. The signed variation plot distinguishes HN5 tumours (red) 
and C33A tumours (blue). PE and AT decreased at the second acquisition, while WIT 
and MTT increased. 
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5.4.5.2 Variation improvement using model fitting and TAC filtering 

 
The quality of fit metrics of the Arditi and Gamma models are shown in Table 5-3, 

demonstrating better fitting with the Arditi model as indicated by the greater R2 

value and lower root mean squared error (RMSE). In addition, the Gamma model 

failed to fit one TAC. The variation of whole–ROI DCE-US metrics derived from 

the Arditi model, and the raw TAC is shown in Figure 5-14. There were no 

significant differences in the variation of any metrics between the two methods. 

 
Table 5-3: Mean coefficient of determination (R2) and root mean squared error (RMSE) 
of fit metrics ± standard deviation of perfusion models for raw data TACs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5-3: Mean absolute and signed variation [interquartile range] of DCE-US 
metrics obtained from whole-ROI analysis from two acquisitions obtained with 
the same set-up. 

METRIC Abs variation (%) Signed variation (%) 
PE 15 [5.0 23] -6.5 [-18 -1.3] 
AT 17 [7.7 22] -6.9 [-21 -0.59] 

WIT 33 [11 48] 27 [3.1 48] 
MTT 27[ 13 36] 21 [2.6 36] 

WOUT 21 [3.6 38] 12[2.6 36] 
AUC 7.9 [1.5 11] 3.1 [-1.8 5.8] 

MODEL ARDITI GAMMA 

R2 0.992 ± 0.004 0.977 ±0.014 

RMSE 24.3 ± 4.52 45.2 ±12.2 
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Moreover, Bland-Altman plots were used to compare the two attempted-repeat 

values of whole–ROI metrics derived from the two methods, looking for bias. All 

metrics had a significant bias, indicated by a mean difference and 95% 

confidence interval (CI 95 %) not overlapping with zero, shown in Figure 5-15. 

AT had the smallest bias as a percentage of the metric value. Note the difference 

in the WIT increases as the mean WIT increases. This indicates inaccurate fitting 

of the model for TACs with longer wash-in and an example, for one of the long 

wash-in times, is given in Figure 5-16. 

 

 

 

 

 

 

 

 

 

 

Figure 5-14: Absolute variation of DCE-US metrics derived from the raw data TAC 
and the Arditi model. There were no significant differences between the variation in 
the metrics calculated directly from the TAC or when using the Arditi model.   
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Figure 5-15: Bland Altman plots of metrics calculated from the raw data TAC or fitted 
to the Arditi model. The difference is calculated as metric from raw TAC -metric from 
Arditi fit. Each data points represents a comparison from one injection (2 per tumour).  
The mean difference is represented with a solid line, the 95% CI of the mean 
difference with long dash lines, and short and long dash line is the limit of agreement. 
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Figure 5-16: Arditi model fitted to the TAC curve of a C33A tumour, showing poor fitting 
for the wash-in part of the TAC close to the peak.  

 
The variation of metrics calculated from video data TACs analysed with Savitzky-

Golay filter and without filtering is shown in Figure 5-17.   Filtering decreased the 

variation in MTT (median variation 9.1 % vs 22 %, p = 0.027) while it increased 

the variation in AUC (median variation of 32 % vs 23 %, p = 0. 014). 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Figure 5-17: Variation of whole-ROI metrics from experimental video TACs (black, 
circles) and Savitzky-Golay filtered TACs (grey, square). Each data point 
represents one animal. 



 140 

Bland-Altman plots, shown in Figure 5-18, revealed a significant bias for all 

metrics, with Savitzky-Golay filtering. In fact, although WIT variation no longer 

demonstrated a value dependent bias, PE, MTT and AUC were found to have a 

proportional bias that had not existed in the analysis with metrics derived from 

the best fit Arditi model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.4.5.3 Variation of whole–ROI DCE-US metrics due to ROI delineation 

 
The variation between whole–ROI metrics calculated from one DCE-US 

acquisition using two differently drawn ROIs (each regarded as a reasonable 

Figure 5-18: Bland Altman plot of metrics derived using the Savitzky-Golay (S-G) 
filter and video data TACs. The difference is calculated as video TAC metric - S-
G metric. Each data points represents comparison from one injection (2 per 
tumour).  The mean difference is represented with a solid line, the CI % 95 with 
long dash lines, and short and long dash lines are the limits of agreement. 
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delineation of the tumour cross-sectional ROI) is shown in Figure 5-19 . The mean 

variation in all metrics was lower than 3 %. One repeat ROI delineated showed a 

large variation in the WOUT of 16 %. The WOUT maps generated over the areas 

covered by the two ROIs are shown in Figure 5-20 . The variation in the WOUT 

was likely due to a long WOUT near the tumour boundary, which was included in 

one ROI and not the other. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-19: Absolute variation of TAC metrics of the same injection analysed with 
different ROIs. Each data point represents one tumour. 

Figure 5-20: WOUT maps analysed with two ROIs drawn on the same image 
independently. The whole–ROI WOUT had a variation of 16 %, which can be 
seen to have been because of pixels at the tumour edge with high WOUT, which 
were included in one ROI (right) but not the other (left). 
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Next, the variation in whole–ROI metrics from two injections analysed using the 

same or different ROIs was compared and is shown in Figure 5-21. Only AUC 

was significantly different between the two methods, with smaller variation when 

drawing ROI independently for each injection (p = 0.047). However, the mean 

variation is 6 % for same-ROI vs 5.4 % for different-ROI analysis, indicating only 

a small difference.  

 

 

5.4.5.4 Variation of intratumour heterogeneity  

 
The absolute and signed variation in the all-histogram parameters except 

skewness are shown in Figure 5-22 and Table 5-4. In some tumours, the variation 

in skewness between two injections was greater than 300%. This was seen in 

histograms with skewness close to zero (small denominator), leading to a 

perceived large variation. Therefore, the estimation of variation in skewness was 

deemed unreliable. The variation in skewness is shown in the Appendix A4 with 

an example of a large variation calculated despite minimal change in the 

histogram. Kurtosis showed the greatest variation in all metrics. AUC histogram 

Figure 5-21: Absolute variation of whole-ROI metrics from 2 repeat injections 
analysed using the same ROI (grey bar) or with ROIs drawn independently (white 
bar).  
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parameters had the smallest variation while WIT had the largest variation, which 

was in agreement with the whole–ROI analysis. A significant change in histogram 

parameters of AT, WIT and MTT between injections was identified, indicating a 

change in the distribution of the metric. AT had a significant increase in the SD, 

CoV and mFWHM (p= 0.004, 0.001, 0.001 respectively). WIT had a significant 

increase in SD and mFWHM (p = 0.004, 0.0008). These changes agree with the 

observed increase in whole–ROI WIT. Meanwhile, MTT had a decrease in CoV 

and kurtosis (p = 0.006, 0.040). A representative example of these changes is 

shown in Figure 5-23. 

 

 
Table 5-4: Absolute median variation [interquartile range] (%) of histogram parameters 
for DCE-US metrics. Significant changes between the two injections are shown in bold. 

METRIC SD COV SKEWENESS KUR MFWHM 

PE -2.17 
[-10.1 3.46] 

4.14 
[-7.56 12.3] 

20.2 
[-5.00 31.4] 

1.75 
[-7.57 13.9] 

3.59 
[-10.2 5.02] 

AT 30.6 
[6.39 50.4] 

37.5 
[19.1 60.9] 

-40.6 
[-194 85.0] 

-11.0 
[-62.1 22.8] 

30.2 
[7.83 51.1] 

WIT 20.9 
[0.26 39.2] 

-4.14 
[-12.3 11.1] 

-2.58 
[-26.4 25.0] 

-1.89 
[-39.2 23.1] 

22.9 
[13.9 50.8] 

MTT -0.34 
[-20.2 14.0] 

-7.59 
[-16.9 -2.84] 

-24.1 
[-92.5 12.2] 

-22.7 
[-49.4 14.0] 

4.87 
[-17.3 26.9] 

WOUT 2.13 
[-3.49 17.3] 

-4.5 
[-13.1 3.43] 

-44.7 
[-100.0 14.8] 

-13.2 
[-30.7 -0.29] 

4.33 
[-3.54 27.5] 

AUC 1.26 
[-5.29 10.9] 

2.44 
[-8.46 13.7] 

23.4 
[ -13.8 157] 

0.32 
[-13.9 25.4] 

0.67 
[-5.93 13.9] 
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Figure 5-22 : Absolute and signed variation in histogram parameters of DCE - US metrics obtained from two 
acquisitions. 
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5.4.5.5 Spatial repeatability of DCE-US metric maps 

 

The spatial correlation of metric maps obtained from two DCE-US acquisitions is 

shown in Figure 5-24.   Similar to the whole-ROI and histogram analysis, 

amplitude-based metrics had a greater correlation coefficient than time metrics, 

indicating better spatial repeatability. Again, WIT had the lowest average 

correlation of all metrics. Example metric maps of PE, for the best and worst 

correlation (which would be a better correlation that even the best of WIT) are 

shown in Figure 5-25 . 

Figure 5-23: A representative example of histogram distributions of AT, WIT and 
MTT for two repeat DCE-US acquisitions. AT has increased heterogeneity, as 
measured by CoV, SD and mFWHM, for the second injection compared to the first. 
WIT had increased SD and mFWHM. MTT tended to have decreased CoV and 
kurtosis for the second injection compared to the first. 
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Figure 5-24: Correlation coefficient of metric maps obtained from two DCE-US 
acquisitions. Each point represents one tumour. 

Figure 5-25: Spatial correlation of repeat injections.  The top row shows PE maps of 
a tumour with a high correlation coefficient (0.96) and the bottom row shows a 
different tumour with a low correlation coefficient (0.54). The greater correlation 
obtained in the top maps is demonstrated by the similarity of the spatial pattern, 
while there are discernible differences in the centre of the bottom maps leading to 
the lower correlation. 
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5.5 Discussion 

5.5.1  Radioresponse of cervical and head and neck tumour models  

The H1 study used radiation doses of 20 and 25 Gy, which both produced partial 

and complete responses, as desired. Response was defined as tumour 

regression to below the treatment volume that was sustained for more than 80 

days (Figure 5-3). For the C33A tumour model (C5 study), none of the tumours 

achieved complete response, according to this definition (Figure 5-4). C33A 

tumours were classified as partial and complete responders using the same 

criteria as the HN5 tumours but using a shorter period (20 days) for clarity, i.e., 

to avoid confusion between the relative responsive within tumour models. The 

implications of having no complete responders in the C33A study are discussed 

below.  

 

5.5.2  Association of radioresponse with pretreatment DCE-US metrics  

Pre-treatment perfusion was assessed using DCE-US metrics of the whole–ROI, 

sub-ROIs (defined using pixels with highest TAC metric values), and analysis of 

histogram percentiles (5th to 20th). The analysis aimed to uncover the 

association of radioresponse with tumour perfusion assessed prior to 

radiotherapy. Both poor and good tumour perfusion have been found to predict 

tumour control following radiotherapy (see section 1.3.1). In the HN5 tumour 

model, complete responders had shorter WIT (or quicker wash–in), compared to 

partial responders and control tumours, which was evident with all three analysis 

methods (Figure 5-5). Inspection of tumour enhancement pattern was discussed 

in chapter 4, where it was observed that the quick wash-in HN5 tumours was 

related to a spatially homogenous enhancement pattern. Tumour regions with 

longer wash-in had lower PE. Therefore, shorter WIT can be indicative of quick 

blood flow. The negative correlation between the WIT and flow rate has been 

confirmed in a microvessel phantom [207]. HN5 tumours with quicker blood flow, 

indicated by short WIT, are expected to be well- perfused and are hypothesised 

to suffer less hypoxia and thus be more radiosensitive. This finding is in 

agreement with the clinical studies of head and neck cancer demonstrating a 

correlation of high blood flow prior to treatment with favourable outcome , 
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assessed using perfusion CT [77] and DCE-MRI [78]. Furthermore, WIT 

calculated for sub–ROIs and histogram analysis revealed stronger significance 

than that observed for whole–ROI analysis, confirming the importance of 

investigating intratumour perfusion heterogeneity.  

 

Moreover, it should be noted that WIT can be a measure of tumour volume. 

Microbubbles travel longer distances to reach the centre of larger tumours with 

larger cross sections, increasing the WIT. While there were no significant 

differences in the tumour volume between HN5 response groups at treatment, 

the significant result of WIT may be a combined measure of tumour volume and 

blood flow, making it a more sensitive metric than PE or AUC which do not 

depend on the tumour volume. 

 

Conversely, no DCE-US metrics, including WIT, were significantly different 

according to response in the C33A model. C33A tumours did not achieve 

complete tumour regression like HN5 tumours, and hence there was not as a 

distinct discrimination between response groups. Further, there was larger 

intertumour heterogeneity in WIT metric in C33A cohort (mean WIT of 10.4 s ± 

standard deviation of 8.0 s) compared to the HN5 cohort (mean WIT 3.1 s  ± 

standard deviation of 1.1 s). The wider distribution of WIT values, with greater 

overlap between response groups, would decrease the predictive power of the 

metric 

 

5.5.3 Association of radioresponse with changes in DCE-US metrics 

The change in tumour vasculature after radiation was evaluated using DCE-US 

imaging. Whole-ROI analysis provides DCE-US metrics representing the average 

perfusion of the imaged tumour slice. Subregion analysis can capture vascular 

changes that occur within subregions of the tumour and may not be evident in 

the whole–ROI metrics. Histogram analysis based on metric maps allows 

investigation of intratumour vascular spatial heterogeneity.     

 

HN5 tumours showed a decrease in whole–ROI PE and AUC, 48 hours post 

treatment, regardless of whether tumours were treated. Additionally, a decrease 
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in MTT and WOUT for treated tumours was observed. This was accompanied by 

an increase in the heterogeneity of the metrics apparent from the increase in SD, 

CoV and mFWHM histogram parameters. The decrease in PE reflects a 

decrease in the vascular volume and the decrease in AUC reflects a decrease in 

vascular volume/and or blood flow within the tumour, which may be caused by 

different mechanisms for the different groups. Control tumours growing at a faster 

rate than can be supported by the vascularisation rate will become less perfused 

at their core, while the tumour rim may still be perfused by surrounding normal 

vasculature. The result of this growth behaviour is a decrease in the overall 

tumour vascular volume per unit tumour volume averaged across the whole-ROI, 

and an increase in intratumour perfusion heterogeneity. Whereas, treated 

tumours may have suffered vascular damage, also leading to a decrease in 

vascular volume per unit tumour volume. The decrease in MTT and WOUT in all 

tumours could be explained similarly, as these metrics are correlated with PE and 

are thereby correlated to vascular volume.  

 

Although all tumours showed a decrease in AUC, the decrease was significantly 

greater in complete responders and control tumours compared to partial 

responders (Figure 5-6). A decrease in vascular volume was expected based on 

the literature discussed earlier of vascular damage. While vascular damage has 

not been directly assessed in HN5 tumours, HIF-1 signal, visualised using PET 

imaging, in HN5 tumours increased 6 days after radiation with 8 Gy indicating 

more hypoxia [87]. An increase in HIF-1 signal 2 days after radiation was 

concurrent with a decrease in ultrasound Doppler signal in another tumour model, 

and hence reduced vascular volume, supporting the presence of vascular 

damage. Assessment of vascular changes using functional sub-ROIs revealed 

the same decrease in AUC in complete responders. There was no difference in 

the p-values of the results to suggest either method was more sensitive. 

 
C33A complete responders displayed a decrease in whole–ROI WOUT following 

radiation, compared to an increase in partial responders (Figure 5-8). A similar 

decrease was also observed in control tumours, which can be justified as 

discussed above for control HN5 tumours. It is hypothesised that vascular 

damage occurs predominately in small vessels with long wash out that influence 
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overall WOUT but have too small a vascular volume to impact whole–ROI AUC 

or PE. This is supported by additional findings of the model; using functional sub–

ROIs, the change in WOUT could be detected with higher significance from sub–

ROIs with the largest AT (Figure 5-9). As discussed in Chapter 4, C33A tumours 

showed slow wash–in and low PE within the tumour core, implying the presence 

of micro-vessels. Moreover, the increase in WOUT skewness in complete 

responders (Figure 5-11) demonstrates a heterogenous radiation-induced 

vascular response within the tumour, with selective elimination of pixels with slow 

wash-out, rather than a uniform decrease in wash-out across the imaged tumour 

slice. 

 

Furthermore, the literature reports  selective radiation–induced disruption of  

vessels with poor flow dynamics [102] or small immature vessels with no pericyte 

bounding [104]. Microvessels with smaller diameters (5 – 15 µm) suffered more 

damage than larger vessels at radiation doses of up to 15 Gy, but with larger 

doses of 20 Gy, larger vessels (up to 35 µm) were also damaged [105]. As C33A 

tumours were irradiated with both doses, there might still be a preferential 

radiation response in smaller vessels. 

 

The results of both cancer models indicate correlation of vessel disruption in 

tumours with better radioresponse. The concomitant decrease in WOUT and 

AUC are in alignment since these metrics are correlated, as discussed in Chapter 

4. However, there are several differences between the two tumour models which 

may influence their vascular radiation response. Firstly, HN5 and C33A tumours 

had  significant differences in their perfusion metrics at the pre-radiation 

timepoint, as presented in Chapter 4, which can affect the vascular response to 

radiation [209]. For example, the greater intratumour vascular heterogeneity of 

C33A tumours pre-radiation may explain why the tumour model exhibited 

significant changes in heterogeneity that were not observed in HN5 tumours. 

Secondly, some HN5 tumours displayed a complete response with tumour 

regression and no evidence of regrowth, while this was not the case for the C33A 

model, meaning that their radioresponse is not comparable.  
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Spatial sub–ROI analysis was unable to capture significant differences seen in 

whole–ROI analysis or functional sub–ROI analysis. This may point to a spatial 

mismatch of spatial sub–ROIs between the two imaging timepoints which can be 

a result of poor reproducibility of transducer position relative to the centre of the 

tumour.  

5.5.4 Repeatability of 2D DCE-US imaging 

 
Analysis of whole-ROI TAC metrics revealed that the greatest repeatability was 

observed in a metric based on vascular volume, AUC (Figure 5-13). The good 

repeatability of AUC allows more precise estimation of changes induced by 

radiotherapy and therefore, potentially, a more accurate assessment of response 

using AUC compared to using other metrics. This may help understand the 

results for the HN5 model presented in this chapter that found significant 

differences in the AUC but not in the PE, i.e., changes in PE may not have been 

detectable due to the greater variation associated with its measurement. This 

result in is in agreement with a study of repeatability in melanoma xenograft 

mouse model  imaged with SonoVue® contrast agent and the Aplio scanner [210] 

which reported AUC as the most reliable parameter with a coefficient variation of 

15.79 % calculated from three injections . The study concluded that AUC is 

suitable for assessing antiangiogenic treatment based on the level of change in 

tumour perfusion associated with treatment reported elsewhere and the variation 

estimated in their study. However, they also reported similar repeatability of WIT. 

This may be because they calculated metrics using a fitted model that removes 

TAC noise. The study also did not report a significant systematic change in the 

WIT between injections, which was observed here and would increase the 

variation. The variation of DCE-US metrics observed in the current study is in 

agreement with that reported of less than 34 % for all metrics in a murine colon 

cancer model [57]. 

 

The good repeatability of AUC compared to PE may be because PE is dependent 

on the initial concentration of microbubbles, while AUC represents the total 

volume of microbubbles seen in the TAC, at different concentrations, which are 

influenced by the size and structure of vessels, and blood flow. Changes in the 
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initial concentration of microbubbles, which can occur because of variability in 

injection, may therefore have a larger influence on PE. The effect of the injection 

rate on PE has been shown previously [211, 212],  with a decrease of 55% 

observed when the time for a manual injection was increased from 2 s to 10 s in 

an epidermoid carcinoma xenograft [54]. Variation in the injection time in the 

currenty study is expected between repeat injections. 

 

Metrics that were solely based on temporal characteristics of the TAC showed 

greater variation compared to PE and AUC, indicating lower precision in 

measuring blood flow. One source of the measured variation in time-based 

metrics is the systematic change in the metrics at the second injection, at which 

AT decreased and WIT and MTT increased (Figure 5-13). As discussed in 

Chapter 4, AT measured from the whole–ROI is largely dominated by blood flow 

of the mouse body circulation, while WIT measures blood flow within the tumour. 

A decrease in AT in the second injection means that blood flow was quicker from 

the injection site to the tumour boundary, and the increase in WIT suggests that 

blood flow within the tumour was slower than for the first injection. The increase 

in MTT is likely caused by the increased WIT, given that no change was observed 

in WOUT.  The increase in WIT and MTT reported here contrasts with an 

observed decrease in the time to peak and MTT in the fourth injection in a colon 

cancer mouse model  performed under gaseous anaesthesia [213]. 

 

The variation in DCE-US time metrics could be a result of a change in 

physiological functions of the mouse, such as the heart rate. CEUS imaging of 

the duodenum in healthy dogs showed a negative correlation between the heart 

rate and time to peak, equivalent to the sum of WIT and AT [214], which was 

suggested to explain the higher interday variation in WIT compared to the 

relatively low variation in AUC and PE. The authors also report that calculating 

the time to peak from the arrival time (i.e., WIT in the current study), rather than 

from the time of injection, improved the repeatability of the measurement by 

minimizing its dependence on the systemic blood flow properties.  However, the 

authors reported smaller intraday variation of WIT (coefficient of variation of 2.27 

%) compared to that found in this study. The difference may be species-

dependent, with small animals, such as mice, being more sensitive to 
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anaesthesia-induced changes than dogs. In nude mice, a decrease in the time to 

peak in an epidermoid carcinoma model coincided with an increase in heart rate 

[215]. The heart rate was not measured in the current study, but it is possible that 

it increased at the time of second injection. HypnormTM/HypnovelTM anaesthetics 

have been shown to  increase heart rate in rats [216]. The temporal profile of 

these changes during animal imaging is unknown. In another study, an increase 

in heart rate was suggested to be due to an increased volume load from the saline 

and microbubbles injection [215]. An increased heart rate can lead to a decrease 

in AT. 

 

There was a systematic difference in PE between injections, with an overall 

decrease in PE for the second injection compared to the first. This difference was 

only marginally significant (p = 0.049), but this finding contradicts reports of 

increased PE and AUC following repeat injections. PE and AUC was reported to 

increase continually over four injections, separated by 15 mins with no high MI 

disruption in between, using SonoVue® contrast agent in a colon tumour mouse 

model [213]. In contrast, the PE and AUC calculated in the renal cortex did not 

increase, indicating that this effect may be caused by changes specific to the 

tumour microvasculature. Others [215] have demonstrated a small non–

significant increase in PE for the second injection (using B–mode imaging) in an 

epidermoid carcinoma tumour model in nude mice. This effect coincided with a 

measured increased heart rate, which was hypothesised to increase the 

microbubble concentration, and a decrease in liver PE which may indicate 

saturation of microbubble uptake by Kupffer cells, leaving more freely circulating 

microbubbles. Saturation of Kupffer cells was speculated in the study because of 

the high microbubble concentration used, approximately x 3 times the typically 

used concentration, which was needed for B-mode imaging and may therefore 

not be relevant in the studies reported herein. Different results have also been 

reported across species. In heathy cats [217], the PE and AUC of SonoVue in 

renal cortex, medulla and spleen increased for the second injection of SonoVue, 

which was suggested to be due to reduced filtering by pulmonary macrophages, 

or possible interaction of microbubbles with the vasculature leading to 

vasodilation and greater vessel filling. 
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A clinical investigation reported an increase in AUC by a factor 3.5 for the second 

injection in the aorta and the liver with SonoVue [218]. It was suggested that this 

was due to pulmonary macrophages being saturated by microbubbles from the 

first injection and thus having diminished filtering capacity at the second injection. 

A similar effect may be present in immunosuppressed athymic mice, but this 

requires confirmation. 

 

An interaction between insonified microbubbles and microvasculature has not 

been confirmed in any study assessing imaging repeatability but rupture of 

capillaries in mouse muscle and intestine has been reported with Optison™ 

doses close to the human clinical dose and an MI of 0.4 [219]. Capillary rupture 

was evident from the increased haemorrhaging and dye extravasation. If a similar 

effect was present in this study, disrupted capillaries would be expected to have 

slower blood flow due to leakage, which can explain observed increase in WIT 

and decrease in PE. MI is an acoustic field parameter (spatial peak, temporal 

peak negative pressure divided by the square root of frequency, derated by an 

assumed attenuation coefficient and depth to the spatial peak) that is indicative 

of the likelihood of acoustic cavitation and is displayed on the screens of 

diagnostic imaging systems. Increased likelihood of cavitation may be regarded, 

for microbubbles, as increased amplitude of oscillation of the microbubbles. For 

a fixed frequency, depth, etc. (transducer and focus settings), MI is used as a 

display-screen surrogate for acoustic pressure, and hence capillary disruption 

due to microbubble activity is more likely to occur when a high MI is applied 

between injections to destroy residual microbubbles.  

 

In addition to biological factors influencing TACs,  breathing motion may be an 

additional source of signal variation [152], leading to the appearance of noise in 

the TAC and  variation in metric quantification. Here, the effect on noise on 

whole–ROI-derived metrics was investigated by reducing or removing noise, 

using one of two approaches: fitting TACs to the Arditi model or filtering with the 

Savitzky-Golay filter. The metrics determined using these methods were 

significantly different from those of the experimental TACs, as demonstrated by 

Bland-Altman plots ( Figure 5-15, Figure 5-18), and the variation was reduced 

only using Savitzky-Golay filtering for MTT (Figure 5-17). These results do not 
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support the use of either Arditi model or filtering and imply TAC noise is not a 

major source for variability for whole-ROI metrics.  

 

The effect of ROI delineation on the variation was revealed to be minimal (Figure 

5-19). Yet, in one case, different ROI delineations had a variation greater than 

10%. In this case, the tumour was enhanced only at the periphery (Figure 5-20), 

making the whole–ROI metrics more affected by changes in the delineation of 

the ROI at the tumour boundary.  In general, this demonstrates the ROI 

delineation is robust, but care must be taken in identifying the tumour boundary, 

which can be done by inspecting the enhancement pattern using video data. 

Analysing repeat injections using the same ROI did not improve the repeatability 

and in fact increased the variation of AUC marginally (Figure 5-21). Therefore, 

independent delineation of repeat injections is valid and desirable, and would 

compensate for shifts in the position of the tumour due to respiration and probe 

repositioning after high MI scanning. 

 

Variation in the histograms of metric maps reflected similar changes to those 

observed for ROI analysis (Figure 5-22). PE and AUC remained the most 

repeatable metrics, while the WIT was the least repeatable. Skewness and 

kurtosis had the highest variations of the histogram parameters. The large 

variation of kurtosis may be because it is calculated from the metric raised to the 

fourth power of the metric value, making it more sensitive to changes in the 

distribution. It was not possible to reliably assess the repeatability of histogram 

skewness due to artificially high variation when the skewness was close to zero, 

causing outliers in PE, AUC, AT and WOUT calculation. This suggests that the 

calculation of changes in the skewness may be unreliable if the histogram is 

initially not skewed, and care must be taken interpreting the results. 

 

As with whole–ROI, the change in the histogram distribution of AT and WIT was 

directional, showing an increase in SD and mFWHM in the second injection. The 

observed increase in the CoV of AT implies that there is increased intratumour 

heterogeneity in AT. This is hypothesized to be because of opposing effects on 

AT in different regions of the tumour. As discussed in Chapter 4, AT for pixels 

near the tumour periphery is mostly dependent on the blood flow to the tumour 
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through major vessels, similar to the whole-ROI AT, which was shown to 

decrease in the second injection, while contrast arrival in the tumour centre 

depends on both its arrival at the tumour (systemic circulation) and its perfusion 

within the tumour (local microcirculation), similar to whole–ROI WIT, which was 

shown to increase. The decrease in AT at the periphery versus the increase at 

the core can explain the increased CoV.  The WIT histogram shifted to longer 

WIT values, consistent with the increase in whole-ROI WIT and leading to an 

increase in SD. As a result of the increase in WIT, the MTT increased, leading to 

decreased CoV.  

 

Finally, the spatial repeatability PE and AUC was good compared to other metrics 

(Figure 5-24). The lower repeatability of WIT, AT and MTT is a result of their 

susceptibility to motion noise in pixel–wise TACs. 

 

5.6 Limitations  

The pilot study provided encouraging results as to the suitability of DCE-US 

imaging to assess tumor response to radiotherapy. In both head and neck and 

cervical cancer models, some DCE-US metrics had significant changes 48 hours 

after treatment that were different between complete and partial responders. 

While these results are promising and establish analysis methods for further 

studies, there are several limitations to this study.  

 

First, the studies reported here involved a small sample number for each tumour 

model. Hence these results must be validated with a bigger number of animals. 

 

The pretreatment wash-in time (WIT) was found to be significantly different 

between complete responders and partial responders, indicating its potential as 

a predictive biomarker. It must be noted that when comparing the treated group 

with the control group, the treated group had significantly smaller wash-in time in 

the histogram percentiles, but not using whole-ROI or subregion analysis. This 

may indicate a selection bias between the groups; while animals were 

randomised according to tumour volume and growth rate as much as possible, 

randomisation according to pretreatment metrics to ensure similarity between 
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control and treated tumours should also be considered for future studies.  As this 

study was focused on the difference between complete and partial responders, 

this selection bias does not confound the main findings.  

 

The AplioTM scanner is well established and widely used for clinical contrast 

imaging. However, even the raw data generated has undergone unspecified 

processing, which may have introduced non–linearity in the signal, affecting 

quantification of DCE–US metrics [220]. Moving towards research-based 

scanners, such as the VerasonicsTM system, with programmable signal-

processing, can provide more reliable quantification of the DCE-US signal. This 

is further discussed in chapter 7. 

 

Relying on a single tumour plane for quantification is flawed, due to the discussed 

heterogeneity of the vasculature and its response. Indeed, heterogeneity in 

vascular response was even observed within the imaged tumour slice, evident by 

the change in the histogram shape parameters and subregion analysis. 3D DCE-

US imaging is hypothesised to provide more accurate quantification of tumour 

perfusion and its changes, and this will be described in chapter 7. 

 

The discussed analysis provides an understanding of the level of variation 

inherent in 2D DCE-US imaging of tumours and revealed several sources of 

variation that need to be explored further. Overall, AUC appears to be the most 

repeatable metric. The higher variation in PE indicates that variability due to the 

manual injection of microbubbles may be significant. Future studies, discussed 

in chapter 6 and 7,  used a controlled injection which  was shown to improve 

repeatability in kidneys [163] and tumours [212]. 

 

Further, the variability in AT and WIT was speculated to be caused by changes 

in the heart and breathing rate of the mouse. Physiological animal monitoring was 

not carried out in this study, due to constraints with the animal setup for imaging. 

Monitoring of the heart and breathing rate  during imaging should be done to 

evaluate their influence on the change in TAC metrics over repeat injections. This 

will also be relevant to longitudinal imaging to ensure that measured changes in 



 

 158 

DCE-US metrics are reflective of changes in tumour perfusion and are not 

artefactual. 

 

Next, as suggested by the literature, the increase in AT and WIT and decrease 

in PE may be caused by rupture of the tumour endothelium. This may be tissue–

specific since evidence of the change is not present in all organs or tumour 

models. To better understand the observed change, the repeatability of DCE-US 

imaging was assessed in a normal tissue, the kidney, to determine if these effects 

are tumour-specific and is discussed in chapter 6. 

 

Furthermore, the repeatability assessment carried out here did not consider the 

interday variability of DCE-US. Changes in cannula, microbubbles’ vial and 

imaging plane, as would happen with longitudinal imaging, are all expected to 

contribute to the variation. Interday variation is challenging to assess in a tumour 

model due to expected growth of the tumour and changes in vasculature, 

between timepoints. Therefore, interday variability was also examined in the 

kidney which is expected to have minimal change between imaging timepoints 

and is discussed in chapter 6. 

 

5.7 Conclusion 

The experiments described in this chapter provide encouraging evidence for the 

ability of DCE-US imaging to examine pretreatment vascular features and 

radiation-induced vascular changes that are important for overall tumour 

response. The variation observed between repeat DCE-US warrants further 

investigation of the precision of DCE-US imaging. 
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6 CHAPTER  Repeatability of the 2D 
and 3D DCE-US time-amplitude curve 
metrics of the renal vasculature 

 

6.1 Introduction 

The repeatability of DCE-US imaging in tumours reported in Chapter 5 warrants 

further investigation to identify and potentially eliminate the sources of variation 

seen in some metrics. Improved technical precision enables more reliable 

detection of biological changes and therefore increases the utility of an imaging 

biomarker [47]. 

 

The repeatability of DCE-US imaging between timepoints (interday repeatability), 

which is needed for reliable longitudinal monitoring of vasculature is expected to 

be greater than the variation reported in Chapter 5 where repeat imaging was 

carried out on the same day (intraday repeatability). This is because several 

additional sources of variation may be introduced, including changes in the 

microbubble vial and/or batch, the cannula, the patency of cannulation, and the 

challenge of reproducing the 2D imaging slice from one day to the next. 

Misalignment of the tumour scan position in liver metastases led to a median 

variation between -15% - 16% in bolus TAC metrics [145], while a misalignment 

of the scan position by 2 mm in a xenograft breast cancer model caused a 

variation ranging from 6.4 – 40.3 % in DCE-US metrics [131]. It is expected that 

3D DCE-US imaging of the entire subject volume (i.e., the whole tumour) can 

overcome this source of variation and is hypothesised to improve the interday 

repeatability. A 3D DCE-US imaging technique was developed at the ICR using 

continuous sweeping of a 1D ultrasound transducer to image a volume of interest. 

The main limitations associated with the technique, relative to 2D DCE-US using 

the same array, are the reduced temporal sampling of the TAC and that different 

points on the TAC are associated with different locations in the tumour. In vitro 

study of this 3D DCE-US method showed that, for flow in large simulated blood 

vessels and anisotropic flow along aligned bundles of simulated microvessels in 
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phantoms, the TACs at the lower sampling rate (1.5 Hz) were similar to the well-

sampled 2D TACs (10 Hz), so long as, when the mechanical scan direction was 

parallel to the flow direction, corrections were made to account for the different 

time of acquisition of the different 2D scan planes in the 3D dataset with variation 

within the measurement repeatability [165]. Unfortunately, a phantom that is 

stable over time but with isotropic or heterogeneous flow direction from one 

location to another (i.e., tumour-like) did not exist with which to compare the 

performance and study the reproducibility and repeatability of 3D and 2D DCE-

US. In this chapter, the mouse kidney is employed for that purpose. 

 

Interday DCE-US repeatability is ideally evaluated in a tissue with vasculature 

that is stable across a few days to avoid confounding vascular changes. It is 

possible that due to the rapid proliferation of tumour cells and resulting tumour 

growth, the tumour vasculature is not stable over a few days, and therefore a 

normal tissue model is needed. The kidney was chosen for the evaluation of 

repeatability based on its high blood flow, which permits the use of a smaller 

injection volume for DCE-US imaging and thus makes it possible to perform three 

injections within one day.  Further, the perfusion of the kidney is spatially 

heterogenous, both in vascular volume and (as mentioned above) flow direction 

and could to some extent mimic the heterogeneity present in tumours, providing 

a suitable model for the evaluation of mechanically swept 3D DCE-US of tumours. 

Heterogeneity in the kidney arises from the different perfusion in the renal cortex 

versus the renal medulla (Figure 6-1). Following intravenous injection, contrast 

agent first enhances the cortex and  then gradually fills the outer and inner 

medulla [221], and has lower peak enhancement [222, 223] in the medulla since 

that includes a smaller proportion (10 %) of the total renal blood flow [223]. An 

additional advantage of employing the kidney as a model is that, using the 

apparatus described below, both kidneys could be imaged, increasing the 

number of ROIs that could be used to examine the repeatability.  

 

The kidney has been used as model of normal tissue repeatability in several other 

studies. Specifically for the evaluation of the capability of 3D DCE-US, a rat 

kidney model reported a standard deviation of 10 % for the reperfusion time 

between kidney imaging slices, which was defined as the time to reach 20 % of 
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peak intensity following a disruption pulse in a disruption-replenishment 

sequence. In contrast, repeat calculations of the reperfusion time from the whole 

kidney volume had a standard deviation of only 3 %, even in the presence of 

transducer offsets [151].  

 

 

  

Figure 6-1: Anatomical structure of the kidney  from [224]. In this study, DCE-US imaging 
was carried out with the imaging plane of the transducer aligned with the coronal plane 
shown on the right.  

 

6.1.1 Aims 
 
The work described in this chapter aimed to assess the repeatability (intraday 

and interday) of mechanically swept 3D DCE-US and determine the improvement 

that it offers, if any, over 2D DCE-US. Additionally, DCE-US metrics of repeat 

injections were compared to determine if there was a systematic change in DCE-

US metrics between repeat injections to determine if the observed systematic 

changes observed in chapter 5 between repeat injections are tumour-specific.  
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6.2 Materials & Methods 

6.2.1 Study design 
 
The study cohort included six mice, 3 each for 2D and 3D DCE-US imaging. 

Imaging and DCE-US data acquisition were carried out at three timepoints per 

mouse, separated by 6 to 10 days. Not all mice were imaged on the same days 

due to time constraints imposed by concurrent studies. The study timepoints are 

given in Table 6-1. The focal length used was 20 mm and animals were set up 

such that the centre of one the kidneys (typically the left) was at 20 mm. 

 

Animals were between 10 – 14 weeks old and 19 – 30 g when imaged. This is in 

line with the characteristics of tumour–bearing mice used for radioresponse 

studies (Chapters 4,5, and 7). 

 
Table 6-1 : Summary of study timepoints. 

 

 

 

 

 

 

 

 
 

6.2.2 Animal setup  
 

Mice were anaesthetised using a ketamine-xylazine–acepromazine combination 

(4 µL/g) injected intraperitoneally. Mice were imaged in the prone position to view 

both  kidneys. The animal setup and procedure for cannulation were as described 

in section 3.2.2 

 

 

Numbers of 
mice 

Timepoints: Days 

2D: 3 

3D: 3 

1: 0 

2: 6 or 9 

3: 16 or 19 
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6.2.3 DCE-US imaging 
 
3D DCE-US imaging was performed as described in section 3.2.5. 2D imaging 

used the same setup, including the water bath and the motion platform holder, 

but without running the motion controller. The 2D imaging cross section was 

chosen to be the largest kidney cross sectional area for each kidney, wherever 

possible. A volume of 30 µL of contrast agent was injected using an infusion pump 

with a rate of 2.18 mL/min for each acquisition, with three injections per imaging 

timepoint. To remove residual microbubbles after an injection, the cannula was 

flushed with 10 – 15 µL of saline and the kidney was scanned with a voltage of 

15 V, the highest voltage possible with the scanner to produce maximum MI, to 

destroy remaining microbubbles for a period of 5 minutes. Repeat injections were 

separated by 15 minutes. An example of a typical contrast enhancement imaged 

with 2D imaging at the centre kidney cross sections shown in Figure 6-2 .  
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Figure 6-2: Representative example of 2D DCE-US imaging of the centre cross 
section of the left and right kidney (outlined in yellow), with the corresponding TACs 
shown below. Contrast frames shown correspond to the marked timepoints on the 
TAC; t= -2 s is the time before contrast injection, t = 0.3 s is the arrival time (green 
cross), with contrast seen in the cortex. t = 5.5 s shows maximum enhancement in 
the cortex and minimal enhancement in the medulla (red cross). t = 15.3 s shows 
decreased enhancement (black cross), t = 43.4 s corresponds to the peak 
enhancement with enhancement seen in the cortex and medulla (yellow cross), and t 
= 200 s represents contrast wash-out (purple cross).    

 

6.2.4 DCE-US analysis 
 
The kidneys’ cross-sectional outline was delineated in each imaging slice, and 

the DCE-US metrics were calculated from whole–ROI TACs in 2D imaging, and 

whole–VOI TACs in 3D imaging with motion compensation and temporal filtering 

as detailed in section 3.3.2. Image acquisitions that had incomplete injection of 

the contrast volume by the pump or, for 3D DCE-US, delayed start of transducer 

motion causing contrast agent wash–in to be missed, were excluded from the 

analysis.  

 

6.2.5 Intraday variation 
 
Intraday variation describes the repeatability of DCE-US imaging carried out on 

the same day (at one imaging timepoint), without animal repositioning, using the 

same cannula and the same vial of contrast agent. The variation between two 

injections was calculated according to equation 5–1 (see Chapter 5). For each 

day, for each kidney, for each TAC metric, 3 values of the intraday variation were 

calculated (i.e., Inj 1 vs Inj 2, Inj 2 vs Inj 3, Inj 1 vs Inj 3) and the mean intraday 

variation was calculated. This method was used instead of using the coefficient 

of variation because of the limited sample number. For an animal with a complete 

imaging dataset, 3 values of intraday variation per kidney were obtained from the 

3 imaging timepoints.  

 

6.2.6 Interday variation 
 
Interday variation describes the repeatability of DCE-US imaging carried out (on 

different days) with animal repositioning, a new cannula and a new vial of contrast 
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agent, with the assumption that there is no change in functional vasculature 

between the timepoints. Care was taken to acquire DCE-US data in matched time 

sessions (morning or afternoon) for each day. The interday variation between the 

nth injection carried out on consecutive days for all injections (e.g., Inj 1 (day 0) 

vs Inj 1 (day 6), Inj 1 (day 6) vs Inj 1 (day 16), Inj 2 (day 0) vs Inj 2 (day 6), etc.) 

was calculated using equation 5 -1 and the mean interday variation was 

calculated. The variation was calculated between matched injections to account 

for potential effect of repeated injections at one imaging timepoint. For an animal 

with a complete imaging dataset, 2 values of interday variation per kidney were 

obtained from the 3 imaging timepoints.  

 

6.2.7 Variation of TAC  
 
Another measure of repeatability was sought by examining the shape of the TAC, 

which was found to vary in this experiment. The similarity of the TAC shape was 

evaluated using normalized cross correlation of one TAC with another. A 

correlation coefficient of TACs was calculated for intraday and interday imaging 

in the same manner as intraday and interday (TAC metric) variation. 

 

6.2.8 Statistical testing 
 
DCE-US metrics from the three injections on the same day were assessed using 

the non-parametric signed Wilcoxon rank test to identify any systematic changes. 

The intraday and interday variation for each imaging method (2D or 3D) were 

compared using the Mann Whitney U test to assess whether interday variation 

was increased due to the additional sources of variations. The intraday and 

interday variation were compared between the imaging methods using the Mann 

Whitney U test to assess if 3D imaging improves the intra– or interday 

repeatability. The coefficients of correlation between TACs were assessed using 

the same tests. 
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6.3 Results 

6.3.1 DCE-US metrics from repeat injections 
 

Figure 6-3 shows DCE-US metrics (normalised to the first injection) from three 

repeat injections performed on the same day obtained from 2D and 3D imaging, 

showing several significant differences between the first injection and 

consecutive injections. There was a trend in increasing PE between repeat 

injections, compared to the first injection PE increased at the 2nd and 3rd injection 

in 3D imaging (p = 0.011, 0.004, respectively), and at the 3rd injection in 2D 

imaging (p = 0.002).  AUC increased between the 1st and 3rd injection only for 2D 

imaging (p = 0.001), remaining stable for 3D imaging. For 3D imaging only, MTT 

and WOUT both decreased significantly at the 2nd injection (p = 0.004 and p = 

0.005) and 3rd injection (p = 0.0001 and 0.0006), compared to the 1st injection.  

AT increased significantly for the 3rd injection (p = 0.002) in 3D imaging. WIT for 

2D imaging decreased at the 3rd injection (p = 0.048).   

 

The TACs presented in Figure 6-4  demonstrate the trends observed above for 

TAC metrics derived from 3D imaging and 2D imaging, i.e., greater PE for repeat 

injections, the quicker contrast washout for repeat injections in whole-VOI TACs 

( Figure 6-4 – left), and the quicker wash-in time in whole-ROI TACs ( Figure 6-4 

– right). There were no systematic changes between repeat injections on different 

days, i.e., there was no significant difference in any TAC metric measured at the 

first imaging timepoint compared to those measured at the later imaging 

timepoints (data not shown).   
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Figure 6-3: Mean DCE-US metrics (across 6 kidneys on 3 days) from 2D (blue) and 
3D (orange) imaging for three consecutive injections. Metrics are shown normalised 
to their value for the 1st injection. Error bars represent the standard deviation of this 
normalised value over the 6 kidneys for each injection. Asterisks denote statistical 
significance in the change from the first injection (* p < 0.05, ** p < 0.001) and are 
shown in the same colour for each method.  
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6.3.2 Comparison of intraday and interday absolute variation  
 

The absolute intraday and interday variations of metrics obtained from 2D and 

3D DCE-US are shown in Figure 6-5 . There were no significant differences 

between the absolute interday and intraday variation for 2D DCE-US.  3D DCE-

US had significantly greater intraday variation in MTT compared to interday (p = 

0.0081).  No other metrics showed a significant difference in intraday and interday 

variation for 3D imaging. 

 

6.3.3 Comparison of 2D and 3D DCE-US absolute variation 
 

3D imaging had greater intraday absolute variation of MTT compared to 2D 

imaging (p = 0.032). No other DCE-US metrics showed a significant difference 

Figure 6-4 : Repeat TACs (whole-VOI) of the kidney volume (left) and (whole-ROI) 
of the biggest kidney cross section (right) for the left (top) and right (bottom) kidney 
in two mice. Three TACs are shown representing three consecutive injections in 
the same imaging session. Whole-VOI TACs show an increase in PE and 
decrease in MTT and WOUT between injection 1 and consecutive injections. 
Whole-ROI TACs demonstrated an increase in PE and a decrease in WIT between 
consecutive injections. 
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between 3D and 2D in the intraday absolute variation. With the exception of AUC, 

3D imaging had smaller interday absolute variation compared to 2D imaging. 

However, the difference in variation was only significant for WOUT (0.002).    
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Figure 6-5:  Intraday and interday absolute variation of DCE-US metrics obtained from 
whole-ROI (2D) and whole-VOI TAC (3D) imaging.  Each datapoint corresponds to the 
variation calculated in one kidney. 
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6.3.4 Correlation between TACs 
 
The intraday and interday correlations between TACs for 2D and 3D imaging are 

shown in Figure 6-6. The correlations between TACs were not significantly 

different between 2D and 3D imaging, whether the TACs were obtained on the 

same day on different days, but there was a trend for better interday TAC 

correlation using 3D imaging (p = 0.07); specifically, for 2D imaging, interday 

correlation coefficients tended to be lower than intraday values, whereas this did 

not happen for 3D imaging. Additionally, low correlation coefficients 

corresponded to the highest variation seen in DCE-US metrics. For example, the 

lowest correlation of 0.85 for interday with 2D imaging (Figure 6-6 -right) was 

found for TACs that had a variation of 120 % in MTT and 78 % in AUC (Figure 

6-5).  

 

 

 

6.4 Discussion 

 
Reliable longitudinal monitoring of functional vasculature using DCE-US imaging 

requires good technical repeatability. 3D DCE-US imaging was hypothesised to 

be more precise than 2D DCE-US in quantifying tumour vascular changes as it 

examines the heterogenous whole tumour volume vasculature, and it overcomes 

the variability resulting from trying to reproduce an imaging slice within a tumour 

Figure 6-6: Correlation of TACs compared intra- and inter- day for 2D and 3D imaging. 
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from one imaging timepoint to the next. The intraday and interday variation of 2D 

and 3D DCE-US imaging was investigated in the kidney. Imaging of normal tissue 

provides a way of examining interday repeatability as, unlike in a tumour, few/no 

changes in the vasculature would be expected between timepoints. The kidney 

was chosen because its vascular volume is sufficient to allow imaging with a 

volume of contrast agent small enough to permit three injections to be given in 

each imaging session whilst adhering to the maximum volume of fluid that can 

be injected, as prescribed by Home Office project license constraints. Further, 

the kidney could be identified relatively easily with B-mode imaging, and the 

animal could be positioned to image two kidneys at once.  

 

Repeat injections had systematic changes in PE, MTT, WOUT and AUC (Figure 

6-3). Increases in PE were observed for 3D and 2D imaging and in AUC for 2D 

imaging. These increases are in agreement with the increase in peak 

enhancement and AUC seen in the feline renal cortex and medulla [217] using 

2D DCE-US imaging, which was suggested to be due to reduced filtering of 

microbubbles by pulmonary macrophages, or a possible interaction of 

microbubbles with the vasculature leading to vasodilation and greater blood 

volume. An alternative cause for the increased PE and AUC may be the effects 

of the anaesthetic agent. Ketamine-xylazine-acepromazine causes a reduction in 

mean arterial pressure and heart rate at the onset of anaesthesia, followed by a 

gradual increase up to normal levels as the mouse wakes up [225]. An increase 

in blood pressure and heart rate between consecutive injections could lead to the 

observed changes. 

 

A significant decrease in MTT and WOUT with repeat injections was observed 

using 3D imaging, but not with 2D imaging. A decrease in WOUT was also 

observed in the renal cortex of feline kidneys [217]. This may explain why the 

change was not observed with 2D imaging, since the centre kidney cross section 

that is imaged in the 2D setting has a bigger proportion of medulla tissue than 

cortex, and therefore the whole-ROI TAC would have a larger contribution from 

the medulla and may not capture changes specific to the cortex unlike 3D imaging 

which includes the whole cortex tissue. 

 



 

 174 

The intraday repeatability of 2D DCE-US imaging of the kidney in mice has been 

reported previously by Dizeux et al [213]. Using controlled injections of 

SonoVueÒ microbubbles, coefficients of variation, calculated as the standard 

deviation of four injections divided by their mean of 4 – 12.8 % were reported, 

substantially lower than the variation observed here (median variation > 20 % in 

all metrics). However, whilst Dizeux et al calculated the CV for the cortex only, in 

the current study the variation was calculated for the entirety of the kidney ROI 

or VOI, because it was difficult to accurately delineate the cortex. DCE-US 

metrics derived from the cortex had better repeatability than those of the medulla 

in feline kidneys [223] which may explain the observed lower variation in the study 

by Dizeux et al. Moreover, the authors used a saline flush of 80 µL following 

injection of the microbubbles, which is said to improve mixing of the contrast 

agent-blood solution and can minimise variation in the injected microbubbles 

volume. Unlike the present study, no systematic variation in any of the metrics 

was observed in the kidney cortex over a series of four injections. Likely reasons 

for the discrepancy include the different effects of the inhalable anaesthetic they 

used, compared to the injectable anaesthetic used here, and that they did not 

use a high MI insonation sweep between injections as used here to clear residual 

contrast agent, which is suggested to induce changes in the capillaries [217, 219]. 

Further work is required to confirm the biological or physiological cause behind 

these changes. 

 

Interestingly, the intraday variation in DCE-US metrics for both 2D and 3D 

imaging of the kidney was generally found to be greater than the variation in the 

tumour data reported in Chapter 5. This was despite injections being performed 

manually for the tumours compared to using a syringe pump for the kidneys; 

Dizeu et al. [11] found that manual injections caused more variability in the time 

to peak (equivalent to the sum of AT +WIT) and the wash-in and wash-out rates 

in mouse kidneys than did injections controlled with a syringe pump.  In the 

current study, even though DCE-US was expected to be more repeatable in the 

kidney than in tumour, the differences in repeatability may be related to several 

other difference between the experiments, such as the different imaging scanners 

(Aplio versus Verasonics), the different volume of injection, the use of two repeats 
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compared to one, and the different anaesthetics agent. The repeatability of 

tumour 3D DCE-US imaging was explored subsequently (Chapter 7) to elucidate 

some of these factors. 

 

Overall, there was some, but relatively little, evidence to support the hypothesis 

that longitudinal (interday) 3D imaging was more repeatable than longitudinal 2D 

imaging. Only WOUT demonstrated better interday variation with 3D imaging 

than with 2D (Figure 6-5), indicating the ability of 3D imaging to minimise the 

variation introduced when attempting to reproduce a single imaging position for 

successive timepoints. Also, no metrics showed increased interday variation 

compared to intraday using either 2D or 3D imaging methods. For 2D imaging, 

where the imaging plane was fixed for intraday but not interday, this also suggests 

that reproducing the central imaging plane does not contribute significantly to the 

variation.  The similarity between interday and intraday repeatability implies that 

the vial of microbubbles and the cannula, which change between imaging 

timepoints, have little influence on the variation in metrics. Instead, the main 

sources of variation are present when imaging on the same day. The suspected 

sources of variation include microbubbles preparation and resuspension [152], 

subject physiological changes and the systematic change in metrics between 

repeat injections. Indeed, intraday variation of MTT was significantly higher than 

interday, because of the large systematic decrease in MTT observed over repeat 

injections during one period of anaesthesia. WOUT also had large systematic 

reduction with each sequential injection during a single period of anaesthesia and 

its intraday variation was also larger than its interday variation, albeit not 

significantly so. No other study comparing inter and intraday variation of DCE-US 

could be found in the literature.  

 

6.5 Limitations 

The main limitation of the studies is the small number of animals included. This 

is exacerbated by the inclusion of two kidneys from each subject, meaning that 

the two data points from each mouse are not independent, and the results should 

be interpreted with caution. 
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For the kidney to be a useful model for assessing DCE-US repeatability, it should 

not include sources of variation that are not present in a tumour. Three such 

sources have been considered. First, locating the kidney using B-mode imaging 

was found to be more difficult than subcutaneous tumours, which may have led 

to poorer image slice reproducibility and increased interday variation. However, 

this did not appear to have increased the interday variation compared to the 

intraday variation. Next, the smaller injection volume used per acquisition for the 

kidney may have caused a proportionally larger variation in the number of 

microbubbles injected. Finally, the heterogenous perfusion pattern within the 

kidney, which was crucial to imitate the fact the heterogenous tumour perfusion, 

has a spatio-temporal enhancement pattern that may not be relevant to DCE-US 

imaging of some tumours. The early enhancement in the cortex followed by 

slower enhancement in the medulla produced a second peak in the TAC (Figure 

6-2), which can affect quantification and thus the repeatability of PE and WIT. 

Such an effect has not been observed in any TACs of the tumour models used 

here. Additionally, higher levels of enhancement in the shallowest subregion of 

the kidney cortex might have caused attenuation of contrast signal in the deeper 

regions of the kidney, which introduces another source of variation in the form of 

a depth-dependent TAC shape. A subregion analysis of centre kidney cross 

section (2D) TAC demonstrating the attenuation effect within the kidney is shown 

in Figure 6-7. 

 
 

 

 

 

 

 

 

 

 

 



 

 177 

 

Figure 6-7: Example TACs from 2D imaging of a central kidney slice. The ROI, which 
covered the whole kidney cross section excluding the kidney boundary, was divided into 
8 annular subregions of equal areas. The subregions most distal to the ultrasound 
transducer (‘Outer Ring Lower’ and ‘Ring 2 Lower’) display attenuation as an increase in 
signal at wash-in followed by a decrease. The subregions are shown in the bottom 
diagram, with each sub-ROI drawn in a different colour and the distal half of the tumour 
indicated by darker colours. 

 

6.6 Conclusions 

The discussed work establishes the repeatability of the proposed 3D DCE-US 

imaging technique, both intra- and interday using the kidney as a normal tissue 

model. The results will be helpful for contextualising the vascular changes 

observed with 3D DCE-US imaging in tumours following radiotherapy and the 

repeatability of the imaging in tumours. Using the kidney as a tissue model with 

spatial vascular heterogeneity, it was not possible to confirm the improvement in 

interday variability by using 3D DCE-US imaging compared to 2D imaging. 

Furthermore, interday variability was comparable to intraday variability. 
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7 CHAPTER  3D DCE-US for 
assessment of response to radiation 

 
 

7.1 Introduction 

2D DCE-US imaging was able to detect vascular changes that are associated to 

radioresponse (see Chapter 5). Overall, DCE-US revealed greater vascular 

damage in the tumours with better response assessed based on tumour 

regression or growth delay. The difference detected following radiation and the 

differences between response groups were of a small magnitude, (maximum 

median change of 40 % for C33A model and 20 % in HN5 model). One reason 

for the small measured change is the uncertainty associated with 2D DCE-US 

imaging. This is a result of large intratumour vascular heterogeneity with poor 

reproducibility of imaging position between timepoints. The importance of 

intratumour heterogeneity was confirmed through the histogram analysis which 

demonstrated that radiation–induced vascular changes are not uniform, 

presumed to be due to the heterogenous radiosensitivity of the vasculature, 

discussed in section 1.3. These observations lead to the conclusion that changes 

monitored in the central tumour cross section are unlikely to reflect vascular 

changes in the rest of the tumour volume, and instead longitudinal imaging of the 

tumour volume can detect vascular changes more accurately. Three dimensional 

(3D) DCE-US imaging achieves this and is therefore hypothesised to provide 

more useful biomarkers of response. 

 

Studies using volumetric contrast enhanced-ultrasound imaging have 

demonstrated large intratumour heterogeneity of the vasculature and the effect 

that this can have on calculating vascular changes.  In a clinical study of 

metastatic liver tumours, bolus TAC metrics (PE, AUC and, time to peak (TP)) 

and disruption replenishment TAC metrics (relative blood volume, relative blood 

flow) had intratumour coefficients of variation between 0.3 - 0.52 [145]. In a 

preclinical study with a colon cancer xenograft model, the same DCE-US metrics 

had coefficients of variation greater than 0.5, and as high as 2.86 [226]. 

Significant changes in these metrics after anti-angiogenic treatment were around 
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50 - 60 %, measured using 3D imaging.  2D imaging was unable to identify 

treatment -induced vascular changes because the changes were of a similar 

order of magnitude as the intratumour heterogeneity. Changes calculated in the 

central tumour plane, over- or under-estimated the results of 3D imaging by 57- 

or 3-fold, respectively. Another study using colon cancer xenograft models 

reported a significant difference in the change in 3D–DCE US metrics PE and 

AUC, between responding and non-responding tumours [227]. Using a xenograft 

breast cancer model, an intratumour variation of 6.1 – 40.3 % in the peak 

intensity, AUC, and TP metrics obtained was obtained [131].  

 

7.1.1 Aims 
Based on the encouraging preliminary findings outlined in Chapter 5, it was 

hypothesised that 3D DCE-US can detect vascular changes associated with 

response to radiotherapy. The experiments described in this chapter aimed to: 

1- Assess the change in 3D DCE-US metrics and their association with 

radioresponse in the previously established models of head and neck 

(H&N) and cervical cancer. 

2- Compare TAC metrics measured using 2D and 3D DCE-US imaging for 

the assessment of response to radiotherapy. 

3- Assess the repeatability of 3D DCE-US imaging in tumours. 

4- Biological validation of 3D DCE-US imaging with CD31 staining of 

vasculature  

 

7.2 Materials & Methods 

7.2.1 Study design 
 
The use of 3D DCE-US imaging was examined in the C33A cervical cancer model 

(C6 and C7 studies, n = 32 tumours in total) and HN5 head and neck cancer 

model (H2 and H3 studies, n = 28 tumours in total). Radiotherapy was delivered 

as described in section 3.4, with a 25 Gy dose for C33A tumours and either a 20 

or 25 Gy dose for HN5 tumours.  3D DCE-US imaging was carried out 24 hours 

before radiotherapy and repeated 72 hours and 1 week post treatment. In the C6 

study, which was the first 3D DCE-US radioresponse study carried out, imaging 
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was also performed 24 hours post treatment, but this timepoint was omitted from 

later studies due to the observed adverse effects of repeated anaesthetics within 

a short time interval (48 h). 
 

Anaesthesia for imaging was achieved using HypnormTM–HypnovelTM in study 

C6, while all later studies used a combination of ketamine–xylazine-

acepromazine (KXA), as described in section 3.2.2. Further, in the C6 study the 

focal length was adjusted between imaging sessions, and between animals, to 

keep tumours of differing depths at the transmit focus. This resulted in a range of 

focal lengths, which ranged from 9 mm to 20 mm, throughout the study. For 

subsequent studies, a constant focal length was maintained to minimise this as 

a potential source of variation. The tumour centre was kept near the focal length 

of 20 mm, through adjustments of animal positioning and the water bath offset.  
 

7.2.2 3D DCE-US imaging 
 
Three-dimensional imaging was carried out as described in section 3.2.5 using a 

Verasonics VantageTM scanner and a Philips ATL L7-4 transducer and 

continuous transducer translation in the elevational axis along a distance of 20 

mm. SonazoidTM contrast microbubbles were injected using an injection pump for 

a controlled injection speed and pressure. A flow rate of 2.18 mL/min was used. 

 

7.2.3 DCE-US image analysis  
 
The selection of frames containing the tumour volume and the motion correction 

were carried out as described in section 3.3.2.1.To assess the benefit of 3D 

imaging as opposed to 2D imaging, DCE-US metrics of perfusion were obtained 

for the tumour centre mimicking the 2D imaging reported in chapter 5, and for the 

tumour volume, representing the global perfusion of the tumour.  
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7.2.3.1 Centre tumour–ROI and whole-VOI analysis  
 
TACs representing the perfusion of an imaged tumour slice (centre tumour-ROI 

TACs), and a TAC of the tumour volume (whole-VOI TAC) were generated as 

described in section 3.3.2.3. DCE-US metrics, Peak enhancement (PE), arrival 

time (AT), wash-in time (WIT), modified transit time (MTT), wash-out time 

(WOUT), and the area under the curve (AUC), were calculated at each timepoint 

from the TACs.  

 

7.2.3.2 Metric maps and histogram analysis 
 

Intratumoural heterogeneity was characterised using histograms derived from 

pixel-wise metric maps of each tumour ROI as described in section 3.3.2.4. 

Histograms of all pixels in whole-ROIs (from each tumour slice) were combined 

to generate a tumour volume histogram. The histogram distribution was 

described using standard deviation (SD), coefficient of variation (CoV), modified 

full-width half-maximum (mFWHM), skewness and kurtosis as introduced in 

section 3.3.2.6. Here again, the histogram parameters of the centre tumour-ROI 

were examined to assess 3D compared to 2D imaging. 

 

The change in a metric at a timepoint following treatment compared to 

pretreatment was calculated as the difference in the metric at the two timepoints 

divided by the pretreatment metric, using equation 3 – 2. Significant changes in 

the metrics between pre- and post-treatment were identified using the Wilcoxon 

signed-rank test, while differences in the change of the metrics between response 

groups, or between treated and control tumours, were assessed using the Mann-

Whitney U test. Pretreatment DCE-US metrics of centre tumour–ROI and whole-

VOI were also compared between response groups.  

 

7.2.4 Comparison of DCE-US quantification between studies 
 
To elucidate any differences between the results in this chapter and those of 

earlier studies (see Chapter 5), the centre tumour-ROI metrics acquired using 3D 

imaging and the Verasonics Vantage scanner at pretreatment were compared to 
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those of earlier studies (whole-ROI acquired using 2D imaging using the Aplio 

scanner), for each tumour model using the Mann Whitney U test.  

 

7.2.5 Agreement of whole-VOI and centre tumour-ROI TAC metrics 
 
The DCE-US metrics of the centre tumour-ROI and whole- VOI and their changes 

following treatment were compared to examine their agreement in the two tumour 

models. A ratio of centre-tumour metric (or change) to whole-VOI metric was 

calculated at each timepoint. Agreement between the methods is indicated by a 

value of 1, while greater values indicate overestimation of central plane changes, 

and vice versa. Significant differences in the metrics, indicating either over- or 

underestimation by the centre-tumour ROI, was assessed with the Wilcoxon 

signed-rank test. 

 

7.2.6 3D DCE-US repeatability 
 
The repeatability of 3D DCE-US imaging was assessed at the experimental 

endpoint when tumours approached the size limit set out by the Home Office 

project licence. Two acquisitions were carried out, using the same settings as 

used for all other timepoints. Following the first acquisition, saline was injected 

manually to flush out any microbubbles left in the dead space of the cannula. In 

addition, the tumour was scanned with voltage of 15 V, the highest voltage 

possible with the scanner to produce maximum MI to destroy remaining 

microbubbles, for a period of 5 minutes with continuous transducer translation. 

The two contrast injections were separated by 15 to 20 minutes and used 

microbubbles from the same vial. The variation in centre tumour–ROI and whole–

VOI DCE-US metrics, as well as histogram parameters from two repeat 

acquisitions, was calculated as the difference in the two metric values divided by 

their average (equation 5 -1). Additionally, the repeatability of metric maps of the 

centre slice was assessed using the correlation coefficient as described in section 

5.3.3.5. Here the centre tumour slice was taken as the middle slice without 

attempting to correlate the most similar ROIs; this was deemed adequate based 

on visual comparison of the chosen slices. 
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7.2.7 Validation of 3D DCE-US imaging with histopathology 
 
Biological validation of DCE-US imaging was carried out at endpoint imaging. 

Excised tumours were cut in half, fixed in formalin, and stained with CD31 and 

haematoxylin counterstain as described in section 3.5.6. The agreement of CD31 

staining and the DCE-US metric maps was assessed visually between the 

stained section and the most similar imaged tumour slice. 

 

7.3 Results 

7.3.1 Characterisation of radiation response 
7.3.1.1 HN5 tumour model 
 
Growth of HN5 tumours in H2 and H3 studies is shown in Figure 7-1. All treated 

tumours regressed after radiation treatment. Complete and partial responders 

were differentiated based on survival of 80 days or longer following radiotherapy. 

This corresponded to 6 complete responders and 5 partial responders. Three 

animals with treated tumours were culled within 10 days of treatment because of 

weight loss or severe ulceration, or did not recover from anaesthesia, and were 

excluded from the analysis.  

Figure 7-1: HN5 tumour growth measured using callipers. Irradiation was carried out at 
day = 0 at a tumour volume of 150 mm3.  Individual tumours are grouped according to 
radiation dose (left) or response (right). Treated tumours that regrew to the tumour licence 
limit within 80 days of radiation were classified as partial responders, and tumour and 
complete responders are tumours that did not reach the license limit before 80 days.  
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7.3.1.2 C33A tumour model 
 

Growth of C33A tumours irradiated with 25 Gy in C6 and C7 studies is shown in 

Figure 7-2. As for the HN5 model, all treated tumours regressed. Complete or 

partial response was designated based on survival for 40 days or longer after 

irradiation. Nine tumours were classed as complete responders and six as partial 

responders. Three treated tumours were culled due to weight loss before day 40 

and therefore excluded from the analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.2 Agreement of whole-VOI and centre tumour-ROI TAC metrics 
 
The ratio of DCE-US metrics calculated from the centre tumour-ROI and whole-

VOI  TACs , representing 2D and 3D DCE-US respectively, and the ratio of 

respective changes between imaging timepoint is shown in Figure 7-3 and in 

Table 7-1. The ratios are calculated using DCE-US metrics and their change from 

all imaging timepoints. PE and AUC metrics calculated from centre tumour-ROI 

were significantly smaller than those metrics of the whole-VOI in HN5 tumours (p 

Figure 7-2: C33A tumour growth measured using callipers. Irradiation was carried out at 
day = 0 at a tumour volume of 150 mm3. Individual tumours are grouped according to 
radiation dose (left) or response (right). Treated tumours that regrew to the tumour 
licence limit within 40 days of radiation were classified as partial responders, and tumour 
and complete responders are tumours that did not reach the license limit before 40 days. 
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= 0.015, 0.002 respectively) and C33A tumours (p = 0.006, <0.0001, 

respectively). The centre tumour-ROI AT was also significantly longer than 

whole-VOI AT in C33A tumours (p = 0.006). In both models, the disagreement in 

the change in a metric calculated from centre tumour-ROI and whole-VOI was 

either similar to or larger than the disagreement in the value of the metric, 

demonstrated by ratios with greater deviation from 1. Underestimation or 

overestimation of the metrics and their changes was possible using the centre 

tumour-ROI, as shown in the box and whiskers plot in Figure 7-3. The largest 

disagreement was observed in change in WIT (ratios of 0.73 and 0.55 for HN5 

and C33A models, respectively), meaning that perfusion quantification using 

centre tumour-ROI underestimated the change in WIT. 

 
Table 7-1: Ratio of the value and change in DCE-US metrics obtained from centre 
tumour-ROI TAC and whole-VOI TAC. Ratios are presented as the median [lower 
quartile upper quartile] for head and neck (HN5) and cervical (C33A) xenograft tumours. 
Values closest to 1 indicate greater average agreement between metrics of the two 
TACs.  

 
 HN5  C33A 

METRIC 
Metric value 

(ratio) 

Metric 

change 

(ratio) 

Metric value 

(ratio) 

Metric 

change 

(ratio) 

PE 
0.94 

[0.83 1.04] 

0.84 

[0.30 1.29] 

0.96  

[0.87 1.06] 

1.02  

[0.19 1.53] 

AT 
1.00  

[0.97 1.05] 

0.82 

[ 0.03 1.39] 

1.03  

[0.98 1.09] 

0.98  

[0.43 1.23] 

WIT 
1.00  

[0.74 1.78] 

0.73  

[-0.81 1.46] 

1.02  

[0.79 1.32] 

0.55  

[-0.12 1.00] 

MTT 
0.97  

[0.90 1.04] 

1.03  

[0.78 1.47] 

1.00  

[0.93 1.09] 

0.96  

[0.13 2.03] 

WOUT 
1.00  

[0.89 1.05] 

0.94  

[0.41 1.25] 

1.00  

[0.88 1.13] 

0.87  

[ 0.11 1.33] 

AUC 
0.93  

[ 0.83 1.01] 

1.16 

 [1.03 1.55] 

0.92  

[0.83 1.03] 

0.93 

[0.24 1.34] 
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Figure 7-3: The difference in DCE-US metrics calculated using centre tumour-ROI and 
whole-VOI TACs. The ratios of the metrics (left) for HN5 tumours (top) and C33A tumours 
(bottom) and the respective change from pretreatment (right) are shown The box and 
whisker plots show the median ratio and the interquartile range. For visualisation, outliers 
greater than 5 or lower than –10 are not shown. The black dashed line represents a ratio 
of 1, indicating perfect agreement. 
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7.3.3 Association of radioresponse with pretreatment DCE-US metrics 
 

No significant differences in pretreatment metrics could be detected between 

response groups in HN5 tumours. In the C33A cohort, partial responders had 

longer pretreatment WOUT compared to control tumours based on the whole-

VOI (p = 0.024). This data is not shown. 

 

7.3.4 Association of radioresponse with changes in whole-VOI TAC 
metrics 

 
The change in whole-VOI TAC metrics of HN5 tumours is shown in Figure 7-4. 

There were 5 acquisitions out of a total of 48 datasets for which AT could not be 

calculated due to insufficient temporal sampling, and these were excluded from 

AT, WIT and MTT analysis. Analysis of all HN5 tumours, treated and control 

combined, showed a decrease in PE (p = 0.018, 0.039), MTT (p = 0.0002, 

0.0001), WOUT (p = 0.0002, 0.002) and AUC (p = 0.0001, 0.0011), 72 hours and 

1 week post - treatment respectively, while AT decreased at the 1-week timepoint 

only (p = 0.024). The change in treated tumours was not significantly different 

from the change in control tumours, nor were changes between complete 

responders and partial responders significant.  

 

 The change in whole-VOI DCE-US metrics for C33A tumours is shown in Figure 

7-5 (right). There were also 13 cases of failed AT calculation in the whole-VOI 

and centre tumour-ROI TACs out of the 88 DCE-US acquisitions which led to the 

exclusion of AT, WIT and MTT. Treated tumours were observed to have 

decreased WIT, MTT, WOUT and AUC 72 hours (p = 0.001, 0.0034, 0.0006, 

0.0043, respectively), and 1 week following radiation (p = 0.001, 0.001, 0.0005, 

0.011, respectively). The decrease in MTT was also apparent at the 24-hour 

timepoint (p = 0.047). The decrease in WIT, MTT and WOUT metrics of treated 

tumours was significantly different from the change observed in control tumours 

at the 72-hour timepoint (p = 0.0003, 0.030, 0.043, respectively) and in MTT and 

WOUT at the 1-week timepoint (p = 0.034, 0.0011, respectively). Complete 

responders had a significantly bigger decrease in WIT at the 72-hour timepoints 

compared to partial responders (p = 0.048) and control tumours (p = 0.0002).  
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Figure 7-4: Change in DCE-US metrics of HN5 tumours obtained from centre tumour-ROI (left) and whole-VOI (right) TACs for complete responders 
(filled circle), partial responders (open circle) and control tumours (cross). Treated and control tumours exhibited a decrease in PE, AUC, MTT and 
WOUT from pretreatment at both post-treatment imaging timepoints. 

.  
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 Figure 7-5: Change in DCE-US metrics of C33A tumours obtained from centre tumour-ROI (left) and whole-VOI (right) TACs for complete responders 
(filled circle), partial responders (open circle) and control tumours (cross). Irradiated tumours exhibited a decrease in WIT, MTT and WOUT 72 hours 
and 1 week following radiation. 
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7.3.5 Association of radioresponse with changes in centre tumour-ROI 
TAC metrics 

 

The change in DCE-US metrics of the centre tumour–ROI TAC was calculated 

for comparison with 2D DCE-US imaging. This is shown for HN5 tumours in 

Figure 7-4 (left). As with whole–VOI TAC metrics, analysis of treated and control 

tumours showed a decrease in PE (p = 0.002, 0.0174), MTT (p = 0.0002, 0.0005), 

WOUT (p = 0.0007, 0.0072) and AUC (p = 0.0003, 0.0013) from pretreatment at 

72-hour and 1 week post imaging timepoints respectively. No differences in the 

changes could be detected between treated and control tumours, nor between 

complete and partial responders. Partial responders had a significantly bigger 

decrease in MTT than control tumours (p = 0.036). 

 

The change in DCE-US metrics of the centre tumour–ROI TAC for C33A tumours 

is shown in Figure 7-5 (left). There was one case of failed calculation of PE, with 

PE and AUC set to zero at this timepoint to indicate no perfusion, and the time-

based metrics excluded. Imaging 72 hours after radiation showed a decrease in 

MTT, WOUT and AUC in treated tumours (p = 0.0024, 0.0052 & 0.0034, 

respectively) compared to pretreatment, which was not observed in control 

tumours. Complete responders had a significantly greater decrease in MTT than 

partial responders (p =0.0025) or control tumours (p = 0.0037). Complete 

responders also had a significantly bigger decrease in WOUT compared to 

control tumours (p = 0.015). One week following radiation, the decrease in the 

aforementioned metrics persisted in treated tumours (p = 0.0059, 0.0005, & 

0.0046, respectively) but the difference in the WOUT change between complete 

responders and control tumours was no longer significant (p = 0.05). Complete 

responders revealed an increase in AT compared to a decrease for partial 

responders (p = 0.019). No significant changes could be detected in centre 

tumour–ROI metrics 24 hours following radiotherapy, likely because of the small 

sample number. 
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7.3.6 Comparison of pretreatment DCE-US metrics with preliminary 
studies  

 
The preliminary study of HN5 tumours (H1 study) described in Chapter 5 revealed 

a significant difference in the change in AUC between complete and partial 

responders following treatment, which was not observed here. Similarly, the 

preliminary study of C33A tumours (C5 study) showed a significant difference in 

the change of WOUT between complete and partial responders, not observed 

here. To evaluate the discrepancy in the results between the studies, the 

pretreatment DCE-US metrics obtained in H1 and C5 studies were compared to 

centre tumour–ROI metrics obtained using 3D DCE-US imaging of each tumour 

model. The pretreatment DCE-US metrics for HN5 studies are shown in Figure 

7-6 - left. H2 and H3 cohorts were analysed together. All metrics were significantly 

different between H1 and H2+H3 studies (p < 0.0005). Interestingly, H2+H3 

cohort tumours had a larger PE but smaller AUC. The smaller AUC is in 

agreement with the quicker MTT and WOUT. HN5 tumours of the H2 and H3 

studies had longer AT and WIT. Example TACs from a H1 tumour and a H2 

tumour demonstrating these differences are shown in Figure 7-7.  

 

The pretreatment DCE-US metrics for the C33A studies are shown in Figure 7-6 

- right. C6 and C7 were compared separately to isolate the effect of the change 

in anaesthetic agents. C5 and C6 cohorts, both imaged using HypnormTM–

HypnovelTM revealed a significant difference in all metrics except AT. The 

difference in other metrics between C5 and C6 and C7 cohorts was similar to that 

observed in HN5 tumours: C6 and C7 tumours had greater PE and smaller AUC, 

quicker MTT and WOUT and longer WIT compared to the preliminary C5 study. 

C6 and C7 cohorts, both imaged using 3D DCE-US but different anaesthetics 

showed differences in PE, AT, MTT and AUC. Tumours in the C7 study imaged 

under anaesthesia with a ketamine–xylazine-acepromazine combination had 

greater PE, longer AT, longer MTT and greater AUC than C6 study tumours. The 

difference in metrics due to the change of anaesthetics, however, is of a smaller 

magnitude than the difference caused by changing scanners and imaging 

techniques. 
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Figure 7-6: Comparison of DCE-US metrics obtained from the tumour centre using the 2D imaging with the Aplio (H1, C5, black squares) and 3D 
imaging with the Verasonics (H2 + H5, C6, C7, black circles), for HN5 tumours (left) and C33A tumours (right). 

HN5 C33A 
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7.3.7 Association of radioresponse with changes in DCE-US metrics 
histogram distribution  

 

Some changes in the histogram distribution of DCE-US metrics were significantly 

different between response groups in the HN5 tumour model and are shown in 

Figure 7-8 .Changes are given as the difference in the histogram metric before 

and after treatment divided by the pretreatment metric (equation 3 – 2). Seventy–

two hours after treatment, the standard deviation (SD) of PE calculated from the 

centre tumour-ROI increased in complete responders compared to partial 

responders and control tumours (p = 0.052, 0.0095 respectively). The skewness 

of AUC histogram of the whole-VOI in complete responders became more 

negative compared to partial responders and control tumours (p = 0.052, p = 

0.019 respectively). At the 1-week imaging timepoint, there were no differences 

in centre tumour-ROI histogram distribution. Meanwhile, the WIT distribution for 

the VOI showed a decrease in SD for partial responders compared to complete 

responders and control tumours (p = 0.017 and 0.016, respectively). A similar 

Figure 7-7: Representative TACs of a whole-tumour ROI of an H1 tumour (blue) and 
centre tumour whole-ROI of an H2 tumour (orange), showing longer WIT, greater PE, 
quicker MTT and WOUT and smaller AUC in the latter cohort. 
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decrease in coefficient of variation (CoV) of MTT compared to an increase in 

complete responders was present (p = 0.017) as shown in Figure 7-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For C33A tumours, histogram analysis of the centre tumour-ROI revealed a 

significant decrease in SD of MTT in complete responders compared to partial 

responders (p =0.030) 72 hours after radiation, in line with the decrease in centre 

tumour-ROI TAC. These changes are presented in Figure 7-9 . VOI histogram 

analysis revealed several differences between treated tumours and control 

tumours. Irradiated tumours showed a significant decrease in SD of AT compared 

to control tumours at both imaging timepoints (p = 0.019, 0.0116) and a decrease 

in SD of WOUT at 1 week (p = 0.0021). Differences in complete responders and 

partial responders were not observed. Complete responders had a significant 

increase in skewness and kurtosis of WIT (p = 0.025 both) and MTT (p = 0.016, 

0.011) at the 72-hour timepoint compared to control tumours. 

Figure 7-8 : Change in the histogram distribution of DCE-US metrics in HN5 
tumours. Presented here are the most significant changes from centre tumour-
ROI (left) and whole–VOI (right) for complete responders (filled circle), partial 
responders (open circle) and control tumours (cross) 
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Figure 7-9 : Changes in the histogram distribution of MTT for the centre tumour-
ROI (top) and the tumour volume whole-VOI (bottom) in C33A tumours 24 hours, 
72 hours or 1 week post irradiation in complete responders (filled circle), partial 
responders, and control tumours (cross). 
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7.3.8 Combining tumour models 
 

Analysis of tumours of both models together did not elucidate any clearer 

distinctions between response groups than analysis of each model separately, 

but still maintained the difference between treated tumours and controls. 

Complete response was defined as survival at day 50, the median survival day 

of both cohorts. The resulting figures are shown in Appendix A5.  

 

7.3.9 Tumour volume changes following radiation  
 
The tumour volume was examined at imaging timepoints to examine whether 

DCE-US can detect important changes in the tumour vasculature, between 

complete and partial responders, before a difference in the tumour volume is 

observed. The change in volume from treatment day to each imaging timepoint 

is presented in Figure 7-10. HN5 complete responders and partial responders did 

not show a tumour volume decrease before day 7 and had no significant 

difference in the change in volume at any of the imaging timepoints. At day 3, 

C33A complete responders had a significantly slower tumour growth rate 

compared to control tumours (p = 0.02), and a significant difference compared to 

both control tumours and partial responders (p = 0.0007, 0.049, respectively) at 

day 7 as they start to regress. Additional analysis of days between the imaging 

timepoints showed that the significant difference between complete and partial 

responders is present by day 4 (p =0.02). 
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Figure 7-10: Tumour volume changes in HN5 tumours (left) and C33A tumours (right). 
No difference was observed in complete and partial responders in HN5 tumours by day 
7, while C33A complete responders had a significant decrease in volume compared to 
control tumours by day 3 and compared to partial responders by day 7. 

 

7.3.10 Repeatability of 3D DCE-US imaging 
7.3.10.1 Repeatability of centre tumour-ROI & whole-VOI TAC metrics 
 
The repeatability of DCE-US metrics and histogram parameters of the whole-VOI 

and the centre tumour-ROI was assessed using the variation of the metric 

between two repeat image acquisitions acquired at the study endpoint. Thirteen 

pairs of repeat imaging acquisitions were available from both C33A and HN5 

tumours.  

 

The absolute and signed variation of whole-VOI and centre tumour–ROI TAC 

metrics are shown in Figure 7-11 and Table 7-2. The greatest variations were 

always observed in 2D centre tumour–ROI metrics compared to whole-VOI 

metrics (except for AUC with a variation of 76% in whole-VOI compared to 71% 

in the centre-ROI). The average PE for whole-ROI and whole-VOI appeared to 

systematically decrease for the second injection (p = 0.068 and 0.057) and 

similarly for whole-ROI AT (p = 0.054). The WOUT of whole–VOI (p = 0.05) and 

centre–ROI AUC (p = 0.013) also decreased. 
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Comparison of the absolute values of the variation of centre tumour ROI and 

whole-VOI TAC metrics showed less variation, and hence better repeatability, for 

PE (p = 0.013), AT (p =0.042), and WIT (p = 0.024) using whole-VOI analysis. 

Meanwhile, comparison of the variation in metrics obtained with different 

scanners showed that the variation of AUC was significantly lower when 

measured using the Aplio scanner than the variation of the centre tumour-ROI 

and whole-VOI AUC (p = 0.0015, 0.027 respectively).  

 

7.3.10.2 Repeatability of histogram analysis 
 
The variation of histogram parameters obtained from the VOI, and the centre 

tumour -ROI is shown in Figure 7-12. Skewness is not shown as it suffers large 

outlier variation (as discussed in section 5.4.5.4). The absolute variation is shown 

as none of the parameters were shown to have a systematic change between 

injections, except for SD and mFWHM of PE, which decrease in agreement with 

the decrease in whole-ROI analysis. Kurtosis was the most variable for all 

metrics. PE and AUC showed generally lower variation than time–based metrics, 

Figure 7-11: Variation of 2D (centre tumour-ROI, white bar) and 3D (whole-VOI, grey 
bar) DCE-US metrics of two repeat imaging acquisitions. Each animal is represented by 
one data point. 
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in agreement with the ROI analysis. The repeatability of whole-VOI and centre 

tumour ROI - based histogram parameters was compared and revealed better 

repeatability of whole-VOI CoV for PE and AUC (p = 0.012, 0.024 respectively). 

 
Table 7-2 : Mean absolute and signed variation [interquartile range] (%) of DCE-US 
metrics obtained from centre tumour-ROI (2D) and whole–VOI (3D) analysis of two 
repeat acquisitions. 

 

 

7.3.10.3 Repeatability of the spatial distribution of metrics 
 
The correlation coefficient of metrics maps of the centre tumour-ROI of two repeat 

acquisitions is shown in Figure 7-13. PE and AUC had the highest correlation on 

average, while WIT was the lowest. Compared with the spatial repeatability 

obtained with DCE-US imaging with the Aplio scanner, PE, WOUT and AUC (p = 

0.046, 0.007, <0.001) had lower repeatability while the spatial repeatability of AT 

and WIT was improved with the Verasonics scanner (p = 0.0001, 0.0001). 

 

Metric ABS SIGNED 

 2D 3D 2D 3D 

PE 
36.0 

[8.5 52.4] 

14.0 

[4.4 22.8] 

- 11.7 

[ -48.0 -4.8] 

-10.3 

[-22.8 0.1] 

AT 
31.5 

[9.2 35.8] 

16.5 

[8.8 23.6] 

-26.6 

[-35.8 -2.7] 

-9.44 

[-23.0 4.0] 

WIT 
55.5 

[24.2 88.3] 

23.7 

[8.3 28.7] 

-18.8 

[-51.6 24.7] 

0.65 

[-15.3 17.6] 

MTT 
33.5 

[4.4 40.0] 

15.8 

[7.6 22.1] 

-6.0 

[-21.8 2.2] 

-8.00 

[-15.9 4.0]] 

WOUT 
32.0 

[8.2 28.0] 

13.5 

[5.3 22.9] 

15.0 

[-20.3 14.6] 

-8.9 

[-18.2 -1.5] 

AUC 
29.3 

[12.1 48.3] 

21.3 

[7.1 31.2] 

-24.6 

[-48.3 -3.4] 

-14.5 

[-31.2 4.0] 
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Figure 7-12: Absolute variation of histogram parameters of DCE-US metrics from two acquisitions for centre tumour-ROI (left) and whole-tumour 
VOI (right). 
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7.3.11 Correspondence of DCE-US imaging with CD31 staining 
 
DCE-US AUC maps of treated HN5 and C33A tumours with the corresponding 

CD31 + haematoxylin-stained sections are shown in Figure 7-14. The DCE-US 

metric maps are presented for the tumour slice with the best morphological 

agreement with the stained tumour section. At this endpoint, DCE-US showed 

mainly rim enhancement in the tumours, and minimal enhancement in the tumour 

core (Figure 7-14– AUC map). This corresponded with CD31 staining results; 

vessels were mainly detected in the tumour periphery, while the tumour core 

showed no CD31 or haematoxylin staining ( Figure 7-14– CD31 staining) 

indicating a non–viable core which corresponds to the non-enhanced core. The 

presented HN5 tumour has a larger non–enhanced core, which corresponded to 

a bigger necrotic core in the stained sections, compared to the C33A tumour. 

 

 

Figure 7-13: Correlation coefficient of metric maps of the central tumour whole-ROI 
obtained from two DCE-US acquisitions. Each point represents one animal. 
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7.4 Discussion  

The experiments described investigated the use of 3D DCE-US imaging to 

assess tumour vascular changes associated with response to radiation. The 

advantages of 3D imaging are, firstly, its ability to detect changes in the whole 

tumour volume, rather than relying on a subregion of the tumour to inform these 

changes, and secondly, improved technical precision of longitudinal imaging by 

reliably reproducing the imaging volume. These factors were hypothesized to 

improve examination of the heterogenous tumour vasculature and potentially 

provide an imaging biomarker for the non-invasive assessment of response to 

radiation.  

 

7.4.1 Comparison of DCE-US quantification between studies 
 

The DCE-US metrics at pretreatment obtained for both tumour models in this 

study demonstrated significant differences from the respective preliminary study 

discussed in chapter 5. There are several key differences between the studies 

that should be noted. 

Figure 7-14: Spatial correspondence of DCE-US imaging and CD31 in a HN5 (top) and 
C33A (bottom) tumour. Shown here are AUC maps (first column), CD31(brown) + 
haematoxylin (purple) stained tumour slice (second column) and a zoomed region with  
CD31 staining (fourth column). 
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First, different anaesthetic agents had to be used in the two studies, because 

HypnormTM was no longer available. Anaesthesia modulates the physiological 

status of the animal, including blood pressure, heart rate and respiration rate, 

which can influence DCE-US quantification [152]. The effect of the change of 

anaesthetic agents was examined by comparing DCE-US metrics of C33A 

tumours in the C6 and C7 studies which were imaged with Verasonics scanner 

3D DCE-US using HypnormTM/HypnovelTM and KXA anaesthesia respectively. 

This revealed significant differences in PE, AT, MTT and AUC. Quicker AT in C6, 

which is indicative of faster systematic blood flow, can be explained by the 

reported increase in heart rate caused by HypnormTM/HypnovelTM [216] 

compared to a reduction with KXA [225]. Similar differences in haemodynamic 

modulation caused by the anaesthetics agent may describe the difference in 

MTT, AUC and PE, but this remains to be explored. Additionally, the time 

between imaging and the induction of anaesthesia was different between the 

cohorts as the C7 study also involved elastography imaging carried out before 

DCE-US imaging. The magnitude of the difference between these cohorts was 

substantially smaller than the change observed in cohorts imaged with different 

scanners, and, more importantly, the increase in MTT, WOUT and AUC in the C7 

cohort with the KXA anaesthetic, contrasts with the net decrease in these metrics 

compared to the C5 cohort imaged with the Aplio scanner. This implies the 

presence of a far more dominant factor driving these differences. 

 

Significant differences were founded in PE, WIT, MTT, WOUT, and AUC between 

the C5 and C6 studies, which were imaged under HypnormTM/HypnovelTM using 

the Aplio and Verasonics scanner respectively. The injection method was 

changed between studies; contrast injection was done manually in study C5 and 

using an automated injection using a pump with constant pressure and speed in 

study C6. The speed of the injection was similar for the two methods, but 

differences in the injection pressure could influence the concentration and size 

distribution of injected microbubbles [152]. Furthermore, the difference in the 

scanner imaging parameters can explain the observed differences in DCE-US 

quantification. The Aplio scanner used a centre frequency of 8 MHz, compared 

to 4.08 MHz used by the Verasonics scanner. The latter frequency is closer to 
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the resonance frequency of Sonazoid microbubbles [164, 228]. Imaging closer to 

the resonance frequency increases the microbubbles’ nonlinear response, which 

produces the contrast signal. The frequency used in the Aplio scanner , which 

was greater than the resonance frequency, would require larger pressures to 

drive the nonlinear response [229]. Both effects will influence the amplitude-

based metrics, which could be therefore expected to be different between 

scanners. This was the case for PE, which was greater for the Verasonics 

scanner. Despite greater PE, AUC was smaller when measured with the 

Verasonics due to quicker MTT and WOUT. The most likely explanation for this 

is greater bubble disruption. With 3D imaging, a larger volume of tissue, and thus 

volume of microbubbles, were exposed to the ultrasound pulse. Even though the 

mechanical index used for 3D imaging with the Verasonics (MI = 0.15) was lower 

than that for 2D imaging (MI = 0.3), it is sufficient to cause disruption [164] and 

combined with the larger volume of exposure, may have reduced the MTT and 

WOUT. 

 

7.4.2  Association of radioresponse with 3D DCE-US imaging 
 
In the HN5 tumour model, DCE-US metrics obtained from the centre tumour-ROI 

and the whole-VOI indicated a decrease in the tumour perfusion over time, 

regardless of treatment or response. The reduced perfusion was in agreement 

with the results of a preliminary study (H1). Despite the overall decrease in all 

tumours, the preliminary study showed a significantly bigger decrease in whole–

ROI AUC in complete responders compared to partial responders, indicating 

greater vascular damage, or reduced perfusion in the complete responders. This 

was not observed in studies described in this chapter. Further, the preliminary 

study showed a significant difference in WIT at pretreatment, with complete 

responders having shorter WIT, suggesting better perfusion. This was also not 

observed in the current study. The different observations between studies for the 

HN5 model may be attributed to the difference in DCE-US quantification 

discussed above. Longer WIT was observed in H2 and H3 cohorts compared to 

H1 tumours. This change may have confounded differences in WIT between 

well–perfused complete responders and partial responders with poorer perfusion 
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at pretreatment Additionally, the difference between cohorts may have been an 

effect of the small sample number of both cohorts, due to tumour ulceration.  

 

3D DCE-US imaging of the C33A cervical tumour model revealed that radiation 

caused vascular disruption up to 1 week following treatment, evident by the 

decrease in MTT, WOUT, and AUC in treated tumours. This result is in 

agreement with the established vascular disruption induced by large-dose single-

fraction radiation early following treatment. Significant differences between 

complete and partial responding C33A tumours 72 hours after radiation were 

observed (Figure 7-5). Complete responders had greater decrease in MTT 

derived from the centre tumour-ROI. A decrease in MTT implies a decrease in 

vascular volume, based on the observed pixel-wise correlation of MTT with 

vascular volume-related metrics, PE and AUC (see section 4.3.3.3). Whole–VOI 

analysis showed a greater decrease in WIT in complete responders. The 

decrease in WIT indicates faster blood flow within the tumour, which may be the 

result of the disruption of small microvasculature with slow blood flow. Moreover, 

the decrease in MTT was not spatially uniform, as indicated by an increase in the 

skewness of MTT distribution calculated from tumour volume in complete 

responders (Figure 7-9). Taking these results together, it can be hypothesised 

that C33A complete responders undergo greater vascular damage, and the 

damage occurs in smaller vessels preferentially. This hypothesis agrees with 

observed damage reported in normal tissue microvasculature [230], where it was 

observed that radiation-damaged capillaries were shut and blood was rerouted 

to larger vessels with quicker flow. 

 

The significant change in WIT was only observed through whole–VOI analysis 

and not in centre tumour-ROI. The difference between the results may be 

explained by the large discrepancy in the measured change of the two methods. 

The WIT change ratio of 0.55 had the greatest deviation from 1 between DCE-

US metrics. This ratio implies that the change in WIT calculated using the centre 

tumour-ROI underestimated the change occurring in the whole tumour volume. A 

possible contributing factor to the difference observed may be the imprecise 

calculation of WIT with the low temporal resolution, leading to inaccurate 

estimation of WIT in the centre tumour-ROI. The whole-ROI WIT metric was not 
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observed to show a difference associated with response in the preliminary 2D 

imaging study carried out using a higher frame rate.  

 

Finally, a promising result of this study is that the significant changes observed 

in MTT and WIT that could be used to differentiate tumour radioresponse were 

detected within 72 hours of treatment, before a difference could be detected in 

the tumour volume changes between these response groups. This is encouraging 

in the context of developing DCE-US imaging as an early response biomarker. 

Detection of vascular changes using DCE-US before volume changes are 

observed between responding and non-responding tumours was reported in in 

rat colon cancer model treated with chemotherapy [231] and antiangiogenic 

therapy [232], with DCE-US changes occurring several days before volume 

changes. The result reported here is novel for the evaluation of radiotherapy 

treatment using DCE-US imaging. 

 

Similar to the HN5 tumour model, 3D imaging (C6 and C7) studies of the C33A 

tumour model also revealed significant differences from the preliminary 2D 

imaging study (C5). Using the Aplio scanner, complete responders showed a 

greater decrease in WOUT compared to partial responders, while the current 

study only showed a significant difference in the WOUT of complete responders 

compared to control tumours. Again, the discrepancy may be due to the greater 

bubble disruption leading to quicker washout in all tumours regardless of 

response. Another possible reason is the increased radiation dose used in the 

current study, which led to improved radioresponse of all treated tumours. 

Therefore, partial and complete responders may not be equivalent between 

studies and may have undergone different biological changes following radiation.  

 

7.4.3 Repeatability of 3D DCE-US imaging 
 
Examination of 3D DCE-US repeatability showed better repeatability of whole-

VOI PE, AT and WIT compared to centre tumour-ROI analysis, demonstrating 

the potential benefit of 3D DCE-US imaging. However, the repeatability of AUC 

from whole-VOI and centre tumour-ROI using the Verasonics scanner was 

significantly less than that obtained using 2D imaging with the Aplio scanner in 
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the preliminary study. The difference in repeatability may be related to the 

difference in DCE-US quantification between scanners, discussed above. It is 

also expected due to the lower temporal resolution with 3D DCE-US, making the 

approximation of the area under the curve less accurate. This is supported by the 

observation of larger AUC variation in the kidney using 3D imaging compared to 

2D with the Verasonics scanner (see chapter 6), although the difference was not 

significant. The poorer repeatability of AUC may also explain why no difference 

in AUC could be detected between response groups in the HN5 tumour model.  

 

Moreover, lower spatial repeatability was observed for PE, WOUT and AUC 

metric maps obtained with 3D DCE-US compared to the preliminary study, which 

can again be explained by the lower temporal resolution. Interestingly, AT and 

WIT had greater spatial repeatability compared to the Aplio scanner. This may 

be a result of the motion correction applied here, which would make a substantial 

improvement to TAC noise. Further, the criteria for calculation of pixel–wise AT 

and WIT was stricter in this study due to the limited temporal resolution. This may 

have removed outliers and erroneous estimations which would corrupt the 

correlation. 

 

7.5 Limitations 

The examination of the HN5 tumour model was hindered by the small sample 

number, as a result of ulceration. More ulceration was observed here than what 

was expected based on the preliminary study, a result of a variation in the depth 

of the injection, and time limitations did not allow for incorporation of additional 

animals. Further, it was difficult to stratify complete and partials responders in this 

cohort since all treated tumours responded and survived for longer than 40 days. 

Response was based on an arbitrary threshold of survival at day 80, which may 

not be reflective of a true difference in response. 

 

Histopathology was not performed at any imaging timepoints following 

radiotherapy to confirm the biological basis of changes seen in DCE-US metrics. 

However, visual assessment of DCE-US metric maps at endpoint imaging and 

CD31 staining of the excised tumours revealed good spatial correspondence 
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supporting the biological validation of 3D DCE-US. Future work should examine 

histopathological readouts that can be used to assess perfusion at short 

timepoints after radiation to confirm the changes observed with DCE-US imaging. 

 

The presented analysis examines the change in each DCE-US metric at each 

timepoint independently. A multi–metric, multi–timepoint analysis integrating 

these separate changes is expected to reflect radiation-induced vascular 

changes more comprehensively and will be investigated in future work. The 

analysis also did not consider the change in perfusion metrics for each tumour 

ROI or using a subregion analysis of the highest perfused volume, similar to that 

presented in chapter 5, and this will also be attempted.  

 

All the studies discussed in the introduction used volumetric matrix arrays to 

image the tumour volume. Such transducers are not widely available, and thus 

volumetric imaging achieved through transducer translation, as is carried out 

here, can increase the accessibility of 3D DCE-US imaging but has a limited 

volume rate. There may be improved estimation of time-based metrics for the 

whole-VOI if a matrix array which can achieve a higher volume rate is used.  
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8 CHAPTER  Conclusion 
8.1 Conclusions 

The work reported in this thesis aimed to investigate the potential of imaging 

metrics measured using dynamic contrast enhanced ultrasound (DCE-US) 

imaging as early imaging biomarkers of tumour response to radiotherapy in head 

and neck (H&N) and cervical cancer. Preclinical H&N and cervical tumour models 

were employed to study the repeatability of the imaging modality, as part of its 

technical assessment [47], and the association of DCE-US measured vascular 

changes with overall tumour response.  

 

8.1.1 Characterisation of in vivo models of H&N and cervical cancer  
 

Chapter 4 explored in vivo models that can be reliably used to assess the stated 

aims. The examined models were based on cancer cell lines that had previously 

grown in vivo at the ICR. Tumorigenicity assessment of C33A & ME-180 cervical 

cancer cell lines showed good tumor growth in the former and a high rate of 

ulceration in the latter, making it an unsuitable in vivo tumour model. 

Tumorigenicity of close to 100% could be achieved in athymic nude mice 

inoculated with C33A cancer cells. Examination of the radiosensitivity of C33A 

tumours radiation doses from 10 – 25 Gy, demonstrated that the desired 

intertumour heterogenous radioresponse was achieved using 25 Gy. This dose 

produced minimal radiation-induced side effects, skin erythema which quickly 

resolved was observed. The tumorigenicity (close to 100%) and radioresponse 

of HN5 H&N model that was previously observed at ICR, was confirmed in this 

study, with a dose of 20 Gy and 25 Gy achieving both partial and complete 

response.  

 

The functional vasculature of the two tumour models was assessed using 2D 

DCE-US. The C33A tumour model had a well-enhanced rim and lower 

enhancement in the core, representing a rim/core pattern of tumour vasculature, 
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while HN5 tumours exhibited more spatially homogenous enhancement. Overall, 

C33A tumours were less perfused than HN5 tumours.  This was quantified by the 

lower whole-ROI PE, AUC, and longer WIT of C33A tumours, as well greater 

intratumour spatial heterogeneity. The poor enhancement in C33A tumours 

indicates poor perfusion at pretreatment, which can explain the lower-than-

expected in vivo radiosensitivity based on the cell line’s in vitro radiosensitivity. 

The relationship between DCE-US metrics and the tumour vasculature was 

confirmed at endpoint imaging of the tumours using histopathological markers of 

vasculature and cell viability. Regions in the tumour section with CD31 staining 

and viable cells showed good spatial correspondence to regions of high AUC in 

the metric map, indicating the presence of vascular volume. Based on this work, 

it was concluded that the C33A model is typically less perfused compared to HN5 

tumours, with a non-viable core which necessitates high doses of radiation to 

induce a complete response.  Both models, however, were considered suitable 

for in vivo studies of DCE-US metrics.  

 

The relationship between the different DCE-US metrics was assessed to confirm 

what metrics were interdependent and are thus expected to show similar trends 

and inform on the same vascular properties. The most consistent correlation 

obtained from both tumour models and using pixel-wise and whole-ROI metrics 

was the positive correlation of PE and AUC with MTT and WOUT, indicating that 

MTT and WOUT are influenced by the blood volume in addition to their 

relationship with blood velocity. The weak correlation of AT and WIT with AUC 

and PE indicated that these time-based metrics were not strongly influenced by 

blood volume and may be more likely to be influenced by the mouse physiology 

and the structure of the vasculature.  

 

8.1.2 Assessment of 2D DCE-US metrics for use as imaging biomarkers 
of radiotherapy response 

 
Chapter 5 described the examination of DCE-US using 2D imaging with the Aplio 

scanner. DCE-US imaging was carried out prior to and 48 hours after radiation. 

In the HN5 tumour model, complete responders were identified based on 

complete tumour regression with no regrowth. All treated and control tumours 
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showed a decrease in whole-ROI PE, AUC, indicting decreased vascular volume 

at the later imaging timepoint. This was confirmed by comparing the pattern of 

perfusion, using maps of PE, between pretreatment and endpoint imaging. HN5 

tumours tended to be homogeneously enhanced pretreatment but had a non-

perfused core at endpoint.    

 

This study showed that when the whole-ROI was considered, complete 

responders had a greater decrease in AUC and WOUT than partial responders 

in HN5 and C33A tumours, respectively, indicating a greater disruption of 

vascular volume (vascular damage) in complete responders. Results from 

chapter 4 showed that WOUT and MTT are related to blood volume-based 

metrics (PE and AUC). The same trend, negative decreases in complete 

responders relative to the change in partial responder was observed for PE and 

AUC in both models and MTT in the C33A model.    Functional subregion analysis 

examined the change in DCE-US metrics in the tumour subregion with the highest 

perfusion, an analysis equivalent to commonly used ‘hotspot’ analysis. In HN5 

tumours this showed the same result as whole-ROI analysis with a decrease in 

AUC in the subregion for complete responders. In C33A tumours, high perfusion 

subregions revealed a decrease in MTT, WOUT and AUC. Indicating that 

subregion analysis may be more sensitive to changes in DCE-US metrics in 

response to treatment.  However, since AUC and MTT are strongly correlated to 

WOUT, subregion analysis may not be able to provide more predictive imaging 

biomarkers of response compared to whole-ROI analysis. The hypothesised 

decrease in vascular volume in both models, inferred by changes in DCE-US 

metrics, agrees with the reported evidence of vascular damage following high-

dose single fraction radiation. Histogram analysis based on pixel-wise metric 

maps can be used to inspect intratumour heterogeneity and showed that 

complete response in the C33A model was associated with an increase in the 

skewness of the WOUT distribution, which suggests that the decrease in the 

whole-ROI WOUT was driven by the elimination of pixels (i.e., they no longer 

contained functioning vasculature) with long WOUT.  

 

It should be noted that C33A tumours were treated with 15 or 20 Gy and complete 

tumour regression was not achieved with either dose and therefore these results 
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showing that DCE-US can measure differences between complete and partial 

responders were particularly encouraging in terms of the potential of DCE-US 

metrics to detect changes in vasculature in response to treatment.  

 

The repeatability of DCE-US imaging was assessed in tumours of both models 

at endpoint imaging. The most repeatable metric using whole-ROI analysis was 

AUC (median variation 8%) while WIT had the lowest repeatability (median 

variation 33 %). The superior repeatability of AUC compared to PE may explain 

why changes in the vascular volume could only detected from the AUC in HN5 

tumours.  DCE-US metrics changed systematically between injections; a 

decrease in PE and AT and an increase in WIT and MTT was observed in the 

second DCE-US acquisition. Changes in AT were likely a result of changes in the 

mouse body blood flow which can be caused by temporally variable 

hemodynamic effects of the anaesthesia. Meanwhile, the increase in WIT and 

MTT and decrease in PE may indicate lower blood flow or volume within the 

tumour. The reason for this remains unclear but could indicate an interaction with 

microbubbles from the first injection with the functional vasculature, causing 

transient changes. Other sources of variation relating to data and image analysis 

were considered. The contribution to the variation in whole-ROI metrics due to 

the uncertainty of ROI delineation was found not to be significant. Similarly, 

calculating DCE-US metrics from fitted models, rather than raw TAC that includes 

motion noise, did not provide an improvement in the repeatability.  

 

Variation in histogram metrics were of similar magnitude as whole-ROI metrics. 

The histogram distribution of pixel-wise DCE-US metrics showed the highest 

repeatability in AUC and lowest for WIT, in agreement with whole-ROI analysis. 

Similar to the whole-ROI WIT, the SD and mFWHM of WIT distribution increased 

in the second acquisition. Meanwhile, AT had an increase in heterogeneity, 

despite the overall decrease in AT across the tumour. The explanation put 

forward is that pixel-wise AT is dependent on different factors according to the 

spatial location of pixels. AT in pixels near the periphery is primarily a measure 

of blood flow outside the tumour and should have quicker AT. Pixels in the tumour 

core depend on blood outside the tumour and blood flow within the tumour from 

periphery to the core, which increased as per whole-ROI WIT. The different 
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effects on pixel-wise AT led to an increase in the heterogeneity of AT. Moreover, 

the repeatability of spatial metric maps revealed moderately good to excellent 

correlation between repeat DCE-US imaging.  

 

The overall conclusion of the preliminary results presented here is that DCE-US 

imaging could detect changes in the tumour functional vasculature that are 

associated with overall tumour response to radiotherapy, using whole-ROI and 

histogram analysis. The variation in DCE-US metrics between repeat acquisitions 

was of the same order of magnitude as observed changes following radiation, 

and therefore improvement in measurement repeatability is of crucial importance 

for the development of imaging biomarkers measured using 2D DCE-US.  

 

8.1.3 Assessment of 3D DCE-US metrics for use as imaging biomarkers 
of radiotherapy response 

 
The 3D DCE-US imaging technique used in this thesis was developed in-house 

using the Verasonics Vantage scanner. It was hypothesised that 3D imaging 

increases the precision of the measurement of DCE-US imaging metrics by 

evaluating vascular changes in the entire tumour volume, thereby improving 

repeatability of measurements across multiple days. 

 

Chapter 6 examined the repeatability of 2D and 3D DCE-US imaging carried out 

on the same (intra) day and on different (inter) days in the kidney, as a model of 

normal tissue , with no expected changes in the vasculature between imaging 

days. Comparison of 2D and 3D DCE-US intraday repeatability of whole-ROI or 

whole-VOI metrics showed no improvement using 3D DCE-US, and in fact 

showed greater variation in MTT with 3D DCE-US. The increased variation is 

assumed to be related to the systematic decrease in MTT observed over the three 

repeat injections, which was not observed with 2D DCE-US. In contrast, 3D 

imaging improved the interday repeatability of WOUT in comparison to 2D 

imaging. This supports the hypothesised improved precision that can be achieved 

using 3D imaging to overcome the variation introduced by changes in the imaging 

position. The repeatability of both 2D and 3D imaging was worse than that 

obtained with the Aplio 2D scanner. This could indicate kidney-specific sources 
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of variation, including kidney flow modulations due to the increase in total blood 

volume with repeat contrast injections. The repeatability of tumour 3D DCE-US 

imaging obtained in chapter 7 was also better than kidney repeatability, 

supporting the presence of additional sources of variation relating to the kidney.   

 
Finally, Chapter 7 presented studies of the use of 3D DCE-US imaging to predict 

and assess radioresponse. Vascular changes were assessed using TACs 

obtained from the central tumour whole-ROI, equivalent to the previously used 

2D DCE-US and TACs of the tumour volume (whole-VOI).  Radiation-induced 

vascular changes in HN5 tumours could not be identified since both treated and 

control tumours exhibited a similar decrease in vascular volume demonstrated by 

a decrease in PE, MTT and WOUT, AUC of centre tumour-ROI and whole-VOI 

from pretreatment, 72 hours and 1 week post treatment. While this was also 

observed in the preliminary study of the model, a significant difference in the 

magnitude of decrease in AUC could still be observed between complete and 

partial responders in the earlier study. This was not observed here and may be a 

result of the lower repeatability of AUC measurement with 3D imaging. 

Additionally, the centre tumour-ROI and whole-VOI AUC at pretreatment was 

significantly smaller than AUC in the preliminary study and therefore the change 

may have been relatively smaller and therefore more difficult to detect.  

 

3D DCE-US imaging study of the C33A cervical cancer model used a radiation 

dose for 25 Gy to elicit complete response. Vascular disruption in treated tumours 

was apparent 72 hours and up to 1 week following radiation, evident by a 

decrease in MTT, WOUT and AUC of the centre tumour-ROI, which was not 

detected in control tumours. A significantly bigger decrease in MTT was observed 

in complete responders compared to partial responders, which is related to 

WOUT in which a difference was observed between complete and partial 

responders in the preliminary study of chapter 5. An increase in the skewness of 

MTT distribution was observed, which implies that the decrease in the centre-

ROI MTT was caused by the change in pixels with high MTT. DCE-US metrics 

derived for the whole-VOI, showed the same decrease in MTT, WOUT and AUC 

at both timepoints following treatment, in addition to a decrease in WIT. The 

decrease in WIT represents enhanced tumour flow speed, discussed in chapter 
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4, which can be due to the disruption of vessels with poor flow that would prolong 

the whole-VOI wash-in.  

 

C33A complete responders had a larger decrease in WIT compared to partial 

responders. This was only observed using tumour whole-VOI analysis and not in 

the tumour central whole-ROI. The change in WIT in the centre tumour ROI 

showed the largest variation from the change in whole-VOI of all metrics, 

indicating the unreliability of quantifying the change in this metric through a single 

tumour slice to represent vascular changes of the whole tumour. Additionally, 

whole-VOI WIT had better repeatability than the central tumour whole-ROI. 

 

DCE-US metrics obtained in this study using the Verasonics scanner were 

different than metrics obtained in the preliminary study with the Aplio scanner; a 

shorter MTT & WOUT, smaller AUC, higher PE, and longer WIT were observed. 

Differences in the amplitude metrics PE and AUC were expected due to 

differences in the amplitude quantification between the imaging parameters of 

the two scanners and contrast modes used. The difference in MTT and WOUT, 

however, suggests that greater volume of sonicated tissue for 3D DCE-US 

caused greater bubble disruption, leading to quicker bubble disappearance in the 

tumour volume. The clear differences in MTT and WOUT contributed to the 

inability of 3D imaging to detect changes in the metric relevant to response, 

specifically in AUC for the HN5 model. This highlights the importance of 

standardising imaging settings to achieve similar contrast disruption and 

amplitude quantification when conducting longitudinal investigations. 

Repeatability of intraday measurements of 3D DCE-US was examined at the 

endpoint. Similar to the results of 2D DCE-US imaging repeatability, the variation 

in centre tumour-ROI and whole-VOI metrics between repeat acquisitions were 

of the same order as the measured radiation-induced vascular changes, which 

further supports the need for future work to improve repeatability of DCE-US, 

using both 2D and 3D imaging.  These changes are specific to single high dose 

irradiation of these murine models. In a clinical context, changes in the 

vasculature may be smaller, or more gradual, as radiotherapy for H&N and 

cervical cancer is predominantly given in 2 Gy fractions.   
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8.2 Summary  

The work of this thesis provides encouraging evidence to support the use of DCE-

US imaging for assessing vascular changes associated with response to 

radiotherapy. Changes in MTT, WOUT and AUC metrics implied vascular 

disruption, in agreement with the reported radiation induced vascular damage 

discussed in the introduction and shown in other studies using DCE-US. Using 

2D DCE-US significant differences between complete and partial were identified 

in MTT, WOUT and AUC, which indicated more vascular disruption in tumours 

with better response. 3D DCE-US imaging further revealed that a decrease in 

WIT is associated with response, which could not be detected with 2D imaging. 

A decrease in WIT suggests improved tumour blood flow which can be a result 

of the selective disruption of smaller vessels. Changes in the distribution of pixel-

wise metrics observed through histogram analysis supports the presence of a 

heterogenous impact on the vasculature. Examination of the repeatability of 

DCE-US showed that the measurement variation associated with DCE-US is of 

the same order as the measured significant changes, and hence improving 

repeatability can provide a notable effect on the biological validation and the utility 

of DCE-US imaging for measurement of response. 

 

8.3 Future work 

8.3.1 Biological validation of DCE-US imaging 
 
The timepoint chosen for histopathological comparison of DCE-US metrics was 

not ideal as tumours at this volume lacked vascularisation, and therefore it was 

not possible to perform a quantitative comparison of vascular density and DCE-

US metrics. Nor could the relationship of vascular morphology and DCE-US 

metrics be explored. Histopathology is also needed to confirm the observed 

vascular changes at the early timepoints following radiation. Future work should 

include histopathological examination of treated tumours at timepoints 

corresponding to the imaging timepoints.  
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Furthermore, Pimonidazole (hypoxia) and Hoechst (perfusion) staining were 

incorporated in the endpoint imaging protocol but have not been examined yet 

due to time constraints. Hoechst staining is able to identify functional vasculature, 

unlike CD31 staining of endothelial cells which would include non-functional 

vasculature and can therefore be a better histopathological correlate. Inspection 

of the correlation of hypoxia with DCE-US would support the use of DCE-US in 

assessing hypoxia, another important factor of radioresponse which can serve as 

an important predictor.   

 

8.3.2 Technical validation of DCE-US 
 
The precision of DCE-US, quantified only through repeatability here, suggests 

work is required to improve repeatability to enable detection of vascular changes 

using DCE-US metrics. It was clear that repeat injections in one imaging session 

introduce a bias in DCE-US metrics. This effect should be considered when 

comparing DCE-US longitudinally (and preclinically) and indicates that changes 

in DCE-US metrics between timepoints should be measured from matched 

injections, i.e., comparison of the first injections. One source of variation, 

speculated but not confirmed, was the effect of changes in animal physiological 

status. The employed animal setup and equipment here only allowed monitoring 

of the respiration rate, which was noted to possibly change substantially between 

repeat DCE-US acquisitions because of the anaesthesia. It is unlikely that this 

effect exists in the context of clinical DCE-US imaging, and in the clinical context 

of treatment response monitoring repeat injections are also likely to be at least 

several days apart. However, physiological variations day-to-day in patients may 

also exist and future work as part of the translation DCE-US into the clinic for 

assessment of response could study the effect of variation in, for example, blood 

pressure, respiration rate or hydration.  

 

Moreover, approaches to normalise tumour DCE-US metrics using a reference 

tissue should be explored. Normalised metrics do not suffer the variation caused 

by changes in the contrast injection volume or speed, i.e., the input function. 

However, it can be difficult to obtain such a signal within the imaging field of view. 

Future work should investigate the best approach, which may mean an additional 
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transducer is required, to obtain some normalisation measure, perhaps from a 

normal tissue such as the kidney or a large blood vessel.  

 

Another aspect of technical validation was unintentionally noted in this work, that 

of the reproducibility of DCE-US. Reproducibility refers to the precision of imaging 

carried out with different scanners, in different centres, and different users. Here 

the two scanners used displayed significant differences in the quantification of 

DEC-US metrics. Methods of standardising the obtained DCE-US metrics 

between different scanners may be of vital importance in some settings where it 

is not possible to guarantee the use the same type or make of scanner each time 

a patient is scanned.  

 

8.3.3 DCE-US data analysis  
 
Multi-metric, or multi-timepoint analysis can provide a more accurate evaluation 

of vascular changes rather than relying on a single metric, which can in turn 

improve assessment of response using DCE-US. This analysis did not fully 

explore methods of examining intratumour spatial heterogeneity, including 

texture analysis of metric maps. This is an exciting prospect considering the 

demonstrated good to excellent spatial repeatability in some of the metrics. The 

data obtained in the work described in this thesis provides the opportunity for 

future investigation of metrics of changes in spatial heterogeneity.  

 

8.3.4 Radiotherapy fractionation 
 
Single fraction large radiation done in this thesis is of limited clinical utility, 

particularly for H&N and cervical cancer. Stereotactic body radiotherapy is not 

clinical standard but has been explored in the treatment of oligometastases [9, 

233]. Future work should focus on clinically fractionated radiotherapy treatment 

schedules. Fractionated radiotherapy does not induce endothelial cell apoptosis, 

and conversely has been  shown to improve tumour perfusion [95, 234] and lead 

to tumour reoxygenation [95, 101]. Consequently, we may expect to see 

significant increases in metrics such as AUC, WOUT, PE and MTT in complete 

responders compared to partial responders.  
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A1. Intratumour heterogeneity 

Histogram parameters, standard deviation (SD), coefficient of variation (CoV), 

modified full-width half maximum (mFWHM), skewness, and kurtosis of pixel wise 

PE, WIT,  MTT, and WOUT, are shown for  C33A tumours (C5 study) and HN5 

tumours (H1) study at the pretreatment imaging timepoint discussed in chapter 4 

 
 

 
 
Figure A1-1: Intratumour heterogeneity of PE for C33A and HN5 tumours. 
Heterogeneity is characterised using SD, CoV, skewness, kurtosis and mFWHM of 
pixel-wise PE. C33A tumours had greater intratumour heterogeneity demonstrated by 
the significantly bigger SD, CoV, and mFWHM. 
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Figure A1-3: Intratumour heterogeneity of MTT for C33A and HN5 tumours. 
Heterogeneity is characterised using SD, CoV, skewness, kurtosis and mFWHM of 
pixel-wise MTT. 

Figure A1-2: Intratumour heterogeneity of WIT for C33A and HN5 tumours. 
Heterogeneity is characterised using SD, CoV, skewness, kurtosis and mFWHM of 
pixel-wise WIT.  
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Figure A1-4: Intratumour heterogeneity of WOUT for C33A and HN5 tumours. 
Heterogeneity is characterised using SD, CoV, skewness, kurtosis and mFWHM of 
pixel-wise WOUT. 

 
 

A2. Pixel – wise TAC metric correlations 

Presented here are the correlation obtained from each tumour of the HN5 and 

C33A models using pixel-wise TAC metrics, discussed in chapter 4. 
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Figure A2-1: Correlation of pixel-wise PE with other DCE-US metrics obtained in all 
C33A (blue) and HN5 tumours (orange). The correlation coefficient of each tumour is 
shown with the error bars representing 95% CIs. PE was negatively correlated to AT 
and WIT (for C33A tumours only) and positively correlated to MTT, WOUT and AUC in 
both models 
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Figure A2-2: Correlation of pixel-wise AT with other DCE-US metrics obtained in all C33A 
(blue) and HN5 tumours (orange). The correlation coefficient of each tumour is shown 
with the error bars representing the 95% CIs.  AT was positively correlated to WIT in the 
C33A model, and negatively to MTT (in HN5 tumours only), WOUT and AUC. 
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Figure A2-3: Correlation of pixel-wise WIT with other DCE-US metrics obtained in all 
C33A (blue) and HN5 tumours (orange). The correlation coefficient of each tumour is 
shown with the error bars representing the 95% CIs.  WIT was positively correlated to 
MTT, and negatively to WOUT and AUC in C33A tumours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2-4: Correlation of pixel-wise MTT with other DCE-US metrics obtained in all 
C33A (blue) and HN5 tumours (orange). The correlation coefficient of each tumour is 
shown with the error bars representing the 95% CIs.  MTT was positively correlated to 
WOUT and AUC in in both tumour models. 
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Figure A2-5: Correlation of pixel-wise WOUT and AUC obtained in all C33A (blue) and 
HN5 tumours (orange). The correlation coefficient of each tumour is shown with the error 
bars representing the 95% CIs.  WOUT was positively correlated to AUC  in both tumour 
models. 

 
 

A3. Histogram analysis of HN5 tumours 

Presented here is the change in histogram parameters of PE, AUC, AT, and 

WOUT in the HN5 study discussed in chapter 5 (H1 study), demonstrating an 

increase in intratumour heterogeneity from the pretreatment imaging timepoint ( 

3 -6 hours prior to radiation) to the posttreatment timepoint, 48 hours after . This 

was the case in all groups, complete responders, partial responders, and control 

tumours. 
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Figure A3-1: Histogram parameters for PE distribution at the two imaging timepoints in 
HN5 tumours. The intratumour heterogeneity of PE increased as evident by a significant 
increase in standard deviation (SD), coefficient of variation (CoV), skewness, and 
modified full width half maximum (mFWHM), and a decrease in kurtosis in all tumours, 
regardless of treatment or response. 

 

Figure A3-2: Histogram parameters for AUC distribution at the two imaging timepoints in 
HN5 tumours. The intratumour heterogeneity of AUC increased as evident by a 
significant increase in standard deviation (SD), coefficient of variation (CoV), and 
modified full width half maximum (mFWHM). 
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Figure A3-3: Histogram parameters for AT distribution at the two imaging timepoints in 
HN5 tumours. The intratumour heterogeneity of AT increased as evident by a significant 
increase in the mFWHM,  

 
 
Figure A3-4: Histogram parameters for WOUT distribution at the two imaging timepoints 
in HN5 tumours. The intratumour heterogeneity of WOUT increased as evident by a 
significant increase in the coefficient of variation (CoV) and skewness. 
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A4. Variation in skewness 

Estimation of the skewness of pixel-wise TAC metrics obtained from repeat DCE-

US imaging revealed large variation, which was excluded from the main 

discussion. Presented here is the signed variation in the skewness parameter for 

DCE-US metrics, calculated from the repeatability study discussed in chapter 5, 

and an example of a calculated large variation with no apparent change in the 

histogram. 

 
 
Figure A4-1: Variation in skewness of DCE-US metric histograms with high variation 
calculated in PE, AT , WOUT, and AUC, for some tumours (outliers). 
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Figure A4-2: Example histogram distribution of pixel-wise AUC showing high variation in 
skewness ( > 8000%) despite little overall change. Skewness for injection 1 = 0.0016 
and for injection 2 = 0.1320. 

 

A5. Combining HN5 and C33A tumours for 
analysis of 3D DCE-US 

 
In an attempt to increase the sample number, C33A tumours from studies C6 & 

C7, and HN5 tumours from studies H2 & H3, discussed in chapter 7, were 

combined for the assessment of 3D DCE-US and radioresponse. No significant 

results were found in comparison to the results obtained from the separate 

analysis of tumour models discussed in the main thesis. Presented here is the 

change in DCE-US metrics obtained from the whole-VOI and centre-tumour ROI 

of all tumours combined. 
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Figure A5-1: the change in DCE-US metrics obtained from the tumour volume (left) and centre-tumour ROI (right) from pretreatment 

to 72 hours and 1 week after radiation, for both C33A and HN5 tumours, shown according to response, with complete responders 

(filled circle), partial responders (white circle), and control tumours (cross).
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