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Early-stage squamous cell cancer (SCC) of the glottis has a good prognosis. Therefore,
patients have long survival outcomes and may potentially suffer from late toxicities of
radiotherapy. Radiotherapy with a conventional parallel-opposed-pair or anterior-oblique
beam arrangements for stage 1 and 2 glottic SCC have field borders that traditionally
cover the entire larynx, exposing organs-at-risk (e.g. carotid arteries, contralateral vocal
cord, contralateral arytenoid and inferior pharyngeal constrictor muscles) to high radiation
doses. The potential long-term risk of cerebrovascular events has attracted much
attention to the dose that carotid arteries receive. Swallow and respiratory motion of
laryngeal structures has been an important factor that previously limited reduction of the
radiation treatment volume. Motion has been evaluated using multiple imaging modalities
and this information has been used to calculate PTVmargins for generation of more limited
target volumes. This review discusses the current literature surrounding dose-effect
relationships for various organs-at-risk and the late toxicities that are associated with
them. This article also reviews the currently available data and effects of laryngeal motions
on dosimetry to the primary target. We also review the current limitations and benefits of a
more targeted approach of radiotherapy for early-stage glottic SCCs and the evolution of
CT-based IGRT and MR-guided radiotherapy techniques that may facilitate a shift away
from a conventional 3D-conformal radiotherapy approach.

Keywords: larynx cancer, radiotherapy, vocal cords, MR-guided radiotherapy, 3D- conformal radiotherapy
INTRODUCTION

Squamous cell cancer (SCC) represents the most common invasive neoplasm of the larynx (1). SCCs
arising from the glottic subregions of the larynx are deemed low-risk for regional or distant
metastasis due to the meagre vocal cord lymphatic drainage system (2). Supraglottic and subglottic
cancers are less common, accounting for up to 35% and 4% of all laryngeal cancers respectively (3).
Early-stage supraglottic and subglottic cancers may be more locally infiltrative and have a higher
risk of lymph node metastases than glottic SCCs (4). However, management of early-stage (T1-T2/
N0) glottic and subglottic SCCs remains similar (5, 6).
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The treatment paradigm for early-stage glottic SCC (ESGC)
has remained unaltered for many decades. The two main
treatment options are laser microsurgery or radical
radiotherapy, both of which have similar outcomes in terms of
local disease control (7). Despite advances in radiotherapy
delivery methods, such as intensity-modulated radiotherapy
(IMRT), the radiotherapy technique for ESGCs has not
changed. 3D-conformal radiotherapy (3D-CRT) and generous
clinical target volumes (CTV) are still the mainstay of
management, particularly within the United Kingdom (8).

In the recent past, image-guided radiotherapy (IGRT) has
evolved with the advent of on-set cone-beam CT (CBCT)
imaging and, more recently, the introduction of the MR-
linear accelerator (MRL) that provides real-time intra-
fraction dynamic soft tissue data. In ESGC, a “conventional”
radiotherapy beam arrangement is still used to cover the
tumour and a large volume of surrounding non-target tissue
as laryngeal motion remains a concern. As the precision of
radiotherapy delivery techniques continue to improve, there is
a push for laryngeal radiotherapy to evolve in parallel. This
paper reviews the historical context and potential
shortcomings of conventional radiotherapy techniques and
introduces the future concepts of adaptive radiotherapy,
specifically in the context of ESGCs.
PATTERNS OF DISEASE SPREAD

Kirchner originally published a pathological analysis of 200
partial/total laryngectomy specimens, 52 of which had glottic
SCCs, and showed patterns of disease spread that were common
between specimens (9). ESGCs are largely bound by surrounding
fibroelastic membranes. T1 lesions are bound by the conus
elasticus, which forms a firm barrier against tumour growth.
Spread beyond the vocal cord frequently occurs through invasion
of the anterior commissure, as the attachment of Broyles’
ligament onto the thyroid cartilage serves as a weak point,
where tumour may invade through the cricothyroid membrane
into the laryngeal cartilage and supraglottic or subglottic spaces
(10). Anterior commissure invasion appears to be the most
important prognostic determinant for local control for
ESGC (11).

Invasion of cancer to a point where vocal cord mobility is
impaired (T2) is either caused by invasion of the thyroarytenoid
muscle or spread along the mucosal surface of the cord itself.
Complete replacement of the thyroarytenoid muscle is the most
frequent prerequisite before developing complete vocal cord
fixation and spread. Less frequent causes of impaired vocal
cord mobility/fixation include subglottic extension (T2) or
direct extension along the upper surface of the cord into the
thyroid cartilage (T3). Glottic SCCs are slow growing and
approximately two thirds of tumours are contained at the level
of the glottis at diagnosis (12). In contrast, subglottic tumours are
more locally invasive, have higher rates of submucosal
infiltration and fibroelastic barriers that are more susceptible to
penetration (4).
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CONVENTIONAL RADIOTHERAPY

Other than transoral laser microsurgery, for stage T1a, ESGCs and
subglottic tumours are conventionally treated with a beam
arrangement that includes either two lateral parallel-opposed or
two anterior-oblique fields, (Figure 1) (13). Field sizes for ESGCs are
typically 25 to 36 cm2, (for T1 and T2 respectively). Field borders
typically cover the entire larynx as there is uncertainty in the degree
of motion and pattern of local tumour spread (14). For ESGC,
elective nodal irradiation for N0 disease is not routinely performed,
although the evidence base for subglottic cancers remains weak.
Uncertainties in the local extent of tumour can arise from lack of
direct visualisation of tumour growth (particularly the inferior
surface of the vocal cords) or inadequacies in imaging modalities
that make gross tumour volume (GTV) identification difficult (15).

Decisions between laryngeal-preserving or non-preserving
treatments largely depend on the presence of thyroid cartilage
invasion. CT-based imaging is the primary modality for staging
laryngeal tumours because it has been deemed more sensitive at
detecting cartilage invasion (quoted between 80-100%) (16).
However, the specificity of CT and MRI for cartilage invasion is
similar (approximately 70-80%) and both can overestimate cartilage
invasion (17), although this has been improved with dynamic
contrast-enhancement studies or dual-energy CTs (18, 19). CT
andMRI together have a high negative-predictive value for cartilage
invasion and MRI particularly can be a more helpful modality for
early-stage tumours where soft tissue assessment of the vocal cord
or anterior commissure is necessary (20).

The varying degrees of cartilage ossification can present
challenges when trying to distinguish thyroid cartilage from
tumour on CT (21). Thyroid cartilage calcification and air can
impede visualisation of laryngeal structures using ultrasound (22).
However, a prospective study compared the performance of
ultrasound against CT imaging in assessments of tumour
invasion (23). There was a trend towards improved sensitivity in
the detection of thyroid cartilage invasion when using ultrasound
(87.5%) compared to CT (75%). A statistically significant
improvement in the specificity of detection of paraglottic space
invasion was seen with ultrasound. Dhoot et al. performed a
similar study but with pathological confirmation of thyroid
cartilage invasion post-laryngectomy (24). A trend towards
improved sensitivity in detection of thyroid cartilage invasion
was also noted for ultrasound (98%) compared to CT (91%).

With the advances in imaging technology and protocols,
definition of tumour extent has improved to a point where it is
possible to avoid conventional radiotherapy beam arrangements
and delivery of 100% dose to large CTV and Planning Target
Volumes (PTV).
DOSE-VOLUME EFFECTS TO
ORGANS-AT-RISK

Deglutition
The muscles involved in the complex process of deglutition have
recently been defined into groups that comprise 7 different
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“functional swallowing units” (25). The muscles that can be
damaged with resulting long-term dysphagia and aspiration
post-radiotherapy were described by Eisbruch et al. (26). Based
on video-fluoroscopy (VF) and CT-based analyses, they
quantified the degree of functional and anatomical changes in
the muscle groups after radiotherapy (with or without
concurrent chemotherapy) for various head and neck cancers
(HNC). These muscles are termed as “dysphagia-aspiration-
related structures – DARS.”

The pharyngeal constrictor muscles (superior (SPCM),
middle (MPCM) and inferior (IPCM)), the floor of mouth
(geniohyoid, mylohyoid and anterior digastric) and laryngeal
(thyroarytenoid, cricoarytenoid and supraglottic aryepiglottic)
muscles were all identified as key components of the different
stages of deglutition (27). Although peak dysfunctions in global
deglutition are observed around 3 months post-completion of
radiotherapy, muscle groups involved in different phases of
deglutition show variable extents of recovery at 12 months (28).

Subsequent studies have shown positively correlating dose-
effect relationships for different muscle groups and resultant
chronic functional and anatomical changes in swallowing (29–
32). Methods of assessment of functional dysphagia have varied
between studies, but pooled analyses, mainly consisting of
heterogeneous retrospective studies, suggest that for a
significant reduction in chronic dysphagia and aspiration risk,
the mean pharyngeal constrictor dose of <50 Gy (at 2 Gy per
Frontiers in Oncology | www.frontiersin.org 3
fraction) should be the target (33, 34). Caglar et al. and Caudell
et al. analysed specific relationships between dose to laryngeal or
IPCM structures and gastrostomy dependency (35, 36). They
concluded that more than 50 Gy to larynx and IPCM was a
significant risk factor for aspiration, stricture and chronic
gastrostomy dependency. Accordingly, SPCM irradiation was
significant in the context of radiotherapy for oropharyngeal and
nasopharyngeal SCCs.

A multi-centre randomised phase 3 trial investigated
dysphagia-optimised IMRT (DO-IMRT) to spare DARS for
112 patients with oropharyngeal and hypopharyngeal cancers
(37). Mandatory dose constraints were set as Dmean <50 Gy for
all pharyngeal constrictor muscles. They were the first to
demonstrate that the MD Anderson Dysphagia Inventory score
was improved with DO-IMRT compared to standard IMRT.

3D-CRT for ESGCs treats significant volumes of IPCM and
supraglottic larynx. 3D-CRT has remained the method of
treatment at our institute to date. Analyses of the dose
statistics to organs-at-risk (OARs) within our patient cohort,
who receive 55 Gy in 20 fractions over 4 weeks, are shown in
Table 1 (unpublished data).

A hypothesis-generating prospective analysis of a small
population of patients with largely oropharyngeal SCCs, with
no laryngeal invasion, demonstrated that over 65 Gy delivered to
the aryepiglottic folds had the strongest correlation between dose
and risk of aspiration (38). Studies have generally pooled data
A

B

FIGURE 1 | Two patients with T1a glottic SCC treated with radical radiotherapy to a dose of 55 Gy in 20 fractions over 4 weeks. Axial and sagittal images show
percentage dose coverage from a bilateral parallel-opposed (A) and anterior-oblique (B) beam arrangement. Carotid arteries (red) highlight their proximity to the
primary targets and doses received.
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from patients with a variety of primary HNCs who have largely
received IMRT with or without concurrent chemotherapy. Thus,
it has been difficult to deduce precise dose-effect relationships for
individual laryngeal structures, including their relative
contributions towards the degree of dysphagia.

Voice
Voice relies on the function of multiple organ systems, from the
lungs to individual components within the larynx, all working in
concert with the oral cavity and pharynx to create speech (39).
Assessment of voice entails a variety of objective and subjective
methods that appraise all aspects. Historically, there have been
contradictory reports on the longer-term outcomes of
radiotherapy for ESGCs (40). However, studies performed in
the last two decades have adopted more sophisticated tests for
analysis of voice and reported more consistent outcomes.

The impact of accelerated hypofractionated radiotherapy on
voice quality was demonstrated in a prospective study of 25
patients with ESGC (41). When compared to healthy controls,
baseline voice quality, measured using serial electroglottographic
and acoustic analysis methods, was worse but improved by 12
months post-radiotherapy. However, voice quality still remained
significantly worse than compared to the normal subjects.

Fung et al. compared the differences in the impact of 3D-CRT
on voice in a small number of patients (n=17) who received
radiotherapy to non-laryngeal SCC (60-74 Gy in 30-37 fractions,
average laryngeal dose 50 Gy) and stage T1a glottis SCC (61 Gy
in 25 fractions) (42). They used a variety of objective and
subjective methods to analyse voice and showed evidence of
global vocal dysfunction that was greater in patients treated for
non-laryngeal wide-field radiotherapy. However, harmonic-
noise ratio (HNR) and shimmer were worse in the T1a glottis
patients, a finding also noted by Mekis et al. (43). HNR and
shimmer are voice amplitude-based measures and affected by the
structural integrity of the vocal cords. These studies suggest that
voice/speech is dependent on multiple factors such as extra-
laryngeal muscle and salivary gland functions as well as chronic
radiotherapy-related changes such as fibrosis or lymphatic
drainage, which alter the physical structures of the upper
airway tract.

A mixture of retrospective and prospective studies involving
ESGCs have all shown subjective and objective improvements in
all parameters of voice within 12 months of radical 3D-CRT (44–
49). Despite subjective improvements, objective measures of
Frontiers in Oncology | www.frontiersin.org 4
voice do not return to population-derived normal ranges (42,
48, 50). Three studies all compared voice function following
radiotherapy against patients having transoral laser microsurgery
(45–47). There are conflicting outcomes between the two
treatment modalities, which is the reason for the lack of
conclusive evidence to suggest either treatment option being
superior for improvements in short-term voice quality. Arias
et al. also showed that Voice Handicap Index and quality of life
(QoL) measures were superior with radiotherapy compared to
surgery. Improvements in QoL are consistent findings across the
majority of studies, suggesting that, despite persistent objective
deficits in voice function, patients feel their communicative
functions are satisfactory.

Patients with ESGCs generally have good prognoses and
delayed effects of treatments are, therefore, more likely to
impact on later QoL. Hocevar-Biltezar et al. and Ma et al.
performed studies that followed up patients for over 1 year
after radical radiotherapy for T1 glottic SCC (51, 52). Direct
visualisation revealed morphological defects of varying severities
in over 95% of patients with contralateral vocal cord changes in
50% of cases. Evolution of chronic radiotherapy-related changes
demonstrated worsening of dysphonia, speech loudness
and fatigue.

Fu et al. evaluated the degree of laryngeal oedema in patients
mainly with T1-2 SCCs receiving between 50-80 Gy in 1.5-1.8 Gy
per fraction, with conventional radiotherapy beam arrangements
(53). Roughly 15% of patients had laryngeal oedema lasting over
3 months post-radiotherapy. 11.7% of patients with no proven
disease recurrence had oedema that resolved within 2 years, with
smoking and alcohol being associated with more severe and
longer lasting oedema. Doses above 70 Gy, larger field sizes and
more advanced disease were associated with more severe
oedema. This would be expected adversely to affect quality of
voice and it has been suggested that dose to non-involved
laryngeal tissue should be maintained below 40-45 Gy to
maintain function (54). Furthermore, speech-related QoL
outcomes were significantly associated with doses above 66 Gy
to the aryepiglottic folds, pre-epiglottic space, false cords or
lateral pharyngeal walls (55).

Carotid Arteries
The left and right common carotid arteries pass posterior to the
respective sternoclavicular joints before they ascend the neck and
bifurcate into external and internal branches at the level of the
TABLE 1 | Dose statistics analysed for 32 patients treated with 3D-CRT at Royal Marsden Hospital, Sutton.

OARs 3D-CRT (n = 32) Parrallel-opposed-pair (n = 22) Anterior-oblique (n = 10)

Dmean (SD), Gy Dmax to 1cm3 (SD, Gy) Dmean (SD), Gy Dmax to 1cm3 (SD, Gy) Dmean (SD), Gy Dmax to 1cm3 (SD, Gy)

Carotid (ipsilateral) 45.8 (4.39) 57.5 (0.76) 47.11 (3.28) 57.58 (0.77) 42.89 (5.27) 57.35 (0.76)
Carotid (contralateral) 45.44 (0.4.88) 57.39 (0.89) 46.79 (3.92) 57.44 (0.92) 42.48 (5.64) 57.28 (0.84)
Arytenoid (ipsilateral) 55.95 (1.13) - 55.91 (1.29) - 56.04 (0.72) -
Arytenoid (contralateral) 56.08 (0.74) - 56.07 (0.81) - 56.11 (0.62) -
IPCM 54.82 (0.99) - 54.61 (0.97) - 55.27 (0.92) -
Thyroid Gland 26.88 (8.82) - 25.55 (8.77) - 29.80 (8.63) -
Se
ptember 2021 | Vo
Carotid arteries were contoured 1 cm superior and inferior to the primary PTV. Mean (Dmean) and maximum (Dmax) doses are shown for serial OARs. All OARs were expanded by 3 mm to
a “Planning Risk Volume.” Dose statistics are also shown separately for parallel-opposed-pair and anterior-oblique beam arrangements.
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superior border of the thyroid cartilage (56). The internal carotid
artery extends towards the base of skull, whereas the external
carotid artery further divides into 8 branches that supply the
extracranial head and neck regions (57).

Radiotherapy plans for locally-advanced HNCs inevitably
treat a significant length of the carotid arteries when neck
nodes are treated. The chronic sequelae of carotid irradiation
have been well described in the literature. Chung et al.
retrospectively demonstrated carotid wall thickening visible on
MRI as early as 6 months post-irradiation (58). Patients were
treated for a range of HNC primary sites using conventional 3D-
CRT techniques to cover neck nodes, with doses ranging between
40-74 Gy.

Histopathological analyses of irradiated carotid arteries in
cadavers have provided insights into the pathophysiological
changes that cause carotid artery stenosis (56). The sequence
of events that cause chronic vessel changes are analogous to the
formation of atherosclerosis, as would be seen from prolonged
exposure to the Framingham risk factors (59). However, acute
changes have been explored in irradiated canine femoral vessels,
that showed endothelial damage as early as 48 hours post-
exposure, followed by destruction of the internal elastic lamina
and endothelial thickening by 1 week post-exposure. By 4
months post-exposure there was focal necrosis and fibrosis of
the media, accompanied by chronic inflammation and minimal
thrombosis of the adventitia. The combination of chronic fibrosis
and atherosclerosis, caused by inflammation and smooth muscle
migration and foam cell generation, is what results in narrowing
of the lumen (60). Damage and necrosis of the vasa vasorum is a
distinguishing feature of radiotherapy-induced adventitial
damage (61, 62).

The effects seen in medium- to large-sized arteries are similar
in appearance and are limited to irradiated regions. Although
intima-media thickness (IMT) and carotid artery lumen
narrowing is readily visible on carotid ultrasound scans by 6
months post-irradiation, there is little impact on blood flow (63,
64). However, carotid artery stenosis and the risk of developing
associated symptoms progressively worsens, with Cheng et al.
observing an annualised rate of progression from <50% to ≥50%
stenosis of 15.4%, compared to 4.8% in non-irradiated arteries
(65). An early case-controlled series of patients under 60 years of
age, who received radical-dose radiotherapy (60-66 Gy in 2-2.4
Gy per fraction) for ESGC, were found to have a median interval
to stroke event of 10.9 years and absolute excess risk of 3.8
strokes (per 1000 patients/year) (66). The risk of a carotid
stenosis-related event (e.g. cerebrovascular accident (CVA),
transient ischaemic attack, amaurosis fugax) rises at an
exponential rate after 10 years post-exposure (67, 68). Many
studies have since demonstrated significantly enhanced carotid
artery stenosis as a result of exposure to radiotherapy (69–73).

As a result, much effort has been exerted in deviating away
from conventional lateral parallel-opposed pair beam
arrangements for ESGC to alternative planning techniques
such as IMRT or volumetric arc therapy (VMAT). Garcez
et al. demonstrated a significant reduction in maximum and
mean carotid artery dose by switching from a lateral parallel-
Frontiers in Oncology | www.frontiersin.org 5
opposed pair (POP) to an anterior-oblique beam arrangement
(74). With dose constraints placed on carotid arteries, IMRT
techniques can achieve substantial dose reduction compared to
3D-CRT techniques (75–78). PTV coverage with IMRT or
VMAT has better conformity and heterogeneity indices
compared to 3D-CRT techniques (75). Although spinal cord
dose tends to be higher for IMRT, doses do not approach
organ tolerance.

There is much heterogeneity between studies, variations in
primary tumour site, dose, radiotherapy delivery techniques and
inconsistent dosimetry reporting, making it difficult to establish
any dose-effect relationships between carotid artery dose and
clinical consequences. A single cross-sectional study of 14
patients who had single-side neck irradiation showed that IMT
was significantly different for doses above 35 Gy only (79).
Studies have since used V35 and V50 to report carotid artery
doses in IMRT planning (80). More recently a retrospective
analysis of 750 patients who received radical dose radiotherapy
for HNC demonstrated the absolute volume of carotid artery,
particularly the common carotid and bifurcation, that received
10 Gy or greater was the most important prognostic factor for an
ischaemic CVA (81). However, this study is limited by the
relatively short mean follow-up time of 3.4 years.

Rosenthal et al. initially described their 3-field IMRT protocol
for treating T1-T2 glottic SCCs to doses ranging from 63-65.25
Gy in 2.25 Gy per fraction to 66-70 Gy in 2 Gy per fraction (77).
CTV was contoured to cover the whole larynx, as for
conventional 3D-CRT methods. Carotid artery doses were kept
as low as possible but V35 and V50 were recorded for each
patient. A follow-up paper reported outcomes for 215 patients
treated with either lateral POP (153 patients) or IMRT (62
patients) for T1 disease only (78). There were no statistically
significant differences in 3- or 5-year local control or overall
survival rates for patients with T1a/b disease or between the two
radiotherapy modalities, a finding mirrored by Zumsteg et al.
(82). Age <60 years and performance status ≤1 were the only
factors that correlated with improved overall survival on
univariate and multivariate analyses. Four CVA events
occurred in the conventional radiotherapy group and none in
the IMRT group. Follow-up period is not long enough reliably to
compare long-term effects but, based on recurrence data after a
median follow-up period of 68 months, the MD Anderson
Cancer Centre group now use IMRT techniques to treat all
their T1 glottis SCCs.

Laryngeal Motion
Patient set-up correction protocols would traditionally have
utilised patient alignment or couch shifts using bony anatomy,
which is readily visible on portal imaging systems (83). Position
verification using cervical vertebrae was used under the
assumption that spatial relations between bone and soft tissues
are fixed. Early studies of the different components involved in
deglutition utilising cineradiography showed marked differences
in the ranges and directions of motions between structures (84).
This was further replicated using VF, where they not only
showed that laryngeal and hyoid motion was separate, but also
September 2021 | Volume 11 | Article 753908
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that it was consistent regardless of the size of bolus being
swallowed (85). The importance of understanding motion was
highlighted when it was shown that local control rates after
radiotherapy delivered by matching to vertebral anatomy were
worse than when using laryngeal cartilages (86).

Hamlet et al. more accurately quantified laryngeal motion in
patients with early-stage laryngeal cancers using VF (87). They
demonstrated that laryngeal motion was greatest in the cranio-
caudal (CC) (mean 25.5 mm), more limited in anterior-posterior
(AP) (8.3 mm) and negligible in left-right (LR) directions. Total
duration of deglutition was 1 second, with resultant impact on
dose reduction at the superior field edge being as little as 0.5%.
Van Asselen et al. further demonstrated, using megavoltage X-
ray imaging, that frequency of deglutition is highest in the first 5
fractions of radiotherapy, after which it decreases between
fractions 6-10 before slowly increasing by the end of treatment,
although still not becoming as frequent as during the first 5
fractions (88). With the realisation that frequency and duration
of deglutition is limited, there has been much interest in evolving
conventional radiotherapy techniques for ESGC. Motion has,
therefore, received further in-depth exploration using more
sophisticated imaging modalities such as CBCT and MRI.
Bradley et al. first described the use of MR-based imaging to
study motion in tumours from a range of head and neck primary
subsites, including 5 patients with glottis SCC (89). CC (31.2
mm) and AP (11.6 mm) motion of vocal cords were described
during deglutition. They also showed laryngeal motion up to 7.3
mm (CC) and 3.4 mm (AP) during rest, a finding mirrored by
other groups (90, 91).

Anatomical and temporal definitions ofwhendeglutitionbegins
and ends have not been established. However, it is apparent that
motion, particularly in the CC direction, is of the greatest concern
amongst centres looking to decrease irradiation volumes for ESGC.
Quantitative data on distance, duration and frequency do show
some variation in these factors. Therefore, individual institutions
have performed their ownmotion studies in order to establish their
own PTVmargins (89, 92–94). In the context of conventional CTV
definition for ESGC, Bruijnen et al. deemed it unnecessary for
InternalTarget volume (ITV)/PTVmargins toaccount for the short
duration of laryngeal excursion during deglutition (94).Using cine-
MRIs to establish respiratory-induced vocal cord motion and
retrospective CBCT data to calculate systematic and random
errors, they calculated non-isotropic PTV margins up to a
maximum of 4.3 mm superiorly.

There has been a push towards IMRT techniques in an
attempt to spare OARs and to reduce additional soft tissues
receiving high radiotherapy doses. VMAT or step-and-shoot
IMRT are two methods that were explored by Bahig et al. (95).
When comparing both partial- and whole-larynx volumes,
swallowing was found to have minimal dosimetric impact, with
even further improvement when patients were asked not to
swallow. Instructing patients not to swallow was felt to be a
feasible strategy based on the short durations of each fraction
delivered by VMAT. They also described the importance of
routine image-guidance systems as they had noticed gradual
laryngeal shift over the course of radiotherapy.
Frontiers in Oncology | www.frontiersin.org 6
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The wealth of individual centre-level data provides reassurance
on the insignificance of laryngeal motion on dosimetry. The
potential benefits of sparing additional OARs, as well as the
equivalent long-term control outcomes from focused surgical
laser resection have resulted in some centres exploring
alternative radiotherapy techniques to smaller normal tissue
and target volumes. For some centres, the already high cure
rates for ESGC with conventional POP beam radiotherapy has
provided little motivation to move towards IMRT-based
techniques. Feigenberg et al. argued a case against IMRT, by
suggesting that 3D-CRT already achieves high rates of success
with under 2% long-term severe complication rates. Their own
data showed an increase in salvage laryngectomy rates after
IMRT for ESGC and potential for underdosing around the
anterior commissure (96). Many of these points have since
been addressed by subsequent studies.

Target Definition
Eisbruch et al. described the importance of accurate target
delineation and identified proper GTV outlining as having the
highest reward-to-risk ratio (97). GTV delineation discrepancies
or errors occur when superficial mucosal disease, something that
is not readily visible on radiological imaging, is not identified
during clinical examination. Accuracy of target delineation was
also highlighted by Kim et al. who noted higher local recurrence
rates with IMRT in patients with stage T2 glottic SCCs, likely due
to inadequate delineation or CTV margins, as there is a risk of
tumour extension above or below the glottis that is difficult to
identify on radiological imaging (14).

Traditionally, CTVs have covered the whole larynx extending
cranio-caudally from the hyoid to the cricoid and axially to cover
the thyroid cartilage and arytenoids. PTV margins vary between
institutions, but are generally larger in the cranio-caudal
directions in order to cover laryngeal motion (98). At some
institutions, shifts towards IMRT or VMAT techniques and
attempts to decrease CTV and PTV are also taking place, with
some centres employing multiple dose levels to dose-paint the
involved vocal cord alone and whole or partial larynx separately
(99). Various PTV margins in these circumstances have been
based on individual-centre assessments of random or systematic
errors and laryngeal motion as described earlier. Osman et al.
have pioneered single vocal cord irradiation (SVCI) techniques
and demonstrate abilities to deliver high-dose radiotherapy to
glottic subregions, achieving additional sparing of structures
such as contralateral vocal cord and arytenoids (92, 100). They
have achieved this by developing stringent quality assurance
within their planning and image-guided treatment delivery
systems to prevent target miss.

Radiotherapy Technique and Outcomes
Analyses of the American National Cancer Database showed that
between 2004 and 2015, the use of IMRT for ESGC increased from
2% to 16%, with the majority of IMRT use being within academic
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institutes that are driving highly conformal radiotherapy (101).
Implementation of IMRT techniques requires careful analysis of
the entire workflow to avoid target miss during treatment. For
example, in a VMAT planning case, patients were asked not to
swallow during acquisition of the planning CT and due to the
longer fraction delivery times with IMRT/VMAT, patients were
coached to swallow during beam position changes or planned
gaps, to prevent laryngeal motion (102).

Kim et al. showed that dose de-escalation to the uninvolved
larynx and maintenance of high-dose radiotherapy to smaller
laryngeal targets can achieve comparable 5-year local control
rates to conventional POP radiotherapy (99). There was a trend
for increased local recurrences in the T2 N0 population, which
highlighted the potential consequences for not adequately
appreciating the risk of local subclinical spread above or below
the glottis. Although follow-up periods are short, the dosimetric
advantages to OARs and comparable local control rates for
IMRT and VMAT have been further demonstrated by
numerous retrospective analyses (11, 103–107).

Princess Margaret Hospital have implemented a “5+5”
approach to treat their stage T2 N0 disease with IMRT since
2006 (86). They changed their set-up matching protocols from
cervical vertebral match to thyroid cartilage in 2008. Despite low
patient numbers and limited follow-up period, local control data
showed a trend towards lower local recurrence rates for IMRT
with thyroid cartilage matching. 89% of all local failures in the
IMRT group occurred infield and in the ipsilateral vocal cord.
Updated information from that institute demonstrated that by
using an accelerated fractionation schedule (66-70 Gy in 33-35
fractions over 5.5-6 weeks), they further improved their 5-year
local control rates from 75% to 89% (108). No out-of-field
recurrences were noted and the majority of recurrences were
in the marginal region. The importance of adequate image-
guidance systems was strongly emphasised.

In a further step towards highly focused radiotherapy, Erasmus
Medical Centre use 4D-CT methods at planning to determine
resting vocal cord position and nullify systematic error on an
individual patient level (109). After setting stringent dose
constraints to OARs they were able to determine optimal IMRT
beam angles for SVCI, the robustness of which was tested in a
subsequent planning study that simulated geometrical
uncertainties due to motion, anatomical variations and random
errors (110). They were able to demonstrate that a PTV margin of
2 mm was safe to maintain adequate CTV dose in 10 simulated
cases. 2-year local control for stage T1a disease treated with SVCI,
(66 Gy in 16 fractions over 3 weeks), was reported as 100%. When
compared to whole-larynx IMRT, no deteriorations in serious late
toxicities or Voice Handicap Index were described (111).

SVCI is still deemed very much an exploratory treatment
method, but data from 34 patients who had hypofractionated
SVCI for T1a glottis SCC demonstrated 5-year local control and
disease-free survival rates of 96.8% (112). The single local
recurrence was in-field and did not require salvage total
laryngectomy. No severe late toxicities were reported and there
were significant dose reductions to contralateral vocal cord,
arytenoid and other OARs.
Frontiers in Oncology | www.frontiersin.org 7
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The potential benefits of sparing OARs from excessive radiation
dose should encourage the adoption of IMRT techniques to treat
more focused targets in ESGC. There is convincing evidence of
the ability of IMRT to deliver adequate dose in a safe and
effective manner. IMRT/VMAT would be most appropriate for
T1b-T2 glottic SCCs, which are at higher risk of microscopic
spread to the supraglottis or subglottis. Treatment techniques
such as SVCI on C-arm linear accelerators are technically feasible
based on current literature and are expected to be an attractive
approach to treating T1a glottic SCCs. However, motion-
induced target miss will likely remain an ongoing concern.
Long-term outcome data are required to truly build confidence
in radiotherapy to reduced volumes. This is currently being
investigated in a phase-2 trial comparing radiotherapy to vocal
cord only against whole larynx (113).

Although differences in acute-onset toxicities are not
apparent between 3D-CRT and IMRT, the delayed-onset
toxicities remain of concern. Although delayed events, such as
CVA, are difficult to investigate prospectively due to the long
follow-up periods required, retrospective analyses and studies
looking at surrogate markers (such as IMT) provide substantial
evidence of their significant impact on survivorship.

MR-guided radiotherapy systems, particularly the MRL,
provide an ideal platform for treating ESGC as soft tissue may
be visualised during treatment delivery. Live-target tracking
during beam-on periods and gating mechanisms are still in
their infancy on the MRL, however, the feasibility of delivering
MR-guided radiotherapy is rapidly becoming apparent across a
variety of tumour sites (114–116). Although the technology
behind MR-guided treatment delivery systems are not yet
readily available across the majority of cancer centres, their
promising image-guidance and live tracking tools could instil
much confidence in treating all stages of ESGC.
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