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Simple Summary: Intravenous leiomyomatosis is a rare form of smooth muscle tumour that has
unique and distinct clinical features including growth within the uterine and pelvic veins. Here we
use proteomics by mass spectrometry to show that this disease is distinct from uterine leiomyomas
and other benign smooth muscle tumours due to the enrichment of components of the spliceosome
machinery. In particular, we find that intravenous leiomyomatosis tumours harbour co-regulated
expression of multiple splicing factors that are associated with biological processes including cell
signalling. Our study demonstrates that intravenous leiomyomatosis is a distinct disease from other
smooth muscle tumours and indicates a possible functional role for alternative splicing in disease
initiation and progression.

Abstract: Intravenous leiomyomatosis (IVLM) is a rare benign smooth muscle tumour that is char-
acterised by intravenous growth in the uterine and pelvic veins. Previous DNA copy number and
transcriptomic studies have shown that IVLM harbors unique genomic and transcriptomic alter-
ations when compared to uterine leiomyoma (uLM), which may account for their distinct clinical
behaviour. Here we undertake the first comparative proteomic analysis of IVLM and other smooth
muscle tumours (comprising uLM, soft tissue leiomyoma and benign metastasizing leiomyoma)
utilising data-independent acquisition mass spectrometry. We show that, at the protein level, IVLM
is defined by the unique co-regulated expression of splicing factors. In particular, IVLM is enriched
in two clusters composed of co-regulated proteins from the hnRNP, LSm, SR and Sm classes of the
spliceosome complex. One of these clusters (Cluster 3) is associated with key biological processes
including nascent protein translocation and cell signalling by small GTPases. Taken together, our
study provides evidence of co-regulated expression of splicing factors in IVLM compared to other
smooth muscle tumours, which suggests a possible role for alternative splicing in the pathogenesis
of IVLM.

Keywords: proteomics; spliceosome; splicing factors; leiomyoma; intravenous leiomyomatosis

1. Introduction

Intravenous leiomyomatosis (IVLM) is a rare histologically benign smooth muscle
tumour which is characterised by intravenous growth in the uterine and pelvic veins [1,2].
In some instances, it can extend into the inferior vena cava and the right heart which
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in rare cases may cause death [3,4]. IVLM is usually present with concomitant uterine
leiomyoma (uLM) and one theory is that it originates from a pre-existing uLM where it
extends and invades into the vessel wall [4,5]. Given that there are some instances where
IVLM arises in the absence of a uLM [2,6], an alternate theory is that this tumour originates
from the smooth muscle cells of the vessel wall. In addition to IVLM, there are other rare
smooth muscle tumours with unusual quasi-malignant clinical behaviour such as benign
metastasizing leiomyoma (BML) and disseminated peritoneal leiomyomatosis [7,8].

Previous studies have undertaken comparative analyses of the molecular features
of IVLM versus uLM to gain a better understanding of its underlying biology as well as
the relationship between the two entities [9–15]. Some of the system-wide comprehensive
profiling studies that have been reported include array comparative genomic profiling
(aCGH) and transcriptomic analysis [9,11,13,14]. Collectively, these focused and system-
wide studies indicate that IVLM share some cytogenetic and protein expression features
with uLM (e.g., translocations in (12; 14) and HMGA2 protein expression) [11,12,14,15],
while at the same time harbouring genetic and transcriptomic alterations that are unique.
These unique alterations include distinct MED12 mutations and elevated HOXA13 gene
expression in IVLM [10,12,13]. Given its rarity, all of the published Omics-based IVLM
molecular profiling studies, with the exception of a recent study by Ordulu et al. [11], have
been limited to a small number of cases (typically < 5).

To date, no proteomic profiling analyses have been undertaken in IVLM. Proteins
are the critical drivers of cellular communication in normal cells and dysregulation of
protein function is causative of many diseases including cancer [16,17]. We hypothesized
that, unlike genomic and transcriptomic analysis, proteomic profiling will provide a more
direct readout of the biological pathways and protein complexes that may play a role in the
pathogenesis of IVLM [18,19]. Here we undertake a comparative mass spectrometry-based
proteomic analysis of IVLM and other smooth muscle tumours (uLM, soft tissue leiomyoma
(stLM) and BML), and demonstrate that at the protein level, IVLM is characterised by the
unique co-regulated expression of splicing factors that comprise the spliceosome.

2. Materials and Methods
2.1. Patients and Tumour Specimens

Formalin fixed paraffin embedded (FFPE) tumour samples and linked anonymized
patient data were used under approval by the Institutional Review Board as part of the
PROSPECTUS study, a Royal Marsden-sponsored non-interventional translational protocol
(CCR 4371, REC 16/EE/0213). One of the IVLM cases in this series has previously been
described in a case report [20]. Departmental database and medical notes were retrospec-
tively reviewed to identify FFPE tissue from surgically resected primary tumours and
accompanying clinico-pathological characteristics. Baseline clinico-pathological annota-
tion is summarized in Table 1. The histological diagnosis was confirmed in all cases by
experienced soft tissue pathologists (KT, CF). Viable tumour content in each tumour was
reviewed by the analysis of haematoxylin and eosin (H&E)-stained sections and a single
FFPE tissue block containing representative viable tumour was selected for subsequent pro-
cessing. Five 20µm sections were cut from each selected FFPE block and, where indicated,
macrodissected to enrich to >75% viable tumour content.
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Table 1. Clinico-pathological characteristics of the cohort.

Overall IVLM LMM uLMM BLM

Number of cases 14 3 7 3 1

Age 41.6
(16–63)

43
(36–51)

40.3
(16–63)

43
(39–50) 42

Presenting Symptom

Abdominal/pelvic mass 6 0 4 2 0

Inguinal mass 3 0 3 0 0

Abnormal vaginal bleeding 2 0 0 1 1

Other * 2 2 0 0 0

N/A 1 1 0 0 0

Anatomical site

Vasculature 3 3 0 0 0

Abdomen 7 0 7 0 0

Uterus 4 0 0 3 1

Tumour size (mm) 71.6
(35–120)

175
(24–390)

108
(54–160) 250

* Pulmonary embolism, lower limb neuropathy.

2.2. Protein Extraction and Sample Preparation

The samples were processed as previously described [18]. Briefly, tissue sections from
each sample were deparaffinized in multiple washes in xylene. Deparaffinised sections
were then rehydrated by washes with decreasing ethanol gradient and dried. A lysis buffer
(0.1 M Tris-HCl pH 8.8, 0.50% (w/v) sodium deoxycholate, 0.35% (w/v) sodium lauryl
sulphate) was added to each sample at a ratio of 200 uL/mg of dry tissue, and samples
were homogenized on ice using a LabGen700 blender (ColeParmer) with 3 × 30 s pulses.
The resultant homogenates were sonicated on ice for 10 min to shear DNA followed by
incubation at 95 ◦C for 1 h to reverse formalin crosslinks and shaking at 750 rpm at 80 ◦C
for 2 h. The homogenate was cleared by 15 min centrifugation at 4 ◦C and 15,000 rpm. The
supernatant was collected and protein concentration was measured by bicinchoninic acid
(BCA) assay (Pierce). A filter-aided sample preparation (FASP) protocol was used to digest
the extracted proteins as previously described [21]. Briefly, for each sample, an equivalent
of 600 µg of protein was placed into an Amicon-Ultra 4 (Merck) centrifugal filter unit and
detergents were removed by multiple washes with 8 M urea. The purified, concentrated
sample was then transferred to Amicon-Ultra 0.5 (Merck) filters, reduced with 10 mM
dithiothreitol (DTT) at 56 ◦C for 40 min and alkylated with 55 mM iodoacetamide (IAA)
at 25 ◦C for 30 in in dark. The sample was washed with 100 mM ammonium bicarbonate
(ABC) to remove 8 M urea and digested by trypsin (Promega, trypsin to starting protein
ratio 1:100 µg) overnight at 37 ◦C. Peptides were desalted on C18 SepPak columns (Waters)
and dried in a SpeedVac concentrator and stored at −80 ◦C.

2.3. SWATH-MS Data Acquisition and Processing

Quantitative proteomic profiling was performed by sequential window acquisition
of all theoretical fragments mass spectrometry (SWATH-MS), which is also known as
data-independent acquisition mass spectrometry. All data were acquired on an Agilent
1260 HPLC system (Agilent Technologies, Santa Clara, CA, USA) coupled to a TripleTOF
5600+ mass spectrometer with NanoSource III (AB SCIEX Ltd. Macclesfield, UK). Dried,
desalted peptides were resuspended in a buffer A (2% ACN/0.1% formic acid), spiked with
iRT calibration mix (Biognosys AG, Schlieren, Switzerland) and 1 µg of peptides for each
sample was loaded onto a self-made trap column packed with a 10 µm ReprosilPur C18AQ
beads (Dr. Maisch) and washed for 5 min by buffer A. Peptides were then loaded onto
a 75 µm × 15 cm long analytical column with an integrated manually pulled tip packed
with Reprosil Pur C18AQ beads (3 µm, 120 Å particles, Dr. Maisch) and separated over
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120 min by linear gradient of 2–40% of Buffer B (98% ACN, 0.1% formic acid) at a flow
rate of 250 nL/min. Each sample was acquired in two technical replicates. Acquisition
parameters were as follows: 60 precursor isolation windows with a fixed size of 13 Da
across the mass range of m/z 380–1100 with 1 Da overlap. MS/MS scans were acquired in
the mass range of m/z 100–1500. Cycle time of 3.1 s was used resulting in an average of
eight datapoints per elution peak. SWATH-MS spectra were analysed using Spectronaut
15.2 (Biognosys AG, Schlieren, Switzerland) against a published human library [22]. FDR
was restricted to 1% on both protein and PSM levels. A peak area of 3 to 6 fragment ions
was used for peptide quantification. Protein quantity was calculated as an average value of
a maximum of six quantified peptides. Proteins quantified with <2 unique peptides were
excluded from the subsequent analysis.

2.4. Data Processing and Statistical Methods

The proteomics dataset was further processed using R, Perseus 1.5.6 [23,24] and Graph-
Pad 8.2.1. Protein quantities were log2 transformed and quantile normalised at sample
level using the proBatch package [25] in R followed by protein median centering across
the samples. The normalized dataset was then visualized by hierarchical clustering using
ComplexHeatmap package in R [26]. A Gene Set Enrichment Analysis (GSEA) was applied
using the GenePattern online tool [27] to identify gene sets obtained from the MSigDB
(c5.gobp.v7.5) [28] that were significantly enriched in IVLM samples. Similarly, single sam-
ple GSEA (ssGSEA) was applied using GenePattern to score sample-specific enrichment of
the Spliceosome gene set from the KEGG pathways database [29]. To identify spliceosome
components, the list of all identified proteins in this study was cross-referenced with the
annotated spliceosome protein interaction dataset published by Hegele et al. [30]. Mutual
co-expression of the splicing factors was assessed by Pearson’s correlation coefficient that
was calculated in Perseus for all possible combinations of the identified splicing factors.
The resulting similarity matrix was analysed and visualised by ConsensusClusterPlus [31]
and ComplexHeatmap packages in R, respectively.

To study the association of the splicing factors identified in clusters 1–3 with known
biological pathways, Pearson’s correlation coefficients between splicing factors and all
other proteins in the proteomic dataset (after removal of all proteins annotated in the
Spliceosome Database [32]) were calculated in Perseus. The resulting similarity matrices
were hierarchically clustered and visualized by ComplexHeatmap package in R, where
rows of each matrix were split into four clusters using k-means partitioning, Euclidean
distance and 1000 repetitions. Subsets of proteins from the clusters with the highest
and lowest average correlation were then used for over-representation analysis using the
DAVID 6.8 Functional analysis online tool [33]. The chord plot was plotted by SRplot,
available online: https://www.bioinformatics.com.cn/en, accessed on 4 February 2022).
Protein-protein interactions between splicing factors in cluster 3 and 565 other proteins
with highest positive correlations (excluding other splicing factors) were analysed and
visualized in CytoScape (3.7.1) [34]. To analyse the protein-protein interaction network,
the STRING database was searched using high confidence threshold (STRING score >0.7)
by StringApp [35] within CytoScape. The resulting network was then clustered by MCL
clustering using the clusterMaker2 application [36] in CytoScape with granularity of 2.5
and STRING score for edges weighing.

2.5. Immunohistochemical Staining and Scoring

SWATH-MS results for SRSF3 was validated by immunohistochemical staining of
the same cohort of specimens. From each FFPE block, 6µm sections were mounted on a
microscopic glass slide, deparaffinized in xylene and rehydrated by decreasing gradient
of ethanol in water (once in 100%, 96% and 80%). The glass slides were than immersed
in a Tris-EDTA buffer (pH 6) and heated in a microwave oven for 8 min to retrieve the
antigen. Sections cooled to room temperature were than washed once in Tris-buffered
saline (TBS) and twice in TBS-Tween (TBST) buffer. Sections were subsequently covered by

https://www.bioinformatics.com.cn/en
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blocking buffer and incubated at room temperature for 90 min in a humidity chamber. After
blocking, sections were incubated with primary antibody for SRSF3 (Abcam, ab198291)
in a humidity chamber at 4 ◦C overnight. Sections were washed the following day by
TBS and twice by TBST and incubated with DAKO Peroxidase blocking solution (DAKO,
Agilent Technologies, Santa Clara, CA, USA) for 1 h at room temperature. Sections were
washed once by TBS and TBST and subsequently stained with diaminobenzidine (DAKO,
Agilent Technologies, Santa Clara, CA, USA) for 3 min to visualize SRSF3. After rinsing
in water, Modified Mayer’s heamatoxylin (Abcam) was added as a counterstain. Finally,
stained sections were dehydrated by washes in increasing gradients of ethanol (once
in 80%, 96%, 100%) and xylene, mounted in Pertex mounting medium (Pioneer) and
scanned on a semi-automatic slide scanner (Hamamatsu Nanozoomer XR). Scans were
semi-quantitatively scored by two independent examiners using the same scoring system
as previously described in Milighetti et al. [18]

3. Results
3.1. Quantitative Proteomic Profiling of Smooth Muscle Tumours

The cohort is comprised of FFPE tumour material from 14 patients treated at The
Royal Marsden Hospital. These specimens were obtained from surgical resections of IVLM
(n = 3), uLM (n = 3), stLM (n = 7) and BML (n = 1). The detailed clinico-pathological
characteristics of the patient cohort are presented in Table 1. Tumour specimens were
subjected to sample preparation and protein extraction as depicted in Figure 1. Digested
peptides then underwent proteomic profiling with SWATH-MS in technical duplicates.
This analysis resulted in the identification and quantification of 2473 proteins (Table S1).
Unsupervised clustering of the full dataset shows that the IVLM cases largely cluster
together separate from the stLM and uLM cases (Figure 2A). Interestingly, the only BML
case in the cohort clusters most closely to the IVLM cases.

Assessment of proteins that are significantly different in IVLM cases compared to uLM,
stLM and BML cases identified 162 proteins of which 109 and 53 proteins are upregulated
(>2 fold) or downregulated (<2 fold) in IVLM respectively (Figure 2B). Consistent with
published immunohistochemical analysis and RNA studies [9,12,14,37–40], expression of
the chromatin factor HMGA2, a protein which is highly expressed in a subset of both
IVLM and uterine leiomyomas due to the breakpoint on 12q14–15 [11,12,14], was not
significantly different between IVLM and the other smooth muscle tumours in the cohort
(Figure S1). Interestingly we find that 29/162 (18%) of the differentially expressed proteins
are components of the spliceosome complex (Figure 2B). Four of the 29 splicing factors
were downregulated, while 25 splicing factors were upregulated in IVLM when compared
to the uLM, stLM and BML cases.
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Figure 2. (A) Heatmap depicting unsupervised hierarchical clustering of 2473 proteins that were
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full protein list is provided in Table S1. (B) Volcano plot depicting difference in protein expression
between IVLM cases and all the other smooth muscle tumours (rest). Splicing factors with significantly
different expression levels (>two-fold or <two-fold) are highlighted in red.

3.2. Enrichment of Splicing Processes in IVLM

To further investigate the biological processes that are enriched in IVLM compared to
the other smooth muscle tumours, we undertook gene set enrichment analysis (GSEA) of the
full proteomic dataset (Figure 3A). We show that the majority of the top 20 ranked enriched
gene sets are processes associated with RNA splicing, processing, transport or metabolism.
Beyond RNA-related biological processes, other enriched gene sets include protein targeting
and localisation to membrane, regulation of gene transcription and translation. In line with
the observation that a significant proportion of proteins enriched in IVLM are components
of the spliceosome complex (Figure 2B), single sample GSEA (ssGSEA) of the proteomic
data for each specimen in the cohort using the KEGG spliceosome gene set showed that
the IVLM cases had significantly higher ssGSEA spliceosome scores compared to the other
smooth muscle tumours in the cohort (Figure 3B). Taken together, our data indicate that
both the spliceosome complex and biological processes involving RNA biology are enriched
in IVLM specimens.

3.3. Identification of Co-Regulated Expression of Splicing Factors in the Proteomic
Profiling Dataset

It is well-established that the spliceosome is a highly dynamic macromolecular com-
plex where more than 200 splicing factors are assembled into distinct complexes that vary
in their composition in space and time [30,41]. We therefore hypothesized that despite
the overall enrichment of spliceosome components in IVLM (Figure 3B), it is possible
that subsets of co-regulated splicing factors may be responsible for the distinct clinical
behaviour of IVLM versus leiomyomas. Indeed, unsupervised hierarchical clustering of
116 spliceosome components in the proteomic dataset showed that the spliceosome com-
plex as a whole was not upregulated in IVLM (Figure 4A). Rather, there appeared to be
subsets of splicing factors that were differentially expressed in IVLM, uLM and stLM.

Inspired by a previous study which showed that co-regulation of splicing factors
is important in regulating breast cancer progression [42], we performed a Pearson’s cor-
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relation coefficient analysis of the protein expression levels of all possible combinations
of 116 splicing factors in our dataset. Consensus clustering identified three clusters of
splicing factors which is shown in the similarity matrix in Figure 4B (composition of each
cluster provided in Table S2). In particular, Clusters 2 (n = 43) and 3 (n = 40) contain splic-
ing factors which are negatively correlated between clusters but are positively correlated
within clusters. Cluster 1 (n = 33) is mixed with both positively and negatively correlated
splicing factors.
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Figure 4. (A) Heatmap depicting unsupervised hierarchical clustering of 116 proteins of the spliceo-
some complex as defined by Hegele et al. [30]. The distance measure used for clustering is Pearson’s
correlation. (B) Heatmap depicting similarity matrix of Pearson’s correlation coefficients of all possi-
ble pairwise combinations of the 116 splicing factors. Three clusters were identified by consensus
clustering analysis. (C) Annotation and expression profile of the spliceosomal proteins belonging to
clusters shown in Figure 4B. Venn diagrams depict spliceosome composition (core versus non-core,
and distinct splicing factor classes) in each cluster while plots below show average expression levels
of spliceosome components in each sample for a given cluster. The detailed composition of clusters
and the identity of individual proteins are listed in Table S2. The line and whiskers in plots represent
mean and standard deviation. Statistical significance was calculated by two-sample t-test. ** p < 0.01,
**** p < 0.0001.

3.4. Distinct Co-Regulated Clusters Are Comprised of Splicing Factors Which Are Differentially
Expressed in IVLM versus the Other Smooth Muscle Tumours

An evaluation of the composition of splicing factors showed that each cluster is
comprised of different proportions of core and non-core spliceosome proteins with Cluster 2
having the highest proportion of core proteins (65%) and Cluster 3 having the least core
proteins (25%) (Figure 4C). Furthermore, assessment of the splicing factor classes based on
nomenclature defined by Hegele et al. [30] finds that the splicing factor class composition
of Clusters 1 and 3 is similar with the majority of proteins coming from the hnRNP, LSm,
SR and Sm protein classes (Figure 4C). In contrast, the composition of cluster 2 is very
different, with U2, U2 rel and U5 protein classes dominating.

Quantitative assessment of the proteomic data showed that when broken down by
cluster assignment, the IVLM specimens were significantly enriched in co-regulated splic-
ing factors from Clusters 1 and 3 versus the other smooth muscle tumours in the cohort
(Figure 4C). No significant difference between IVLM and the other smooth muscle tumours
was seen in co-regulated splicing factors in Cluster 2. Upregulation of the splicing factor
SRSF3 in IVLM that was found in Cluster 3 was independently confirmed by immunohisto-
chemical staining (IHC) (Figure S2). All 3 IVLM cases showed strong staining for SRSF3,
while 77% of the other soft tissue tumours in the cohort showed weak or no staining. The
three non-IVLM cases that showed strong SRSF3 staining included the BML case, which
consistently showed the highest levels of spliceosome factors in Clusters 1 and 3 (Figure 4C).
Collectively, this analysis indicates that at the protein level, IVLM is characterised by the
co-regulated expression of specific classes of splicing factors that comprise the spliceosome.
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3.5. Co-Regulated Splicing Factors Are Associated with Multiple Biological Pathways, including
Protein Translocation and Signal Transduction by Small GTPases

We sought to determine if the expression of splicing factors in each of these clusters
was linked to specific biological processes. To do this, the Pearson’s correlation coefficient
was calculated between all the proteins in the dataset (excluding spliceosomal proteins) and
the splicing factors in each of the three clusters. Unsupervised hierarchical clustering finds
that 537 and 585 proteins were positively or negatively correlated with the splicing factors
in Cluster 2, respectively (Figure 5A, clusters C and A). The same analysis in Cluster 3
identified positive and negative correlation in 545 and 738 proteins, respectively (Figure 5B,
clusters C and B). Unsurprisingly, since Cluster 1 is comprised of both positively and
negatively correlated splicing factors, no significantly correlated proteins were found in
our dataset. Given that Clusters 2 and 3 have opposing profiles in co-regulated splicing
factors (Figure 4B), it is expected that proteins correlating with these clusters would follow
the same trend. Indeed, we demonstrate that there was a substantial overlap of proteins
which show opposite co-expression patterns (i.e., positively correlated proteins in Cluster 2
and negatively correlated proteins in Cluster 3), and vice versa (Figure 5C).
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Figure 5. Heatmaps depicting correlation matrix of Pearson’s correlation coefficient calculated
between the splicing factors in (A) Cluster 2 or (B) Cluster 3 and all the other proteins in the dataset
that are not part of the spliceosome complex. Heatmaps are split into four clusters based on k-
means partitioning. (C) Venn diagrams depicting the overlap between the positively and negatively
correlated proteins in Cluster 2 and 3 respectively, and vice versa. (D) Plot of overrepresentation
analysis results showing ontologies which are positively correlated with the splicing factors in
Cluster 3 (FDR < 0.1). (E) Chord plot depicting all positively correlated proteins identified by
overrepresentation analysis in Figure 5D. (F) Protein-protein interaction network showing interactions
between splicing factors in Cluster 3 and positively correlated proteins. Only the closest protein
interactors of splicing factors after MCL clustering are depicted.

Focusing on Cluster 3, which is significantly upregulated in IVLM (Figure 4C), the
over-representation analysis finds four ontologies that are enriched in the proteins that
are positively correlated with the splicing factors in this cluster (Figure 5D). These on-
tologies include nascent protein targeting to the endoplasmic reticulum (SRP-dependent
cotranslational protein targeting to membrane), signal transduction mediated by small
GTPases, the hydrolysis of proteins by peptidases (negative regulation of endopeptidase
activity) and proteins involved in viral transcription. The positively correlated proteins
in these ontologies are shown in the chord diagram in Figure 5E. The analysis of protein-
protein interactions between splicing factors in Cluster 3 and positively correlated proteins
(Figure 5F) revealed a number of closely interacting RNA binding proteins such as RNA-
binding protein homolog Musashi-2 (MSI2), heterogenous nuclear ribonucleoprotein D-like
(HNRNPDL) and spermatid perinuclear RNA-binding protein (STRBP) or proteins in-
volved in regulation and transport of RNA such as transcription and mRNA export factor
ENY2 (ENY2).

4. Discussion

IVLM is a rare benign smooth muscle tumour with quasi-malignant clinical behaviour.
Previous profiling studies characterising its molecular features have focused on DNA
copy number and transcriptomic alterations [9,11,13,14]. Here we performed the first pro-
teome level analysis of IVLM and compared it to other smooth muscle tumours including
uLM, stLM and BML. We show that IVLM is characterised by a differential expression of
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spliceosome complex components. In particular, by utilising a bioinformatics approach
to delineate co-regulation of splicing factors, we find that there are two specific clusters
of co-regulated splicing factors in the hnRNP, LSm, SR and Sm protein classes that are
enriched in IVLM compared to the other smooth muscle tumours in this cohort. Finally, we
demonstrate that one of these clusters (Cluster 3) is associated with the high expression
of proteins involved in key biological processes such as nascent protein translocation and
signalling by small GTPases. To our knowledge, this is the first demonstration that IVLM is
characterised by a distinct group of co-regulated splicing factors, which may contribute to
its unique clinical behaviour. It highlights the utility of proteomics to provide novel insights
into IVLM tumour biology beyond the current state-of-the-art gained from published aCGH
and gene expression studies.

Three previous comparative gene expression studies between IVLM and uLM have
been reported [9,13,14]. Interestingly, there were no common genes reported across these
studies, which could be the result of the inter-patient heterogeneity and the small number of
cases analysed in each of the reports. None of these studies report the differential expression
of splicing factors between IVLM and uLM. One reason for this lack of overlap between
our proteomic dataset and previous transcriptomic datasets could be the consistently poor
correlation between protein and RNA expression that has been observed across patient
samples in multiple proteogenomic studies [43–45]. Protein abundance is governed by
multiple factors, and in addition to transcription rates and mRNA half-life, it is also highly
dependent on translation rates and protein half-life [46]. In line with this, the analysis
of 5 genes reported to be upregulated in IVLM versus uLM by Ordulu et al. [14] and
found in our proteomic dataset (EFEMP1, CFH, GPX3, HBA1, HBB) were not significantly
upregulated at the protein level.

Splicing occurs through a complex series of well-regulated steps mediated by the
spliceosome machinery [47]. It has been shown that aberrations in specific splicing factors
disrupt the composition of the spliceosome complex and drive carcinogenesis [48,49]. For
instance, mutations in the splicing factor SF3B1 in both solid and liquid cancers initiate
oncogenic alternative splicing reprogramming that is key to cancer development and
progression [50–54]. Furthermore, it has been recently shown that some of these splicing
factor mutations may induce new vulnerabilities that can be therapeutically exploited
in a synthetic lethal fashion [55–57]. In the same vein, it is possible that the distinct co-
regulation of splicing factors observed in IVLM may result in dysregulated alternative
splicing that could account for its intravenous growth patterns. Unfortunately, due to
the highly fragmented nature of total RNA extracted from FFPE specimens, we were
unsuccessful in our efforts to measure alternative splicing profiles by RT-PCR from the
cases in this series despite multiple repeated attempts. Future RNASeq or RT-PCR analyses
on prospectively collected flash frozen specimens would be key to establishing if differential
alternative splicing occurs in IVLM versus uLM. Identifying such alternatively spliced
genes could offer a mechanistic explanation into the quasi-malignant behaviour of IVLM.

This study is limited by the small number of IVLM cases that were studied. IVLM is a
rare condition and the vast majority of profiling studies to date comprise a small number
of cases (typically < 5). Despite the limited numbers, we were able to demonstrate that
there was a statistically significant enrichment of co-regulated spliceosome components in
IVLM. Interestingly, we show that the sole BML case in our cohort clustered most closely to
the IVLM cases (Figure 2A). BML is another rare unusual variant of leiomyoma that often
manifests as multiple nodules in the lungs and other sites [58]. A recent aCGH analysis
finds that IVLM and BML share recurrent copy number alterations that are rarely seen
in uLM [11]. Consistent with this finding, our data shows that at the proteomic level,
BML is more similar to IVLM compared to uLM. It is, however, important to note that our
proteomic analysis was performed on a small case series treated within a single institution
and that any findings will need to be independently validated.
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5. Conclusions

In summary, we have undertaken a comparative proteomic profiling study of IVLM
and other smooth muscle tumours (uLM, stLM and BML) and describe the selective
enrichment of co-regulated splicing factors which are associated with distinct biological
pathways. We anticipate that future work integrating proteomics with complementary
Omics-based profiling approaches such as RNAseq will shed further light on the possible
role of alternative splicing in the pathogenesis of IVLM.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14122907/s1, Figure S1: Expression levels of HGMA2 protein of each case in the
cohort. Figure S2: Comparative analysis of expression levels of SRSF3 protein by SWATH-MS with
immunohistochemical staining (IHC) of the FFPE tissue sections from the same samples in the
cohort. The line and whiskers in plots for SWATH-MS represent median and interquartile range.
Stacked bar charts for IHC represents immunoreactivity of individual samples. Photomicrographs of
representative samples with strong, weak and no staining for SRSF3 protein are shown. Scale bar
represents 50 µm. Table S1: Full proteomic dataset for the cohort. Table S2: List of splicing factors
found in the three individual consensus clusters.
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