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ABSTRACT
Background  Dedifferentiated liposarcoma (DDLPS) is one 
of the most common soft tissue sarcoma subtypes and is 
devastating in the advanced/metastatic stage. Despite the 
observation of clinical responses to PD-1 inhibitors, little is 
known about the immune microenvironment in relation to 
patient prognosis.
Methods  We performed a retrospective study of 61 
patients with DDLPS. We completed deep sequencing of 
the T-cell receptor (TCR) β-chain and RNA sequencing for 
predictive modeling, evaluating both immune markers and 
tumor escape genes. Hierarchical clustering and recursive 
partitioning were employed to elucidate relationships of 
cellular infiltrates within the tumor microenvironment, 
while an immune score for single markers was created as 
a predictive tool.
Results  Although many DDLPS samples had low TCR 
clonality, high TCR clonality combined with low T-cell 
fraction predicted lower 3-year overall survival (p=0.05). 
Higher levels of CD14 + monocytes (p=0.02) inversely 
correlated with 3-year recurrence-free survival (RFS), 
while CD4 + T-cell infiltration (p=0.05) was associated 
with a higher RFS. Genes associated with longer RFS 
included PD-1 (p=0.003), ICOS (p=0.006), BTLA (p=0.033), 
and CTLA4 (p=0.02). In a composite immune score, 
CD4 + T cells had the strongest positive predictive value, 
while CD14 + monocytes and M2 macrophages had the 
strongest negative predictive values.
Conclusions  Immune cell infiltration predicts clinical 
outcome in DDLPS, with CD4 + cells associated with 
better outcomes; CD14 + cells and M2 macrophages 
are associated with worse outcomes. Future checkpoint 
inhibitor studies in DDLPS should incorporate 
immunosequencing and gene expression profiling 
techniques that can generate immune landscape profiles.

INTRODUCTION
Dedifferentiated liposarcoma (DDLPS) is a 
devastating and often aggressive liposarcoma 
(LPS) subtype with increasing incidence.1 
Recent approvals of eribulin and trabectedin 
have given hope for improved outcomes 

in the advanced/metastatic setting, but 
median survival remains less than 3 years.2–4 
Although DDLPS arises de novo in a majority 
of cases, approximately 10% arise from the 
more indolent well-differentiated liposar-
coma (WDLPS)/atypical lipomatous tumor.5 
WDLPS and DDLPS both frequently harbor 
chromosome-12 abnormalities, including 
amplification of chromosome 12q14-15, 
which includes MDM2 and CDK4.6 7 The detec-
tion of MDM2 amplification is an important 
tool for diagnostic confirmation of these 
neoplasms. MDM2 has been considered a 
target for novel therapeutic approaches,8 and 
direct inhibition of CDK4 can be effective for 
some patients.9 10 Given their common molec-
ular pathogenesis and the well-characterized 
progression from WDLPS to DDLPS in a 
subset of patients, these are often considered 
together as part of a single disease entity, 
well/dedifferentiated liposarcoma (WD/DD 
LPS).11

Significant challenges remain in using 
programmed cell death protein 1 (PD-1) 
inhibitors for the treatment of DDLPS. Of 
the initial 10 patients with DDLPS treated 
with pembrolizumab in the SARC28 trial, two 
partial responses were reported, but in subse-
quent patient expansion, the response rate 
was only 10%.12 13 The presence of a small 
subset of patients with DDLPS with tumors 
responsive to PD-1 inhibition necessitates 
a better understanding of the tumor micro-
environment (TME), with a focus on iden-
tification of potential therapeutic targets. 
Interestingly, these tumors have relatively 
low expression of PD-1 and generally have 
few infiltrating T cells compared with other 
sarcoma subtypes.14
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To understand the diversity of the DDLPS TME, we 
undertook the most comprehensive analysis of the 
DDLPS immune TME performed to date. The analyses 
correlated patient outcomes with the results of a number 
of complementary analyses, including multiplex immu-
nohistochemistry (mIHC), tumor escape gene expression 
analysis, immune cell content quantification, and T-cell 
receptor (TCR) sequencing. We sought to understand 
which cell types may be associated with patient outcomes 
and whether any findings would be suitable targets for 
novel therapies.

MATERIALS AND METHODS
Patients and samples
Eligible patients with DDLPS were those who underwent 
surgical resection at the University of Washington (UW) 
between 2002 and 2017, and for whom adequate archival 
tumor for analysis was identified using Caisis, an open-
source web-based cancer data management system for 
pairing clinical and research information. Tumors were 
graded according to the French Federation Nationale des 
centres de Lutte Contre le Cancer (FNCLCC) grading 
system.15 Samples were collected from primary tumors, 
prior to chemotherapy and/or radiation exposure if 
possible. Samples from patients undergoing radiation 
and/or chemotherapy at the time of tissue procurement 
were excluded.

TCR β CDR3 sequencing
Formalin-fixed paraffin-embedded (FFPE) tissue samples 
had genomic DNA extracted, and immunosequencing of 
the CDR3 regions of human TCRβ chains was performed 
using the immunoSEQ Assay (Adaptive Biotechnologies, 
Seattle, Washington, USA) for FFPE to characterize the 
T-cell fraction and other repertoire metrics, including 
clonality (online supplemental figure 1).16 In brief, after 
amplification of genomic DNA using a bias-controlled, 
multiplex PCR followed by high-throughput sequencing, 
sequences were collapsed and filtered in order to identify 
and quantitate the absolute abundance of each unique 
TCRβ CDR3 region for further analysis as previously 
described.17–19

Multiplex immunohistochemistry (mIHC)
FFPE tissues were stained on a BOND Rx autostainer 
(Leica Biosystems, Buffalo Grove, Illinois, USA) using 
the Akoya Opal Multiplex IHC assay (Akoya Biosciences, 
Menlo Park, California, USA). Additional high stringency 
washes were performed after the secondary antibody 
and Opal fluor applications using high-salt TBST (0.05 
M Tris, 0.3 M NaCl, and 0.1% Tween-20, pH 7.2–7.6). 
TCT was used as the blocking buffer (0.05 M Tris, 0.15 
M NaCl, 0.25% casein, 0.1% Tween 20, pH 7.6±0.1). All 
primary antibodies were incubated for 1 hour at room 
temperature. OPAL Polymer HRP Mouse plus Rabbit 
(Akoya Biosciences) was used for all secondary appli-
cations (online supplemental figure 2). Slides were 

mounted with ProLong Gold and cured for 24 hours at 
room temperature in the dark before image acquisition 
at ×20 magnification on the Akoya Vectra 3.0 Automated 
Imaging System. Vectra images were spectrally unmixed 
using Akoya Phenoptics inForm software and analyzed 
using the HALO image analysis software Highplex FL 
module (Indica Labs).

RNA extraction and predictive immune modeling analysis
Assays were performed in a College of American Pathol-
ogists accredited, Clinical Laboratory Improvement 
Amendments licensed clinical laboratory. Unstained, 
unmounted FFPE sections from the same FFPE block were 
processed for RNA extraction using the Prism Extraction 
Kit (Cofactor Genomics, San Francisco, California, USA). 
Total RNA was evaluated for quality and quantity using 
the Bioanalyzer, or TapeStation assay (Agilent, Santa 
Clara, California, USA), and the Qubit RNA HS or BR 
Assay (Thermo Fisher, Waltham, Massachusetts, USA). 
RNA concentration, quantity (in ng/μL and total ng) and 
quality (DV200, % of fragments above 200 nt) were evalu-
ated to determine library input amount.

Total RNA was processed for library construction by 
Cofactor Genomics according to the ImmunoPrism 
Assay standard protocol; 40 ng of RNA was used as input. 
Libraries were sequenced as single-end 75 base pair reads 
on a NextSeq500 (Illumina, San Diego, California, USA). 
An individual ImmunoPrism report, including RNA 
expression characterization and immune cell quantifica-
tion, was generated for each sample processed. Immune 
cell type characterization was defined by RNA models 
for the ImmunoPrism analysis,20 derived from immune 
cell populations sorted using canonical flow cytometry 
markers defined by the Human Immunology Project.21 
Samples were grouped according to clinical outcomes for 
overall survival (OS), and recurrence-free survival (RFS) 
and OS and RFS at 3 years was considered a clinical mean-
ingful cut-off point as this has been cited as the median 
OS for patients with advanced DDLPS.2

Gene expression and immune cell quantification were 
performed using Cofactor’s ImmunoPrism platform.22 
The ImmunoPrism platform is an RNA-based approach 
to characterizing key immune signals with high sensitivity 
and specificity. As described previously in Schillebeeckx 
et al, the platform uses a targeted–capture sequencing 
and machine learning approach to generate ‘health 
expression models’ for accurately identifying percent-
ages of immune cell populations in tumor tissue from 
RNA expression data.20 The immune Health Expression 
Models (including CD4 + T cells, CD8 + T cells, CD56 + 
natural killer (NK) cells, CD19 + B cells, CD14 + mono-
cytes, T regulatory (Tregs) cells, M1 macrophages, and 
M2 macrophages) used in this study were built using 
deep sequencing of purified immune cell popula-
tions and validated using flow cytometry. The platform 
also measures a set of immune escape genes including 
PD-1, PD-L1, CTLA4, OX40, TIM-3, BTLA, ICOS, CD47, 
IDO1, and ARG1. In a recent publication by James et al, 
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exploring immunological signatures in high-grade serous 
ovarian cancer, the results generated using the Immu-
noPrism platform were correlated with the results from 
an expanded The Cancer Genome Atlas (TCGA) cohort 
using traditional RNA-seq differential expression analysis 
methods.23

For this study, the potential analytes considered when 
building the Immunoscore include levels of (1) indi-
vidual immune cell models (listed above, and reported as 
a percentage of total cell content of the tissue analyzed), 
(2) the total immune cell content (listed above, and 
reported as a percentage of the total cell content of 
the tissue analyzed), and (3) the expression of immune 
escape genes (listed above, and reported as transcripts 
per million, TPM).

Statistical analyses
Statistical analyses of TCR-β sequencing results used 

Simpson Clonality defined as: ‍Simpsonclonality =
√∑

p2i ‍, 
and was calculated on productive rearrangements, where 
pi is the proportional abundance of rearrangement i and 
N is the total number of rearrangements. Clonality values 
range from 0 to 1 and describe the shape of the frequency 
distribution. Clonality values approaching 0 indicate a 
very even distribution of frequencies, whereas values 
approaching 1 indicate an increasingly asymmetric distri-
bution in which a few clones are present at high frequen-
cies. Statistical analysis was performed in R V.3.2. The 
fraction of T cells in FFPE tissue samples was calculated by 
normalizing TCR-β template counts to the total amount 
of DNA usable for TCR sequencing, where the amount 
of usable DNA was determined by PCR amplification 
and sequencing of several housekeeping genes that are 
expected to be present in all nucleated cells. Additionally, 
Pearson correlation coefficient analysis was performed to 
evaluate immune markers used for mIHC.

Descriptive statistics were used to evaluate the mean 
differences between recurrence groups including t-tests 
for continuous data and χ2 tests for categorical data. 
Creation of the prognostic multi-analyte classifier was 
generalized from methods advocated by Harrell et al24 
and Moons et al,25 and implemented to describe the 
optimal relationship between immune analytes. Statis-
tical methods included exploratory data analyses, variable 
selection, qualitative cut-off development, and model 
performance evaluation. We evaluated between-analyte 
multicollinearity using clustering, recursive partitioning, 
and principal component analysis. Selection of important 
predictors and creation of a classification score were 
performed in two stages using the lasso with an elastic net 
algorithm.26

Elastic-net regularization was used to perform variable 
selection through a shrinkage parameter. Often there is 
no form solution for the shrinkage parameter; however, 
it can be estimated using an optimization algorithm27 
that minimizes the centered and standardized (to remove 
effects of scaling) functions. We used selected predictors 
to create a score viewed as a weighted sum, describing 

both the direction of the association (those that are asso-
ciated with recurrence vs those that are more associated 
with non-recurrence) and the relative strength (eg, large 
weights contribute more to the score).

Performance characteristics of the prognostic classifier 
include sensitivity, specificity, and area under the receiver 

Table 1  Demographics and characteristics of patients with 
DDLPS

Characteristics n (%) (N=61)

Age (years)

 � 0–40 0 (0)

 � 41–50 2 (3)

 � 51–60 11 (18)

 � 61–70 17 (28)

 � 71–80 20 (33)

 � 81–90 11 (18)

Gender

 � Female 25 (41)

 � Male 36 (59)

Sarcoma type

 � DDLPS 61 (100)

Primary tumor

 � Yes 47 (77)

 � No 14 (23)

Treatment prior to surgery

 � None 47 (77)

 � RT 7 (11)

 � Chemotherapy 3 (5)

 � Chemotherapy and RT 4 (7)

FNCLCC tumor grade

 � 1 16 (26)

 � 2 24 (39)

 � 3 21 (34)

Tumor size, cm

 � Mean (SD) 21.2 (12)

Multiple tumors (%)

 � Yes 7 (11)

 � No 54 (89)

Vital status

 � Alive 29 (48)

 � Deceased 32 (52)

 � Recurrence

 � Yes 37 (61)

 � No 24 (39)

Recurrence-free survival, months

 � Mean (SD) 41.5 (40.1)

 � Range 5.1–196.9

Overall survival, months

 � Mean (SD) 74.8 (62.8)

 � Range 3.3–236.4

DDLPS, dedifferentiated liposarcoma; FNCLCC, French Federation Nationale des 
centres de Lutte Contre le Cancer; RT, Radiation Therapy.
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operating characteristic curve (AUC). Overfitting was 
assessed using bootstrap cross-validation. All analyses 
used reproducible methods via the R statistical package (​
www.​rproject.​org) and R-markdown (http://​rmarkdown.​
rstudio.​com/). These methods allow for all analyses, asso-
ciated tables, listings, and figures to be reconstructed 
in their entirety in a single document. Each step in 
the modeling process, including quality control (QC) 
and intermediate data output, was programmed in the 
smallest executable processes (‘chunks’ in markdown). 
All packages (including the base R package) were locally 
sourced to ensure long-term compatibility.

RESULTS
Clinical demographics
In total, 61 patients were included in this study (table 1). 
The mean age was 71 years (range 48–89). All patients 

had DDLPS, and 47 (77%) were primary tumors. Forty-
seven (77%) patients had no treatment prior to tissue 
collection, only three (5%) had preoperative radia-
tion within 6 months prior to tissue collection, and only 
three (5%) received chemotherapy within 12 months 
of tissue collection. The most common tumor grade by 
FNCLCC classification was intermediate (ie, grade 2), 
24 (39%). The mean tumor size was 21.2 cm (±12), and 
seven (11%) patients had multiple tumors. At the time 
of this analysis, 29 (48%) patients were alive. Recurrence 
was seen in 37 (61%), with a mean RFS of 41.5 months 
(range 5.1–196.9) and a mean OS of 74.8 months (range 
3.3–236.4). The median follow-up time was 34.4 months 
(range 1.4–236.4).

Quantification of escape genes in DDLPS
Expression of common cancer escape genes was 
assessed to understand whether DDLPS might hinder an 

Table 2  Impact of clinical variables and T-cell repertoire metrics on RFS at 3 years

No recurrence
(n=20)

Recurrence
(n=29) P value

Sex

Female 9 (45.0%) 9 (31.0%) 0.995

Male 11 (55.0%) 20 (69.0%)

Age

Mean (SD) 73.4 (12.1) 68.4 (7.91) 0.632

Median (min, max) 75.0 (50.0, 89.0) 69.0 (54.0, 83.0)

Grade 2

High 5 (25.0%) 10 (34.5%) NA

Low/intermediate 15 (75.0%) 19 (65.5%)

P value 0 (0%) 0 (0%)

T cell infiltrates

High 7 (35.0%) 4 (13.8%) 0.13

Low 2 (10.0%) 8 (27.6%)

Moderate 11 (55.0%) 17 (58.6%)

Clonality

High 9 (45.0%) 12 (41.4%) 0.194

Moderate/low 11 (55.0%) 17 (58.6%)

T cells total

Mean (SD) 0.165 (0.146) 0.170 (0.134) 0.289

Median (min, max) 0.105 (0.0100, 0.620) 0.140 (0.0200, 0.670)

Overall survival

Mean (SD) 4.68 (4.60) 3.34 (3.18) 0.98

Median (min, max) 2.60 (0.300, 17.4) 2.00 (0.400, 13.8)

Total immune content

Mean (SD) 0.365 (0.225) 0.372 (0.218) 0.678

Median (min, max) 0.305 (0.100, 0.960) 0.320 (0.0700, 0.900)

A t-test was used for continuous data, and a χ2 test was used for categorical data to analyze clinical characteristics and 
immunosequencing data in relation to RFS at 3 years.
RFS, recurrence-free survival.
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effective immune response leading to early recurrence 
and inferior OS. Forty-nine tumors had high-quality RNA 
extracted for sequencing and immune modeling using 
ImmunoPrism. Ten genes were prospectively selected 
for our initial analysis: PD-1, PD-L1, CTLA-4, OX40, TIM-
3, BTLA, ICOS, CD47, IDO1, and ARG1 (online supple-
mental figure 3). PD-1 was more highly expressed in 
patients with greater than 3-year OS (cut-off=966.02 TPM, 
p=0.003). Other markers more highly expressed in 3-year 
survivors include ICOS (cut-off=415.50 TPM, p=0.006), 
BTLA (cut-off=496.77 TPM, p=0.03), and CTLA-4 (cut-
off=1283.30 TPM, p=0.02).

T-cell fraction, clonality and clinical outcomes
DDLPS samples from 61 patients were available to charac-
terize the repertoire of T cells using the immunoSEQ Assay. 
The mean number of T cells in samples was 6303 (range 
49–117,420) (online supplemental figure 4). The mean 
number of T-cell clones was 4001 (range 49–39,581), and 
the mean clonality was 0.066 (0.021–0.201). These data 

suggest that most patients had a diverse, but not clonal 
T-cell repertoire. The mean clone frequency among the 
samples was 0.037 (0.006–0.196). The mean number of 
total nucleated cells per FFPE tissue sample was 67,188 
(1049–268,036), and the mean total T-cell fraction was 
0.104 (0.002–0.659).

Multivariable analysis of clinical characteristics and 
immunosequencing data was performed in relation to 
3-year RFS (table 2). Levels of T-cell infiltration (p<0.001) 
and clonality (p<0.001) above the median were signifi-
cantly associated with superior 3-year RFS. Neither sex 
nor age was statistically significant independent variables 
(p=0.76 and p=0.79), and tumor grade was not a statis-
tically significant independent factor for RFS at 3 years 
(p=0.38).

The relationships between T-cell fraction, clonality 
and OS were analyzed using a Cox regression model. 
We discovered that higher T-cell fraction had a trend 
toward improved survival (HR p=0.07, Likelihood Ratio 
Test (LRT) p=0.04) (online supplemental figure 5). Addi-
tionally, the presence of multiple tumors (HR p=0.02, 
LRT p=0.03) and older patient age were associated with 
inferior OS (HR p=0.02, LRT p=0.02). However, neither 
tumor grade nor T-cell clonality (HR p=0.72, LRT p=0.71) 
was independently associated with OS.

In order to look more closely at the relationship between 
the T-cell repertoire metrics as determined by immunose-
quencing and OS, both T-cell fraction and clonality were 
subdivided into quadrants based on mean values for each 
metric among all patients (figure  1). Although neither 
T-cell fraction nor clonality was independently associated 
with OS (online supplemental figures 5 and 6), patients 
with both a low T-cell fraction and a high T-cell clonality 
(figure  1) had lower OS (p=0.05). Patients with these 
characteristics related to their T-cell repertoire repre-
sented nearly half of all patients who died within 3 years 
from diagnosis.

Quantification of tumor-infiltrating immune cells in LPS using 
ImmunoPrism
The ImmunoPrism platform used RNA sequencing data to 
evaluate the cellular immune profile.20 Tumor-infiltrating 
immune cells selected for analysis included CD4 + T cells, 
CD8 + T cells, CD19 + B cells, CD14 + monocytes, CD56 + 
NK cells, M1 macrophages, M2 macrophages, and Tregs. 
The overall mean percent of immune cells per DDLPS 
sample was 36.9% (±21.8) of the total cell population, and 
the most prevalent infiltrating immune cells were CD14 + 
monocytes, with a mean of 7.6% (±7.6) of the total cell 
population. The most prevalent infiltrating lymphocytes 
were CD8 + T cells, with a mean of 7.1% (±10.3) of the 
total cell population (online supplemental figure 7). M1 
macrophages only constituted, on average, 0.1% of the 
total cell population and M2 macrophages were nearly 
25 times more prevalent, with a mean overall percent of 
2.3% (±1.6). Additionally, Tregs represented 4.2% of all 
cells.

Figure 1  T-cell fraction and clonality in relation to 3-year 
overall survival (OS). (A) Combined T-cell repertoire clonality 
and T-cell fraction subdivided into quadrants based on mean 
values for each metric. Relative 3-year OS is reported for 
each quadrant. (B) Cox regression for tumor T-cell fraction 
and repertoire clonality in relation to OS in patients with 
dedifferentiated liposarcoma. HR p<0.001. Likelihood ratio 
test p<0.001. ULQ, upper left quadrant.
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The overall number of immune cells was not associated 
with OS. Patients with greater than 3-year OS had lower 
levels of M2 macrophages (3.3% vs 1.96%, p=0.05) and 
CD14 + monocytes (10.72% vs 6.29%, p=0.13). Patients 
who had a greater than 3-year RFS had a higher number 
of CD4  + T cells (cut-off=5.49%, p=0.05). Interestingly, 
in patients who had an intermediate grade tumor, those 
with higher populations of CD19 + B cells (cut-off=2.22%, 
p=0.02) or CD4  + T cells (cut-off=5.49%, p=0.03) were 
more likely to remain recurrence free at 3 years.

To better characterize and confirm cell populations 
identified with ImmunoPrism, mIHC was performed 
using established methods28 (online supplemental figure 
8) on a separate, clinically similar cohort containing 
22 DDLPS patient samples. Staining routinely demon-
strated a significant proportion of CD68+/CD163 + cells 
(figure  2), and pairwise correlation was performed to 
demonstrate consistency with previous findings using the 
ImmunoPrism assay with CD14 correlated to PD-1/PD-L1 
and markers for macrophages, which is consistent with 
the Immunoscore model and exploratory data analyses 
(figure  3). CD14+, CD11c+, and HLA-DR  + cells were 
also appreciated, illustrating the prevalence of tumor-
associated macrophages (TAMs) in WD/DD LPS.

Relationships among infiltrating immune cells and escape 
genes
Given the statistically significant association (table  2) 
between 3-year RFS and either T-cell infiltrates (p<0.001) 
or clonality (p<0.001), genetic and cellular relationships 
were explored to identify more granular predictors of 
outcome. We constructed principal component biplots for 
both gene expression and immune cell types (figure 4A 

and B). These plots were performed after standardizing 
and centering genes and immune cells. Despite overlap in 
confidence ellipses, likely related to limited sample size, 
multiple relationships were observed. Notably, inverse rela-
tionships between CD8 + T cells, M1 macrophages, and M2 
macrophages were appreciated, along with inverse rela-
tionships between CD19 + B cells, CD14 + monocytes and 
Tregs (figure 4A). With this analysis, typically only one to 
two elements would cluster with such high similarity. Inter-
estingly, ARG1 (figure  3B) and CD8 T cells (figure  4A) 
load strongest in patients with poorer outcomes (‍≤‍3-year 
RFS), while CD19 + B cells loaded strongest in the patients 
with better outcomes (>3-year RFS) (figure 4A).

To further examine these relationships between escape 
genes, immune cells, and the combination of both, we 
created hierarchical clustering using the Hoeffding D 
statistic as a pairwise similarity measure (figure  4C–E). 
programmed cell death protein 1 (PD-1) and cytotoxic 
T-lymphocyte associated protein 4 (CTLA-4) were highly 
similar (Hoeffding D of 0.4), while B and T lymphocyte 
attenuator (BTLA) and inducible costimulator (ICOS) 
also clustered when relaxing the Hoeffding D similarity to 
0.3 (figure 4C). Although the similarity measure between 
immune cells is lower, a clear cluster emerged between 
CD14  + monocytes and M2 macrophages (Hoeffding 
D of 0.12) (figure 4D). Interestingly, CD8 + T cells and 
TIM3 showed high similarity (figure  4E). Additionally, 
M1 macrophages, CD19 + B cells and Tregs clustered with 
PD-1, CTLA-4, PD-L1, and BTLA genes; while the CD56 + 
NK cells, CD4 + T cells, CD14 + monocytes and M2 macro-
phages clustered with indoleamine 2,3-dioxygenase 1 
(IDO1), arginase 1 (ARG1), and OX40 (figure 4E).

Figure 2  Dedifferentiated liposarcoma multiplex immunohistochemistry of representative patients. Rows 1, 2, and 3 (left to 
right): Core at ×5 magnification with all colors, ×40 with all colors, ×40 with CD68/CD163 and DAPI, ×40 with CD68/CD163 and 
CD3. CD11c, green; CD16, light blue; HLA-DR, yellow; CD14, magenta; CD3, red; CD68/CD163, white; DAPI, dark blue.

https://dx.doi.org/10.1136/jitc-2021-002812
https://dx.doi.org/10.1136/jitc-2021-002812
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Additionally, a recursive partitioning was performed for 
genes, cell types, and a combination of both, with the aim 
of developing a predictive model for OS in patients with 
LPS (online supplemental figure 9). From this recursive 
partitioning, CTLA-4 was the decisive marker that subse-
quently split into PD-L1 and ICOS. High expression of 
CTLA-4 (cut-off >3441 TPM) alone predicted 20% of all 
patients that survived greater than 3 years. Furthermore, 
50% of patients with ‍≤‍3-year OS are captured by parti-
tioning for CTLA-4, PD-L1, and ICOS, while over 40% of 
patients with >3-year OS are also captured by these same 
three genes (online supplemental figure 9).

Creation of DDLPS Immunoscore
Three immune components were selected from the elastic 
net algorithm to create an immune score for DDLPS in 
predicting outcomes. This included CD4 + T cells, CD14 + 
monocytes, and M2 macrophages. A linear score was 
developed, in which weights greater than zero are more 
highly expressed in patients with >3-year RFS; weights less 
than zero are associated with ≤3-year RFS (figure 5). The 
gene expression score alone demonstrated little statistical 
predictive capacity (AUC=0.550, not shown). However, 
when immune markers (ie, cell types) were combined 
with genes, the Immunoscore for the AUC improved 

from 0.752 to 0.789, indicating improved statistical 
prediction. Importantly, when tumor site was included in 
analysis (ie, retroperitoneal, limb, etc), it had no impact 
on the Immunoscore (online supplemental figure 10). 
There was little evidence of overfitting in either model, 
with 1% in the immune score model, and 6% for the 
immune score and gene scores combined. Overfitting 
was mitigated by dimension reduction using the linear 
combination of immune analytes and gene expression 
as scores with appropriate shrinkage estimators applied 
rather than individual predictors.

DISCUSSION/CONCLUSION
In this study, we retrospectively studied FFPE tumor 
specimens from 61 patients with LPS and analyzed gene 
expression and immunosequencing data with regard to 
clinical outcomes. Our data suggest that LPS represents 
diseases with varying immunophenotypes that were asso-
ciated with different clinical outcomes. Consistent with 
prior findings,29 we showed that LPS generally has low 
levels of T-cell clonality. When combined with high T-cell 
fraction, patients had significantly worse outcomes. This 
may indicate there exists a patient subset with highly 

Figure 3  Pairwise correlation for multiplex immunohistochemistry (mIHC). The heat map demonstrates pairwise correlation 
between mIHC markers where red represents a strong positive correlation, and blue represents a strong negative correlation. All 
boxes are statistically significant with a p‍≤‍0.05, except for boxes marked with an ‘X’.

https://dx.doi.org/10.1136/jitc-2021-002812
https://dx.doi.org/10.1136/jitc-2021-002812
https://dx.doi.org/10.1136/jitc-2021-002812
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inflammatory tumors lacking strong, specific immuno-
genic targets. Further efforts to study the DDLPS TME 
should distinguish these patients from patients with 
DDLPS with tumors that have a quiet TME, with few T 
cells, and those who have a high clonality and presumably 
antigen-specific inflammatory response.

As has been seen in prior studies, higher PD-1/PD-L1 
correlated with patient outcomes.30 PD-1 targeted ther-
apies have yielded relatively low objective response 
rates (10%–20%) in DDLPS but in those patients with 
responses, they have tended to be durable.12 Patients 
with fewer monocytic cells (particularly TAMs), and those 
with higher CD4 + T cells, were also identified as having 
better clinical outcomes. In fact, CD4 + T cells were most 
strongly associated with better outcomes in this analysis. 
This finding is consistent with a growing body of litera-
ture. Tseng et al observed that the majority of infiltrating 

lymphocytes in RLPS are CD4 + and are frequently juxta-
posed to DC-LAMP positive mature dendritic cells.30 
Furthermore, Petitprez et al characterized tumors based 
on sarcoma immune classes, and of those classes, they 
discovered better outcomes were more likely in patients 
with high expression of PD-1, CTLA4, and TIM3.31 These 
findings are similar to ours, although TIM3 did not reach 
statistical significance in our cohort.

Perhaps the most interesting cell population identified 
from expression profiling was the significant prevalence 
of M2 macrophages. This prevalent cell type likely contrib-
utes to an immunosuppressive TME. Therefore, therapies 
that have anti-macrophage activity could be promising 
including those using standard cytotoxic chemothera-
pies.32 Trabectedin has shown direct cytotoxic effects on 
TAMs,33–35 and future studies in DDLPS could consider 
this treatment strategy, possibly in conjunction with 

Figure 4  Hierarchical clustering using the Hoeffding D statistic as a pairwise distance measure and biplots based on 3-year 
overall survival (OS). Biplots based on patient 3-year OS using immune cells (A) and escape genes (B). Example of inverse 
relationships include between CD8+ T cells, M1 macrophage and M2 macrophages, and additionally between CD19+ B cells, 
CD14+ monocytes and regulatory T-cells. Example of multicolinear relationship between CD4+ T cells and CD19+ B cells. 
Hierarchical clustering with immune cells (C), escape genes (D), and combined (E). Tregs, regulatory T cells. ARG1, arginase 
1; BTLA, B and T lymphocyte attenuator; CD, cluster of differentiation; CTLA-4, cytotoxic T-lymphocyte associated protein 
4; ICOS, inducible costimulator; PD-1, programmed cell death protein 1; TIM3, T cell immunoglobulin and mucin-domain 
containing 3.
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checkpoint inhibition given what we have demonstrated 
here.

Several precautionary comments are important to the 
interpretation of the data presented here. Although this 
is one of the largest cohorts of patients with DDLPS, the 
overall sample size is a study limitation. Furthermore, 
despite our best efforts, five patients received treatment 
within 1 year of sample collection, which could affect 
the TME and serve as a confounder. In future efforts we 
hope to validate our prognostic score in an independent 
cohort.

Despite these precautionary comments, the results of 
our exploratory hypothesis-generating study indicate 
substantial, and clinically important heterogeneity in the 
immunophenotype of patients with DDLPS. These differ-
ences may be exploited to predict patient outcomes and 
identify immunologically tailored treatment regimens. 
Patients with higher levels of PD-1 and CTLA-4 expression 
are more likely to recur later than 3 years versus those with 
lower expression levels. The TME appears to play an inte-
gral role in tumor suppression as evidenced by increased 
time to tumor recurrence with increased PD-1 and CTLA-4 
expression. Furthermore, lower levels of immunosuppres-
sive CD14 + monocytes and M2 macrophages are associ-
ated with better patient outcomes. Similar to what others 
have shown,31 we found that CD19 + B cells were associ-
ated with better outcomes, although CD4 + T cells repre-
sent the single most powerful positive predictor. Future 
studies in DDLPS in the advanced setting may consider 
combining checkpoint inhibition with TAM depleting 
strategies, while incorporating immunosequencing, as 
well as gene expression profiling techniques, such as 
ImmunoPrism, to generate comprehensive immune 
profiles in order to better identify potential responders. 

In addition, it may be possible to exploit assessment of 
CTLA-4 and PD-1 expressions to provide more reliable 
patient prognostication.
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