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Deciphering associations between three RNA splicing-related
genetic variants and lung cancer risk
Wenjun Yang 1,2,3,22, Hongliang Liu2,4,22, Ruoxin Zhang2,4,5,6,22, Jennifer A. Freedman2,7, Younghun Han8, Rayjean J. Hung 9,
Yonathan Brhane9, John McLaughlin10, Paul Brennan 11, Heike Bickeboeller12, Albert Rosenberger 12, Richard S. Houlston 13,
Neil E. Caporaso14, Maria Teresa Landi14, Irene Brueske15, Angela Risch 16, David C. Christiani 17,18, Christopher I. Amos 19,
Xiaoxin Chen20, Steven R. Patierno 2,7✉ and Qingyi Wei 2,4,7,21✉

Limited efforts have been made in assessing the effect of genome-wide profiling of RNA splicing-related variation on lung cancer risk. In
the present study, we first identified RNA splicing-related genetic variants linked to lung cancer in a genome-wide profiling analysis and
then conducted a two-stage (discovery and replication) association study in populations of European ancestry. Discovery and validation
were conducted sequentially with a total of 29,266 cases and 56,450 controls from both the Transdisciplinary Research in Cancer of the
Lung and the International Lung Cancer Consortium as well as the OncoArray database. For those variants identified as significant in the
two datasets, we further performed stratified analyses by smoking status and histological type and investigated their effects on gene
expression and potential regulatory mechanisms. We identified three genetic variants significantly associated with lung cancer risk:
rs329118 in JADE2 (P= 8.80E−09), rs2285521 in GGA2 (P= 4.43E−08), and rs198459 in MYRF (P= 1.60E−06). The combined effects of all
three SNPs were more evident in lung squamous cell carcinomas (P= 1.81E−08, P= 6.21E−08, and P= 7.93E−04, respectively) than in
lung adenocarcinomas and in ever smokers (P= 9.80E−05, P= 2.70E−04, and P= 2.90E−05, respectively) than in never smokers. Gene
expression quantitative trait analysis suggested a role for the SNPs in regulating transcriptional expression of the corresponding target
genes. In conclusion, we report that three RNA splicing-related genetic variants contribute to lung cancer susceptibility in European
populations. However, additional validation is needed, and specific splicing mechanisms of the target genes underlying the observed
associations also warrants further exploration.
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INTRODUCTION
RNA splicing is a process in which an mRNA precursor can
produce multiple mRNA isoforms that dramatically diversify the
transcriptome and the proteome in eukaryotic cells1–3. In humans,
it is estimated that up to 94% of the genes are differentially
spliced, and the resulting protein isoforms can contribute to
proteome complexity and have diverse or even opposite
biological functions, with profound consequences on cellular
processes and phenotypes4. Several studies have described
aberrant or dysregulated RNA splicing events as well as alternative
RNA splicing events, which can frequently be affected by genetic
variants and mutations, that contribute to cancer cell phenotypes
by directly or indirectly regulating the genome, epigenome,
transcriptome, and proteome5–9. Aberrant RNA splicing has been
implicated in the ancestry-related biology of cancer disparities and
as a potential source of novel targets for precision oncology10. The

role of aberrant splicing as a primary cause of Mendelian diseases
has been widely accepted by decades of related studies11–13.
However, much less has been reported and appreciated regarding
the extent of physiological RNA splicing variation among human
populations and the phenotypic variability and disease suscept-
ibility affected by them in humans5.
Lung cancer is the most common malignancy in humans,

leading the causes of cancer death worldwide14. Non-small cell
lung cancer (NSCLC) is the most prevalent and heterogeneous
subtype of lung cancer, including lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC)15. Although a large
number of germline mutations within cancer susceptibility genes
have been reported, genetic etiology of lung cancer is still not
fully understood16,17. In addition, until recently, despite the
important role of RNA splicing in cancer, limited efforts have
been made in the genome-wide profiling of RNA splicing-related
variation in cancer patients, including in NSCLC15.
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We have previously reported single nucleotide polymorph-
isms (SNPs) in RNA splicing-related regulatory sequences in
prostate cancer stemness-associated genes that are associated
with race and/or survival18,19. To conduct a comprehensive
characterization of a genome-wide profile of common lung
cancer genetic susceptibility loci associated with RNA splicing,
we first performed a meta-analysis to discover potential RNA
splicing-related SNPs using summary statistics from eight
published lung cancer genome-wide association studies
(GWASs) from the Transdisciplinary Research in Cancer of the
Lung (TRICL) and the International Lung Cancer Consortium
(ILCCO)20. Those significant SNPs discovered were then vali-
dated using data from the OncoArray platform that provides an
unprecedented opportunity for additional de novo discovery as
well as for fine mapping of lung cancer susceptibility16,21. For
those identified SNPs that were found to be significant in both
discovery and validation datasets, we further performed
stratified analyses by smoking status and histological type and
investigated their effects on gene expression and potential
regulatory mechanisms in cell lines and tissues by using the
available genomic and genetic data from multiple public
databases.

RESULTS
Meta-analysis of the main effects
We focused on the joint analyses of both TRICL-ILLCO and
OncoArray sets, representing the largest sample size of European
ancestry to date. The study populations (29,266 lung cancer cases
and 56,450 non-cancer controls) for the eight GWASs from TRICL-
ILLCO consortia (i.e., ICR, MDACC, IARC, NCI, Toronto, GLC, Harvard,
and deCODE GLC) and OncoArray dataset and the demographic
characteristics of the final dataset are summarized in Supplemen-
tary Table 1, and the work workflow is depicted in Fig. 1.
The overview of overall association results is shown in the

Manhattan plot (Fig. 2a). We found that there were 295 SNPs
related to RNA splicing with a nominal P < 0.05, of which 14 SNPs
remained with a false discovery rate (FDR) < 0.20 for multiple
testing correction. There was no heterogeneity observed for the
effect estimates of these 14 SNPs from the eight GWASs
(Supplementary Table 2).
Among the 14 SNPs identified, six were unreported, which

were then validated using the OncoArray dataset (14,803 cases
and 12,262 controls), and three SNPs reached a nominal P < 0.05
(Table 1). All three SNPs were imputed with the overall
imputation information/ R-squared in the eight TRICL-ILLCO

Fig. 1 Study flowchart. CEU Caucasian, MAF minor allele frequency, FDR false discovery rate, eQTL expression quantitative trait loci.
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GWAS presented in Supplementary Table 3. After a final
combined analysis, as shown in Table 1, JADE2 rs329118 T>C
was found to be associated with a significantly decreased risk of
lung cancer [odds ratio (OR)= 0.94, 95% confidence interval (CI)

= 0.92–0.96, P= 8.80 × 10−9], while two other SNPs were
associated with a significantly increased risk of lung cancer
(GGA2 rs2285521 C>T: OR= 1.08, 95% CI= 1.05–1.11, P= 4.43 ×
10−8 and MYRF rs198459 G>A: OR= 1.07, 95% CI= 1.04–1.11,
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P= 1.60 × 10−6). No heterogeneity was observed for the effect
estimates of these three SNPs from the eight GWASs and the
OncoArray dataset (Supplementary Fig. 1). The regional associa-
tion plots of these three SNPs are shown in Fig. 2b–d.
We then performed functional prediction for these three

significant SNPs by using three bioinformatics tools (SNPinfo,
regulomDB, and HaploReg) to predict their potential effects on
gene expression or biological functions for further analysis
(Supplementary Table 4).

Stratified analyses
To assess whether histological types of lung cancer may be
impacted by different genetic factors, we performed stratified
analyses by LUAD and LUSC. By using 11,273 LUAD and 7,426
LUSC from both the TRICL-ILLCO and OncoArray datasets, we
found that the effects of all three SNPs (JADE2 rs329118, GGA2
rs2285521, and MYRF rs198459) were more evident in LUSC (OR=
0.91, 95% CI= 0.88–0.95; OR= 1.13, 95% CI= 1.08–1.19; OR=
1.08, 95% CI= 1.03–1.13, respectively) than in LUAD (OR= 0.95,
95% CI= 0.91–0.98; OR= 1.04, 95% CI= 0.99–1.09; OR= 1.05,
95% CI= 1.00–1.12, respectively)). However, no significant hetero-
geneity was found for either of the two histological strata for these
three SNPs (Table 2 and Supplementary Fig. 1).
One of the major risk factors for lung cancer is cigarette

smoking, which may interact with genetic factors. According to
available smoking data, study subjects were divided into two
groups as ever smokers and never smokers in stratified analyses.
We found that rs329118, rs2285521, and rs198459 all had a
significant risk effect in ever smokers (OR= 0.94, 95% CI=
0.91–0.97; OR= 1.07, 95% CI= 1.03–1.12; OR= 1.02, 95% CI=
1.06–1.18, respectively) (Table 2 and Supplementary Fig. 1), while
no significant association was observed in never smokers for all
three SNPs. The forest plots of the overall and stratification results
for these three SNPs are shown in Supplementary Fig. 1a–c.

In silico analyses
The three SNPs were not only predicted to potentially affect RNA
splicing but also were predicted to potentially affect mRNA
transcription (Supplementary Table 4). According to experiment-
based data (e.g., histone modification, DNase cluster, transcription
factor (TF) binding, RNAseq) from the ENCODE project (Fig. 2e, f),
we found that two SNPs (JADE2 rs329118 and GGA2 rs2285521)
are located within one CpG island with strong signals for active
enhancer and promoter functions (indicated by H3K4 tri-methyla-
tion, histone modification H3K27 acetylation, and DNase hyper-
sensitivity). MYRF rs198459 was also predicted to be located within
a regulatory region with evidence for H3K4 mono-methylation
and DNase cluster (Fig. 2g). Further TF binding analysis (using
ChIP-seq data) showed that rs329118, rs2285521, and rs198459
are located within the AP2B, MYOD-1, and ELK3 motifs,
respectively, as shown by the position weight matrix (PWM)-
based Sequence Logo (Fig. 2e–g), which suggest that the allele
difference might influence the binding activity of the TF.

In the following analyses using three mRNA expression and
genotype databases, rs2285521 in GGA2 was assessed directly or
indirectly from the lymphoblastoid cell lines, normal lung tissue,
and lung cancer tissue, while the other two variants rs329118 and
rs198459 only had available data either from lymphoblastoid cell
lines or whole blood cells. The rational for using different tissues
was to test the potential tissue-specific regulation of these SNPs.
Expression quantitative trait loci (eQTL) analysis was first

performed to assess the association between each SNP and its
target gene mRNA expression level in the lymphoblastoid cell
lines from 373 subjects of European ancestry in the 1000 Genomes
project. From this analysis, we found that the JADE2 rs329118 T
allele was significantly associated with increased expression levels
of JADE2 in a recessive model (P= 0.027), but not in an additive or
dominant model (Fig. 3a–c). The GGA2 rs2285521 C allele was
significantly related to decreased mRNA expression levels in all
additive (P= 5.30 × 10−4), dominant (P= 1.30 × 10−3), and reces-
sive (P= 0.034) models (Fig. 3d–f).
SNP rs2285521 was also significantly correlated with mRNA

expression levels of GGA2 in normal lung tissues based on the
Genotypes-Tissue Expression (GTEx) database (P= 0.014, Fig. 3g),
which is consistent with the results in the lymphoblastoid cell
lines. Similar results were found for MYRF rs198459 in whole blood
cells (P= 6.20 × 10−10) (Fig. 3h). Using both genotyping and gene
expression data for lung cancer in the Cancer Genome Atlas
(TCGA) database, we performed SNP-mRNA correlation analyses
for the three SNPs. However, we were only able to retrieve the
genotype data for rs6497670 in EASR2 (Fig. 3i, j), a SNP in complete
linkage disequilibrium (LD) (r2= 1) with rs2285521 in GGA2, with
available data after performing imputation for these top three
SNPs (Fig. 3k). Once again, SNP rs2285521 showed a significant
correlation with decreased mRNA expression levels of GGA2 in
lung cancer tissues, specifically in both additive (P= 4.85 × 10−3,
Fig. 3i) and recessive (P= 8.29 × 10−3, Fig. 3j) models for LUSC, but
not for LUAD (Supplementary Fig. 2e, f).
Results from other studies collected in the cancer microarray

database Oncomine also provided evidence for a higher expres-
sion level of JADE2 in NSCLC tissue (both LUAD and LUSC) than in
normal lung tissue. Both GGA2 and MYRF were found to exhibit
lower expression in NSCLC (both LUAD and LUSC) tissue than in
normal lung tissue (Supplementary Fig. 3a–f).
For GGA2, we compared two GGA2 transcripts (GenBank

number: NC_000016) (Fig. 4a–d), which were designated as
GGA2-X1 and GGA2-X2 in the GenBank of National Center of
Biotechnology Information. We analyzed the amino acid (aa)
sequence and secondary structure of the putative protein
isoforms of GGA2-X1 and GGA2-X2 with ExPASy and SWISS-
MODEL, respectively. The aa sequence (Fig. 4a) and secondary
structure differed between the two isoforms (Fig. 4b). The GGA2-
X1 isoform contained 576 aa, while the GGA2-X2 isoform
contained 526 aa. There is complete homology between GGA2-
X1 and GGA2-X2 in the last nine exons of C-terminal sequences,
but GGA2-X2 lacks 50 aa (aa1-aa50) in the N-terminal sequences,
compared with GGA2-X1, as shown in Fig. 4c, d.

Fig. 2 Association results and functional prediction of lung cancer risk-associated potential splicing SNPs. a Manhattan plot of the overall
results. There were 295 SNPs related to RNA splicing with a nominal P < 0.05, 14 of which remained with FDR < 0.20. The x-axis indicates the
chromosome number and the y-axis shows the association P values with lung cancer risk (as −log10 P values). The horizontal blue line
represents P values of 0.05, while the red line indicated the FDR threshold 0.20. Regional association plot, which shows the LD between the
top SNP rs329118 on JADE2 (b), rs2285521 on GGA2 (c), and rs198459 on MYRF (d), and other SNPs in the region of 500 kb up- or downstream
of the top SNP. Locations, functional prediction, and position weight matrix based Sequence Logo of three SNPs. JADE2 rs329118 (e) and GGA2
rs2285521 (f) are located within one CpG island and presented strong signals of active enhancer and promoter functions (indicated by H3K4
methylation, histone modification H3K27 acetylation, and DNase hypersensitivity, respectively). MYRF rs198459 (g) is located within one CpG
island and presented strong signals of active enhancer and promoter functions (indicated by H3K4 methylation and DNase hypersensitivity,
respectively). The panels were adapted from the UCSC Genome Browser. Three SNPs are located on the AP2B motif (e), the MYOD1 motif (f),
and the ELK3 motif (g), respectively.

W Yang et al.

4

npj Precision Oncology (2022)    48 Published in partnership with The Hormel Institute, University of Minnesota



DISCUSSION
To our knowledge, we are the first to report a genome-wide
profiling analysis of RNA splicing-related genetic variants in lung
cancer, using a total of 29,266 cases and 56,450 non-cancer
controls of European ancestry. We identified three genetic variants
(rs329118, rs198459, and rs2285521) to be associated with lung
cancer risk, residing in a gene for apoptosis and differentiation in
epithelia 2 (JADE family PHD zinc finger 2; JADE2; PHF16) at
5q31.1, myelin regulatory factor gene (MYRF) at 11q12.2, and
golgi-localized, γ-adaptin ear-containing, ADP ribosylation factor-
binding protein 2 (GGA2) at 16p12.2, respectively.
Among the three identified susceptibility genes in the present

study, GGA2 belongs to the GGA family, which consists of three
isoforms in vivo, namely GGA1, GGA2, and GGA322. These isoforms
have been reported to have transport functions in cells, with
GGA2 predominantly in the trans-Golgi network (TGN) and
endoplasmic reticulum, participating in the separation of the
TGN and polyvesicles22,23. GGA2 cooperates with mannose
6-phosphate receptor and adaptor protein-1 in regulating protein
sorting, showing significant co-localization with transporter
glucose transporter 4 (GLUT4) recovery pool24. It also stimulates
the activation of EGFR signal transduction and promotes the
occurrence and development of several malignancies22,25. SNP
rs2285521 T>C is located in the first exon of GGA2 on chr16, which
lies upstream of the coding sequence, 48 bp away from the
translation initiation site, belonging to the 5 ‘untranslated region
(UTR). It appears that rs2285521 T>C does not directly change the
sequence or the amino acid types of GGA2, but the mRNA
structure analysis suggests that the conversion of rs2285521 allele
T to C changes a loop-stem-loop secondary structure. In the
GenBank of National Center of Biotechnology Information, there
are two isoforms of GGA2: GGA2-X1 and GGA2-X2, generated by
an exon skipping/inclusion event. Compared with GGA2-X1,
GGA2-X2 lacks 50 amino acids (aa1–aa50) in the N-terminal
sequences. The exon skipping/inclusion event leads to a
difference in the N-terminal sequences between GGA2-X1 and
GGA2-X2, while keeping the complete homology of the two
isoforms in the remaining nine exons of C-terminal sequences.
Whether rs2285521 is involved in the regulation of this exon
skipping/inclusion event remains to be determined. Meanwhile,
both the eQTL data from lymphocytes and GTEx data from lung
tissue suggest that rs2285521 is involved in transcriptional
regulation possibly by reducing the mRNA expression of GGA2.
In addition, TCGA data showed that the substitution of the T allele
with the C allele would lead to a decrease in GGA2 mRNA
expression in LUSC. The in silico results of these three analyses
supported the observed genetic associations. These data also
suggest that different histological subtypes of lung cancer may
have different genetic etiology, with GGA2 rs2285521 more likely
having significance in LUSC.
Two other variants, rs329118 and rs198459 are located in the

introns of JADE2 and MYRF, respectively. JADE2 is a member of the
small JADE family that also includes JADE1 (PHF17) and JADE3
(PHF15) paralogs26. All three JADE proteins bear in tandem two
Plant Homeo-domains (PHD), which are zinc finger domains26.
Jade-1 was reported to inhibit Wnt signaling through its E3
ubiquitin ligase activity of β-catenin and was therefore defined as
a PHD-finger-type E3 ubiquitin ligase27. JADE2 rs329118 was
recently shown to be associated with age of initiation of regular
smoking, but no relation to lung cancer was reported28. So far, it is
known that JADE1 mRNA encodes two protein products: the full
length isoform JADE1L and the truncated isoform JADE1S as a
result of alternative RNA splicing26, but the RNA splicing pattern of
JADE2, as well as its molecular function, remain unclear.
MYRF encodes an endoplasmic reticulum membrane protein

that undergoes auto-processing to release its N-terminal frag-
ment, which enters the nucleus, forms a homo-trimer, andTa
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Table 2. Associations between three SNPs and lung cancer risk stratified by histologic types and smoking status in all eight lung cancer GWASs and
OncoArray dataset.

Study Case Control rs329118 rs2285521 rs198459

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Overall I2= 0.0%, P= 0.988 I2= 0.0%, P= 0.866 I2= 19.7%, P= 0.267

ICR 1952 5200 0.92 (0.86–1.00) 0.038 1.04 (0.94–1.15) 0.480 1.03 (0.94–1.13) 0.532

MDACC 1150 1134 0.95 (0.84–1.07) 0.407 1.17 (0.99–1.39) 0.064 1.18 (1.00–1.40) 0.047

IARC 2533 3791 0.92 (0.85–0.99) 0.027 1.11 (1.01–1.23) 0.039 1.10 (1.00–1.21) 0.054

NCI 5713 5736 0.94 (0.89–0.99) 0.023 1.10 (1.02–1.18) 0.012 1.15 (1.08–1.23) 4.00E−05

Toronto 331 499 0.93 (0.74–1.17) 0.528 0.97 (0.70–1.33) 0.839 1.09 (0.83–1.42) 0.548

GLC 481 478 0.88 (0.73–1.07) 0.193 1.01 (0.78–1.29) 0.969 1.14 (0.89–1.44) 0.295

Harvard 984 970 0.93 (0.82–1.06) 0.298 1.10 (0.91–1.32) 0.350 0.98 (0.84–1.14) 0.799

deCODE 1319 26380 0.94 (0.87–1.02) 0.135 1.01 (0.90–1.14) 0.867 1.02 (0.91–1.14) 0.728

OncoArray 14360 11555 0.94 (0.91–0.97) 5.18E−04 1.07 (1.02–1.13) 4.23E−03 1.05 (1.01–1.10) 0.018

Overall 28823 55743 0.94 (0.92–0.96) 8.80E−09 1.08 (1.05–1.11) 4.43E−08 1.07 (1.04–1.11) 1.60E−06

Adenocarcinoma I2= 0.0%,P= 0.783 I2= 0.0%, P= 0.933 I2= 26.5%, P= 0.209

ICR 465 5200 1.01 (0.88–1.15) 0.938 1.07 (0.88–1.29) 0.504 1.03 (0.87–1.22) 0.714

MDACC 619 1134 0.93 (0.80–1.08) 0.328 1.10 (0.90–1.35) 0.341 1.17 (0.96–1.42) 0.130

IARC 517 2824 0.91 (0.79–1.04) 0.163 1.15 (0.96–1.37) 0.125 1.08 (0.90–1.29) 0.425

NCI 1841 5736 0.94 (0.87–1.01) 0.103 1.02 (0.92–1.14) 0.718 1.16 (1.06–1.28) 0.002

Toronto 90 499 0.85 (0.61–1.21) 0.370 1.10 (0.67–1.79) 0.713 0.89 (0.58–1.36) 0.596

GLC 186 478 0.77 (0.59–1.00) 0.047 0.97 (0.69–1.35) 0.842 0.90 (0.65–1.25) 0.528

Harvard 597 970 0.94 (0.81–1.09) 0.391 1.11 (0.89–1.37) 0.370 0.89 (0.75–1.07) 0.217

deCODE 547 26380 0.91 (0.80–1.03) 0.119 0.98 (0.82–1.17) 0.808 1.08 (0.92–1.28) 0.351

OncoArray 5161 11323 0.96 (0.91–1.00) 0.067 1.02 (0.95–1.09) 0.589 1.03 (0.98–1.10) 0.259

Overall 10023 54544 0.95 (0.91–0.98) 0.011 1.04 (0.99–1.09) 0.076 1.05 (1.00–1.12) 0.029

Squamous cell carcinoma I2= 0.0%, P= 0.857 I2= 0.0%, P= 0.654 I2= 0.0%, P= 0.599

ICR 611 5200 0.94 (0.83–1.06) 0.339 1.13 (0.96–1.33) 0.146 1.08 (0.93–1.25) 0.300

MDACC 306 1134 1.05 (0.87–1.27) 0.630 1.17 (0.90–1.51) 0.246 1.14 (0.88–1.46) 0.317

IARC 911 2968 0.87 (0.78–0.97) 0.010 1.06 (0.92–1.22) 0.421 1.02 (0.89–1.18) 0.750

NCI 1447 5736 0.90 (0.83–0.98) 0.019 1.22 (1.09–1.36) 5.34E-04 1.12 (1.00–1.25) 0.040

Toronto 50 499 0.92 (0.58–1.47) 0.733 0.93 (0.50–1.76) 0.835 1.14 (0.65–2.03) 0.643

GLC 97 478 1.00 (0.72–1.38) 0.977 1.19 (0.77–1.83) 0.432 1.16 (0.77–1.76) 0.480

Harvard 216 970 0.84 (0.67–1.06) 0.142 0.86 (0.62–1.20) 0.383 1.35 (1.04–1.74) 0.023

deCODE 259 26380 0.92 (0.77–1.09) 0.335 1.07 (0.82–1.39) 0.618 0.91 (0.71–1.15) 0.426

OncoArray 3529 11323 0.91 (0.86–0.96) 3.00E−04 1.14 (1.06–1.22) 5.00E−04 1.06 (0.99–1.14) 0.073

Overall 7426 54688 0.91 (0.88–0.95) 1.81E−08 1.13 (1.08–1.19) 6.21E−08 1.08 (1.03–1.13) 7.93E−04

Ever smoking I2= 0.0%, P= 0.910 I2= 0.0%, P= 0.675 I2= 29.1%, P= 0.177

IARC 2367 2508 0.95 (0.88-1.04) 0.274 1.11 (0.99-1.24) 0.068 1.12 (1.01-1.25) 0.037

Toronto 236 272 0.91 (0.68–1.21) 0.508 1.01 (0.69–1.49) 0.948 1.12 (0.79–1.58) 0.535

GLC 433 258 0.88 (0.69–1.14) 0.337 0.86 (0.62–1.18) 0.356 1.09 (0.80–1.49) 0.600

Harvard 892 809 0.95 (0.83–1.10) 0.504 1.11 (0.90–1.36) 0.333 0.99 (0.83–1.17) 0.870

MDACC 1150 1134 0.95 (0.84–1.07) 0.407 1.17 (0.99–1.39) 0.064 1.18 (1.00–1.40) 0.047

ATBC 1732 1270 0.95 (0.85–1.06) 0.339 1.14 (1.00–1.30) 0.055 1.03 (0.88–1.20) 0.693

CPSII 600 383 1.10 (0.90–1.34) 0.355 1.21 (0.92–1.59) 0.175 0.93 (0.74–1.18) 0.578

EAGLE 1767 1339 0.94 (0.84–1.04) 0.225 1.06 (0.91–1.22) 0.473 1.27 (1.13–1.43) 9.00E−05

PLCO 1243 1344 0.88 (0.78–0.99) 0.039 0.97 (0.83–1.15) 0.740 1.23 (1.06–1.43) 0.006

OncoArray 12803 7613 0.94 (0.90–0.98) 0.003 1.06 (1.01–1.12) 0.031 1.09 (1.04–1.15) 6.00E−04

Overall 23223 16930 0.94 (0.91–0.97) 9.80E-05 1.07 (1.03–1.12) 2.70E−04 1.12 (1.06–1.18) 2.90E−05

Never smoking I2= 0.0%, P= 0.700 I2= 0.0%, P= 0.761 I2= 0.0%, P= 0.939

IARC 159 1253 0.87 (0.68–1.11) 0.253 1.08 (0.78–1.49) 0.647 1.09 (0.79–1.49) 0.602

Toronto 95 217 0.96 (0.65–1.42) 0.843 0.90 (0.50–1.61) 0.712 1.04 (0.66–1.64) 0.871

GLC 35 220 0.80 (0.47–1.36) 0.409 0.49 (0.19–1.26) 0.140 1.18 (0.58–2.39) 0.652

Harvard 92 161 0.86 (0.59–1.27) 0.461 1.07 (0.63–1.83) 0.803 0.86 (0.55–1.35) 0.520

CPSII 86 275 1.35 (0.92–1.97) 0.124 0.96 (0.53–1.73) 0.893 1.23 (0.77–1.97) 0.384
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functions as a TF29. There is an increasing evidence that MYRF may
play a critical role in the development of various organs, including
the heart, lungs, diaphragm, and genitourinary tract. For example,
particular missense or frameshift variants in MYRF have been
identified to be linked to mild encephalitis/encephalopathy or
congenital heart defects, and/or congenital diaphragmatic her-
nia30. Interestingly, members of our team have recently reported
that MYRF is a differentially spliced gene in LUSC between patients
of West African and European ancestry who are smokers31.
In summary, the present study, with the largest lung cancer

study population of European ancestry ever reported, identified
three genetic variants in genome-wide profiling RNA splicing-
related genes to be associated with lung cancer risk. We believed
that all susceptibility alleles, if biologically meaningful, should be
correlated with expression levels of the corresponding genes in
normal lymphocytes and/or lung tissues. Our results suggest that
the combination of genetics and in silico analyses helps identify
and emphasize potential functional importance of RNA splicing-
related loci in lung cancer susceptibility, providing insights into
the etiology of this complex disease. However, replication of the
results is also required in different populations as well in larger
prospective studies. Because the underlying molecular splicing
mechanisms of the RNA splicing-related genetic variants in lung
cancer are not completely understood, further biological valida-
tion both in vitro and in vivo are warranted in the future to better
understand the role of these three SNPs.

METHODS
Study design and subjects
The present study adopted a two-stage design with discovery and
replication datasets. The discovery set was comprised of 14,463 lung
cancer cases and 44,188 non-cancer controls of European ancestry from
eight centers. The replication series was comprised of 14,803 cases and
non-cancer 12,262 controls of European ancestry from 31 sites, of which
some centers (with no overlapping study subjects) also participated in the
discovery phase (Supplementary Table 1).

Discovery set
The study populations of the discovery set have been described in
previous publications from TRICL-ILCCO20,32. Briefly, eight published lung
cancer GWASs were from the TRICL-ILCCO consortia, which consists of
14,463 lung cancer cases and 44,188 controls of European ancestry. The
GWAS participants included Institute of Cancer Research (ICR), The
University of Texas MD Anderson Cancer Center (MDACC), International
Agency for Research on Cancer (IARC), National Cancer Institute (NCI),
Lunenfeld-Tanenbaum Research Institute study (Toronto), German Lung
Cancer Study (GLC), the Harvard Lung Cancer Study, and Icelandic Lung
Cancer Study (deCODE)20,33. (Supplementary Table 1)

Replication set
The replication series was comprised of 14,803 cases and 12,262 controls
from 31 study sites, of which some centers (but not study subjects) also
participated in the discovery phase. Comprehensive details of each series

have been previously reported16,21,34–36. After excluding samples geneti-
cally identified as overlapping between the OncoArray and the TRICL-
ILCCO, 14,463 cases and 44,188 controls from the discovery set and 14,803
cases and 12,262 controls from the OncoArray were included in the final
analyses. Most of the lung cancer cases had been histologically confirmed
to be lung adenocarcinoma, followed by LUSC, and lung small cell
carcinoma. Given distinct differences in smoking status and histological
subtypes, the subgroup analyses, including ever and never-smokers as well
as lung adenocarcinomas and LUSC, were performed. All ever smokers in
the present study were defined as individuals having smoked at least 100
cigarettes in their lifetime and never-smokers defined as individuals who
had smoked less than 100 cigarettes during their lifetime. A written
informed consent was obtained from each participant of each dataset. The
present study was approved by the Duke University Health System
Institutional Review Board, and all methods performed in the present study
were in accordance with the relevant guidelines and regulations.

Genotyping and quality control
For all of the GWAS datasets in TRICL-ILCCO, multiple genotyping
platforms were applied, including Illumina HumanHap 317, 317+ 240S,
370Duo, 550, 610, or 1M arrays37. For the meta-analyses, imputation was
performed based on the reference data from the 1000 Genomes Project
(phase I integrated release 3, March 2012) by using both IMPUTE2 v2.1.138

and MaCH v1.0 + minimac (version 2012.10.3) softwares39. Only SNPs with
an information score ≥0.40 in IMPUTE2 or an r2 ≥ 0.30 in MaCH were
included in the final analyses. Standard quality control on samples was
performed on all scans, excluding individuals with a low call rate (<90%),
extremely high or low heterozygosity (P < 1.0 × 10−4), and non-European
ancestry (using the HapMap phase II CEU, JPT/CHB, and YRI populations as
reference).
The OncoArray consortium genotyping was completed at the Center for

Inherited Disease Research (CIDR), the Helmholtz Center Munich (HMGU),
Copenhagen University Hospital, and the University of Cambridge. The
quality control procedures for the OncoArray dataset were identical and
are reported elsewhere16,21,36. Briefly, genotype definition was undertaken
using Genome Studio and jointly clustered data from 57,775 individuals
and 533,631 SNPs. This included 44,591 samples associated with this study
of lung cancer, 12,901 individuals from other unrelated OncoArray studies,
and 283 HapMap control individuals of European, African, Chinese, and
Japanese origin. Among 44,591 OncoArray lung cancer samples,
17,526 samples, including 1193 QC duplicate samples, 7633 samples
overlapped with the discovery sets, 1708 with low call rate less than 95%,
1280 samples with PI-HAT greater than 0.95 or between 0.45 and 0.95 in
IBD analysis, 306 with sex inconsistency information, and 5407 individuals
with non-Caucasian ancestry were removed from the OncoArray when
performing the validation OncoArray analysis and the joint analysis of the
discovery and OncoArray sets. A total of 27,065 OncoArray samples were
included in final association analysis including 14,803 lung cancer cases
and 12,262 controls. Additionally, 4348 samples genotyped on the
OncoArray and in a prior study including 1926 from MDACC, 2422 from
IARC, and 9,811 samples without linked disease information used for
genotype clustering were removed from the OncoArray set in the joint
analysis of the discovery and OncoArray sets. Finally, 25,978 samples
remained. The OncoArray genotyping platform queried 533,631 SNPs for
fine mapping of lung cancer susceptibility loci as well as for additional de
novo discovery. We used OncoArray samples for a validation of six top
variants from TRICL-ILCCO samples, and we performed a meta-analysis of
the discovery set and the validation set.

Table 2 continued

Study Case Control rs329118 rs2285521 rs198459

OR (95% CI) P OR (95% CI) P OR (95% CI) P

EAGLE 138 634 1.01 (0.77–1.34) 0.920 1.30 (0.87–1.93) 0.199 0.95 (0.68–1.33) 0.780

PLCO 126 470 1.01 (0.70–1.44) 0.975 1.18 (0.72–1.92) 0.513 1.08 (0.69–1.68) 0.735

OncoArray 1343 3463 0.96 (0.88–1.05) 0.397 1.07 (0.94–1.22) 0.282 0.96 (0.86–1.07) 0.409

Overall 2074 6693 0.96 (0.89–1.03) 0.215 1.07 (0.96–1.19) 0.155 0.98 (0.90–1.08) 0.892

Abbreviations: GWAS genome-wide association study, AD adenocarcinoma, SC squamous cell carcinoma, OR odds ratio, CI confidence interval, I2 heterogeneity
statistic.
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Fig. 3 Functional analyses of rs329118 on JADE2, rs2285521 on GGA2, and rs198459 on MYRF. Correlation between JADE2 rs329118 and
JADE2mRNA expression levels in additive (a), dominant (b), and recessive (c) models in 373 blood cells from 373 Europeans individuals in 1000
genomes project (P= 0.094, 0.487 and 0.027, respectively). Correlation between GGA2 rs2285521 and GGA2mRNA expression levels in additive
(d), dominant (e), and recessive (f) models in 373 blood cells from 373 Europeans individuals in 1000 genomes project (P= 5.30 × 10−4, 0.0013
and 0.034, respectively). Correlation between GGA2 rs2285521 (g) and MYRF rs198459 (h), and mRNA expression levels in normal lung tissues
or whole blood cells of GTEx project (P= 0.014 and P= 6.20 × 10−10, respectively). i, j Correlation between EARS2 rs6497670 in additive (i) and
dominant (j) models in lung cancer tissues of TCGA project (P= 4.85 × 10−3 and P= 8.29 × 10−3, respectively). k Pair-wise LD plot between
GGA2 rs2285521 (T>C) and EARS2 rs6497670 (C>T). a–j P value was calculated from linear regression. Center-line indicates the median
expression level across all participants in that group, and the hinges represent the lower (Q1) and upper (Q3) quartile, with lower whisker
indicating the smallest value within 1.5 interquartile range (IQR) below Q1 and upper whisker indicating the largest value within 1.5 IQR
above Q3.
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SNP selection
All SNPs were selected from both the 1000 Genomes project40 and GTEx
Portal project (383 normal lung tissues)41. By using the genotyping data
from the 1000 Genomes project, we filtered out SNPs with a minor allele
frequency (MAF) < 0.01 in populations of European ancestry. After that,
there remained 9,739,729 SNPs with MAF ≥ 0.01 in Caucasian populations.
We then performed functional prediction for these SNPs using SNPinfo
software42 and the Ensembl Variant Effect Predictor (VEP) software43,
which integrated the RNA splicing prediction algorithms of FAS–ESS,
RESCUE ESE, ESEfinder, MaxEntScan, Ada Boost, and Random Forest in
dbscSNV44. The algorithm of SNPinfo uses GWAS SNP P-value data and
finds all SNPs in high LD with GWAS SNPs, so that selection is from a much
larger set of SNPs than the GWAS itself41. The Ensembl VEP software
provides tools and methods for a systematic approach to annotate and

prioritize variants in both large-scale sequencing projects and smaller
analysis studies42. By using SNPinfo, we found 36,142 predicted RNA
splicing-related SNPs in Caucasian populations. Through the Ensembl VEP,
we identified 16,306 potential RNA splicing-related SNPs. After combining
all SNPs, there were 48,305 non-redundant SNPs in Caucasian populations.
Meanwhile, 92,213 and 837,755 potential RNA splicing-related SNPs with
MAF ≥ 0.01 were predicted from the GTEx Portal project by sQTLseekeR
package and Altrans method, respectively45,46. sQTLseekeR is an R package
to identify splicing quantitative trait loci (sQTL) in transcriptome
population studies. It can be downloaded from http://big.crg.cat/
computational_biology_of_rna_processing/sqtlseeker. sQTLseekeR could
be directly employed for joint analysis of gene expression across tissues. it
could also be used to identify SNPs affecting expression networks, where
the multivariate phenotype is the relative expression of gene compared
with the total expression output of the network44. Altrans is another

Fig. 4 Diagram representation of the alternative splicing pattern of GGA2 transcripts and the amino acid (aa) sequence, protein
structures, and domains of the GGA2-isoforms. a Results of SNP rs2285521 sequencing in the 53 bp sequence of 5’ UTR region in Exon 1 of
the GGA2: Genomic structure of the GGA2-X1 and GGA2-X2. Splicing pattern of the GGA2 variant with SNP rs2285521 T>C. The position of the A
nucleotide in the start codon (ATG) is defined as +1. b Part of RNA secondary structure of the GGA2 rs2285521 U and GGA2 rs2285521 C. c The
aa sequence of GGA2-X1 and GGA2-X2. The GGA2-X1 isoform encodes a 576 aa protein and GGA2-X2 encodes a 526 aa protein. The aa
sequence of red is where GGA2-X2 starts. d Part of the secondary structures and domains of putative isoforms of GGA2-X1 and GGA2-X2. aa1-
aa50 circled by red was the part two isoforms differed.
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method for discovery of alternative sQTLs45. In searching for alternative
sQTLs, nearly all methods have to infer quantifications of transcripts or
splice junctions, and each method has its relative merits. However, Altrans
is capable of identifying thousands of sQTLs, many of which are missed by
other methods. It is very sensitive and performs comparably to other
methods45. Because each of these tools has its own unique algorithm and
merits, we expected some variation in the final results generated by
these tools.
After comparing the final SNP sets from the two projects mentioned

above, a total of 5,182 mutual SNPs with P-value < 0.05 were retained. The
P-values were extracted from the sQTL results of lung tissues of the GTEx
project. More details about the sQTL analysis could be found in the
previous GTEx publication40. Briefly, two complementary approaches
(sQTLseekeR44 and Altrans45) were used to quantify the relative expression
of splicing isoforms. For sQTLseekeR, the association between SNPs with
±5 kb of the corresponding gene and the splicing ratios of gene transcript
isoforms by using a non-parametrical approach: a F score was calculated
by comparing the variability of splicing ratios within genotypes with the
variability between genotypes, after which permutation was performed to
estimate the significance of the score and calculate P value. For Altrans, the
association between SNPs within ±1Mb region around transcription start
sites and the expression levels of exon junctions were tested by using the
Spearman’s rank correlation test with adjustment for the first three
principal components. There were finally a total of 4482 SNPs extracted in
the TRICL-ILLCO dataset. Additional details are shown in Fig. 1.

In silico functional analyses
Based on the association results of genetic variants and lung cancer risk,
bioinformatic analyses for functional prediction were performed on the top
three significant SNPs, in particular their potential ability to affect mRNA
splicing function and transcription. Four in silico tools: F-SNP47, SNPinfo
Web Server42, RegulomeDB48, and HaploReg49 were selected for further
predictive functional analyses of the significant SNPs. We then performed
an eQTL analysis to assess the association between SNPs and mRNA
expression level of the corresponding gene using the mRNA expression
data from the lymphoblastoid cell lines of 373 subjects of European
ancestry available in the 1000 Genomes Project40 and the eQTL results
from the GTEx project41 as well as 127 NSCLC tissues in TCGA50,51. If no
direct genotyping data for the three SNPs could be retrieved in the
databases, then all other SNPs, which were in complete LD (r2= 1) with the
corresponding SNP generated by the imputation were also checked. The
available data of those SNPs would then be retrieved and analyzed. In
addition, we compared the mRNA expression levels of target genes
between NSCLC and adjacent normal tissues available in the OncomineTM

database52. To explore the potential regulation mechanism of the aberrant
splicing, possible allelic effects of these variants on TF-binding motifs were
determined using PrEdict Regulatory Functional Effect of SNPs by
Approximate P value Estimation (PERFECTOS-APE; http://opera.autosome.
ru/perfectosape/), which determines the probability of a TF motif (using
position weight matrices, from HOCOMOCO-10, JASPAR, HTSELEX,
SwissRegulon, and HOMER databases) in the DNA sequence overlapping
each variant. The fold change in the probability of a TF binding site present
for each allele of a variant was then calculated53.

Analysis and prediction of GGA2 splicing variants
The secondary RNA structure of human GGA2 splicing variants was
predicted with RNA-Folding-Form54. The secondary protein structure of
human GGA2 splicing variants was predicted with SWISS-MODEL55.

Statistical methods
We performed an unconditional logistic regression to estimate ORs and 95%
CIs per effect allele for each GWAS dataset using R (v2.6), Stata (v10, State
College, TX, USA), and PLINK (v1.06) software with adjustment for the top
significant principal components32. We used a fixed effects model to perform
meta-analysis by the inverse variance method56. If the Cochran’s Q test P-
value ≤ 0.100 or the heterogeneity statistic (I2) ≥ 25%, a random-effects
model was employed. We used the linear step-up method of Benjamini and
Hochberg to calculate FDR with a cut-off value of 0.20 to correct for multiple
comparisons57 and used linear regression for the eQTL analysis and paired
t-test for the gene differential expression analysis between tumor and
adjacent normal tissues. Based on the 1000 Genomes Phase I integrated
variant set (release 201203), we used Haploview v4.258 to construct the LD
plots, respectively. SNP pruning was applied, and SNPs with pair-wise

r2 < 0.30 were considered as independent. All other analyses were conducted
with SAS (version 9.4; SAS Institute, Cary, NC, USA), if not specified otherwise.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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