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Abstract. To tackle the problem of magnetic resonance imaging (MRI)-only
radiotherapy treatment planning (RTP), we propose a multi-atlas information
propagation scheme that jointly segments organs and generates pseudo X-ray
computed tomography (CT) data from structural MR images (T1-weighted and
T2-weighted). As the performance of the method strongly depends on the quality
of the atlas database composed of multiple sets of aligned MR, CT and segmented
images, we also propose a robust way of registering atlas MR and CT images,
which combines structure-guided registration, and CT and MR image synthesis.

We first evaluated the proposed framework in terms of segmentation and
CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations
obtained with the proposed method were compared using the Dice score coefficient
(DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were
obtained for the prostate, bladder, rectum and femur heads, respectively. The
mean absolute error (MAE) and the mean error (ME) were computed between
the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated
with the proposed method. The MAE was on average 45.7 ± 4.6 HU and the ME
-1.6 ± 7.7 HU. We then performed a dosimetric evaluation by re-calculating plans
on the pseudo CTs and comparing them to the plans optimised on the reference
CTs. We compared the cumulative dose volume histograms (DVH) obtained for
the pseudo CTs to the DVH obtained for the reference CTs in the planning target
volume (PTV) located in the prostate, and in the organs at risk at different DVH
points. We obtained average differences of -0.14% in the PTV for D98%, and
between -0.14% and 0.05% in the PTV, bladder, rectum and femur heads for
Dmean and D2%.

Overall, we demonstrate that the proposed framework is able to automatically
generate accurate pseudo CT images and segmentations in the pelvic region,
potentially bypassing the need for CT scan for accurate RTP.

Keywords: image synthesis, segmentation, atlas-based methods, pseudo CT, MRI-only RTP
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Joint Segmentation and CT Synthesis for MRI-only RTP 2

1. Introduction

The aim of radiotherapy treatment planning (RTP) is to optimise the therapeutic
ratio by delivering an optimal dose of radiation over the target area while sparing the
normal tissues. RTP first requires contouring the target and organs at risk (OARs).
Once these volumes have been defined, the attenuation properties of the different
tissues are used as parameters in an optimisation process calculating the optimal
dose distribution to treat the tumour. Most radiotherapy treatments are planned
using an X-ray computed tomography (CT) scan of the patient. The acquisition of a
CT is fast and the tissue attenuation coefficients can easily be derived from the CT
intensity values in Hounsfield unit (HU). However, CT images have a low soft tissue
contrast, which can lead to organ delineation errors, particularly when located in the
brain, head & neck, or pelvic regions (Rasch et al. 2005). Magnetic resonance (MR)
imaging is often preferred over CT as a structural imaging modality, mainly for its
excellent soft tissue contrast. Although MR is increasingly used in clinical practice,
its role in RTP is currently limited by the fact that it does not readily provide electron
density information, hampering the calculation of dose distributions. This is a critical
limitation for the clinical deployment of the new devices combining an MR scanner
and a linear accelerator (MR-linac).

In this work, we propose to tackle the problem of RTP from MR images by
developing a multi-atlas propagation framework to estimate the tissue attenuation
properties and jointly delineate the organs of interest. Although the principal target of
this work is RTP, mainly to facilitate the clinical deployment of MR-linac devices, the
methods developed are also relevant to the attenuation correction of positron emission
tomography (PET) images acquired on hybrid PET/MR scanners (Izquierdo-Garcia
& Catana 2016).

Multi-atlas propagation was first introduced for segmentation purposes
(Heckemann et al. 2006, Klein et al. 2008, Cabezas et al. 2011). The technique relies
on a database of pairs of intensity and segmented images, often called ‘atlases’. To
segment the target image, a first step consists of registering the atlas intensity images
to the target intensity image, and to apply the same transformations to the associated
segmented images. A second step consists of fusing the propagated segmented images
to generate the target segmentation. The technique was later extended to the synthesis
of images by propagating intensity images instead of segmented images, for example
CT images (Burgos et al. 2014). Many multi-atlas CT synthesis methods have been
developed for RTP (Gudur et al. 2014, Uh et al. 2014, Burgos et al. 2015, Dowling
et al. 2015, Sjölund et al. 2015, Arabi et al. 2016) but only a few have been applied
outside of the brain (Burgos et al. 2015, Dowling et al. 2015, Arabi et al. 2016).

Even though atlas-based segmentation and CT synthesis methods have been
successfully applied to RTP independently, a key to expand MR-based planning is
to guarantee that the segmentations and pseudo CT generated from the MR images
match each other, i.e. a voxel labelled as bone should have a bone density value in
the pseudo CT image. This is not guaranteed if the segmentation and CT synthesis
tasks are handled separately. Dowling et al. (2012) proposed to combine CT synthesis
and segmentation using a single atlas composed of an MR, a CT and a segmented
image obtained via groupwise registration. The target CT and segmented images were
obtained by registering the atlas MR image to the target MR image and applying
the same transformation to the atlas CT and segmented images. The accuracy of
single-atlas methods is limited as a single atlas can hardly be representative of all the
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Joint Segmentation and CT Synthesis for MRI-only RTP 3

potential targets and because they strongly depend on the quality of the registration
used to map the atlas to the target subject. Dowling and colleagues then extended
the method to multiple atlases (Dowling et al. 2015), each atlas being composed of an
MR, a CT and a segmented image. Similarly to their previous method, the atlas MR
images were first registered to the target MR image and the same transformations
were applied to both the atlas CT and segmented images. A locally weighted voting
method was then used to generate the target CT and segmented images.

In this paper, we develop an iterative multi-atlas propagation framework that
combines in a single pipeline segmentation and CT synthesis, with the aim to improve
both the segmentation and synthesis accuracies when compared to state-of the art
methods, and guarantee consistent results. We also propose a new strategy to register
atlas MR and CT images that combines structure-guided registration and image
synthesis, with the aim to build a higher quality atlas database and thus further
improve the segmentation and synthesis accuracies. This paper is an extension of
preliminary work (Burgos et al. 2016, Burgos et al. 2016a).

2. Materials and methods

In this section, we present the data used to develop and validate the proposed methods
(section 2.1), describe the proposed iterative multi-atlas propagation framework
(section 2.2), detail how the multi-atlas database was built (section 2.3) and explain
our validation strategy (section 2.4).

2.1. Data acquisition and preprocessing

The proposed framework was evaluated on a retrospective study comprising
15 prostate cancer patients treated with fixed-field intensity-modulated therapy
(prescribed dose range, 67–82 Gy). All patients included in this study had given
consent for their data to be used for research purposes. Each subject had a T2-
weighted MR image (3 T, 2D spin echo; TE/TR: 80/2500 ms; 1.46×1.46×5 mm3), a
T1-weighted MR image (3 T, 2D spin echo; TE/TR: 10/400 ms; 1.64×1.64×5 mm3),
and a CT image (140 kVp, voxel size 0.98×0.98×1.5 mm3), all acquired the same
day. Delineations of the organs were performed manually by a qualified clinician
for each modality independently. Note that a different couch was used for the MR
(curved couch) and CT (flat couch) imaging sessions. Image preprocessing consisted
of resampling the MR images to isotropic resolution using a cubic spline interpolation,
and performing intensity non-uniformity correction (Tustison et al. 2010).

2.2. Joint iterative segmentation and image synthesis

The proposed iterative framework relies on a multi-atlas database consisting for each
atlas of a T2-weighted and a T1-weighted MR image, a CT image, and a manually
segmented image, all co-registered (details presented in section 2.3). Both the T2-
weighted and T1-weighted MR images are used as inputs for the method since
they provide complementary information to describe the subject’s anatomy (Burgos
et al. 2015a).

At the initial iteration, a set of probabilistic segmentations and pseudo CT (pCT)
image is jointly generated from the target’s MR images by registering the atlas MR
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Joint Segmentation and CT Synthesis for MRI-only RTP 5

The pCT and probabilistic segmentations were then obtained by fusing the N

atlases mapped to the target subject as follows:

I
pCT
t (x) =

∑N

n=1 wn,t(x) · J
CT
n,t (x)

∑N

n=1 wn,t(x)
, (1)

ISt (x, l) =

∑N

n=1 wn,t(x) · Vn,t(x, l)
∑L

k=1

∑N

n=1 wn,t(x) · Vn,t(x, k)
. (2)

l indexes through the labels and L is the number of all possible labels. Vn,t(x, l) is the
vote for label l produced by the nth atlas at voxel x (Wang et al. 2013)

Vn,t(x, l) =

{

1 if JS
n,t(x, l) = l, l ∈ {1..L}

0 otherwise
. (3)

If required, the categorical label result L at location x can thus be obtained by
estimating L(x) = maxl(I

S(x, l)).
The weighting factor wn,t(x) was obtained by applying an exponential decay

function to the rank rn,t(x) of the local image similarity measure (LSIM, described in
the next section) used to assess the similarity between atlas n and the target, at each
voxel x (Burgos et al. 2014)

wn,t(x) = e−βtrn,t(x) . (4)

After each iteration, the registration for all the atlases improves and more atlases
can contribute to the fusion. As a smaller β means that more atlases contribute to the
average, we set β to decrease with the number of iterations (by 0.125 starting from
β1 = 1).

Note that at the first iteration both the inter-subject mapping and fusion steps
were based on the MR images only.

2.2.2. Convolution-based local similarity measures To locally select the atlases used
in the fusion, a combination of two similarity measures computed between the target
and atlases was used. The structural similarity (Wang et al. 2004) extended to
irregular regions-of-interest (ROI) was computed on the MR and CT channels. For the
MR channels, the similarity was measured between each mapped atlas MR image and
the target MR image, while for the CT channel, the similarity was measured between
each mapped atlas CT image and the target pCT image obtained at the previous
iteration. The ROI-SSIM between images I and J at voxel x is given by

ROI-SSIM(I(x), J(x)) =
2µI(x)µJ(x) + C1

µ2
I(x) + µ2

J(x) + C1

2σI,J(x) + C2

σ2
I (x) + σ2

J(x) + C2
. (5)

C1 and C2 are two constants used to improve the stability of the structural similarity
(Wang et al. 2004). Let Ω be a density function equal to 1 where the fields of view
(FOV) overlap, and 0 otherwise. The means and standard deviations at voxel x were
calculated using a Gaussian kernel GσG

with standard deviation σG through density
normalised convolution (Cachier et al. 2003)

µI(x) =
[GσG

∗I](x)
[GσG

∗Ω](x)
, σ2

I (x) = µI2(x)− µ2
I(x), σI,J(x) = µI·J(x)− µI(x) · µJ(x),
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Joint Segmentation and CT Synthesis for MRI-only RTP 6

where ∗ denotes the convolution operator and GσG
∗ Ω represents a density

normalisation term that compensates for areas with missing information. We set
σG = 3 (Burgos et al. 2014). As the values of ROI-SSIM are only valid within the
bounds of the FOV, values outside the FOV were set to −∞.

A local fuzzy (Zadeh 1965) Dice score coefficient (DSC) defined per label l and
summed over all labels was used to assess the local overlap between the probabilistic
segmented images IS and JS

LDSC(IS(x), JS(x)) =
∑

l∈{1..L}

2min (µIS (x, l), µJS (x, l))

µIS (x, l) + µJS (x, l)
. (6)

µIS (x, l) was obtained by convolving the segmentation density IS for each label with
the Gaussian kernel GσG

: µIS (x, l) =
[

GσG
∗ IS

]

(x, l).
The final local similarity measure (LSIM) computed at iteration t between the

target and the nth atlas was obtained by summing the ROI-SSIM computed on the
MR and CT channels and the LDSC computed on the segmentation channel for each
voxel x

LSIM(It−1(x), Jn,t(x)) = ROI-SSIM(IT2(x), JT2
n,t(x))+ROI-SSIM(IT1(x), JT1

n,t(x))+

ROI-SSIM(IpCT
t−1 (x), JCT

n,t (x)) + LDSC(ISt−1(x), J
S
n,t(x)) . (7)

2.3. Atlas database building

The performance of the method presented in the previous section strongly depends
on the quality of the multi-atlas database: for each atlas, the T2- and T1-weighted
MR images, and the CT image have to be well aligned. Registering MR and CT
images is a challenging task, especially in body regions such as the pelvis where large
morphological differences can be observed, for example due to different acquisition
protocols (different couches), or time differences between the two MR and CT
acquisitions resulting in different bladder or rectum filling. To improve multi-modal
MR-CT registration, Dowling et al. (2015) exploited the manual contours delineated
on both the MR and CT images to perform structure-guided deformable registration
(Rivest-Hénault et al. 2013). This strategy showed an improved alignment between
the MR and CT images but does not entirely overcome the limitations of multi-modal
registration. Another strategy to improve multi-modal registration is to reduce the
problem to monomodal registration using image synthesis (Iglesias et al. 2013, Roy
et al. 2014, Chen et al. 2015, Cao et al. 2016). In the context of MR-CT registration,
the idea consists of synthesising a pseudo CT image from an MR image using co-
registered pairs of MR and CT images as atlases. The pseudo CT is then registered
to the original CT using a non-rigid registration and the resulting transformation is
applied to the MR image.

In this work we propose to combine structure-guided registration and image
synthesis to register for each subject the MR and CT images and build the multi-
atlas database. Structure-guided registration was used to register each subject’s CT
and T1 images to their T2 image, and thus create an initial database. Then, to
improve the CT to T2 mapping, for each subject in the database, pseudo CT and
pseudo T2 images were generated from the subject’s T2 and CT images, respectively.
These pseudo CT and pseudo T2 images, together with the real CT and T2 images,
and the segmented images, were used to map CT and T2 spaces.
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Joint Segmentation and CT Synthesis for MRI-only RTP 7

2.3.1. Initial atlas database The initial atlas database was composed of three image-
segmentation pairs (ISP) per subject, one for each data type (T1, T2, CT). The T1
and CT ISP were registered to the T2 ISP using an affine followed by a multi-channel
non-rigid registration (Modat et al. 2012). The similarity measure used to non-rigidly
register two ISP was defined as the LNCC over the intensity data and KLD over
the segmentations, thus aligning both imaging and segmentation data, similarly to
Dowling et al. (2015). All the non-rigid registrations were performed with a pyramidal
approach with three levels. The finer lattice of control points had a spacing of 2.5 mm
along each axis for the T1 to T2 registrations and 7.5 mm along each axis for the CT
to T2 registrations. A linear interpolation was used during the optimisation. After
all registrations, the three ISP per subject were aligned to each other.

2.3.2. Refined atlas database Using a leave-one-out strategy, the method in Burgos
et al. (2014) was used to generate a pCT by registering the T2 images from a T2-CT
database to the target T2, and propagating and fusing the CT images. The similarity
metric used to fuse the propagated CT images was the ROI-SSIM.

Also using a leave-one-out strategy, the method in Burgos et al. (2014) was again
used to generate a pseudo T2 (pT2) by registering the CT images from a CT-T2
database to the target CT.

After generating the pCT and pT2, we improved the CT to T2 registration by
registering the set {T2, T2seg, pCT} with the set {pT2, CTseg, CT}, using the LNCC
between imaging channels and the KLD between segmentation channels. Note that
the similarity term between the T2 and CT channels was preserved to account for
multi-modal correlation terms. The non-rigid registrations were performed with a
pyramidal approach with three levels. The finer lattice of control points had a spacing
of 7.5 mm along each axis. The new coordinate mapping between CT and T2 was
used to update the CT alignment to the T2 space. The images used as inputs to align
for each atlas the CT and T2-weighted MR images, and create the initial and refined
atlas databases are displayed in Fig. 2.

The refined multi-atlas database consisted for each atlas of a T2-weighted MR
image, a T2-based segmented image, a T1-weighted MR image and a CT image, all
co-registered. The number of atlases was artificially increased by left-right flipping
the images.

2.4. Evaluation strategy

2.4.1. Multi-modal registration for atlas database building To assess the benefits of
the proposed multi-modal T2-CT registration strategy, atlas CT and T2 images were
also registered using the structure-guided registration method used to build the initial
database (structure-guided NRR, see section 2.3.1), using NiftyReg without structure
guidance (NRR) (Modat et al. 2012), and using a symmetric affine registration (affine)
(Modat et al. 2014). The quality of the registrations was first assessed visually.
We then computed the DSC between the T2-based manual contours and propagated
CT-based manual contours. Note that the DSC is biased toward the proposed and
structure-guided methods. We also computed the normalised mutual information
(NMI) between the T2 and registered CT images to present a surrogate independent
measure (as the LNCC was used as similarity measure for the T2 and CT channels
during the registration process).
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Joint Segmentation and CT Synthesis for MRI-only RTP 9

follows:

MAE =
1

V

∑

x

|IpCT (x)−RCT (x)| (9)

ME =
1

V

∑

x

(IpCT (x)−RCT (x)) . (10)

Two ROIs were considered: within the external contour and in the bone region
(manually delineated on the CT image).

2.4.3. Statistical significance The paired one-tailed Wilcoxon signed-rank test, with a
5% significance level, was used to assess the statistical significance of the improvement
observed between the different registration strategies used to build the multi-atlas
database, and between two iterations of the proposed joint segmentation and image
synthesis framework.

2.4.4. Dosimetric evaluation Once the optimal number of iterations was defined,
dose calculations were performed using the RayStation treatment planning system to
assess the applicability of the proposed framework for RTP. Doses were also calculated
for the water-only pseudo CT (HU=0). The original clinical plans were copied onto
the pseudo CTs and doses were re-calculated using the original planning parameters.
We compared the cumulative dose volume histograms (DVH) obtained for the pseudo
CTs to the DVH obtained for the reference CT image in the planning target volume
(PTV) located in the prostate, and in the OARs. The same contours were used for
the pseudo and reference CT images.

For all the subjects, dose differences were evaluated for several DVH points: D98%,
Dmean and D2% for the PTV, and Dmean and D2% for the OARs (bladder, rectum and
femur heads), following the recommendations described in the ICRU Report 83 (2010).
Dx is the dose given to x% of the structure volume and Dmean is the mean dose given
to the evaluated volume.
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Table 1. Average ± standard deviation of the DSC and MHD obtained for 15
subjects after the first and fourth iterations of the joint iterative segmentation
and image synthesis framework. The stars indicate a significant improvement.

Iter 1 Iter 4 Improvement

Bladder 0.88 ± 0.03 0.90 ± 0.03 1.6 % *

Prostate 0.67 ± 0.05 0.73 ± 0.06 9.2 % *

Rectum 0.72 ± 0.06 0.77 ± 0.06 7.2 % *

LFemurHead 0.88 ± 0.01 0.89 ± 0.02 1.2 % *

DSC

RFemurHead 0.89 ± 0.01 0.90 ± 0.01 1.5 % *

Bladder 3.34 ± 0.98 2.35 ± 1.14 42.3 % *

Prostate 3.10 ± 0.77 2.63 ± 0.67 17.5 % *

Rectum 3.63 ± 1.29 2.62 ± 1.19 38.6 % *

LFemurHead 1.56 ± 0.26 1.38 ± 0.22 12.8 % *

MHD (mm)

RFemurHead 1.55 ± 0.24 1.29 ± 0.23 20.4 % *

Table 2. Average ± standard deviation of the MAE and ME obtained for 15
subjects for the water-only pseudo CT, and after the first and fourth iterations
of the joint iterative segmentation and image synthesis framework. The stars
indicate a significant improvement.

Improvement
Water-only Iter 1 Iter 4

Iter 1 → 4

All 89.7 ± 2.8 47.0 ± 2.9 45.7 ± 4.6 2.9 % *
MAE (HU)

Bone 264.8 ± 30.5 129.1 ± 10.7 125.1 ± 10.3 3.2 % *

All -16.0 ± 9.8 -0.5 ± 6.7 -1.6 ± 7.7
ME (HU)

Bone -261.7 ± 31.9 -16.3 ± 32.6 -11.1 ± 32.8

3.3. Dosimetry calculations

Dose calculations were performed for the water-only pseudo CTs and for the pseudo
CTs obtained after four iterations. The DVHs displayed in Fig. 7 for a representative
subject show a close agreement between the doses calculated from the reference and
proposed pseudo CTs while larger differences are observed between the reference and
water-only pseudo CTs. Boxplots showing the dose differences evaluated for several
DVH points are displayed in Fig. 8. With the proposed method, for all the DVH
points considered, the dose difference is on average less than ± 0.15% for the PTV
and all the OARs. With the water-only pseudo CT, a systematic bias is observed. For
most DVH points, the dose difference is on average between 1.5% and 3%.

4. Discussion

In this paper, we presented a joint segmentation and CT synthesis framework to
automatically generate accurate pseudo CT images and organ contours in the pelvic
region for MRI-only RTP.

The method relies on a database of multiple atlases, each atlas consisting of a T2-
weighted MR image, a T1-weighted MR image, a CT image and a segmented image
obtained by manually contouring the T2-weighted MR image. Both the T1-weighted
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observed that the T2 and CT images were better aligned, which was supported by the
NMI and segmentation overlap results displayed in Fig. 3.

In the proposed iterative framework, a set of probabilistic segmentations and
pseudo CT images is jointly generated from the target subject’s MR images by
registering the atlases to the target, and fusing the atlas segmentations and CT images
according to the similarity between the target and each atlas. Solving the segmentation
and synthesis tasks simultaneously results in having the solutions in agreement, but
also the joint estimation aids in improving the accuracy of each aspect, as seen in
Fig. 5, where we observe that an increase in segmentation overlap corresponds to a
decrease in CT synthesis error.

Two structural MR images (T2-weighted and T1-weighted) were used as inputs
for the method as combining contrasts increases the synthesis accuracy, as previously
shown in Burgos et al. (2015a). A single sequence or any combination of sequences
providing enough structural information and structural contrast could be used as
inputs.

Registration is an important step to generate accurate pseudo CTs and
segmentations. In this work we used the NiftyReg‡ package for both the intra-
subject and inter-subject registrations. In both cases, the quality of the alignments
was checked visually for several sets of parameters to select the optimal one. Note
that NiftyReg is a fast, general purpose registration package and that the same result
accuracy cannot be guaranteed using other registration packages, but could probably
be improved using task-specific methods.

The performance of the proposed joint iterative segmentation and image synthesis
framework was compared with reference data for 15 subjects following a leave-one-out
cross-validation strategy. We first determined the optimal number of iterations by
assessing the segmentation and CT synthesis accuracy after each iteration. Four was
found to be a good compromise between accuracy and computational complexity. We
then performed dose calculations to assess the applicability of the proposed framework
for RTP and found that on average for all the DVH points considered, the dose
difference was less than ± 0.15% for the PTV and all the OARs. These results fall
within the acceptable deviation range specified in Korsholm et al. (2014), i.e. a 2%
deviation in PTV coverage for 95% of the patients. To set the results in perspective,
we generated pseudo CTs with a uniform intensity of 0 HU applied to the body. With
the water-only pseudo CT, the dose was systematically overestimated, with average
dose differences for most DVH points comprised between 1.5% and 3%.

The first iteration of the proposed framework is similar to the method developed
by Dowling et al. (2015) as both the inter-subject mapping and fusion steps are based
on the MR images only. Results displayed in Tables 1 and 2 show the benefits of
the iterative framework as both the segmentation and CT synthesis accuracies are
improved.

When evaluating the segmentation accuracy obtained with their method, Dowling
et al. (2015) reported mean DSCs of 0.80, 0.86 and 0.84 for the prostate, bladder and
rectum, respectively. Wong et al. (2015) assessed the performance of several multi-
atlas segmentation methods. With their recommended setting, the median DSC for
the prostate, bladder, rectum and femurs was 0.84, 0.90, 0.77 and 0.95, respectively.
These results are not directly comparable to the ones obtained in this work as we
used lower resolution images (5 mm slice thickness versus 2 mm in Dowling et al.

‡ https://sourceforge.net/projects/niftyreg/
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(2015) and 2.5 mm in Wong et al. (2015)), and DSC is known to highly correlate with
image resolution. However, taking into account this lower resolution, we obtained
comparable results with mean DSCs of 0.73, 0.90, 0.77 and 0.90. Dowling et al.
(2015) also reported results for the mean absolute surface distance, equivalent to the
MHD used in this work, of 5.10 mm, 2.37 mm and 1.45 mm for the bladder, rectum
and femur heads, respectively. As the MHD is measured in millimetres, results are
more comparable between resolutions. Given this, we obtained comparable results
with mean MHD of 2.35 mm, 2.62 mm and 1.33 mm for the bladder, rectum and
femur heads, respectively.

Regarding the CT synthesis, the proposed method generates pseudo CTs with
similar accuracy as previously reported for the pelvic region, even though they were
obtained from lower resolution MR images. Dowling et al. (2015) reported an average
MAE of 40.5 ± 8.2 HU while we obtained an average MAE of 45.7 ± 4.6 HU.

Even though different DVH points were analysed, dosimetric results appear to
be of the same order of magnitude as the one presented in Dowling et al. (2015)
and Arabi et al. (2016). Dowling et al. (2015) reported average DVH parameter
differences of -0.3% for D95%, -0.5% for D50% and -0.4% for D5%, while Arabi et al.
(2016) reported average differences comprised between -0.3% and 0.5% depending on
the organs considered (prostate, bladder, rectum and femur heads) for DVH points
between D100% and D0%. With the proposed approach, we obtained average differences
of -0.14% in the PTV for D98%, and between -0.14% and 0.05% in the PTV, bladder,
rectum and femur heads for Dmean and D2%.

In this work, the treatment plans were optimised on the reference CTs to create
a ground truth and re-calculated for the pseudo CTs to assess if the pseudo CTs
were accurate enough to be used for dose calculations. However, in an MRI-only
workflow, the plans would be optimised on the pseudo CTs. Future work will consist of
optimising the plans on the pseudo CTs and re-calculating them for the reference CTs
to assess if differences exist between these two optimisation and evaluation strategies,
and if so quantify them. Note however that Korsholm et al. (2014) observed no
significant change between these two strategies.

The clinical contours obtained by manually segmenting the reference CT image
were applied to both the reference and pseudo CT images for the dosimetric evaluation.
In the future, we plan to compare the plans obtained from the reference CT image and
manual segmentations to the plans obtained from the pseudo CTs and segmentations
generated by the proposed method on a larger dataset, and thus be able to assess the
suitability of the whole framework for RTP. Before performing this evaluation, we will
ask three observers to contour the organs of interest. This will allow us to generate a
gold standard contour for each organ, for example using majority voting to combine
the observer contours, and thus to assess inter-observer variability.

Only contours of the whole bladder and rectum were available in this study, and
not the contours of the walls, which are the actual structures of interest. However,
the method could be applied to contours of these structures’ walls if these were the
ones available.

Finally, as future work, the probabilistic property of the segmentations obtained
with the proposed framework could be used to automatically define margins when
contouring organs and improve MR-based RTP.
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5. Conclusion

This paper presents a joint segmentation and CT synthesis framework for MRI-only
RTP able to automatically generate accurate pseudo CT images and organ contours
in the pelvic region. Solving the segmentation and synthesis tasks simultaneously
results in not only having the solutions in agreement, but the joint estimation aids
in improving the accuracy of each aspect. The high segmentation and CT synthesis
accuracy and the low dosimetric errors suggest that the proposed framework could
facilitate the clinical deployment of MR-linac devices.
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