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Abstract (200 words) 1 

Introduction: Neuroblastoma, the commonest paediatric extra-cranial tumour, remains a 2 

leading cause of death from cancer in children.  There is an urgent need to develop new drugs 3 

to improve cure rates and reduce long-term toxicity and to incorporate molecularly targeted 4 

therapies into treatment.  Many potential drugs are becoming available, but have to be 5 

prioritised for clinical trials due to the relatively small numbers of patients. 6 

 7 

Areas covered: The current drug development model has been slow, associated with 8 

significant attrition, and few new drugs have been developed for neuroblastoma.   9 

 10 

The Neuroblastoma New Drug Development Strategy (NDDS) has: 1) established a group with 11 

expertise in drug development; 2) prioritised targets and drugs according to tumour biology 12 

(target expression, dependency, pre-clinical data; potential combinations; biomarkers), 13 

identifying as priority targets ALK, MEK, CDK4/6, MDM2, MYCN (druggable by BET 14 

bromodomain, aurora kinase, mTORC1/2) BIRC5 and checkpoint kinase 1; 3) promoted clinical 15 

trials with target-prioritised drugs.  Drugs showing activity can be rapidly transitioned via 16 

parallel randomised trials into front-line studies.  17 

 18 

Expert Opinion: The Neuroblastoma NDDS is based on the premise that optimal drug 19 

development is reliant on knowledge of tumour biology and prioritisation.  This approach will 20 

accelerate neuroblastoma drug development and other poor prognosis childhood 21 

malignancies.  22 

 23 

  24 
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1. Introduction: The unmet need 1 

Neuroblastoma, the most common extra-cranial solid tumour of childhood, is a leading 2 

cause of death in children between 1-4 years [1].  More than forty percent of patients are 3 

considered high-risk, including children over the age of 18 months with metastatic disease 4 

and those with tumours harbouring MYCN amplification [2].  Despite improvements in 5 

intensive multi-modal therapy, including chemotherapy, high-dose therapy with 6 

autologous hematopoietic stem cell rescue, surgical removal of the primary tumour, 7 

radiotherapy, residual disease therapy and immunotherapy with anti-GD2 monoclonal 8 

antibodies, long-term survival for children with high-risk neuroblastoma remains below 9 

50% at 5 years [3-6].  The majority of patients experience relapse associated with a dismal 10 

prognosis, with five-year overall survival for relapsed metastatic neuroblastoma of 8% in 11 

the International Neuroblastoma Risk Group analysis [7].  Approximately one third of 12 

patients are refractory to frontline therapy and have a very poor outcome [8, 9].  In 13 

addition, survivors face a significant burden of late effects due to the intensity of 14 

multimodal therapy [10, 11].   15 

 16 

2. Current Paediatric Oncology Drug Development Model for Neuroblastoma 17 

Although genomic aberrations (MYCN, ALK, TP53, ATRX, TERT and RAS-MAPK) [12-23], 18 

which are molecular drivers for specific subtypes of neuroblastoma, have been described, 19 

effective molecularly targeted therapies have not been introduced into current treatment 20 

strategies [24].  Furthermore, currently all children with high-risk neuroblastoma receive 21 

the same therapeutic approach at presentation and treatment is only modified depending 22 

on response - therapy is not personalised.  To date, in contrast to adult oncology, progress 23 

in paediatric cancers has been slow, with a paucity of molecularly targeted drugs being 24 

developed for neuroblastoma.  25 

 26 

The availability of drugs for early phase clinical studies for neuroblastoma has been driven 27 

predominantly by medicines being developed for adult malignancies.  Although the 28 

number of early phase clinical trials has increased as a result of the European Paediatric 29 

Medicine Regulation, the development of drugs for neuroblastoma is still driven by the 30 

adult condition and not the mechanism of action of the drug. 31 

 32 

After determining the dose and safety profile in a Phase I study, drugs have been 33 

evaluated in Phase II studies with no clear prioritisation to identify those with the greatest 34 

potential benefit for front-line randomised trials.  Furthermore, there has been a lack of 35 
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comprehensive molecular profiling of tumours at presentation or relapse.  Finally, there 1 

has been no integrated process or a forum for communication and information exchange 2 

between biologists and clinicians involved in early and phase clinical trials [25]. 3 

 4 

This fragmented process has resulted in some drugs being developed with not necessarily 5 

the highest biological rationale; multiple phase II studies of the same drug and with the 6 

exception of anti-GD2 monoclonal antibodies, no new drugs entering front-line studies for 7 

nearly two decades.  New therapeutic strategies are therefore needed for these children 8 

[24, 26, 27]. 9 

 10 

3. Neuroblastoma New Drug Development Strategy (NDDS)  11 

The Innovative Therapies for Children with Cancer (ITCC), in conjunction with the European 12 

Network for Cancer Research in Children and Adolescents (ENCCA) and the International 13 

Society of Paediatric Oncology Europe Neuroblastoma Group (SIOPEN), has established the 14 

New Drug Development Strategy (NDDS) project as part of the overall NDDS initiative 15 

developed by ITCC and ENCCA.  The aim is to accelerate the development of new drugs for 16 

patients with neuroblastoma with the ultimate goal of improving survival. 17 

 18 

The Neuroblastoma NDDS strategy was designed to encompass all elements of the drug 19 

development process, including translational medicine from bench to bedside: molecular 20 

profiling to identify new targets and potential predictive (selection) biomarkers, 21 

development of relevant drugs, biological and pre-clinical research, first-in-child early 22 

phase clinical studies, randomised multi-arm trials and the transition to late-phase trials 23 

and the clinic.  Central to the approach was the premise that optimal drug development is 24 

heavily reliant on understanding tumour biology. 25 

 26 

The process was based on the premise that involvement of all stakeholders was critical for 27 

delivering an integrated system for drug evaluation and clinical trial methodology in 28 

children with neuroblastoma.  In view of the large number of potential targets and drugs 29 

becoming available for evaluation in children with neuroblastoma, on the one hand, and 30 

the genetic heterogeneity of neuroblastoma with few recurrently altered genes on the 31 

other, a selection and prioritisation process was required to identify targets and drugs 32 

which may be of potential benefit to such children.   33 

 34 
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This Neuroblastoma NDDS is a dynamic process, which prioritises targets and compounds 1 

as new data become available.  European experts in neuroblastoma biology and pre-2 

clinical and clinical drug development from fifteen research institutions in seven countries 3 

are involved, and members of the European Medicines Agency (EMA) and its Paediatric 4 

Committee (PDCO) are observers.  5 

 6 

This output of the NDDS (prioritisation and an integrated approach for drug development 7 

in neuroblastoma) informs clinicians designing early and late phase clinical studies, 8 

highlights targets and drugs of greatest interest to the pharmaceutical industry and 9 

regulators, and indicates where resources require the greatest attention from academia 10 

and industry.  This information would be provided for clinical trials groups and companies 11 

preparing Paediatric Investigation Plans for new drugs.  This NDDS strategy complements 12 

that of the multi-stakeholder Paediatric Platform ACCELERATE, developed by the Cancer 13 

Drug Development Forum (CDDF), ITCC, and the European Society for Paediatric Oncology 14 

(SIOPE) [26], and with representatives from academia, the pharmaceutical industry, 15 

regulators and, very importantly, patient representatives.  ACCELERATE has developed a 16 

process of mechanism of action and biology driven selection and prioritisation of 17 

paediatric drug development, rather than the current process based on adult cancer 18 

indications [28].  This process determines, for drugs with a known mechanism of action, if 19 

that mechanism is relevant for paediatric malignancy and what is the best match with 20 

tumour biology. The NDDS initiative refines this prioritisation further within 21 

neuroblastoma.  22 

 23 

4. Biology of neuroblastoma 24 

Therapeutic targeting of identified oncogenic drivers in neuroblastoma is a key component 25 

of the NDDS.  The first pivotal step is to identify the molecular pathways and the tumour 26 

biology that are critical drivers in neuroblastoma, focusing on gene/pathway aberrations 27 

┘ｷデｴ ヮヴﾗﾗa ﾗa さtumour SWヮWﾐSWﾐIWざ.  Information on the incidence of actionable 28 

mutations is the most easily obtained data for understanding tumour biology; however, 29 

determining the functional dependency of the mutation, if it is an oncogenic driver or 30 

whether it drives tumour development or recurrence is a more complicated next stage.  31 

Next generation sequencing has demonstrated that neuroblastoma harbour fewer 32 

mutations involving recurrently altered genes at diagnosis (mean 10に15 per tumour) than 33 

many other, especially adult, tumours [29].  The main oncogenic drivers identified in 34 

neuroblastoma include: i) MYCN amplification in 25% of patients [12]; ii) anaplastic 35 
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lymphoma kinase (ALK) mutations and amplification in 10-15% of cases, including those of 1 

hereditary neuroblastoma [13-16]; iii) TP53, wild-type in the majority of neuroblastoma at 2 

diagnosis, with about 2% mutation at presentation, but mutations are acquired during 3 

treatment and 15% detected at relapse [17]; iv) RAS-mitogen-activated protein kinase 4 

(MAPK) pathway mutations recently described in relapsed neuroblastoma (3% mutations 5 

at diagnosis and 78% at relapse) [21]; v) mutations in ATRX (9%) reported in older patients 6 

[18]; vii) TERT rearrangements reflecting telomerase activation in approximately 30% of 7 

high risk cases [19, 20]; and finally vii) PTPN11 mutations in 2.9% of tumours.[22].  8 

 9 

The presence of MYCN amplification, its biological role and prognostic relevance were 10 

described several decades ago [12].  However, no effective therapeutic strategy 11 

demonstrating convincing evidence of MYCN inhibition has yet been translated into the 12 

clinic.  After incorporating all biological information available to date, a recent 13 

classification of five groups of drugs targeting MYC or MYCN at different levels has been 14 

reported and will allow prioritisation and development of these agents [30].  The five 15 

groups of drugs comprise drugs targeting: DNA-binding functions of MYCN, transcription of 16 

MYCN, synthetic-lethal interactions of MYCN, oncogenic stabilisation of MYCN protein and 17 

the expression or function of MYCN.  18 

 19 

ALK was described in 2008 as an oncogenic driver in neuroblastoma [13-16] and an early 20 

clinical trial of crizotinib in children with ALK aberrations was rapidly initiated [31].  21 

However, resistance to single therapy agent crizotinib has been described pre-clinically 22 

and clinically with moderate response rates (1 complete response, 3 stable disease, and 7 23 

progressive disease of 11 ALK mutated neuroblastoma) in early clinical trials compared to 24 

other ALK-driven tumours [32]. Hence, both combinations with chemotherapy or other 25 

targeted agents or more potent inhibitors are needed to overcome resistance of some ALK 26 

mutations [33]. 27 

 28 

The tumour suppressor protein p53 is usually nuclear and wild-type at diagnosis (98% of 29 

tumours) in neuroblastoma, with intact apoptotic mechanisms, although aberrations in the 30 

p53/MDM2/p14
ARF

 pathway are more commonly reported.  Interestingly, the p53 gene 31 

TP53 is a direct transcriptional target of MYCN and sensitises cells for MYCN-driven 32 

apoptosis [34,35].  33 

 34 
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The appearance of activating mutations of the RAS/MAPK pathway has also been recently 1 

described in a high proportion of neuroblastoma at relapse (up to 78%), some of them are 2 

novel whereas others are clonally enriched at relapse [21].  Emerging data highlight the 3 

importance of other targets such as the cell cycle regulator CDK4/6 [36,37]. 4 

 5 

ATRX gene mutations/focal deletions are mutually exclusive with MYCN amplification and 6 

occur in 9% of high-risk patients at diagnosis [22].  ATRX mutations/deletions are also 7 

strongly associated with the alternative lengthening of the telomeres phenotype [18, 38].  8 

The clinical features of this group include older age at diagnosis, a chronic progressive 9 

course and poor long-term overall survival [18]. However, to date, no novel therapies exist 10 

for this important target.  In 2015 genomic re-arrangements proximal to TERT, which 11 

encodes the catalytic subunit of the telomerase enzyme, resulting in its transcriptional up-12 

regulation were described in 23-31% of high-risk cases [19, 20].  TERT re-arrangements are 13 

also associated with poor prognosis and occur in a mutually exclusive fashion to MYCN 14 

amplification and ATRX alterations. Taken together with evidence that MYCN also up-15 

regulates TERT, these recent discoveries highlight the importance of active telomere 16 

maintenance in neuroblastoma pathogenesis and present a new potential therapeutic 17 

target [19]. 18 

 19 

Molecular profiling of tumour tissues bio-banked at the time of diagnosis has yielded 20 

important data, as reported in recent whole exome sequencing (WES)/whole genome 21 

sequencing (WGS) publications [22,23].  The European ITCC initiatives are providing data 22 

with the aim of discovering novel therapeutics for high-risk disease by routinely 23 

molecularly profiling tumours at relapse (MOlecular Screening for CAncer Treatment 24 

Optimisation [MOSCATO-01 [39], MoleculAr Profiling for Pediatric and Young Adult Cancer 25 

Treatment Stratification [MAPPYACTS], Individualized Therapy for Relapsed Malignancies 26 

in Childhood [INFORM] [40], Individualised Therapy [iTHER], and Stratified Medicine に 27 

Paediatrics [SM-PAEDS], as is the Therapeutically Applicable Research to Generate 28 

Effective Treatments (TARGET) project in the US, which analyses both primary and 29 

relapsed neuroblastoma [41,42].  More recently, the appearance of new mutations in 30 

individual patients at the time of relapse has been demonstrated for ALK, TP53 and 31 

RAS/MAPK [17, 21, 43-45]. As has been described for other cancers, these mutations are 32 

detected at low levels in diagnostic samples but are enriched at relapse and several of 33 

these are potentially important drug targets.  Understanding the evolution of mutations in 34 

neuroblastoma is of critical importance for drug development [21,43-45].  It underlines 35 
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that re-biopsying tumours at the time of relapse, and obtaining snap-frozen tumour and 1 

paraffin-embedded material before entering early clinical trials, is increasingly important 2 

and should be incorporated into clinical practice.  This will provide accurate molecular 3 

profiling of neuroblastoma and facilitate access to novel targeted therapies through a 4 

personalised medicine approach, as well as improving our understanding of disease 5 

biology and mechanisms of resistance to new, targeted therapies.  The importance of 6 

clonal evolution in neuroblastoma has made it necessary to study sequential samples 7 

collected during targeted therapy to understand mechanisms of resistance.  As sequential 8 

tumour sampling may not be feasible, the role of liquid samples has become more 9 

important.  Emerging technologies allow the detection of actionable mutations in 10 

circulating DNA obtained from blood samples, as has been recently shown with the 11 

detection of ALK mutations in plasma samples [46].   12 

 13 

5. Incorporation of biological data: the transition from pre-clinical to clinical development - 14 

prioritisation of targets in neuroblastoma 15 

A number of articles and workshop reports have been published without achieving a 16 

definitive consensus defining the minimal data package required to provide proof-of-17 

concept and therefore to qualify a target or drug as sufficiently promising to take forward 18 

into clinical trials for adult cancers [47-49].  For paediatric cancers, the first step should be 19 

to prioritise the targets according to the level of existing evidence, then define whether 20 

there are available drugs for the target, and finally establish if they are available for 21 

paediatric use and whether early phase clinical trials of these agents should be prioritised.  22 

 23 

Targets were pre-selected for evaluation based on the currently available data at that time 24 

on molecular pathology, biology, and pre-clinical studies.  The decisions to prioritise 25 

targets for clinical development were taken by a consensus of clinicians, scientists and 26 

academic drug development experts based on specific criteria, which included the 27 

robustness of the published evidence that they were oncogenic drivers, the functional 28 

dependence in neuroblastoma and whether they were strong candidates for druggable 29 

targets. 30 

 31 

Targets were ranked ;ゲ けhighげ (n=9ぶが けｷﾐデWヴﾏWSｷ;デWげ ふﾐЭ5) ﾗヴ けlowげ ふn=7) to enable 32 

prioritisation based on target expression, target dependency and validation, availability of 33 

pre-clinical data on efficacy, and potential combination and biomarker development.  The 34 

targets that were given top priority for neuroblastoma based on the available data, 35 
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completeness of the data and potentially available inhibitors were ALK, MEK, CDK4/6, 1 

MDM2, MYCN (druggable by BET bromodomain, aurora kinase and mTORC1/2 inhibition), 2 

BIRC5 and checkpoint Kinase 1 [50,51].  TORC1/2 aurora kinase and BET bromodomain 3 

were ranked as high priority targets because of their action on MYCN; however, it was 4 

agreed that currently no aurora kinase inhibitor exhibits optimal activity against MYCN [52-5 

54].  LIN28B [55] was identified as an important target but currently no drugs are in 6 

development.  Table 1 summarises the data available for each target and Table 2 the 7 

clinical development of relevant drugs.  For all these, the target is expressed in 8 

neuroblastoma, has been validated in vitro and/or in vivo with siRNA functional 9 

experiments and shows strong evidence of efficacy in vitro and in vivo.  Research to 10 

identify biomarkers, combinations or resistance is less well developed, but nevertheless 11 

for these targets it was felt that there was sufficient data to guide initial clinical 12 

development.  The evidence to date suggests that some of these targets are only relevant 13 

to molecular sub-populations, for example, ALK for ALK mutated or amplified 14 

neuroblastoma.  For other agents such as mTORC1/2, aurora kinase or CHK1 inhibitors, 15 

evidence suggests that they will be active in MYCN driven neuroblastoma, but they could 16 

also have a role in non-MYCN driven tumours.   17 

 18 

The critical importance of combinations has been highlighted, as these may enhance 19 

efficacy in the majority of instances where dysregulation of more than one biological 20 

pathway is responsible for driving the disease and overcome resistance. However, the 21 

mechanism of action and cumulative toxicities of additional agents must be carefully 22 

considered when designing treatment regimens.  A substantial logistical challenge lies in 23 

the systematic evaluation of the numerous possible permutations of combinations in a 24 

clinical setting [56].  In view of the limited number of children available for early phase 25 

studies, a rational approach is needed for the selection of combinations, based on the 26 

Hｷﾗﾉﾗｪ┞ ﾗa ﾐW┌ヴﾗHﾉ;ゲデﾗﾏ; ;ﾐS ｷデゲ ﾆﾐﾗ┘ﾐ HｷﾗﾉﾗｪｷI;ﾉ ゲ┌HゲWデゲ ;ゲ ┘Wﾉﾉ ;ゲ ヮ;デｴ┘;┞ゲげ S;デ; ｷﾐ 27 

tumours treated with one agent involved in the combination.  Following pre-clinical 28 

evaluation of the combinations in a range of well-characterized models derived from 29 

ヮ;デｷWﾐデゲげ デ┌ﾏﾗ┌ヴゲ ﾗヴ ｪWﾐWデｷI;ﾉﾉ┞ WﾐｪｷﾐWWヴWS ﾏﾗSWﾉゲが ; ヮヴﾗヮﾗゲWS IﾗﾏHｷﾐ;デｷﾗﾐ ゲｴﾗ┌ﾉS HW 30 

evaluated clinically. The study of genomic and pharmacodynamic biomarkers during the 31 

IﾉｷﾐｷI;ﾉ W┗;ﾉ┌;デｷﾗﾐ ┘ｷﾉﾉ W┝Wﾏヮﾉｷa┞ ; さaヴﾗﾏ デｴW HWﾐIｴ デﾗ デｴW HWSゲｷSW ;ﾐS H;Iﾆ ;ｪ;ｷﾐざ 32 

approach. Finally there must be an awareness of unexpected or greater toxicities with 33 

these combinations and extrapolation from adult experience is essential. 34 

 35 
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6. Drugs relevant to prioritised targets 1 

Paediatric early phase clinical trials are ongoing or have recently closed for ALK and aurora 2 

kinase inhibitors [31,57-63].  3 

 4 

For neuroblastoma, the responses seen with crizotinib are disappointing and are 5 

substantially lower than those seen with tumours driven by ALK translocations - 6 

inflammatory myofibroblastic tumour, anaplastic large cell lymphoma and non-small cell 7 

lung cancer [31]. The challenge then is to identify more potent drugs or combinations 8 

which can overcome the inherent resistant of ALK mutations in neuroblastoma. Currently 9 

three ALK inhibitors are marketed for the treatment of ALK driven non-small cell lung 10 

cancer (crizotinib, ceritinib and alectinib) and three more are in development in adults 11 

(brigatinib, lorlatinib and entrectinib). Paediatric trials of single agents ceritinib (LDK378) 12 

and entrectinib, as well as combinations of ALK inhibitors with mTOR or CDK4/6 inhibitors, 13 

are ongoing [61-63] and, pre-clinical data relating to lorlatinib is encouraging and a Phase I 14 

trial has been activated for ethical/IRB approval [64-66]. The optimal ALK inhibitor for 15 

neuroblastoma has yet to be determined clinically, but once identified will be evaluated in 16 

front-line studies. 17 

 18 

Aurora kinase inhibitors are cytotoxic in their own right, as well as acting on the MYCN-19 

aurora complex.  Two aurora kinase inhibitors, alisertib and AT9283 have been evaluated 20 

in phase I studies in children with neuroblastoma [58-60]: AT9283 as a single agent and 21 

alisertib as a single agent and in combination with irinotecan and temozolomide.  Activity 22 

has been observed with alisertib both as single agent and in combination.  However, 23 

activity of alisertib was lowest in MYCN amplified neuroblastoma suggesting that its 24 

mechanism of action was by a cytotoxic effect rather than on the MYCN-aurora complex.  25 

This further supports the hypothesis that the optimal aurora kinase inhibitor, eliciting 26 

conformational changes on the MYCN-aurora complex, has yet to be developed [52-54]. 27 

 28 

Although mTOR inhibitors - everolimus, temsirolimus and ridaforolimus [67-71] - have 29 

been evaluated in clinical trials in children, paediatric trials of the new mTORC1/2 30 

inhibitors have just opened and are a high priority for the paediatric academic community 31 

because the dual mTORC1/2 inhibition could overcome resistance to rapalogues. 32 

 33 

The first-in-child trial of the CDK4/6 inhibitor ribociclib (LEE011) has been recently 34 

completed [72], with stable disease a frequent outcome, demonstrating the importance of 35 
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a combination approach, and trials of abemaciclib (LY2835219) and palbociclib are ongoing 1 

[73,74].  Early paediatric clinical trials of the MEK inhibitors selumetinib, trametinib and 2 

cobimetinib and the pan phosphatidylinositol 3-kinase (PI3K) inhibitor SF1126 [75] are in 3 

progress.  Additionally, MDM2, BIRC5, CHK1 and BET bromodomain inhibitors are in the 4 

early clinical phases of adult development, but paediatric clinical trials have not yet 5 

started.  Although there is a strong biological, mechanism of action rationale for such 6 

development of these inhibitors, the slowness in opening early phase paediatric studies 7 

reflects that paediatric drug development is still largely centred on adult conditions and 8 

not the mechanism of action based model [28]. 9 

 10 

7. Transition to clinical development: considerations for early and late clinical trials 11 

Based on the foundation of the Neuroblastoma NDDS, there are four elements for clinical 12 

evaluation of new drugs: early phase clinical trials, parallel randomised later-phase clinical 13 

trials, molecular profiling and randomised front-line trials.  Central to the overall approach 14 

is the seamless transition between evaluation of a new drug for a particular molecular sub-15 

type by the Clinical Trials Committee of ITCC and evaluation specifically for relapsed 16 

neuroblastoma by the Drug Development Group of SIOPEN. 17 

  18 

The objective of an early phase clinical trial is not only to determine the paediatric 19 

recommended phase II dose (RP2D), safety profile, pharmacokinetics and 20 

pharmacodynamics of a drug, but also to assess preliminary signals of activity.  As the 21 

paediatric RP2D remains very close to the equivalent adult RP2D and toxicity profiles are 22 

class-related and similar to adult drugs [76], for drugs with a wide therapeutic index, it is 23 

recommended that the paediatric early phase clinical trial starts at the adult RP2D, 24 

corrected for body surface area, and is a dose confirmation study.  Using this approach 25 

[76], pharmacokinetic profiling is critical and the exposures, clearances and other 26 

pharmacokinetic parameters can be confirmed to be similar to those obtained in adults as 27 

well as the toxicity profile.  Conversely, if the drug has a narrow therapeutic index, then a 28 

dose escalation study is required.  Existing dose escalation designs such as 3+3 were 29 

developed for evaluating chemotherapeutics. For molecularly targeted agents, the use of 30 

these conventional dose escalation designs leads to longer study durations, studies 31 

remaining closed to recruitment for long periods and more dose levels being tested.  New 32 

dose escalation designs, such as the Bayesian logistic regression model (BLRM) or 33 

continuous reassessment method (CRM), maximise the efficiency of the dose escalation by 34 
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leading to a shorter duration of trials and less exposure of patients to doses below the 1 

maximum tolerated dose (MTD) [78]. 2 

 3 

The inclusion of patients with the same molecular sub-type or disease in early phase trials 4 

of expansion cohorts will enable a valuable assessment of activity, as well as providing 5 

further data on safety and pharmacokinetics.  Relatively small sized expansion cohorts can 6 

inform statistically go/no-go decisions; for example an Ensign 3-stage design [79], where 7 

ten patients are recruited at the RP2D, as used in the European Proof-of-Concept 8 

Therapeutic Stratification Trial of Molecular Anomalies in Relapsed or Refractory Tumours 9 

(ESMART )trial (NCT02813135) [80].  If there is no response in the first ten patients, then a 10 

further evaluation of the drug is postponed or abandoned.  However, if there is a response 11 

in the first ten patients, then a further 16 patients are enrolled.  Also, the recently 12 

presented paediatric study on the BRAF inhibitor dabrafenib included four expansion 13 

cohorts with 10 patients each, providing statistically based estimations to guide go/no go 14 

decisions [81, 82]. 15 

 16 

If there is preliminary evidence of activity, then the drug is evaluated further in 17 

neuroblastoma-specific, adaptive-design, parallel, randomised or multi-arm, multi-stage 18 

studies.  Evaluation in randomised trials is essential, as a comparison with historical 19 

controls will overestimate the efficacy of the drug [83]. 20 

 21 

Finally and importantly molecular profiling of the patient's tumour at the time of 22 

enrolment on an early phase clinical trial is a critical component of the strategy.  Due to 23 

clonal evolution and tumour heterogeneity, evaluation of archival tumour is not 24 

appropriate.  "Liquid biopsies" of circulating free DNA are increasingly being incorporated 25 

in both early and randomised trials and will give sequential information about tumour 26 

evolution and development of resistance. European ITCC initiatives are providing this 27 

information by routine molecular profiling of tumours at relapse (MOSCATO-01 [39], 28 

MAPPYACTS, INFORM [40], iTHER, SM-PAEDS). 29 

 30 

Currently, the multi-pharma, multi-drug ITCC early phase clinical trial ESMART 31 

(NCT02813135) [78] (which includes NDDS prioritised drugs - mTORC1/2, and CDK4/6 32 

inhibitors) and the randomised SIOPEN - ITCC BEACON trial [84] provide a clear pathway 33 

for the evaluation of drugs identified in the NDDS to go forward to frontline studies.  Single 34 

agents or combinations, which show activity in the randomised trial, are then introduced 35 
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into front-line therapy and evaluated further - a three-stage process from first-in-child 1 

studies to front-line therapy. 2 

 3 

By utilising this approach paediatric dose confirmation/finding studies can be conducted 4 

rapidly, and activity can be determined more quickly, with meaningful comparators and 5 

biological knowledge gained in parallel with prospective molecular profiling.  6 

 7 

 8 

 9 

8. Conclusions and action points 10 

The NDDS initiative, created by ITCC, ENNCA and SIOPEN, aims to accelerate drug 11 

development by bringing together biologists, drug developers, regulators, and clinicians 12 

leading early and late phase trials, to achieve a consensus.  Drug development for 13 

neuroblastoma must be driven by biology and knowledge of the molecular pathways, 14 

tumour biology and key oncogenic drivers.  Targets have been prioritised based on biology, 15 

specifically target expression, target dependency and validation, and pre-clinical data on 16 

efficacy, potential combinations and availability of biomarkers.  Since the start of the NDDS 17 

initiative, ITCC and SIOPEN have increased efforts to accelerate the development of the 18 

prioritised inhibitors.  Furthermore there is a clear continuum incorporating molecular 19 

profiling, biological and pre-clinical data, mechanism of action driven strategy for selection 20 

and prioritisation, and improved early and late phase clinical trial design to streamline the 21 

drug development process (Table 3).  A closer dialogue with the pharmaceutical industry 22 

will further increase the efficiency of this plan, as will the introduction of a mechanism of 23 

action and biology driven selection and prioritisation process in paediatric drug 24 

development.  This approach will guide scientists, clinicians, pharmaceutical industry and 25 

regulators in the immediate future and will enable access to the most promising targeted 26 

agents in the hope of improving outcomes for children with neuroblastoma, and 27 

potentially other childhood malignancies. 28 

 29 

9. Expert Opinion  30 

The existing model of drug development for neuroblastoma is generally reactive and 31 

responds to drugs being developed for adult malignancies. Furthermore, in the past there 32 

has not been integration and coordination between early and late phase clinical studies.  33 

Drug development is not driven by the biology of the tumour and the known genomic 34 

drivers.  This process results in drugs being evaluated that may not have the greatest 35 
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probability of activity in neuroblastoma, and their course of development is interrupted 1 

and not planned, and frequently trials compete for small populations.  Increased 2 

collaboration and data sharing between all stakeholders is needed to avoid regulators and 3 

pharma not being aware of developments, and lacking an overview of the landscape of the 4 

disease, therapeutic needs and new scientific discoveries.  5 

 6 

The approach adopted by the NDDS initiative is integrated, comprehensive, and based on 7 

tumour biology, and results in a more efficient and rational process and use of valuable 8 

and rare resources.  The Neuroblastoma NDDS encompasses all elements of the drug 9 

development process, including translational medicine from bench to bedside: molecular 10 

profiling to identify new targets and potential predictive (selection) biomarkers, relevant 11 

drugs, biological and pre-clinical research, first-in-child early phase clinical studies, 12 

randomised multi-arm trials and the transition to late-phase trials and to front-line 13 

standard of care.  Central to the approach is the premise that optimal drug development is 14 

reliant on understanding tumour biology.  Selection of drugs should be driven by the 15 

aberrant molecular pathways in neuroblastoma [28].  The biological hypotheses relevant 16 

to each drug should be tested in the clinic through the use of omic and pharmacodynamic 17 

ancillary biomarker studies.  This approach is in contrast to the present model, where drug 18 

selection is dictated by the adult indication and not necessarily by the probability that the 19 

medicine will have the greatest patient benefit in childhood tumours.  The major challenge 20 

of the proposed model is the availability of drugs. This could be increased by including re-21 

prioritisation of drugs developed for adults, which may not be of high priority for adult 22 

cancers, or by incentivising the development of drugs specifically for paediatric cancers.  23 

Once this proposed model is incorporated, its results will need to be evaluated 24 

prospectively to finally demonstrate that it was fit for purpose and has speeded up drug 25 

development for childhood cancers. 26 

 27 

A critical feature of the NDDS initiative is bringing together experts in neuroblastoma 28 

biology and pre-clinical and clinical drug development and leaders of late-phase studies, 29 

with regulators as observers. In this way information can be shared, all participants have a 30 

common knowledge and decisions can be made collectively. 31 

 32 

The Neuroblastoma NDDS has delivered three outputs:- 33 
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1. A multidisciplinary expert group has been established, with participants involved in 1 

all aspects of the drug development process, which is able to have a dynamic 2 

overview of all new targets and drugs available for the disease.  3 

2. Targets have been prioritised based on target validation and completeness of non-4 

clinical data, including available inhibitors, combinations, resistance mechanisms 5 

and biomarkers: ALK, MEK, CDK4/6, MDM2, MYCN (BET, Aurora kinase and 6 

mTORC1/2), BIRC5 and CHK1 inhibitors.  The process is dynamic, and new targets 7 

and drugs are regularly reviewed.  8 

3. Clinical trials of the prioritised targets and drugs have been promoted by liaising 9 

with pharma and facilitating investigator-led trials through ITCC.  10 

 11 

This output of the NDDS greatly assists clinicians designing early- and late-phase clinical 12 

studies and the pharmaceutical industry and regulators who are made aware of targets 13 

and drugs of greatest interest. Scientific advice can be sought from regulators at early 14 

stages in development.  Resources from academia and industry can be directed to areas 15 

with greatest potential yield. 16 

 17 

As neuroblastoma has different genomic drivers, with clonal evolution and tumour 18 

heterogeneity, molecular characterisation with a precision medicine approach will be 19 

critical.  The ultimate goal is a therapeutic approach comprising: molecular profiling 20 

tumour categoris;デｷﾗﾐが ﾏﾗﾉWI┌ﾉ;ヴ デ;ヴｪWデWS デｴWヴ;ヮ┞ aﾗヴ さﾆﾐﾗ┘ﾐざ ｪWﾐﾗﾏｷI Sヴｷ┗Wヴゲ ;ﾐS ; 21 

strategy for biologically relevant cancer vulnerabilities. 22 

 23 

We believe this novel approach will accelerate neuroblastoma drug development and 24 

should be applied to other poor prognosis childhood malignancies.  25 

 26 

  27 
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