1	Accelerating Drug Development for Neuroblastoma - New Drug
2	Development Strategy
3	An Innovative Therapies for Children with Cancer, European Network for Cancer Research in
4	Children and Adolescents and International Society of Paediatric Oncology Europe
5	Neuroblastoma Project
6	
7	
8	Running title: New drug development strategy for neuroblastoma
9	Keywords: neuroblastoma, drug development, phase I, preclinical testing, clinical trials
10	
11	Disclaimer
12	The views expressed in this article are the personal views of the authors and may not be
13	understood or quoted as being made on behalf of or reflecting the position of the European
14	Medicines Agency or one of its committees or working parties.
15	
16	
17	Word count: 4662
18	
19	Three Tables:
20	Table 1: Targets prioritised for neuroblastoma
21	Table 2: Prioritised targets, agents and ongoing/planned clinical trials
22	Table 3: Agreed action points
23	
24	Highlights: New drug development strategy for neuroblastoma
25	
26	List of abbreviations
27	
28	
29	
30	
31	

1 Abstract (200 words)

Introduction: Neuroblastoma, the commonest paediatric extra-cranial tumour, remains a leading cause of death from cancer in children. There is an urgent need to develop new drugs to improve cure rates and reduce long-term toxicity and to incorporate molecularly targeted therapies into treatment. Many potential drugs are becoming available, but have to be prioritised for clinical trials due to the relatively small numbers of patients.

7

Areas covered: The current drug development model has been slow, associated with
significant attrition, and few new drugs have been developed for neuroblastoma.

10

The Neuroblastoma New Drug Development Strategy (NDDS) has: 1) established a group with expertise in drug development; 2) prioritised targets and drugs according to tumour biology (target expression, dependency, pre-clinical data; potential combinations; biomarkers), identifying as priority targets ALK, MEK, CDK4/6, MDM2, MYCN (druggable by BET bromodomain, aurora kinase, mTORC1/2) BIRC5 and checkpoint kinase 1; 3) promoted clinical trials with target-prioritised drugs. Drugs showing activity can be rapidly transitioned via parallel randomised trials into front-line studies.

18

Expert Opinion: The Neuroblastoma NDDS is based on the premise that optimal drug development is reliant on knowledge of tumour biology and prioritisation. This approach will accelerate neuroblastoma drug development and other poor prognosis childhood malignancies.

- 23
- 24

1 **1.** Introduction: The unmet need

2 Neuroblastoma, the most common extra-cranial solid tumour of childhood, is a leading 3 cause of death in children between 1-4 years [1]. More than forty percent of patients are 4 considered high-risk, including children over the age of 18 months with metastatic disease 5 and those with tumours harbouring MYCN amplification [2]. Despite improvements in intensive multi-modal therapy, including chemotherapy, high-dose therapy with 6 7 autologous hematopoietic stem cell rescue, surgical removal of the primary tumour, 8 radiotherapy, residual disease therapy and immunotherapy with anti-GD2 monoclonal 9 antibodies, long-term survival for children with high-risk neuroblastoma remains below 10 50% at 5 years [3-6]. The majority of patients experience relapse associated with a dismal 11 prognosis, with five-year overall survival for relapsed metastatic neuroblastoma of 8% in 12 the International Neuroblastoma Risk Group analysis [7]. Approximately one third of 13 patients are refractory to frontline therapy and have a very poor outcome [8, 9]. In 14 addition, survivors face a significant burden of late effects due to the intensity of 15 multimodal therapy [10, 11].

16

17 2. Current Paediatric Oncology Drug Development Model for Neuroblastoma

18 Although genomic aberrations (MYCN, ALK, TP53, ATRX, TERT and RAS-MAPK) [12-23], 19 which are molecular drivers for specific subtypes of neuroblastoma, have been described, 20 effective molecularly targeted therapies have not been introduced into current treatment 21 strategies [24]. Furthermore, currently all children with high-risk neuroblastoma receive 22 the same therapeutic approach at presentation and treatment is only modified depending 23 on response - therapy is not personalised. To date, in contrast to adult oncology, progress 24 in paediatric cancers has been slow, with a paucity of molecularly targeted drugs being 25 developed for neuroblastoma.

26

The availability of drugs for early phase clinical studies for neuroblastoma has been driven predominantly by medicines being developed for adult malignancies. Although the number of early phase clinical trials has increased as a result of the European Paediatric Medicine Regulation, the development of drugs for neuroblastoma is still driven by the adult condition and not the mechanism of action of the drug.

32

After determining the dose and safety profile in a Phase I study, drugs have been evaluated in Phase II studies with no clear prioritisation to identify those with the greatest potential benefit for front-line randomised trials. Furthermore, there has been a lack of

- comprehensive molecular profiling of tumours at presentation or relapse. Finally, there
 has been no integrated process or a forum for communication and information exchange
 between biologists and clinicians involved in early and phase clinical trials [25].
- 4

5 This fragmented process has resulted in some drugs being developed with not necessarily 6 the highest biological rationale; multiple phase II studies of the same drug and with the 7 exception of anti-GD2 monoclonal antibodies, no new drugs entering front-line studies for 8 nearly two decades. New therapeutic strategies are therefore needed for these children 9 [24, 26, 27].

10

11 3. Neuroblastoma New Drug Development Strategy (NDDS)

The Innovative Therapies for Children with Cancer (ITCC), in conjunction with the European Network for Cancer Research in Children and Adolescents (ENCCA) and the International Society of Paediatric Oncology Europe Neuroblastoma Group (SIOPEN), has established the New Drug Development Strategy (NDDS) project as part of the overall NDDS initiative developed by ITCC and ENCCA. The aim is to accelerate the development of new drugs for patients with neuroblastoma with the ultimate goal of improving survival.

18

The Neuroblastoma NDDS strategy was designed to encompass all elements of the drug development process, including translational medicine from bench to bedside: molecular profiling to identify new targets and potential predictive (selection) biomarkers, development of relevant drugs, biological and pre-clinical research, first-in-child early phase clinical studies, randomised multi-arm trials and the transition to late-phase trials and the clinic. Central to the approach was the premise that optimal drug development is heavily reliant on understanding tumour biology.

26

The process was based on the premise that involvement of all stakeholders was critical for delivering an integrated system for drug evaluation and clinical trial methodology in children with neuroblastoma. In view of the large number of potential targets and drugs becoming available for evaluation in children with neuroblastoma, on the one hand, and the genetic heterogeneity of neuroblastoma with few recurrently altered genes on the other, a selection and prioritisation process was required to identify targets and drugs which may be of potential benefit to such children.

34

1 This Neuroblastoma NDDS is a dynamic process, which prioritises targets and compounds 2 as new data become available. European experts in neuroblastoma biology and pre-3 clinical and clinical drug development from fifteen research institutions in seven countries 4 are involved, and members of the European Medicines Agency (EMA) and its Paediatric 5 Committee (PDCO) are observers.

6

7 This output of the NDDS (prioritisation and an integrated approach for drug development 8 in neuroblastoma) informs clinicians designing early and late phase clinical studies, 9 highlights targets and drugs of greatest interest to the pharmaceutical industry and 10 regulators, and indicates where resources require the greatest attention from academia and industry. This information would be provided for clinical trials groups and companies 11 12 preparing Paediatric Investigation Plans for new drugs. This NDDS strategy complements that of the multi-stakeholder Paediatric Platform ACCELERATE, developed by the Cancer 13 14 Drug Development Forum (CDDF), ITCC, and the European Society for Paediatric Oncology 15 (SIOPE) [26], and with representatives from academia, the pharmaceutical industry, 16 regulators and, very importantly, patient representatives. ACCELERATE has developed a 17 process of mechanism of action and biology driven selection and prioritisation of 18 paediatric drug development, rather than the current process based on adult cancer 19 indications [28]. This process determines, for drugs with a known mechanism of action, if 20 that mechanism is relevant for paediatric malignancy and what is the best match with 21 tumour biology. The NDDS initiative refines this prioritisation further within 22 neuroblastoma.

23

24 4. Biology of neuroblastoma

25 Therapeutic targeting of identified oncogenic drivers in neuroblastoma is a key component 26 of the NDDS. The first pivotal step is to identify the molecular pathways and the tumour 27 biology that are critical drivers in neuroblastoma, focusing on gene/pathway aberrations 28 with proof of "tumour dependence". Information on the incidence of actionable 29 mutations is the most easily obtained data for understanding tumour biology; however, determining the functional dependency of the mutation, if it is an oncogenic driver or 30 31 whether it drives tumour development or recurrence is a more complicated next stage. 32 Next generation sequencing has demonstrated that neuroblastoma harbour fewer 33 mutations involving recurrently altered genes at diagnosis (mean 10–15 per tumour) than 34 many other, especially adult, tumours [29]. The main oncogenic drivers identified in 35 neuroblastoma include: i) MYCN amplification in 25% of patients [12]; ii) anaplastic

1 lymphoma kinase (ALK) mutations and amplification in 10-15% of cases, including those of 2 hereditary neuroblastoma [13-16]; iii) TP53, wild-type in the majority of neuroblastoma at 3 diagnosis, with about 2% mutation at presentation, but mutations are acquired during 4 treatment and 15% detected at relapse [17]; iv) RAS-mitogen-activated protein kinase 5 (MAPK) pathway mutations recently described in relapsed neuroblastoma (3% mutations 6 at diagnosis and 78% at relapse) [21]; v) mutations in ATRX (9%) reported in older patients 7 [18]; vii) TERT rearrangements reflecting telomerase activation in approximately 30% of 8 high risk cases [19, 20]; and finally vii) PTPN11 mutations in 2.9% of tumours.[22].

9

10 The presence of MYCN amplification, its biological role and prognostic relevance were described several decades ago [12]. However, no effective therapeutic strategy 11 12 demonstrating convincing evidence of MYCN inhibition has yet been translated into the 13 clinic. After incorporating all biological information available to date, a recent 14 classification of five groups of drugs targeting MYC or MYCN at different levels has been 15 reported and will allow prioritisation and development of these agents [30]. The five 16 groups of drugs comprise drugs targeting: DNA-binding functions of MYCN, transcription of 17 MYCN, synthetic-lethal interactions of MYCN, oncogenic stabilisation of MYCN protein and 18 the expression or function of MYCN.

19

20 ALK was described in 2008 as an oncogenic driver in neuroblastoma [13-16] and an early 21 clinical trial of crizotinib in children with ALK aberrations was rapidly initiated [31]. 22 However, resistance to single therapy agent crizotinib has been described pre-clinically 23 and clinically with moderate response rates (1 complete response, 3 stable disease, and 7 24 progressive disease of 11 ALK mutated neuroblastoma) in early clinical trials compared to 25 other ALK-driven tumours [32]. Hence, both combinations with chemotherapy or other 26 targeted agents or more potent inhibitors are needed to overcome resistance of some ALK 27 mutations [33].

28

The tumour suppressor protein p53 is usually nuclear and wild-type at diagnosis (98% of tumours) in neuroblastoma, with intact apoptotic mechanisms, although aberrations in the p53/MDM2/p14^{ARF} pathway are more commonly reported. Interestingly, the p53 gene *TP53* is a direct transcriptional target of MYCN and sensitises cells for MYCN-driven apoptosis [34,35].

1 The appearance of activating mutations of the RAS/MAPK pathway has also been recently 2 described in a high proportion of neuroblastoma at relapse (up to 78%), some of them are 3 novel whereas others are clonally enriched at relapse [21]. Emerging data highlight the 4 importance of other targets such as the cell cycle regulator CDK4/6 [36,37].

5

6 ATRX gene mutations/focal deletions are mutually exclusive with MYCN amplification and 7 occur in 9% of high-risk patients at diagnosis [22]. ATRX mutations/deletions are also 8 strongly associated with the alternative lengthening of the telomeres phenotype [18, 38]. 9 The clinical features of this group include older age at diagnosis, a chronic progressive 10 course and poor long-term overall survival [18]. However, to date, no novel therapies exist for this important target. In 2015 genomic re-arrangements proximal to TERT, which 11 12 encodes the catalytic subunit of the telomerase enzyme, resulting in its transcriptional upregulation were described in 23-31% of high-risk cases [19, 20]. TERT re-arrangements are 13 14 also associated with poor prognosis and occur in a mutually exclusive fashion to MYCN 15 amplification and ATRX alterations. Taken together with evidence that MYCN also up-16 regulates TERT, these recent discoveries highlight the importance of active telomere 17 maintenance in neuroblastoma pathogenesis and present a new potential therapeutic 18 target [19].

19

20 Molecular profiling of tumour tissues bio-banked at the time of diagnosis has yielded 21 important data, as reported in recent whole exome sequencing (WES)/whole genome 22 sequencing (WGS) publications [22,23]. The European ITCC initiatives are providing data 23 with the aim of discovering novel therapeutics for high-risk disease by routinely 24 molecularly profiling tumours at relapse (MOlecular Screening for CAncer Treatment Optimisation [MOSCATO-01 [39], MoleculAr Profiling for Pediatric and Young Adult Cancer 25 26 Treatment Stratification [MAPPYACTS], Individualized Therapy for Relapsed Malignancies 27 in Childhood [INFORM] [40], Individualised Therapy [iTHER], and Stratified Medicine -28 Paediatrics [SM-PAEDS], as is the Therapeutically Applicable Research to Generate 29 Effective Treatments (TARGET) project in the US, which analyses both primary and 30 relapsed neuroblastoma [41,42]. More recently, the appearance of new mutations in 31 individual patients at the time of relapse has been demonstrated for ALK, TP53 and RAS/MAPK [17, 21, 43-45]. As has been described for other cancers, these mutations are 32 33 detected at low levels in diagnostic samples but are enriched at relapse and several of 34 these are potentially important drug targets. Understanding the evolution of mutations in neuroblastoma is of critical importance for drug development [21,43-45]. It underlines 35

1 that re-biopsying tumours at the time of relapse, and obtaining snap-frozen tumour and 2 paraffin-embedded material before entering early clinical trials, is increasingly important 3 and should be incorporated into clinical practice. This will provide accurate molecular 4 profiling of neuroblastoma and facilitate access to novel targeted therapies through a 5 personalised medicine approach, as well as improving our understanding of disease 6 biology and mechanisms of resistance to new, targeted therapies. The importance of 7 clonal evolution in neuroblastoma has made it necessary to study sequential samples 8 collected during targeted therapy to understand mechanisms of resistance. As sequential 9 tumour sampling may not be feasible, the role of *liquid* samples has become more 10 Emerging technologies allow the detection of actionable mutations in important. circulating DNA obtained from blood samples, as has been recently shown with the 11 12 detection of ALK mutations in plasma samples [46].

13

Incorporation of biological data: the transition from pre-clinical to clinical development prioritisation of targets in neuroblastoma

A number of articles and workshop reports have been published without achieving a definitive consensus defining the minimal data package required to provide proof-ofconcept and therefore to qualify a target or drug as sufficiently promising to take forward into clinical trials for adult cancers [47-49]. For paediatric cancers, the first step should be to prioritise the targets according to the level of existing evidence, then define whether there are available drugs for the target, and finally establish if they are available for paediatric use and whether early phase clinical trials of these agents should be prioritised.

23

Targets were pre-selected for evaluation based on the currently available data at that time on molecular pathology, biology, and pre-clinical studies. The decisions to prioritise targets for clinical development were taken by a consensus of clinicians, scientists and academic drug development experts based on specific criteria, which included the robustness of the published evidence that they were oncogenic drivers, the functional dependence in neuroblastoma and whether they were strong candidates for druggable targets.

31

Targets were ranked as 'high' (n=9), 'intermediate' (n=5) or 'low' (n=7) to enable prioritisation based on target expression, target dependency and validation, availability of pre-clinical data on efficacy, and potential combination and biomarker development. The targets that were given top priority for neuroblastoma based on the available data,

1 completeness of the data and potentially available inhibitors were ALK, MEK, CDK4/6, 2 MDM2, MYCN (druggable by BET bromodomain, aurora kinase and mTORC1/2 inhibition), 3 BIRC5 and checkpoint Kinase 1 [50,51]. TORC1/2 aurora kinase and BET bromodomain 4 were ranked as high priority targets because of their action on MYCN; however, it was 5 agreed that currently no aurora kinase inhibitor exhibits optimal activity against MYCN [52-6 54]. LIN28B [55] was identified as an important target but currently no drugs are in 7 development. Table 1 summarises the data available for each target and Table 2 the 8 clinical development of relevant drugs. For all these, the target is expressed in 9 neuroblastoma, has been validated in vitro and/or in vivo with siRNA functional 10 experiments and shows strong evidence of efficacy in vitro and in vivo. Research to identify biomarkers, combinations or resistance is less well developed, but nevertheless 11 12 for these targets it was felt that there was sufficient data to guide initial clinical 13 development. The evidence to date suggests that some of these targets are only relevant 14 to molecular sub-populations, for example, ALK for ALK mutated or amplified 15 neuroblastoma. For other agents such as mTORC1/2, aurora kinase or CHK1 inhibitors, 16 evidence suggests that they will be active in MYCN driven neuroblastoma, but they could 17 also have a role in non-MYCN driven tumours.

18

19 The critical importance of combinations has been highlighted, as these may enhance 20 efficacy in the majority of instances where dysregulation of more than one biological pathway is responsible for driving the disease and overcome resistance. However, the 21 22 mechanism of action and cumulative toxicities of additional agents must be carefully 23 considered when designing treatment regimens. A substantial logistical challenge lies in 24 the systematic evaluation of the numerous possible permutations of combinations in a 25 clinical setting [56]. In view of the limited number of children available for early phase 26 studies, a rational approach is needed for the selection of combinations, based on the 27 biology of neuroblastoma and its known biological subsets as well as pathways' data in tumours treated with one agent involved in the combination. Following pre-clinical 28 29 evaluation of the combinations in a range of well-characterized models derived from patients' tumours or genetically engineered models, a proposed combination should be 30 31 evaluated clinically. The study of genomic and pharmacodynamic biomarkers during the clinical evaluation will exemplify a "from the bench to the bedside and back again" 32 33 approach. Finally there must be an awareness of unexpected or greater toxicities with 34 these combinations and extrapolation from adult experience is essential.

6. Drugs relevant to prioritised targets

Paediatric early phase clinical trials are ongoing or have recently closed for ALK and aurora
kinase inhibitors [31,57-63].

4

5 For neuroblastoma, the responses seen with crizotinib are disappointing and are 6 substantially lower than those seen with tumours driven by ALK translocations -7 inflammatory myofibroblastic tumour, anaplastic large cell lymphoma and non-small cell 8 lung cancer [31]. The challenge then is to identify more potent drugs or combinations 9 which can overcome the inherent resistant of ALK mutations in neuroblastoma. Currently 10 three ALK inhibitors are marketed for the treatment of ALK driven non-small cell lung cancer (crizotinib, ceritinib and alectinib) and three more are in development in adults 11 12 (brigatinib, lorlatinib and entrectinib). Paediatric trials of single agents ceritinib (LDK378) 13 and entrectinib, as well as combinations of ALK inhibitors with mTOR or CDK4/6 inhibitors, 14 are ongoing [61-63] and, pre-clinical data relating to lorlatinib is encouraging and a Phase I 15 trial has been activated for ethical/IRB approval [64-66]. The optimal ALK inhibitor for 16 neuroblastoma has yet to be determined clinically, but once identified will be evaluated in 17 front-line studies.

18

19 Aurora kinase inhibitors are cytotoxic in their own right, as well as acting on the MYCN-20 aurora complex. Two aurora kinase inhibitors, alisertib and AT9283 have been evaluated 21 in phase I studies in children with neuroblastoma [58-60]: AT9283 as a single agent and 22 alisertib as a single agent and in combination with irinotecan and temozolomide. Activity 23 has been observed with alisertib both as single agent and in combination. However, activity of alisertib was lowest in MYCN amplified neuroblastoma suggesting that its 24 25 mechanism of action was by a cytotoxic effect rather than on the MYCN-aurora complex. 26 This further supports the hypothesis that the optimal aurora kinase inhibitor, eliciting 27 conformational changes on the MYCN-aurora complex, has yet to be developed [52-54].

28

Although mTOR inhibitors - everolimus, temsirolimus and ridaforolimus [67-71] - have been evaluated in clinical trials in children, paediatric trials of the new mTORC1/2 inhibitors have just opened and are a high priority for the paediatric academic community because the dual mTORC1/2 inhibition could overcome resistance to rapalogues.

33

The first-in-child trial of the CDK4/6 inhibitor ribociclib (LEE011) has been recently completed [72], with stable disease a frequent outcome, demonstrating the importance of

1 a combination approach, and trials of abemaciclib (LY2835219) and palbociclib are ongoing 2 [73,74]. Early paediatric clinical trials of the MEK inhibitors selumetinib, trametinib and 3 cobimetinib and the pan phosphatidylinositol 3-kinase (PI3K) inhibitor SF1126 [75] are in 4 progress. Additionally, MDM2, BIRC5, CHK1 and BET bromodomain inhibitors are in the 5 early clinical phases of adult development, but paediatric clinical trials have not yet 6 started. Although there is a strong biological, mechanism of action rationale for such 7 development of these inhibitors, the slowness in opening early phase paediatric studies 8 reflects that paediatric drug development is still largely centred on adult conditions and 9 not the mechanism of action based model [28].

10

11

7. Transition to clinical development: considerations for early and late clinical trials

Based on the foundation of the Neuroblastoma NDDS, there are four elements for clinical evaluation of new drugs: early phase clinical trials, parallel randomised later-phase clinical trials, molecular profiling and randomised front-line trials. Central to the overall approach is the seamless transition between evaluation of a new drug for a particular molecular subtype by the Clinical Trials Committee of ITCC and evaluation specifically for relapsed neuroblastoma by the Drug Development Group of SIOPEN.

18

19 The objective of an early phase clinical trial is not only to determine the paediatric 20 recommended phase II dose (RP2D), safety profile, pharmacokinetics and pharmacodynamics of a drug, but also to assess preliminary signals of activity. As the 21 22 paediatric RP2D remains very close to the equivalent adult RP2D and toxicity profiles are 23 class-related and similar to adult drugs [76], for drugs with a wide therapeutic index, it is 24 recommended that the paediatric early phase clinical trial starts at the adult RP2D, corrected for body surface area, and is a dose confirmation study. Using this approach 25 26 [76], pharmacokinetic profiling is critical and the exposures, clearances and other 27 pharmacokinetic parameters can be confirmed to be similar to those obtained in adults as 28 well as the toxicity profile. Conversely, if the drug has a narrow therapeutic index, then a 29 dose escalation study is required. Existing dose escalation designs such as 3+3 were 30 developed for evaluating chemotherapeutics. For molecularly targeted agents, the use of 31 these conventional dose escalation designs leads to longer study durations, studies 32 remaining closed to recruitment for long periods and more dose levels being tested. New 33 dose escalation designs, such as the Bayesian logistic regression model (BLRM) or 34 continuous reassessment method (CRM), maximise the efficiency of the dose escalation by

leading to a shorter duration of trials and less exposure of patients to doses below the
 maximum tolerated dose (MTD) [78].

3

4 The inclusion of patients with the same molecular sub-type or disease in early phase trials 5 of expansion cohorts will enable a valuable assessment of activity, as well as providing 6 further data on safety and pharmacokinetics. Relatively small sized expansion cohorts can 7 inform statistically go/no-go decisions; for example an Ensign 3-stage design [79], where 8 ten patients are recruited at the RP2D, as used in the European Proof-of-Concept 9 Therapeutic Stratification Trial of Molecular Anomalies in Relapsed or Refractory Tumours 10 (ESMART)trial (NCT02813135) [80]. If there is no response in the first ten patients, then a 11 further evaluation of the drug is postponed or abandoned. However, if there is a response 12 in the first ten patients, then a further 16 patients are enrolled. Also, the recently 13 presented paediatric study on the BRAF inhibitor dabrafenib included four expansion 14 cohorts with 10 patients each, providing statistically based estimations to guide go/no go 15 decisions [81, 82].

16

17 If there is preliminary evidence of activity, then the drug is evaluated further in 18 neuroblastoma-specific, adaptive-design, parallel, randomised or multi-arm, multi-stage 19 studies. Evaluation in randomised trials is essential, as a comparison with historical 20 controls will overestimate the efficacy of the drug [83].

21

22 Finally and importantly molecular profiling of the patient's tumour at the time of 23 enrolment on an early phase clinical trial is a critical component of the strategy. Due to 24 clonal evolution and tumour heterogeneity, evaluation of archival tumour is not 25 appropriate. "Liquid biopsies" of circulating free DNA are increasingly being incorporated 26 in both early and randomised trials and will give sequential information about tumour 27 evolution and development of resistance. European ITCC initiatives are providing this 28 information by routine molecular profiling of tumours at relapse (MOSCATO-01 [39], 29 MAPPYACTS, INFORM [40], iTHER, SM-PAEDS).

30

Currently, the multi-pharma, multi-drug ITCC early phase clinical trial ESMART (NCT02813135) [78] (which includes NDDS prioritised drugs - mTORC1/2, and CDK4/6 inhibitors) and the randomised SIOPEN - ITCC BEACON trial [84] provide a clear pathway for the evaluation of drugs identified in the NDDS to go forward to frontline studies. Single agents or combinations, which show activity in the randomised trial, are then introduced

into front-line therapy and evaluated further - a three-stage process from first-in-child
 studies to front-line therapy.

3

By utilising this approach paediatric dose confirmation/finding studies can be conducted
rapidly, and activity can be determined more quickly, with meaningful comparators and
biological knowledge gained in parallel with prospective molecular profiling.

- 7
- 8
- 9
- 10 8. Conclusions and action points

The NDDS initiative, created by ITCC, ENNCA and SIOPEN, aims to accelerate drug 11 12 development by bringing together biologists, drug developers, regulators, and clinicians leading early and late phase trials, to achieve a consensus. Drug development for 13 14 neuroblastoma must be driven by biology and knowledge of the molecular pathways, 15 tumour biology and key oncogenic drivers. Targets have been prioritised based on biology, 16 specifically target expression, target dependency and validation, and pre-clinical data on 17 efficacy, potential combinations and availability of biomarkers. Since the start of the NDDS 18 initiative, ITCC and SIOPEN have increased efforts to accelerate the development of the 19 prioritised inhibitors. Furthermore there is a clear continuum incorporating molecular 20 profiling, biological and pre-clinical data, mechanism of action driven strategy for selection 21 and prioritisation, and improved early and late phase clinical trial design to streamline the 22 drug development process (Table 3). A closer dialogue with the pharmaceutical industry 23 will further increase the efficiency of this plan, as will the introduction of a mechanism of 24 action and biology driven selection and prioritisation process in paediatric drug development. This approach will guide scientists, clinicians, pharmaceutical industry and 25 26 regulators in the immediate future and will enable access to the most promising targeted 27 agents in the hope of improving outcomes for children with neuroblastoma, and 28 potentially other childhood malignancies.

29

30 9. Expert Opinion

The existing model of drug development for neuroblastoma is generally reactive and responds to drugs being developed for adult malignancies. Furthermore, in the past there has not been integration and coordination between early and late phase clinical studies. Drug development is not driven by the biology of the tumour and the known genomic drivers. This process results in drugs being evaluated that may not have the greatest probability of activity in neuroblastoma, and their course of development is interrupted and not planned, and frequently trials compete for small populations. Increased collaboration and data sharing between all stakeholders is needed to avoid regulators and pharma not being aware of developments, and lacking an overview of the landscape of the disease, therapeutic needs and new scientific discoveries.

6

7 The approach adopted by the NDDS initiative is integrated, comprehensive, and based on 8 tumour biology, and results in a more efficient and rational process and use of valuable 9 and rare resources. The Neuroblastoma NDDS encompasses all elements of the drug 10 development process, including translational medicine from bench to bedside: molecular 11 profiling to identify new targets and potential predictive (selection) biomarkers, relevant 12 drugs, biological and pre-clinical research, first-in-child early phase clinical studies, 13 randomised multi-arm trials and the transition to late-phase trials and to front-line 14 standard of care. Central to the approach is the premise that optimal drug development is 15 reliant on understanding tumour biology. Selection of drugs should be driven by the 16 aberrant molecular pathways in neuroblastoma [28]. The biological hypotheses relevant 17 to each drug should be tested in the clinic through the use of omic and pharmacodynamic 18 ancillary biomarker studies. This approach is in contrast to the present model, where drug 19 selection is dictated by the adult indication and not necessarily by the probability that the 20 medicine will have the greatest patient benefit in childhood tumours. The major challenge of the proposed model is the availability of drugs. This could be increased by including re-21 22 prioritisation of drugs developed for adults, which may not be of high priority for adult 23 cancers, or by incentivising the development of drugs specifically for paediatric cancers. 24 Once this proposed model is incorporated, its results will need to be evaluated 25 prospectively to finally demonstrate that it was fit for purpose and has speeded up drug 26 development for childhood cancers.

27

A critical feature of the NDDS initiative is bringing together experts in neuroblastoma biology and pre-clinical and clinical drug development and leaders of late-phase studies, with regulators as observers. In this way information can be shared, all participants have a common knowledge and decisions can be made collectively.

32

33 The Neuroblastoma NDDS has delivered three outputs:-

- A multidisciplinary expert group has been established, with participants involved in
 all aspects of the drug development process, which is able to have a dynamic
 overview of all new targets and drugs available for the disease.
- Targets have been prioritised based on target validation and completeness of nonclinical data, including available inhibitors, combinations, resistance mechanisms and biomarkers: ALK, MEK, CDK4/6, MDM2, MYCN (BET, Aurora kinase and mTORC1/2), BIRC5 and CHK1 inhibitors. The process is dynamic, and new targets and drugs are regularly reviewed.
 - Clinical trials of the prioritised targets and drugs have been promoted by liaising with pharma and facilitating investigator-led trials through ITCC.
- 10 11

9

This output of the NDDS greatly assists clinicians designing early- and late-phase clinical studies and the pharmaceutical industry and regulators who are made aware of targets and drugs of greatest interest. Scientific advice can be sought from regulators at early stages in development. Resources from academia and industry can be directed to areas with greatest potential yield.

17

As neuroblastoma has different genomic drivers, with clonal evolution and tumour heterogeneity, molecular characterisation with a precision medicine approach will be critical. The ultimate goal is a therapeutic approach comprising: molecular profiling tumour categorisation, molecular targeted therapy for "known" genomic drivers and a strategy for biologically relevant cancer vulnerabilities.

23

We believe this novel approach will accelerate neuroblastoma drug development andshould be applied to other poor prognosis childhood malignancies.

- 26
- 27

1 References

2 1. Goodman, M.T., et al., Sympathetic Nervous System Tumors, in Cancer Incidence and 3 Survival among Children and Adolescents: United States SEER Program 1975-1995, 4 National Cancer Institute, SEER Program, L.A.G. Ries, M.A. Smith, and J.G. Gurney, 5 Editors. 1999, NIH Publication: Bethesda, MD. p. 65-72. 6 2. Maris, J.M., Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet 2007; 369: 2106-7 20. 8 3. Yu, A.L., Gilman AL, Ozkaynak MF et al., Anti-GD2 antibody with GM-CSF, interleukin-2, 9 and isotretinoin for neuroblastoma. N Engl J Med 2010; 363:1324-34. 10 Matthay, K.K., Reynolds CP, Seeger RC et al., Long-term results for children with high-4. 11 risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 12 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol 2009; 27:1007-13. 13 5. Pearson, A.D., Pinkerton CR, Lewis IJ et al., High-dose rapid and standard induction 14 chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised 15 trial. Lancet Oncol 2008;9:247-56. 16 6. Valteau-Couanet, D., Le Deley MC, Bergeron C, et al., Long-term results of the 17 combination of the N7 induction chemotherapy and the busulfan-melphalan high dose 18 chemotherapy. Pediatr Blood Cancer, 2014. 61(6): p. 977-81. 19 7. London, W.B., Castel V, Monclair Tet al., Clinical and biologic features predictive of 20 survival after relapse of neuroblastoma: a report from the International Neuroblastoma 21 Risk Group project. J Clin Oncol 2011; 29: 3286-92. 22 8. Ladenstein, R., Pötschger U, Hartman O, et al., 28 years of high-dose therapy and SCT for 23 neuroblastoma in Europe: lessons from more than 4000 procedures. Bone Marrow 24 Transplant 2008; 41 Suppl 2: S118-27. 25 9. Schrey, D., Vaidya SJ, Levine D, et al., Additional Therapies to Improve Metastatic 26 Response to Induction Therapy in Children With High-risk Neuroblastoma. J Pediatr 27 Hematol Oncol 2015: 37(3): e150-3. 28 10. Laverdiere, C, Cheung NK, Kushner BH, et al., Long-term complications in survivors of 29 advanced stage neuroblastoma. Pediatr Blood Cancer 2005; 45: 324-32. 30 11. Moreno, L., Vaidya SJ, Pinkerton CR, et al., Long-term follow-up of children with high-31 risk neuroblastoma: the ENSG5 trial experience. Pediatr Blood Cancer 2013; 60:. 1135-32 40. 33 12. Brodeur GM, Seeger RC, Schwab M, et al., Amplification of N-myc in untreated human 34 neuroblastomas correlates with advanced disease stage. Science 1984; 224: 1121-4 35 13. Mosse YP, Laudenslager M, Longo L, et al., Identification of ALK as a major familial 36 neuroblastoma predisposition gene. Nature 2008; 455:930-5. 37 14. Janoueix-Lerosey I, Lequin D, Brugières L et al., Somatic and germline activating 38 mutations of the ALK kinase receptor in neuroblastoma. Nature 2008; 455: 967-70. 39 15. Chen Y, Takita J, Choi YL et al., Oncogenic mutations of ALK kinase in neuroblastoma. 40 Nature 2008;. 455: 971-4. 41 16. George RE, Sanda T, Hanna M, et al., Activating mutations in ALK provide a therapeutic 42 target in neuroblastoma. Nature 2008;. 455: 975-8. 43 17. Carr-Wilkinson, J., O'Toole K, Wood KM et al., High Frequency of p53/MDM2/p14ARF 44 Pathway Abnormalities in Relapsed Neuroblastoma. Clin Cancer Res 2010; 16:1108-18. 45 18. Cheung, N.K. Zhang J, Lu C, et al., Association of age at diagnosis and genetic mutations 46 in patients with neuroblastoma. JAMA 2012; 307:1062-71. 47 19. Valentijn LJ., Koster J, Zwijnenburg DA, et al., TERT rearrangements are frequent in 48 neuroblastoma and identify aggressive tumors. Nat Genet 2015; 47: 1411-4. 49 20. Peifer M, Hertwig F, Roels Fet al., Telomerase activation by genomic rearrangements in 50 high-risk neuroblastoma. Nature 2015; 526: 700-4.

1 2	21	. Eleveld TF, Oldridge DA, Bernard V,et al., Relapsed neuroblastomas show frequent RAS- MAPK pathway mutations. Nat Genet 2015; 47: 864-71.
3	22	. Pugh TJ, Morozova O, Attiyeh EF et al. The genetic landscape of high-risk
4	22	neuroblastoma. Nat Genet 2013;. 45: 279-284
5 6	23	. Molenaar JJ, Koster J, Zwijnenburg DA, et al., Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483: 589-93
7	24	Moreno, L., Marshall, L.V., Pearson, A.D, At the frontier of progress for paediatric
8		oncology: the neuroblastoma paradigm. Br Med Bull 2013; 108:173-88.
9	25	. Moreno L, Chesler L, Hargrave D et al. Preclinical drug development for childhood
10		cancer. Expert Opin Drug Discov. 2011;6:49-64.
11	26	Vassal, G., Rousseau R, Blanc P et al., Creating a unique, multi-stakeholder Paediatric
12		Oncology Platform to improve drug development for children and adolescents with
13 14	77	cancer. Eur J Cancer 2015; 51:218-24. . Adamson PC, Houghton PJ, Perilongo G et al. Drug discovery in paediatric oncology:
14 15	27	roadblocks to progress. Nat Rev Clin Oncol 2014; 11: 732-9.
16	28	Pearson, A.D., Herold R, Rousseau R et al. Implementation of mechanism of action
17	20	biology-driven early drug development for children with cancer. Eur J Cancer 2016;
18		62:124-31. ** A multi-stakeholder consensus on the development of drugs for
19		childhood cancer based on the mechanism of action of the drug.
20	29	. Vogelstein B, Papadopoulos N, Velculescu VE et al., Cancer genome landscapes. Science
21		2013; 339: 1546-58.
22	30	. Barone, G., Anderson J, Pearson AD, et al., New strategies in neuroblastoma:
23		Therapeutic targeting of MYCN and ALK. Clin Cancer Res 2013; 19: 5814-21.
24	31.	Mosse, Y.P., Lim MS, Voss SD et al., Safety and activity of crizotinib for paediatric
25		patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's
26		Oncology Group phase 1 consortium study. Lancet Oncol 2013; 14: 472-80. * The
27		phase I evaluation of a targeted drug in neuroblastoma
28	32	Bresler SC, Wood AC, Haglund EA et al., Differential inhibitor sensitivity of anaplastic
29	22	lymphoma kinase variants found in neuroblastoma. Sci Transl Med 2011; 3: 108ra114.
30 31	33	. Berry, T., Luther W, Bhatnagar N et al., The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 2012; 22: 117-30.
32	24	Barone, G., Tweddle DA, Shohet JM, et al., MDM2-p53 interaction in paediatric solid
33	54	tumours: preclinical rationale, biomakers and resistance. Curr Drug Targets 2014; 15:
34		114-23.
35	35	. Gamble LD, Kees UR, Tweddle DA et al. MYCN sensitizes neuroblastoma to the MDM2-
36	00	p53 antagonists Nutlin-3 and MI-63. Oncogene 2012; 31: 752-63.
37	36	. Rihani A, Vandesompele J, Speleman F et al. Inhibition of CDK4/6 as a novel therapeutic
38		option for neuroblastoma. Cancer Cell Int 2015; 15: 76.
39	37	. Rader J, Russell MR, Hart LS, et al., Dual CDK4/CDK6 inhibition induces cell-cycle arrest
40		and senescence in neuroblastoma. Clin Cancer Res 2013; 19: 6173-82
41	38	. Amorim JP, Santos G, Vinagre J et al. The Role of ATRX in the Alternative Lengthening of
42		Telomeres (ALT) Phenotype. Genes. 2016; 7; pii: E66. doi: 10.3390
43	39	. Geoerger B, Deschamps F, Puget S et al. Molecular screening for cancer treatment
44		optimization (MOSCATO 01) in pediatric patients: First feasibility results of a
45		prospective molecular stratification trial. J Clin Oncol, 2014. 32(supp: abstr 10500)
46	40	. Worst BC, van Tilburg CM, Balasubramanian GP,et al. Next-generation personalised
47		medicine for high-risk paediatric cancer patients - The INFORM pilot study. Eur J Cancer
48 40	A 4	2016; 65:91-101 Bassa KB, Maris IM, Advances in the translational genemics of neuroblactoma: From
49 50	41	. Bosse KR, Maris JM. Advances in the translational genomics of neuroblastoma: From
50 51		improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer 2016; 122:20-33.
71		הכווסווות מונרומנוסווס. כמווכרו 2010, 122.20-33.

1	42.	TARGET - Neuroblastoma -
2		https://ocg.cancer.gov/programs/target/projects/neuroblastoma <u>(Accessed 16 May</u>
3		2017)
4	43.	Fransson S, Hansson M, Ruuth K, et al., Intragenic anaplastic lymphoma kinase (ALK)
5		rearrangements: Translocations as a novel mechanism of ALK activation in
6		neuroblastoma tumors. Genes Chromosomes Cancer 2015; 54: 99-109.
7	44.	Schleiermacher G, Javanmardi N, Bernard V, et al., Emergence of new ALK mutations at
8		relapse of neuroblastoma. J Clin Oncol 2014; 32: 2727-34.
9	45.	Martinsson T, Eriksson T, Abrahamsson J, et al., Appearance of the novel activating
10		F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression
11		and unresponsiveness to therapy. Cancer Res 2011; 71: 98-105.
12	46.	Combaret V, Iacono I, Bellini A et al., Detection of tumor ALK status in neuroblastoma
13		patients using peripheral blood. Cancer Med 2015; 4: 540-50.
14	47.	Collins I, Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol
15		2006; 2: 689-700.* An overview of rationale deveolment of molecular cancer
16		therapeutics
17	48.	Goodwin R. Giaccone G, Calvert H et al., Targeted agents: how to select the winners in
18		preclinical and early clinical studies? Eur J Cancer 2012; 48: 170-8.
19	49.	Benson JD, Chen YN, Cornell-Kennon SA et al., Validating cancer drug targets. Nature
20		2006; 441: 451-6.
21	50.	Puissant A, Frumm SM, Alexe G et al., Targeting MYCN in neuroblastoma by BET
22		bromodomain inhibition. Cancer Discov 2013; 3: 308-23.
23	51.	Henssen A, Althoff K, Odersky A et al. Targeting MYCN-Driven Transcription By BET-
24		Bromodomain Inhibition. <u>Clin Cancer Res</u> 2016 ;22:2470-81.
25	52.	Gustafson WC, Meyerowitz JG, Nekritz EA et al., Drugging MYCN through an allosteric
26		transition in Aurora kinase A. Cancer Cell 2014; 26: 414-27.
27	53.	Brockmann M, Poon E, Berry T et al. Small molecule inhibitors of aurora-a induce
28		proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell 2013; 24:
29		75-89
30	54.	Dauch D, Rudalska R, Cossa G et al., A MYC-aurora kinase A protein complex represents
31		an actionable drug target in p53-altered liver cancer. Nat Med 2016; 22:744-53.
32	55.	Beckers A, Van Peer G, Carter DR et al., MYCN-driven regulatory mechanisms
33		controlling LIN28B in neuroblastoma. Cancer Lett. 2015; 366: 123-32.
34	56.	Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy
35		combinations in early phase trials. Nat Rev Clin Oncol. 2017;14:57-66. * An overview of
36		combination therapy of molecular cancer therapeutics
37	57.	Goerger B, Schulte J, Zwaan CM, et al. Phase I study of ceritinib in pediatric patients
38		with malignancies harboring a genetic alteration in ALK: Safety, pharmacokinetic, and
39 40	гo	efficacy results. J Clin Oncol 2015; 33 (suppl; abstr 10005)
40	58.	Mossé YP, Lipsitz E, Fox E et al., Pediatric phase I trial and pharmacokinetic study of
41 42		MLN8237, an investigational oral selective small-molecule inhibitor of Aurora kinase A:
42 43		a Children's Oncology Group Phase I Consortium study. Clin Cancer Res 2012;18:6058- 64.
45 44	50	DuBois SG, Marachelian A, Fox E, et al., Phase I Study of the Aurora A Kinase Inhibitor
44 45	59.	Alisertib in Combination With Irinotecan and Temozolomide for Patients With Relapsed
45 46		or Refractory Neuroblastoma: A NANT (New Approaches to Neuroblastoma Therapy)
40 47		Trial. J Clin Oncol 2016; 34:1368-75.
47	60	Moreno L, Marshall LV, Pearson AD et al. A Phase I Trial of AT9283 (a Selective Inhibitor
48 49	00.	of Aurora Kinases) in Children and Adolescents with Solid Tumors: A Cancer Research
49 50		UK Study. Clin Cancer Re, 2015; 21: 267-73
50	61	Novartis Pharmaceuticals. Phase I Study of LDK378 in Pediatric, Malignancies with a
52	01.	Genetic Alteration in Anaplastic Lymphoma Kinase (ALK).In ClinicalTrials.gov [Internet].
52		

1		Detherds (NAD), Netional Library of Neticiae (UC) 2012 [sited 2017Net 40] Available
1		Bethesda (MD): National Library of Medicine (US).2012 - [cited 2017May16].Available
2		from https://clinicaltrials.gov/ct2/show/NCT01742286. NLM Identifier: NCT01742286
3	62.	Novartis Pharmaceutical. Ceritinib Rare Indications Study in ALK+ Tumors. In
4		ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 -
5		[cited 2017May16].Available from https://clinicaltrials.gov/ct2/show/ NCT02465528.
6		NLM Identifier: NCT02465528
7	63.	Ignyta, Inc. Study of RXDX-101 in Children with Recurrent or Refractory Solid Tumors
8		and Primary CNS Tumors, With or Without TRK, ROS1, or ALK Fusions. In
9		ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2016-
10		[cited 2017May16]. Available from https://clinicaltrials.gov/ct2/show/NCT02650401.
11		NLM Identifier: NCT02650401.https://clinicaltrials.gov/ct2/show/NCT02650401
12	64	Infarinato NR, Park JH, Krytska K, et al. The ALK/ROS1 Inhibitor PF-06463922 Overcomes
13	• · ·	Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma. Cancer Discov. 2016;
14		6:96-107.
15	65	Guan J, Tucker ER, Wan H, et al. The ALK inhibitor PF-06463922 is effective as a single
15 16	05.	agent in neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech.
17	66	2016;9:941-52.
18	66.	New Approaches to Neuroblastoma Therapy Consortium. Study of Lorlatinib (PF-
19		06463922). In Clinical Trials.gov [Internet]. Bethesda (MD): National Library of Medicine
20		(US).2017 - [cited 2017May16]. Available from https://clinicaltrials.gov/ct2/show/
21		NCT03107988. NLM Identifier: NCT03107988.
22	67.	Fouladi M, Laningham F, Wu J et al. Phase I study of everolimus in pediatric patients
23		with refractory solid tumors.J Clin Oncol. 2007;25:4806-12
24	68.	Geoerger B, Kieran MW, Grupp S et al., Phase II trial of temsirolimus in children with
25		high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur J Cancer 2012; 48:253–
26		62.
27	69.	Spunt SL, Grupp SA, Vik TA et al. Phase I study of temsirolimus in pediatric patients with
27 28	69.	Spunt SL, Grupp SA, Vik TA et al. Phase I study of temsirolimus in pediatric patients with recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40.
28		recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1,
28 29		recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933-40.
28 29 30 31	70.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58.
28 29 30 31 32	70.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in
28 29 30 31 32 33	70. 71.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747.
28 29 30 31 32 33 34	70. 71.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in
28 29 30 31 32 33 34 35	70. 71.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6
28 29 30 31 32 33 34 35 36	70. 71. 72.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898.
28 29 30 31 32 33 34 35 36 37	70. 71. 72.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid
28 29 30 31 32 33 34 35 36 37 38	70. 71. 72.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of
28 29 30 31 32 33 34 35 36 37 38 39	70. 71. 72.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from
28 29 30 31 32 33 34 35 36 37 38 39 40	70. 71. 72. 73.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460
28 29 30 31 32 33 34 35 36 37 38 39 40 41	70. 71. 72. 73.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	70. 71. 72. 73.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	70. 71. 72. 73.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 -
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	70. 71. 72. 73.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT0255461.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	70. 71. 72. 73. 74.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02255461. NLM Identifier: NCT02255461.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	70. 71. 72. 73. 74.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT0255461. NLM Identifier: NCT02255461. New Approaches to Neuroblastoma Therapy Consortium. SF1126 for Patients with
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	70. 71. 72. 73. 74.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02255461. NLM Identifier: NCT02255461. NLM Identifier: NCT02255461. NLM Identifier: NCT02255461. NLM Identifier: NCT02255461. New Approaches to Neuroblastoma Therapy Consortium. SF1126 for Patients with Relapsed or Refractory Neuroblastoma. In ClinicalTrials.gov [Internet]. Bethesda (MD):
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	70. 71. 72. 73. 74.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02255461. NLM Identifier: NCT02255461. New Approaches to Neuroblastoma Therapy Consortium. SF1126 for Patients with Relapsed or Refractory Neuroblastoma. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	70. 71. 72. 73. 74.	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02255461. NLM Identifier: NCT02255461. NLM Identifier: NCT02255461. NLM Identifier: NCT02255461. NLM Identifier: NCT02255461. New Approaches to Neuroblastoma Therapy Consortium. SF1126 for Patients with Relapsed or Refractory Neuroblastoma. In ClinicalTrials.gov [Internet]. Bethesda (MD):
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	 70. 71. 72. 73. 74. 75. 	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02255461. NLM Identifier: NCT02255461. New Approaches to Neuroblastoma Therapy Consortium. SF1126 for Patients with Relapsed or Refractory Neuroblastoma. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	 70. 71. 72. 73. 74. 75. 	recurrent/refractory solid tumors. J Clin Oncol 2011;29:2933–40. Gore L, Trippett TM, Katzenstein HM et al. A multicenter, first-in-pediatrics, phase 1, pharmacokinetic and pharmacodynamic study of ridaforolimus in patients with refractory solid tumors. Clin Cancer Res 2013;19:3649–58. Pearson AD, Federico SM, Aerts I, et al. A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors. Oncotarget 2016; 7:84736-84747. Geoerger B, Bourdeaut F, DuBois SG et al. Phase I study of LEE011 (CDK4/6 inhibitor) in patients with malignant rhabdoid tumours, neuroblastoma and cyclin D-CDK4/6 pathway-activated tumors. Clin Cancer Res 2017 doi: 10.1158/1078-0432.CCR-16-2898. Emory University. Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2015 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02644460. NLM Identifier: NCT02644460 Pediatric Brain Tumor Consortium. Palbociclib Isethionate in Treating Younger Patients with Recurrent, Progressive, or Refractory Central Nervous System Tumours. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02255461. NLM Identifier: NCT02255461. New Approaches to Neuroblastoma Therapy Consortium. SF1126 for Patients with Relapsed or Refractory Neuroblastoma. In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2014 - [cited 2017 May 16].Available from https://clinicaltrials.gov/ct2/show/ NCT02337309. NLM Identifier: NCT02337309.

1	** An analysis of molecularly targeted drugs concluding that paediatric RP2D remains	
2	very close to the equivalent adult RP2D and toxicity profiles are class-related and similar	
3	to adult drugs	
4	77. Moreno L, Pearson ADJ, Paoletti X et al. Early phase clinical trials of anticancer agents in	
5	children and adolescents - an ITCC perspective. Nat Rev Clin Oncol (In press).** A	
6	concensus for the design and conduct of early phase clinical trials for studies of	
7	molecularly targeted agents and immunotherapeutic agents in paediatric malignancies.	
8	78. Onar-Thomas, A., Xiong, Z. A simulation-based comparison of the traditional method,	
9	rolling-6 design and a frequentist version of the continual reassessment method with	
10 11	special attention to trial duration in pediatric phase I oncology trials. Contemp Clin Trials 2010; 31; 259–70	
12	79. Ensign LG, Gehan EA, Kamen DS et al. An optimal three-stage design for phase II clinical	
12	trials. Stat Med 1994; 13; 1727-36	
14	80. Gustave Roussy, Cancer Campus, Grand Paris. European Proof-of-Concept Therapeutic	
15	Stratification Trial of Molecular Anomalies in Relapsed or Refractory Tumors (ESMART).	
16	In ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).2016 -	
17	[cited 2017 May 16]. Available from https://clinicaltrials.gov/ct2/show/ NCT02813135.	
18	NLM Identifier: NCT02813135.	
19	81. Kieran, M.W. et al. Phase 1 study of dabrafenib in pediatric patients with relapsed or refractory	
20	BRAF V600E high- and low-grade gliomas, Langerhans cell histiocytosis , and other solid tumors. J	
21	Clin Oncol 2015;33 (suppl; abstr 10004).	
22	82. GlaxoSmithKline. A Study to Determine Safety, Tolerability and Pharmacokinetics of	
23	Oral Dabrafenib in Children and Adolescent Subjects. In ClinicalTrials.gov [Internet].	
24	Bethesda (MD): National Library of Medicine (US).2012 - [cited 2017 May 16].Available	
25	from https://clinicaltrials.gov/ct2/show/ NCT01677741. NLM Identifier: NCT01677741.	
26	83. Moroz V, Wilson JS, Kearns P et al. Comparison of anticipated and actual control group	
27	outcomes in randomised trials in paediatric oncology provides evidence that historically	
28	controlled studies are biased in favour of the novel treatment. Trials 2014;15:481	
29	84. Moreno L, Laidler J, Moroz V et al. A randomised phase IIb trial of bevacizumab added	
30	to temozolomide ± irinotecan for children with refractory/relapsed neuroblastoma -	
31	BEACON-Neuroblastoma, a European Innovative Therapies for Children with Cancer	
32	(ITCC) - International Society of Paediatric Oncology Europe Neuroblastoma Group	
33	(SIOPEN) trial. J Clin Oncol. 33, (suppl; abstr TPS10082) (2015).	
34 25		
35		

1 Tables

- 2 Table 1: Available evidence relating to potential targets in the areas: presence of the target, *in*
- 3 *vitro* and *in vivo* target validation, *in vitro* and *in vivo* pharmacological efficacy, availability of
- 4 predictive biomarkers, potential combinations explored and resistance mechanisms
- 5 Table 2: Prioritised targets, agents and ongoing/planned clinical trials
- 6 Table 3: Summary of NDDS Strategy
- 7
- 8 List of Abbreviations
- 9
- 10 Highlights Box New drug development strategy for neuroblastoma -
- 11