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Abstract 

 
Genome-wide association studies have discovered approximately 200 breast cancer risk 

single nucleotide polymorphisms, most of which map to non-protein-coding regions. To 

understand the mechanisms influencing disease risk, identification of the genes, non-

coding RNAs and causal variants mediating these associations is required. One of the 

methods that allows functional characterisation of cancer risk loci is Capture Hi-C (CHi-

C). CHi-C provides a high-throughput, high-resolution approach for studying physical 

interactions between long-range regulatory elements and their targets and has previously 

been used to identify putative target genes and to prioritise credible variants at a subset 

of risk loci. To date, however, CHi-C data have only been generated in breast cancer and 

immortalised ‘normal’ breast epithelial cell lines. Additionally, most studies have used 

HindIII digested libraries, which result in an average resolution of 10 kb.  

 

The aims of this project were to: 

 

1. Generate region CHi-C libraries in breast epithelial and fibroblast cell lines 

using three different protocols to identify and optimise the most suitable 

method for library generation in primary cells; 

2. Generate higher resolution region CHi-C data in two types of primary breast 

cells (luminal epithelial cells and fibroblasts) to identify regulatory variants 

and target genes influencing breast cancer risk; 

3. Compare cell line data to the primary cell data to evaluate the usefulness of 

cell lines as model systems; 

4. Generate cell line promoter CHi-C data to validate region CHi-C findings and 

to identify ‘indirect’ interactions; 

5. Using data generated in primary breast fibroblasts, determine whether a subset 

of breast cancer loci may act via the stroma to influence the risk. 
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1. Introduction 

1.1. Breast Cancer  

Breast cancer is currently the most commonly diagnosed cancer in the world, with an 

estimated number of 2.3 million new cases diagnosed in 2020, representing 11.7% of all 

cancer cases1. It is also the fifth leading cause of cancer-related deaths with 685 thousand 

deaths recorded in 2020 worldwide. Among women, breast cancer accounts for 1 in 4 

cancer cases and 1 in 6 cancer-related deaths, ranking first for incidence in 159 of 185 

countries and for mortality in 110 countries.  

 

Incidence rates are 88% higher in transitioned versus transitioning countries (55.9 and 

29.7 per 100,000, respectively), possibly reflecting a higher prevalence of reproductive 

and hormonal risk factors in the transitioned countries. However, mortality rates were 

found to be 17% higher in transitioning countries (15.0 and 12.8 per 100,000, 

respectively), potentially reflecting weak health infrastructure and hence late-stage 

diagnosis and poor survival outcomes. 

 

1.1.1. Classification 

Histological analysis of breast biopsies broadly divides breast cancers into non-invasive 

and invasive. Ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) are 

non-invasive premalignant lesions, which can become invasive if left untreated. Invasive 

breast cancers (IBCs) are, however, highly heterogeneous, with at least 18 different types 

being described by the World Health Organization (WHO)2. Invasive ductal carcinoma 

not otherwise specified (IDC NOS) is the most commonly diagnosed breast cancer, 

accounting for 50-80% of cases. IDC NOS is diagnosed by default when a tumour fails 

to display sufficient morphological characteristics to be assigned to one of the histological 

special types. Around 25% of IBCs display distinctive growth patterns and cytological 

features and are therefore recognised as ‘special types’. These include invasive lobular 

carcinoma (ILC) – the second most common subtype (5-15% of cases) that is defined by 

epithelial cadherin mutations and a dissociated growth pattern; and other less common 

types include tubular, medullary and neuroendocrine carcinomas (each < 7% of cases). 

Although histological analysis is a valuable tool, it does not consider newer molecular 

markers that have a proven prognostic significance and, therefore, does not allow precise 
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stratification of patients and treatment options. To overcome these limitations, molecular 

classification systems were developed. 

 

The most well-established molecular classification of breast cancer subtypes relies on 

immunohistochemical (IHC) staining. This classification considers expression of three 

molecular markers in tissue sections: estrogen receptor alpha (ER-!, ESR1), progesterone 

receptor (PR, PGR) and human epidermal growth factor 2 receptor (HER2, ERBB2). 

Hormone receptor positive (ER+/PR+)/ERBB2 negative cancers comprise ~70% of cases, 

ERBB2 positive (ERBB2+) ~15-20% and triple-negative breast cancer (TNBC) is 

diagnosed  in ~15% of patients3. Hormone receptor subtyping is simple, quick and cost-

effective; however, it does not account for the true extent of variability between breast 

cancers. 

 

In 2000, Perou and colleagues used microarray-based gene expression to define four 

molecular classes of breast cancers: luminal, HER2-enriched, basal-like and normal 

breast-like4. Further studies sub-divided luminal cancers into two distinct subgroups 

(luminal A and B)5, 6 while normal breast-like subtype has been omitted, as it likely 

represented sample contamination by normal mammary glands. In The Cancer Genome 

Atlas (TCGA) project, profiling of > 300 tumours at DNA, RNA and protein levels 

confirmed four main breast cancer intrinsic subtypes – luminal A, luminal B, HER2-

enriched and basal like7. Later, a fifth subtype was discovered – claudin-low breast cancer 

that is defined by the low expression of key components of cellular junctions, associated 

with mesenchymal and stemness features8, 9. 

 

In 2009, PAM50, a 50-gene signature for subtype assignment, was developed that allows 

breast cancer classification into the main intrinsic subtypes with 93% accuracy10 and is 

now clinically implemented worldwide.  

 

1.1.2. Risk factors 

There are many established breast cancer risk factors which include both modifiable and 

non-modifiable factors.  
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1.1.2.1. Modifiable risk factors 

Modifiable risk factors can also be referred to as lifestyle risk factors. These factors are 

of great interest to research, since widely adopted lifestyle changes could decrease breast 

cancer incidence at a population level. Multiple lifestyle factors influencing breast cancer 

predisposition have been identified to date. 

 

First, lack of physical activity has been associated with increased breast cancer risk11. 

Although the exact mechanism remains unclear, several potential explanations for the 

protective role of exercising have been proposed, including reduced exposure to the 

endogenous sex hormones12, altered immune system responses13 or elevated insulin-like 

growth factor 1 (IGF-1) levels14. 

 

Increased Body Mass Index (BMI) has also been associated with a higher probability of 

developing breast cancer15. The association is the strongest in obese post-menopausal 

women who are at increased risk, specifically, of ER+ breast cancer. Independently of 

menopausal status, obesity has also been associated with poorer clinical outcomes. 

Although BMI is a useful measure, it worth noting that it neither distinguishes lean mass 

from fat mass, nor characterises body fat distribution, and so individuals with the same 

BMI can have different body composition. As a result, further understanding of what 

aspects of body composition are the most important in determining risk is required. Some 

studies propose that higher body fat might lead to increased inflammation and affect 

levels of circulating hormones that facilitate pro-carcinogenic events16. 

 

Increased alcohol consumption has been identified as a risk factor for multiple different 

cancers, including breast cancer. It is particularly associated with increased risk of ER+ 

disease17. It has been suggested that this is because alcohol consumption increases levels 

of estrogen, leading to a hormonal imbalance that increases risk of carcinogenesis within 

the female organs18. Other explanations include a direct and indirect carcinogenic effect 

of alcohol metabolites and related impaired nutrient intake19. 

 

Smoking (both active and passive) also increases breast cancer risk, due to the 

carcinogens found in tobacco20, 21. Transported to the breast tissue, it has been suggested 

that these carcinogens increase the frequency of mutations within oncogenes and tumour 

suppressor genes (particularly, TP53) that, in turn, predispose to breast cancer 

development. 
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Other lifestyle factors are thought to play an effect as well, however, current data are 

insufficient to compare the results and draw credible data. Some studies attempt to 

identify whether certain vitamins might exhibit protective properties. This especially 

relates to vitamin D, since high serum levels of 25-hydroxyvitamin D are thought to be 

linked to a decreased breast cancer incidence rate22, while intensified expression of 

vitamin D receptors was demonstrated to be related to lower mortality23. Other potential 

risk factors include chronic exposure to chemicals, intake of certain drugs and a diet rich 

in ultra-processed food. A 10% increase of ultra-processed food in the diet was found to 

be associated with an 11% greater risk of breast cancer24. However, data available for 

these factors remain inconsistent, and further evaluation is required to confirm their 

relationship with breast cancer risk. 

 

1.1.2.2. Non-modifiable risk factors 

Female sex  

Female sex is the major factor associated with an increased risk of breast cancer, with 

over 99% of cases occurring in women. However, not all women are at equal risk, with 

the highest incidence rates observed among white non-Hispanic women25. The mortality 

rate, however, has been found to be significantly higher in black women who have also 

been reported to be more susceptible to the most aggressive breast cancer subtype, 

TNBC26.  

 

Older age 

It is also well-established that older age is associated with higher risk of developing this 

disease. Around 80% of breast cancer cases occur in females aged over 50; and the 10-

year probability of developing invasive breast cancer rises from < 1.5% at age 40, to 

around 3% at age 50 and > 4% by age 70, resulting in a cumulative lifetime risk of 13.2% 

(or 1 in 8)27. Interestingly, there is also a relationship between age and molecular subtype 

of breast cancer. For example, luminal A cancer is most frequently diagnosed in women 

over the age of 70, while TNBC is the most prevalent amongst patients < 40 years old28.  

 

Family history 

Another important factor is family history – around 13-19% of breast cancer patients have 

a first-degree relative affected by the disease29. Importantly, the incidence risk is higher 

in all the patients with family history regardless of their age.  
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Reproductive factors 

Many key female reproductive milestones have a strong association with the risk of breast 

cancer development. Multiple studies have reported a strong relationship between higher 

disease risk and exposure to endogenous hormones (particularly, estrogen and 

progesterone). Thus, events such as menarche, pregnancy, breastfeeding and menopause 

can significantly alter a woman’s risk of breast cancer. For example, an early full-term 

pregnancy, especially < 20 years old, was associated with a 50% reduction in the risk of 

breast cancer development compared to nulliparous women30, 31. Subsequent pregnancies 

have been reported to carry lower protective effects, however, independent of maternal 

age. Interestingly, despite the overall protective effects of pregnancy, there is a short-term 

increase in risk of breast cancer immediately after parturition. Additionally, postpartum 

breast cancer patients have been shown to have higher risk of metastasis and worse 

clinical outcomes32. Longer duration of breastfeeding has also been associated with 

decreased risk of both receptor-positive and -negative tumours33, 34. Early age at menarche 

and late menopause are both associated with an increased breast cancer risk35. 

Additionally, hormone replacement therapy (HRT) often prescribed to relieve unpleasant 

menopause symptoms has been associated with an increased risk, especially when taken 

longer than 5-7 years36. This increased risk is, however, lost after treatment has been 

stopped for a period of 5 years or longer. 

 

Density of breast tissue  

Another strong risk factor is the density of breast tissue, known as mammographic density 

(MD) or percent density (PD)37, 38. PD – is the percentage of breast area appearing 

radiodense on a mammogram. PD is a composite of two phenotypes: the dense area (DA) 

and the nondense area (NDA). DA reflects the amount of fibroglandular tissue that 

attenuates X-rays more than fat and hence appears light (dense) on a mammogram. NDA, 

in turn, consists of predominantly fatty tissues and appears radiotranslucent or dark on a 

mammogram. Higher PD is observed in younger females, those with lower BMI as well 

as during pregnancy and breastfeeding. Generally, higher PD is strongly associated with 

increased breast cancer risk. Women with ≥ 75% density have a 4 to 5-fold greater risk 

compared to those with little or no dense tissue, independent of other known risk factors39, 

40. Additionally, recent studies have demonstrated that NDA is associated with decreased 

disease risk independently of DA, suggesting that breast adipose tissues may have an 



 17 

important role in normal mammary gland growth and function41, 42. However, the 

mechanisms underlying these associations remain poorly understood.  

 

Genetics 

There are eight Hallmarks of Cancer that comprise a set of functional capabilities 

acquired by human cells that are necessary for the development of malignant tumours43. 

These include sustaining proliferative signalling, evading growth suppressors, resisting 

cell death, enabling replicative immortality, inducing/accessing vasculature, activating 

invasion and metastasis, reprogramming cellular metabolism, and avoiding immune 

destruction. The acquisition of these hallmarks is made possible by two enabling 

characteristics: genome instability and tumour-promoting inflammation. Genome 

instability generates random (somatic) mutations; the acquisition of these mutations can 

be affected by pre-existing (germline) variants. Germline variants occur in gametes and 

can be passed onto offspring at the time of conception, while somatic variants occur in an 

individual cell during a person’s lifetime and cannot be inherited. This work focuses on 

germline variants. 

 

The first breast cancer risk-associated germline variants were identified in the BRCA1 

and BRCA2 genes44, 45. Although the prevalence of truncating mutations in these genes is 

low in the general population (approximately 1 in 400), it has been estimated that the 

truncating mutations in these two genes account for ~ 17% of the familial relative risk 

(FRR) for early-onset breast cancer46, 47. Other genes for which highly penetrant 

mutations have been reported to be associated with breast cancer include PTEN, TP53, 

CDH1 and STK1148-51. Additionally, variants in several DNA repair genes that interact 

with BRCA genes have been associated with breast cancer risk, however, these are 

characterised by a lower penetrance (moderate risk). These genes include CHEK2, ATM, 

BRIP1 and PALB252-55. Although many high- and moderate-penetrance genes have been 

identified, a substantial proportion of FRR is yet to be explained. 

 

1.1.3. Key research areas 

There are three main areas in breast cancer research – prevention, detection and treatment. 

Prevention research focuses on studying factors that affect an individual’s predisposition 

to breast cancer, i.e., events that occur before the cancer develops. Detection research 

aims to develop and optimise biological tests and imaging techniques that will allow 
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earlier detection of cancers while minimising the invasiveness. Treatment research 

focuses on the development and improvement of treatment methods.  

 

1.2. Genetic Variation 

Completed in 2003, the Human Genome Project (HGP) was a 13-year international effort 

to decipher and publish the human genome56. The first ‘full’ version of the human 

reference genome covered 99% of the euchromatic genome, leaving important 

heterochromatic regions unfinished. Since then, the reference genome has continued to 

be updated and refined by the Genome Reference Consortium (GRC), however, until 

recently around 8% of the genome remained incomplete due to technological limitations. 

In 2022, the Telomere-to-Telomere (T2T) Consortium published a collection of papers 

that report the first truly complete 3.055 billion–base pair sequence of a human genome, 

that has gapless assemblies for all chromosomes except Y57.  

 

The reference genome is not that of an individual person, but instead intends to be a 

representation of the ‘average’ DNA sequence. It has been estimated that any individual’s 

genome differs from the reference genome at 4.1 to 5 million sites58. Such germline 

genetic variation accounts for a substantial amount of phenotypic variation, including 

cancer predisposition.  

 

The 1000 Genomes Project was launched in 2008 with the aim to identify all common 

human genetic variation. Since then, a series of papers have been published by the 

consortium, revealing the extent of genetic variation between individuals and 

populations. There are two main types of variants: single nucleotide variants (SNVs) and 

structural variants (SVs).  

 

1.2.1. Single nucleotide variants 

An SNV is a DNA sequence variation that occurs at a single nucleotide. If at least two 

alleles of the variation have frequencies of more than 1% in a large population of 

unrelated individuals, then the SNV is classified as a single nucleotide polymorphism 

(SNP)59. SNPs are estimated to occur at 1 out of every 300 base pairs, making them the 

most common type of human genetic variation. Depending on where a SNP occurs, it 

might have different consequences at the phenotypic level.  
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Less than 1% of SNPs occur in coding regions. Coding SNPs are categorised into two 

main groups: synonymous and non-synonymous. Synonymous SNPs lead to redundant 

changes in a codon, therefore, not affecting the coding sequence. Non-synonymous SNPs, 

in turn, lead to non-redundant codon changes, potentially resulting in an amino acid 

change (missense SNPs) or the introduction of a premature stop codon (nonsense SNP). 

Additionally, a single base deletion can result in a frameshift effect. Although changes to 

the primary protein structure can be predicted, functional effects of these SNPs are hard 

to predict from their sequence alone and, therefore, require targeted investigation. 

 

The remainder of SNPs are found in non-protein-coding regions. Although initially non-

coding DNA was considered to be largely ‘junk’, it is now becoming clear that much of 

it is integral to the function of cells, particularly the control of gene expression. For 

example, non-coding DNA contains sequences that act as regulatory elements, 

determining when and where genes are turned on and off. Despite its functionality, large 

parts of the non-coding genome remain to be characterised, making it difficult to predict 

and distinguish SNPs with a functional effect from those that are functionally silent. 

Given the regulatory nature of some non-coding regions (promoters, enhancer, silencers), 

it has been proposed that non-coding SNPs can disrupt such regulatory elements and 

modulate levels of gene expression. However, some non-coding sequences, such as 

miRNAs and lncRNAs, could be considered functional on their own, so more studies are 

required to investigate other potential mechanisms.  

 

1.2.2. Structural variants 

SVs are defined as the variants affecting regions of more than 1 kb. There are different 

types of SVs. Many are large insertions and deletions (indels), while others are inversions 

or more complex rearrangements. Some structural variants are copy number variants 

(CNVs). These occur when a region of the genome is duplicated (sometimes more than 

once). CNVs can vary in size, from microsatellite regions composed of long tranches of 

bi- or tri-nucleotide repeats to large regions encompassing genes. Although more than 

99% of variants consist of SNPs and short indels, SVs affect more bases: the typical 

genome contains around 2,100 – 2,500 structural variants, affecting ∼20 million bases of 

sequence58. 
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SVs tend to occur in repetitive regions of the genome and show greater internal 

complexity, making them difficult to study. Therefore, the effects of SVs at a genomic 

level remain to be characterised. Some research, however, suggests that, despite the 

relatively large size, some SVs can be generally well-tolerated. For instance, Sudmant 

and colleagues identified 240 genes that were homozygously deleted in normal 

individuals without clear phenotypic effects60. 

 

1.3. Genome-wide Association Studies 

Individual variants tend to account for a relatively small proportion of risk association. 

This can be explained by considering the variants in a context of evolution. Most variants 

arising with a particularly deleterious effect will typically undergo strong negative 

selection and removal from the gene pool, although, arguably, this may be less relevant 

to late onset diseases such as breast cancer. 

 

The relatively subtle effects of common variants means that they are much more likely to 

be distributed throughout a population, rather than conspicuously inherited in families. 

Therefore, to investigate the role of variants in any phenotype of interest, large studies 

with high statistical power are needed.  

 

Genome-wide association studies (GWAS) involve testing genetic variants across the 

genomes of many individuals to identify genotype-phenotype associations. Over the past 

decade, GWAS have revolutionised the field of complex disease genetics61. Since 2005, 

when the first GWAS for age-related macular degeneration was published62, over 50,000 

significant associations have been reported between genetic variants and common 

diseases and traits63. These associations have aided in the identification of novel disease-

causing genes, biomarkers and drug targets.  

 

GWAS start with identification of the disease (or trait) to be studied and selection of the 

appropriate study population (cases and controls for the disease, or an unselected 

population sample for the trait). Genotyping can be performed using microarrays, where 

the identities of many variants can be tested simultaneously and then combined with 

imputation in order to increase the density of markers. Association tests are used to select 

regions of the genome associated with the phenotype of interest, and meta-analysis is 

commonly performed to increase the statistical power to detect associations.  
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Due to the large number of variants in the genome, it is often neither feasible nor cost-

effective to genotype each of them individually. Luckily, it is possible to impute a large 

number of variants to a high level of confidence by genotyping a much smaller number 

of ‘index SNPs’ due to linkage disequilibrium (LD). 

 

1.3.1. Linkage disequilibrium 

LD is the correlation between the neighbouring genetic variants in a population such that 

the allelic combinations of variants in LD are co-inherited more often than would be 

expected by chance if they were independent. Most commonly, LD arises through the 

process of sexual recombination. During meiosis, homologous chromosomes undergo a 

reciprocal exchange of DNA to allow for the variation in germ-cell lineages. Some 

regions are more likely to come together and to be passed to gametes as a unit. Therefore, 

variants that are in close proximity with each other are more likely to be co-inherited, 

with LD decreasing exponentially as distance increases. 

 

There are several LD measures. Although selection of the most appropriate measure 

depends on the objective of the study, the two most widely used measures are r2 and D’. 

Both these measures estimate the difference between the observed and expected gametic 

haplotype frequencies. Two fully correlated variants would have r2 and D’ scores of 1, 

while two non-correlated variants would have scores of 0. The main difference between 

the two measures is that r2 (but not D’) is influenced by allele frequencies. As a result, D’ 

provides an indication of LD between two variants, while r2 also gives an idea of how 

informative this association is for imputation based on relative frequencies of the variants. 

 

Because of LD, it is possible to genotype a subset of variants (referred to as index SNPs) 

that capture a large proportion of local variation. Index SNPs are essentially proxies for 

all their correlated SNPs. This is useful for identifying risk loci at a genomic level but 

makes it difficult to discern the causal variant(s) – since index SNPs are only chosen 

based on their ability to capture regional genomic variation, there is no reason why they 

would be more likely to be functional than any other of their associated variants. 

Additionally, most association signals map to non-protein-coding regions of the genome, 

for which biological interpretation is challenging. Consequently, once a GWAS has been 

performed, additional steps are required to identify the causal variants and their target 

genes. In cases where a small number of variants are associated with risk, it may be 
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possible to perform functional investigation of all variants of interest. However, this 

approach becomes less feasible when larger numbers of variants are involved. As a result, 

prioritisation and shortlisting of credible causal variants (CCVs) are required before 

proceeding with in-depth functional characterisation. 

 

1.3.2. Breast cancer GWAS 

1.3.2.1. The Breast Cancer Association Consortium 

The Breast Cancer Association Consortium (BCAC) is a forum of investigators interested 

in the inherited predisposition to breast cancer. Since its formation in 2005, the 

consortium has been responsible for a large number of both genome-wide and small-scale 

studies (https://bcac.ccge.medschl.cam.ac.uk/publications/). There are currently over 100 

research groups that participate in BCAC.  

 

1.3.2.2. COGS project 

Later, BCAC combined with three other consortia – Consortium of Investigators of 

Modifiers of BRCA1/2 (CIMBA), Ovarian Cancer Association Consortium (OCAC) and 

Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the 

Genome (PRACTICAL) – to form the Collaborative Oncological Gene-environment 

Study (COGS) ‘super-consortium’. The project was designed to improve understanding 

of genetic susceptibility to three hormone-related cancers: breast, ovarian and prostate 

cancers. The major strategy included replication of GWAS-identified associations, with 

secondary studies being focused on dense genotyping of SNPs for the fine mapping of 

associated regions. 

 

The consortium worked together with Illumina to design a high-density, custom iSelect 

SNP genotyping array (called the iCOGS array) that would allow genotyping of the three 

cancers in large case-control studies64. The array is an Illumina Custom Infinium array 

which includes over 200,000 SNPs. The array allowed identification of many breast, 

ovarian and prostate cancer susceptibility regions, some of which overlapped suggesting 

shared mechanisms. The demonstrated benefits of the iCOGS array also informed the 

design of a next-generation cancer genotyping platform (called OncoArray) to identify 

risk variants for the five most common cancers. 
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1.3.2.3. OncoArray Consortium 

The OncoArray Consortium brought together three consortia: BCAC, CIMBA and 

Genetic Associations and Mechanisms in Oncology Initiative Consortium ((GAME-ON), 

itself consisting of: Follow-up of Ovarian Cancer Genetic Association and Interaction 

Studies (FOCI); Colorectal Transdisciplinary Study (CORECT); Transdisciplinary 

Research in Cancer of the Lung (TRICL); Discovery, Biology, and Risk of Inherited 

Variants in Breast Cancer (DRIVE) and Elucidating Loci Involved in Prostate Cancer 

Susceptibility (ELLIPSE)). The overall goal of the OncoArray Consortium was to gain 

new insights into the genetic architecture and mechanisms underlying five common 

cancers: breast, ovarian, colorectal, lung and prostate cancers. 

 

The Consortium designed a next-generation cancer genotyping microarray comprising 

230,000 SNPs and used it to genotype 447,705 samples65. 

 

1.3.2.4. Breast cancer risk loci 

Multiple breast cancer GWAS have been published over the last decade. Collectively, 

these studies have identified genetic variants associated with breast cancer risk in over 

150 genomic regions, with the two most recent studies published in 2017 and 2020.  

 

In the first of these, Michailidou and colleagues66 genotyped 122,977 cases and 105,974 

controls of European ancestry. They identified 65 novel loci in addition to confirming 77 

previously discovered regions. To define a set of credible causal variants at the new loci, 

the authors selected all variants with p values within two orders of magnitude of the most 

significant SNPs in each region. Across the 65 novel regions, this identified 2,221 CCVs, 

while the 77 previously identified loci contained 2,232 CCVs. 

 

In the second analysis, Fachal and colleagues67 performed large-scale genetic fine-

mapping of 150 breast cancer susceptibility regions in over 217,000 breast cancer cases 

and controls of European ancestry. Stepwise multinomial logistic regression was used to 

identify the number of independent risk signals within each region (Figure 1.1) and to 

define a set of CCVs for each signal (defined as variants with p values within two orders 

of magnitude of the index SNP at each signal). This resulted in the selection of 7,394 

CCVs at 196 ‘strong-evidence’ signals (defined as having association p values < 10−6 

after adjusting for other variants) across 129 genomic regions.  
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Figure 1.1: An example of a GWAS region having multiple independent risk signals. An 
overview of a breast cancer risk locus at 2q35. Fine-scale mapping of the 2q35 locus has defined 
three independent ‘strong-evidence’ signals (conditional p < 1 x 10-6) annotated by rs4442975 
(signal 1; 1 CCV), rs138522813 (signal 2; 5 CCVs) and rs5838651 (signal 3; 42 CCVs). In 
addition, 6 ‘moderate’ signals (grey) were identified at this region (10−6 < conditional p < 10−4). 
All coordinates are based on GRCh38/hg38. 

 

Despite the identification of a large number of breast cancer risk loci, only a small 

proportion have been studied in detail. Follow up fine-mapping and functional studies 

have so far investigated only around 20 regions (Table 1.1).  

 

Risk locus Reference 
1p11.2 Figueroa et al., 2011; Horne et al., 2016 
2q33.1 Lin et al., 2015 

2q35 Ghoussaini et al., 2014; Dryden et al., 2014; Wyszynski et al., 2016; Baxter et 
al., 2021 

4q24 Guo et al., 2015 
5p12 Milne et al., 2011; Ghoussaini et al., 2016 

5p15.33 Bojesen et al., 2013 
5q11.2 Glubb et al., 2015 
6q25 Dunning et al., 2016 
7q21 Milne et al., 2011 
8p12 Glubb et al., 2020 
8q24 Shi et al., 2016 

9q31.2 Orr et al., 2015 
10q26 Meyer et al., 2013 

10q21.2 Darabi et al., 2015 
11q13 Lambrechts et al., 2012; French et al., 2013; Betts et al., 2017 
12p11 Zeng et al., 2016 
12q24 Beesley et al., 2020 

14q24.1 Figueroa et al., 2011; Lee et al., 2012 
16q12 Udler et al., 2010 
17q22 Darabi et al., 2016 

19p13.1 Stevens et al., 2012; Lawrenson et al., 2016 

Table 1.1: Functionally investigated breast cancer risk loci. 

 



 25 

1.3.2.5. GWAS in diverse populations 

To achieve effective imputation and association analysis, GWAS assume that all studied 

individuals have a similar LD structure. Consequently, most of the breast cancer GWAS 

performed to date have focused on European populations, mainly because they can be 

assessed in larger numbers. A few smaller studies have looked into East Asian and 

African populations68-72. Some of the signals identified in these studies are ‘shared’ 

signals, but they have also detected novel, population-specific signals. 

 

Additional studies in diverse populations will be useful to identify more population-

specific signals and to deepen our understanding of breast cancer risk. Different 

populations may also be predisposed to different breast cancer subtypes, so further studies 

may also aid in identification of subtype-specific signals.  

 

1.3.2.6. Other relevant GWAS 

Some studies have also investigated breast cancer risk related phenotypes, such as 

mammographic density73-75 or age at menarche and menopause76. In addition, one study 

has looked specifically into associations with early-onset breast cancer77. 

 

1.4. Chromosome Conformation Capture  

As discussed, breast cancer GWAS have identified approximately 200 ‘strong-evidence’ 

independent risk signals67. Most of these signals map to non-protein-coding regions and 

are thought to affect transcriptional regulation78-80, however, the causal variants and target 

genes mediating these associations remain largely unknown, with only a few regions 

studied in detail (Table 1.1). Attempts to understand the mechanisms by which these 

signals influence risk have been hampered by strong local correlation between multiple 

genetic variants which makes it difficult to distinguish causal variants from a large 

numbers of correlated variants. 

 

Developed over a decade ago, Chromosome Conformation Capture (3C) technology 

allows the mapping of regulatory regions and identification of their respective target 

genes81. 3C-based technology detects the relative interaction frequency between two 

regions within the genome, from which chromatin folding can be inferred. Since its 

establishment, 3C has been further modified to increase throughput, leading to the 
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development of 4C82, 83, 5C84 and Hi-C85. Although 3C is a powerful technique for 

detecting physical interactions between regulatory elements and their targets, its 

limitation is that only interactions with pre-specified target fragments will be identified 

(‘one-by-one’ approach). 4C considers all interactions, however, only for a single region 

of interest (the bait fragment; ‘one-by-all’ approach) and 5C allows the analysis of 

multiple regions and their targets, but with a condition that both bait and targets are within 

a pre-specified region (‘many-by-many’).  

 

1.4.1. Hi-C 

A genome-wide version of 3C, called Hi-C, was introduced in 2009 by coupling 3C with 

massively parallel sequencing. One of the strongest advantages of Hi-C is its agnosticism. 

Unlike older chromosome conformation techniques, Hi-C requires no prior assumptions 

about interaction partners, with all interactions detected by sequencing (‘all-by-all’). 

Today, Hi-C is the most commonly used 3C variant, that has been proven to be a useful 

tool not only for the identification of 3D genome folding patterns, but also for the de novo 

whole genome sequence assembly86, 87 and translocation detection88. 

 

1.4.1.1. Description of the method 

The various 3C-based techniques have four common steps: (1) formaldehyde crosslinking 

of chromosomes to covalently link spatially proximal chromatin segments; (2) 

fragmentation of DNA into smaller pieces; (3) ligation of linked DNA fragments under 

diluted conditions where intra-molecular ligation is strongly favoured over inter-

molecular; (4) detection and quantification of ligation products. The main difference 

between 3C-based methods comes mostly from the last step. While in the 3C protocol, 

ligation products are identified one at a time using PCR with locus specific primers, Hi-

C products are detected using next-generation sequencing. This became possible due to 

the incorporation of biotinylated nucleotides at the digested DNA ends prior to re-

ligation, thereby allowing specific capture of chimeric molecules using streptavidin-

coated beads. 

 

Although a number of experimental parameters can vary, a typical Hi-C protocol is 

outlined below89. 
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Cell crosslinking 

The first step of any 3C-based method involves formaldehyde crosslinking of 

chromosomes to covalently link spatially proximal chromatin segments, specifically, 

DNA-DNA interactions bridged by proteins. Starting with a large number of cells is 

recommended in order to fully capture individual interactions (including the infrequent 

ones), resulting in complex, high-resolution Hi-C libraries. Although formaldehyde-

based crosslinking biases have been proposed90, it remains the ‘gold-standard’ in 

chromatin immunoprecipitation (ChIP) and 3C. Additionally, most of these biases can be 

removed using several normalisation techniques.  

 

Cell lysis and chromatin digestion  

Crosslinked cells are lysed in cold hypotonic buffer supplemented with protease 

inhibitors to maintain protein-DNA complexes. Next, lysed cells are incubated in Sodium 

Dodecyl Sulfate (SDS) to eliminate proteins that have not been crosslinked to DNA and 

to open the chromatin for a more efficient and homogeneous digestion.  

 

Chromatin is then digested with a method of choice. The average fragment size is an 

important factor affecting the resolution of future libraries, so the choice of fragmentation 

method is important and depends on several parameters, such as the goal of the 

experiment or the region selected for the analysis (if applicable). Important factors to 

consider include desired resolution, spacing of the digestion sites and the overall digestion 

efficiency. Early protocols recommended digestion with 6-cutter enzymes, such as 

HindIII91, 92. HindIII digests the human genome to an average length of 3 – 4 kb, limiting 

the final library resolution to ~ 10 kb. Later, the use of 4-cutter enzymes, such as MboI 

and DpnII, has been proposed89, 93. These enzymes fragment DNA to an average length 

of ~ 500 bp which, in theory, could increase the resolution to ~ 1 kb. However, since the 

distribution of RE sites is uneven across the genome, some regions of interest may remain 

insufficiently covered. Therefore, to account for uneven and non-random digestion, 

methods were developed that use multiple restriction enzymes in combination (Arima Hi-

C kit) or sequence-independent (RE-free) approaches. Two such examples are DNase I 

Hi-C94, 95 and Micro-C96. It has been proposed that the DNase I Hi-C method, that uses 

DNase I for chromatin fragmentation, may be a more suitable option for probing 

interactions between regulatory elements, given that DNase I preferentially cleaves 

nucleosome-depleted regions. Micro-C, in turn, is suggested to be a complementary 
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approach, that is more suitable for assessing shorter-range interactions (between 200 bp 

and 4 kb) but at higher resolution. 

 

Marking DNA ends with biotin 

RE-based chromatin fragmentation generates an overhang that is subsequently filled in 

with deoxyribonucleotides. Replacing one deoxyribonucleotide (usually dATP or dCTP) 

with a biotin-conjugated variant marks the sites of digestion with biotin and allows further 

enrichment of these sites in a Hi-C library. It is this specific fill-in step that separates Hi-

C from other 3C-based methods.  

 

In the RE-free protocols (such as DNase Hi-C94), the biotin marking is performed by 

ligation of biotinylated-bridge adapters through T-A ligation. Because DNase I digestion 

produces a heterogeneous mixture of fragment ends composed of 5′- and 3′-overhangs of 

varying lengths as well as blunt ends, these ends have to be enzymatically repaired and 

dA-tailed prior to ligation of the bridge adapters.  

 

In both cases the fill-in step is performed at low temperature, which is crucial for efficient 

incorporation of the large biotin-conjugated deoxyribonucleotides (or biotinylated-bridge 

adapters). 

 

Ligation, reversal of crosslinking and DNA purification 

The fourth step involves chromatin ligation. While older protocols used SDS to inactive 

the RE prior to ligation91, 92, later it was replaced by heat inactivation, with the digestion, 

biotinylation and ligation being performed ‘in situ’ (i.e. within a permeabilized nucleus 

that is not lysed into the solution)89, 93. Avoiding high concentrations of SDS, nuclei lysis, 

and dilution to large volumes during digestion and ligation increases Hi-C reproducibility 

and quality as well as decreasing the capture of background interactions97. The generally 

accepted explanation for this has been that intact nuclei constrain the movement and 

random collisions of crosslinked complexes, but other factors could have an effect as 

well. For example, it has also been suggested that high concentrations of SDS and its 

subsequent Triton sequestration can result in aggregates of material that reduce digestion, 

fill-in and ligation efficiencies98. 
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Ligation is performed at low DNA concentrations to strongly favour intra-molecular 

ligation of crosslinked fragments over background inter-molecular ligation between non-

crosslinked fragments99. Because intra-molecular ligation is kinetically fast, ligation time 

should be kept to a minimum to avoid increasing background ligation or generation of 

circularised ligation products of single restriction fragments – these are not considered 

valid pairs and should be removed computationally. 

 

When interacting fragments are ligated into chimeric pieces of DNA (di-tags), proteins 

that hold them in close proximity can be removed. This is achieved by thermal reversion 

of crosslinking in the presence of proteinase-K. After that, DNA is purified and prepared 

for sequencing. 

 

Removal of biotin from un-ligated ends 

In most Hi-C experiments a fraction of digested sites will have remained un-ligated89. 

These biotinylated but un-ligated ends (called dangling ends) may arise from incomplete 

fill-in of some overhangs (since in this case ligation to a proximal fragment will not occur) 

and the overall ligation will not be 100% efficient. These dangling ends are not 

informative and are not considered valid pairs. Some of them can be readily recognised 

(and removed) computationally, since both reads will map to a single restriction fragment. 

However, a sub-population of dangling ends can appear as valid interactions between 

adjacent restriction fragments. Dangling ends flanking an undigested restriction fragment 

(partial digest) will computationally be indistinguishable from a valid pair interaction 

with an inward orientation. Such read pairs increase in frequency with decreasing 

restriction fragment size (i.e., when more frequently cutting enzymes are used). 

Therefore, it is recommended to experimentally remove these dangling ends for two 

reasons. First, removal of dangling ends increases the proportion of informative intra-

chromosomal reads, therefore helping to decrease the cost of sequencing by increasing 

the relative quantity of valid read pairs. Second, it eliminates dangling ends of partial 

digestion products that cannot be recognised and removed computationally.  

 

This step is performed using T4 DNA polymerase and a low concentration of dNTPs to 

favour the 3’ to 5’ exonuclease activity over its 5’ to 3’ polymerase activity. By only 

providing dATP and dGTP, which are complementary to the inside of the overhang, the 

polymerase will not be able to complete re-filling the overhang after removing filled-in 

bases.  
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Although this step reduces the pulldown of a large fraction of unwanted fragments, some 

of them can remain insensitive to biotin removal. For example, if internally nicked DNA 

is repaired with biotinylated nucleotides during biotin incorporation, when too far away 

from DNA ends, these incorporated nucleotides will not be removed by T4 DNA 

polymerase. 

 

Sonication, size-selection and end repair 

For sequenced reads to be mapped correctly, each end of a read pair should not pass the 

chimeric ligation junction, since this will result in a sequence that cannot be mapped to a 

reference genome. Therefore, ligation products are sonicated to 200 – 650 bp (target size 

of 400 bp) in preparation for sequencing, since fragments of this length are likely to 

contain enough mappable sequence at each end before reaching a ligation junction.  

 

Although sonication should result in a relatively small size range of fragments, an 

optional size-selection step can be performed to create an even tighter distribution of 

fragments. Size-selection is usually performed using Solid Phase Reversible 

Immobilization (SPRI) beads. SPRI beads are a mixture of magnetic beads and 

polyethylene glycol (PEG). SPRI beads decrease the solubility of DNA, because PEG (a 

crowding agent) occupies the hydrogen bonds of aqueous solutions. As a result of this 

crowding, DNA comes out of the solution and binds the beads. Larger molecules come 

out of the solution first, so the final concentration of PEG is used to generate a size cut-

off.  

 

DNA sonication causes damage of DNA ends, that have to be repaired with a mix of T4 

and Klenow DNA polymerases, followed by a treatment with T4 polynucleotide kinase 

(PNK) that phosphorylates 5’-ends for subsequent A-tailing and adapter ligation. 

 

Sequencing preparation 

To enrich for Hi-C ligation junctions, streptavidin-coated beads with a high affinity for 

the incorporated biotin are used. 

 

Next, Illumina paired-end (PE) sequencing adapters are ligated to both ends of the ligation 

products. Since the PE adapters are generated from DNA oligos, they have a 5’-dTTP 

overhang after duplexing, which increases ligation efficiency when presented with a free 
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3’ Adenyl. Ligation products are, therefore, adenylated using dATP and a Klenow 

fragment lacking 3’ to 5’ exonuclease activity, before adapters are ligated with T4 DNA 

ligase. 

 

To get enough DNA for sequencing, the Hi-C library is amplified by PCR. However, it 

is important to avoid over-amplification of the library, since this will reduce its 

complexity. 

 

Data analysis – defining valid read pairs 

After sequencing, reads are mapped to a reference genome and valid interaction pairs are 

identified using read orientation.  

 

Reads mapping to a single fragment, such as self-ligations, dangling ends or error pairs, 

are considered uninformative and can be identified by the read orientation (Figure 1.2). 

Outward pointing reads are classified as self-ligated fragments, inward pointing reads are 

considered dangling ends, and same-strand reads are defined as ‘error pairs’ (products 

that are a result of either a mis-mapping, random break, or an incorrect genome assembly 

products)100.  

 

Therefore, only reads that map to different fragments are used to assemble the Hi-C 

dataset. Although all four read strand combinations (inward, outward, same direction: left 

and right) are expected to be observed in equal proportions, in reality there is a bias 

towards inward read pairs. This bias is largely driven by very short-range interactions 

(genomic distance < 500 bp), which often represent dangling ends of partial digestion 

products – a type of invalid interactions that cannot be distinguished and filtered out 

computationally89.  
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Figure 1.2: Possible Hi-C products. Following sequencing, the paired reads are mapped back 
to a reference genome and valid interaction pairs (1) are identified using read orientation. 
Although all four read orientations are possible and are expected to be observed in equal 
proportions, there is an imbalance towards inward read orientation, since some of these may be 
the result of undigested restriction sites (partial digest; 2). Only the reads that map to different 
fragments are used to assemble the Hi-C dataset, while the reads mapping to a single fragment (3 
– 5) are considered uninformative. There are a few types of such uninformative reads: inward 
pointing reads are considered dangling ends (3), outward pointing reads represent self-circles (4), 
and same-strand reads are classified as ‘error pairs’ (5). Adapted from Belaghzal et al. (2017)89. 
 

1.4.1.2. Data resolution 

Data resolution is one of the biggest challenges in Hi-C. Achieving sufficient coverage to 

support maximal resolution is difficult, because interaction space is very large. For 

instance, chromatin digestion using 6-cutter enzyme generates ~ 106 fragments in the 

human genome, resulting in an interaction space on the order of 1012 possible pairwise 

interactions100.  

 

The resolution of a Hi-C dataset depends on several factors, firstly – coverage. Higher 

sequencing depth allows coverage of more of the interaction space, thus improving the 

resolution. However, sequencing depth can be limited by a library complexity (defined 

as the total number of unique chimeric molecules that are present in a Hi-C library). 

Library complexity depends on a number of factors, including the number of cells used 

for library preparation, number of amplification cycles, etc. A low complexity library will 

saturate quickly with increasing sequencing depth, so less information will be gained 

from additional sequencing. The saturation curve of a library can be estimated by plotting 

the cumulative number of unique interactions observed versus increasing read depth. 



 33 

Aggregation of restriction fragments into fixed-size bins allows the reduction of the 

interaction space, therefore increasing the resolution. Heatmaps generated using 100 – 

500 kb-binned data allow the identification of large-scale genomic conformations (such 

as compartments). The location of topologically associating domains (TADs) can usually 

be identified using ~ 40 kb bins, while point-to-point interactions or loops can only be 

seen when data is binned at 10 kb or less89. When choosing a desirable bin size, it is 

important to consider the average fragment length in a library to reduce the number of 

bins containing no fragment ends. However, it is important to note that enzymes, such as 

HindIII and DpnII, result in a non-normal distribution of fragments in the human genome, 

so the average fragment length does not imply that most fragments are around this length. 

For example, when human genome is digested with HindIII (average fragment length 3 – 

4 kb), nearly 30% of fragments are actually ≤ 1 kb, so some interactions can be detected 

at higher resolution than the average fragment length. Conversely, around 23% of 

fragments are > 5 kb, meaning that a bin size of 5 kb (to match the average fragment 

length) will result in many bins with no information. 

 

1.4.2. Capture Hi-C 

Initially, the resolution (1 – 10 Mb) prohibited the use of Hi-C for the interrogation of 

GWAS risk loci. To overcome this limitation, a version of Hi-C, called Capture Hi-C 

(CHi-C)101, was developed (Figure 1.3). By incorporation of a target enrichment (capture) 

step, CHi-C allows the analysis of the subset of interactions for which the bait fragment 

maps to a pre-defined genomic region and the location of the target end is unrestricted 

(‘many-by-all’).  

 

Although several target enrichment methodologies exist, in-solution hybridisation-based 

methods are often used due to their simplicity, efficiency, scalability and 

reproducibility102. In these methods RNA or DNA oligonucleotide baits (probes) are 

directed to the ends of targeted DNA fragments. The probes are biotinylated and can be 

recovered using streptavidin-coated magnetic beads to enrich for ligation events prior to 

next-generation sequencing.  
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Figure 1.3: General Capture Hi-C workflow. C – captured, OE – other end. Adapted from 
Orlando et al. (2018)103. 

 

Although, in theory, capture baits can be designed to any regions of interest, two most 

common CHi-C types are promoter Capture Hi-C (pCHi-C) and region Capture Hi-C 

(rCHi-C). In pCHi-C, baits are designed to annotated promoters, resulting in strong 

enrichment of promoter-anchored interactions, while in rCHi-C, baits are designed to 

restriction fragments or LD blocks containing genetic variants associated with the disease 

of interest.  

 

1.4.2.1. Protocols used in this project 

CHi-C protocols are usually based on Hi-C protocols, which are extended to include a 

capture step. A number of different protocols and kits are available, however, in this 

project, I focused on three protocols: our standard in-house protocol, the Arima Genomics 

Hi-C kit and the Dovetail Genomics Omni-C kit. 

 

Our standard in-house protocol (Standard, hereafter) is based on the Belaghzal and 

colleagues89 and Orlando and colleagues103 protocols and uses the HindIII restriction 

enzyme for DNA fragmentation. The average resolution of the HindIII digested libraries 

is ~10 kb. This protocol has been proven to generate informative CHi-C libraries; 
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however, it is time-consuming and requires large amounts of starting material, therefore 

complicating its usage for library generation from some types of primary cells. 

 

The Arima Hi-C kit (Arima) is a highly simplified protocol, which requires significantly 

less time and starting material. The Arima RE mix comprises two enzymes: a 4-cutter 

enzyme that recognises the sequence GATC and a 5-cutter enzyme recognising GANTC. 

The use of two frequent cutter enzymes, especially with one that has a variable nucleotide 

within the recognition sequence should result in increased library resolution throughout 

the entire genome. 

 

The Dovetail Genomics Omni-C kit (Dovetail) is quite similar to the Arima Hi-C kit in 

terms of time and starting material requirements. However, it benefits from a sequence-

independent endonuclease approach to DNA fragmentation, which should lead to 

increased genomic coverage and reduced restriction enzyme density biases. Another 

advantage of this protocol is that it uses two crosslinking agents – formaldehyde and 

disuccinimidyl glutarate (DSG). Using formaldehyde in combination with DSG has been 

shown to better preserve chromatin contacts and increase data quality at various 

resolutions when compared to the use of formaldehyde alone104. 

 

1.4.2.2. Limitations of previously published breast cancer CHi-C studies 

CHi-C data has been used for the generation of ‘prioritised’ lists of putative target genes 

and, to a lesser extent, CCVs, potentially providing an insight into which variants and 

genes influence breast cancer risk. Most breast cancer-related studies, however, have used 

HindIII digested libraries, which result in an average resolution of 10 kb. Additionally, 

due to the uneven distribution of digestion sites within the genome, some regions of 

interest have remained poorly covered. For example, at the 11p15.5 breast cancer risk 

locus all of the CCVs selected by the BCAC fine-mapping project67 map to a large ~27 

kb HindIII fragment, and, therefore, cannot be adequately resolved. Finally, due to the 

fact that breast cancer originates in epithelial cells105, CHi-C data have only been 

generated in breast cancer and immortalised ‘normal’ breast epithelial cell lines. 

However, the behaviour of primary tumours is influenced by many different cell types as 

well as noncellular factors, in particular the tumour stroma has been shown to have a 

profound effect on cancer progression and may well influence tumour initiation too106. 
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1.4.2.3. Project aims 

Based on the information summarised above, my project aims were to: 

1. Generate rCHi-C libraries in breast epithelial and fibroblast cell lines using 

three different protocols to identify and optimise the most suitable method for 

library generation in primary cells; 

2. Generate higher resolution rCHi-C data in two types of primary breast cells 

(luminal epithelial cells and fibroblasts) to identify regulatory variants and 

target genes influencing breast cancer risk; 

3. Compare cell line data to the primary cell data to evaluate the usefulness of 

cell lines as model systems; 

4. Generate cell line pCHi-C data to validate rCHi-C findings and to identify 

‘indirect’ interactions; 

5. Using data generated in primary breast fibroblasts, determine whether a subset 

of breast cancer loci may act via the stroma to influence the risk. 
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2. Materials and Methods 

2.1. Cell Culture 

2.1.1. Cell lines 

Breast cancer cell line T-47D (HTB-133) was obtained from the American Type Culture 

Collection (ATCC; LGC Standards). Reduction mammoplasty transformed normal breast 

fibroblast cell line GS2 was provided by Professor Clare Isacke (The Institute of Cancer 

Research, UK).  

 

T-47D cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium 

(Gibco, 11875093) supplemented with 10% foetal bovine serum (FBS; Gibco, 

10500064), 10 µg/ml recombinant human insulin (Sigma, I9278) and 1% penicillin-

streptomycin (Sigma, P4458) at 37°C, 5% CO2.  

 

GS2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco, 

11995065) supplemented with 10% FBS at 37°C, 10% CO2.  

 

Medium was changed twice a week. As cells approached confluency, they were washed 

with phosphate buffered saline (PBS; in-house) before addition of 0.25% trypsin-EDTA 

solution (Gibco, 25200056) to detach the cells. Trypsin was neutralised by addition of an 

excess of serum-containing growth media. Detached cells were pelleted by centrifugation 

at 200 x g for 5 minutes. After supernatant was discarded, cells were resuspended in fresh 

growth medium and seeded into new flasks.  

 

Both cell lines were regularly tested for Mycoplasma contamination using an in-house 

service. 

 

2.1.2. Primary cells 

Primary breast luminal epithelial and fibroblast cells were provided by the Breast Cancer 

Now Tissue Bank (Dr. Jenny Gomm; Dr. Iain Goulding). These cells were isolated from 

two healthy premenopausal women undergoing reduction mammoplasty [patient IDs 

1989N (age at surgery: 33 years) and 3002N (age at surgery: 31 years)]. 
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Cells were cultured in DMEM/F12 medium (Sigma, D8437) supplemented with 10% 

FBS (Gibco, 10500056), 1% penicillin-streptomycin (Sigma, P4333) and 2.5 µg/ml 

amphotericin B (Sigma, A2942) at 37°C, 5% CO2. 

 

Medium was changed twice a week. As cells approached confluency, they were washed 

with PBS (Sigma, D8537) and detached by addition of 0.25% trypsin-EDTA solution 

(Cytiva, SV30031.01) diluted to 0.05% with PBS and incubation at 37°C. Trypsin was 

neutralised by addition of an excess of serum-containing growth media. Detached cells 

were pelleted by centrifugation at 380 x g for 3 minutes. After supernatant was discarded, 

cells were resuspended in fresh medium and seeded into new flasks.  

 

Cells were regularly tested for Mycoplasma contamination using an in-house service. 

 

2.2. Standard (in-house) Hi-C Protocol 

Standard Hi-C library generation was performed as described by Belaghzal and 

colleagues89 with some modifications. The adjusted protocol is detailed below. 

 

2.2.1. Formaldehyde crosslinking 

T-47D and GS2 cell lines were grown as described in Section 2.1.1. Since serum is very 

rich in proteins and therefore can affect the crosslinking efficiency by competing for 

formaldehyde, growth medium was replaced with Hanks' Balanced Salt Solution (HBSS; 

Gibco, 14175053) before fixation. Crosslinking of 20 million adherent cells was 

performed by adding 16% formaldehyde (Agar Scientific, R1026) to a final concentration 

of 1% and incubating the flasks for 10 minutes at room temperature (RT). Reaction was 

quenched by addition of glycine (VWR Chemicals, 101194M) to a final concentration of 

128 mM. Cells were scraped off the culture flask and washed with PBS (in-house). 

Pelleted cells were snap-frozen in liquid nitrogen and stored at -80°C before continuing 

to the cell lysis. 

 

2.2.2. Cell lysis and in-situ digestion 

Cell lysis was performed in hypotonic lysis buffer (10 mM Tris-HCl pH8.0, 10 mM NaCl, 

0.2% IGEPAL CA-630 (Sigma, I8896)) supplemented with 10μl 100X Halt Protease 

Inhibitor Cocktail (Thermo Scientific, 87786) to maintain Protein-DNA complexes. 
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Crosslinked cells were thawed, resuspended in 1 ml ice-cold buffer and incubated on ice 

for 15 minutes. 

 

Cells were lysed on ice using a glass dounce homogeniser (two rounds; 30 strokes each). 

Permeabilised cells were pelleted at 2500 x g for 5 minutes and washed twice with 500 

μl ice-cold 1X NEBuffer 2.1 (NEB, B7202S). After removing the second wash, cells were 

resuspended in 1030 μl 1X NEBuffer 2.1 and aliquoted into three tubes to final volumes 

of 342 μl. Each tube was used to prepare a separate Hi-C library replicate. The remaining 

4 μl were used to check effective cell lysis using a disposable haemocytometer 

(Invitrogen, C10283).  

 

Before digestion, lysed cells were incubated with 0.1% SDS (Ambion, AM9820) at 65°C 

for 10 minutes to eliminate non-crosslinked proteins and to open the chromatin for a better 

and more homogenous digestion. The reaction was terminated by addition of Triton X-

100 (Sigma, X100-500ml) to a 1% final concentration. 

 

To ensure maximal digestion, chromatin was incubated with 1500 U HindIII (NEB, 

R0104M) at 37°C overnight in a thermomixer with 950 rpm agitation. Digestion was 

terminated by heat inactivation of the restriction enzyme at 65°C for 20 min.  

 

2.2.3. Marking of DNA ends with Biotin-14-dATP 

5’ overhangs generated during DNA digestion were filled in with a Fill-in mix consisting 

of 1.5 μl each of 10 mM dCTP, 10 mM dGTP and 10 mM dTTP (Invitrogen, 10297018), 

37.5 μl 0.4 mM biotin-14-dATP (Invitrogen, 19524016), 10 μl 5 U/μl DNA Polymerase 

I, Large (Klenow) Fragment (NEB, M0210S), 6 μl 10X NEBuffer 2.1 and 2 μl water. 

This reaction was incubated for 4 hours at 23°C in a thermomixer with interval agitation 

(900 rpm; 15 seconds every 5 minutes) before being returned to ice. This low temperature 

is crucial for efficient incorporation of the large biotinylated dATP and decreases 3’ → 

5’ exonuclease activity.  

 

2.2.4. Blunt end ligation 

Ligation mix (120 μl 10% Triton X-100, 240 μl 5X ligation buffer (Invitrogen, 46300-

018), 12 μl 10 mg/ml bovine serum albumin (BSA; NEB, B9000S), 50 μl T4 DNA ligase 

(Invitrogen, 15224090) and 243 μl water) was added to each tube, followed by incubation 
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for 4 hours at 16°C in a thermomixer with interval agitation (900 rpm; 15 seconds every 

5 minutes). 

 

2.2.5. Reverse crosslinking 

Now that interacting loci are ligated into chimeric pieces of DNA, proteins that hold 

interacting fragments in close proximity can be removed. To do so, reactions were 

incubated overnight at 65°C with 50 μl 10 mg/ml proteinase K (Ambion, AM2546). After 

addition of another 50 μl 10 mg/ml proteinase K the following morning, reactions were 

incubated for a further 2 hours at the same temperature.  

 

2.2.6. DNA purification 

Reactions were incubated at 37°C for 15 minutes before being transferred to 50 ml falcon 

tubes. DNA was isolated using phenol:chloroform extraction followed by precipitation 

using a standard sodium acetate plus ethanol protocol. 

 

Briefly, after addition of 1.3 ml phenol-chloroform-isoamyl alcohol (Invitrogen, 

15593031), reactions were vortexed for 30 seconds, transferred to the Phase Lock Gel 

(Light) tubes (VWR Chemicals, 733-2477) and centrifuged according to the 

manufacturer’s instructions (13000 rpm for 5 minutes). The top aqueous phase containing 

the DNA was transferred into a fresh tube, mixed with 0.1 reaction-volume of 3M sodium 

acetate, pH 5.2 (Sigma, S7899-100ml) and 2.5 reaction-volumes of ice-cold absolute 

ethanol and incubated for 3 hours at -20°C.  

 

Precipitated DNA was pelleted by centrifugation at 3500 rpm for 30 minutes, washed 

with 70% ethanol and air-dried at 37°C for 15-30 minutes. The DNA pellet was 

resuspended in 100 μl water and incubated at 37°C overnight. 

 

To degrade residual RNA, 1 μl 1 mg/ml RNase A (Invitrogen, AM2270) was added the 

following morning, and reactions were incubated at 37°C for additional 30 minutes. DNA 

was quantified using Invitrogen Qubit fluorometer and stored at -20°C. 
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2.2.7. Library quality check 

To verify Hi-C junction marking with biotin-14-dATP and Hi-C ligation efficiency, a 

PCR digest assay can be performed (Figure 2.1). This involves PCR amplification of a 

particular ligation product formed by two distant restriction fragments, followed by its 

overnight digestion with HindIII, NheI or both. As distant fragments are targeted with the 

PCR primers, the product can only form when properly ligated chimeras are in place. 

 

For the PCR amplification, AmpliTaq polymerase (Applied Biosystems, N8080161) was 

used according to the manufacturer’s instructions. For a 50 μl standard reaction, the 

following were added to 250 ng of Hi-C DNA: 5 μl 10X PCR buffer, 4 μl 25 mM MgCl2, 

1 μl 10 mM dNTP mix, 0.5 μl 100 μM each 2F and 1R primers (Table 2.1), 0.25 μl 5 U/μl 

AmpliTaq DNA polymerase and water to a total volume of 50 μl. Thermocycle 

parameters are shown in Table 2.2. 

 

Primer name Sequence 
Histone H1 HindIII Region 1 Reverse (1R) GAAGAATAACAGCCGCATCAAAC 
Histone H1 HindIII Region 2 Forward (2F) GGCTGTGGTACCTGTAAAGAACTAACTC 

Table 2.1: PCR digest assay primer sequences. Primers were designed by Laura Broome. 

 

Step Temperature Time Cycles 
1 95°C 15 min 1 
2 60°C 1 min 

36 3 72°C 1 min 
4 94°C 30 sec 
5 60°C 2 min 1 
6 72°C 10 min 1 
7 4°C ∞ 1 

Table 2.2: PCR digest assay thermocycle conditions. 
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Figure 2.1: PCR digest assay for the quality control of standard Hi-C libraries. (A) In Hi-C 
libraries, a DNA long-range interaction occurs such that 1R and 2F primers (Table 2.1) can be 
used together to amplify a chimeric ligation product formed by two distant (~30 kb) fragments of 
HIST1H2AC Region 2 and HIST1H1T Region 1 with a 6 bp restriction enzyme site in between; 
(B) The biotin fill-in stage of Hi-C library preparation, followed by re-ligation, leads to the 
generation of a NheI restriction site in place of the original HindIII site, so only properly filled-
in ligation products can be digested with NheI. Thus, comparison of the NheI digested and 
undigested fractions allows the estimation of the efficiency of these steps. Blue attachments 
represent biotinylation.  
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Each digestion reaction consisted of 15 μl PCR product, 2 μl buffer, 0.5 μl 20 U/μl HindIII 

(NEB, R0104S) or 0.5 μl 20 U/μl NheI (NEB, R0131S) (or both) and water to a total 

volume of 20 μl. Digestion was performed at 37°C for 2 hours, after which each reaction 

was run on a 2.5% agarose gel to estimate relative numbers of ligation events by 

quantifying cut and uncut bands (Figure 2.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Quality control of Standard Hi-C libraries. An example of a typical PCR digest 
quality control gel, generated in silico using SnapGene. An in silico image was generated due to 
the low quality of images taken using the Syngene U:Genius3 gel imaging system. (2) PCR 
product amplified with 2F and 1R primers (Table 2.1); PCR product digested with HindIII (4), 
NheI (5), both enzymes (6) or none (7, control). The molecular weight ladder used is the 100 bp 
DNA Ladder from NEB (MW). 

 

2.2.8. Removal of biotin from un-ligated ends 

In most Hi-C experiments some digested biotinylated sites will have remained unligated. 

To avoid pulling down such sites, biotin overhangs were removed using T4 DNA 

polymerase. A total of 80 μg Hi-C DNA was split into 16 reactions each consisting of 5 

μg Hi-C library, 5 μl 10X NEBuffer 2.1, 0.125 μl 10 mM dATP, 0.125 μl 10 mM dGTP 

and 5 μl 3 U/μl T4 DNA polymerase (NEB, M0203L) in a total volume of 50 μl, and 

incubated at 20°C for 4 hours.  

 

The biotin removal reaction was stopped by inactivating the enzyme at 75°C for 20 

minutes. After cooling on ice to 4°C, 16 reactions were pooled into one and DNA was 

isolated using phenol:chloroform extraction followed by precipitation using a standard 
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sodium acetate plus ethanol protocol, as described in Section 2.2.6. The DNA pellet was 

resuspended in 750 μl 10 mM Tris-HCl, pH8.0 and incubated at RT for 1 hour before 

proceeding to DNA shearing. 

 

2.2.9. DNA sonication and double-sided size-selection 

DNA sonication and double-sided size-selection were performed as described by Orlando 

and colleagues103.  

 

Biotinylated DNA was split equally between six Covaris micro tubes (Covaris, 520052) 

and sheared to a target fragment size of 400 bp using Covaris LE220 machine with the 

following settings: fill level 6, duty cycle 10%, cycles/burst 200, peak incident power 

175, time 60 seconds.  

 

For the first step of size-selection, the total volume of each sonicated sample was brought 

to 200 μl. Next, 110 μl Ampure XP beads (Beckman Coulter, A63880) were added to 

each sample followed by a 20-minute incubation at RT. Tubes were then placed on a 

magnetic particle separator (MPS) and the unbound supernatant containing the DNA in 

the desired size range (< 700 to 1000 bp) was recovered.  

 

In the second size-selection step, 240 μl AMPure XP beads were concentrated by placing 

the tube on the MPS and removing 180 μl of the supernatant. The beads were resuspended 

in the remaining 60 μl volume and added to the DNA recovered from the first size-

selection step. After 10-minute incubation at RT, samples were placed on the MPS and 

supernatant containing fragments < 200 bp was discarded. The beads bound by DNA 

fragments between 200 and 650 bp were washed twice with 80% ethanol. The six aliquots 

were combined by resuspending all the beads in a total of 200 μl 10 mM Tris-HCl, pH8.0 

and incubated at RT for 5 minutes, after which supernatant, containing the size-selected 

DNA, was collected from the MPS. 100 μl 10 mM Tris-HCl, pH8.0 were added to reach 

300 μl total reaction volume required for the next step.  

 

Sonication and size-selection efficiencies were checked by running the samples on the 

Agilent 2100 Bioanalyzer instrument using High-Sensitivity DNA kit (Agilent, 5067-

4626) according to the manufacturer’s instructions. A representative example of the 

expected Bioanalyzer profiles is shown in Figure 2.3. 
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         A)  Post-sonication                 B)  200 – 650 bp fragments 
                                                    (after size-selection) 
 

           
 

 
 
 
 
 
 

 
 
 
 
 

Figure 2.3: Post-sonication and double-sided size-selection Bioanalyzer profiles. Diluted T-
47D DNA (1 in 10) was loaded on DNA High-Sensitivity chip and run on the 2100 Bioanalyzer 
instrument to show efficient sonication (A) and enrichment of the 200 to 650 bp fragments after 
successful size-selection (B).  

  

2.2.10. Biotin pull-down 

To enrich for Hi-C ligation junctions, streptavidin-coated beads with a high affinity for 

the incorporated biotin are used. To prepare the beads, 150 μl 10 mg/ml Dynabeads 

MyOne Streptavidin C1 beads (Life Technologies, 65001) were washed twice with 400 

μl 1X Tween buffer (5 mM Tris-HCl, pH8.0, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween). 

For each wash, beads were resuspended in fresh buffer, transferred to a new tube, rotated 

for 3 minutes at RT and then reclaimed against the MPS. 

 

After removal of the second wash, beads were resuspended in 300 μl 2X No-Tween buffer 

(10 mM Tris-HCl, pH8.0, 1 mM EDTA, 2 M NaCl) and mixed with 300 μl library DNA. 

The mixture was incubated on a rotator at RT for 30 minutes, before reclaiming DNA-

bound beads against the MPS. Next, beads were washed twice again in 1X Tween buffer. 

For each wash, beads were resuspended in 600 μl 1X Tween buffer, transferred to a new 

tube, incubated at 55°C for 2 minutes with shaking at 900 rpm and reclaimed against the 

MPS. For a final wash, beads were resuspended in 100 μl 1X T4 DNA ligase buffer (NEB, 

B0202S), transferred to a new tube and reclaimed against the MPS. 

 

2.2.11. End repair, A-tailing and adapter ligation 

To repair DNA ends damaged after sonication, beads were resuspended in a mix 

containing 88 μl 1X T4 DNA ligase buffer, 2 μl 25 mM dNTP mix, 4 μl 3 U/μl T4 DNA 

polymerase, 5 μl 10 U/μl T4 Polynucleotide kinase (NEB, M0201S) and 1 μl 5 U/μl DNA 
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Polymerase I, Large (Klenow) Fragment, and incubated at 20°C for 30 minutes. DNA-

bound beads were reclaimed against the MPS and washed twice in 600 μl 1X Tween 

buffer (as described in Section 2.2.10). Next, beads were resuspended in 100 μl 1X 

NEBuffer 2.1 and reclaimed against the MPS. 

 

To increase ligation efficiency of the Illumina paired-end adapters, the 3’ ends of the 

ligation products need to be adenylated. To do so, beads were resuspended in a mix 

containing 90 μl 1X NEBuffer 2.1, 5 μl 10 mM dATP and 5 μl 5 U/μl Klenow Fragment 

(3'→5' exo-) (NEB, M0212S), incubated at 37°C for 30 minutes and reclaimed against 

the MPS. Then, beads were washed twice in 600 μl 1X Tween buffer and once in 100 μl 

1X T4 DNA ligase buffer (as described in Section 2.2.10), before being resuspended in 

50 μl 1X T4 DNA ligase buffer. 

 

To prepare 15 μM annealed paired-end adapters required for the adapter ligation step, 

lyophilised top and bottom adapters (Table 2.3) were resuspended in T4 Polynucleotide 

Kinase buffer to a final concentration of 100 μM. 10 μl of each adapter were combined 

into a PCR tube and annealed as described in Table 2.4. To obtain a 15 μM working 

concentration, 46.7 μl 10 mM Tris-HCl, pH8.0 were added. 

 

Adapter Name Sequence 
Top Adapter ACACTCTTTCCCTACACGACGCTCTTCCGATC*T 

Bottom Adapter P-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 

Table 2.3: Illumina paired-end adapter sequences. Top and bottom adapters have to be 
annealed together into a Y-shape structure before being ligated to both ends of the Hi-C library 
DNA. The bottom adapter is 5’-phosphorylated (P) in order to promote ligation. The top adapter 
has a phosphorothioate bond (*), resistant to exonuclease degradation. 

 

Step Temperature Time 
1 37°C 30 min 
2 + 0.5°C/sec to 97.5°C 
3 97.5°C 155 sec 
4 - 0.1°C/5 sec to 20°C 
5 4°C ∞ 

Table 2.4: Illumina paired-end adapter annealing Thermocycle conditions.  

 

Next, 3 μl of 15 μM annealed adapters were ligated to the Hi-C library DNA by adding 3 

μl 400 U/μl T4 DNA ligase and incubating the reaction at 20°C for 2 hours. 
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Excess adapters were removed by reclaiming the beads against the MPS and washing 

them twice with 600 μl 1X Tween buffer (as described in Section 2.2.10) and once with 

100 μl 10 mM Tris-HCl, pH8.0. Finally, beads were resuspended in 50 μl 10 mM Tris-

HCl, pH8.0.  

 

2.2.12. Pre-hybridisation PCR 

To generate approximately 500 – 750 ng of DNA required for the target enrichment step, 

a Hi-C library must be partially amplified using adapter-specific primers (Table 2.5). To 

identify the optimal number of PCR cycles, test PCR reactions with 8, 10 and 12 cycles 

were carried out for each library (2 μl on-bead DNA, 0.4 μl 25 μM Prehyb Forward 

primer, 0.4 μl 25 μM Prehyb Reverse primer, 12.5 μl NEBNext High-Fidelity 2X PCR 

Mastermix (NEB, M0541S) and 9.7 μl water). PCR Thermocycle conditions can be found 

in Table 2.6. 

 

Unbound supernatant containing amplified DNA was recovered using the MPS and 

purified with the MinElute PCR Purification kit (Qiagen, 28004). Test PCR product was 

quantified using the Agilent High-Sensitivity DNA kit with the Agilent 2100 Bioanalyzer 

system and optimal cycle number for each library was calculated. 

 

Primer Name Sequence 
Prehyb Forward ACACTCTTTCCCTACACGACGCTCTTCCGATC*T 
Prehyb Reverse CTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

Table 2.5: Pre-hybridisation PCR primers. * indicates phosphorothioate bond, resistant to 
exonuclease degradation. 

 

Step Temperature Time Cycles 
1 98°C 30 sec 1 
2 98°C 10 sec 

8-12 3 65°C 30 sec 
4 72°C 30 sec 
5 72°C 5 min 1 
6 4°C ∞ 1 

Table 2.6: Pre-hybridisation PCR Thermocycle conditions. 

 

Next, multiple PCR reactions were set up for each library as described above, using the 

optimal cycle number. PCR product from these reactions was pooled and supernatant was 

recovered using the MPS. This supernatant was then cleaned using Agencourt AMPure 
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XP beads. For each clean up, 1.8X reaction-volume of beads was added to the tube 

followed by 5-minute incubation at RT. DNA-bound beads were then reclaimed against 

the MPS and washed twice with 800 μl 80% ethanol. Beads were dried at RT for 5 

minutes before being resuspended in 80 μl nuclease-free water. After 5-minute incubation 

at RT, eluted DNA was recovered using the MPS and quantified using the Agilent High-

Sensitivity DNA kit with the Agilent 2100 Bioanalyzer system before proceeding with 

the target capture (Section 2.6.1). 

 

2.3. Arima Genomics Hi-C 

To generate the Arima Hi-C libraries, the Arima Hi-C Kit (Arima Genomics, A410030) 

was used according to the manufacturer’s instructions. Proximally ligated DNA samples 

were sheared as described in Section 2.2.9 before proceeding with the library preparation. 

Since the target capture step (performed following the Arima Hi-C library generation, 

and not part of the original Arima protocol) creates additional DNA loss, the size-

selection step was omitted for these libraries to preserve DNA and to retain library 

complexity. Library amplification (pre-hybridisation PCR) was performed as described 

in Section 2.2.12. Different adapters were used in the Arima Hi-C kit; therefore, pre-

hybridisation PCR primers were re-designed to be compatible with these libraries (Arima 

Fw and Arima Rv primers from Table 2.8). Arima Rv primer is complementary to the P7 

sequence, while Arima Fw primer is complementary to P5 sequence and to the rest of the 

adapter sequence preceding the i5 index. 

 

2.4. Dovetail Genomics Omni-C 

The Dovetail Omni-C libraries were generated using Dovetail Genomics Omni-C kit 

(Dovetail Genomics, DG-REF-001, DG-REF-002, DG-LIB-001) according to the 

manufacturer’s instructions. Single indexed primers supplied in the Dovetail Primer Set 

Module (Dovetail Genomics, DG-PRS-001) were used for the indexing step. The QC 

sequencing analysis was performed for each Omni-C library as described in the QC 

analysis pipeline (https://github.com/dovetail-genomics/omni-c_qc) before proceeding to 

the target capture (Section 2.6). 
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2.5. Target Enrichment Array Design for rCHi-C 

This project required me to design a comprehensive array, that would include as many 

potentially causal variants as possible (limited by the maximum array size of 24 Mb) and 

would be compatible with different CHi-C protocols. Final array regions were still 

defined on the basis of HindIII restriction sites, as this is the least frequent cutter enzyme 

between the three protocols. As a result, capturing the entire fragments of interest (instead 

of capturing just the ends of the fragments) allows for the Arima RE mix and Dovetail 

DNase I restriction sites, providing extensive coverage of each locus. 

 

Details of the array design can be found in Figure 2.4. Briefly, 211 index SNPs associated 

with breast cancer (N = 190), mammographic density (N = 11) or breast size (N = 10) 

were selected based on three studies67, 74, 107. All variants correlated with the index SNPs 

(r2 ≥ 0.6; N = 12,284) were identified based on 1000 Genomes Phase 3 data for 181 

individuals of two European populations (CEU, GBR). The R package ‘proxysnps’ 

(https://github.com/slowkow/proxysnps) was used to remove non-founder samples from 

the analysis and select these correlated SNPs. The number of SNPs was reduced to 12,097 

SNPs after excluding those with low minor allele frequency (MAF < 0.01). Seven index 

SNPs were also found to have MAF < 0.01; these SNPs were retained and treated 

separately for the purpose of array design (described in Figure 2.4). For the preliminary 

design, capture regions were defined as the regions that included all correlated SNPs (r2 

≥ 0.6) for each of the index SNPs. This resulted in 25 ‘large’ regions (> 250 kb in size) 

that were treated separately for array design purpose. For these, I used a higher threshold 

(r2 ≥ 0.9) of correlation to reduce their size (allowing me to retain 18 regions on the array); 

the other seven regions remained intractable and were excluded.  

 

The other 179 regions (r2 ≥ 0.6; < 250 kb) were cross-checked with 142 fine-scale 

mapping regions (published by BCAC), covering 4,453 credible variants66. Out of 179 

regions, 66 did not overlap with any credible variants, 94 covered all credible variants at 

the given region and 19 partially overlapped with the credible variants. 

 

For the final array I made the following pragmatic decision – for the regions where less 

than 30 credible variants were missing, each missing variant was captured separately, 

while for the regions where there were more than 30 variants missing, the missing variants 

were not included. Each region was then mapped to corresponding HindIII fragments 
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with 500 bp added at either end, to take account of the fragment size generated by 

shearing, and 120-mer RNA baits were designed using Agilent eArray software 

(https://earray.chem.agilent.com/suredesign/). A list of regions targeted by the array can 

be found in Appendix A.  

 

The focus of my thesis is the breast cancer risk regions; MD and breast size loci will be 

the subject of a subsequent analysis. The final array targeted 183 ‘strong-evidence’ breast 

cancer risk signals across 122 regions. Excluded signals can be found in Table 2.7. 

 

Fine-mapping region Signal Index SNP CCVs 

chr5:50133661-50977284* 
Signal 1 rs373575834 4 
Signal 2 rs3846498 93 

chr5:81632442-82742227* Signal 1 rs2059891 23 
chr6:28454660-29458443* Signal 1 rs79309050 36 
chr7:91501305-92552283* Signal 1 rs7785971 318 

chr10:120834389-122089809 
Signal 1 rs35054928 1 
Signal 5 rs7899765 1 

chr12:27486913-28881482 Signal 2 rs1600346 375 
chr17:45675102-46675102* Signal 1 rs62070949 2277 
chr18:26252512-27495432 Signal 4 rs180952292 1 
chr19:18937437-19937437* Signal 1 rs1469713 162 

chr22:45387417-46387400* 
Signal 1 rs11704298 34 
signal 2 rs184070480 1 

Table 2.7: Breast cancer risk signals that were not targeted by the rCHi-C array. 13 ‘strong-
evidence’ signals (from Fachal et al. 2020) that were not targeted by my rCHi-C array. In cases 
where a fine-mapping region is marked with (*), the entire region was excluded from the array 
design. CCVs – number of CCVs reported at the signal. Fine-mapping regions are in 
GRCh38/hg38. 
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Figure 2.4: Target enrichment array design. 
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2.6. Target Sequence Capture 

2.6.1. Region CHi-C 

Hi-C libraries generated by all three protocols (Standard Hi-C – Section 2.2, Arima 

Genomics Hi-C – Section 2.3, Dovetail Genomics Omni-C – Section 2.4) were subjected 

to target enrichment using Agilent SureSelect kit (Agilent, 5190-9685, 5190-9684). To 

prepare libraries for hybridisation, 500 – 750 ng of each library were transferred to a new 

tube, dehydrated in a vacuum concentrator using low heat (30°C) and resuspended in 3.4 

μl nuclease-free water.  

 

Per reaction, 13 μl hybridisation buffer (6.63 μl SureSelect Hyb 1, 0.27 μl SureSelect Hyb 

2, 2.65 μl SureSelect Hyb 3 and 3.45 μl SureSelect Hyb 4) and 5.6 μl block mix were 

prepared. Components of the block mix vary depending on the protocol used for the Hi-

C library generation. For the Standard Hi-C protocol, the block mix consisted of 2.5 μl 

SureSelect Indexing Block 1, 2.5 μl SureSelect Block 2 and 0.6 μl SureSelect ILM 

Indexing Block 3. For the Arima Hi-C and Dovetail Omni-C libraries, 2 μl xGen 

Universal Blockers TS, 16 rxn (IDT, 1075474) and 5 μl SureSelect XT HS and XT Low 

Input Blocker Mix were used, respectively, topped up to 5.6 μl with nuclease-free water. 

Hybridisation buffer was incubated at 65℃ for 5 minutes followed by equilibration at 

RT, while block mix was kept on ice at all times before being added to the library.  

 

After addition of the block mix, libraries were incubated at 95°C for 5 minutes and then 

held at 65°C for at least 5 more minutes. In this time, capture library hybridisation mix 

was prepared by combining 13 μl hybridisation buffer, 2 μl 25% RNase block and 5 μl 

SureSelect Capture Library.  

 

Keeping reaction tubes at 65°C, 20 μl capture library hybridisation mix was added to each 

library and mixed by pipetting. Samples were re-sealed and incubated for 24 hours at 

65°C with lid temperature of 105°C. 

 

To capture hybridised DNA, Dynabeads MyOne Streptavidin T1 (Invitrogen, 65601) 

beads were used. Per reaction, 50 μl beads were prepared by washing three times with 

200 μl SureSelect Binding Buffer, reclaiming the beads against the MPS and 

resuspending in 200 μl SureSelect Binding Buffer. Next, the entire volume of 
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hybridisation reaction was transferred directly from the 65°C block to the resuspended 

beads, followed by a 30-minute incubation at RT on a rotator.  

 

DNA-bound beads were reclaimed against the MPS, resuspended in 200 μl SureSelect 

Wash Buffer 1 and incubated at RT for 15 minutes. After being reclaimed against the 

MPS, beads were washed three times with 200 μl SureSelect Wash Buffer 2. For each 

wash, beads were resuspended in pre-warmed to 65°C buffer, incubated at 65°C for 10 

minutes and reclaimed against the MPS. After removal of the final wash, beads were 

resuspended in 50 μl nuclease-free water. 

 

In preparation for sequencing, captured libraries were subjected to post-hybridisation 

PCR. Since adapters and indexes used in the Standard Hi-C, Arima Genomics Hi-C and 

Dovetail Genomics Omni-C protocols vary, different PCR primers were used (Table 2.8). 

Libraries generated using the Standard Hi-C protocol are not indexed, so the unique 

termini (P5 and P7 sequences) that are required for binding to the flow cell were added 

at this stage. Therefore, Posthyb Fw Standard and Posthyb Rv Standard primers contain 

sequences that are partially complementary to the adapters used and the P5/P7 sequences. 

Libraries generated by the Arima Genomics protocol are dual-indexed. i5 and i7 indexes 

and P5/P7 sequences were introduced in the adapter annealing step, so pre-hybridisation 

primers were also used in the post-hybridisation PCR amplification step. Libraries 

generated by the Dovetail Genomics Omni-C protocol are single-indexed. Variable i7 

index and universal i5 sequence were introduced during the indexing step (equivalent to 

the pre-hybridisation PCR), so the same reverse primer was used for the Dovetail 

Genomics libraries as for the Arima libraries. Forward primer was re-designed to only 

contain sequence complementary to the P5 sequence. 

 

Primer Name Protocol Sequence 
Posthyb Fw 

Standard Standard Hi-C 
AATGATACGGCGACCACCGAGATCTACACTCT

TTCCCTACACGACGCTCTTCCGATC*T 
Posthyb Rv 

Standard Standard Hi-C CAAGCAGAAGACGGCATACGAGATCGGTCTC
GGCATTCCTGCTGAACCGCTCTTCCGATC*T 

Arima Fw Arima Hi-C AATGATACGGCGACCACCGAGATCTACA*C 

Arima Rv Arima Hi-C and 
Dovetail Omni-C CAAGCAGAAGACGGCATACGAGA*T 

Dovetail Fw Dovetail Omni-C AATGATACGGCGACCACCG*A 

Table 2.8: Post-hybridisation PCR primers. * indicates phosphorothioate bond, resistant to 
exonuclease degradation. Red – P5 sequence; blue – P7 sequence. 
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Step Temperature Time Cycles 
1 98°C 30 sec 1 
2 98°C 10 sec 

4 3 65°C 30 sec 
4 72°C 30 sec 
5 72°C 5 min 1 
6 4°C ∞ 1 

Table 2.9: Post-hybridisation PCR thermocycle conditions. 

 

Multiple PCR reactions were set up for each library containing 2.5 μl on-bead DNA, 0.4 

μl 25 μM forward and 0.4 μl 25 μM reverse primers, 12.5 μl NEBNext High-Fidelity 2X 

PCR Mastermix and 9.2 μl water). PCR Thermocycle conditions are shown in Table 2.9. 

 

PCR product from these reactions was cleaned up using AMPure XP beads as described 

in Section 2.2.12. Library DNA quality was assessed using the Agilent 2100 Bioanalyzer 

instrument (High Sensitivity DNA Assay) before proceeding to next-generation 

sequencing (NGS). 

 

2.6.2. Promoter CHi-C 

Promoter CHi-C libraries were generated as a part of Beta-testing project of the Dovetail 

Genomics Human Pan Promoter Enrichment Kit. Since this kit incorporates target 

enrichment technology from Twist Bioscience, target sequence capture was performed as 

described in the Twist Target Enrichment Protocol. The Dovetail Genomics Custom 

Panel supplied with this kit covered 84,643 promoters associated with 27,375 coding and 

non-coding genes. Since the total panel size is between 10 and 50 Mb, eight PCR cycles 

were used for the post-capture PCR amplification. Additionally, KAPA HiFi HotStart 

ReadyMix was replaced by Capture Amplification Mix supplied by Dovetail Genomics. 

 

2.7. Sequencing  

Region CHi-C libraries were sequenced at the ICR Genomics Facility on an Illumina 

NovaSeq 6000 System generating 100 bp paired-end reads. Promoter CHi-C libraries 

were sequenced on an Illumina HiSeq X Ten System (2 x 150 bp) by Dovetail Genomics. 

Libraries generated using the Standard Hi-C protocol were sequenced to generate ~ 40 

Gb of raw data per library (in a single run). The GS2 Arima library was sequenced to 
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achieve ~ 100 Gb of data (in a single run). All other libraries were sequenced to a total of 

~ 100 Gb of raw data per library in two separate 50 Gb runs. Sequencing data were output 

in fastq format. 

 

2.8. Data Processing 

Harriet Kemp, Andrea Gillespie and Syed Haider carried out the bioinformatics required 

to convert the raw sequencing data from the CHi-C experiments into a set of statistically 

significant interaction peaks. 

 

For libraries generated using the Standard protocol, alignment of the fastq sequencing 

reads to the human reference genome (GRCh38/hg38) was performed using Bowtie2 

aligner as a part of the Hi-C User Pipeline (HiCUP). Full details of this pipeline are 

available at http://www.bioinformatics.babraham.ac.uk/. HiCUP was also used to remove 

experimental artefacts and PCR duplicates.  

 

Libraries generated using the Arima Genomics Hi-C and Dovetail Genomics Omni-C kits 

were processed using the Arima (https://github.com/ArimaGenomics/mapping_pipeline) 

and Dovetail (https://omni-c.readthedocs.io/en/latest/) pipelines, respectively. Briefly, in 

both pipelines, fastq sequencing reads were aligned to the human reference genome using 

the BWA aligner followed by the alignment quality and PCR duplicates filtering.  

 

Removal of off-target di-tags (defined as di-tags where neither end mapped to one of the 

capture regions) and subsequent interaction peak calling was performed using 

CHiCANE108. Data from single library replicates were used for cell line rCHi-C analysis, 

while data from two technical replicates were pooled together for the pCHi-C analysis. 

Because pCHi-C array is approximately twice the size of my rCHi-C array (19,144 kb vs. 

9,782 kb), this resulted in a similar numbers of on-target pairs per kb of array. For rCHi-

C analysis in primary cells, data from two biological replicates were combined. 

 

Interaction peaks in Standard libraries were called using individual HindIII fragments as 

the unit of analysis, while Arima and Dovetail libraries were called using both 2kb- and 

5kb-binned data. The Dovetail Genomics protocol was used to generate both rCHi-C and 

pCHi-C. For the downstream analysis of pCHi-C data, Dovetail processing pipeline 

allocates gene promoters into 39,825 smart bins. Most smart bins capture promoter(s) of 
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a single gene, but in some smart bins (N=2,905) the proximity of gene promoters is such 

that a single smart bin captures multiple promoters. In addition, a subset of genes 

(N=9,104) occupies more than one smart bin. Therefore, to facilitate integration analysis 

(rCHi-C + pCHi-C), data obtained from rCHi-C libraries generated using the Dovetail 

Genomics protocol were binned in a promoter aware manner (using smart bins). Only 

significant CHiCANE interaction peaks (q-value ≤ 0.1) were considered for downstream 

analysis.  

 

Aligning of interaction peaks with annotated gene promoters and CCVs, and the analysis 

to determine whether third-party bins are enriched for CTCF and H3K27ac binding was 

carried out by Harriet Kemp. Odds ratios and p values were calculated using a Fisher’s 

exact test.  

 

The CTCF datasets (all cell types, all breast, primary breast) that are shown in a subset of 

figures in which looping interactions are aligned with other relevant features and that 

were used for the third-party bins’ enrichment analysis were compiled by Andrea 

Gillespie. These datasets are combinations of ChIP-seq data available from the 

Encyclopedia of DNA Elements (ENCODE)109. Data were collated using all available 

CTCF ChIP-seq datasets as of 31/01/2021. All cell types – consensus peaks identified in 

at least 28 out of the 31 available cell types. All breast – consensus peaks identified in at 

least 8 out of 9 breast relevant cell types for which data were available (3 – breast 

epithelium, 1 – mammary epithelial cells, 1 – mammary fibroblasts, 4 – MCF-7). Primary 

breast – consensus peaks identified in both of the primary breast cell types that were 

available (1 – mammary epithelial cells, 1 – mammary fibroblasts).  
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3. Region Capture Hi-C in T-47D and GS2 cells 

3.1. Summary sequencing statistics 

Using three different protocols (Standard, Arima and Dovetail), rCHi-C libraries were 

generated in T-47D and GS2 cell lines. T-47D is an ER+, breast cancer cell line, that is 

well-studied and frequently used in breast cancer research; GS2 is a ‘normal’ 

immortalised breast fibroblast cell line, which has not been previously used for 

chromosome conformation capture. Table 3.1 shows sequencing statistics for these 

libraries. Two key metrics that allow assessment of library quality and comparison of the 

methods are: the proportion of unique read pairs and the proportion of on-target di-tags 

(defined as read pairs for which at least one end colocalised with a capture panel probe).  

 

Comparing these metrics between the protocols, the proportion of unique pairs varied 

from 53% to 77%, with the highest proportions observed in the Arima libraries. The 

proportion of on-target pairs varied from 10% to 38%, with the highest proportion 

observed in the T-47D Standard library and the lowest proportion in the T-47D Arima 

library. Interestingly, the proportion of on-target pairs appeared to be higher in libraries 

with lower absolute numbers of unique pairs. 

 

As mentioned previously (Section 1.4.1.1), very short-range interactions often represent 

dangling ends flanking an undigested restriction fragment (partial digest). Such invalid 

interactions increase in frequency with decreasing restriction fragment size and are 

challenging to identify computationally. Accordingly, another useful metric to look at is 

the proportion of read pairs where the distance between interacting fragments (when 

mapped back to the reference genome) is less than 1 kb, since these are unlikely to 

represent ‘true’ interactions and can be considered wasted sequencing. Since in the 

Standard libraries the average size of restriction fragments is larger (3 – 4 kb), partial 

digest dangling ends are less likely to occur in these libraries and short-range interactions 

would be defined more accurately as those where the distance between interacting 

fragments is less than 10 kb.  Therefore, as expected, the Standard libraries had the lowest 

proportion of short-range interactions – 6.5% and 5.6% (0.5% and 0.6% cis ≤ 1kb; 6.0% 

and 5.1% cis 1 kb – 10kb), while the Dovetail libraries had the highest (23.5% and 

15.8%).  
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Method Cell line Total pairs Unique pairs On-target pairs cis pairs cis ≤ 1kb cis 1kb - 10kb cis 10kb - 1Mb cis > 1Mb 
Dovetail T-47D 368,720,573 214,685,595 58% 36,985,965 17% 31,196,050 84% 7,340,953 24% 4,555,742 15% 12,536,036 40% 6,763,319 22% 
Dovetail GS2 441,740,325 250,167,558 57% 43,554,308 17% 34,370,927 79% 5,432,680 16% 5,163,740 15% 15,121,596 44% 8,652,911 25% 

                 

Standard T-47D 209,109,121 110,241,257 53% 41,631,203 38% 33,209,433 80% 168,037 0.5% 2,002,164 6% 18,739,495 56% 12,299,737 37% 
Standard GS2 312,566,378 213,308,313 68% 39,626,364 19% 28,653,821 72% 161,536 0.6% 1,453,290 5% 14,737,517 51% 12,301,478 43% 

                 

Arima T-47D 421,801,216 257,001,042 61% 25,115,067 10% 20,599,509 82% 1,520,671 7% 3,751,012 18% 10,995,365 53% 4,332,461 21% 
Arima GS2 239,860,624 184,105,614 77% 39,266,593 21% 33,078,541 84% 3,433,968 10% 7,867,403 24% 16,188,027 49% 5,589,143 17% 

Table 3.1: Summary sequencing statistics for T-47D and GS2 rCHi-C libraries. Summary sequencing statistics for the rCHi-C libraries generated in T-47D (ER+, 
breast cancer cell line) and GS2 (‘normal’ immortalised breast fibroblast cell line) cell lines using the Standard in-house Hi-C (Standard), the Arima Hi-C (Arima) and 
the Dovetail Genomics Omni-C (Dovetail) protocols. Total pairs – total number of read pairs where both ends aligned uniquely to the reference genome. On-target 
pairs – read pairs for which at least one end overlaps with a capture array probe (minimum overlap = 1 bp). 

 
Method Cell line Bin size Total IPs trans IPs cis < 1kb cis 1kb - 10kb cis 10kb - 100kb cis 100kb - 1Mb cis ≥ 1Mb 
Dovetail T-47D 5kb 9,985 557 5.6% 0 0.00% 13 0.1% 224 2.2% 4,067 41% 5,124 51% 
Dovetail T-47D 2kb 12,885 24 0.2% 6 0.05% 69 0.5% 870 6.8% 11,150 87% 766 6% 
Arima T-47D 5kb 9,907 1,128 11.4% 0 0.00% 4 0.0% 140 1.4% 4,312 44% 4,323 44% 
Arima T-47D 2kb 15,002 168 1.1% 0 0.00% 21 0.1% 848 5.7% 13,398 89% 567 4% 

Standard T-47D NA 18,407 3,716 20.2% 2 0.01% 19 0.1% 154 0.8% 5,839 32% 8,677 47% 
                

Dovetail GS2 5kb 12,059 68 0.6% 0 0.00% 6 0.0% 152 1.3% 4,945 41% 6,888 57% 
Dovetail GS2 2kb 18,342 47 0.3% 6 0.03% 18 0.1% 1,095 6.0% 15,750 86% 1,426 8% 
Arima GS2 5kb 12,645 142 1.1% 0 0.00% 7 0.1% 127 1.0% 5,675 45% 6,694 53% 
Arima GS2 2kb 24,845 107 0.4% 0 0.00% 33 0.1% 1,165 4.7% 21,343 86% 2,197 9% 

Standard GS2 NA 11,121 79 0.7% 0 0.00% 10 0.1% 49 0.4% 5,063 46% 5,920 53% 

Table 3.2: Interaction peak calling statistics for T-47D and GS2 rCHi-C libraries. A breakdown of significant (q-value ≤ 0.1) interaction peaks (IPs) called in the 
rCHi-C libraries generated in two cell lines using three different protocols and called using CHiCANE is shown. Standard libraries were called using individual HindIII 
fragments as the unit of analysis, while Arima and Dovetail libraries were called using both 2kb- and 5kb-binned data.
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3.2. Interaction peak calling 

Interaction peaks were called using CHiCANE108– an in-house pipeline developed 

specifically for the analysis of rCHi-C data. Standard libraries were called using 

individual HindIII fragments as the unit of analysis, while Arima and Dovetail libraries 

were called using both 2kb- and 5kb-binned data. For simplicity, I will refer to both 

HindIII fragments and Arima/Dovetail bins as ‘bins’ for the rest of the thesis. Only 

significant CHiCANE interaction peaks (q-value ≤ 0.1) were considered for further 

analysis.  

 

The number of interaction peaks called per library varied from 9,907 to 24,845. Table 3.2 

shows the breakdown of these interaction peaks. Interestingly, the proportion of trans 

interaction peaks was higher in the T-47D libraries (0.2% to 20.2%) than in GS2 libraries 

(0.3% to 1.1%), potentially because T-47D cells are highly re-arranged cancer cells. 

Higher trans proportions were consistently observed in the Standard and 5kb-binned 

Arima and Dovetail libraries, than in the 2kb-binned libraries. Additionally, the Standard 

and 5kb-binned libraries had much higher proportions of cis interaction peaks in the ≥ 1 

Mb range, which is unlikely to be the most relevant range for functional follow up of 

GWAS risk loci110, 111.  

 

3.3. Overview of all interaction peaks 

In a recent fine-scale mapping analysis, the BCAC identified 7,394 CCVs within 196 

‘strong-evidence’ (p < 1 x 10-6) signals across 129 genomic regions67. It is generally 

accepted that a large proportion of functional non-coding GWAS variants influence breast 

cancer risk by disrupting regulatory elements that mediate expression of target gene(s)78, 

80. Therefore, the rationale for using 3C-based technologies for annotation of risk loci is 

that identifying regulatory interactions between a genomic region that harbours a CCV 

and a genomic region that colocalises with a gene promoter could prioritise a subset of 

CCVs and putative target genes for in-depth functional studies. 

 

Accordingly, rCHi-C data was mapped to: (i) 84,643 promoters associated with 27,375 

coding and non-coding genes; (ii) 5,117 out of 7,394 CCVs reported by Fachal and 

colleagues67 (the remaining 2,277 CCVs were accounted for by one signal, resulting from 
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strong LD with a CNV, and, therefore, were excluded from further analysis). The results 

are illustrated in Table 3.3.  

 

The proportion of unique gene-containing bins (defined as bins that colocalised with gene 

promoter(s) and formed at least one interaction peak) out of the total unique bins in each 

given dataset varied from 2.3% to 9.7%. There were 113 to 453 unique genes that 

participated in 345 to 4,870 interaction peaks with a median of 2 to 4 interaction peaks 

per individual gene. The proportion of unique CCV-containing bins (defined as the bins 

that colocalised with at least one CCV and formed at least one interaction peak) out of 

the total unique bins in each given dataset varied from 5.1% to 7.7%. These CCV-

containing bins harboured a total of 684 to 1,190 unique CCVs (13.4% to 23.3% out of 

5,117 CCVs) that participated in 3,097 to 7,463 interaction peaks. Interestingly, the 5kb-

binned Dovetail libraries had the lowest absolute numbers (and proportions) of gene-

containing bins. In addition, when comparing 5kb and 2kb Dovetail data, the difference 

between numbers of gene-containing bins was much more pronounced than between 

numbers of CCV-containing bins.  

 

3.4. Direct interaction peaks 

The overall aim of my CHi-C experiments is to prioritise a set of CCVs and putative 

target genes that warrant in-depth functional follow up. In order to do this, I focused on 

the subset of interaction peaks in which a bin colocalising with a gene promoter formed 

a direct interaction with a CCV-containing bin. Table 3.4 shows a summary of these direct 

interaction peaks. The number of direct interaction peaks varied from 47 to 678. They 

involved 27 to 272 unique gene-containing bins harbouring a total of 32 to 217 ‘direct’ 

genes (1 to 3 genes per bin). Overall, 105 to 616 CCVs were involved in direct interaction 

peaks (‘direct’ CCVs). The largest range of CCVs per bin (1 to 40) was observed in 

Standard libraries, reflecting the larger average size of a restriction fragment.  

 

Comparing ‘direct’ genes across differentially binned Arima and Dovetail datasets 

(Figure 3.1), almost three times as many individual genes were involved in direct 

interaction peaks in the 2kb Dovetail data versus 5kb data. For Arima, numbers were 

more similar between the datasets, with more individual genes found in the 5kb Arima 

data versus 2kb Arima data (except that more gene-containing bins were identified in the 

2kb Arima GS2 data).   
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Method Cell 
line 

Bin 
size 

Total 
IPs 

Total 
unique bins 
in a dataset 

Total unique 
gene-containing 

bins 

Total 
unique 
genes 

Number of IPs 
involving gene-
containing bins 

IPs per unique 
gene (median + 

range) 

Total unique 
CCV-

containing bins 

Total unique 
CCVs (out of 

5,117) 

Number of IPs 
involving CCV-
containing bins 

Dovetail T-47D 5kb 9,985 4,744 108 2.3% 113 345 2 (1 to 29) 322 6.8% 886 17.3% 3,658 
Dovetail T-47D 2kb 12,885 5,844 313 5.4% 307 1,529 2 (1 to 94) 417 7.1% 749 14.6% 3,097 
Arima T-47D 5kb 9,907 4,108 378 9.2% 311 1,978 3 (1 to 229) 295 7.2% 824 16.1% 3,571 
Arima T-47D 2kb 15,002 5,506 423 7.7% 279 2,122 3 (1 to 84) 363 6.6% 684 13.4% 3,599 

Standard T-47D NA 18,407 7,113 585 8.2% 453 3,136 2 (1 to 224) 365 5.1% 1,085 21.2% 6,901 
               

Dovetail GS2 5kb 12,059 4,725 120 2.5% 120 414 2 (1 to 24) 342 7.2% 956 18.7% 5,611 
Dovetail GS2 2kb 18,342 7,075 379 5.4% 359 2,565 4 (1 to 94) 504 7.1% 946 18.5% 5,633 
Arima GS2 5kb 12,645 5,063 493 9.7% 383 2,403 3 (1 to 108) 388 7.7% 1,190 23.3% 5,763 
Arima GS2 2kb 24,845 9,018 691 7.7% 410 4,870 4 (1 to 171) 548 6.1% 1,084 21.2% 7,463 

Standard GS2 NA 11,121 5,688 471 8.3% 363 2,082 2 (1 to 346) 292 5.1% 956 18.7% 5,028 

Table 3.3: Summary of T-47D and GS2 interaction peaks for which the interacting fragments colocalised with: (i) an annotated RefSeq gene promoter; (ii) 
one or more CCVs selected by the BCAC fine-scale mapping analysis. 
 

Method Cell line Bin size Total direct IPs Unique gene-containing bins Unique genes Unique CCV-containing bins Unique CCVs CCVs per bin 
Dovetail T-47D 5kb 47 27 32 37 105 1 to 8 
Dovetail T-47D 2kb 192 87 95 133 226 1 to 8 
Arima T-47D 5kb 331 144 124 139 395 1 to 19 
Arima T-47D 2kb 264 120 82 116 210 1 to 8 

Standard T-47D NA 530 272 217 157 495 1 to 40 
         

Dovetail GS2 5kb 108 52 53 53 134 1 to 13 
Dovetail GS2 2kb 400 157 145 219 413 1 to 10 
Arima GS2 5kb 603 239 184 191 616 1 to 19 
Arima GS2 2kb 678 259 156 242 474 1 to 16 

Standard GS2 NA 423 227 177 141 504 1 to 40 

Table 3.4: Summary of direct interaction peaks called in T-47D and GS2 rCHi-C libraries. Direct interaction peaks – interaction peaks in which a bin colocalising 
with a gene promoter forms a direct interaction with a CCV-containing bin. 
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In terms of similarity, 22 out of 32 genes found in the 5kb Dovetail T-47D dataset 

appeared in the 2kb dataset, and 42 out of 53 genes found in the 5kb GS2 dataset were in 

the 2kb dataset. For Arima, 55 out of 82 genes found in the 2kb T-47D dataset appeared 

in the 5kb dataset, and 104 out of 156 genes found in the 2kb GS2 dataset were in the 5kb 

dataset. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1: Venn diagrams illustrating the overlap between ‘direct’ genes identified in the 
2kb- and 5kb-binned Dovetail and Arima rCHi-C libraries generated in T-47D and GS2 
cells. (A) T-47D Dovetail 5kb and T-47D Dovetail 2kb rCHi-C datasets; (B) GS2 Dovetail 5kb 
and GS2 Dovetail 2kb rCHi-C datasets; (C) T-47D Arima 5kb and T-47D Arima 2kb rCHi-C 
datasets; (D) GS2 Arima 5kb and GS2 Arima 2kb rCHi-C datasets. 
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Comparing across the protocols, on average, ‘direct’ genes and CCVs found in Dovetail 

libraries had higher overlap with those in Arima libraries rather than with those in 

Standard libraries (Figure 3.2 and Figure 3.3). Additionally, there was higher overlap 

between ‘direct’ genes and CCVs between the Arima and Standard libraries, than between 

the Dovetail and Standard libraries. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Venn diagrams illustrating the overlap between ‘direct’ genes identified in 
different T-47D and GS2 rCHi-C datasets. (A) T-47D Arima 5kb, T-47D Dovetail 5kb and T-
47D Standard rCHi-C datasets; (B) T-47D Arima 2kb, T-47D Dovetail 2kb and T-47D Standard 
rCHi-C datasets; (C) GS2 Arima 5kb, GS2 Dovetail 5kb and GS2 Standard rCHi-C datasets; (D) 
GS2 Arima 2kb, GS2 Dovetail 2kb and GS2 Standard rCHi-C datasets. 
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Figure 3.3: Venn diagrams illustrating the overlap between ‘direct’ CCVs identified in 
different T-47D and GS2 rCHi-C datasets. (A) T-47D Arima 5kb, T-47D Dovetail 5kb and T-
47D Standard rCHi-C datasets; (B) T-47D Arima 2kb, T-47D Dovetail 2kb and T-47D Standard 
rCHi-C datasets; (C) GS2 Arima 5kb, GS2 Dovetail 5kb and GS2 Standard rCHi-C datasets; (D) 
GS2 Arima 2kb, GS2 Dovetail 2kb and GS2 Standard rCHi-C datasets. 

 

Generally, the largest numbers of ‘direct’ genes and CCVs that were called in a single 

dataset (referred to hereafter as non-replicated genes and CCVs) were found in libraries 

generated using the Standard protocol. The only exception was in the 5kb-binned GS2 

data, where there was a similar number of non-replicated genes and much larger number 

of non-replicated CCVs in the Arima library. As mentioned earlier, the Standard and 5kb-

binned libraries had a higher proportion of trans and longer-range cis interaction peaks. 

To investigate whether this trend could be (at least partially) explained by these 

differences, I looked into the distribution of direct interaction peaks (Table 3.5). 
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Cell line T-47D GS2 

Dataset 
Total 
direct 

IPs 

Very long-
range (%) trans (%) 

Total 
direct 

IPs 

Very long-
range (%) trans (%) 

2kb Dovetail 192 0 0 400 0 0 
2kb Arima 264 0 0 678 2 (0.3%) 12 (1.8%) 

5kb Dovetail 47 3 (6.4%) 0 108 2 (1.9%) 0 
5kb Arima 331 31 (9.4%) 9 (2.7%) 603 63 (10.4%) 12 (2.0%) 
Standard 530 104 (19.6%) 49 (9.2%) 423 44 (10.4%) 0 

Table 3.5: Very long-range and trans direct interaction peaks in T-47D and GS2 rCHi-C 
libraries. Very long-range (here defined as cis > 2 Mb) and trans direct IPs called in T-47D and 
GS2 rCHi-C libraries. 

 

In T-47D, the largest proportions of very long-range (19.6%) and trans (9.2%) interaction 

peaks were observed in the Standard library. Comparing to the 2kb-binned datasets, 82 

out of 165 non-replicated genes (49.7%) and 131 out of 333 non-replicated CCVs (39.3%) 

found in the Standard library are explained by these 153 very long-range or trans 

interaction peaks. When comparing to the 5kb datasets, 70 out of 133 non-replicated 

genes (52.6%) and 67 out of 253 non-replicated CCVs (26.5%) came from these 

interaction peaks. 

 

In GS2, 44 (10.4%) direct interaction peaks identified in the Standard library were very 

long-range. Comparing to the 2kb datasets, 31 out of 100 non-replicated genes (31%) and 

79 out of 268 non-replicated CCVs (29.5%) in the Standard dataset are explained by these 

very long-range interaction peaks. When comparing to the 5kb datasets, 20 out of 77 non-

replicated Standard genes (26%) and 20 out of 146 non-replicated Standard CCVs 

(13.7%) are explained by these interaction peaks. Among GS2 datasets, the highest 

proportion of very long-range and trans interaction peaks (12.4%) was observed in the 

5kb Arima library, potentially explaining why it displayed a similar number of non-

replicated genes and much larger number of non-replicated CCVs than the Standard 

library in Figures 3.3C and 3.4C. These potentially less informative interaction peaks 

included 14 out of 74 non-replicated genes (18.9%) and 29 out of 219 non-replicated 

CCVs (13.2%).  

 

Overall, half (T-47D) and one-third (GS2) of ‘direct’ genes that were only identified in 

Standard protocol libraries mapped to very long-range or trans interaction peaks. These 

interaction peaks explain a lower proportion of non-replicated Standard CCVs, 

potentially because at least a subset of the remaining non-replicated CCVs can be 
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accounted for by some large HindIII fragments that contain many CCVs. Indeed, in the 

Standard libraries, there were 1 to 40 individual CCVs per HindIII fragment, while in the 

Arima and Dovetail libraries this ranges from 1 to 8 to 1 to 19 CCVs per bin (Table 3.4). 

Gene-containing bins, in turn, contained 1 to 3 individual ‘direct’ genes, regardless of the 

protocol.   

 

3.5. The 2q35 locus 

Since the true number of causal variants and target genes underlying each association 

signal is unknown, it is difficult to assess the quality of data generated by different 

protocols by examining the numbers alone. Therefore, to assess the data to the best of my 

ability, I examined a breast cancer risk locus at 2q35 that has been extensively 

characterised by this lab and others101, 112-114. Briefly, fine-scale mapping of the 2q35 

locus has defined three independent ‘strong-evidence’ signals annotated by rs4442975 

(signal 1; 1 CCV), rs138522813 (signal 2; 5 CCVs) and rs5838651 (signal 3; 42 CCVs) 

(Figure 1.1). Follow up studies identified IGFBP5 as the target gene, and rs4442975 and 

a structural variant esv3594306 (~ 1.4 kb deletion) as the likely causal variants at signals 

1 and 2 respectively, with causal variant(s) at signal 3 remaining unknown.  

 

The number of interaction peaks involving the IGFBP5 promoter varied from 1 to 50 

between the datasets. On average, more activity was observed in the 2q35 region in GS2 

libraries rather than in T-47D libraries. Although the functional variant at signal 1 formed 

at least one interaction peak in eight out of ten datasets (not in the 5kb-binned Dovetail 

and Arima GS2 libraries), only four datasets (Standard GS2, 5kb Arima T-47D, 2kb 

Dovetail GS2 and T-47D) picked up a direct interaction between this variant and the 

IGFBP5 promoter (Figure 3.4 and Figure 3.5) 

 

Only 2kb-binned datasets identified any interaction peaks at signal 2 at all; and three of 

these datasets (2kb Arima GS2, 2kb Dovetail GS2 and T-47D) picked up a direct 

interaction peak between a bin containing esv3594306 (together with rs572022984) and 

the IGFBP5 promoter. Interestingly, the 2kb-binned Arima GS2 library also picked up a 

direct interaction peak between esv3594306-containing bin and AC007563.3 – a lncRNA 

that has not been studied in the context of cancer. 
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Figure 3.4: Direct interaction peaks at 2q35 in T-47D cells. Direct interaction peaks (shown 
in a looping format) at the 2q35 breast cancer risk locus (chr2:216,541,109-217,931,785 fine-
mapping region, hg38) detected in T-47D rCHi-C data generated using the Standard, Arima and 
Dovetail protocols. Red loops – direct IPs that involved rs4442975 (signal 1). Blue loops – direct 
IPs that involved signal 2 CCVs. Green loops – direct IPs that involved signal 3 CCVs. Genes – 
annotated RefSeq gene promoters. CCVs – credible causal variants selected by the BCAC fine-
mapping study67. Baits – rCHi-C array regions. CTCFs – consensus CTCF sites (described in 
Section 2.8). T47D H3K27ac – H3K27ac peaks identified from T-47D CUT&Tag data.  

 

At signal 3, six datasets picked up at least one direct interaction peak involving the 

IGFBP5 promoter (5kb Arima T-47D and GS2, Standard T-47D and GS2, GS2 Dovetail 

5kb and 2kb), while the 2kb-binned Arima GS2 dataset picked up one direct interaction 

peak involving AC007563.3. Overall, the number of signal 3 CCVs that formed at least 

one direct interaction peak with the IGFBP5 promoter varied from 2 to 42. rs6706673 

formed at least one direct interaction peak with the IGFBP5 promoter in four datasets 

(5kb Arima T-47D and GS2, Standard T-47D and GS2). rs6723847 formed at least one 

direct interaction peak in five datasets (5kb Arima T-47D and GS2, Standard T-47D and 
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GS2, 5kb Dovetail GS2). Often, however, due to the tight LD in that signal, there were 

multiple CCVs (2 to 27) per interacting bin. Although, the use of the 2kb-binned data as 

opposed to the 5kb-binned or Standard (HindIII) data broke down some of the large 

fragments, it remained difficult to confidently prioritise any of the variants.  
 

 

Figure 3.5: Direct interaction peaks at 2q35 in GS2 cells. Direct interaction peaks (shown in a 
looping format) at the 2q35 breast cancer risk locus (chr2:216,541,109-217,931,785 fine-mapping 
region, hg38) detected in GS2 rCHi-C data generated using the Standard, Arima and Dovetail 
protocols. Only direct interaction peaks involving the IGFBP5 promoter are shown. GS2 Arima 
2kb dataset also picked up one direct IP between esv3594306-containing bin (signal 2) and 
AC007563.3, and one between a bin containing rs3821098 and rs11693806 (signal 3) and 
AC007563.3. Red loops – direct IPs that involved rs4442975 (signal 1). Blue loops – direct IPs 
that involved signal 2 CCVs. Green loops – direct IPs that involved signal 3 CCVs. Genes – 
annotated RefSeq gene promoters. CCVs – credible causal variants selected by the BCAC fine-
mapping study67. Baits – rCHi-C array regions. CTCFs – consensus CTCF sites (described in 
Section 2.8). GS2 H3K27ac – H3K27ac peaks identified from GS2 CUT&Tag data. 
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3.6. Prioritisation of putative target genes and CCVs 

Overall, 2kb-binned as opposed to 5kb-binned Arima and Dovetail datasets, seem to 

perform better in many of the assessed metrics and provide more usable data. So, on the 

grounds that one of my goals was to increase library resolution, I focused on the 2kb-

binned Arima and Dovetail datasets for the rest of the analysis. 

 

‘Direct’ genes identified in the 2kb Dovetail, 2kb Arima and Standard datasets were 

mapped back to 129 ‘strong-evidence’ breast cancer risk-associated regions (Table 3.6 

and Table 3.7). Using T-47D datasets, at least one target gene was identified at 40 

(Dovetail), 35 (Arima) and 42 (Standard) regions; while for GS2 these were found at 54 

(Dovetail), 56 (Arima) and 42 (Standard) regions.  

 

The true number of target genes at any locus is not known. It is likely that there will be 

more than one target gene at some loci, and it is possible that there are multiple genes 

contributing to the risk signal at several loci. Characterising a large number of genes and 

unravelling their combined effects would be challenging; pragmatically the number of 

genes that one can reasonably perform functional follow up on is limited to around 1 – 3 

genes. Therefore, to evaluate the ability of different protocols to prioritise putative target 

genes that warrant in-depth functional follow up, I looked at numbers of putative target 

genes identified per region using each of the protocols (Table 3.8). 
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Fine-mapping region T-47D Dovetail 2kb T-47D Arima 2kb T-47D Standard 
chr1:9983762-11006158   RP4-635E18.9; TARDBP 
chr1:45635245-46635245 NSUN4   
chr1:87191240-88191240  LINC01140 LMO4; LINC01140 

chr1:113405767-114405767 RSBN1; HIPK1 HIPK1  
chr1:145625092-146010623* NUDT17 NUDT17; PEX11B  

chr1:154676305-155678990 MTX1; THBS3; EFNA1; AC234582.1; 
AC234582.2; MUC1; RUSC1 

 SCNM1; TNFAIP8L2; EFNA3; SLC50A1; EFNA4; RP11-540D14.8; 
ADAM15; EFNA1 

chr1:203332121-204332121 ETNK2; KISS1; SOX13; GOLT1A ETNK2; GOLT1A; REN; SOX13; 
PLEKHA6; PIK3C2B; KISS1 ETNK2; GOLT1A; REN; SOX13; LINC00303; PLEKHA6; LINC00628 

chr1:204049714-205049714 NFASC NFASC; TMCC2 NFASC; PPP1R15B; TMCC2 
chr1:216547232-217547232 ESRRG   
chr2:28447809-29447810   YPEL5; ALK; FAM179A 

chr2:119987546-120988992   INHBB; AC073257.1; AC067960.1 
chr2:171019711-172608243  DLX2; DLX2-AS1 DLX2; DLX2-AS1 
chr2:216541109-217931785 IGFBP5  IGFBP5 

chr3:4200592-5200591 BHLHE40; EDEM1 ARL8B; BHLHE40 SSUH2 

chr3:26786474-28243756  AZI2; RP11-222K16.2; SLC4A7 NGLY1; OXSM; TOP2B; LINC00692; AZI2; AC114877.3; SLC4A7; 
RP11-222K16.1; CMC1 

chr3:63456021-64482224 PRICKLE2; RP11-14D22.1; 
RP11-14D22.2 PRICKLE2; RP11-14D22.2; PSMD6 C3orf14; PRICKLE2; RP11-14D22.1; RP11-14D22.2 

chr3:86488393-87488393  LINC00506  
chr3:140894017-141894017 ZBTB38  COL6A5; COL6A6; ATP2C1; ASTE1; NEK11 
chr4:104647856-105935604 PPA2; GSTCD; INTS12 PPA2 PPA2 

chr5:779675-1797374   
MRFAP1L1; BLOC1S4; AC093323.3; RP11-539L10.3; PPP2R2C; 

RP11-539L10.2; S100P; KIAA0232; MAN2B2; MRFAP1; EGFLAM; 
C4orf50 

chr5:15687249-16687419   RP1-251I12.1 
chr5:44013202-45206396 PAIP1; RP11-53O19.3 RP11-53O19.2 NNT; TMEM267 

chr5:56236057-57292056 CTC-236F12.4; IL6ST; ANKRD55; 
GPBP1 

MAP3K1; CTC-236F12.4; C5orf67; 
RP11-155L15.1; IL6ST; ANKRD55; 

GPBP1 

MAP3K1; AC008914.1; RP11-155L15.1; CDC20B; CCNO; IL6ST; 
CTC-236F12.4; ANKRD55; PLK2 

chr5:58388234-59569743 PDE4D   

chr5:90993653-91993653 RP11-213H15.1; RP11-414H23.3; 
RP11-414H23.2; ADGRV1; LYSMD3 RP11-414H23.3; RP11-414H23.2 

RP11-414H23.3; RP11-414H23.2; ADGRV1; NR2F1; SLF1; KIAA0825; 
FAM81B; CTC-458G6.2; CTC-529L17.2; POU5F2; RP11-185E12.2; 

MCTP1; RP11-133F8.2; CTC-529L17.1; RP11-348J24.1 
chr5:132571366-133571367   C5orf15; WSPAR; TCF7 
chr5:158303005-159317075 CTC-436K13.1; CTC-436K13.5  CTC-436K13.1; CTC-436K13.5 
chr6:20121007-21121007 E2F3; SOX4 SOX4; RP11-204E9.1 SOX4; RP11-204E9.1; CASC15; NBAT1; LINC00581 
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chr6:80918669-82086234   RP11-244G12.1 
chr6:129527974-130527974 RP1-69D17.4   
chr6:151097720-152615881  ESR1  
chr7:93984487-94984487 CALCR; PPP1R9A; PEG10; SGCE PEG10; SGCE; ASB4 AC004012.1; ASB4; AC002429.5 
chr8:36500965-37501668 ERLIN2   
chr8:74818066-76005702   PEX2; RP11-38H17.1; RP11-48D4.2; TPD52 

chr8:100966731-101966731 GRHL2   
chr8:123097926-124097925  WDYHV1  

chr8:126412414-129029685 CASC11; MYC; PVT1 CASC11; MYC; LINC00824 LINC00977; RP11-26E5.1; CCDC26; RP11-419K12.1; RP11-136O12.2; 
LINC00976 

chr10:8546150-9546150 GATA3; GATA3-AS1; RP11-379F12.4 GATA3; GATA3-AS1; RP11-379F12.4; 
TAF3 

GATA3; GATA3-AS1; RP11-379F12.4; TAF3; RP5-1031D4.2; 
RP11-138I18.2; ITIH5; ITIH2 

chr10:78581391-79627965 LINC00856  
MRPS16; POLR3A; RPS24; RP11-157J13.1; LINC00856; RP11-90J7.3; 
MECOM; DLG5; DNAJC9; MYNN; SAMD7; AC074033.1; LRRC34; 

TERC; LRRIQ4; SEC62; GPR160; ACTRT3; RP11-90J7.2; PHC3; 
PRKCI 

chr11:1377434-2421345 TNNT3  LSP1 
chr11:65276356-66315595 BANF1; EIF1AD; KAT5; CFL1; MUS81  KAT5 

chr11:107974789-108986410 ATM; NPAT; DDX10 DDX10 RP11-347E10.1 

chr11:129082612-130091276 RP11-237N19.3 BARX2 
RP11-673E11.2; FOXRED1; SRPRA; JAM3; FAM118B; RPUSD4; 
ESAM; VSIG2; RP11-469N6.3; ST3GAL4; PUS3; RP11-50B3.2; 

RP11-555G19.1; HEPN1; PKNOX2; TIRAP; CDON 
chr12:13760997-14760997 ATF7IP ATF7IP  
chr12:27486913-28881482  PTHLH  

chr12:114898717-115898717 TBX3; RP11-162N7.1 TBX3; RP11-162N7.1; RP4-601P9.2 

TBX5; RP11-100F15.1; RP11-100F15.2; RBM19; TBX3; RP4-601P9.2; 
RP11-162N7.1; RP4-601P9.1; LHX5; RP11-25E2.1; WSB2; SDS; 

RP11-411G2.2; C12orf49; SDSL; TESC; TESC-AS1; RP11-497G19.2; 
RP11-989F5.3 

chr12:119894342-120894343 MSI1; PLA2G1B; PXN MSI1; DYNLL1; AL021546.6; COX6A1; 
PXN PLA2G1B 

chr14:36163563-37166547 PAX9; SLC25A21; MIPOL1 SLC25A21 SLC25A21 
chr14:67650477-69067965 ZFP36L1  ZFP36L1 
chr15:90465983-91465985  AC068831.16; VPS33B FAM174B; LINC01578 
chr16:3556787-4556787  ADCY9; LINC01569  

chr16:53267042-54321379 CRNDE; IRX5; IRX3; CTD-3032H12.2; 
RP11-434E6.4; FTO; CTD-3032H12.1 

CRNDE; IRX5; CTD-3032H12.1; 
CTD-3032H12.2; IRX3; FTO; 

RPGRIP1L 

CRNDE; IRX5; CTD-3032H12.1; CTD-3032H12.2; RP11-324D17.1; 
MMP2; IRX6; RP11-26L20.5; IRX3; RP11-212I21.2; AC007491.1; 

RP11-212I21.5; CTD-2302M15.1 
chr16:80114430-81117200 CENPN; CMC2 CDYL2 WWOX; VAT1L; CLEC3A; NUDT7 
chr16:86551631-87551631 FOXL1; FOXC2; MTHFSD FOXL1; FOXC2; RP11-463O9.6 FOXL1; FOXC2; MTHFSD; RP11-118F19.1; GSE1 
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chr17:79794855-79816335* CCDC40; TBC1D16 TBC1D16; RP11-353N14.4; CBX4 TBC1D16 
chr19:12547463-14343759 IER2; STX10 DAND5  

chr19:29286822-30286822   PDCD5; ANKRD27; RGS9BP; CTD-2538C1.2; NUDT19; ZNF507; 
SLC7A9 

chr21:14701662-15701664 AF127577.12; NRIP1 AJ009632.3  

Table 3.6: Distribution of T-47D ‘direct’ genes at 129 breast cancer risk regions. Out of 129 fine-mapping regions to which 196 ‘strong-evidence’ breast cancer 
risk signals map, there were 40 at which 95 unique genes formed direct IPs in the T-47D Dovetail 2kb dataset, 35 at which 82 unique genes formed direct IPs in the 
T-47D Arima 2kb dataset and 42 at which 217 unique genes formed direct IPs in the T-47D Standard dataset. Regions that were not covered by the capture array as 
well as regions where no putative target genes were identified using any of the three datasets are not shown. Fine-mapping region coordinates are in GRCh38/hg38. 
(*) – there were several fine-mapping regions (originally defined in hg19) that when lifted over to hg38 were split or partially deleted in hg38. These regions were 
compiled manually to encompass all CCVs at each of the regions. Purple – genes that were called on the basis of trans interaction peaks. 
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Fine-mapping region GS2 Dovetail 2kb GS2 Arima 2kb GS2 Standard 

chr1:9983762-11006158 APITD1; APITD1-CORT  C1orf127; DRAXIN; MAD2L2; RP4-635E18.9; 
TARDBP; C1orf167 

chr1:45635245-46635245 NSUN4   
chr1:87191240-88191240 LMO4; LINC01140 LMO4; LINC01140 LMO4; LINC01140 

chr1:113405767-114405767 HIPK1 RSBN1; HIPK1  
chr1:145625092-146010623* NUDT17; POLR3C; RNF115 NUDT17; POLR3C; RNF115  
chr1:154676305-155678990 MTX1; THBS3; RUSC1 MTX1; THBS3 CCT3; RHBG; LMNA 
chr1:203332121-204332121 ETNK2; SOX13 SOX13; PIK3C2B; ETNK2; LINC00628 ETNK2; SOX13 
chr1:204049714-205049714  NFASC  
chr2:18634525-19621042  LINC00954; OSR1 LINC00954 
chr2:28447809-29447810 ALK ALK; CLIP4 LINC01460; ALK; CLIP4; FAM179A; YPEL5 

chr2:119987546-120988992  AC073257.2 AC073257.1; AC067960.1; NIFK; TSN 

chr2:171019711-172608243 DCAF17; METTL8; DLX2; DLX2-AS1; 
SLC25A12; DYNC1I2; DLX1 

CTB-25B13.5; DLX2; DLX2-AS1; HAT1; 
DYNC1I2; DLX1 CYBRD1; DLX2; DLX2-AS1; DYNC1I2; HAT1 

chr2:172846180-173848166 LINC01305  SP9 
chr2:200816524-201816524 CFLAR; FAM126B; NDUFB3 CASP10; CFLAR  
chr2:216541109-217931785 IGFBP5 IGFBP5; AC007563.3 IGFBP5 

chr3:4200592-5200591 ARL8B EDEM1 BHLHE40 
chr3:26786474-28243756 NEK10 AZI2; CMC1; RP11-222K16.2; NEK10 AZI2; CMC1 

chr3:63456021-64482224 ATXN7; THOC7; PRICKLE2; RP11-14D22.1; 
RP11-14D22.2 

ATXN7; C3orf49; PRICKLE2; RP11-14D22.2; 
RP11-14D22.1; LINC00994 PRICKLE2; RP11-14D22.1; RP11-14D22.2 

chr3:86488393-87488393 LINC00506 LINC00506  
chr3:140894017-141894017 ZBTB38   
chr4:82948971-83948971 NKX6-1 COQ2; NKX6-1  

chr4:104647856-105935604 TET2; PPA2; GSTCD; INTS12 PPA2 PPA2 
chr5:44013202-45206396 NNT; PAIP1; FGF10 NNT PAIP1 

chr5:56236057-57292056 MAP3K1; CTC-236F12.4; RP11-155L15.1; IL6ST; 
AC008914.1; ANKRD55 

MAP3K1; CTC-236F12.4; RP11-155L15.1; 
C5orf67; IL6ST; SLC38A9; CTD-2227I18.1 

MAP3K1; AC008914.1; IL6ST; CDC20B; DDX4; 
ANKRD55; C5orf67; RP11-155L15.1 

chr5:58388234-59569743 PDE4D PDE4D SETD9 

chr5:90993653-91993653 RP11-213H15.1; LUCAT1; RP11-213H15.4; 
RP11-414H23.2 RP11-213H15.1; LUCAT1; RP11-213H15.4 

ADGRV1; FAM81B; MCTP1; CTC-529L17.2; 
NR2F1; POU5F2; RP11-185E12.2; KIAA0825; 

SLF1; FAM172A; RP11-133F8.2; CTC-458G6.2 
chr5:132571366-133571367 C5orf15; CTB-113I20.2; VDAC1; TCF7 C5orf15; TCF7; CTB-113I20.2; VDAC1 C5orf15; TCF7; WSPAR; CTB-113I20.2; VDAC1 

chr5:158303005-159317075 CTC-436K13.1; CTC-436K13.5; EBF1; 
RP11-175K6.1 EBF1; RP11-175K6.1  

chr5:169664483-170664483   LINC01187; WWC1; PANK3 
chr6:15899326-16899326 STMND1; ATXN1  STMND1 
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chr6:20121007-21121007 E2F3; MBOAT1; SOX4; RP11-204E9.1 E2F3; SOX4; DCDC2; CASC15; NBAT1; 
LINC00581; RP1-135L22.1 

CASC15; NBAT1; DCDC2; MRS2; SOX4; 
KAAG1; RP11-204E9.1; E2F3; RP11-524C21.2; 

NRSN1 
chr6:80918669-82086234 FAM46A; AL133475.1; TTK FAM46A; BCKDHB BCKDHB; ELOVL4; RP11-250B2.5 

chr6:129527974-130527974 RP1-69D17.4; EPB41L2; ARHGAP18; TMEM244; 
AKAP7; RP11-102N11.1 

ARHGAP18; RP1-69D17.4; TMEM244; 
RP11-102N11.1; EPB41L2 EPB41L2 

chr6:151097720-152615881 ESR1; ARMT1; RMND1 ESR1; ARMT1; RMND1 ESR1 

chr7:93984487-94984487 CASD1; PPP1R9A; PON1; AC002429.5; ASB4; 
AC004012.1 

PEG10; SGCE; CASD1; ASB4; AC002429.5; 
AC004012.1; PON2; PPP1R9A; PON3 

ASB4; AC002429.5; PON2; PON1; 
AC004012.1; PON3 

chr8:60001-720692  LINC00115; LINC01128; RP5-857K21.4 MYOM2; KBTBD11; DLGAP2; RP11-439C15.4; 
RP11-439C15.5 

chr8:29152099-30152100 DUSP4 DUSP4  
chr8:36500965-37501668 ERLIN2   
chr8:74818066-76005702   RP11-91P17.1; RP11-38H17.1 

chr8:126412414-129029685 CASC11; MYC; CCDC26; RP11-419K12.1; PVT1; 
LINC00977; LINC00976; LINC00824 

MYC; CASC11; CCDC26; RP11-419K12.1; PVT1; 
LINC00977; LINC00824; LINC00976 

CCDC26; RP11-419K12.1; PCAT1; CASC11; 
MYC; RP11-26E5.1; PVT1; LINC00824; 

LINC00976; LINC00977 
chr9:107041527-108633073 KLF4 KLF4  

chr10:8546150-9546150   RP5-1031D4.2; PRKCQ-AS1; RP11-554I8.1; 
SFMBT2; TAF3; RP5-1119O21.2; ITIH2 

chr10:21244013-22620463 BMI1 MLLT10; RP11-573G6.10; BMI1; COMMD3; 
COMMD3-BMI1 MLLT10; SKIDA1 

chr10:78581391-79627965 LINC00856; RPS24; RP11-90J7.3; POLR3A RPS24; RP11-90J7.3; LINC00856; RP11-157J13.1 ZCCHC24; LINC00856; RP11-90J7.3; 
RP11-157J13.1; POLR3A; RPS24 

chr10:112514168-113526395 TCF7L2; VTI1A; ZDHHC6; HABP2 TCF7L2; VTI1A; ZDHHC6; HABP2  
chr11:1377434-2421345 TNNT3 KRTAP5-6  

chr11:65276356-66315595 SIPA1 KAT5  
chr11:69509114-69521223*  CCND1  
chr11:107974789-108986410  DDX10  
chr12:13760997-14760997 ATF7IP ATF7IP  
chr12:27486913-28881482 PTHLH PTHLH  

chr12:114898717-115898717 TBX3; RBM19; RP11-162N7.1 TBX3; RP11-110L15.1; RP11-162N7.1 

TBX3; RBM19; RP11-162N7.1; RP4-601P9.2; 
RP4-601P9.1; RP11-100F15.2; C12orf49; 

RP11-100F15.1; RP11-411G2.2; RPH3A; LHX5; 
RP11-25E2.1 

chr12:119894342-120894343 PXN   
chr13:31894673-32898488  FRY  
chr14:36163563-37166547 SLC25A21 SLC25A21; MIPOL1 SLC25A21 
chr14:67650477-69067965 ZFP36L1 ZFP36L1  
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chr14:90874725-91902279  GPR68  
chr14:92137728-93150006   CTD-2547L24.3; GPR68; SERPINA5 
chr15:90465983-91465985   FAM174B; CHD2 
chr16:3556787-4556787 ADCY9; GLIS2-AS1 LINC01569  

chr16:52004913-53004913   CES5A 

chr16:53267042-54321379 CRNDE; IRX5; IRX3; CTD-3032H12.2; 
CTD-3032H12.1 

CRNDE; IRX5; IRX3; FTO; CTD-3032H12.2; 
MMP2; CTD-3032H12.1; RPGRIP1L; AC007491.1; 

RP11-434E6.4; RP11-324D17.1; RP11-324D17.2 

CTD-3032H12.1; CTD-3032H12.2; CRNDE; IRX5; 
RP11-212I21.5; RP11-212I21.2; MMP2; ADCY7; 

RP11-26L20.4; AC007491.1; RP11-324D17.1; 
SLC6A2; RP11-212I21.4; IRX6; RP11-26L20.5; 

IRX3; LPCAT2; CTD-2302M15.1; NUDT21; 
OGFOD1; GNAO1; RP11-434E6.4; RP11-434E6.2 

chr16:54148152-55148152  IRX3  
chr16:80114430-81117200   VAT1L 
chr16:86551631-87551631 FOXC2; FOXL1; MTHFSD; RP11-58A18.1 FOXC2; FOXL1; MTHFSD FOXL1; FOXC2; MTHFSD; RP11-442O1.3 
chr19:12547463-14343759 IER2; STX10; LYL1; NACC1; TRMT1 LYL1; NFIX; NACC1; TRMT1; IER2; STX10  
chr19:16684212-17783315 HAUS8; MYO9B HAUS8; MYO9B  

chr19:17939625-18960332 HOMER3; CERS1; GDF1; COPE; DDX49; 
C19orf60; UBA52 UBA52; C19orf60  

chr19:29286822-30286822   CTC-565M22.1; PDCD5; ZNF507; ANKRD27; 
RGS9BP; CTD-2538C1.2; NUDT19; CEP89 

chr21:14701662-15701664  HSPA13  
chr22:37672826-39463350 PLA2G6; MAFF   
chr22:39980230-41131866 MKL1 MKL1 MKL1 

Table 3.7: Distribution of GS2 ‘direct’ genes at 129 breast cancer risk regions. Out of 129 fine-mapping regions to which 196 ‘strong-evidence’ breast cancer risk 
signals map, there were 54 at which 145 unique genes formed direct IPs in the GS2 Dovetail 2kb dataset, 56 at which 156 unique genes formed direct IPs in the GS2 
Arima 2kb dataset and 42 at which 177 unique genes formed direct IPs in the GS2 Standard dataset. Regions that were not covered by the capture array as well as 
regions where no putative target genes were identified using any of the three datasets are not shown. Fine-mapping region coordinates are in GRCh38/hg38. (*) – there 
were several fine-mapping regions (originally defined in hg19) that when lifted over to hg38 were split or partially deleted in hg38. These regions were compiled 
manually to encompass all CCVs at each of the regions. Purple – genes that were called on the basis of trans interaction peaks.
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At most regions, the Arima and Dovetail protocols identified 1 – 3 putative target genes, 

while the Standard protocol identified 4 or more genes at more than 40% of the regions, 

making it less feasible to perform functional follow up on these genes. 

 

Protocol T-47D GS2 
≤ 3 genes ≥ 4 genes ≤ 3 genes ≥ 4 genes 

Dovetail 33 (82.5%) 7 (17.5%) 37 (68.5%) 17 (31.5%) 
Arima 30 (85.7%) 5 (14.3%) 41 (73.2%) 15 (26.8%) 

Standard 23 (54.8%) 19 (45.2%) 25 (59.5%) 17 (40.5%) 

Table 3.8: Number of putative target genes per region. Absolute numbers and percentages (in 

brackets) of breast cancer risk fine-mapping regions where ≤ 3 or ≥ 4 putative target genes were 

identified per region using the 2kb Dovetail, 2kb Arima and Standard protocol rCHi-C data in T-

47D and GS2 cells. 

 

Focusing next on ‘direct’ CCVs identified in the 2kb Dovetail, 2kb Arima and Standard 

datasets, these were mapped back to 196 ‘strong-evidence’ breast cancer risk signals. This 

resulted in at least one CCV identified at 77 signals in at least one T-47D dataset, and at 

93 signals in at least one GS2 dataset. These 106 signals together with the number of 

CCVs that formed direct interaction peaks in these six datasets are shown in Table 3.9. 

There was one additional signal (signal 2 at the chr12:27,486,913-28,881,482 region) 

which was not targeted by the rCHi-C capture array, but some of its CCVs (that mapped 

by chance to the non-baited interacting bin) formed direct interaction peaks with 

the PTHLH promoter (which maps to the baited region). 
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Fine-mapping region Signal Index SNP Number of 
CCVs 

Captured 
CCVs 

T-47D 
Dovetail 2kb 

T-47D 
Arima 2kb 

T-47D 
Standard 

GS2 Dovetail 
2kb 

GS2 Arima 
2kb 

GS2 
Standard 

chr1:9983762-11006158 Signal 1 rs657244 19 1 0 0 1 1 0 1 
chr1:45635245-46635245 Signal 1 rs12039667 11 7 1 0 0 2 0 0 
chr1:87191240-88191240 Signal 2 rs11583393 8 8 0 1 6 8 8 8 

chr1:113405767-114405767 Signal 1 rs11102701 12 12 1 4 0 6 6 0 
chr1:145625092-146010623* Signal 1 rs143384623 35 35 0 2 0 1 2 0 
chr1:145625092-146010623* Signal 2 rs200366104 5 1 1 1 0 1 1 0 
chr1:154676305-155678990 Signal 1 rs1057941 16 16 7 0 5 3 1 4 
chr1:203332121-204332121 Signal 1 rs59867004 56 56 9 7 11 6 7 10 
chr1:204049714-205049714 Signal 1 rs4951401 6 6 2 1 4 0 1 0 
chr1:216547232-217547232 Signal 1 rs11117754 12 11 1 0 0 0 0 0 
chr2:18634525-19621042 Signal 1 rs10184522 17 17 0 0 0 0 5 3 
chr2:28447809-29447810 Signal 1 rs71403627 81 81 0 0 17 1 4 9 

chr2:119987546-120988992 Signal 2 rs4849879 16 16 0 0 5 0 0 0 
chr2:119987546-120988992 Signal 4 rs17625845 6 5 0 0 6 0 1 4 
chr2:171019711-172608243 Signal 1 rs2016394 3 3 0 0 0 2 3 3 
chr2:171019711-172608243 Signal 2 rs13020413 35 35 0 1 6 5 29 30 
chr2:172846180-173848166 Signal 1 rs7589172 13 13 0 0 0 2 0 1 
chr2:200816524-201816524 Signal 2 rs13015648 8 6 0 0 0 3 2 0 
chr2:216541109-217931785 Signal 1 rs4442975 1 1 1 0 0 1 0 1 
chr2:216541109-217931785 Signal 2 rs138522813 5 5 2 0 0 2 2 0 
chr2:216541109-217931785 Signal 3 rs5838651 42 42 0 0 30 19 2 42 

chr3:4200592-5200591 Signal 1 rs6787391 4 4 4 4 1 1 3 3 
chr3:26786474-28243756 Signal 1 rs1352944 44 44 0 5 23 1 11 18 
chr3:26786474-28243756 Signal 2 rs36078735 12 12 0 0 5 0 1 7 
chr3:63456021-64482224 Signal 1 rs555060306 94 94 3 7 14 12 11 3 
chr3:86488393-87488393 Signal 1 rs13066793 2 2 0 1 0 1 2 0 

chr3:140894017-141894017 Signal 1 rs7625643 24 24 4 0 23 12 0 0 
chr4:82948971-83948971 Signal 1 rs6854739 84 84 0 0 0 6 7 0 

chr4:104647856-105935604 Signal 1 rs17617028 21 20 5 2 1 4 6 4 
chr5:779675-1797374 Signal 1 rs10069690 1 1 0 0 1 0 0 0 
chr5:779675-1797374 Signal 2 rs2736107 5 5 0 0 5 0 0 0 
chr5:779675-1797374 Signal 3 rs150804576 23 7 0 0 6 0 0 0 

chr5:15687249-16687419 Signal 1 rs12652713 45 45 0 0 7 0 0 0 
chr5:44013202-45206396 Signal 3 rs13153426 72 65 2 1 3 7 1 1 
chr5:56236057-57292056 Signal 3 rs112497245 21 21 10 12 15 6 8 10 
chr5:56236057-57292056 Signal 4 rs7730210 70 38 0 15 6 4 24 6 
chr5:58388234-59569743 Signal 1 rs537267133 30 30 0 0 0 0 0 1 
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chr5:58388234-59569743 Signal 2 rs10472097 5 1 1 0 0 2 2 0 
chr5:90993653-91993653 Signal 1 rs1964292 88 88 18 15 30 9 11 12 

chr5:132571366-133571367 Signal 1 rs571173399 117 117 0 0 17 12 5 21 
chr5:158303005-159317075 Signal 1 rs31864 5 5 2 0 1 4 1 0 
chr5:169664483-170664483 Signal 1 rs56722914 19 19 0 0 0 0 0 4 
chr6:15899326-16899326 Signal 1 rs3819405 1 1 0 0 0 1 0 1 
chr6:20121007-21121007 Signal 1 rs2328531 52 36 2 2 1 2 2 12 
chr6:80918669-82086234 Signal 1 rs7763102 51 41 0 0 4 5 8 5 

chr6:129527974-130527974 Signal 1 rs6569648 43 43 2 0 0 12 5 20 
chr6:151097720-152615881 Signal 2 rs34133739 1 1 0 0 0 1 1 0 
chr6:151097720-152615881 Signal 5 rs79388591 173 173 0 0 0 5 0 8 
chr6:151097720-152615881 Signal 6 rs9918437 22 6 0 1 0 0 0 0 
chr7:93984487-94984487 Signal 1 rs1879854 47 42 2 2 10 9 23 25 

chr8:60001-720692 Signal 1 rs34810249 25 24 0 0 0 0 6 1 
chr8:29152099-30152100 Signal 1 rs7465364 16 16 0 0 0 6 1 0 
chr8:36500965-37501668 Signal 1 rs4286946 16 16 1 0 0 1 0 0 
chr8:74818066-76005702 Signal 3 rs17303163 16 16 0 0 4 0 0 4 

chr8:100966731-101966731 Signal 1 rs7813150 47 47 16 0 0 0 0 0 
chr8:123097926-124097925 Signal 1 rs4871411 23 23 0 1 0 0 0 0 
chr8:126412414-129029685 Signal 1 rs10096351 3 3 0 0 2 0 0 2 
chr8:126412414-129029685 Signal 2 rs7017073 44 44 14 16 10 39 41 40 
chr8:126412414-129029685 Signal 3 rs35961416 1 1 0 0 1 0 0 1 
chr8:126412414-129029685 Signal 4 rs419018 43 43 0 0 39 0 0 38 
chr9:107041527-108633073 Signal 1 rs659713 10 10 0 0 0 3 2 0 
chr9:107041527-108633073 Signal 3 rs10816625 1 1 0 0 0 0 1 0 
chr9:107041527-108633073 Signal 4 rs13294895 1 1 0 0 0 0 1 0 

chr10:8546150-9546150 Signal 1 rs7081544 49 48 44 19 39 0 0 8 
chr10:21244013-22620463 Signal 1 rs7098100 7 7 0 0 0 1 2 0 
chr10:21244013-22620463 Signal 2 rs138026227 58 16 0 0 0 0 1 1 
chr10:78581391-79627965 Signal 1 rs754416 10 10 0 0 9 3 4 9 
chr10:78581391-79627965 Signal 2 rs10762851 17 17 4 0 17 4 0 17 
chr10:78581391-79627965 Signal 3 rs61862474 9 9 0 0 8 0 0 8 

chr10:112514168-113526395 Signal 1 rs12250948 12 12 0 0 0 5 3 0 
chr11:1377434-2421345 Signal 1 rs620315 7 7 2 0 7 4 2 0 

chr11:65276356-66315595 Signal 1 rs548082010 13 12 3 0 1 3 3 0 
chr11:69509114-69521223* Signal 3 rs671888 20 20 0 0 0 0 3 0 
chr11:107974789-108986410 Signal 1 rs368848598 59 25 8 2 1 0 1 0 
chr11:129082612-130091276 Signal 1 rs745382 17 17 1 7 6 0 0 0 
chr12:13760997-14760997 Signal 1 rs12422552 18 18 9 7 0 11 9 0 
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chr12:27486913-28881482 Signal 2 rs1600346 375 0 0 9 0 21 51 0 
chr12:114898717-115898717 Signal 1 rs1353783 7 7 0 2 7 0 2 0 
chr12:114898717-115898717 Signal 2 rs35422 1 1 0 0 1 0 0 1 
chr12:114898717-115898717 Signal 3 rs1882155 8 8 0 0 8 5 7 3 
chr12:114898717-115898717 Signal 4 rs11067765 6 6 5 5 6 4 4 6 
chr12:119894342-120894343 Signal 1 rs184486140 5 5 3 3 1 1 0 0 
chr13:31894673-32898488 Signal 1 rs11571833 5 4 0 0 0 0 1 0 
chr14:36163563-37166547 Signal 1 rs12881240 19 19 3 7 2 5 12 2 
chr14:36163563-37166547 Signal 2 rs848088 20 20 2 0 0 0 0 0 
chr14:67650477-69067965 Signal 1 rs35378451 8 8 1 0 0 8 3 0 
chr14:67650477-69067965 Signal 2 rs2478777 4 4 3 0 1 3 1 0 
chr14:90874725-91902279 Signal 1 rs11341843 3 3 0 0 0 0 1 0 
chr14:92137728-93150006 Signal 1 rs78440108 34 34 0 0 0 0 0 1 
chr15:90465983-91465985 Signal 1 rs12594752 22 22 0 1 6 0 0 6 
chr16:3556787-4556787 Signal 1 rs6500580 23 14 0 1 0 1 3 0 
chr16:3556787-4556787 Signal 2 rs8063564 14 12 0 1 0 1 1 0 

chr16:52004913-53004913 Signal 1 rs4784227 1 1 0 0 0 0 0 1 
chr16:53267042-54321379 Signal 1 rs55872725 6 6 6 5 6 6 6 6 
chr16:53267042-54321379 Signal 2 rs9925952 21 21 0 0 0 16 15 16 
chr16:54148152-55148152 Signal 1 rs28539243 3 3 0 0 0 0 2 0 
chr16:80114430-81117200 Signal 1 rs9938021 14 14 3 1 14 0 0 5 
chr16:86551631-87551631 Signal 1 rs4066743 85 85 10 28 21 28 55 21 
chr17:79794855-79816335* Signal 1 rs2587505 10 10 6 7 7 0 0 0 
chr19:12547463-14343759 Signal 1 rs78269692 21 8 1 1 0 2 2 0 
chr19:16684212-17783315 Signal 1 rs67397200 16 16 0 0 0 1 2 0 
chr19:17939625-18960332 Signal 1 rs8105994 56 56 0 0 0 13 4 0 
chr19:29286822-30286822 Signal 1 rs17513613 60 47 0 0 7 0 0 29 
chr21:14701662-15701664 Signal 1 rs2403907 7 7 1 0 0 0 0 0 
chr21:14701662-15701664 Signal 2 rs2822999 29 29 0 3 0 0 2 0 
chr22:37672826-39463350 Signal 1 rs5995543 27 27 0 0 0 3 0 0 
chr22:39980230-41131866 Signal 1 rs66987842 196 196 0 0 0 36 14 1 

Table 3.9: Distribution of numbers of ‘direct’ CCVs identified using T-47D and GS2 rCHi-C data by breast cancer risk signals. 106 signals at which my 
capture array covered at least one CCV and at which at least one CCV formed direct IPs in at least one out of six rCHi-C datasets. Number of CCVs – number of 
CCVs reported for that signal; Captured CCVs – number of CCVs that were targeted by the capture array. Fine-mapping region coordinates are in GRCh38/hg38. (*) 
– there were several fine-mapping regions (originally defined in hg19) that when lifted over to hg38 were split or partially deleted in hg38. These regions were compiled 
manually to encompass all CCVs at each of the regions. Red – a signal that was not targeted by the rCHi-C capture array, but at which some of the CCVs (that mapped 
‘by chance’ to the non-baited interacting bins) were involved in direct IPs. 
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To estimate which protocol performs better in narrowing down the number of CCVs, I 

compared numbers across the protocols (Table 3.10). This revealed that the Dovetail and 

Arima datasets tend to prioritise fewer CCVs than the Standard protocol.  

 

 Arima > Standard Arima < Standard Arima = Standard 
T-47D 10 16 1 
GS2 11 17 6 

 Dovetail > Standard Dovetail < Standard Dovetail = Standard 
T-47D 12 15 1 
GS2 7 20 8 

 Arima > Dovetail Arima < Dovetail Arima = Dovetail 
T-47D 8 10 7 
GS2 24 18 12 

Table 3.10: Comparison of numbers of ‘direct’ CCVs identified per signal. Comparison of 
numbers of breast cancer risk signals at which each of the protocols identified more, less or the 
same number of ‘direct’ CCVs per signal. 2kb Dovetail, 2kb Arima and Standard protocol rCHi-
C data in T-47D and GS2 cells were used. 

 

Based on all the above comparisons, the Arima and Dovetail protocols seemed to perform 

at least as well or better than our Standard in-house protocol, in addition to being more 

cost- and time-effective, requiring less cellular input and resulting in increased resolution. 

Therefore, it seemed reasonable to use one of the kit-based methods for CHi-C library 

generation in primary luminal epithelial and fibroblast cells. For pragmatic reasons 

related to the COVID-19 pandemic and the high level of technical support from the 

company, I selected the Dovetail Genomics protocol as the protocol of choice.  

 

3.7. Discussion 

Capture Hi-C is a chromosome conformation capture-based method that allows high-

throughput and high-resolution analysis of physical interactions between regulatory 

elements and their target genes. Although multiple CHi-C protocols have been developed 

and optimised over the years, no gold-standard method is available yet, with each of the 

protocols having their own advantages and disadvantages. The choice of the most suitable 

protocol therefore depends on the project aims.  

 

Here I compared three methods: our Standard in-house protocol, the Arima Genomics Hi-

C kit and the Dovetail Genomics Omni-C kit (Table 3.11). Major limitations of the 

Standard (HindIII) protocol are the resolution (~ 10 kb), the non-random distribution of 
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restriction sites and the requirement for a very high cellular input. Using kit-based 

methods, I managed to increase the resolution to ~ 2 kb, using far lower cellular inputs. 

In addition, the Arima and Dovetail protocols were proven to be less time-consuming and 

more cost-effective.  

 

 Standard in-house 
protocol Arima Hi-C kit Dovetail Genomics 

Omni-C kit 

Cellular input 6 x 107 cells 2 x 106 cells 1 x 106 cells 

Total time (days) 15.5 days 7 days 6 days 

Crosslinking time 1 day 1 hour 1 hour 

Hi-C library 
generation time 8.5 days 4 days 3 days 

Target enrichment 
and post-

hybridisation 
amplification 

3 days 3 days 3 days 

Quality Control(s) 3 days (separate) 3h (integrated into the 
protocol) 

3h (integrated into the 
protocol) 

Estimated cost £2120 £850 £660 

Resolution ~ 10 kb 2 kb 2 kb 

Dangling end 
removal step YES NO NO 

Table 3.11: Comparison of the standard in-house, the Arima Hi-C and the Dovetail 
Genomics Omni-C protocols. Cellular input, time and estimated costs were calculated based on 
one complete rCHi-C library generated from GS2 cells. Time and costs associated with cell 
culturing and next-generation sequencing are not included. The materials required for the quality 
controls are included for the Arima Hi-C and Dovetail Genomics Omni-C protocols, but are not 
included for the Standard protocol (since its QCs are not integrated into the protocol). 

 

However, the Standard libraries had the smallest proportion of very short-range 

interactions (cis < 1 kb) that often represent dangling ends due to partial digestion of 

chromatin (< 1% compared to approximately 10% and 20% in the Arima and Dovetail 

libraries). This is in part because the average size of the fragments in Standard libraries 

limits the potential for such interactions, but also because the protocol includes a step for 

removing ‘dangling ends’. In addition, 3C-based methods are not considered reliable for 

detecting interaction peaks over distances of less than 10 kb115, therefore, we cannot 

assess whether the read pairs where the distance between interacting fragments (when 

mapped back to the reference genome) is less than 10 kb represent ‘true’ interactions and 
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we have to consider them as uninformative. As a result, the Dovetail and Arima libraries 

might require more sequencing to get a similar amount of ‘usable’ data; however, the 

proportions of unique and on-target read pairs would probably have a greater impact on 

the overall amount of ‘usable’ data. 

 

Interaction calling using CHiCANE108 revealed that Standard libraries had the lowest 

proportions of cis interaction peaks that were called within the 100 kb – 1 Mb range (32% 

and 46% compared to > 80% in the 2kb-binned Arima and Dovetail libraries) and the 

highest proportion of interaction peaks called in the ≥ 1 Mb range (~ 50% compared to < 

10% in the 2kb-binned Arima and Dovetail libraries). As the majority of regulatory 

interactions that drive GWAS associations are likely to be within the 100 kb to 1 Mb 

range110, 111, this favours the Arima and Dovetail protocols. 

 

To identify and prioritise causal variants and target genes that may be involved in 

mediating breast cancer risk associations, I mapped CHi-C data to annotated gene 

promoters and breast cancer risk CCVs, and specifically looked into the subset of 

interaction peaks in which a bin colocalising with a gene promoter formed a direct 

interaction peak with a CCV-containing bin. 

 

Comparing across the protocols, I observed that, on average, ‘direct’ genes and CCVs 

identified in the Dovetail libraries had higher overlap with those in the Arima libraries 

rather than with those in the Standard libraries (Figure 3.2 and Figure 3.3). In addition, 

there was higher overlap between the Arima and Standard libraries, than between the 

Dovetail and Standard libraries. This may reflect the fact that the Arima and Standard 

protocols are both RE-based and have higher protocol similarity, or this could be 

explained by differences in downstream analysis. Specifically, the Standard protocol 

libraries were called using individual HindIII fragments as the unit of analysis, the Arima 

libraries were called using fixed size bins (2kb and 5kb), while the Dovetail libraries were 

called using 2kb- and 5kb-binned data with the gene promoters allocated into the smart 

bins that can vary in lengths (median = 1.9 kb). See Section 6.1 for more details. 

 

Generally, the largest numbers of non-replicated genes and CCVs (i.e., ‘direct’ genes and 

CCVs that were called in a single dataset) were found in libraries generated using the 

Standard protocol (Figure 3.2 and Figure 3.3). Analysis revealed that half (T-47D) and 

one-third (GS2) of ‘direct’ genes that were only identified in the Standard protocol 
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libraries mapped to very long-range or trans interaction peaks (Table 3.5). As mentioned 

previously, the available evidence suggests that these are less likely to represent 

functional enhancer-promoter interaction peaks than those that occur within a distance of 

approximately 100 kb – 1 Mb110, 111, 116. Although some very long-range or even trans 

interaction peaks might represent valid interacting events, the fact that they appear to be 

method specific rather suggests that they are more likely to represent chance findings. To 

further address this issue, it would be informative to compare whether such interaction 

peaks are replicated across multiple technical replicates. Very long-range and trans 

interaction peaks also explain a (lower) proportion of the non-replicated CCVs that were 

identified in the Standard libraries. In this instance, however, at least a subset of the 

remaining non-replicated CCVs may be the result of the non-random distribution of 

restriction sites leading to some very large HindIII fragments that contain many CCVs. 

 

Since the true number of causal variants and target genes underlying each association 

signal is unknown, it is difficult to assess the quality of data generated by different 

protocols by examining the numbers alone. Therefore, I decided to investigate the 2q35 

breast cancer risk locus as a ‘proof of principle’ locus that has been extensively 

functionally characterised101, 112-114 and to check whether my rCH-C data would select 

direct interaction peaks between rs4442975 and esv3594306 (the likely causal variants at 

signals 1 and 2, respectively) and promoter of the likely target gene IGFBP5. Out of 10 

datasets, 4 picked up a direct interaction peak between the IGFBP5 promoter and 

rs4442975 (Standard GS2, 5kb Arima T-47D, 2kb Dovetail GS2 and T-47D) and 3 picked 

up a direct interaction peak between the IGFBP5 promoter and esv3594306 (2kb Dovetail 

GS2 and T-47D, 2kb Arima GS2). 

 

Interestingly, more activity was observed at the 2q35 locus in GS2 libraries rather than in 

T-47D libraries. RNA-seq and H3K27ac CUT&Tag data generated by other members of 

the Functional Genetic Epidemiology lab showed that IGFBP5 expression is significantly 

higher in GS2 cells than in T-47D cells (2.92-fold; p = 1.2 x 10-8), and that there are 

marginally more GS2-specific (N=10) than T-47D-specific (N=8) H3K27ac peaks. 

However, rs4442975 and esv3594306 both colocalise with a T-47D-specific peak, not a 

GS2-specific peak (Figure 3.4 and Figure 3.5), suggesting that signals 1 and 2 are likely 

to mediate the association with breast cancer risk via epithelial cells rather than 

fibroblasts. 
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Comparing the ability of each protocol to prioritise a subset of putative target gene and 

CCVs, my data suggest that the Dovetail and Arima libraries tend to narrow down the 

numbers of genes and CCVs better than the Standard libraries (Table 3.8 and Table 3.10). 

Although it is possible that some of the genes and/or CCVs that were identified in the 

Standard libraries alone represent ‘true’ target genes and functional variants that were 

simply missed by the Dovetail and Arima protocols, the goal of my study was to prioritise 

putative target genes and CCVs that warrant in-depth functional follow up, and my overall 

conclusion is that it would be easier to do this using one of the kit-based methods rather 

than the Standard protocol.  

 

Thus, based on the available information, the kit-based methods seemed to perform at 

least as well or better than our Standard in-house protocol, in addition to being more cost- 

and time-effective, requiring less cellular input and resulting in increased resolution. 

Therefore, it seemed reasonable to use one of the kit-based methods for CHi-C library 

generation in primary luminal epithelial and fibroblast cells. 
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4. Promoter Capture Hi-C in T-47D and GS2 cells 

4.1. Overview of the libraries 

Several studies have used pCHi-C to characterise GWAS risk loci117-120. To compare 

rCHi-C and pCHi-C approaches, I generated pCHi-C libraries in T-47D and GS2 cell 

lines using the Dovetail Genomics Omni-C protocol combined with their promoter 

enrichment panel. The Dovetail Pan Promoter Enrichment Panel targets over 98% of 

human promoter regions (84,643 promoters associated with 27,375 coding and non-

coding genes) and, for the purposes of downstream analysis, allocates these to 39,825 

smart bins. Most smart bins capture promoter(s) of a single gene, but in some smart bins 

(N=2,905) the proximity of gene promoters is such that a single smart bin captures 

multiple promoters. In addition, a subset of genes (N=9,104) occupies more than one 

smart bin. 

 

Significant interaction peaks were called in the 2kb- and 5kb-binned data using 

CHiCANE. The number of interaction peaks varied from 22,401 to 48,863 (Table 4.1). 

As in the rCHi-C libraries, a much larger number of interaction peaks were called in the 

GS2 dataset than in the T-47D dataset. Comparing across the bin sizes, the 2kb-binned 

datasets showed lower proportions of cis interaction peaks in the 100 kb – 1 Mb range 

and higher proportions of cis interaction peaks in the 10 kb – 100 kb range. Comparing 

back to the rCHi-C libraries (Table 3.2), the overall proportions of trans and cis ≥ 1 Mb 

interaction peaks were generally lower in pCHi-C than in rCHi-C libraries. In the 5kb-

binned rCHi-C libraries, the proportions of cis interaction peaks in the ≥ 1 Mb range were 

over 50%, while in pCHi-C libraries only about 4% (T-47D) and 7% (GS2) of interaction 

peaks were in this range.  

 

4.2. Direct interaction peaks 

To compare pCHi-C to a rCHi-C approach, I mapped the pCHi-C data to the 5,117 CCVs 

associated with 196 ‘strong-evidence’ breast cancer risk GWAS signals and selected 

direct interaction peaks (Table 4.2). The number of direct interaction peaks varied from 

79 to 248. They involved 36 to 105 unique smart bins harbouring a total of 43 to 107 

‘direct’ genes (1 to 3 genes per bin).  

 



 

 86 

Cell line Bin size Total IPs trans IPs cis < 1kb cis 1kb - 10kb cis 10kb - 100kb cis 100kb - 1Mb cis ≥ 1Mb 

T-47D 5kb 28,157 147 0.52% 0 0% 29 0.1% 2,611 9.3% 24,125 86% 1,245 4% 
T-47D 2kb 22,401 78 0.35% 0 0% 48 0.2% 5,562 24.8% 16,318 73% 395 2% 

               

GS2 5kb 48,863 53 0.11% 0 0% 11 0.02% 3,655 7.5% 41,956 86% 3,188 7% 
GS2 2kb 48,529 42 0.09% 0 0% 15 0.03% 8,966 18.5% 38,594 80% 912 2% 

Table 4.1: Interaction peak calling statistics for T-47D and GS2 pCHi-C libraries. A breakdown of significant (q-value ≤ 0.1) interaction peaks called in pCHi-C 
libraries generated in T-47D and GS2 cell lines using the Dovetail Genomics Omni-C protocol and called using CHiCANE. Libraries were called using both 2kb- and 
5kb-binned data. 

 
 

Cell line Bin size Total direct IPs Unique gene-
containing bins 

Unique 
genes 

Unique CCV-
containing bins 

Unique 
CCVs CCVs per bin 

T-47D 5kb 138 61 61 102 281 1 to 15 
T-47D 2kb 79 36 43 70 130 1 to 8 

        

GS2 5kb 248 105 107 172 528 1 to 19 
GS2 2kb 147 72 80 130 223 1 to 10 

Table 4.2: Summary of direct interaction peaks called in T-47D and GS2 pCHi-C libraries. Direct interaction peaks – interaction peaks in which a bin colocalising 
with a gene promoter forms a direct interaction with a CCV-containing bin.
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Overall, 130 to 528 CCVs were involved in direct interaction peaks (‘direct’ CCVs). On 

average, larger numbers of CCVs per bin were observed in the 5kb datasets rather than in 

the 2 kb datasets (T-47D: 1 to 15 vs. 1 to 8; GS2: 1 to 19 vs. 1 to 10). The overall trend 

was different to that in the rCHi-C libraries, with larger numbers of interaction peaks, 

genes and CCVs identified in the 5kb datasets versus 2kb datasets. In order to compare 

the genes and CCVs that would be prioritised by the two approaches (pCHi-C and rCHi-

C) directly and to look for the third-party interaction peaks (Section 4.3), I needed to use 

the same bin size for both types of data, so I focused on the 2kb-binned data for the rest 

of the analysis. 

 

There were approximately twice as many direct interaction peaks as well as gene- and 

CCV-containing bins in the rCHi-C (compared to pCHi-C) datasets. As a result, many 

more non-replicated ‘direct’ genes (and CCVs) were observed in the rCHi-C datasets than 

in pCHi-C ones (Figure 4.1). In T-47D cells, 31 genes formed direct interaction peaks in 

both rCHi-C and pCHi-C datasets, 64 genes were involved in direct interaction peaks in 

the rCHi-C dataset exclusively, and 12 ‘direct’ genes were uniquely identified in the 

pCHi-C dataset (GS2: in both – 64; rCHi-C only – 81; pCHi-C only – 16). Some of the 

genes that were ‘unique’ to the pCHi-C datasets, such as GMIP, WNT7B, CTD-2203A3.1, 

LINC01556 and GATAD1 (GS2 only), were targets of fine-mapping regions that were 

excluded from my rCHi-C capture array (Section 2.5), meaning that I could not pick these 

genes up using my rCHi-C data. Others (T-47D: 4 genes; GS2: 5 genes) mapped to the 

regions where there were no ‘direct’ genes in the rCHi-C data. Two such examples are 

CCND1 and MYEOV which formed direct interaction peaks in the GS2 pCHi-C dataset 

at the chr11:69,509,114-69,521,223 fine-mapping region (11q13.3 locus; Figure 4.2). 

The CCND1 promoter formed two direct interaction peaks – one with rs35039974 and 

one with a bin containing rs476679, rs602690 and rs510754. The MYEOV promoter also 

formed two direct interaction peaks, but with different CCVs – one with a bin 

containing rs573073, rs2510848 and rs491193, and the second one with a bin 

containing rs678214, rs493786, rs676856, rs640822, rs665095, rs2015489 and rs120206.  
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Figure 4.1: Venn diagrams illustrating the overlap between ‘direct’ and ‘third-party’ genes 
and CCVs. (A, C) The overlap between ‘third-party’ genes and ‘direct’ genes identified in the 
rCHi-C and pCHi-C datasets generated in T-47D and GS2 cell lines. (B, D) The overlap between 
‘third-party’ CCVs and ‘direct’ CCVs identified in the rCHi-C and pCHi-C datasets. 2kb-binned 
rCHi-C and pCHi-C datasets generated using the Dovetail Genomics Omni-C protocol were used. 

 

To investigate to what extent the ‘direct’ genes and CCVs that were replicated between 

rCHi-C and pCHi-C datasets were replicated on the basis of identical direct interaction 

peaks (as opposed to simply being involved in any direct interaction peak), I compared 

the direct interaction peaks identified by both methods (Figure 4.3). Out of 192 and 79 

direct interaction peaks identified in T-47D rCHi-C and pCHi-C libraries, respectively, 

45 were reciprocal and involved 28 genes and 80 CCVs. In GS2, there were 87 reciprocal 

A B 

C D 
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interaction peaks that involved 61 genes and 124 CCVs. Therefore, almost 60% of direct 

interaction peaks identified in pCHi-C were replicates of rCHi-C interaction peaks. 

 

 

Figure 4.2: Interaction peaks at 11q13.3 involving CCND1 and MYEOV promoters. Direct 
interaction peaks (from pCHi-C data) and third-party interaction peaks identified in GS2 cells at 
the 11q13.3 breast cancer risk locus (chr11:69,509,114-69,521,223 fine-mapping region, hg38) 
that involved CCND1 (blue loops) and MYEOV (purple loops) promoters. Two other ‘third-party’ 
genes (AP000439.2 and RP11-554A11.7) that also formed third-party interaction peaks at this 
locus are not shown. Genes – annotated RefSeq gene promoters. CCVs – credible causal variants 
selected by the BCAC fine-mapping study67. rBaits – rCHi-C array regions. pBaits – pCHi-C 
array regions. CTCFs – consensus CTCF sites (described in Section 2.8). H3K27ac – H3K27ac 
peaks identified from CUT&Tag data generated in T-47D and GS2 cell lines. 
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Figure 4.3: A breakdown of direct interaction peaks identified in rCHi-C and pCHi-C 
datasets. Out of 192 and 79 direct interaction peaks identified in T-47D rCHi-C and pCHi-C 
libraries, respectively, 45 were reciprocal and involved 28 genes and 80 CCVs. In GS2, there 
were 87 reciprocal interaction peaks that involved 61 genes and 124 CCVs. The sum of the genes 
indicated in this figure differs from the number of unique ‘direct’ genes reported in Table 3.4 
(e.g., 86+28=114 vs. 95 for 2kb Dovetail T-47D rCHi-C dataset), as a gene can appear in multiple 
categories: (i) in the rCHi-C only category (blue); (ii) in the rCHi-C only (blue) and in the rCHi-
C and pCHi-C overlap (middle, dark purple) categories; (iii) in the rCHi-C only (blue) and in the 
pCHi-C only (light purple) categories . This is because the same gene can form different direct 
interaction peaks, and the overlap in this figure is done on the basis of interaction peaks.  

 

4.3. Third-party interaction peaks 

So far, I have made the assumption that a target gene forms a direct interaction peak with 

a functional variant. However, a recent analysis of promoter-interacting expression 

quantitative trait loci defined a subset of ‘indirect’ interaction peaks121. To explore the 

possibility that a target gene and a CCV might be brought into proximity with each other 

by forming interaction peaks with a ‘third party’, I searched for non-baited target bins 

that formed both a statistically significant interaction peak with a baited smart bin in the 

pCHi-C data and with a baited CCV-containing bin in the rCHi-C data (hereafter, third-

party bins). In T-47D cells, there were 174 third-party bins that were involved in 219 

interaction peaks in the pCHi-C data and in 520 interaction peaks in the rCHi-C data, 

giving rise to 652 potential unique ‘CCV – third party – gene’ combinations (Table 4.3 

and Figure 4.4). Overall, these third-party interaction peaks involved 74 genes and 253 

CCVs. In GS2, 488 third-party bins formed 609 and 1,539 interaction peaks in the pCHi-

C and rCHi-C datasets, respectively, resulting in 2,135 possible ‘CCV – third party – 

gene’ combinations that involved 144 genes and 497 CCVs (Table 4.3 and Figure 4.4).  
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Figure 4.4: Summary of third-party interaction peaks called in T-47D and GS2 libraries. 
pCHi-C baited bins (blue) can form interaction peaks with a non-baited, non-CCV-containing 
target bin (green). If the same non-baited target bin formed interaction peaks with a baited CCV-
containing bin (orange) in the rCHi-C data, then this non-baited target bin was considered to be a 
‘third-party’ bin that mediated an ‘indirect’ interaction peak. Genes are indicated by blue 
rectangles; CCVs are indicated by orange arrows. 

 

More than 20% of the third-party bins colocalised with CTCF binding peak(s) and 

approximately 10% colocalised with region(s) of H3K27ac histone modification (Table 

4.4). Compared to the non-third-party target bins (i.e., non-baited, non-CCV- and non-

gene-containing bins that were not involved in third-party interactions), this represented 

a highly significant enrichment for CTCF (5-fold in rCHi-C data, p < 5 x 10-13 and 2-fold 

in pCHi-C data, p < 0.002). For H3K27ac, the enrichment was less consistent with 3- to 

5.5-fold in the rCHi-C data (p < 2 x 10-6), 2-fold in the T-47D pCHi-C data (p = 0.03) 

and no significant enrichment in the GS2 pCHi-C data (p = 0.49). 
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Cell line 
Unique 

third-party 
bins 

IPs involving 
third-party bins 

(pCHi-C) 

IPs involving 
third-party bins 

(rCHI-C) 

Number of 
unique 

combinations 
Unique CCV-

containing bins 
Unique 
CCVs CCVs per bin Unique gene-

containing bins 
Unique 
genes 

T-47D 174 219 520 652 155 253 1 to 8 69 74 
          

GS2 488 609 1,539 2,135 276 497 1 to 10 135 144 

Table 4.3: Summary of third-party interaction peaks called in T-47D and GS2 libraries. Third-party interaction peaks – interaction peaks where a baited smart 
bin in the pCHi-C data forms an IP with a non-baited target bin that is neither a smart bin nor harbours a CCV (third-party bin) and this same third-party bin forms an 
IP with a baited bin that harbours at least one CCV in the rCHi-C data. Third-party IPs were identified using the 2kb-binned rCHi-C and pCHi-C libraries generated 
in T-47D and GS2 cell lines using the Dovetail Genomics Omni-C protocol. Number of unique combinations – number of unique ‘CCV bin – third-party bin – gene 
bin’ combinations. Unique CCV-containing bins – number of unique CCV-containing bait fragments in the rCHi-C data that were involved in third-party IPs. Unique 
gene-containing bins – number of unique baited smart bins in the pCHi-C data that were involved in third-party IPs. 

 
Cell 
line 

CHi-C 
type 

CTCF/H3K27ac Third-party 
bins 

Third-party bins with 
a feature 

Non-third-party 
target bins 

Non-third-party bins 
with a feature 

Odds ratio p value 

T-47D rCHi-C CTCF 174 46 26.44% 1,198 81 6.76% 4.95 4.12 x 10-13 
T-47D rCHi-C H3K27ac 174 17 9.77% 1,198 23 1.92% 5.52 1.71 x 10-6 
T-47D pCHi-C CTCF 174 46 26.44% 17,565 2,971 16.91% 1.77 0.002 
T-47D pCHi-C H3K27ac 174 17 9.77% 17,565 972 5.53% 1.85 0.03 
GS2 rCHi-C CTCF 488 98 20.08% 1,795 86 4.79% 4.99 1.92 x 10-23 
GS2 rCHi-C H3K27ac 488 51 10.45% 1,795 64 3.57% 3.15 1.46 x 10-8 
GS2 pCHi-C CTCF 488 98 20.08% 38,581 4,638 12.02% 1.84 4.19 x 10-7 
GS2 pCHi-C H3K27ac 488 51 10.45% 38,581 3,688 9.56% 1.10 0.49 

Table 4.4: H3K27ac and CTCF enrichment analysis of third-party bins. p values were calculated using a Fisher’s exact test. H3K27ac – CUT&Tag data generated 
in T-47D and GS2 cells by other members of the lab. CTCF – dataset compiled using 9 ChIP-seq samples from the ENCODE generated in breast cell types (3 – breast 
epithelium, 1 – mammary epithelial cells, 1 – mammary fibroblasts, 4 – MCF-7); only consensus peaks (i.e., peaks that were present in at least 8 out of 9 samples) 
were considered for the analysis. Non-third-party target bins – non-baited, non-CCV- and non-gene-containing bins that did not form third-party IPs.  
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Interestingly, in 179 out of 652 T-47D third-party interaction peaks (27.5%) the resulting 

distance between a CCV-containing bin and a gene-containing bin was less than 10 kb 

(Table 4.5); the same was true for 384 GS2 third-party interaction peaks (18%). In T-

47D, these ‘short-range’ interaction peaks involved 22 genes and 71 CCVs, more than 

half of which (15 genes and 38 CCVs) were identified based on third-party interaction 

peaks exclusively (i.e., they did not appear among rCHi-C or pCHi-C ‘direct’ genes and 

CCVs). In GS2, ‘short-range’ third-party interaction peaks involved 34 genes and 108 

CCVs, out of which 25 genes and 53 CCVs were only involved in third-party interaction 

peaks.  

 

Cell line Total IPs cis < 10kb cis ≥ 10kb trans Replicated 
T-47D 652 179 439 18 16 
GS2 2,135 384 1,624 0 127 

Table 4.5: Distribution of distances between a CCV-containing bin and a gene-containing 
bin in third-party interaction peaks. Replicated – interaction peaks where the same CCV- and 
gene-containing baited bin formed interaction peak(s) with the same third-party target bin(s) in 
both rCHi-C and pCHi-C data (Figure 4.5). 

 

Comparing ‘third-party’ genes/CCVs to ‘direct’ genes/CCVs, 33 and 21 ‘direct’ genes 

identified in the T-47D rCHi-C and pCHi-C datasets, respectively, were also involved in 

third-party interaction peaks (Figure 4.1; GS2: 57 and 51 ‘direct’ genes). In GS2, these 

included CCND1 and MYEOV that formed direct interaction peaks in the GS2 pCHi-C 

dataset. CCND1 formed third-party interaction peaks with the same two CCV-containing 

bins (as in the pCHi-C data) via chr11:69,296,001-69,298,000 and chr11:69,300,001-

69,302,000 third-party bins (Figure 4.2). The region to which these third-party bins map 

colocalised with an H3K27ac peak in our CUT&Tag data in GS2 but not T-47D cells. 

MYEOV formed third-party interaction peaks with the same bin as CCND1 

(encompassing rs476679, rs602690 and rs510754) via two consecutive third-party bins 

that span the chr11:69,636,001-69,639,966 region (Figure 4.2). This region also 

colocalised with an H3K27ac peak in the CUT&Tag data. Interestingly, the third-party 

bins that were involved in mediating third-party interaction peaks involving CCND1 were 

located very close to the MYEOV promoter (chr11:69,293,018-69,294,877), while the 

third-party bins that were involved in mediating third-party interaction peaks with 

MYEOV were located very close to the CCND1 promoter (chr11:69,639,967-69,641,826). 

Thus, these third-party interaction peaks effectively bring CCND1, MYEOV and a subset 

of CCVs together, raising the possibility that CCND1 and MYEOV may be co-regulated 
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in some way. A bin containing rs476679, rs602690 and rs510754 also formed third-party 

interaction peaks with AP000439.2 (via chr11:69,636,001-69,639,966 and 

chr11:69,296,001-69,298,000 regions) and with RP11-554A11.7 (via chr11:69,636,001-

69,639,966 region). 

 

The remaining genes and CCVs were exclusively associated with third-party interaction 

peaks in T-47D (39 genes and 117 CCVs) or GS2 (81 genes and 207 CCVs) (Figure 4.1). 

Most of these genes mapped to the fine-mapping regions where the rCHi-C and/or pCHi-

C data identified one or more putative target genes through direct interaction peaks. 

However, 12 T-47D ‘third-party’ genes mapped to 7 fine-mapping regions where neither 

the rCHi-C, nor the pCHi-C data picked up any putative target genes (GS2: 19 genes at 

10 regions). These genes are listed in Table 4.6, except three T-47D ‘third-party’ genes 

(ASPG, RAB40B, CAMK2N2) that were identified based on trans third-party interaction 

peaks. Such genes should be treated with caution, especially in the highly rearranged cells 

like T-47D, where they are more likely to represent cell type specific artefacts than valid 

interactions.  

 

Some of these genes and CCVs were involved in interaction peaks, where the same CCV- 

and gene-containing baited bin formed interaction peak(s) with the same third-party target 

bin(s) in both rCHi-C and pCHi-C data (‘replicated’ interaction peaks; Figure 4.5). Two 

examples are FGFR2 and FAM179A (T-47D) that each exclusively participated in such 

‘replicated’ interaction peaks. These ‘replicated’ interaction peaks should be interpreted 

with caution, especially where these are the only kind of interaction peaks that a given 

gene or CCV formed. Overall, 9 out of 74 T-47D ‘third-party’ genes (GS2: 25 out of 144 

genes) were involved in the ‘replicated’ interaction peaks, of which for 3 T-47D 

(FAM179A, FGFR2, L3MBTL3) and 4 GS2 (ATXN7, THOC7, CDKAL1, ZBTB38) genes 

these were the only type of interaction peaks they formed. 
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Fine-mapping region Cell line Gene CCV(s) 
chr2:28447809-29447810 T-47D FAM179A* rs12472404* 

chr2:171019711-172608243 T-47D DLX2, DLX2-AS1 rs2016394, rs17726078; rs544674726 

chr8:123097926-124097925 T-47D FAM91A1 
rs13281094, rs7014939; rs4595110, rs28651583; rs17349815; 

rs34838484 

chr10:120834389-122089809 T-47D FGFR2* rs7899765* 

chr14:90874725-91902279 T-47D C14orf159, RPS6KA5; CCDC88C* rs2277509; rs11341843* 

chr22:39980230-41131866 T-47D MKL1* rs12158872*; rs56283550; rs17001907; rs551057361, rs56215843 

    

chr1:204049714-205049714 GS2 NFASC rs4951401; rs930947, rs4951404 

chr2:24464730-25464730 GS2 ADCY3; CENPO, PTRHD1 rs6746013; rs2384057, rs10865315, rs2033655 

chr2:119987546-120988992 GS2 INHBB; AC012363.13*; GLI2; AC018866.1 rs13018516*; rs34160433; rs7593535; rs11903787; rs17625845 

chr5:32067626-33067626 GS2 SUB1 rs12519859 

chr5:169664483-170664483 GS2 FOXI1* rs56225360*; rs4315934 

chr8:104846392-105849165 GS2 ZFPM2 rs2957440, rs56128159 

chr8:123097926-124097925 GS2 FBXO32; FAM91A1; RP11-245A18.1 
rs17253058; rs547278904; rs35542655; rs34838484; rs4401839, 

rs4509301 

chr14:90874725-91902279 GS2 CCDC88C*; C14orf159, RPS6KA5 rs2277509; rs11341843* 

chr17:79794855-79816335 GS2 CBX8* rs4889891; rs8082452*, rs9905914* 

chr19:29286822-30286822 GS2 ZNF536 rs12461902, rs62107106 

Table 4.6: ‘Third-party’ genes that mapped to fine-mapping regions where no genes that formed direct interaction peaks in the rCHi-C or pCHi-C data were 
identified. 9 T-47D ‘third-party’ genes mapped to 7 fine-mapping regions where neither the rCHi-C, nor the pCHi-C data picked up any putative target genes (GS2: 

19 genes at 10 regions). In the T-47D data there were 3 additional ‘third-party’ genes which were identified based on trans third-party interaction peaks; these were 

excluded. Fine-mapping region coordinates are in GRCh38/hg38. (*) – genes or CCVs that participated in ‘replicated’ interaction peaks; in red – genes or CCVs that 

formed ‘replicated’ interaction peaks only. CCVs separated with comma map to the same CCV-containing bins, with semicolon – to different bins. 
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Figure 4.5: Replicated interaction peaks. ‘Replicated’ interaction peaks are interaction peaks 
where the same CCV- and gene-containing baited bin formed interaction peak(s) with the same 
third-party target bin(s) in both rCHi-C and pCHi-C data. 

 

However, some of the ‘third-party’ genes may represent valid putative targets. For 

example, there are two independent ‘strong-evidence’ signals – signal 1 (23 CCVs) and 

signal 2 (6 CCVs) at the chr8:123,097,926-124,097,925 region (8q24.13 locus). In GS2 

cells, the FBXO32 promoter formed third-party interaction peaks with three signal 2 

CCVs – rs35542655, rs17253058 and rs547278904 via two consecutive third-party bins 

spanning the chr8:123,690,001-123,694,000 region that was found to colocalise with two 

consensus CTCF sites (Figure 4.6). Two other ‘third-party’ genes (FAM91A1 and RP11-

245A18.1) also formed third-party interaction peaks at this fine-mapping region; 

however, these interaction peaks only involved signal 1 CCVs. Interestingly, FBXO32 is 

an example of a gene that participated in ‘short-range’ third-party interaction peaks. 

Although third-party interaction peaks that involved the FBXO32 promoter are mediated 

via a region located ~ 150 kb away, the linear distance between the FBXO32 promoter 

and the three interacting CCVs is between 6 – 12 kb.  
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Figure 4.6: Third-party interaction peaks at 8q24.13 involving the FBXO32 promoter. 
Third-party interaction peaks identified in GS2 cells at the 8q24.13 breast cancer risk locus 
(chr8:123,097,926-124,097,925 fine-mapping region, hg38) that involved the FBXO32 promoter. 
Two other ‘third-party’ genes (FAM91A1 and RP11-245A18.1) that also formed third-party 
interaction peaks at this locus are not shown. Genes – annotated RefSeq gene promoters. CCVs 
– credible causal variants selected by the BCAC fine-mapping study67. rBaits – rCHi-C array 
regions. pBaits – pCHi-C array regions. CTCFs – consensus CTCF sites (described in Section 
2.8). H3K27ac – H3K27ac peaks identified from CUT&Tag data generated in T-47D and GS2 
cell lines. 

 

4.4. Discussion 

Generating pCHi-C libraries in addition to the rCHi-C libraries allowed me to examine 

the extent to which these two approaches prioritise the same set of putative target genes 

and CCVs, through any direct interaction peaks or identical interaction peaks. Generating 

both data types also allowed me to investigate the possibility that a target gene and a CCV 

might be brought into proximity with each other by forming interaction peaks with a ‘third 

party’ (rather than by interacting with each other directly).  
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Overall, many more interaction peaks were called in the pCHi-C compared to rCHi-C 

datasets. There was, however, a higher proportion of direct interaction peaks (and a higher 

absolute number of direct interaction peaks) in the rCHi-C data (compared to the pCHi-

C data). This difference is probably due to differences in array design. In rCHi-C, baits 

are designed to capture genetic variants at a limited number of GWAS signals defined by 

linkage disequilibrium blocks. In pCHi-C, baits are designed to capture annotated gene 

promoters genome-wide, resulting in a much larger array but with the majority of baits 

mapping megabases away from the nearest GWAS signal. Specifically, while pCHi-C 

generates more data, much of that data is not relevant for the purposes of annotating 

GWAS signals. 

 

The observation that there were more direct interaction peaks as well as ‘direct’ gene- 

and CCV-containing bins in the 5kb-binned pCHi-C datasets (compared to the 2kb-

binned) suggests that the pCHi-C data lacked power for a 2 kb analysis. Sequencing the 

pCHi-C data to a greater depth might resolve this issue. The fact that the reverse was true 

for the rCHi-C data (there were more direct interaction peaks and ‘direct’ gene- and CCV-

containing bins in the 2kb-binned data compared to the 5kb-binned) may reflect the smart 

bin design of the Dovetail Pan Promoter Enrichment Panel and the Dovetail analysis 

pipeline. This is explained in more detail in Section 6.1. 

 

Comparing genes and CCVs that were involved in direct interaction peaks identified in 

each of the two methods, the majority of ‘direct’ genes (T-47D: 72%; GS2: 80%) and 

CCVs (T-47D: 62%; GS2: 58%) identified by pCHi-C datasets were also involved in 

direct interaction peaks in rCHi-C datasets. Comparing ‘direct’ interaction peaks (rather 

than ‘direct’ genes and CCVs individually), almost 60% of the direct interaction peaks 

identified in pCHi-C data were replicated in the rCHi-C data (Figure 4.3). Almost all 

‘direct’ genes and CCVs that were picked up by both methods were involved in these 

reciprocal interaction peaks, but some of these genes and CCVs were also involved in 

method-specific direct interaction peaks.  

 

Some of the genes and CCVs that were ‘uniquely’ picked up by the pCHi-C mapped to 

regions that were excluded from my rCHi-C capture array, meaning that I could not pick 

these genes up using my rCHi-C data. However, a small subset of genes that were 

‘unique’ to the pCHi-C datasets mapped to the regions that were targeted by the rCHi-C 

array but where there were no ‘direct’ genes in the rCHi-C data. This difference may be 
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due to a lack of coverage at the CCVs in the rCHi-C array due to difficulties in designing 

baits to the relevant region. The overall coverage of my rCHi-C array was 78%, but the 

percentage varied largely from region to region. As a result, some of the functional CCVs 

could have mapped to the portions of the regions where the Agilent eArray software was 

unable to design baits. 

 

Investigating the possibility that a target gene and a CCV might be brought into proximity 

with each other by forming interaction peaks with a ‘third party’, I identified 174 (T-47D) 

and 488 (GS2) third-party bins that were involved in 652 and 2,135 third-party interaction 

peaks, respectively. These third-party bins were highly enriched for CTCF binding and 

less enriched for the active histone modification H3K27ac (Table 4.4). The reasons for 

the differences in the proportions of non-third-party target bins which colocalised with 

one of these markers in the rCHi-C data compared to the pCHi-C data are not clear, but 

it may, in part, be explained by how third-party (and non-third-party) target bins were 

defined and the opposite capture viewpoints used in the two methods. In this thesis, third-

party (and non-third-party) target bins were non-baited, non-gene- and non-CCV-

containing bins. For H3K27ac, this may have led to differential depletion of peaks in the 

pCHi-C and rCHi-C data. Specifically, in the pCHi-C data, where, by definition, all 

interactions originate at a gene promoter, a significant proportion of target bins would be 

expected to represent active enhancer elements of which only a minority will be tagged 

by a CCV (and, therefore, excluded). By contrast, in the rCHi-C data, the interactions 

originate at a CCV-containing bin, and a significant proportion of target bins would be 

expected to represent active promoters, all of which have been excluded. Since H3K27ac 

histone modifications are associated with both active enhancers and active promoters, 

regions of H3K27ac modification may have been more systematically excluded from the 

rCHi-C data compared to the pCHi-C data. 

 

Interestingly, in a subset (T-47D: 27.5%; GS2: 18%) of third-party interaction peaks the 

resulting distance between a CCV-containing bin and a gene-containing bin was less than 

10 kb (Table 4.5). A relatively large proportion of genes and CCVs that were involved in 

these ‘short-range’ third-party interaction peaks were identified based on third-party 

interaction peaks exclusively (i.e., they did not appear among rCHi-C or pCHi-C ‘direct’ 

genes and CCVs). As mentioned previously, the ability of CHi-C to detect interaction 

peaks over distances of less than 10 kb is limited115. Therefore, one possible option for 

overcoming this limitation may be the use of third-party (indirect) interaction peaks. 
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Almost half of the genes (and over half of CCVs) that were involved in third-party 

interaction peaks also formed direct interaction peaks in either rCHi-C or pCHi-C or both, 

while the other half was exclusively associated with third-party interaction peaks. Since 

‘indirect’ interaction peaks are a relatively new concept, it is unclear whether genes and 

CCVs that form ‘indirect’ interaction peaks are any different from those that form direct 

interaction peaks, and which ones should be prioritised over the others. The examples that 

I picked as illustrations of third-party interaction peaks (FBXO32, CCND1 and MYEOV) 

are all genes that are likely to be involved in complex regulatory networks to coordinate 

their expression with cofactors (FBXO32) and cell cycle regulation (CCND1 and 

MYEOV). 

 
FBXO32 – is an F-box protein. F-box proteins are substrate-recognition subunits of Skp1-

Cullin1-F-box protein (SCF) E3 ligase complexes. Studies suggest emerging roles of F-

box proteins in carcinogenesis, tumour progression, and drug resistance through 

degradation of their downstream substrates122. FBXO32 was proposed to have tumour-

suppressive function in breast cancer by targeting KLF4, a zinc-finger transcription factor 

involved in a large variety of cellular processes, to proteasomal degradation and, 

therefore, inhibiting breast cancer development123. FBXO32 deficiency in breast cancer 

cells leads to KLF4 accumulation and facilitates tumorigenesis both in vitro and in vivo. 

Interestingly, KLF4 has also been identified as ‘high confidence’ target gene at the 

chr9:107,041,527-108,633,073 region by the BCAC INQUISIT algorithm67 and in an in-

depth functional annotation study124. KLF4 was also identified as a putative target gene 

in 2kb rCHi-C datasets generated in GS2, primary fibroblasts and primary luminal 

epithelial cells. 

 
CCND1 and MYEOV map to a known region of cancer-associated amplification at 

11q13.3125. CCND1 is an established oncogene that was found to be overexpressed in 

more than 50% of human breast cancers126. Together with its binding partner CDK4, 

CCND1 acts as a regulator of transcription in the nucleus. A recent study, however, 

demonstrated that the localisation of CCND1-CDK4 complex in the membrane of normal 

fibroblasts and tumour cells has an active role in the induction of cell migration and 

invasion through the phosphorylation of a tyrosine-kinase substrate protein called 

paxillin, providing an explanation to the invasive properties of CCND1-overexpressing 

tumours127. MYEOV was found to be amplified in 9.5% of breast tumours (most 

frequently together with CCND1) and abnormally expressed in 16.6% of tumours128. 
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Although dysregulated expression of MYEOV has been associated with its tumorigenic 

properties, the molecular mechanisms underlying MYEOV-mediated tumorigenesis are 

still largely unknown. A recent study suggested that MYEOV transcript acts as a 

competing endogenous RNA (ceRNA) to regulate TGF-β signalling and promote the 

invasion and metastasis of non-small cell lung cancer cells129.  

 

Although additional studies are required to confirm the findings, my preliminary results 

suggest that it is possible that some putative target genes and CCVs might be brought into 

proximity with each by forming third-party interaction peaks. Third-party bins were 

enriched for CTCF and, less so, for H3K27ac, suggesting they may have a structural or 

regulatory role. Investigating third-party interaction peaks may help to overcome one 

limitation of CHi-C methodology, namely the lack of resolution of this technique for 

distances of less than 10 kb. It may also pinpoint additional (plausible) putative target 

genes.  

 

Thus, pCHi-C may represent a useful complementary approach that allows reciprocal 

replication of rCHi-C findings as well as the investigation of third-party interaction peaks. 

In this project I limited my pCHi-C analysis to cell lines, however, it would be interesting 

to extend it to primary cells. 
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5. Region Capture Hi-C in primary cells 

5.1. Overview of the libraries 

Libraries were generated in primary breast luminal epithelial cells and fibroblasts isolated 

from each of two women undergoing reduction mammoplasty (four libraries in total) 

using the Dovetail Genomics Omni-C protocol. Sequencing data obtained for the primary 

cell libraries demonstrated the same pattern as that of the cell line libraries, namely the 

percentage of on-target pairs was higher in libraries that had lower absolute numbers of 

unique read pairs (Table 5.1). Sequencing data for the cell type replicates were combined 

for the analysis resulting in two datasets – luminal epithelial (EPI, hereafter) and 

fibroblast (FIB). Significant interaction peaks were called in the 2kb- and 5kb-binned data 

using CHiCANE (Table 5.2). The number of interaction peaks varied from 14,036 to 

24,421, with larger numbers of interaction peaks called in the EPI dataset compared to 

the FIB dataset. Higher proportions of cis ≥ 1 Mb interactions (EPI: 60% vs. 14%; FIB: 

75% vs. 19%) were again observed in the 5kb-binned datasets, supporting the idea that 

size of the baited bins influences the distance range within which the majority of 

interaction peaks are called. 

 

5.2. Overview of all interaction peaks 

As with the cell line data, the primary cell rCHi-C data were mapped to: (i) 84,643 

promoters associated with 27,375 coding and non-coding genes; (ii) 5,117 CCVs 

associated with 196 ‘strong-evidence’ breast cancer risk GWAS signals.  

 

The proportion of unique gene-containing bins out of the total unique bins in each given 

dataset varied from 2.0% to 4.9% (Table 5.3). There were 112 to 481 unique genes that 

participated in 287 to 3,078 interaction peaks with a median of 2 to 3 interaction peaks 

per individual gene. The proportion of unique CCV-containing bins was between 6.1% 

and 6.5%. These CCV-containing bins harboured a total of 957 to 1,260 unique CCVs 

(18.7% to 24.6% out of 5,117 CCVs) that participated in 5,630 to 6,830 interaction peaks. 
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Dataset Sample Total pairs Unique pairs On-target pairs cis pairs cis ≤ 1kb cis 1kb - 10kb cis 10kb - 1Mb cis > 1Mb 

EPI 3002N 785,271,324 367,045,146 47% 40,310,878 11% 35,064,599 87% 9,166,591 26% 6,175,474 18% 13,784,780 39% 5,937,754 17% 

EPI 1989N 655,771,355 305,499,839 47% 39,638,228 13% 33,528,502 85% 5,526,226 16% 5,891,266 18% 15,481,965 46% 6,629,045 20% 

                 

FIB 3002N 821,260,358 442,550,078 54% 35,840,961 8% 26,801,390 75% 4,945,724 18% 2,943,321 11% 10,743,195 40% 8,169,150 30% 

FIB 1989N 380,473,099 216,611,521 57% 43,760,897 20% 34,213,837 78% 5,999,098 18% 5,133,706 15% 14,598,703 43% 8,482,330 25% 

Table 5.1: Summary sequencing statistics for primary luminal epithelial and fibroblast rCHi-C libraries. Summary sequencing statistics for the rCHi-C libraries 

generated in primary breast luminal epithelial cells and fibroblasts isolated from each of two women (samples 3002N and 1989N) undergoing reduction mammoplasty 

using the Dovetail Genomics Omni-C protocol. Total pairs – total number of read pairs where both ends aligned uniquely to the reference genome. On-target pairs – 

read pairs for which at least one end overlaps with a capture array probe (minimum overlap = 1 bp). 

 
 

Dataset Bin size Total IPs trans IPs cis < 1kb cis 1kb - 10kb cis 10kb - 100kb cis 100kb - 1Mb cis ≥ 1Mb 

EPI 5kb 14,833 281 1.9% 0 0.00% 8 0.05% 162 1.1% 5,520 37% 8,862 60% 

EPI 2kb 24,421 103 0.4% 11 0.05% 27 0.11% 1,004 4.1% 19,847 81% 3,429 14% 

               

FIB 5kb 14,036 86 0.6% 0 0.00% 1 0.01% 76 0.5% 3,329 24% 10,544 75% 

FIB 2kb 18,373 38 0.2% 9 0.05% 16 0.09% 550 3.0% 14,260 78% 3,500 19% 

Table 5.2: Interaction peak calling statistics for EPI and FIB rCHi-C datasets. A breakdown of significant (q-value ≤ 0.1) interaction peaks called in the rCHi-C 

datasets generated in primary luminal epithelial cells and fibroblasts using the Dovetail Genomics Omni-C protocol and called using CHiCANE is shown. Each 

dataset was called using 2kb- and 5kb-binned data. 
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5.3. Direct interaction peaks 

Next, I focused on interaction peaks in which a bin colocalising with a gene promoter 

formed a direct interaction with a CCV-containing bin (Table 5.4). The number of direct 

interaction peaks varied from 66 to 381. They involved 36 to 158 unique gene-containing 

bins harbouring a total of 39 to 157 ‘direct’ genes (1 to 3 genes per bin). Overall, 117 to 

429 CCVs were involved in direct interaction peaks (‘direct’ CCVs). On average, larger 

numbers of CCVs per bin were observed in the 5kb datasets rather than in 2 kb datasets 

(EPI: 1 to 13 vs. 1 to 10; FIB: 1 to 10 vs. 1 to 8). There were larger numbers of individual 

genes and CCVs participating in direct interaction peaks in the 2kb datasets rather than 

5kb datasets.  

 

Comparing similarity across bin sizes, 50 out of 64 genes found in the 5kb EPI dataset 

appeared in the 2kb dataset (Figure 5.1; FIB: 32 out of 39 genes). As expected, most of 

the ‘direct’ genes identified using the 5kb- but not 2kb-binned datasets formed longer-

range interaction peaks (EPI: 1.5 Mb – 5 Mb; FIB: 1.7 Mb – 5.8 Mb). The only exception 

was CDCA7 gene that formed one direct interaction peak with the interaction distance of 

~ 22 kb in both 5kb EPI and FIB datasets.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Venn diagrams illustrating the overlap between ‘direct’ genes identified in the 
2kb- and 5kb-binned Dovetail rCHi-C libraries generated in primary luminal epithelial cells 
and fibroblasts. (A) EPI Dovetail 5kb and EPI Dovetail 2kb datasets; (B) FIB Dovetail 5kb and 
FIB Dovetail 2kb datasets. 

A            B 
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Dataset Bin size Total IPs 
Total unique 

bins in a 
dataset 

Total unique 
gene-containing 

bins 

Total 
unique 
genes 

Number of IPs 
involving gene-
containing bins 

IPs per unique 
gene (median + 

range) 

Total unique 
CCV-containing 

bins 
Total unique CCVs 

(out of 5,117) 
Number of IPs 
involving CCV-
containing bins 

EPI 5kb 14,833 6,863 173 2.5% 179 595 2 (1 to 34) 444 6.5% 1,234 24.1% 6,207 
EPI 2kb 24,421 10,231 498 4.9% 481 3,078 3 (1 to 148) 632 6.2% 1,260 24.6% 6,830 

              

FIB 5kb 14,036 5,743 112 2.0% 112 287 2 (1 to 14) 366 6.4% 1,028 20.1% 5,873 
FIB 2kb 18,373 8,082 338 4.2% 318 1,798 3 (1 to 65) 496 6.1% 957 18.7% 5,630 

Table 5.3: Summary of interaction peaks identified in primary luminal epithelial and fibroblast rCHi-C datasets for which the interacting fragments 
colocalised with: (i) an annotated RefSeq gene promoter; (ii) one or more CCVs selected by the BCAC fine-scale mapping analysis. 

 

Dataset Bin size Total direct IPs Unique gene-
containing bins Unique genes Unique CCV-

containing bins Unique CCVs CCVs per bin 

EPI 5kb 97 57 64 63 198 1 to 13 
EPI 2kb 381 158 157 224 429 1 to 10 

        

FIB 5kb 66 36 39 38 117 1 to 10 
FIB 2kb 278 122 120 157 317 1 to 8 

Table 5.4: Summary of direct interaction peaks called in primary luminal epithelial and fibroblast rCHi-C datasets. Direct interaction peaks – interaction peaks 
in which a bin colocalising with a gene promoter forms a direct interaction with a CCV-containing bin. 
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In the absence of a ground truth, i.e., a dataset in which the true target genes and causal 

variants are known, it is difficult to know which is the ‘best’ analysis. However, as 

previously, on the grounds that very long-range (> 2 Mb) ‘functional’ interactions are less 

plausible than shorter-range ones, and with a view to maximise resolution, the rest of the 

analysis is focused on the 2kb-binned datasets only. 

 

5.4. Prioritisation of putative target genes 

To evaluate the ability of rCHi-C to prioritise putative target genes at breast cancer risk 

loci, ‘direct’ genes were mapped back to 129 ‘strong-evidence’ breast cancer risk-

associated regions (Table 5.5). This resulted in at least one putative target gene identified 

at 57 regions (1 to 13 genes per region; median = 2) using EPI data, and at 43 regions (1 

to 9 genes per region; median = 2) using FIB data. The majority of these regions (42 EPI 

(73.7%) and 31 FIB (72.1%) regions) contained 1 to 3 putative target genes, which 

realistically is the number of genes for which in-depth functional follow up studies could 

be performed. 

 

Next, I compared my sets of putative target genes against 191 genes that were predicted 

with ‘high confidence’ using the BCAC’s integrated-expression quantitative trait and in 

silico prediction of GWAS targets algorithm (INQUISIT)67. Overall, INQUSIT predicted 

at least one ‘high confidence’ target gene at 88 fine-mapping regions. Since 7 out of 129 

regions were not covered by the capture array, they were excluded from further analysis, 

bringing the number of ‘high confidence’ INQUISIT genes to 177, and the number of 

corresponding regions to 84 (Table 5.5). 

 

Out of 177 INQUISIT genes, 18 were predicted at the same fine-mapping regions by 

rCHi-C in both EPI and FIB datasets, 17 were predicted in just the EPI dataset and 4 were 

predicted in just the FIB dataset, suggesting a greater concordance between the 

INQUISIT predictions and those from the EPI data compared to those from the FIB data. 

There are 38 regions where INQUISIT did not predict any ‘high-confidence’ genes; at 12 

of these regions rCHi-C data in EPI and/or FIB predicted at least one gene (Table 5.5). 

These include several plausible candidate genes, such as OLA1 (at chr2:172,846,180-

173,848,166) in EPI and FGF10 (at chr5:44,013,202-45,206,396) in FIB.
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Fine-mapping region EPI genes  FIB genes INQUISIT genes 
chr1:9983762-11006158 APITD1; APITD1-CORT; TARDBP  CASZ1; PEX14 

chr1:17980845-18980845   KLHDC7A 

chr1:45635245-46635245 NSUN4  LRRC41; MAST2; PIK3R3; POMGNT1 

chr1:87191240-88191240 LMO4; LINC01140 LMO4; LINC01140  

chr1:113405767-114405767 HIPK1  RSBN1 

chr1:145625092-146010623* NUDT17  NUDT17; PDZK1; PIAS3; POLR3GL; RNF115 

chr1:154676305-155678990 MTX1; THBS3  EFNA1; FAM189B; GBA; MTX1; MUC1; 

RP11-263K19.4; SLC50A1; THBS3; TRIM46 

chr1:200968704-201968704   TNNI1 

chr1:203332121-204332121 ETNK2; SOX13 ETNK2; SOX13 SOX13; ZC3H11A 

chr1:204049714-205049714   LRRN2; MDM4; PIK3C2B; PPP1R15B 

chr1:241360598-242370961   EXO1 

chr2:18634525-19621042   OSR1 

chr2:24464730-25464730   ADCY3; DNMT3A 

chr2:28447809-29447810 ALK; CLIP4 ALK; YPEL5; CLIP4 ALK; PPP1CB; TRMT61B 

chr2:119987546-120988992   INHBB 

chr2:171019711-172608243 DLX2; DLX2-AS1 DCAF17; METTL8; DLX2; DLX2-AS1; ITGA6 DYNC1I2 

chr2:172846180-173848166 OLA1; LINC01305 LINC01305  

chr2:200816524-201816524 CFLAR 
CASP10; CFLAR; FAM126B; NDUFB3; 

NIF3L1 
ALS2CR12; CASP8; CFLAR; NIF3L1; PPIL3 

chr2:216541109-217931785  IGFBP5 IGFBP5 

chr3:26786474-28243756 CMC1; AZI2; ZCWPW2; RP11-222K16.2 CMC1; AZI2; ZCWPW2  

chr3:30134389-31134388   TGFBR2 

chr3:46325375-47339998   CCDC12; NBEAL2 

chr3:63456021-64482224 
ATXN7; THOC7; PRICKLE2; RP11-14D22.1; 

RP11-14D22.2; ABHD14B; ACY1 
PRICKLE2; RP11-14D22.1; RP11-14D22.2 ATXN7; PSMD6; PSMD6-AS2; THOC7 

chr3:86488393-87488393 CGGBP1; ZNF654 CGGBP1; ZNF654  

chr3:99504736-100504736   CMSS1; FILIP1L; TBC1D23 

chr3:140894017-141894017  ZBTB38 ZBTB38 

chr3:172067447-173067447   TNFSF10 

chr4:38311255-39311256 TLR1; TLR6  TLR1 

chr4:82948971-83948971 NKX6-1 NKX6-1; HNRNPD MRPS18C 

chr4:104647856-105935604 
PPA2; GSTCD; INTS12; RP11-556I14.2; 

CXXC4; UBE2D3 
TET2; PPA2; GSTCD; INTS12 AC004066.3; ARHGEF38; TET2 

chr5:779675-1797374   CLPTM1L; TERT 
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chr5:44013202-45206396 NNT PAIP1; NNT; FGF10; RP11-53O19.3; C5orf34  

chr5:56236057-57292056 

MAP3K1; C5orf67; CTD-2227I18.1; 

CTC-236F12.4; ANKRD55; RP11-155L15.1; 

IL6ST; AC008914.1; PLK2 

MAP3K1; RP11-155L15.1; CTC-236F12.4; 

AC008914.1; IL6ST 
MAP3K1 

chr5:58388234-59569743  PDE4D  

chr5:90993653-91993653 

RP11-213H15.1; RP11-414H23.3; 

RP11-414H23.2; MBLAC2; POLR3G; 

ADGRV1; LYSMD3; MCTP1 

RP11-213H15.1; RP11-414H23.3; 

RP11-414H23.2 
ARRDC3 

chr5:132571366-133571367 
SKP1; C5orf15; CTB-113I20.2; VDAC1; 

WSPAR 
C5orf15 AFF4; HSPA4; ZCCHC10 

chr5:158303005-159317075 CTC-436K13.1; CTC-436K13.5 CTC-436K13.1; CTC-436K13.5 EBF1 

chr5:169664483-170664483   FOXI1 

chr6:13212867-14222292   NOL7; RANBP9; RP1-223E5.4 

chr6:20121007-21121007 
E2F3; CASC15; SOX4; DCDC2; 

RP11-524C21.2 

CASC15; E2F3; SOX4; DCDC2; RP11-204E9.1; 

NBAT1 
CDKAL1 

chr6:80918669-82086234 FAM46A FAM46A  

chr6:129527974-130527974  EPB41L2; SMLR1; AKAP7 L3MBTL3 

chr6:151097720-152615881 MTRF1L; ESR1 ESR1 C6orf211; CCDC170; ESR1 

chr7:93984487-94984487 
PEG10; SGCE; CASD1; AC004012.1; 

PPP1R9A; ASB4; PON3; PON2; AC002429.5 

PEG10; SGCE; PPP1R9A; PON2; AC004012.1; 

PON3; AC002429.5; ASB4 

 

chr7:101411318-102414152   CUX1 

chr8:60001-720692 DLGAP2   

chr8:29152099-30152100 DUSP4 DUSP4 DUSP4 

chr8:36500965-37501668 ERLIN2  ZNF703 

chr8:74818066-76005702 PEX2   

chr8:100966731-101966731 GRHL2 NCALD GRHL2; KB-1562D12.1; KB-1930G5.4 

chr8:115697322-116697309 TRPS1  TRPS1 

chr8:123097926-124097925 FBXO32  ATAD2; FBXO32; WDYHV1 

chr8:126412414-129029685 
CASC11; MYC; PVT1; PCAT1; 

RP11-419K12.1 

CASC11; MYC; RP11-419K12.1; PVT1; 

LINC00976; CCDC26 
MYC 

chr9:107041527-108633073 KLF4 KLF4; LINC01509 KLF4 

chr10:8546150-9546150 
GATA3; GATA3-AS1; RP11-379F12.4; 

ATP5C1; KIN; TAF3 
GATA3; GATA3-AS1; RP11-379F12.4 GATA3 

chr10:21244013-22620463 BMI1 MSRB2 BMI1; COMMD3 

chr10:78581391-79627965  RPS24 ZCCHC24; ZMIZ1 

chr10:112514168-113526395 TCF7L2; VTI1A; ZDHHC6; ACSL5 VTI1A; ZDHHC6; TCF7L2; ACSL5 TCF7L2 

chr10:120834389-122089809 RP11-95I16.2; RP11-95I16.6  FGFR2 
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chr11:800484-822622*   CD151; EPS8L2; HRAS; PDDC1; PIDD1 

chr11:1377434-2421345  TNNT3  

chr11:65276356-66315595 AP5B1  AP5B1; CFL1; KAT5; OVOL1; RNASEH2C 

chr11:69509114-69521223*   CCND1; MYEOV 

chr11:107974789-108986410   ATM; C11orf65; KDELC2 

chr11:129082612-130091276 BARX2  BARX2 

chr12:13760997-14760997 ATF7IP ATF7IP ATF7IP 

chr12:27486913-28881482 PTHLH PTHLH CCDC91; PTHLH 

chr12:95133983-96133981 NTN4  NTN4 

chr12:114898717-115898717 
TBX3; RP11-162N7.1; RP11-116D17.4; 

RP4-601P9.2 

TBX3; RP11-110L15.1; RP11-162N7.1; 

RP4-601P9.1; RP11-411G2.2; RBM19 
TBX3 

chr12:119894342-120894343 MSI1; PXN PXN MSI1; RPLP0 

chr13:31894673-32898488   BRCA2 

chr13:72890381-73890382   KLF5 

chr14:36163563-37166547 SLC25A21; MIPOL1; TTC6 SLC25A21; MIPOL1 PAX9; SLC25A21 

chr14:67650477-69067965 ZFP36L1 ZFP36L1 ZFP36L1 

chr14:92137728-93150006   RIN3 

chr15:90465983-91465985   RCCD1 

chr16:3556787-4556787   ADCY9; CREBBP 

chr16:52004913-53004913   TOX3 

chr16:53267042-54321379 

CRNDE; IRX5; CTD-3032H12.2; 

CTD-3032H12.1; IRX3; AC007491.1; 

RP11-324D17.1; IRX6; RP11-26L20.5; AMFR; 

FTO; NOD2; MMP2 

CRNDE; IRX5; CTD-3032H12.2; 

CTD-3032H12.1; IRX3; RP11-212I21.2; 

RP11-212I21.5; MMP2; AC007491.1 

CTD-3032H12.2; FTO; IRX3 

chr16:54148152-55148152 
CRNDE; IRX5; IRX3; CTD-3032H12.1; 

CTD-3032H12.2; AKTIP; RP11-434E6.4 

 CRNDE 

chr16:80114430-81117200 WWOX  CDYL2; DYNLRB2; RP11-18F14.4; 

RP11-525K10.3 

chr16:86551631-87551631 FOXL1; FOXC2; MTHFSD FOXC2; FOXL1; MTHFSD  

chr17:30384649-31403502   NF1 

chr17:79794855-79816335*   CCDC40 

chr18:26252512-27495432   KCTD1 

chr18:44319625-45319625 SLC14A1; RP11-456K23.1; SETBP1  SETBP1 

chr19:12547463-14343759 IER2; STX10; LYL1; NACC1; TRMT1 LYL1; IER2; STX10; NACC1; TRMT1 
CACNA1A; DAND5; GCDH; HOOK2; JUNB; 

MAST1; PRDX2 

chr19:16684212-17783315 HAUS8; MYO9B  ABHD8; ANKLE1; MRPL34 
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chr19:17939625-18960332 HOMER3  CRLF1; ELL; FKBP8; GDF15; ISYNA1; KXD1; 

UBA52 

chr19:29286822-30286822   CCNE1 

chr19:43279295-44282360   KCNN4; PLAUR; SMG9 

chr21:14701662-15701664   NRIP1 

chr22:27604039-29725488   CHEK2; CTA-292E10.6; EWSR1; XBP1 

chr22:37672826-39463350   CBX6; MAFF; NPTXR; PLA2G6; SUN2; 

TMEM184B 

chr22:39980230-41131866 MKL1; ST13; XPNPEP3 MKL1 MKL1; SLC25A17 

chr22:41142782-42142785   EP300 

Table 5.5: Prioritisation of putative target genes at 129 breast cancer risk regions using primary cell rCHi-C data. Out of 129 fine-mapping regions to which 
196 ‘strong-evidence’ breast cancer risk signals map, there were 57 at which 157 unique genes formed direct IPs in luminal epithelial cells (EPI genes), and 43 at 
which 120 unique genes formed direct IPs in fibroblasts (FIB genes). INQUISIT genes – 191 putative target genes predicted with ‘high confidence’ by Fachal and 
colleagues at 88 fine-mapping regions using INQUISIT algorithm (reduced to 177 putative target genes at 84 regions after excluding 7 regions that were not covered 
by the capture array). Regions where no putative target genes were identified using primary cell rCHi-C data or INQUISIT prediction are not shown. INQUISIT genes 
that were predicted at the same fine-mapping regions using both EPI and FIB rCHi-C datasets are in red, only EPI dataset – in blue, only FIB dataset – in green. Fine-
mapping region coordinates are in GRCh38/hg38. (*) – there were several fine-mapping regions (originally defined in hg19) that when lifted over to hg38 were split 
or partially deleted in hg38. These regions were compiled manually to encompass all CCVs at each of the regions. 
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5.5. Prioritisation of risk-associated variants 

To assess the level to which rCHi-C data can help to prioritise risk-associated variants at 

GWAS risk loci, ‘direct’ CCVs were mapped back to 196 ‘strong-evidence’ breast cancer 

risk signals. Out of 183 signals at which my capture array covered at least one CCV, there 

were 79 at which at least one CCV formed direct interaction peaks with at least one gene 

(Table 5.6).  As with the cell line rCHi-C data, there was one additional signal (signal 2 

at the chr12:27,486,913-28,881,482 region) which was not targeted by the rCHi-C 

capture array, but some of its CCVs (that mapped by chance to the non-baited interacting 

bin) formed direct interaction peaks with the PTHLH promoter. 

 

At 57 signals my capture array covered all reported CCVs. For most of these signals, 

interaction peaks in the rCHi-C data involved only a subset of the CCVs, potentially 

narrowing down the number that would be prioritised for the follow up studies. For 

example, out of 13 CCVs at signal 1 of chr2:172,846,180-173,848,166 region (2q31.1 

locus; Figure 5.2), my approach prioritised a single CCV (rs930313) that formed two 

direct interaction peaks in the EPI data (with OLA1 and LINC01305) and one direct 

interaction peak in the FIB data (with LINC01305 only). Since this CCV maps ~ 500 bp 

upstream of CDCA7, the CCV-containing bin involved in these interaction peaks also 

colocalised with the promoter of this gene, potentially implicating CDCA7 as a putative 

target gene.  

 

Another example is the region at chr1:203,332,121-204,332,121 (1q32.1 locus; signal 1) 

that comprises 56 CCVs. Of these, 6 CCVs (rs7520079, rs16852420, rs56395476, 

rs6664515, rs72745792 and rs67087079) and 7 CCVs (same + rs12026395) formed a 

total of 9 and 16 direct interaction peaks in FIB and EPI datasets, respectively (Figure 

5.3). In epithelial cells, rs12026395 formed a single direct interaction peak with the 

ETNK2 promoter, while the remaining 6 CCVs formed direct interaction peaks with both 

ETNK2 and SOX13 promoters. rs7520079 formed two direct interaction peaks with 

ETNK2 and three direct interaction peaks with SOX13, a bin containing rs56395476 and 

rs6664515 formed a single interaction peak with ETNK2 and three interaction peaks with 

SOX13, while rs16852420 and a bin containing rs72745792 and rs67087079 formed two 

and one direct interaction peaks, respectively, with each of the two genes. In fibroblasts, 

rs7520079 and the bin containing rs72745792 and rs67087079 each formed a single direct 

interaction peak with the ETNK2 promoter only, while the remaining three CCVs formed 
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direct interaction peaks with both ETNK2 and SOX13 promoters (rs16852420 – two 

interaction peaks with each of the two genes; the bin containing rs56395476 and 

rs6664515 – two and one interaction peaks with ETNK2 and SOX13 respectively). 

 

 

Figure 5.2: Direct interaction peaks at 2q31.1 in EPI and FIB datasets. Direct interaction 
peaks (shown in a looping format) at the 2q31.1 breast cancer risk locus (chr2:172,846,180-
173,848,166 fine-mapping region, hg38) detected in 2kb-binned rCHi-C data generated in 
primary breast luminal epithelial cells (EPI) and fibroblasts (FIB) using the Dovetail Genomics 
Omni-C protocol. Blue loops – direct IPs that involved the OLA1 promoter. Purple loops – direct 
IPs that involved the LINC01305 promoter. Genes – annotated RefSeq gene promoters. CCVs – 
credible causal variants selected by the BCAC fine-mapping study67. rBaits – rCHi-C array 
regions. CTCFs – consensus CTCF sites (described in Section 2.8). 
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Figure 5.3: Direct interaction peaks at 1q32.1 in EPI and FIB datasets. Direct interaction 
peaks (shown in a looping format) at the 1q32.1 breast cancer risk locus (chr1:203,332,121-
204,332,121 fine-mapping region, hg38) detected in 2kb-binned rCHi-C data generated in 
primary breast luminal epithelial cells (EPI) and fibroblasts (FIB) using the Dovetail Genomics 
Omni-C protocol. Blue loops – direct IPs that involved the ETNK2 promoter. Purple loops – direct 
IPs that involved the SOX13 promoter. Genes – annotated RefSeq gene promoters. CCVs – 
credible causal variants selected by the BCAC fine-mapping study67. rBaits – rCHi-C array 
regions. CTCFs – consensus CTCF sites (described in Section 2.8).
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Fine-mapping region Signal Index SNP Number of CCVs Captured CCVs EPI  FIB  
chr1:9983762-11006158 Signal 1 rs657244 19 1 1 0 
chr1:45635245-46635245 Signal 1 rs12039667 11 7 1 0 
chr1:87191240-88191240 Signal 2 rs11583393 8 8 5 8 

chr1:113405767-114405767 Signal 1 rs11102701 12 12 3 0 
chr1:145625092-146010623* Signal 2 rs200366104 5 1 1 0 
chr1:154676305-155678990 Signal 1 rs1057941 16 16 1 0 
chr1:203332121-204332121 Signal 1 rs59867004 56 56 7 6 
chr2:28447809-29447810 Signal 1 rs71403627 81 81 9 1 

chr2:171019711-172608243 Signal 2 rs13020413 35 35 1 3 
chr2:172846180-173848166 Signal 1 rs7589172 13 13 1 1 
chr2:200816524-201816524 Signal 2 rs13015648 8 6 3 2 
chr2:216541109-217931785 Signal 2 rs138522813 5 5 0 2 
chr2:216541109-217931785 Signal 3 rs5838651 42 42 0 17 
chr3:26786474-28243756 Signal 1 rs1352944 44 44 10 4 
chr3:26786474-28243756 Signal 2 rs36078735 12 12 2 1 
chr3:63456021-64482224 Signal 1 rs555060306 94 94 10 2 
chr3:86488393-87488393 Signal 1 rs13066793 2 2 1 1 

chr3:140894017-141894017 Signal 1 rs7625643 24 24 0 4 
chr4:38311255-39311256 Signal 1 rs10034903 24 24 5 0 
chr4:82948971-83948971 Signal 1 rs6854739 84 84 17 16 

chr4:104647856-105935604 Signal 1 rs17617028 21 20 4 4 
chr5:44013202-45206396 Signal 3 rs13153426 72 65 2 11 
chr5:56236057-57292056 Signal 3 rs112497245 21 21 9 4 
chr5:56236057-57292056 Signal 4 rs7730210 70 38 14 3 
chr5:58388234-59569743 Signal 2 rs10472097 5 1 0 1 
chr5:90993653-91993653 Signal 1 rs1964292 88 88 13 8 

chr5:132571366-133571367 Signal 1 rs571173399 117 117 24 4 
chr5:158303005-159317075 Signal 1 rs31864 5 5 4 2 
chr6:20121007-21121007 Signal 1 rs2328531 52 36 3 2 
chr6:80918669-82086234 Signal 1 rs7763102 51 41 2 3 

chr6:129527974-130527974 Signal 1 rs6569648 43 43 0 16 
chr6:151097720-152615881 Signal 2 rs34133739 1 1 1 0 
chr6:151097720-152615881 Signal 4 rs7763637 6 6 3 0 
chr6:151097720-152615881 Signal 5 rs79388591 173 173 0 20 
chr6:151097720-152615881 Signal 6 rs9918437 22 6 1 0 
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chr7:93984487-94984487 Signal 1 rs1879854 47 42 18 17 
chr8:60001-720692 Signal 1 rs34810249 25 24 1 0 

chr8:29152099-30152100 Signal 1 rs7465364 16 16 6 2 
chr8:36500965-37501668 Signal 1 rs4286946 16 16 1 0 
chr8:74818066-76005702 Signal 3 rs17303163 16 16 1 0 

chr8:100966731-101966731 Signal 1 rs7813150 47 47 5 6 
chr8:115697322-116697309 Signal 1 rs10641009 164 9 3 0 
chr8:115697322-116697309 Signal 2 rs13267382 5 2 1 0 
chr8:123097926-124097925 Signal 2 rs58847541 6 6 1 0 
chr8:126412414-129029685 Signal 2 rs7017073 44 44 23 38 
chr8:126412414-129029685 Signal 4 rs419018 43 43 2 0 
chr9:107041527-108633073 Signal 1 rs659713 10 10 0 2 
chr9:107041527-108633073 Signal 3 rs10816625 1 1 1 0 
chr9:107041527-108633073 Signal 4 rs13294895 1 1 1 0 

chr10:8546150-9546150 Signal 1 rs7081544 49 48 33 6 
chr10:21244013-22620463 Signal 1 rs7098100 7 7 1 0 
chr10:21244013-22620463 Signal 2 rs138026227 58 16 0 1 
chr10:78581391-79627965 Signal 2 rs10762851 17 17 0 5 

chr10:112514168-113526395 Signal 1 rs12250948 12 12 6 4 
chr10:112514168-113526395 Signal 2 rs71973726 42 41 1 0 
chr10:120834389-122089809 Signal 4 rs2981578 3 3 2 0 

chr11:1377434-2421345 Signal 1 rs620315 7 7 0 2 
chr11:65276356-66315595 Signal 1 rs548082010 13 12 3 0 

chr11:129082612-130091276 Signal 1 rs745382 17 17 1 0 
chr12:13760997-14760997 Signal 1 rs12422552 18 18 14 9 
chr12:27486913-28881482 Signal 2 rs1600346 375 0 44 16 
chr12:95133983-96133981 Signal 1 rs17356907 2 2 2 0 

chr12:114898717-115898717 Signal 3 rs1882155 8 8 5 6 
chr12:114898717-115898717 Signal 4 rs11067765 6 6 5 5 
chr12:119894342-120894343 Signal 1 rs184486140 5 5 3 1 
chr14:36163563-37166547 Signal 1 rs12881240 19 19 10 5 
chr14:67650477-69067965 Signal 1 rs35378451 8 8 4 6 
chr14:67650477-69067965 Signal 2 rs2478777 4 4 2 2 
chr16:53267042-54321379 Signal 1 rs55872725 6 6 6 6 
chr16:53267042-54321379 Signal 2 rs9925952 21 21 17 11 
chr16:54148152-55148152 Signal 1 rs28539243 3 3 3 0 
chr16:80114430-81117200 Signal 1 rs9938021 14 14 2 0 
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chr16:86551631-87551631 Signal 1 rs4066743 85 85 12 18 
chr18:27321240-28321240 Signal 1 rs12970390 44 39 0 0 
chr18:44319625-45319625 Signal 1 rs78955132 38 38 5 0 
chr19:12547463-14343759 Signal 1 rs78269692 21 8 4 1 
chr19:16684212-17783315 Signal 1 rs67397200 16 16 1 0 
chr19:17939625-18960332 Signal 1 rs8105994 56 56 2 0 
chr19:29286822-30286822 Signal 1 rs17513613 60 47 0 0 
chr22:39980230-41131866 Signal 1 rs66987842 196 196 18 2 

Table 5.6: Prioritisation of CCVs at 196 breast cancer risk signals using primary cell rCHi-C data. 79 signals at which my capture array covered at least one 
CCV and at which at least one CCV formed direct IPs in primary luminal epithelial cells or fibroblasts. Number of CCVs – number of CCVs reported for the signal; 
Captured CCVs – number of CCVs that were targeted by the capture array. ‘EPI’ and ‘FIB’ columns show number of CCVs that formed direct IPs in the 2kb-binned 
luminal epithelial cells or fibroblasts, respectively. Fine-mapping region coordinates are in GRCh38/hg38. (*) – there were several fine-mapping regions (originally 
defined in hg19) that when lifted over to hg38 were split or partially deleted in hg38. These regions were compiled manually to encompass all CCVs at each of the 
regions. Red – a signal that was not targeted by the rCHi-C capture array, at which some of the CCVs (that mapped ‘by chance’ to the non-baited interacting bins) 
were involved in direct IPs. 
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However, at several signals, the rCHi-C data could not be used to prioritise a small subset 

of CCVs. For example, at chr8:126,412,414-129,029,685 (signal 2) there are 44 CCVs, 

of which 23 (EPI) and 38 (FIB) CCVs formed direct interaction peaks. This is partially 

due to the high CCV density at this signal – almost half of the CCVs span ~ 10 kb region, 

making it difficult to separate CCVs from each other even when the 2kb-binned data is 

used (EPI: 1 to 4 CCVs per bin; FIB: 1 to 8 CCVs per bin). As a result, higher resolution 

techniques and/or additional data types are required to prioritise CCVs at such signals. 

 

5.6. Luminal epithelial cells versus fibroblasts  

To investigate whether a subset of loci might mediate risk association via fibroblasts 

rather than epithelial cells, I compared ‘direct’ genes (and CCVs) identified between the 

two cell types (Figure 5.4).  

 

 

 

 

 

 

 

 

 

 
Figure 5.4: Venn diagrams illustrating the overlap between ‘direct’ genes and CCVs 
identified from cell line and primary cell rCHi-C libraries. ‘Direct’ genes (A) and ‘direct’ 
CCVs (B) identified in the 2kb-binned rCHi-C libraries generated using the Dovetail Genomics 
Omni-C protocol in T-47D, GS2, primary luminal epithelial cells (EPI) and primary fibroblasts 
(FIB). 

 

Out of 157 and 120 unique ‘direct’ genes identified in the luminal epithelial and fibroblast 

libraries, respectively, 85 genes formed direct interaction peaks in both cell types, 72 

genes only formed direct interaction peaks in the EPI dataset and 35 genes only formed 

direct interaction peaks in the FIB dataset (‘direct’ CCVs: in both – 169; EPI only – 260; 

FIB only – 148). Out of 35 genes that only formed direct interaction peaks in the FIB 

dataset, 16 participated in interaction peaks that did not involve CCVs (non-direct, 

hereafter) in the EPI dataset, and 19 genes formed no interaction peaks in the EPI dataset 

A            B 
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at all. One such example is FGF10 (Figure 5.5). The FGF10 promoter was involved in 

four significant interaction peaks at the chr5:44,013,202-45,206,396 region (5p12 locus) 

in the FIB dataset, two of which were direct and the other two did not involve any CCVs. 

The direct interaction peaks involved two different CCVs – rs6885754 and rs199581089. 

rs6885754 also formed direct interaction peaks with the NNT and PAIP1 promoters in the 

FIB dataset but no interaction peaks in the EPI dataset. The other CCV (rs199581089) 

also formed direct interaction peaks with NNT in both fibroblasts and epithelial cells, as 

well as it formed one interaction peak with each FGF10 and PAIP1 promoters in GS2 

cells. According to the RNA-seq data (not shown), FGF10 is expressed in both GS2 and 

primary fibroblasts, but not expressed in T-47D or primary luminal epithelial cells. 

 

From Table 5.5, out of the 37 regions where at least one putative target gene was 

identified in both cell types, 12 regions were fully concordant, 23 were partially 

concordant, and 2 regions were completely different. These two regions are 

chr8:100,966,731-101,966,731 (8q22.3 locus) and chr10:21,244,013-22,620,463 

(10p12.31). At the 8q22.3 locus (Figure 5.6), there is only one significant breast cancer 

risk signal that comprises 47 CCVs. In epithelial cells, a bin containing five closely 

spaced CCVs (rs35143639, rs13282693, rs544336840, rs36048804 and rs35794442) 

formed a direct interaction peak with the GRHL2 promoter. In fibroblasts, another bin (~ 

10 kb away) containing 6 different closely spaced CCVs (rs34113723, rs9297304, 

rs10086534, rs10086359, rs10089226 and rs16867595) formed a direct interaction peak 

with the NCALD promoter. GRHL2 did not participate in any interaction peaks in 

fibroblast cells, while NCALD was involved in some non-direct interaction peaks in 

epithelial cells. Based on RNA-seq data (not shown), GRHL2 is expressed at high levels 

in primary luminal epithelial cells but not expressed at detectable levels in primary 

fibroblasts. NCALD, in turn, is expressed in both primary fibroblasts and, at lower levels, 

in primary epithelial cells.  
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Figure 5.5: Direct interaction peaks at 5p12 in FIB and GS2 datasets. Direct interaction peaks 
(shown in a looping format) at the 5p12 breast cancer risk locus (chr5:44,013,202-45,206,396 
fine-mapping region, hg38) detected in 2kb-binned rCHi-C data generated in primary breast 
fibroblasts (FIB) and GS2 cell line using the Dovetail Genomics protocol. Purple loops – direct 
IPs that involved the FGF10 promoter. Grey loops – direct IPs that involved any other promoter. 
Genes – annotated RefSeq gene promoters. CCVs – credible causal variants selected by the 
BCAC fine-mapping study67. rBaits – rCHi-C array regions. CTCFs – consensus CTCF sites 
(described in Section 2.8). GS2 H3K27ac – H3K27ac peaks identified from GS2 CUT&Tag data. 
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Figure 5.6: Direct interaction peaks at 8q22.3 in EPI and FIB datasets. Direct interaction 
peaks (shown in a looping format) at the 8q22.3 breast cancer risk locus (chr8:100,966,731-
101,966,731 fine-mapping region, hg38) detected in 2kb-binned rCHi-C data generated in 
primary breast luminal epithelial cells (EPI) and fibroblasts (FIB) using the Dovetail Genomics 
protocol. Blue loops – direct IPs that involved the GRHL2 promoter. Purple loops – direct IPs 
that involved the NCALD promoter. Genes – annotated RefSeq gene promoters. CCVs – credible 
causal variants selected by the BCAC fine-mapping study67. rBaits – rCHi-C array regions. 
CTCFs – consensus CTCF sites (described in Section 2.8).  

 

At the 10p12.31 breast cancer risk locus (Figure 5.7), there are two independent ‘strong-

evidence’ signals (signals 1 and 2). All 7 CCVs at signal 1 were covered by my capture 

array, while at signal 2, only 16 out of 58 CCVs were covered. In epithelial cells, 

rs10828247 (signal 1) formed a single direct interaction peak with the BMI1 promoter. 

This CCV maps to the 5’ untranslated region (UTR) of the MLLT10 gene, so the CCV-

containing bin also colocalised with the promoter of this gene. In fibroblasts, only 

rs56373249 (signal 2) formed a single direct interaction peak with the MSRB2 promoter. 

MSRB2 did not participate in any interaction peaks in epithelial cells.  

 



 

 121 

 
Figure 5.7: Direct interaction peaks at 10p12.31 in EPI and FIB datasets. Direct interaction 
peaks (shown in a looping format) at the 10p12.31 breast cancer risk locus (chr10:21,244,013-
22,620,463 fine-mapping region, hg38) detected in 2kb-binned rCHi-C data generated in primary 
breast luminal epithelial cells (EPI) and fibroblasts (FIB) using the Dovetail Genomics protocol. 
Blue loops – direct IPs that involved the BMI1 promoter. Purple loops – direct IPs that involved 
the MSRB2 promoter. Genes – annotated RefSeq gene promoters. CCVs – credible causal variants 
selected by the BCAC fine-mapping study67. rBaits – rCHi-C array regions. CTCFs – consensus 
CTCF sites (described in Section 2.8). 

 

Although at some signals EPI and FIB datasets supported the same or overlapping sets of 

CCVs (Table 5.6), there were several signals that looked profoundly different in the two 

cell types. One such example is at the chr6:129,527,974-130,527,974 region (6q22-q23 

locus; Figure 5.8), that contains one signal (signal 1) encompassing 43 CCVs (all covered 

by my capture array). None of these CCVs formed direct interaction peaks in epithelial 

cells. However, 16 CCVs formed a total of 9 direct interaction peaks in fibroblasts. A bin 

containing two CCVs (rs4594967 and rs4551191) formed one direct interaction peak with 

each AKAP7 and EPB41L2 promoters. Two bins containing two (rs6900473 and 

rs6923819) and four (rs4404788, rs4279458, rs4321845 and rs75575024) CCVs formed 
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one direct interaction peak with each SMLR1 and EPB41L2 promoters. While three other 

bins containing one (rs9388766), three (rs9385532, rs7746589 and rs6914670) and four 

(rs7744830, rs7763108, rs11407151 and rs9375698) CCVs formed a single direct 

interaction peak each with the EPB41L2 promoter only. Out of three genes, only 

EPB41L2 was involved in non-direct interaction peaks in epithelial cells, while AKAP7 

and SMLR1 formed no interaction peaks in the EPI dataset at all.  
 

 
Figure 5.8: Direct interaction peaks at 6q22-q23 in FIB dataset. Direct interaction peaks 
(shown in a looping format) at the 6q22-q23 breast cancer risk locus (chr6:129,527,974-
130,527,974 fine-mapping region, hg38) detected in 2kb-binned rCHi-C data generated in 
primary breast fibroblasts (FIB) using the Dovetail Genomics protocol. Blue loops – direct IPs 
that involved the SMLR1 promoter. Purple loops – direct IPs that involved EPB41L2 promoters. 
Green loops – direct IPs that involved the AKAP7 promoter. Genes – annotated RefSeq gene 
promoters. CCVs – credible causal variants selected by the BCAC fine-mapping study67. rBaits – 
rCHi-C array regions. CTCFs – consensus CTCF sites (described in Section 2.8). 
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5.7. Primary cells versus cell lines 

To evaluate cell lines as a model to recapitulate the disease, I compared ‘direct’ genes 

and CCVs identified in primary luminal epithelial cells and fibroblasts to those from T-

47D and GS2 cell lines (Figure 5.4 and Table 5.7). Overall, higher overlap was observed 

between primary fibroblasts and GS2 cells rather than between primary luminal epithelial 

and T-47D cells. 
 

Baseline cell 
type 

Number of direct 
genes/CCVs Comparison cell type Direct genes/CCVs 

shared (%) 
Genes 

EPI 157 T-47D 56 (36%) 
FIB 120 GS2 83 (69%) 
EPI 157 FIB 85 (54%) 

CCVs 
EPI 429 T-47D 124 (29%) 
FIB 317 GS2 205 (65%) 
EPI 429 FIB 169 (53%) 

Table 5.7: Comparison of ‘direct’ genes and CCVs identified in cell lines and primary 
cells. 

 

I decided to focus on those genes (and CCVs) that appeared exclusively in: 

• cells of the fibroblast lineage (Figure 5.4; GS2: 41 genes and 117 CCVs; FIB: 16 

genes and 67 CCVs; GS2+FIB: 13 genes and 64 CCVs) 

and 

• cells of epithelial lineage (Figure 5.4; T-47D: 30 genes and 73 CCVs; EPI: 48 

genes and 143 CCVs; T-47D+EPI: 6 genes and 38 CCVs).  

 

Defining genes or CCVs that were exclusive to one library type as ‘exclusive’, I found 

that only a subset of ‘exclusive’ genes formed direct interaction peaks with a subset of 

‘exclusive’ CCVs (GS2: 22 genes with 27 CCVs; FIB: 5 genes with 6 CCVs; T-47D: 19 

genes with 30 CCVs; EPI: 22 genes with 44 CCVs). The remaining genes formed 

interaction peaks with CCVs that also interacted in other datasets, but with different 

genes. The remaining CCVs formed interaction peaks with genes that appeared in other 

datasets but in combination with different CCVs. This is in line with a single enhancer 

acting on multiple target genes, and a single gene being regulated by different cell type 

specific enhancers109.  
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Comparing genes that formed direct interaction peaks exclusively in the EPI but not T-

47D dataset, or vice versa, some of the EPI exclusive genes formed interaction peaks in 

T-47D data but with bins that lacked CCVs (hence, they did not count as direct interaction 

peaks), while others formed no interaction peaks in the T-47D data at all. The same was 

true for FIB and GS2 datasets. Two examples of genes that were only active in primary 

cells but not cell lines are SKP1 (EPI) and ITGA6 (FIB). 

 

The SKP1 promoter formed three direct interaction peaks at the chr5:132,571,366-

133,571,367 region in epithelial cells (5q31.1 locus; Figure 5.9). These interaction peaks 

involved 3 different bins containing 2 CCVs (rs14355 and rs13718), 3 CCVs (rs7730930, 

rs3088225 and rs76836760) and 10 CCVs (rs571173399, rs56076449, rs56083805, 

rs60306856, rs62375248, rs67394705, rs76880525, rs72801470, rs62375249 and 

rs77509681). The bin containing 10 CCVs was the only one that formed a direct 

interaction peak with SKP1 only, while the other two bins also formed a single direct 

interaction peak each with C5orf15. In addition, the bin containing three CCVs 

colocalised with the HSPA4 promoter. 

 

The ITGA6 promoter formed a single direct interaction peak at the chr2:171,019,711-

172,608,243 region (2q31.1 locus) with rs2356791 (Figure 5.10). The same CCV also 

formed a direct interaction peak with a bin containing DLX2 and DLX2-AS1.
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Figure 5.9: Direct interaction peaks at 5q31.1 in EPI dataset. Direct interaction peaks (shown 
in a looping format) at the 5q31.1 breast cancer risk locus (chr5:132,571,366-133,571,367 fine-
mapping region, hg38) detected in 2kb-binned rCHi-C data generated in primary breast luminal 
epithelial cells (EPI) using the Dovetail Genomics protocol. Blue loops – direct IPs that involved 
the SKP1 promoter. Grey loops – direct IPs that involved any other promoter. Genes – annotated 
RefSeq gene promoters. CCVs – credible causal variants selected by the BCAC fine-mapping 
study67. rBaits – rCHi-C array regions. CTCFs – consensus CTCF sites (described in Section 2.8). 

 



 

 126 

 
Figure 5.10: Direct interaction peaks at 2q31.1 in FIB dataset. Direct interaction peaks (shown 
in a looping format) at the 2q31.1 breast cancer risk locus (chr2:171,019,711-172,608,243 fine-
mapping region, hg38) detected in 2kb-binned rCHi-C data generated in primary breast 
fibroblasts (FIB) using the Dovetail Genomics protocol. Purple loops – direct IPs that involved 
the ITGA6 promoter. Grey loops – direct IPs that involved any other promoter. Genes – annotated 
RefSeq gene promoters. CCVs – credible causal variants selected by the BCAC fine-mapping 
study67. rBaits – rCHi-C array regions. CTCFs – consensus CTCF sites (described in Section 2.8). 

 

Out of 28 regions where at least one putative target gene was identified in both EPI and 

T-47D datasets (Table 5.5 and Table 3.6), 8 regions were fully concordant, 16 were 

partially concordant, and 4 regions were completely different. One such example is signal 

1 (17 CCVs) at the chr11:129,082,612-130,091,276 region (11q24.3 locus), where I 

identified RP11-237N19.3 (T-47D) and BARX2 (EPI) as the putative target genes (Figure 

5.11). BARX2 was involved in a single direct interaction peak with rs12285545 in luminal 

epithelial cells. In T-47D, rs139474311 formed a single bait-to-bait direct interaction 

peak with a bin located ~ 10 kb away and containing RP11-237N19.3 and 3 other CCVs 

belonging to the same signal (rs11822830; rs11820646; rs11437753).  
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Figure 5.11: Direct interaction peaks at 11q24.3 in T-47D and EPI datasets. Direct interaction 
peaks (shown in a looping format) at the 11q24.3 breast cancer risk locus (chr11:129,082,612-
130,091,276 fine-mapping region, hg38) detected in 2kb-binned rCHi-C data generated in T-47D 
cell line and in primary breast luminal epithelial cells (EPI) using the Dovetail Genomics protocol. 
Green loops – direct IPs that involved the RP11-237N19.3 promoter. Blue loops – direct IPs that 
involved the BARX2 promoter. Genes – annotated RefSeq gene promoters. CCVs – credible 
causal variants selected by the BCAC fine-mapping study67. rBaits – rCHi-C array regions. 
CTCFs – consensus CTCF sites (described in Section 2.8). T47D H3K27ac – H3K27ac peaks 
identified from T-47D CUT&Tag data.  

 

Out of 41 regions where at least one putative target gene was identified in both FIB and 

GS2 datasets (Table 5.5 and Table 3.7), 15 regions were fully concordant, 23 were 

partially concordant, and 3 regions were completely different. An example here is signal 

1 (2 CCVs) at the chr3:86,488,393-87,488,393 fine-mapping region (3p12-p11 locus), 

where rs13066793 formed a direct interaction peak with LINC00506 in GS2 cells, and 

with a bin containing CGGBP1 and ZNF654 in fibroblast cells (Figure 5.12). 

Interestingly, the same interaction peak (between rs13066793 and CGGBP1 and ZNF654) 

was also picked up in epithelial cells. 
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Figure 5.12: Direct interaction peaks at 3p12-p11 in FIB and GS2 datasets. Direct interaction 
peaks (shown in a looping format) at the 3p12-p11 breast cancer risk locus (chr3:86,488,393-
87,488,393 fine-mapping region, hg38) detected in 2kb-binned rCHi-C data generated in primary 
breast fibroblasts (FIB) and GS2 cell line using the Dovetail Genomics protocol. Green loops – 
direct IPs that involved the LINC00506 promoter. Purple loops – direct IPs that involved 
CGGBP1 and ZNF654 promoters. Genes – annotated RefSeq gene promoters. CCVs – credible 
causal variants selected by the BCAC fine-mapping study67. rBaits – rCHi-C array regions. 
CTCFs – consensus CTCF sites (described in Section 2.8). GS2 H3K27ac – H3K27ac peaks 
identified from GS2 CUT&Tag data. 

 

Focussing on CCVs (Table 5.6 and Table 3.9), a similar pattern was observed, i.e., there 

were examples of concordance but also discrepancies between the cell line and primary 

cell data. For example, at the chr7:93,984,487-94,984,487 region (signal 1), where T-47D 

and GS2 data prioritised only 2 and 9 CCVs, 18 and 17 CCVs formed direct interaction 

peaks in EPI and FIB datasets, respectively. In contrast, at the chr8:100,966731-

101,966,731 region (signal 1) where T-47D data prioritised 16 CCVs, rCHi-C data 

generated in epithelial cells prioritised a smaller number of CCVs (5 CCVs); and at the 

chr3:63,456,021-64,482,224 region (signal 1) where 12 CCVs formed direct interaction 

peaks in GS2 cells, only 2 did so in fibroblasts. In addition, at several signals where cell 
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line data prioritised a subset of CCVs, no CCVs formed direct interaction peaks in 

primary cells and vice versa. For instance, at the chr10:8,546,150-9,546,150 region 

(signal 1) no CCVs formed direct interaction peaks in GS2 data, while 6 CCVs formed 

direct interaction peaks in FIB data. At the chr17:79,794,855-79,816,335 region (signal 

1), 6 CCVs formed direct interaction peaks in the T-47D dataset, while no CCVs did so 

in the EPI dataset. In addition, sometimes the same putative target gene formed direct 

interaction peaks with different CCVs (of the same signal) in primary cell compared to 

the cell line data. One of such examples is ERLIN2 – a putative target gene of the 

chr8:36,500,965-37,501,668 region. In T-47D cells, ERLIN2 formed a single direct 

interaction peak with rs56687477, while in primary luminal epithelial cells 

with rs10092900. 

 

5.8. Discussion 

So far CHi-C data have only been generated in breast cancer and immortalised ‘normal’ 

breast epithelial cell lines. Here, for the first time I generated CHi-C libraries in primary 

breast luminal epithelial cells and fibroblasts isolated from two women undergoing 

reduction mammoplasty. To increase the power, two biological replicates were pooled 

for the analysis. However, it would be informative to generate two technical replicates of 

each library to assess the similarities and differences observed between women. 

 

Using rCHi-C data in primary cells, I identified a total of 157 genes that formed direct 

interaction peaks with 429 CCVs at 57 breast cancer risk fine-mapping regions in luminal 

epithelial cells and 120 genes interacting with 317 CCVs at 43 regions in fibroblasts. 

Without functional investigation, it is not possible to determine whether the identified 

genes are truly target genes and the CCVs are functional variants or not. In an attempt to 

address this in a high-throughput manner, the recent BCAC large-scale genetic fine-

mapping analysis integrated in silico and functional genomic datasets into the analysis 

using their INQUISIT algorithm66. Comparing my lists of putative target genes with the 

‘high confidence’ INQUISIT predictions, I found a greater concordance between the 

INQUISIT target gene predictions and the direct genes predicted from the EPI data 

compared to those predicted from the FIB data (Table 5.5). This may reflect the fact that 

epithelial cells are more relevant, because it is an epithelial cell (a luminal progenitor cell) 

that is generally considered to be the cell of origin for breast cancer105. Alternatively, it 

may reflect the fact that the data types that are incorporated into the INQUISIT algorithm 
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are predominantly generated in (epithelial) breast cancer cell lines. Overall, quite a low 

proportion of INQUISIT ‘high confidence’ genes were identified as direct genes using 

primary cell rCHi-C data (~20% in EPI; ~12% in FIB). One possible explanation is the 

lack of cell type diversity in the genomic features that are incorporated into the 

INQUISIT: out of the 811 genomic features incorporated into the algorithm, 362 (44.6%) 

were generated in MCF-7 cells (an ER+ breast cancer cell line), and just 67 (8.3%) or 22 

(2.7%) were generated in primary mammary epithelial or luminal epithelial cells, 

respectively130.  

 

To guide the interpretation of regulatory variants, tools for the annotation of CCVs have 

been developed (such as HaploReg131 and RegulomeDB132). These tools align CCVs with 

markers of open chromatin (such as DNase-seq and ATAC-seq), active histone 

modifications (particularly H3K27ac, H3K4me1 and H3K4me3) and TF-binding sites 

generated in different cell types. However, the range of assays and cell types used in these 

tools is limited. Both HaploReg and RegulomeDB primarily use data from the 

ENCODE109 and Roadmap Epigenomics project133. ENCODE relies heavily on cell lines 

(MCF-7, MCF10A and T-47D), with 267 out of a total 468 datasets generated in MCF-7 

cells130. Although the Roadmap Epigenomics project uses primary ex vivo tissues to 

generate normal epigenomes (which are arguably more relevant for analyses of breast 

cancer risk, given that risk reflects early events that precede the somatic genome), the 

range of data types is, inevitably, more limited, and with most datasets generated in 

myoepithelial cells130. Due to these limitations, functional validation of the variants is 

required, such as high-throughput reporter gene assays (e.g., MPRA134 and STARR-

seq135), but these have not yet been used in the context of breast cancer GWAS. 

 

To assess the level to which rCHi-C data can help to prioritise risk-associated variants at 

GWAS risk loci, ‘direct’ CCVs were mapped back to the breast cancer risk signals. At 

most of the signals where my capture array covered all reported CCVs and where at least 

one CCV formed direct interaction peaks with at least one gene, interaction peaks in the 

rCHi-C data involved only a subset of the CCVs, potentially narrowing down the number 

that would be prioritised for the follow up studies (Table 5.6).  

 

For example, out of 13 CCVs at the 2q31.1 breast cancer risk locus (Figure 5.2), I 

prioritised a single variant (rs930313) that formed direct interaction peaks with OLA1 in 

EPI and with LINC01305 in EPI and FIB. According to RegulomeDB and HaploReg, 
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rs930313 had the highest probability score of 0.61 (together with four other CCVs) and 

mapped to multiple marks of open chromatin in the largest number of tissues, implying 

that it might be a functional variant. Long non-coding RNA LINC01305 has been recently 

linked to the cervical cancer progression136, 137, while OLA1 was demonstrated to promote 

tumour invasion and metastasis in breast cancer by inhibiting the production of reactive 

oxygen species138, and to enhance chemoresistance by inhibiting the epithelial-

mesenchymal transition (EMT) process in breast cancer cells139. 

 

I also prioritised a subset of CCVs at the 1q32.1 breast cancer risk locus (Figure 5.3), 

which formed direct interaction peaks with ETNK2 and SOX13 promoters in both primary 

cell types. Out of seven prioritised CCVs, rs7520079, an intron variant of SNRPE gene, 

has the highest RegulomeDB probability score of 1.0 and is predicted to colocalise and 

alter the consensus binding motif of an E3 ubiquitin ligase (TOPORS) that has been 

implicated in modulating sensitivity to a PARP inhibitor olaparib in androgen receptor 

positive breast cancer cells140. Although analysis of TCGA samples revealed that ETNK2 

is amplified in 13% of breast cancer patients141, its function in breast cancer remains 

unknown. However, a recent study proposed its role in gastric cancer142. It showed that 

ETNK2 was upregulated in patients with hepatic metastasis. ETNK2 knockout 

significantly reduced proliferation, invasion, and migration and increased apoptosis. In 

mouse xenograft models, ETNK2 knockout virtually abolished hepatic metastasis. Studies 

suggest emerging role of SOX proteins in breast cancer development and maintenance143. 

SOX13 specifically was found to be upregulated in breast cancer tissues and cells 

compared with normal samples. Knockdown of SOX13 inhibited breast cancer cell 

proliferation, arrested cell cycle at G1/S phase and suppressed glycolysis, while 

overexpression of SOX13 reversed these events144.  

 

However, at the ‘dense’ regions where multiple correlated variants all map closely to each 

other, CHi-C was not very effective in reducing the number of candidate CCVs. As a 

result, higher resolution techniques and/or additional data types are required to prioritise 

CCVs at such signals.  

 

5.8.1. Luminal epithelial cells versus fibroblasts 

To investigate whether a subset of loci might mediate risk association via fibroblasts 

rather than epithelial cells, I compared ‘direct’ genes (and CCVs) identified between the 
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two cell types (Figure 5.4). A large proportion of genes formed direct interaction peaks 

in both cell types, but there were 35 genes that did so exclusively in fibroblasts. To 

illustrate this, I picked FGF10 at the 5p12 locus (Figure 5.5). FGF10 is expressed in 

primary fibroblasts and GS2 cells (where it also formed direct interaction peaks), but not 

in primary luminal epithelial or T-47D cells. The fact that there were two other genes 

(NNT and PAIP1) that formed direct interaction peaks with the same CCVs at that region 

does not rule out FGF10 as a plausible putative target gene at this locus that might as well 

be involved in breast cancer risk association. Studies in FGF10−/− and FGFR2b−/− 

mouse embryos have shown that FGF10-FGFR2b signalling plays a key role in mammary 

gland development145, 146. FGF10 was found to be highly overexpressed in 10% of human 

breast carcinomas147. The gene is expressed exclusively by the stromal fibroblasts of 

normal and breast cancer tissue and has been reported to be an oncogene in mammary 

tumour virus mouse models and in a subset of breast carcinomas where it is 

overexpressed147, 148. FGF10 is involved in regulation of the EMT, cell viability, 

migration and colony formation in breast cancer cell lines149. FGF10 has previously been 

proposed as a target gene at the 5p12 breast cancer risk locus, on the basis of expression 

quantitative trait locus analysis (eQTL) in normal breast tissues and breast tumours, as 

well as 3C and reporter gene assays carried out in cell lines of epithelial origin150. My 

rCHi-C data, however, implicated FGF10 as a putative target gene that acts in fibroblasts, 

but the direct interaction peaks I picked up were with signal 3 CCVs, while Ghoussaini 

et al. study150 focused on signal 1 CCV. 

 

To illustrate further potential cell type-specific differences in my data, I used the 8q22.3 

locus (Figure 5.6) at which GRHL2 and NCALD formed direct interaction peaks in EPI 

and FIB, respectively; and the 10p12.31 locus (Figure 5.7) at which BMI1 formed direct 

interaction peaks in EPI and MSRB2 in FIB. GRHL2 is a transcription factor that is 

suggested to play an important role in EMT151. Knockdown of GRHL2 expression in 

human mammary epithelial cells led to down-regulation of E-cadherin and induction of 

EMT. Clinical datasets showed that expression of GRHL2 is associated with poor relapse 

free survival and increased risk of metastasis in breast cancer patients. In mouse models, 

overexpression of the gene significantly promoted tumour growth and metastasis. 

NCALD showed lower expression in the stroma surrounding invasive breast primary 

tumours than in normal breast stroma cells152. Studies showed that NCALD is involved in 

chemoresistance in ovarian153 and colorectal154 cancers. In colorectal cancer, 

miR‑181d‑5p, microRNA (miRNA) from cancer‑associated fibroblasts (CAFs)‑secreted 
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exosomes, directly targeted NCALD to inhibit the 5‑Fluorouracil-based chemotherapy 

sensitivity of colorectal cancer cells. Patients with higher NCALD levels showed a higher 

survival rate. Interestingly, CAF-secreted exosomes containing miR-181d-5p induced 

EMT in breast cancer cells and promoted tumour growth in mouse models155.  

 

At the 10p12.31, BMI1 and MSRB2 formed direct interaction peaks with rs10828247 

(signal 1) and rs56373249 (signal 2), respectively, suggesting that either or both genes 

might represent targets albeit of different signals. Transcriptional repressor BMI1 is an 

established oncogene that was linked to multiple cancers156. MSRB2 is a lot less studied, 

especially in the context of cancer. Downregulation of its family gene MSRA in human 

breast cancer cells resulted in increased cell proliferation and extracellular matrix 

degradation, and consequently in a more aggressive cellular phenotype157. Another family 

gene MSRB3 was demonstrated to prevent oncogene-induced DNA damage in breast 

cancer158. MSRB2 itself is suggested to play a role in the induction of mitophagy – a 

selective degradation of toxic mitochondria that protects a cell from apoptosis159. 

Senescent human fibroblasts showed decreased expression of MSRB2 when compared to 

young cells, suggesting that gene downregulation may alter the ability of senescent cells 

to cope with oxidative stress and result in the age-related accumulation of oxidative 

damage160. Analysis of primary cancer samples showed that MSRB2 is highly expressed 

in liver and papillary renal cancers161. 

 

Although functional studies are required, it is possible that some of the genes mentioned 

in this sub-chapter may represent cell type specific targets, some of which may be 

involved in mediating breast cancer risk via fibroblasts. 

 

5.8.2. Cell lines as model systems 

Cell lines are in vitro model systems that are widely used in cancer research. The main 

advantage of cell lines lies in their ability to provide an indefinite source of biological 

material for experimental purposes. However, despite being a powerful tool, cell lines are 

genetically manipulated which can affect their phenotype, native functions and 

responsiveness to stimuli. Serial passage of cell lines can lead to further genotypic and 

phenotypic variations over time, as well as heterogeneity within cultures at a single point 

in time. As a result, cell lines may not adequately represent primary cells for certain 

purposes.  
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To evaluate T-47D and GS2 cell lines as model systems for studying the mechanisms that 

drive breast cancer risk in epithelial cells (T-47D) and fibroblast (GS2), I compared 

‘direct’ genes and CCVs identified in primary luminal epithelial cells and fibroblasts to 

those from T-47D and GS2 cell lines (Figure 5.4 and Table 5.7). Overall, using the 

primary cell data as the baseline for comparison, the proportion of shared ‘direct’ genes 

in the EPI and T-47D datasets (36%) was much lower than the proportion of shared genes 

in the FIB and GS2 data sets (69%; p = 5.3 x 10-8). In fact, the proportion of shared ‘direct’ 

genes between EPI and FIB (54%) was higher than between EPI and T-47D (36%, p = 

0.001). The opposite was true comparing EPI and FIB (54%) to FIB and GS2 (69%, p = 

0.01). The same trends were observed when comparing the proportions of shared CCVs; 

however, these, in particular, need to be interpreted with caution, since they are not 

independent observations (i.e., multiple CCVs can cluster within bins). These 

comparisons suggest that GS2 may be a better model for mammary fibroblasts than T-

47D is for normal mammary luminal epithelial cells. This may reflect the fact that GS2 

is a ‘normal’ immortalised breast fibroblast cell line, while T-47D is a breast cancer cell 

line (not a ‘normal’ immortalised luminal epithelial cell line). However, these differences 

may also reflect the quality of T-47D libraries, since the data generated in T-47D cells 

tended to be of a poorer quality than the data generated in other cell types. 

 

I selected SKP1 (EPI) and ITGA6 (FIB) as examples of genes that formed direct 

interaction peaks in primary cells but not cell lines (Figure 5.9 and Figure 5.10). SKP1 is 

one component of the SCF E3 ubiquitin ligases that comprise three invariable 

components (SKP1, Cullin1, and RBX1) and a variable component – F-box proteins that 

determine substrate specificity (such as FBXO32, for example, that was also a putative 

target gene in luminal epithelial cells). A study showed that SKP1 regulates BRCA1 

protein stability162. In addition, SKP1 expression was found to be significantly reduced 

(∼25-fold) within invasive breast carcinomas compared to the normal tissues, and 

analysis of gene copy number alterations revealed that SKP1 alterations occur in over 

40% of breast cancer samples163. 

 

A transmembrane glycoprotein adhesion receptor protein ITGA6 is abnormally expressed 

in multiple tumour types, including breast cancer. In addition to mediating interactions 

with the extracellular matrix, integrins drive intracellular signalling events that 

communicate from the tumour microenvironment to inside of the tumour cell to alter 

phenotypes including migration and invasion164. It has also been demonstrated that 
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ITGA6 is a hypoxia-inducible factors dependent target gene, and that its high expression 

enhances invasion and tumour-initiating cell activities in metastatic breast cancer models. 

ITGA6 has also been proposed to be an independent prognostic factor for survival in 

breast cancer patients. ITGA6/AKT/ERK signalling is suggested to play an important role 

in radiotherapy resistance in human breast cancer165. In addition, a study of the breast 

cancer tumour microenvironment revealed that ITGA6 was unregulated in the dense 

fibrotic zone of IDC166. Fibrosis is the formation of excess fibrous connective tissues due 

to physiological stress; when cancer becomes invasive or metastatic, dense fibrosis is 

detected around the tumour burden, especially in solid tumour tissue. Finally, studies 

showed that ITGA6 renders an invasive phenotype on fibroblasts167, and its knockdown 

significantly attenuates the proliferation and differentiation of fibroblasts into 

myofibroblasts168.  

 

Similarly, there is biological plausibility in the example that I used to illustrate a locus 

(11q24.3; Figure 5.11) at which there were different direct interaction peaks in primary 

luminal epithelial cells (with rs12285545 and BARX2) and T-47D (with rs139474311 and 

RP11-237N19.3). According to RegulomeDB, rs12285545 has a much higher probability 

score than rs139474311 (0.61 vs. 0.11). In addition, a HaploReg search showed that 

rs12285545 overlapped enhancer histone marks in four tissues (including breast 

myoepithelial primary cells). Not much information is available on RP11-237N19.3. 

BARX2, in turn, was shown to be involved in ESR1 regulation169. Its protein binds to an 

ESR1 gene promoter and increases the expression of alternatively spliced mRNAs that 

encode two ESR1 protein isoforms. Additionally, BARX2 increases the expression of 

active matrix MMP9, which is known to promote invasion of cancer cells via matrix 

degradation.  

 

Overall, these data suggest that although cell lines are useful model systems, they might 

not always accurately replicate the primary cells. If the risk reflects early events that occur 

in (relatively) normal cells, then further studies in primary cells are needed and, where it 

is not possible to use primary cells immortalised ‘normal’ mammary epithelial cell lines 

(such as MCF10A or Bre80) might be better models than the frequently used breast cancer 

cell lines (T-47D and MCF-7). 
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6. Discussion 

Genome-wide association studies together with fine-mapping and large-scale replication 

studies have identified genetic variants associated with breast cancer risk in over 150 

genomic regions67. However, the causal variants and targets genes that drive these 

associations remain largely unknown, with less than 20 regions studied in detail (Table 

1.1). Although individual regions tend to account for a relatively modest proportion of 

risk association, when considered together, they might aid in selecting the individuals 

who are at high risk of developing breast cancer within a population.  

 

Most of the identified CCVs map to non-protein-coding regions of the genome and are 

thought to affect transcriptional regulation78-80; many are found in gene deserts with the 

nearest known protein-coding genes mapping hundreds of kilobases away. It has been 

proposed that transcriptional regulation involves direct physical interaction between the 

regulatory element and target(s) which is brought about by chromatin looping170. 

Regulatory elements can be located a long distance away from their target genes and do 

not necessarily regulate the closest promoter, but evidence suggests that most enhancer-

promoter interactions occur in cis111, 116, 171. In addition, studies have shown that 

individual enhancers can loop to and regulate multiple genes and that individual genes 

can be regulated by multiple enhancers109.  

 

Although GWAS have proven to be a powerful tool to identify disease-associated genetic 

variants, they do not directly address the underlying biological mechanisms. In addition, 

at many risk regions local correlation of multiple genetic variants due to LD is such that 

it makes it difficult to distinguish causal variants from a large number of correlated 

variants. Consequently, additional studies are generally required to identify and/or 

prioritise a subset of putative causal variants and target genes for in-depth functional 

characterisation. 

 
Here I used CHi-C – a chromosome conformation capture-based method that allows high-

throughput and high-resolution analysis of physical interactions between regulatory 

elements and their target genes. Until recently, the cellular input requirements have 

prohibited the use of CHi-C in all but a very few primary cell types172 and the use of 6-

cutter restriction enzymes (such as HindIII) has limited the resolution of the technique. 

In this project, I compared three different CHi-C protocols and found that by switching 



 

 137 

to kit-based methods, I was able to reduce the cellular input, time and costs associated 

with the technique. I was also able to increase the resolution, which, in turn, allowed me 

to narrow down the number of prioritised genes and CCVs. In summary, I have generated 

CHi-C libraries in two types of primary cells (luminal epithelial cells and fibroblasts) and 

analysed the data at a resolution of 2 kb. 

 

An advantage of CHi-C over many other methods used for the functional annotation of 

GWAS risk loci is that it links CCVs and putative target genes. While there are some 

other methods that link CCVs to genes (such as HiChIP173 and CROP-seq174), most 

methods tend to focus on investigation of genes or variants separately. Data presented in 

this thesis suggest that CHi-C has a role to play in the functional annotation of GWAS 

risk loci, prioritising putative target genes and CCVs for functional follow up studies. 

However, integrating CHi-C data with other genomics datasets will be needed to further 

inform our understanding of the mechanisms that influence risk. For example, other 

studies have used CHi-C data combined with ChIP-seq and RNA-seq to investigate the 

rewiring of promoter–enhancer contacts upon the differentiation of embryonic stem 

cells175-177. In some of the examples that I have used to illustrate a point, I have referred 

to H3K27ac CUT&Tag and RNA-seq data generated in the same cell types by other 

members of the lab. As a group, we are currently integrating these datasets which will 

allow us to determine whether the specific examples I have mentioned in this thesis are 

representative of general trends.  

 

In this project, I also investigated the benefit of integrating two CHi-C approaches (rCHi-

C and pCHi-C). Looking from two opposite capture viewpoints allowed me to look into 

a subset of reciprocal interaction peaks, cross-check lists of prioritised genes and CCVs, 

and to investigate a subset of ‘indirect’ (third-party) interactions peaks. My study suggests 

that a dual-capture approach can aid in validation of interaction peaks, putative target 

genes and CCVs identified by one approach as well as in identification of additional 

targets. However, it also highlighted how important experimental design and analysis 

considerations are required in order to get the most out of the integration analysis. 

 

6.1. Data analysis considerations 

Capture Hi-C data has some challenging statistical properties that differentiate it from the 

Hi-C data. For instance, in CHi-C, the interactions are asymmetric because the number 
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of captured viewpoints is far less than the number of potential interacting non-baited ends. 

Additionally, baited regions may be captured with different efficiencies, affecting the 

background of the experiment. As a result, specialised tools are required for the analysis 

of the CHi-C data. Here I used CHiCANE108 – an in-house pipeline developed specifically 

for the analysis of rCHi-C data. CHiCANE was designed on the assumption that GWAS 

risk loci harbour causal variants, some of which influence gene expression via long-range 

interactions with their target genes and prioritises mid-range interaction peaks (100 kb – 

5 Mb).  

 

Standard libraries were called using individual HindIII fragments as the unit of analysis, 

while Arima and Dovetail libraries were called using both 2kb- and 5kb-binned data. In 

both the cell line and primary cell rCHi-C data, more interaction peaks were called in the 

2kb- compared to 5kb-binned data. In addition, higher proportions of cis interaction peaks 

in the ≥ 1 Mb range were consistently observed in the 5kb-binned (and Standard) libraries 

than in the 2kb-binned libraries. 

 

In pCHi-C data, in contrast, more (or similar numbers) of interaction peaks were called 

in the 5-kb binned datasets. In addition, the 5kb-binned datasets showed greater 

proportions of cis interaction peaks in the 100 kb – 1 Mb range and lower proportions of 

cis interaction peaks in the 10 kb – 100 kb range. Comparing back to the rCHi-C libraries, 

the overall proportions of cis ≥ 1 Mb interaction peaks were generally lower in pCHi-C 

than in rCHi-C libraries. 

 

There are at least two possible explanations for these differences. First, the pCHi-C 

analysis was based on a much larger number of on-target di-tags than the rCHi-C analysis 

(even though less of these di-tags mapped to the vicinity of a GWAS region). However, 

down-sampling the pCHi-C data to a similar size did not alter the distribution of called 

interaction peaks substantially (not shown). Alternatively, in the pCHi-C data, the baited 

smart bins are, on average, 2 kb in size (median = 1.9 kb), while the majority of non-

baited bins are either 5 kb or 2 kb (Figure 6.1). In the rCHi-C data, the baits were selected 

based on the regions of LD (rather than gene promoters) and, therefore, most of them are 

not smart bins. As a result, both baited and non-baited bins in the rCHi-C datasets are 

predominantly 5 kb (or 2 kb) in size. The fact that the distribution of the called interaction 

peaks was more similar for the rCHi-C and pCHi-C datasets in the 2kb-binned analyses 

rather than the 5kb-binned analyses suggests that the size of the baited and non-baited 
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bins influences the predominant distance range within which interaction peaks are called, 

with smaller bin sizes favouring shorter-range interaction peaks, and with the size of the 

baited bins having the more pronounced effect. This observation uncovers another 

potential advantage of kit-based protocols (where data can be binned in various bin sizes) 

over the Standard protocol (where the size of the bin is fixed). 

 

 
Figure 6.1: Distribution of bins in CHi-C libraries generated using the Dovetail Genomics 
Omni-C protocol. 

 

Looking into the subsets of direct interaction peaks, more direct interaction peaks as well 

as ‘direct’ gene- and CCV-containing bins were observed in all the 2kb rCHi-C libraries, 

except the T-47D Arima library. One possible explanation is that this library had the 

lowest absolute number (and proportion) of on-target read pairs (Table 3.1) and, 

therefore, there was not enough power for the 2 kb analysis.  

 

In conclusion, I observed that the choice of analysis has a major effect on the data. In the 

absence of a ground truth, i.e., a data set in which the true target genes and causal variants 

are known, it is difficult to know which is the ‘best’ analysis, but careful considerations 

are required when making a choice. Future studies investigating various options in-depth 

would be beneficial.  
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6.2. Limitations 

In this study, I mainly focused on direct interaction peaks, i.e., interaction peaks where a 

bin colocalising with a gene promoter formed a direct interaction peak with a CCV-

containing bin. However, it is important to remember that simply finding an interaction 

between a CCV and gene promoter does not on its own infer causality. It is likely that 

only a subset of the interacting variants has an effect on transcription factor binding or 

enhancer activity, some may influence transcription via a different mechanism, most will 

have no effect at all (bystanders). CHi-C can only identify interacting regions, but it 

cannot provide any information about the functional nature of the interaction. As a result, 

functional follow up studies (e.g., luciferase reporter assays or targeted CRISPR 

approaches) are required to investigate potential regulatory effects of these interactions. 

 

It is possible that some interactions between the CCVs and putative target genes were 

missed due to the array coverage issues (lack of suitable baits). False negatives may occur 

due to short-range contact constraints or the transient nature of regulatory chromatin 

interactions. In addition, regulatory interactions appear to be cell type specific. In this 

study, I focused on luminal epithelial cells and fibroblasts, however, risk association at 

some signals may be mediated by other cell types (and/or stroma components), such as 

myoepithelial cells, adipocytes or immune cells. False positives can result from 

crosslinking artefacts, and it is possible that some interactions may be cell culture 

condition dependent. 

The selection of CCVs used in this study is another important consideration. For the 

analysis, I used a list of 5,117 CCVs published in the latest BCAC paper67, where they 

defined CCVs as all variants with a p value for association within two orders of magnitude 

of the index SNP. Although this approach has been consistently used in the breast cancer 

GWAS, it is not a convention found in other GWAS fields, and there is no real 

justification for this arbitrary cut-off.  

This approach might work well for signals where there is a clear, individual variant 

associated with risk, such as signal 1 at the 2q35 locus, where rs4442975 is the index and 

the only SNP at the signal, and for which subsequent studies have confirmed rs4442975 

as the functional variant101, 114. However, at some signals comprising many correlated 

variants, risk might be mediated by multiple variants of modest effect that are correlated 

with one another. In such cases, rather than a single strongly associated index variant 
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being the functional one, a haplotype of correlated variants may influence risk. In a recent 

study that used massively parallel reporter assays (MPRA) to systematically characterise 

the functional variants that drive eQTL and GWAS associations, Abell and colleagues 

found that at 17.7% of the eQTLs it was a haplotype of at least two variants in tight LD 

that was driving the associations178. In the extreme, they found two haplotypes 

comprising 13 correlated variants driving eQTL associations. 

In addition, I designed my region capture array before the list of CCVs reported by the 

BCAC67 became available. Therefore, my array was originally based on proxies, i.e., 

variants that were correlated with the index SNPs (r2 ≥ 0.6). As a result, the array regions 

did not capture all of the CCVs that mapped to the targeted 183 ‘strong-evidence’ signals. 

Overall, my array included 3,383 out of 4,068 BCAC CCVs (83%), while the remaining 

685 CCVs mapped outside of the array regions. For the excluded CCVs, I could not pick 

up interaction peaks in my rCHi-C data, and, therefore, cannot comment on their 

involvement in breast cancer risk mediation. 

As a result of my work, I have now annotated BCAC fine-mapping regions with my CHi-

C selected putative target genes (Table 5.5) and generated a version of the BCAC CCV 

data annotating which CCVs were involved in direct interaction peaks in primary cells. 

This thesis only reports numbers of CCVs that were involved in direct interaction peaks; 

it was not possible to provide a table of annotated variants due to the size limitations of 

the thesis. Overall, throughout the thesis, I focused on genes more than on CCVs for two 

main reasons: (i) the number of prioritised CCVs is much larger than the number of 

prioritised genes; (ii) there is much more published data available on individual genes 

than on individual CCVs. Realistically, within the scope of this project, all I could do 

with CCVs is to align them with markers of open chromatin, active histone modifications 

and TF-binding sites (and this is what I did for a few individual examples), but data in 

the relevant cell types (in primary cells and in breast fibroblasts) is quite limited. 

6.3. Implications 

There are two main ways in which CHi-C data can enhance our understanding of breast 

cancer biology. First, it allows prioritisation of a list of putative functional variants and 

target genes that warrant in-depth functional investigation. Follow up functional studies 

involving these genes and CCVs can help us to understand the mechanisms that increase 

breast cancer risk. Understanding these mechanisms might – in the longer term – inform 
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new ways of reducing breast cancer risk. In addition, cancer risk and progression may not 

be completely unrelated, so some of the identified genes could represent therapeutic 

targets. However, it is important to note that such theoretical developments are a long 

way from this current work. Secondly, identification of variants that affect breast cancer 

predisposition, can be used as part of polygenic risk score (PRS) models. PRS models 

can be used to predict likelihood of a polygenic trait by assigning weights to proxy 

measures of risk179. Fitting actual functional variants into PRS models will make them 

more intuitive, but not necessarily any more accurate, because these variants may not 

capture all of the risk at a certain locus quite as well as an index variant, and so should be 

tested against the original.  

In summary, a high-throughput CHi-C analysis might contribute to on-going efforts to 

functionally characterise GWAS risk loci. Putative target genes and CCVs identified by 

CHi-C that are supported by additional data sources represent strong candidates for in-

depth functional follow up studies. Therefore, my study represents an important resource 

for the breast cancer research community that can facilitate risk prediction, functional 

experimentation, and insights into breast cancer biology. 
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Appendix A 

Regions targeted by the rCHi-C capture array. 
 
Array design is described in Section 2.5. Chr – chromosome; Region start – start 
coordinate of the final array region; Region end – end coordinate of the final array region; 
SNP type – index SNP type (bc – breast cancer risk SNP, md – mammographic density 
SNP, size – breast size SNP, credvar – credible variant from Michailidou et al., 2017). 
All coordinates are in GRCh38/hg38. The focus of my thesis is the breast cancer risk 
regions; MD and breast size loci were also included on the array but will be the subject 
of a subsequent analysis.
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Chr Cytoband Region start Region end Index SNP SNP 
type 

chr1 p36.22 10,489,676 10,492,573 rs657244 bc 
chr1 p36.13 18,467,486 18,484,134 rs2992756 bc 
chr1 p34.1, p33 46,209,587 46,418,560 rs12039667 bc 
chr1 p22.3 87,682,256 87,731,574 rs7541276 bc 
chr1 p22.2 87,948,543 87,976,953 rs11583393 bc 
chr1 p13.2 113,624,200 113,636,095 rs11552449 credvar 
chr1 p13.2 113,652,833 113,910,769 rs11102701 bc 
chr1 p12 117,638,307 117,731,142 rs7529522 bc 
chr1 p12 118,194,960 118,296,940 rs2359714 size 
chr1 q21.1 143,901,312 143,986,674 rs201000337 bc 
chr1 p11.2 121,537,792 121,541,057 rs11249433 bc 
chr1 q21.1 145,720,339 145,849,216 rs143384623 bc 
chr1 q21.1 145,624,176 145,710,306 rs200366104 bc 
chr1 q21.2 149,905,982 150,028,456 rs12048493 bc 
chr1 q22 155,165,982 155,232,616 rs1057941 bc 
chr1 q22 155,286,651 155,310,810 rs4971059 credvar 
chr1 q22 155,440,841 155,447,640 rs4971059 credvar 
chr1 q22 155,580,577 155,589,158 rs4971059 credvar 
chr1 q32.1 201,460,879 201,490,909 rs35383942 bc 
chr1 q32.1 201,808,031 201,922,777 rs34091558 size 
chr1 q32.1 202,202,758 202,239,749 rs4950774 bc 
chr1 q32.1 203,796,228 203,982,201 rs59867004 bc 
chr1 q32.1 204,478,666 204,622,747 rs4951401 bc 
chr1 q41 217,003,003 217,049,973 rs11117754 bc 
chr1 q43 241,854,596 241,874,165 rs72755295 bc 
chr2 p25.3 598,965 658,786 rs62105303 size 
chr2 p24.1 19,100,567 19,262,264 rs10184522 bc 
chr2 p23.3 24,837,379 24,944,468 rs2384061 bc 
chr2 p23.2 28,711,856 28,965,615 rs71403627 bc 
chr2 q14.2 120,222,322 120,318,919 rs11448973 bc 

chr2 q14.2 120,321,813 120,334,959 rs17625845 
bc and 

size 
chr2 q14.2 120,384,930 120,440,091 rs4076654 bc 
chr2 q14.2 120,474,096 120,490,342 rs4849879 bc 
chr2 q31.1 171,512,416 171,586,502 rs13020413 bc 
chr2 q31.1 172,100,816 172,116,344 rs2016394 bc 
chr2 q31.1 173,333,342 173,394,869 rs7589172 bc 
chr2 q33.1 201,122,205 201,213,352 rs13015648 bc 
chr2 q33.1 201,226,789 201,322,837 rs3769821 bc 
chr2 q33.1 201,336,626 201,344,457 rs1830298 credvar 
chr2 q35 217,011,844 217,061,244 rs4442975 bc 
chr2 q35 217,084,532 217,115,592 rs138522813 bc 
chr2 q35 217,385,406 217,494,724 rs5838651 bc 
chr3 p26.1 4,685,845 4,721,977 rs6787391 bc 
chr3 p24.1 27,225,136 27,355,050 rs36078735, rs1352944 bc, bc 
chr3 p24.1 30,625,036 30,656,156 rs35263707 bc 
chr3 p21.31 46,814,627 46,863,643 rs56387622 bc 
chr3 p14.1 63,836,578 64,080,223 rs555060306 bc 
chr3 p12.1 86,855,687 87,021,358 rs13066793 bc 
chr3 q12.1 99,700,887 99,764,670 rs506186 bc 
chr3 q23 141,352,866 141,441,725 rs7625643 bc 
chr3 q26.31 172,538,202 172,578,973 rs78105464 bc 
chr4 p14 38,747,178 38,910,312 rs10034903 bc 
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chr4 q13.3 74,416,747 74,623,258 rs10034692, rs7659874 
md, 
size 

chr4 q21.23 83,389,275 83,554,957 rs6854739 bc 
chr4 q24 105,132,996 105,281,535 rs17617028 bc 
chr4 q34.1 174,896,233 174,952,162 rs7664956, rs62334412 bc, bc 

chr5 p15.33 1,271,917 1,310,593 
rs10069690, rs2736107, 

rs150804576 
bc, bc, 

bc 
chr5 p15.1 16,188,640 16,287,055 rs12652713 bc 
chr5 p13.3 32,537,171 32,590,371 rs2012709 bc 
chr5 p12 44,397,125 44,586,991 rs5867671 bc 
chr5 p12 44,703,112 44,875,406 rs10941679 bc 
chr5 p12 44,988,392 45,332,406 rs190443933 bc 
chr5 q11.2 56,368,461 56,384,203 rs7730210 bc 
chr5 q11.2 56,616,049 56,617,468 rs984113 bc 

chr5 q11.2 56,706,716 56,929,322 
rs17432750, rs112497245, 

rs62355902 
bc, bc, 

bc 
chr5 q11.2 58,884,543 58,890,189 rs1353747 credvar 
chr5 q11.2 58,945,289 58,946,391 rs1353747 credvar 
chr5 q11.2 58,958,409 59,100,468 rs537267133 bc 
chr5 q11.2 59,167,307 59,295,618 rs10472097 bc 
chr5 q14.3 91,281,831 91,510,439 rs1964292 bc 
chr5 q23.2 123,116,631 123,121,697 rs186749 md 
chr5 q31.1 133,030,891 133,114,405 rs571173399 bc 
chr5 q33.3 158,753,989 158,838,109 rs31864 bc 
chr5 q35.1 170,092,648 170,169,740 rs56722914 bc 
chr6 p23 13,637,145 13,759,235 rs405447 bc 
chr6 p22.3 16,398,285 16,404,352 rs3819405 bc 
chr6 p22.3 20,530,968 20,538,981 rs2223621 credvar 
chr6 p22.3 20,541,106 20,547,026 rs2223621 credvar 
chr6 p22.3 20,548,446 20,558,030 rs2223621 credvar 
chr6 p22.3 20,559,446 20,563,898 rs2223621 credvar 
chr6 p22.3 20,569,568 20,574,665 rs2223621 credvar 
chr6 p22.3 20,582,401 20,593,538 rs2223621 credvar 
chr6 p22.3 20,609,906 20,613,229 rs2223621 credvar 
chr6 p22.3 20,619,886 20,623,052 rs2223621 credvar 
chr6 p22.3 20,624,256 20,729,197 rs2328531 bc 
chr6 q14.1 81,461,149 81,638,989 rs7763102 bc 

chr6 q22.33, 
q23.1 

129,998,090 130,086,670 rs6569648 bc 

chr6 q25.1 149,257,466 149,266,042 rs35409891 bc 

chr6 q25.1 151,589,730 151,670,924 
rs12665607, rs7763637, 
rs9397437, rs12173562 

md, bc, 
size, bc 

chr6 q25.1 151,685,747 151,707,091 rs851984 bc 
chr6 q25.1 151,727,606 151,758,234 rs9918437 bc 
chr6 q25.1 151,975,135 152,098,859 rs79388591 bc 

chr6 q25.1, 
q25.2 

152,099,001 152,120,175 rs34133739 bc 

chr7 p15.3 21,869,830 21,907,871 rs7971 bc 
chr7 q21.3 94,451,081 94,676,307 rs1879854 bc 
chr7 q22.1 101,842,925 101,916,979 rs7796917 bc 
chr7 q32.3 130,971,457 130,996,248 rs12706954, rs6973318 bc, bc 
chr7 q34 140,240,223 140,259,499 rs2003526 bc 
chr7 q35 144,347,571 144,445,683 rs62485509 bc 
chr8 p23.3 204,492 293,429 rs34810249 bc 
chr8 p12 29,619,279 29,675,153 rs7465364 bc 
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chr8 p11.23 36,799,886 37,004,434 
rs7816345, rs10110651, 

rs4286946 
md, 

size, bc 
chr8 q21.13 75,315,712 75,353,618 rs11373454 bc 
chr8 q21.13 75,373,804 75,534,319 rs17303163, rs199660865 bc, bc 
chr8 q22.3 101,316,631 101,418,947 rs7813150 bc 
chr8 q23.1 105,303,441 105,387,155 rs150957507 bc 
chr8 q23.3 115,999,849 116,006,774 rs10641009 bc 
chr8 q23.3 116,195,633 116,283,097 rs13267382 bc 
chr8 q24.13 123,542,045 123,606,784 rs58847541 bc 
chr8 q24.13 123,716,436 123,756,860 rs4871411 bc 
chr8 q24.21 127,195,124 127,214,360 rs35961416 bc 
chr8 q24.21 127,320,752 127,383,897 rs419018, rs10096351 bc, bc 
chr8 q24.21 128,149,254 128,214,145 rs7017073 bc 
chr9 p21.3 21,943,142 22,009,008 rs539723051 bc 
chr9 q31.2 107,537,236 107,549,472 rs60037937 bc 
chr9 q31.2 108,009,572 108,076,487 rs10816625, rs13294895 bc, bc 
chr9 q31.2 108,113,175 108,178,237 rs659713 bc 
chr9 q33.1 116,533,231 116,536,115 rs13294352 bc 
chr10 p14 9,019,827 9,148,294 rs7081544 bc 
chr10 p12.31 21,528,645 21,557,059 rs7098100 bc 
chr10 p12.31 22,168,196 22,240,695 rs138026227 bc 
chr10 q21.2 62,317,602 62,437,849 rs3081227 size 

chr10 q21.2 62,471,493 62,547,464 
rs10509168, rs10995190, 

rs10995201 
md, 

md, bc 
chr10 q22.3 79,073,584 79,103,820 rs754416 bc 
chr10 q22.3 79,121,808 79,138,110 rs10762851 bc 
chr10 q22.3 79,455,970 79,562,928 rs61862474 bc 
chr10 q25.2 112,985,904 113,054,955 rs71973726 bc 
chr10 q25.3 113,361,602 113,408,515 rs12250948 bc 
chr10 q26.12 121,325,863 121,338,584 rs9421409 bc 
chr10 q26.13 121,570,266 121,631,551 rs2981578, rs45631563 bc, bc 
chr11 p15.5 770,427 836,267 rs200835870 bc 
chr11 p15.5 1,857,563 1,935,751 rs620315, rs3817198 bc, md 
chr11 q13.1 65,774,554 65,793,538 rs3903072 credvar 
chr11 q13.1 65,798,901 65,925,150 rs548082010 bc 
chr11 q13.3 69,327,306 69,366,736 rs7102705 size 

chr11 q13.3 69,507,543 69,567,476 
rs78540526, rs671888, 

rs657686 
bc, bc, 

bc 
chr11 q22.3 108,173,573 108,432,844 rs368848598 bc 
chr11 q24.3 129,572,788 129,611,689 rs745382 bc 
chr12 p13.1 14,251,148 14,274,270 rs12422552 bc 
chr12 p11.22 27,962,551 28,035,234 rs1838564, rs7297051 size, bc 

chr12 q22 95,632,234 95,637,441 rs17356907 
bc and 

size 
chr12 q23.2 102,561,354 102,724,505 rs703556 md 
chr12 q24.21 114,393,161 114,449,373 rs1265507 md 
chr12 q24.21 115,141,991 115,146,732 rs35422 bc 
chr12 q24.21 115,344,206 115,401,753 rs1882155, rs1353783 bc, bc 
chr12 q24.21 115,757,861 115,782,683 rs11067765 bc 

chr12 q24.23, 
q24.31 

120,286,655 120,431,938 rs184486140 bc 

chr13 q13.1 32,294,044 32,604,944 rs11571833 bc 
chr13 q22.1 73,230,442 73,249,660 rs6562760 credvar 
chr13 q22.1 73,376,293 73,398,300 rs11382527 bc 
chr14 q13.3 36,604,331 36,668,665 rs12881240 bc 
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chr14 q13.3 36,756,140 36,811,672 rs848088 bc 
chr14 q24.1 68,092,570 68,194,273 rs2478777 bc 
chr14 q24.1 68,503,626 68,582,264 rs35378451 bc 
chr14 q32.11 91,256,349 91,286,036 rs11341843 bc 
chr14 q32.12 92,601,665 92,654,161 rs78440108 bc 
chr15 q26.1 90,957,821 91,020,105 rs12594752 bc 
chr16 p13.3 3,910,175 3,949,732 rs8063564 bc 
chr16 p13.3 4,083,593 4,144,046 rs6500580 bc 

chr16 q12.1, 
q12.2 

52,502,401 52,605,448 rs4784227 bc 

chr16 q12.2 53,758,081 53,844,605 rs55872725, rs9925952 bc, bc 
chr16 q12.2 54,639,330 54,650,631 rs28539243 bc 
chr16 q23.2 80,599,526 80,623,207 rs9938021 bc 

chr16 q24.1, 
q24.2 

86,984,890 87,063,432 rs4066743 bc 

chr17 q11.2 30,724,981 30,938,028 rs199661266 bc 
chr17 q11.2 30,940,956 30,951,569 rs146699004 credvar 
chr17 q21.2 42,223,278 42,230,109 rs148509105 bc 
chr17 q22 54,993,770 55,152,622 rs244321 bc 
chr17 q25.3 79,793,499 79,833,708 rs2587505 bc 
chr18 q11.2 26,620,331 26,627,813 rs4800749 bc 
chr18 q11.2 26,740,173 26,761,720 rs527616 bc 
chr18 q11.2 26,916,731 26,939,734 rs2307561 bc 
chr18 q12.1 27,827,264 27,905,184 rs12970390 bc 
chr18 q12.1 32,302,773 32,463,099 rs117618124 bc 
chr18 q12.3 44,785,036 44,844,654 rs78955132 bc 
chr18 q12.3 45,294,396 45,342,455 rs9952980 bc 
chr19 p13.13 12,947,227 12,997,354 rs78269692 bc 
chr19 p13.13 13,046,791 13,169,227 rs78269692 bc 
chr19 p13.11 17,096,922 17,113,752 rs67397200 bc 
chr19 p13.11 17,255,659 17,334,293 rs67397200 bc 
chr19 p13.11 18,396,204 18,527,717 rs8105994 bc 
chr19 q12 29,773,484 29,838,538 rs17513613 bc 
chr19 q13.31 43,773,782 43,813,880 rs56344893 bc 
chr19 q13.32 45,644,440 45,692,573 rs74174203 bc 
chr19 q13.32 45,693,244 45,708,153 rs71338792 credvar 
chr20 p12.3 5,966,527 5,971,824 rs16991615 bc 

chr21 q11.2, 
q21.1 

14,969,432 15,069,566 rs2822999 bc 

chr21 q21.1 15,185,021 15,214,135 rs2403907 bc 
chr22 q12.1 28,364,287 28,713,175 rs186430430 bc 
chr22 q12.1 28,734,534 28,743,311 rs5997389 bc 
chr22 q13.1 38,103,381 38,227,758 rs5995543 bc 
chr22 q13.1 38,231,733 38,257,143 rs7289126 md 
chr22 q13.1 38,756,058 38,873,647 rs9619765 bc 
chr22 q13.1 38,960,254 38,971,081 esv3647749 bc 

chr22 q13.1, 
q13.2 

40,333,496 40,674,752 
rs17001868, rs66987842, 

rs5995875 
md, bc, 

size 
chr22 q13.2 41,206,521 41,260,434 rs73161324 credvar 
chr22 q13.2 41,315,240 41,329,250 rs73161324 credvar 
chr22 q13.2 41,641,941 41,898,479 rs8137282 bc 

 


