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Intratumour heterogeneity (ITH) has become an important focus of cancer research in recent years. ITH describes the cellular
variation that enables tumour evolution, including tumour progression, metastasis and resistance to treatment. The selection and
expansion of genetically distinct treatment-resistant cancer cell clones provides one explanation for treatment failure. However,
tumour cell variation need not be genetically encoded. In pancreatic ductal adenocarcinoma (PDAC) in particular, the complex
tumour microenvironment as well as crosstalk between tumour and stromal cells result in exceptionally variable tumour cell
phenotypes that are also highly adaptable. In this review we discuss four different types of phenotypic heterogeneity within PDAC,
from morphological to metabolic heterogeneity. We suggest that these different types of ITH are not independent, but, rather, can
inform one another. Lastly, we highlight recent findings that suggest how therapeutic efforts may halt PDAC progression by
constraining cellular heterogeneity.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the most common
and most aggressive type of pancreatic cancer with a five-year
survival rate of only 8% [1]. Although PDAC incidence is low
compared to that of breast, prostate and lung cancers, it is
projected to become the second-most common cause of
cancer-related deaths, after lung cancer, by 2030 [2]. This trend
is partly attributable to a doubling of pancreatic cancer
incidence between 1990 and 2017 due to growing populations,
increased life expectancy and rising incidence of risk factors
[3–5].
The high proportion of metastatic disease at diagnosis is one

of the main reasons for the high mortality rate of PDAC. The
best curative treatment option is surgery, but even the small
proportion of patients eligible for surgery has a five-year
survival rate of only 30% [1]. Both adjuvant and neo-adjuvant
chemotherapies typically cannot halt disease progression for
more than a few months. There are currently no targeted
therapies for PDAC due to its near-universal reliance on
“undruggable” versions of mutant KRAS [6]. Only 1–3% of
PDAC tumours contain the now-druggable KRASG12C mutation
[7], an inhibitor of which is showing great promise in KRASG12C-
mutated non-small cell lung cancer [8].
One reason for the poor chemotherapeutic response of PDAC

tumours is their cellular heterogeneity. Whereas inter-tumour
heterogeneity (differences between PDAC in different patients)
can in principle be managed by careful classification of tumour
subtypes and identification of subtype-specific vulnerabilities,
intratumour heterogeneity (ITH) increases the likelihood that a
subset of PDAC cells will be resistant to a given treatment,

thwarting attempts at precision medicine. Genetic ITH, the
existence of genetic subclones within the tumour of a single
patient, was first demonstrated in PDAC by karyotyping [9] and
later by DNA sequencing [10, 11]. However, there is compelling
evidence to suggest that these genetic subclones can only explain
a proportion of the phenotypic heterogeneity observed among
cancer cells.
In this review, we discuss four types of ITH observed in

PDAC—cancer “stemness”, transcriptional and epigenetic varia-
tion, the epithelial-to-mesenchymal spectrum, and metabolic
differences. These phenotypic variables have all been asso-
ciated with the aggressive and chemoresistant nature of PDAC.
As we describe, these types of tumour cell heterogeneity are
partly overlapping and often linked, although in many cases the
triggers influencing the adoption of different cell states are not
known. There is still much to discover about the impact of each
variable on tumour progression, but recent studies have begun
to dissect the drivers of heterogeneity itself, with the aim of
reducing the complexity of PDAC to render it more clinically
tractable.

CANCER STEM CELLS (CSCS): RESERVOIRS OF TUMOUR-
INITIATING CAPACITY
Like normal stem cells present in almost all organs, CSCs are
defined by the two properties of self-renewal—the ability to give
rise to more CSCs—and regenerative capacity—the ability to give
rise to non-stem cells to recapitulate the histology of the tissue or
tumour. In the case of PDAC, this usually results in a combination
of epithelial and mesenchymal tumour cells, together with
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recruitment of stromal cells. CSCs therefore give rise to two types
of ITH: cells differing in their tumour-initiating capacity (cancer
stem versus non-stem cells) and cells arising from CSCs that differ
in morphology and behaviour.
The CSC model was first applied to leukaemia stem cells, with

the term “cancer stem cell” coined in 2001 [12], and CSC markers
were rapidly identified in several solid cancers, including PDAC
[13–16]. Perhaps because there is no clearly defined stem/
progenitor hierarchy for the healthy pancreas, unlike the intestine
for example, there has as yet been little consensus on PDAC CSC
markers. The first tumour-initiating cells identified in primary
human PDAC samples were marked by the cell surface markers
CD133 and CXCR4 in one study [15], and the combination of CD44,
CD24 and EpCAM in a second study [14]. A host of other markers
and metabolic activity assays—c-MET [17], aldehyde dehydrogen-
ase activity [18, 19], tuft cell-like cells marked by Dclk1 and
acetylated tubulin [20, 21], ABCG2-dependent riboflavin accumu-
lation and its endogenous fluorescence [22], CD90 [23], Msi1 and
Msi2 [24], and CD9 [25]—have also been reported to enrich for
CSCs. Taken together these experiments suggest that there are
PDAC cancer cell subpopulations that are enriched for tumour-
initiating capacity. Clonal analysis using genetic barcoding in
primary human PDAC samples supports this view [26, 27].
However, not all cells positive for a given marker will be bona
fide CSCs.
Traditional conceptions of the CSC theory assume that cell-

intrinsic mechanisms maintain a strict hierarchy of CSCs and non-
CSCs [16]. An important corollary of this theory is that if CSCs are
not ablated, cancers will always relapse, and conversely, that
therapeutic targeting of CSCs should lead to durable therapeutic
responses. However, it has become clear from research in the
intestine that “one-shot” targeted ablation of CSCs in solid
tumours may not be definitive, because non-CSCs can assume
CSC properties, upending the traditional hierarchy [28, 29]. The
latest research has therefore focused on the molecular determi-
nants of CSC properties such as tumour-initiating capacity, and on
a “functional hierarchy” of stemness within the tumour, rather
than on markers of a hard-wired CSC identity [30].
The mRNA-binding proteins Msi1 and Msi2 have been most

comprehensively characterised in murine PDAC as CSC markers
that also enhance tumour-initiating capacity. As an mRNA-binding
protein, Msi2 directly binds and modulates the levels of mRNA
molecules coding for epigenetic modifiers such as Brd4 and
Hmga2 [31], explaining, at least in part, how Msi2-expressing cells
are highly tumourigenic. In a follow-up study, the same group
characterised Msi2-expressing CSCs through a multi-omic
approach [24], identifying upregulation of lipid and redox
metabolic pathways as distinguishing features of CSCs. Further-
more, Msi2-expressing CSCs have a different epigenetic landscape
compared to the bulk of PDAC cells. One of the highly expressed
transcription factors in Msi2-expressing CSCs is the nuclear
hormone receptor RORγ, which controls both stemness and
proto-oncogenic transcriptional programs and could be pharma-
cologically targeted to reduce tumour burden in human and
murine models. Msi1/2 knockout also increases survival in the
widely-used KPC (LSL-KRasG12D; Trp53fl/fl or Trp53fl/+; Pdx1-Cre)
mouse model of PDAC. Although these mice eventually succumb
to the disease, it is possible that Msi deletion is incomplete or
compensated for by the other homologue. Even considering this
caveat, Msi-deleted tumours show a more epithelial histology than
their KPC counterparts [31].
More recently our laboratory identified the cell surface

tetraspanin CD9 as a marker for both murine and human PDAC
CSCs [25]. CD9high, but not CD9low, PDAC cells re-initiate tumour
grafts that resemble the mixed—epithelial and mesenchymal—
histology of primary KPC tumours. Mechanistically, CD9 interacts
with the glutamine transporter ASCT2 and thus boosts glutamine
import and downstream metabolism in CSCs. Heterozygous CD9

deletion in the KPC mouse model extends lifespan, suggesting
that the facilitation of glutamine metabolism is an important
function of CD9 in an autochthonous PDAC model. Several other
studies also suggest that glutamine metabolism is critical to PDAC
progression [32–35], underlining enhanced glutamine metabolism
as a feature of CSCs and a driver of tumour heterogeneity. Figure 1
depicts how CSCs and non-CSCs differ in their tumour-initiating
capabilities.
Cross-species validation of CSC markers has sometimes yielded

conflicting results. In mouse PDAC, some of the previously
described human PDAC CSC markers including CD133, CD44,
CD24 and ALDH1 activity fail to distinguish tumourigenic from
non-tumourigenic cell populations [36]. Studies carried out in
mouse models of PDAC indicate that the frequency of cells with
tumour-initiating capacity is, in general, much higher than in
human samples, possibly for technical reasons such as increased
viability upon cell sorting, or the use of same-species engraftment
assays to test tumour-initiating capacity [36]. Use of a variety of
mouse, patient-derived xenograft and organoid models should
help to disentangle these possibilities.
Taken together, the results from the studies described above

point towards a CSC theory in PDAC in which there is no one fixed
CSC subpopulation that is intrinsically hard-wired to act as a
tumour-initiating population. Instead, there is a heterogeneously
distributed CSC “state” within a given tumour [30, 37–39]. Despite
this more functional definition, there remains great interest in
CSCs as drivers of tumour progression, metastasis and relapse.
An ideal anti-CSC therapy would prevent tumour cells from

acquiring CSC capacity by steering all cells away from the stem-
like state, but in practice, targeting existing CSCs via specific
markers may be sufficient to reduce tumour heterogeneity and
render PDAC more treatable. Given the data from a colorectal
cancer model showing that metastases are more reliant on
Lgr5+ CSCs than primary tumours [29] it will be interesting to
see if PDAC primary tumours and metastases react differently to
CSC ablation, especially given that metastases are the main
cause of patient mortality [40]. In the case of Msi2/RORγ-
expressing CSCs there is some promise that the CSC transcrip-
tional state could be therapeutically targeted; it remains to be
seen if this will be the case for other highly plastic aspects of
stemness in PDAC.

Fig. 1 Only a subset of PDAC cells—the CSCs—have tumour-
initiating capacity. CSCs are marked by a variety of cell surface
markers and/or transcriptional programs.
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TRANSCRIPTIONAL AND EPIGENETIC HETEROGENEITY:
DETERMINING CELL STATE
Transcriptional subtypes of PDAC have proven considerably more
robust than genetic driver mutations in classifying patients into
relevant disease groups. Regulation of gene expression is multi-
faceted and may occur at both genetic and epigenetic levels. The
epigenome—the myriad modifications that drive differences in
gene expression independently of changes in DNA sequence—
includes processes to silence or activate genes at the level of
chromatin accessibility, histone modifications, DNA methylation
and non-coding regulatory RNAs [41, 42]. The role of the
epigenome itself as a potential driver of PDAC has been
highlighted by recent large-scale DNA sequencing studies, which
have identified frequent mutations in epigenetic modifiers,
including SWI/SNF components such as ARID1A and SMARCA4,
the demethylase KDM6A, and acetyltransferase EP300 [43, 44]. The
pathogenicity of some of these genes has been validated in
genetically engineered mouse models [45, 46]. Differences in both
DNA methylation and chromatin modification patterns correlate
with distinct PDAC subtypes in patient-derived xenografts (PDXs),
suggesting that distinct epigenetic states may underpin inter-
patient PDAC transcriptional heterogeneity [47]. The “squamous”
morphological and transcriptional subtype of PDAC has consis-
tently been associated with the poorest outcomes in multiple
studies [43, 46, 48].
However, in many patient tumours, “squamous” morphology is

observed heterogeneously within tumours, suggesting that these
subtypes are not fixed but rather an emergent property of PDAC

evolution. Intriguingly, tumours with subclonal mutations in
chromatin modifiers such as KDM6A and ARID1A are more likely
to exhibit histological features of the squamous subtype,
suggesting this broad family of mutations predispose PDAC cells
to adopt poor prognostic features [49]. Figure 2 highlights some of
the differences between the “classical” and squamous-like PDAC
cells.
One area in which epigenetic heterogeneity has been unequi-

vocally demonstrated within individual patients is when compar-
ing primary tumours and their metastases. Studies of paired PDAC
samples from primary tumours and metastases, in both mouse
and human rapid-autopsy specimens, have identified broad
epigenetic reprogramming and changes in chromatin modifica-
tions strongly associated with metastasis. Analyses of the
chromatin landscape of paired metastasis-derived and primary
tumour-derived KP*C (LSL-KRasG12D; Trp53R172H/+; Pdx1-Cre)
organoids implicates broad enhancer reprogramming as a
mechanism imbuing PDAC cells with metastatic competence
[50]. This enhancer reprogramming leads to increased binding of a
select group of transcription factors, notably FoxA1. Analogous
work with paired rapid-autopsy specimens from human patients
has also identified considerable changes in the chromatin
landscape in metastatic cells. This study demonstrated that a
subset of metastatic lesions evolves a unique metabolic depen-
dency on the oxidative pentose phosphate pathway, uncovering a
link between metabolic and epigenetic changes in metastasis, and
suggesting that such changes may, in some circumstances, be
therapeutically tractable [51]. In these studies, it is not clear

Fig. 2 Both classical and squamous-like PDAC cells—defined by different transcriptional and epigenetic programs—can be found within
a single tumour. Patients whose PDACs exhibit predominantly classical features have a better prognosis than those whose tumours exhibit
predominantly squamous features, such as higher KRAS activity and mutations in epigenetic modifiers.
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whether the changes observed in metastatic tumour cells are
already present heterogeneously in the primary tumour, or
whether they are specific to the secondary metastatic setting. In
contrast, a transient, highly metastatic subpopulation can be
identified in KP*C tumours using a fluorescent reporter for the
transcriptional regulator Hmga2 [52]. These cells are defined by a
hypoxic gene signature driven by the transcription factor Blimp1,
a signature also associated with poor outcomes in human disease.
Collectively, these experiments argue that both transcriptional and
epigenetic changes may facilitate metastasis, but critically, they do
not uncover a single unified mechanism, suggesting that
metastatic competence can arise in multiple ways.
The premise of specifically targeting transcriptional or epige-

netic drivers of disease progression is a considerable challenge.
Current compounds targeting the epigenome lack specificity
[42, 53], which may explain their limited clinical efficacy in solid
tumours. Therefore, it is reasonable to ask what stimuli drive
transcriptional changes during tumour evolution, and whether
these can be targeted. In the case of Blimp1 expression [52], the
hypoxic microenvironment was identified as such a stimulus.
However, genetic strategies that render the PDAC microenviron-
ment less hypoxic can generate more aggressive, poorly
differentiated tumours in other PDAC models [54], emphasising
the complexity of targeting specific cell states without considering
potential secondary effects. A detailed evaluation of how clinically
relevant transcriptional states arise will allow more informed
approaches to targeting the transcriptome and epigenome.
One such plausible mechanism is through genomic instability.

Initial genetic reconstruction efforts in human PDAC failed to
identify somatic mutations unambiguously associated with
metastasis [11]. More recent, comprehensive genomic sequencing
demonstrated limited genetic diversity between human meta-
static samples and the paired primary PDAC, further suggesting
that metastatic competence is not driven by novel, metastasis-
specific driver mutations [55]. However, these studies have
historically focused on single-nucleotide variants and as a result
discounted the potential impact of copy number variations as
genetic drivers. In addition to being the most frequently mutated
oncogene in PDAC, gene dosage increases of mutant KRAS are
already prevalent at early stages of tumour formation, and also
drive metastatic dissemination in both mouse and human [56].
More recent evidence confirms that both localised copy number
variations in KRAS and genes encoding epithelial-mesenchymal
transition-related transcription factors such as GATA6, as well as
whole-genome doubling events, may independently drive
squamous-like transcriptional and morphological changes in
human PDAC cells [57]. The extent to which these changes occur
heterogeneously within precursor lesions and tumours, and how
these populations might interact, remains to be investigated. Data
from intraductally transplanted orthotopic xenografts using
patient-derived organoids also implicates KRAS amplification in
promoting squamous-like, invasive features within heterogeneous
tumours, since inducible genetic activation of KRAS promotes an
invasive phenotype in these models [58]. Given that mutations in
epigenetic modifiers are also associated with squamous differ-
entiation [49], it is tempting to hypothesise that these mutations
promote genomic instability or bias it towards an evolutionary
trajectory favouring amplification of the KRAS signalling pathway.
Whether this can one day inform subtype-specific therapeutic
strategies remains to be seen, though recent work suggests that
whole-genome doubled cancer cells exhibit specific vulnerabilities
that may be amenable to targeting [59].

THE EPITHELIAL-MESENCHYMAL SPECTRUM: THE TUMOUR AS
A CHRONIC WOUND
The epithelial-mesenchymal transition (EMT) is a dynamic,
reversible process in which epithelial cells lose their local

attachments and apical-basal polarity to adopt a spindle-shaped
morphology and increased motility [60]. This morphological and
functional change in cellular phenotype manifests as a loss of
expression of canonical epithelial proteins, such as E-cadherin,
coupled to a gain of mesenchymal proteins, such as vimentin,
N-cadherin and FSP1 [61]. EMT programs are activated by a wide
variety of stimuli, notably cytokines such as TGF-ß [62], hypoxia
[63], matrix stiffness [64] and varied stromal cell inputs [65].
Intense research interest in EMT has been driven in part due to

its association with invasion and metastasis. In the KPC model,
mesenchymal-like cells can be identified in the earliest stages of
pancreatic cancer, even preceding the formation of a defined
primary tumour [66]. These mesenchymal cells can colonise the
liver and other distant organs, lending credence to the high
metastatic capacity of cells that have undergone EMT. In mice,
KRasG12D-mutant pancreatic epithelial cells spontaneously escape
replicative senescence to generate two distinct tumour cell
phenotypes—one epithelial and the other mesenchymal—each
with distinct molecular drivers for survival and proliferation [67].
Mesenchymal tumour cells in this model are more metastatic and
aggressive but highly sensitive to inhibitors of proteostasis, linking
EMT to disease severity while emphasising the potential
therapeutic avenues opened through characterising this type
of ITH.
The significance of EMT in PDAC and other solid tumours in

humans has been historically more controversial [68]. Nonetheless,
histological studies employing pathological scoring criteria to
distinguish cancer and stromal cells have observed a correlation
between increased expression of EMT-related transcription factors
in tumour cells and poorer clinical outcomes [69, 70]. Detection of
circulating tumour cells with mesenchymal features is also
associated with poor prognosis in PDAC [71]. Furthermore,
functional studies have demonstrated that induction of EMT
genes correlates with the aggressive squamous/basal-like PDAC
transcriptional signature [72] in both murine models [73] and
patient-derived organoids [74], suggesting a relationship between
this type of ITH and transcriptional subtypes correlated with
distinct patient outcomes.
EMT programmes are orchestrated by a group of transcription

factors, the EMT-TFs, of which TWIST1, ZEB1/2 and SNAI1/2 are the
most comprehensively studied [75], though other transcription
factors may also promote EMT in specific contexts [76]. However,
targeted genetic deletion strategies have shown that these EMT-
TFs are functionally distinct in PDAC, with only a subset
significantly promoting ITH. Solitary genetic ablation of Snail or
Twist1 does not significantly alter the cellular composition of
PDAC tumours in murine models, though does render tumours
more chemosensitive [77]. Conversely, ablation of Zeb1 in KP*C
tumours results in a dramatic histological and functional
phenotype wherein tumours are rendered almost entirely
epithelial, with significantly reduced metastatic burden [78].
Zeb1 is also reported to inhibit the expression of stemness-
repressing miRNAs in PDAC cells, suggesting this loss of
heterogeneity may also be linked to a loss of CSC properties in
the tumour [79]. However, despite limited metastatic burden, KP*C
Zeb1 knockout mice have no significant survival benefit, likely
because growth of the the primary tumour was not constrained.
This is consistent with EMT promoting invasion and metastasis but
not necessarily restraining proliferation.
We recently demonstrated that an interaction between the

epithelial and mesenchymal subpopulations regulates EMT in
PDAC. We found that the BMP inhibitor GREM1 is highly expressed
in mesenchymal subpopulations of KPC tumours and acts in a
paracrine manner to suppress EMT in the epithelial subpopulation,
by reducing expression of the EMT-TFs Snail and Slug. Deletion of
Grem1 leads to an almost complete switch of cancer cells to a
mesenchymal phenotype, with an associated increase in meta-
static frequency. Thus, a single soluble factor, GREM1, ensures the
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co-existence of both epithelial and mesenchymal PDAC subpo-
pulations [80].
More nuanced prospective isolation strategies and the applica-

tion of single-cell technologies have further complicated the
classical binary model of EMT. Recent evidence, from multiple
tissue and tumour types, supports “partial EMT” states, which
exhibit transcriptional characteristics of both epithelial and
mesenchymal cells [81]. These partial EMT states also exist in
PDAC. Aiello et al. [82] utilised a sorting strategy in KPC tumours
based on membrane expression of E-cadherin to identify a partial
EMT population in a subset of murine PDACs, in which
mesenchymal genes are upregulated in the absence of concurrent
downregulation of canonical epithelial genes. Importantly, the
partial EMT state in this study was associated with collective
migration behaviour, whereas the complete EMT state was
associated with single-cell invasion, demonstrating that partial
and complete EMT are functionally distinct. Recent single-cell RNA
sequencing studies in murine PDAC have supported these
conclusions, suggesting that EMT phenotypes become more
common as the disease progresses and that they manifest across
a transcriptional spectrum [83]. A separate single-cell lineage
tracing study using a CRISPR-Cas9-based approach has further
highlighted that such hybrid cells are highly metastatic relative to
fully committed mesenchymal or epithelial clones, at least in the
KP*C model [84]. This idea is consistent with a recent comprehensive
mapping study of EMT transition states in murine skin and breast
tumours [85], which similarly found different invasive, metastatic
and tumourigenic capacities for these populations across the EMT
spectrum. This variety of EMT phenotypes has recently been
characterised in human PDAC samples as well [86, 87], suggesting

that such transition states are not simply an artefact of murine
models and may have therapeutic relevance. Figure 3 shows various
features of PDAC cells along the EMT spectrum.
Nonetheless, there are several unresolved questions related to

EMT and PDAC. The majority of PDAC metastases in both
genetically engineered mouse models and human patients have
an epithelial histology [88, 89], and there is evidence that
stabilisation of an epithelial phenotype may actually promote
metastasis in certain contexts [87, 89]. However, mesenchymal
cells can also undergo EMT reversal. This process, termed
mesenchymal-epithelial transition (MET), has been described in
other tumour types and murine PDAC [88, 90, 91]. Furthermore,
loss of the canonical EMT-TF Zeb1 in murine PDAC significantly
reduces but does not eliminate PDAC metastasis [78], suggesting
either compensatory effects from other EMT-TFs or the existence
of EMT-independent mechanisms of metastasis. Epithelial and
mesenchymal tumour cells in murine PDAC also have distinct
metastatic organotropism [89], further complicating the idea that
all metastases require an EMT. Finally, EMT transcriptional
signatures are not a feature of all metastatic cells characterised
in murine models and human patients [50–52]. Currently, the
collective sum of evidence favours EMT as one of a number of
mechanisms by which pancreatic cancer cells achieve invasive and
metastatic competence. Future research will refine this picture.

METABOLIC HETEROGENEITY: DIFFERING DEMANDS FOR
SURVIVAL
The fact that tumour metabolism differs from that of its organ of
origin was first recognised almost a century ago by Otto Warburg.

Fig. 3 PDAC cells along the EMT spectrum express different markers and exhibit different behaviours. In particular, recent work highlights
the existence of hybrid or partial EMT states that combine features of epithelial and mesenchymal tumour cells.
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Solid tumours are generally more glycolytic than healthy tissues
even when oxygen is not limiting [92]. This aerobic glycolysis, now
known as the Warburg effect [93], is one of the dysregulated
metabolic pathways that contributes to “reprogramming cellular
energetics”, an emerging hallmark of cancer [94]. Increased
dependence on and metabolism of the conditionally essential
amino acid glutamine is another such pathway [32, 33].
Constitutively active mutant KRAS, which drives over 90% of all

PDAC cases [48], is a major genetic driver of metabolic
dysregulation in PDAC [95–97]. However, there is evidence for
considerable inter-patient metabolic heterogeneity despite the
overarching dominance of KRAS activation. For example, a large-
scale study of human PDAC cell lines, almost all harbouring KRAS
mutations, revealed three distinct metabolic subtypes: slow-
proliferating, lipogenic and glycolytic [98]. Further analysis
showed that these differences are driven, in part, by underlying
differences in gene expression and protein abundances. The
glycolytic and lipogenic subtypes are linked to the previously
reported “quasi-mesenchymal”/“squamous” and “classical” tran-
scriptional subtypes of PDAC, respectively [99, 100]. Metabolite
profiling of PDXs in conjunction with transcriptional subtype
classifications [43, 72] has confirmed a link between the “classical”
subtype and lipid metabolism, which is independent of KRAS
mutation and amplification status [101]. More recently, transcrip-
tomic analyses of large PDAC patient cohorts also found an
association between glycolytic tumours and the “squamous”
subtype, and between cholesterogenic tumours and the “classical”
subtype [102].
Intratumour metabolic heterogeneity is much more challenging

to study for technical reasons, but given that differences in
metabolic pathways have been described as potential drivers of
the CSC phenotype in PDAC [24, 25], it is expected that differences
in metabolism between tumour cells will be at least as great as
variance in tumour-initating capacity. Imaging techniques that
minimise the need for sample handling can yield an overview of
metabolic activity in individual cells within organoids [103]. Drug-
induced metabolic changes within primary human PDAC samples
are not homogeneous [104]. Strikingly, patients whose organoids
have a homogeneous metabolic response to treatment have
recurrence-free survival exceeding a year, whereas those with no
or heterogeneous metabolic responses exhibit recurrence within a
year of surgery [105]. Though the number of patients tested in this
study was small, this finding corroborates the idea that metabolic
heterogeneity contributes to disease outcome. Alternatively,
intratumour metabolic heterogeneity can be roughly inferred
through transcriptional heterogeneity: the putative tumour
suppressor ISL2 is epigenetically silenced in only some regions
of human PDAC tumours, and ISL2 downregulation leads to
enhanced expression of genes involved in oxidative phosphoryla-
tion, thus potentially rendering those cells sensitive to mitochon-
drial electron transport chain inhibitors [106].
Several studies have reported differences in metabolism

between different CSC-enriched populations and the bulk of
PDAC cells. Human PDAC cells grown as tumour spheres are less
glycolytic than cells grown in adherent culture, relying more on
oxidative phosphorylation, and are more sensitive to the
mitochondrial electron transport chain inhibitor metformin.
Tumour spheres are also better able to tolerate low glucose or
low glutamine conditions [107]. However, it is unclear to what
extent different cell culture conditions themselves in these
experiments influence metabolic pathway usage. Another study
found increased levels of autophagy in PDAC cells marked by
ALDH activity and CD44/CD133 expression, with inhibition of
autophagic flux decreasing the proportion of viable CSCs [108].
Interestingly, when mutant KRas expression is switched off in
murine PDAC tumours, surviving cells rely on mitochondrial
biogenesis, oxidative phosphorylation and autophagy for survival
and re-initiation of tumour growth [109, 110]. Our recent work

indicates that increased glutamine import and downstream use in
the tricarboxylic acid cycle correlate with tumour-initiating
properties of murine PDAC cells. PDAC CSCs marked by high
levels of CD9 also have high levels of the glutamine transporter
ASCT2 at the cell surface. CD9 knockout in murine PDAC cells
decreases organoid formation capacity of these cells, but this can
be rescued by supplementing excess glutamine or overexpressing
ASCT2 [25]. Independently, another group has found that
expression of a mitochondria-specific ASCT2 isoform is important
for PDAC cell survival [111]. Together these experiments suggest
that PDAC tumour-initiating cells rely more heavily on mitochon-
drial metabolism and autophagy than their non-stem cell
counterparts, rendering CSCs potentially more vulnerable to
inhibitors of these metabolic pathways.
Several findings highlight the metabolic plasticity of PDAC cells

upon perturbation. As an example, whereas heterozygous CD9
knockout prolonged survival in KPC mice, homozygous CD9
knockout did not. Metabolomic profiling showed that homo-
zygous CD9 knockout cells were more similar to CD9 wild-type
cells than to heterozygous knockouts, indicating that homozygous
knockout leads to compensatory metabolic rewiring to maintain
high levels of glutamine metabolism [25]. Similar metabolic
compensation has been observed in KPC mice treated with the
glutaminase inhibitor CB-839 [112], further emphasising the
metabolic plasticity of PDAC tumours [113, 114].
A common product of PDAC metabolism is lactate, which needs

to be exported from cells, for example via monocarboxylate
transporters (MCTs), to maintain intracellular pH in a physiological
range. High levels of MCT4 mark highly aggressive, glycolytic
tumours and human PDAC cell lines. However, MCT4 knockdown
leads to upregulation of an alternative transporter, MCT1, as well
as to compensatory mitochondrial oxidative phosphorylation and
autophagy [115]. In the context of spatially heterogeneous
tumours, lower availability of glutamine in the core, versus the
periphery, of subcutaneous PDAC xenografts leads to enhanced
uptake of extracellular nutrients via macropinocytosis in an effort
to compensate this paucity [116]. Limiting levels of alanine in the
PDAC microenvironment also create metabolic niches in which
stromal and tumour cells exchange alanine via specific transpor-
ters [117]. The ability of cells to adjust and maintain their
metabolism in the face of significant perturbations means that
monotherapy targeting a single metabolic pathway is unlikely to
be successful. Nonetheless, inhibition of tumour metabolism
remains a promising goal, as combinatorial approaches that
constrain metabolic heterogeneity may generate unforeseen
therapeutic vulnerabilities [118]. This phenomenon has been
demonstrated for lactate dehydrogenase inhibition in PDAC cell
lines, which is most successful when combined with inhibitors of
mitochondrial metabolism such that metabolic plasticity is
compromised [119].
The gene encoding the tumour suppressor SMAD4 is deleted in

approximately 30% of PDAC samples [44]. A recent study has now
implicated SMAD4 as a regulator of the glycolytic enzyme
phosphoglycerate kinase 1 (PGK1), with SMAD4 loss correlating
with higher levels of PGK1 in patient samples and upregulation of
PGK1 in human PDAC cell lines. Of note, PGK1 expression is
heterogeneous across human PDAC samples, with both the total
levels of the protein as well as its intracellular localisation varying,
suggesting that within SMAD4-negative tumours there are
differences in metabolic states. Higher levels of cytoplasmic
PGK1 stimulate glycolysis, but PGK1 can also translocate into the
nucleus to act as a transcriptional repressor of CDH1 (the gene
encoding the epithelial marker E-cadherin) [120]. How this link
between the glycolytic and mesenchymal phenotypes fits with the
canonical function of SMAD4 as a mediator of TGF-β signalling
and the more epithelial character of SMAD4-deleted tumours
[121] remains to be elucidated. In human PDAC cell lines,
expression of the lactate exporter MCT4 also correlates with
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higher levels of vimentin expression and a more mesenchymal
phenotype [115].
Solid tumours contain both normoxic as well as hypoxic regions

depending on their proximity to intact blood vessels. These
hypoxic regions are particularly pronounced in PDAC due to the
extensive desmoplastic stromal reaction that surrounds pockets of
tumour cells [122]. Furthermore, both reduced blood flow and
extensive hypoxia correlate with poorer clinical outcome and
metastasis formation [123, 124]. Whereas normoxic cancer cells
use glycolysis to generate pyruvate, hypoxic cells produce lactate
through anaerobic glycolysis. Thus, the tumour can be divided
into metabolic “zones” based on their level of hypoxia, as has been
described for glioblastoma [125]. More than ten years ago it was
shown that lactate produced by hypoxic cells can be shuttled to
more normoxic cancer cells to fuel oxidative phosphorylation in a
symbiotic relationship. Hypoxic cells preferentially express MCT4
for lactate export whereas normoxic cells express MCT1 for lactate
import [126]. This symbiotic lactate shuttle has been observed in a
mouse model of PDAC [63]. Lactate can also be transferred from
more hypoxic to normoxic PDAC cells via connexin shuttles [127],
demonstrating that tumour cells can cooperate to manage local
metabolic constraints. Figure 4 highlights these metabolic zones
and how lactate might be moved between them.
High rates of lactate production and extrusion into the

extracellular environment can lead to chronic acidosis, which in
turn leads to oxidative stress [128]. To combat this oxidative stress,
PDAC cells shuttle glutamine into a non-canonical cytoplasmic
metabolic pathway driven by oncogenic KRAS, which contributes
to the production of the reducing agent NADPH [34, 129]. These
studies together raise the possibility that non-canonical glutamine
metabolism is spatially distributed in tumours depending on rates
of lactate production and acidity. A separate study implicates a
hypoxia-inducible mitochondria-targeted ASCT2 variant in PDAC
metabolism [111], suggesting that mitochondrial glutamine
uptake and its canonical metabolism in the tricarboxylic acid
cycle is also spatially heterogeneous depending on oxygen
availability. Interestingly, hypoxic tumour cells not only produce
more lactate but also switch from expressing the epithelial marker
E-cadherin to the mesenchymal marker N-cadherin [63]. Hypoxia
also leads to upregulation of the transcriptional repressor Blimp1

in a subset of murine KP*C cells, giving rise to a transient, highly
metastatic phenotype [52], forging a direct link between
transcriptional and metabolic heterogeneity.

CONCLUSION
PDAC has proven remarkably recalcitrant to strategies targeting
global tumour cell proliferation, making it critical to dissect the
drivers of tumour heterogeneity. Despite considerable progress in
this area, ITH remains a significant challenge in pancreatic cancer
and likely contributes to the high morbidity and mortality of the
disease. Unlike many other tumour types, which acquire new
subclonal driver mutations during tumour evolution, PDAC
frequently has multiple clonal driver mutations at its root, with
comparably low genetic heterogeneity within the tumour [49].
Instead, other types of ITH, such as the four frameworks described
above, enable tumour progression and resistance to treatment.
With PDAC set to become the second-leading cause of cancer
death worldwide by 2030 [2], a more complete understanding of
the drivers of this cancer is essential moving forward. With the
advent of increasingly sophisticated models, old concepts are
continually being revised to move the field forward.
The recent explosion of experimentally tractable human

primary cell systems, such as patient-derived organoids
[130, 131] and PDX models [47], is opening the field to testing
key concepts in human-relevant systems. These models have
already been employed to study human tumour heterogeneity
across the genetic spectrum [132] as well as intratumour
metabolic heterogeneity [105], and CSCs versus non-CSCs [28],
as discussed earlier. These models will allow the rigorous testing
of concepts gleaned from mouse models in human-relevant
systems.
Overall, a better understanding of ITH may lead to better

treatment options for patients, either through combinatorial
approaches targeting multiple aspects of tumour biology, or by
reducing the tumour heterogeneity itself in order to increase
chemoresponsiveness. As tools become available to rapidly
discover, test and translate new therapeutic strategies, the
prospect of truly durable clinical responses may become a reality.
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