
 1 

 
 
 

 

 

 

 

The comprehensive proteomic 
characterisation of soft tissue sarcoma  

 

 

 
Jessica Burns 

 
 

 
 

A thesis submitted for the degree of  
Doctor of Philosophy  

 
 

September 2022 
 
 

The Institute of Cancer Research  
University of London   



 2 

Declaration  
 
The work presented in this thesis was completed under the supervision of Dr. Paul 

Huang in the Molecular and Systems Oncology team at the Institute of Cancer Research, 

London, United Kingdom.  

I, Jessica Burns, confirm that the work presented within this thesis is my own. Information 

that has been derived from other sources is indicated within the thesis.  

Signed 

 

Jessica Burns 

 

  



 3 

Contributions  
 
The candidate was responsible for: 

1. The collation of specimens for proteomic profiling and the extraction of 

protein/peptide from most specimens (number of samples is detailed in section 

3.2.2). 

2. All processing of mass spectrometry data after protein identification, including 

establishing the quality control and normalisation methods, and writing and 

implementing scripts. 

3. All bioinformatic and statistical analyses of proteomic data, NanoString data, and 

immunohistochemistry data (including writing of scripts, interpretation of results, 

and production of figures). 

Contributions were also made by several other people: 

1. All clinicopathological data was collected and pseudonymised by Mr Chris 

Wilding, Dr Amani Arthur, Dr Vanessa Djabatey, and Ms Emma Perkins.  

2. The construction of all tissue microarrays, associated immunohistochemistry 

staining and scoring was performed by Dr Alex Lee, Dr Cornelia Szecsei, and Ms 

Nafia Guljar, with guidance from Dr Khin Thway 

3. All RNA extraction, and NanoString data collection was performed by Dr Alex 

Lee, Ms Nafia Guljar, and Ms Chanthirika Ragulan.  

4. For proteomic analyses, all tandem mass tag labelling and high pH fractionation 

was performed by Dr Lukas Krasny, and all proteomic data was acquired by The 

Institute of Cancer Research Proteomics core facility (Dr Theo Roumeliotis and 

Prof Jyoti Choudhary) 

5. The protein extraction of some samples was performed by Ms Martina Milighetti, 

and Mr Frank McCarthy (number of samples is detailed in section 3.2.2) 

  



 4 

Abstract  
 
Soft tissue sarcomas (STS) are a group of rare and heterogeneous mesenchymal 

malignancies. The extensive clinical and biological heterogeneity of STS complicates 

clinical disease management, and in the advanced setting prognosis is poor. Incomplete 

biological understanding of STS has long hampered efforts to drive clinical improvements 

for patients. At present, there is a lack of methods to stratify patients based on risk or 

their likelihood of treatment response. Additionally, there are limited targeted therapies 

available for STS patients, and current standard of care is largely a ‘one size fits all’ 

approach. Whilst the genomic, epigenomic, and transcriptomic basis of STS has been 

previously assessed, there is no proteomic understanding of the disease. Herein, my 

project conducts comprehensive proteomic profiling, by mass spectrometry, of 321 

formalin-fixed paraffin-embedded primary tumour specimens from STS patients. This is 

the largest proteomic characterisation of STS to date and provides an overview of the 

baseline STS proteome. Specifically, heterogeneity in leiomyosarcoma was investigated, 

and 3 robust proteomic subtypes were identified. These molecular subtypes showed 

different functional biology and were associated with different survival outcomes, 

highlighting potential for risk stratification. Analysis of the immune landscape of 

undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma, highlighted a 

subpopulation of tumours with low lymphocyte infiltration and high complement activity. 

This revealed this complement cascade as a candidate therapeutic target. Finally, this 

project defined a protein-centric view of the STS proteome comprised of ‘sarcoma 

proteome modules’. These modules transcended histological subtypes and covered a 

range of biological activities. Furthermore, modules were found to be associated with 

clinical outcome, again highlighting the potential for molecular risk stratification in STS. 

Overall, this project demonstrates the utility of comprehensive proteomic profiling in 

improving disease understanding, facilitating risk stratification, and identifying candidate 

therapies. In doing so, it establishes a rich resource for the STS research community.  
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Chapter 1 Introduction 

1.1 Soft tissue sarcoma overview 

Soft tissue sarcomas (STS) are a group of rare malignancies accounting for less than 

1% of all adult cancer diagnoses annually1. Incidence is higher in children under 14 years 

where STS accounts for 6-8% of cancers2. STS are mesenchymal in origin and can 

develop from any cell derived of the mesenchymal stem cell (MSC) lineage3. Accordingly, 

STS arise throughout the body and are a highly heterogeneous group of pathologies 

comprising over 80 different histological subtypes4. Further to the biological diversity of 

STS, extensive clinical heterogeneity is also present. STS tumours show variability in 

responses to treatment, and rates of local recurrence and distant metastasis5. This 

contributes to vast differences in disease progression between patients. The non-

specificity of clinical symptoms in STS and its rarity means diagnosis and clinical 

management is challenging, particularly in non-specialist centres. Patients may present 

with advanced disease and frequently experience a prolonged period between 

presentation and confirmed diagnosis6,7. The 5-year overall survival (OS) rate for STS is 

55-65%, however if distant metastases are present, OS is reportedly as low as 15%8,9. 

Following curative treatment for primary STS, approximately 50% of patients will go on 

to develop recurrent disease, however the rates of local recurrence and distant 

metastasis differ vastly based on histological subtype and anatomical site10–12. This 

extensive diversity of STS complicates attempts to better understand the disease and 

obscures efforts to translate biological findings to the clinic. 

1.1.1 The origin and development of STS 

In a subset of STS subtypes a cell of origin can be identified (Figure 1.1). For example, 

leiomyosarcoma (LMS) is derived from the myoblasts and is histologically representative 

of a smooth muscle tissue that has undergone alternate terminal differentiation4. 

Angiosarcoma (AS) arises from the vascular cell lineage and is specifically hypothesised 

to originate from the endothelial cells of the inner lining of blood and lymph vessels. 

Similarly, liposarcoma (LPS) is derived from the adipocytic cell lineage. However, many 

STS, such as undifferentiated pleomorphic sarcoma (UPS) and clear cell sarcoma (CCS) 

lack a defined cell of origin. Furthermore, the stage at which pathological transformation 

of mesenchymal cells is initiated is unclear13. STS exist along a spectrum of 

differentiation both between and within specific histological subtypes. Whether this is 

resultant of mutations acquired in primitive MSCs, partially differentiated progenitors, or 

both, remains to be defined. Few studies have investigated the evolutionary paths in 
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STS. In other cancer types, cellular transformation often occurs in a stepwise fashion, 

progressing from benign to ‘pre- 

cancerous’ to malignant. For the most part this is not defined in STS. Moreover, in most 

cases, there is no identifiable causative risk factor for the development of STS. Unlike in 

many other cancers, lifestyle factors such as diet and smoking are not implicated in 

disease risk. Radiation, chemical, and viral exposure, chronic lymphoedema, and 

inherited syndromes such as familial retinoblastoma, neurofibromatosis type 1 (NF-1), 

and Li-Fraumeni syndrome can increase the likelihood of a STS diagnosis 4,15. For 

example, kaposi sarcoma and LMS can arise as viral-associated STS, resultant of 

human herpesvirus 8 (HHV-8) and Epstein-Barr virus infections respectively16,17. Whilst 

viral infection can predispose an individual to sarcoma, infection alone is not causative. 

For example, Kaposi sarcoma arises most commonly in HHV-8-infected individuals with 

an advanced human immunodeficiency virus (HIV) infection. This is resultant of the 

weakened immune system of a HIV-positive individual, which allows the HHV-8 virus to 

multiply largely unchallenged. AS can arise as a radiation-associated STS, occurring 

secondary to treatment for breast cancer18,19, and malignant peripheral nerve sheath 

tumours and gastrointestinal stromal tumours (GIST) can arise as NF-1-associated 

STS20,21. At present, these aetiologically certain tumours represent a minority. However, 

the recent International Sarcoma Kindred Study identified inherited pathogenic genetic 

 

Figure 1.1 Soft tissue sarcoma (STS) cells of origin. Mesenchymal stem cell (MSC) lineage differentiation 
and associated STS diagnoses. ‘?’ indicates unknown cell type. Schematic adapted from Gaebler et al14. 
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variants in 55% of patients (n = 1162)22. This challenges the current theory that most 

STS are sporadic and increases the potential utility for disease screening programmes.   

1.1.2 Classification of STS 

1.1.2.1 Tissue-based definitions 

STS classification has historically been based on the tissue type the tumour best 

represents. The most recent World Health Organisation (WHO) STS classification 

system describes benign, intermediate, and malignant diagnoses, grouped into 12 

categories based on tissue lineage4. Classification systems are considered a vital tool in 

improving diagnostics and therapeutic decision making, and the WHO STS system is 

implemented worldwide to define STS. Categories include ‘adipocytic tumours’, 

‘(myo)fibroblastic tumours’, ‘vascular tumours’, ‘perivascular tumours’, ‘smooth muscle 

tumours’, ‘skeletal muscle tumours’, ‘gastrointestinal stromal tumours’, ‘chondro-

osseous tumours’, ‘fibrohistiocytic tumours’, and ‘peripheral nerve sheath tumours’. In 

addition, ‘tumours of uncertain differentiation’ is used as a category of exclusion; 

grouping STS that do not resemble a specific tissue. Disease complexity means 

classification into the WHO categories is ever-changing. There were several key 

advances between the 2013 WHO classification system and most recent in 2020 4,23. 

Firstly, a new ‘undifferentiated small round cell sarcomas’ category was established to 

encompass Ewing sarcoma and 3 molecular subtypes with specific genetic profiles; 

marking recognition of the different clinicopathologic features of these tumours. 

Secondly, neurotrophic receptor kinase (NTRK)-rearranged spindle cell neoplasms were 

listed as an emergent diagnosis for the first time. Thirdly, several diagnoses were 

removed from the ‘fibrohistiocytic tumour’ category, whose necessity continues to be 

debated due to the ambiguous role of fibrohistiocytic differentiation.  

1.1.2.2 Genomic-based definitions 

Complementary to tissue-based definitions, STS can also be classified based on 

genomic complexity. Genomic complexity in STS exists on a spectrum, within which 

histological subtypes fall into 2 broad groups: pathologies with simple genomic profiles 

and pathologies showing high complexity24–26. Genomically simple STS are typified by a 

largely unaltered genome with simple alterations such as translocations or activating 

mutations. For example, synovial sarcoma (SS), CCS, desmoplastic small round cell 

tumour (DSRCT), and alveolar soft part sarcoma (ASPS) are all genomically simple STS 

driven by translocation events that result in aberrant transcriptional activity27–34. Whilst 

gastrointestinal stromal tumours (GIST), rhabdoid tumours (RT) and epithelioid sarcoma 
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(EPS) are genomically simple STS harbouring highly recurrent mutations. The 

identification of driver events and specific molecular characteristics in genomically simple 

STS has enabled the development of robust diagnostic methods and revealed candidate 

oncogenic pathways for therapeutic intervention.  

In contrast to genomically simple STS, STS with complex genomes have high genomic 

instability resulting in wide-ranging genetic aberrations, unbalanced karyotypes and few 

recurrent alterations between patients35. These tumours show high mutational burden 

compared to genomically simple STS. Although when compared to other cancer types, 

mutational burden is still relatively low36. In a subset of genomically complex STS 

subtypes, recurrent genetic aberrations have been identified across patients. For 

example, ring chromosomes consisting of amplified material of the 12q13-15 region is 

characteristic of well differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) 

tumours, and its detection used for diagnosis37–40. By contrast, in most genomically 

complex subtypes such as LMS and UPS, extensive chromothripsis, kataegis, genome 

duplication and aneuploidy/copy number alterations (CNA) result in little genomic 

concordance between patients41–43. The absence of specific molecular features in most 

genomically complex STS means these patients have been unable to benefit from 

developments in molecular diagnostics, and therefore are reliant on histological 

interpretation. Furthermore, due to a lack of common molecular characteristics, 

identifying actionable targets for therapeutic intervention in these tumours is a 

demanding task. Accordingly, recent efforts to molecularly profile and target these 

complex malignancies, have focused on identifying multi-gene signatures or key 

aberrant signalling axes involved in tumour maintenance and progression35,36. 

1.2 Diagnosis and management of STS 

1.2.1 Diagnosis of STS 

Histopathological examination by morphological inspection and/or 

immunohistochemistry (IHC) is the gold standard diagnostic method in STS4,44. In recent 

decades, molecular tests have become more commonplace as companion analyses 

alongside histopathological review. Routine molecular tests include: fluorescence in situ 

hybridisation (FISH) where fluorescent-labelled probs are used to establish the presence 

of absence of a specific DNA/RNA sequence; array-based comparative genomic 

hybridization (aCGH) where patient and reference DNA samples are compared to 

identify genome wide copy number changes; and reverse transcription-polymerase chain 

reaction (RT-PCR) where the presence of specific mRNA regions is assessed through 
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RNA amplification. In STS, these methods have shown most utility in diagnosing 

subtypes with simple genomes where an identifiable and characteristic genomic 

alteration has been described. For example, every suspected SS tumour is molecularly 

assessed by FISH and/or RT-PCR to assess for SS18-SSX1/2/4 fusion presence. In 

addition to establishing and confirming diagnoses, molecular testing is also a vital tool in 

STS for diagnosis exclusion.  

1.2.2 Risk stratification in STS 

Present clinical management of STS is complex and, in many cases, poorly defined 

(section 1.2.3). STS surgery can carry a high morbidity risk, particularly in elderly 

patients or when implemented for large tumours in complex anatomical sites. Moreover, 

chemotherapies and many of the targeted therapies in development have significant 

associated toxicities, for which many patients see little to no benefit. Risk stratification 

aims to quantify the likelihood of a patient experiencing a harmful event, be it treatment 

complications or disease progression (recurrence, metastasis, death). Medical risk 

stratification must be carefully balanced with the potential effectiveness of intervention, 

as well as the psychological and social health of a patient. However, if implemented well, 

risk stratification has the potential to better inform patient-clinician discussions, support 

decisions on therapy pathways, enable suitable post-operative planning, and identify 

disease monitoring needs.  

1.2.2.1 Key clinicopathological variables 

Risk stratification is not a new concept in oncology. Clinicopathological data such as 

tumour grade, size, and depth, are routinely recorded for each patient and aid clinical 

understanding of how advanced a disease is. Whilst this does not provide formal 

stratification, clinical understanding guides interventional decision-making (ie. predictive 

stratification; Figure 1.2A) and acts as an informal risk assessment for disease-related 

events (ie. prognostic stratification; Figure 1.2B). Large-scale retrospective studies have 

assessed the prognostic value of clinicopathological variables in STS. In general, male 

patients with high grade, large, deep tumours, where distant metastases are present at 

diagnosis, surgical resection is incomplete (positive margins), and Eastern Cooperative 

Oncology Group (ECOG) performance status (PS) is poor (i.e ≥ 2), have the poorest 

outcomes (Table 1.1)45,46. Other important factors in determining outcome include 

histological subtype and anatomical site. Different STS subtypes show different 

propensities for metastasis and local recurrence. For example, retrospective analyses 

report local recurrence free survival (LRFS) for SS patients as low as 6.1% and 

metastasis free survival (MFS) as 24.1%, whilst LRFS in DDLPS is reported between 41 
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- 80% and MFS between 14 - 17%47–50. Tumours of the same diagnosis in different 

anatomical locations also show differing outcomes. For example, retroperitoneal DDLPS 

show a poorer 5-year LRFS than extremity DDLPS (20% vs 62%)47,51.  

At present, tumour size and grade are the single 2 most important measures clinicians 

use to determine prognosis44,52. Tumour size has been demonstrated by multiple studies 

to be a strong positive predictor for MFS and OS45,46. Size is commonly categorised into 

tumours ≤ 5 cm (at maximum dimension), and those > 5 cm, representing patients with 

a lower risk and higher risk respectively. However, the relationship between size and  

 

outcome is more complex than it may seem. The increased risk associated with 

increased tumour size can taper off or invert in extremely large tumours. This reversal of 

risk-size relationship is likely due to the largest tumours having a more indolent 

progression which enables the lesion to persist to such an extreme size. Grading can be 

performed by the National Cancer institute (NCI) or French Federation of Cancer Center 

Sarcoma Group (FNCLCC) systems, with the latter most often implemented53,54.  

 

Figure 1.2 Diagrammatic explanation of prognostic and predictive stratification 
Prognostic stratification identifies patients at high risk of a particular clinical event (e.g., death), whilst 
predictive stratification can identify patients most likely to benefit from a treatment intervention.  
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Table 1.1 Overview of prognostic factors in soft tissue sarcoma (STS). Univariable analysis (UVA) 
results detailed by p value. Multivariable analysis (MVA) results detailed by comment on the specific 
significant category within each variable. . Data from 2 large-scale retrospective studies45,46. Abbreviations: 
FS = fibrosarcoma; LPS = liposarcoma; MFH = malignant fibrous histiocytoma; LMS = leiomyosarcoma; 
MPNST = malignant peripheral nerve sheath tumour; SS = synovial sarcoma; NOS = not otherwise specified; 
RMS = rhabdomyosarcoma; FNCLCC = French Federation of Cancer Center Sarcoma Group; UICC = Union 
for International Cancer Control; AJCC = American Joint Committee on Cancer; PS = performance status; 
RP = retroperitoneal; CTX = chemotherapy; RTX = radiotherapy; OS = overall survival; LRFS = local 
recurrence freesurvival; MFS = metastasis free survival; n.r = not reported 
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FNCLCC grading integrates cellular differentiation status, mitotic count, and the level of 

necrosis present. This generates a score mapping to grades of 1, 2, or 3, which show an 

increasing likelihood of metastasis and death from 1 to 3. This system is predominantly 

used to select patients for adjuvant chemotherapy, yet limitations exist. Grading offers 

minimal use for putative high-grade diagnoses (eg., ASPS, CCS, and EPS), and the 3-

tier system results in an uninformative intermediate group with high uncertainty regarding 

tumour aggressiveness. Furthermore, due to intra-tumoural heterogeneity, grading is 

challenging in the limited diagnostic biopsy material55. This often results in under-grading 

of STS, particularly in LMS, and by extension denies patients treatment that may be 

beneficial56. 

Whilst individual prognostic factors do enable clinicians to identify high-risk patients, 

simply summing the risk factors fails to consider cofounding variables, interacting 

variables, or multicollinearity. Therefore, the relative value of such factors is unclear. In 

most cancer types, tumour staging following the American Joint Committee on 

Cancer/Union for International Cancer Control (AJCC/UICC) TNM system is a valuable 

proxy for general disease risk, which incorporates tumour type, site, size, lymph node 

status, and metastasis extent. However, until 2017 the TNM system considered STS as 

a single disease type, and thus had little practical use for the highly heterogeneous 

population of STS patients57. Improvements in the 8th AJCC/UICC edition included 

delineations between STS of different anatomical sites yet did not integrate this with 

histology58. As a result, staging of STS of not routinely performed.  

1.2.2.2 Nomograms 

One way to objectively judge risk is with medical nomograms. Nomograms translate 

complex statistical models into a graphical representation and interpretable numeric 

value (Figure 1.3). Identifying a patient-specific prognostic value offers improved utility 

than grouped risk stratification (e.g., grading, staging). Nomograms for clinical outcome 

are most commonly built using the Cox regression model and output the probability of a 

specific event (e.g., 5-year MFS).  

In STS there are numerous pan-subtype and subtype-specific nomograms assessing a 

range of outcome measures. However, many of the published nomograms have been 

built from single institution data, thus performances are often assessed by internal 

validation methods only. Most STS nomograms are therefore more appropriately thought 

of as exploratory and their use in clinical practice is not recommended. The list of STS 
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nomograms which have undergone a higher level of statistical rigor is far shorter. One of 

the most robust and widely applicable is the Memorial Sloan Kettering Cancer Center 

(MSKCC) pan-subtype disease specific survival (DSS) nomogram59. This utilises age at 

diagnosis, tumour depth, grade, size, anatomical site, and histology to predict 4/8/12-

year DSS following surgery of primary localised disease. Internal validation showed a 

concordance index (CIx) of 0.77, and subsequent external validation studies achieved 

CIs from 0.71 to 0.78 in a range of different cohort10,60–66. The highest CIx (0.78) was 

achieved in a head and neck specific cohort, which evidenced nomogram superiority 

over AJCC/UICC TNM (CIx = 0.71)66. Performance was subsequently shown as weaker 

in paediatric patients and Asian populations, where the nomogram underpredicted 

mortality67–69. This was likely due to the absence of these populations in the training 

cohort. Further to cohort specific performance differences, the limitations of this 

nomogram include the use of a malignant fibrous histiocytoma (MFH) diagnosis. 

Succession of the MFH diagnosis by UPS (section 1.4.2) has rendered the histology 

variable of this nomogram outdated. Furthermore, the nomogram uses high/low grading 

as opposed to the FNCLCC grading system, which is widely considered a superior 

correlate for outcome70–72. Overall, this pan-subtype nomogram applies well to the 

general STS population. Yet, some features are now sub-optimal and variations in 

 

Figure 1.3 Diagrammatic example of a nomogram. For each example variable, a value is assigned based 
on the top ruler. The values are summed, and the total mapped on the bottom ruler to identify a 
corresponding risk value.  
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performance supports the need for more tailored nomograms reflective of STS 

heterogeneity.  

Site-specific nomograms attempt to account for disease heterogeneity. The most 

thoroughly validated nomogram for extremity and trunk wall STS were developed at 

Istituto Nazionale Tumori (INT)73. These nomograms predict 5/10-year OS and distant 

metastasis following surgery for localised primary disease. Importantly, detailed 

histology data (9 categories) is integrated in the model. Development involved single site 

data and reported CIx of 0.77 (OS) and 0.76 (distant metastasis). External validation in 

3 independent datasets from other institutions showed good nomogram calibration (CIx 

= 0.64 – 0.81 (OS); CIx = 0.61 – 0.79 (distant metastasis)), highlighting these as reliable 

methods for prognostication. The same team at INT also developed and validated a 

retroperitoneal specific nomogram for the prediction of OS and disease-free survival 

(DFS)74,75. As with the extremity nomograms, detailed histological information (7 

categories) was included as a covariate. Internal validation reported a CIx of 0.74 (OS) 

and 0.71 (DFS), with external validation showing good concordance (OS: 0.67 - 0.73, 

DFS: 0.68 - 0.69). The performance of this retroperitoneal nomogram is superior to any 

other published method for prognostication, and thus it was included in the 8th edition of 

the AJCC/UICC manual58. Collectively these subtype specific nomograms from INT are 

referred to as the ‘Sarculator’ nomograms, and have been rendered in app format, 

making them readily accessible to clinicians76. Akin to the site-specific nomograms, are 

histology-specific nomograms such as the desmoid tumour (DES) MSKCC 3/5/7-year 

LRFS nomogram77. First-line treatment for DES is active surveillance as opposed to 

resection78. This nomogram is therefore particularly useful as, in contrast to many STS 

nomograms, all variables required for prediction can be obtained without surgical 

intervention. There have also been efforts to develop nomograms specific to both site 

and histology. For example, the MSKCC uterine LMS (uLMS) nomogram for 5-year OS 

prediction79. Here, model performance validated well both internally and externally, 

however cohort sizes were limited, resulting in poor statistical power. This demonstrates 

that while capturing STS heterogeneity through increasing specificity may improve the 

accuracy of the model, the practicality of sub-selection within an already rare disease 

introduces challenges. 
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1.2.3 Treatment of STS 

1.2.3.1 Surgery and radiotherapy 

In the primary localised disease setting, surgical resection is the mainstay of treatment 

for curative intent80. Studies report surgical margins microscopically negative for tumour 

material (ie. negative/R0 margins) as associated with improved local recurrence rates, 

and in some cases OS81,82. However, optimal margin distances are not well defined due 

to the anatomical and histological heterogeneity of STS. Furthermore, dependent on the 

tumour location, achieving negative margins can be technically challenging. By contrast, 

one of the most controllable factors for improved surgical outcomes that has been 

reported is centralised surgery within a multidisciplinary care team at specialist sarcoma 

centres83–86.  

Surgical intervention is challenging for large tumours or those in complex anatomical 

sites, where an aggressive approach may result in multi-visceral or limb loss. 

Accordingly, the use of radiotherapy (RTX) to reduce tumour burden prior to surgical 

intervention has been assessed in STS. The phase III STRASS randomised controlled 

trial (RCT) is the largest trial to date assessing the use of pre-operative RTX combined 

with surgery compared to surgery only in retroperitoneal STS87. In 2022, STRASS 

reported that at 3 years follow-up no significant difference was found in median LRFS 

between surgery only and surgery+RTX (LRFS: hazard ratio (HR) (95% confidence 

intervals (CI)) = 1.01 (0.71-1.44), p = 0.95). Despite overall negative results, exploratory 

subgroup analyses did highlight a potential role for pre-operative RTX in LPS and low-

grade tumours, however these cohorts were underpowered. Similar trials focused on 

extremity STS show improved local control in patients who receive surgery+RTX 

compared to surgery alone (local recurrence rate (LRR) = 1.4% vs 25%)88. However, the 

presence of a link between local control and overall patient outcome is debated, and no 

significant improvement in OS was seen (20-year OS = 64% surgery alone vs 71% 

surgery+RTX (p = 0.22)).  

In addition to pre-operative use, RTX can also be leveraged in the post-operative setting. 

In cases where R0 margins are not achievable, RTX has been shown as associated with 

reduced LRR (surgery only = 23.9 vs surgery+RTX = 1.4%)89. However, comparisons 

between pre- and post-operative regimens have highlighted minimal differences in OS 

(p = 0.048) and showed pre-operative RTX as associated with a greater risk of wound 

complications90.  
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1.2.3.2 Conventional chemotherapy 

For metastatic and unresectable local STS, treatment is palliative in intent and centred 

on systemic chemotherapy. 1st line therapy in most advanced patients is the 

anthracycline doxorubicin (DOX), used in combination with ifosfamide (IFOS) where high 

physical tumour burden is present. RCTs have extensively assessed DOX in 

combination with other chemotherapeutics (IFOS, cisplatin, cyclophosphamide, 

dacarbazine (DAC), mitomycin-C, streptozotocin, vincristine, vindesine), and 

consistently concluded that combination regimens drastically increase toxicity rates, for 

little to no improvement in patient outcome91–95. Where DOX is contraindicated, a 

gemcitabine (GEM) + docetaxel (DOC) regimen can be used. Phase II studies have 

shown activity for GEM+DOC, particularly in uLMS; where 53% of patients (n = 34) 

achieved overall response (OR)96,97. However, in unselected STS populations DOX is 

considered superior. This has been evidenced by the phase III multi-subtype GeDDiS 

trial98. GeDDiS showed no significant difference in progression free survival (PFS) 

between DOX and GEM+DOC (HR (95% CI) = 1.28 (0.98-1.67), p = 0.07), and reported 

significant toxicity in the GEM+DOC arm. Accordingly, DOX remains the 1st line choice 

for most advanced STS patients.  

Disease control is a clinically relevant endpoint in advanced STS. However, the high 

cumulative toxicity of DOX±IFOS and GEM+DOC means such interventions are not 

suitable for long-term disease stabilisation. In contrast, trabectedin (TRAB) has low 

cumulative toxicity and as such is considered a 2nd-3rd line therapy choice99. OR to 

TRAB across STS subtypes is low (8%), however TRAB shows improved responses for 

LPS, LMS and translocation STS100. A phase II RCT assessing translocation STS, 

showed a significantly longer median PFS in myxoid/round-cell LPS and SS patients who 

received TRAB (3.1 months) compared to best supportive care (1.5 months)101. 

Furthermore, a phase III RCT assessing LPS and LMS patients revealed a superior 

median PFS in those receiving TRAB (4.2 months) compared to DAC (1.5 months) 102. 

However, no significant difference in OS was observed (TRAB = 12.4 months, DAC = 

12.9 months). Other frequently used chemotherapies include the microtubule inhibitor 

eribulin mesylate, which was approved by the United States food and drug administration 

(FDA) in 2016 for advanced LPS103, and paclitaxel which is a 1st line choice for AS 

patients104. 
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1.2.3.3 Tyrosine kinase inhibitors 

Tumours often show high dysregulation across many cellular signalling pathways 

regulated by tyrosine kinase activity. Therefore, there has been much investigation into 

the use of tyrosine kinase inhibitors (TKIs) in STS105. TKI specificity ranges extensively, 

from broad-spectrum and multi-target to highly specific106. Multi-target TKIs are beneficial 

when tumours possess complex genetic profiles and show wide ranging aberrations in 

signalling. Whereas high specificity TKIs offer improved utility in tumours where kinase 

driver alterations are identified. At present several TKIs are FDA-approved for use in 

select STS patients, such as imatinib, pazopanib, larotrectinib, and entrectinib.  

Imatinib and pazopanib both show multi-target TKI profiles. Imatinib was developed to 

inhibit the breakpoint cluster region (BCR)-ABL fusion in chronic myeloid leukaemia 

patients and was the first FDA-approved targeted therapy107. Subsequent pharmacologic 

profiling evidenced a targeting profile that extended beyond ABL to include KIT proto-

oncogene and platelet derived growth factor receptor alpha/beta (PDGFRA/B)108. 

Approximately 75% of GIST patients harbour a KIT mutation, and 10% a PDGFRA 

mutation109. Consequently, in the advanced GIST population imatinib can achieve 

remarkable results, with complete responses seen in approximately 5% of patients, 

partial responses in 65 - 70%, and stable disease in 15 - 20%110,111. Imatinib is therefore 

the current 1st-line choice for metastatic GIST. Pazopanib has a far broader target 

spectrum than imatinib. One family of kinases pazopanib has highest specificity for are 

the vascular endothelial growth factor receptors (VEGFRs). In targeting VEGFRs, 

pazopanib is considered to elicit most of its anti-tumour effects through the inhibition of 

angiogenesis112. Pazopanib was approved and integrated as a 2nd-3rd line choice in UK 

care for advanced non-adipocytic STS based on the PALETTE phase III RCT113. 

PALETTE found significantly improved PFS in pazopanib-treated patients compared to 

placebo-treated (median = 4.6 months vs 1.6 months). However long-term monitoring 

failed to evidence any improvement in OS, and as a result pazopanib is no longer 

approved as routine care in the UK114. Interestingly, subsequent combined analyses of 

PALETTE patients and patients on the preceding phase II pazopanib trial115, identified a 

sub-population of long term pazopanib responders and survivors; with 34% (166/266) of 

patients on pazopanib surviving ≥ 18 months116. 

In contrast to imatinib and pazopanib, larotrectinib and entrectinib are highly specific 

TKIs. These TKIs target NTRK1/2/3 and are only the 2nd and 3rd tissue-agnostic cancer 

drugs to be granted FDA-approval. Approximately 1% of adult STS are NTRK fusion 

positive and significant anti-tumour effects have been demonstrated in NTRK inhibitor 
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trials. Phase I/II tissue-agnostic RCTs assessing larotrectinib have shown an 88% 

objective response rate (ORR) in NTRK fusion positive STS patients (n = 68)117–120. 

Tissue agnostic entrectinib trials have reported responses in 46% of sarcoma patients 

(n = 13)121, and further trials are ongoing122,123.  

The impressive responses seen to imatinib, larotrectinib and entrectinib exemplify the 

utility of biomarker-driven precision medicine. Molecular stratification of patients for these 

interventions based on KIT/PDFRA mutational status (imatinib) or NRTK fusion status 

(larotrectinib/entrectinib) can identify populations most likely to benefit. Ultimately, this 

results in appropriately tailored clinical trials, which translate to both statistically and 

clinically significant outcomes. Moreover, tissue agnostic use of NTRK inhibitors 

illustrates how molecular characteristics can transcend diagnoses and function as 

targets for pan-cancer therapy. However, these examples are few in number and 

restricted to genomically simple STS. Achieving such impressive outcomes in poorly 

characterised complex STS tumours is far more complicated. 

1.2.3.4 Immunotherapy  

Over the recent decades, there has been huge investment in cancer immunotherapy, 

which has been hailed as a revolutionary treatment approach in oncology. 

Immunotherapy describes a large group of strategies spanning adoptive cell therapy 

(ACT), oncolytic viruses, macrophage and cancer antigen targeting, and tumour 

vaccinations; all of which have been assessed in STS clinical trials124–128. Of particular 

interest in the sarcoma field is ACT, which most commonly involves the engineering of T 

cells to target tumour-specific antigens. In sarcoma, T cell therapy was first evaluated in 

osteosarcoma and Ewing’s sarcoma patients (n = 17) with the use of a HER2-targetting 

cells129. This phase 1 trial demonstrated safety, and stable disease was observed in 4 

patients for up to 4 months. Many more ACT trials have been initiated since, and this 

technology holds huge promise130,131. However, at present it is the immune checkpoint 

blockade (ICB) drugs that have gained most traction within STS. ICB target checkpoint 

receptors on immune cells, cancer cells and other tumour supporting cells. Checkpoint 

receptors inhibit and suppress anti-tumour immune responses, therefore ICB restore 

immune activity by blocking receptor-ligand interactions within the tumour environment. 

The expression of checkpoint receptors in STS varies between and within histological 

subtypes. DDLPS, UPS, myxofibrosarcoma (MyFS) and LMS show generally higher 

checkpoint receptor expression than translocation-associated STS132–135. Although 

reports are not consistent. This alludes to a potential ‘immune hot’ STS population of 

mixed histological subtypes. However, the level of immune activity in even the most 
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immune hot STS is not comparable to other cancer types such as melanoma where ICB 

achieves outstanding responses136–138. Despite this, is it hoped that a subset of STS 

patients may benefit from ICB therapy, particularly when used as part of a combination 

strategy.   

One of the most widely assessed ICBs is pembrolizumab, which was the 1st tissue-

agnostic drug to be approved by the FDA. Pembrolizumab targets programmed cell 

death 1 (PD1) on T-cells, to block interactions with programmed cell death ligand 1 (PD-

L1) on tumour cells and facilitate an immune response. In STS, the SARC028 RCT 

evaluated pembrolizumab use in a multi-subtype population139. SARC028 reported an 

ORR of 17.5% corresponding to 7/40 STS patients, 6 of which had a UPS or DDLPS 

diagnosis. Subsequent expansion of SARC028 to recruit further UPS and LPS patients 

noted objective responses in 9/40 UPS and 4/39 LPS patients140. Pembrolizumab has 

also shown promising activity as a combination therapy with the VEGFR inhibitor 

axitinib141. In a phase II multi-subtype RCT, over 65% of patients achieved 3 months PFS 

on pembrolizumab+axitinib. ASPS patients (n = 12) saw most benefit, with 55% 

achieving partial response and 18% stable disease at 3 months. Recently, the novel PD1 

inhibitor TQB2450 has also shown promise in ASPS. When assessed in combination 

with the TKI anlotinib, ASPS patients showed an ORR of 75% and median PFS of 23 

months142. Together, these studies highlight the utility of ICB and TKI combination 

strategies in ASPS. 

Alternate to pembrolizumab, is nivolumab, another anti-PD1 ICB. The Alliance A091401 

study compared nivolumab±ipilimumab, an anti- cytotoxic T-lymphocyte associated 

protein 4 (CTLA4) ICB143. This study showed a median PFS comparable to standard 

chemotherapy in the combination arm (~ 4 months). Study expansion revealed UPS and 

DDLPS patients treated with nivolumab+ipilimumab as the only group to achieve a 6-

month response rate144. This illustrates similar histology specific results to those seen in 

pembrolizumab, further supporting the presence of an immune hot STS population. 

Accordingly, nivolumab+ipilimumab is currently being evaluated in a UPS and DDLPS 

specific cohort as part of a phase II trial145. Nivolumab has also be investigated in 

combination with the TKI sunitinib as part of the ImmunoSarc trial146. ImmunoSarc was 

a basket trial encompassing 11 different histological subtypes of sarcoma. Impressively, 

of 14 evaluable patients, PFS at 6 months in the was 50%, with partial responses seen 

in CCS, ASPS, SS, AS, and chondrosarcoma patients. This again supports ICB-TKI 

combination strategies for use in STS.  
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1.2.3.5 Other therapeutic avenues 

In addition to conventional chemotherapy, TKIs, and immunotherapy, anti-tumour effects 

can also be elicited through targeting epigenetic pathways. This is commonly achieved 

through inhibition of proteins involved in the methylation and acetylation of DNA and 

histones. Under normal physiological conditions, methylation and acetylation modify the 

structural organisation of DNA to regulate gene expression. Inhibitors of these processes 

can therefore alter the oncogenic gene expression profiles of tumours. One example is 

tazemetostat, a methyltransferase inhibitor targeting enhancer of zest homolog 2 

(EZH2). Tazemetostat has been approved for use in advanced EPS based on a phase 

II basket study, which showed disease control in 26% of patients (n = 62)147. Further to 

methylation-based epigenetic inhibitors, histone deacetylase inhibitors (HDACi) have 

also been assessed in STS. As monotherapies, HDACi such as panobinostat have 

shown limited benefit in phase II clinical trials. Yet, early data does suggest value as a 

combination therapy with epirubicin148. Akin to HDACi, Poly (ADP-ribose) polymerase 

inhibitors (PARPi) such as olaparib are also under investigation for use in combination 

with other drugs in LMS and osteosarcoma (section 1.5.3.2)149,150. Finally, one of the 

most recent STS drug approvals is nab-sirolimus, a nanoparticle bound mammalian 

target of rapamycin (mTOR) inhibitor approved for malignant perivascular epithelioid cell 

tumour (PEComa). mTOR regulates a range in cellular functions including growth, 

metabolism, and survival151. Approval was based on a phase II trial analysing 21 patients, 

where overall stable disease was seen in 52%, and only 10% showed progressive 

disease152 

1.2.3.6 Summary 

Irrespective of the drug of choice for advanced disease, response rates are low across 

the general STS population. Moreover, when promising PFS or response rates are 

observed in the RCT setting these are rarely translated to OS benefits for patients. Whilst 

accounting for histological subtype in treatment decisions can improve outcome in some 

cases, varied responses are consistently reported. Heterogeneous responses suggest 

the need for patient stratification independent of histology and highlights potential for 

specific therapies in currently undefined STS populations. Indeed, it has long been 

appreciated that biological heterogeneity within STS: 1) exists at both the inter- and intra-

subtype level; and 2) contributes to clinical disease course. However, excluding imatinib 

in GIST, routine clinical practice in the UK for STS is directed in a largely “one size fits 

all” manner, which fails to consider heterogeneity. This represents a huge gap in STS 

care that needs to be addressed. Across oncology practice, there has been a shift 
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towards precision medicine, and it is vital that patients with rare cancers such as STS 

can benefit from such advancements.  

1.3 Molecular profiling in STS 

Molecular profiling aims to analyse the components of a biological sample, be it on the 

cellular, tissue, or organismal scale. It can span from profiling a single molecule to 

attempts at capturing the total composition of a sample. There are numerous molecular 

profiling modalities within biological research. The most commonly employed study the 

genome, transcriptome and proteome, which together encompass all components of the 

central dogma of molecular biology; DNA, RNA, and proteins.  

Over the last few decades, comprehensive molecular profiling has become a regularly 

employed tool across oncology research. This was arguably instigated by the Human 

Genome Project. The Human Genome Project sought to determine the entire human 

genome sequence, and since its completion in 2001 has marked a new ‘post-genomic 

era’ of molecular biology153,154. During this time, rapid developments in profiling 

technologies have driven a surge in the number of molecular studies conducted. In 

particular, the advent of next generation sequencing (NGS) has supported growth in 

genomics and transcriptomics by drastically reducing analysis costs and time155. In 

oncology, this expansion has triggered the establishment of consortiums such as The 

Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and 

Clinical Proteomic Tumour Analysis Consortium (CPTAC), which aim to 

comprehensively profile malignancies using -omic approaches156–158. Not only has post-

genomic expansion transformed the research landscape, but it has also shifted clinical 

practice in oncology. In recent years clinics have adopted molecular profiling approaches 

throughout patient care. This includes diagnostics, and disease monitoring and 

management. For example, UK patients with advanced non-small cell lung cancer 

receive genetic testing for epidermal growth factor receptor (EGFR) mutations, the 

results of which direct treatment pathways159. Similarly, select UK breast cancer patients 

receive gene expression profiling tests which provide risk assessments for disease 

progression and guide treatment decisions160–163. In STS, molecular profiling 

technologies have primarily driven improvements in diagnostic accuracy for certain 

histologic subtypes (section 1.5.1). Targeted profiling can be requested for STS patients 

to screen for established genomic alterations such as NTRK fusions or KIT mutations 

and highlight treatment options (section 1.2.3.3), yet beyond this there is little integration 

between molecular profiling and the management of most adult STS patients. To 
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facilitate further integration, whole genome sequencing (WGS) has been commissioned 

by National Health Service (NHS) England for sarcoma patients meeting certain 

criteria164. Whilst this is certainly beneficial for the STS community, at present there are 

no formalised guidelines addressing the translation of WGS results for prognostic or 

predictive purposes. Therefore, clinician discretion is often relied upon, and the 

integration of molecular profiling into routine clinical management is inconsistent. There 

can be little doubt that molecular profiling in STS holds untapped potential to transform 

patient care, and in line with this, increasing efforts are being made to profile this disease.  

1.3.1 Dissecting STS biology and heterogeneity 

STS is a heterogeneous group of malignancies. Yet, all STS tumours share a common 

mesenchymal origin, and therefore pan-subtype profiling studies have been performed 

to delineate unifying mesenchymal molecular features. By profiling multiple histological 

subtypes at once, these studies permit comparative assessments across the STS 

disease space. These have revealed both similar and contrasting features between and 

within diagnoses. To generalise, in multi-subtype profiling, subtypes with simple 

genomes tend to show individually distinctive molecular profiles. Complex genome STS, 

particularly those with undifferentiated phenotypes, show molecularly heterogeneous 

profiles, which can be challenging to distinguish for each other. Reflective of this, 

transcriptomics clustering analyses aimed at pan-STS subtyping have repeatedly 

provided evidence for both tight subtype-specific clusters and more diffuse mixed 

subtype clusters36,41,165. Namely, specific transcriptomic clusters identified include those 

enriched in SS, GIST, and LMS. Whilst mixed clusters show heterogenous populations 

of UPS, DDLPS, MyFS, and other tumour types. It is hypothesised that these differences 

translate to variations in treatment response and outcome, between and within subtypes. 

Such histology-agnostic profiling therefore lends itself to pan-STS subtyping, which may 

aid the identification of high risk or treatment responsive STS patients. At present, efforts 

to comprehensively profile STS have primarily utilised genomic and transcriptomic 

methods, including WGS, whole exome sequencing (WES), and RNA sequencing 

(RNAseq). Beyond these, methylation profiling has been conducted to aid STS 

diagnosis, and less comprehensive methods such as IHC and reverse phase protein 

arrays (RPPA) have been employed at the protein level. 

1.3.1.1 The molecular basis of STS 

Gene fusions in STS  

Approximately half of all STS fall into a genomically simple classification, many of which 

are driven by fusion events (section 1.1.2.2). Common fusions across fusion-driven STS 
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include those involving EWSR1; such as EWSR1-ERG and EWSR1-FLI1 in Ewing 

sarcoma, EWSR1-ATF1 in CCS, and EWSR1-WT1 in DSRCT4,166. EWSR1 encodes a 

TET family RNA binding protein whose normal physiological function is unknown167. 

Evidence suggests EWSR1 to play roles in transcription, DNA repair, cell division and 

cell ageing167. Consequently, the EWSR1 fusions may drive tumorigenesis through may 

different mechanisms. Other fusion-driven STS include the BCOR-rearranged sarcomas, 

which as suggested by name are characterised by BCOR-CCNB3 fusions, the CIC-

rearranged sarcomas characterised by CIC-DUX4 fusions, and the NTRK-rearranged 

sarcomas characterised by NTRK fusions4. One of the most prevalent fusion-driven STS 

tumours is SS. SS is driven by the reciprocal chromosomal translocation 

t(X;18)(p11;q11), which results in SS18-SSX1/2/4 fusion. Approximately 95% of SS 

patients show a detectable SS18-SSX fusion, with 2/3rds presenting with the SSX1 

variant and 1/3rd with the SSX228,29. SS18-SSX4 is exceedingly rare and occurs at a 

much lower rate than SS18-SSX1/230. Under normal physiological conditions, SS18 is a 

component of the switch/sucrose non-fermentable (SWI/SNF) chromatin-remodelling 

complex. By facilitating chromatin remodelling, the SWI/SNF complex tightly regulates 

DNA accessibility and therefore transcriptional activity. In SS, the SS18-SSX fusion 

protein is incorporated into the SWI/SNF complex, triggering removal and proteasomal 

degradation of the SMARCB1 subunit. The exact cellular consequence of this altered 

complex is unclear, however given the genome-wide regulatory role of SWI/SNF 

complexes it is likely that oncogenic changes are wide ranging. The altered SWI/SNF 

complex of SS is suggested to bind at loci repressed by polycomb repressive complexes 

(PRC), activating the transcription of normally silenced genes. Indeed, the Sox2 loci is 

PRC repressed, and high expression of Sox2 is observed in SS tumours168–170. 

Conversely, in SMARCB1-deficient sarcoma cell lines, genome-wide SWI/SNF 

occupancy has been observed, resulting in enhancer activation in opposition to PRC 

repression171.172,173174,175 

Gene fusions are also detectable in complex genome STS; however, these are 

predominately introduced by intrachromosomal rearrangements introduced by 

amplifications176. These by-product gene fusions are non-recurrent events, which do not 

map to driver events and are not hypothesised to have pathogenic bearing. By contrast, 

recurrent gene fusions are more likely to confer a disease advantage. In complex 

genome STS, the only pan-subtype, recurrently identified fusions involve trio rho guanine 

nucleotide exchange factor (GEF; TRIO) 36,177. In total, 4 distinct TRIO gene fusions have 

been identified in STS: fusions with telomerase reverse transcriptase (TERT) in UPS, 

DDLPS, and pleomorphic rhabdomyosarcoma; with both cadherin 18 (CDH18) and 
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TERT in UPS; with long intergenic non-protein coding RNA 1504 (LINC01504) in UPS; 

and with zinc finger protein 558 (ZNF558) in MyFS177. TRIO fusions are suggested to be 

unique to complex genome STS and have so far not been detected in tumours classed 

as genomically simple, although targeted screening is required for confirmation. 

Comparative RNAseq profiling of TRIO-fusion STS and non-TRIO-fusion STS revealed 

distinct transcriptomes between the two. Specifically, TRIO-fusion tumours were 

enriched in immunity and inflammation related genes, despite no histologically 

observable difference in immune infiltration. The mechanistic basis for increased 

immune expression in TRIO-fusion tumours is unclear. All TRIO fusions characterised in 

STS result in a truncated TRIO protein that retains its GEF1 domain. GEF1 mediates 

activation of rac family small GTPase 1 (Rac1) and ras homolog family member G 

(RhoG), proteins which are  implicated in major signalling pathways for cell proliferation 

and motility 178. TERT, the only TRIO fusion partner identified pan-subtype, is critical to 

the telomerase-mediated mechanism of telomere maintenance; 1 of 2 mutually exclusive 

pathways, the other mechanism being alternative lengthening of telomeres (ALT)179,180. 

Both telomerase-mediated maintenance and ALT promote telomere stability, which 

enables cancer cells to avoid senescence, immortalise, and replicate pathologically. In 

the TRIO-TERT fusion samples, TERT expression is high, and markers for ALT were 

found to be consistently negative177. This suggests telomerase-mediated telomere 

maintenance is active in TRIO-TERT fusion STS and reveals a candidate axis for 

therapeutic intervention. Overall, TRIO-fusion STS account for a minority (estimated ~ 

5%) of overall STS, however they may represent a key subtype of complex genome 

tumours. The limited number of TRIO fusion cases identified has limited investigations 

into clinical course, however it is not unreasonable to hypothesise that a molecularly 

distinct STS subtype will show different patterns of outcome and treatment response, 

therefore highlighting potential clinical relevance.  

Mutational profile of STS 

Genomically simple STS characterised by mutational events include RT and EPS. RT 

and EPS show by loss of function mutations (eg. point mutations or deletions) in 

SMARCB1 and by extension present with altered SWI/SNF activity181–184. Approximately 

95% of RT and 90% of EPS harbour SMARCB1 mutations185–187. As in SS, the exact 

mechanistic consequence of an altered SWI/SNF not defined for these tumours. It is 

hypothesised in EPS that the EZH2 axis may play a role in oncogenic activity, as a subset 

of EPS patients show favourable clinical responses to the EZH2 inhibitor tazemetostat 

(section 1.2.3.5)147,188.  

 



 44 

Beyond specific genomically simple STS, attempts have been made to identify common 

STS-wide mutational features that may underlie mesenchymal oncogenesis. At present, 

the only robustly identified feature is the low tumour mutation burden (TMB) rate of STS 

relative to other cancers. Although there is no conclusively established value, a TMB of 

> 20 mut/Mb is often considered ‘high’189. Median TMB for STS is ~ 1 mut/Mb, whilst for 

other cancers TMB varies from 0.34 - 45.2 mut/Mb 36,189,190. There are exceptions to the 

low TMB phenotype. In a group of cardiac STS, 93% were shown to have high TMB, and 

in more common subtypes such as UPS and LMS, studies often report a minority of 

samples with high TMB191–193. Yet, when considering STS as whole, TMB is low, and 

accordingly only a handful of recurrently mutated genes are reported. These include the 

tumour suppressors TP53, retinoblastoma 1 (RB1), neurofibromin 1 (NF1), and ATRX 

chromatin remodeler (ATRX).  

TP53 is a transcription factor which induces the expression of numerous genes, including 

those involved in cell cycle arrest and apoptosis194,195. Resultantly, aberrant TP53 can 

drive excessive cell cycle activity and the evasion of cell death. It is therefore 

unsurprising that TP53 mutations are seen in approximately half of all cancer types196–

198. In STS, TP53 mutations are present in between ~ 5% and 50% of tumours; harboured 

most frequently in LMS and AS (~ 50%) and to a lesser extent in UPS (30 - 59%), LPS 

(7 - 20%), and SS (~ 5%)36,43,175,199–202.  Akin to TP53, RB1 also exerts tumour 

suppressive effects through cell cycle regulation, and its loss is observed across cancer 

types203. For a subset of soft tissue tumours, the ‘RB1-deleted tumours’, RB1 deletion is 

the reported putative driver event in nearly all cases204. However, excluding pleomorphic 

LPS, all tumours of this category are benign. RB1 mutations/deletions are observed 

across other STS, although such loss of RB1 is neither a characteristic nor driver event. 

These ‘non RB1-deleted tumours’ which show RB1 loss include LMS, UPS/MyFS, and 

DDLPS, where RB1 is mutated in approximately 14 - 27%, 16 - 43%, and 19% of tumours 

respectively, and disrupted in up to 94%, 88%, and 60% respectively36,43,205–208. NF1 

encodes a GTPase which negatively regulates Ras signal transduction, by converting 

active Ras into its inactive form209. Ras is involved in both phosphatidylinositol-3-kinase 

(PI3K) and mitogen-activated protein kinase (MAPK) signalling, pathways which are 

central to numerous cellular activities, such as differentiation, cell cycle, and apoptosis. 

In STS, NF1 mutations/deletions are classically associated with the development of 

malignant peripheral nerve sheath tumour (MPNST) or UPS. However, recent studies 

have identified NF1 loss in multiple other STS subtypes. Specifically, approximately 

10.5% of MyFS, 8% of pleomorphic LPS, and 20% of all LPS present with NF1 loss 199,200.  

The final frequently altered gene in STS is ATRX. ATRX encodes a SWI/SNF family 
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protein, which plays roles in homologous recombination, PRC2 silencing of genes, and 

telomeric stability by ALT210–212. Defective ATRX is seen across subtypes including in 

LMS (33%), DDLPS (25 - 30%), UPS (34%), and AS (18%). Investigations into the 

downstream consequences reveal ATRX loss to positively correlate with ALT; with ATRX 

loss observed in 55 - 93% of STS with positive ALT markers36,213.  

Although recurrently altered, TP53, RB1, NF1, and ATRX show varied mutation rates 

across STS populations, often reflective of histology. Whilst most mutations occur 

sporadically and can represent a driver event in oncogenesis, germline altered TP53 (Li-

Fraumeni syndrome), RB1 (Retinoblastoma), and NF1 (Neurofibromatosis), can also 

result in the development of STS15. In addition to mutational alterations, the tumour 

suppressive roles of TP53, RB1, NF1, and ATRX can be ablated by other mechanisms, 

such as deletion events, epigenetic regulation, or alterations in genes encoding 

up/downstream proteins. There is considerable overlap between the phenotypic effects 

of TP53, RB1, NF1 and ATRX mutations, all of which in their non-altered form function 

to maintain central cellular homeostatic activities. Therefore, loss of function in any of 

these proteins confers considerable tumourigenic effects.  

 

Genome-wide alterations in STS 

At the macro level, complex genome STS show high chromosomal instability36. This is 

both numerical chromosomal instability (CIN), displaying aneuploidy and loss of 

heterozygosity (LOH), and structural, consequent of genome rearrangements. This 

instability is resultant of macroevolutionary events including whole genome duplication 

(WGD) and chromothripsis, whereby thousands of clustered genomic rearrangements 

simultaneously occur. These large-scale events manifest as CNAs. STS show a notably 

more variant CNA profile than other cancer types that is reflective of histology36. DDLPS, 

UPS, MPNST and MyFS show a high frequency of often genome-wide CNAs, LMS show 

an intermediate level of CNAs, whilst CNA are rarely observed in genomically simple 

STS such as SS. Despite histological heterogeneity in STS, genomic alternations are 

typically centred on the same pathways across tumours, and strikingly, in the same 

pathways for which recurrent mutations have been identified: the murine double minute 

2 (MDM2)-p53 axis and CDKN2A(p16)- cyclin dependent kinase 4 (CDK4)-RB1 axis. For 

example, MDM2 amplification is seen in 91 - 100% of WD/DDLPS, and functionally 

mimics a TP53 mutation36,214–217. Similarly, 91 - 100% of DDLPS patients possess CDK4 

amplifications, whilst deep deletions in CDKN2A are identified in 8% of LMS, 20% of 
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UPS, 18% of MyFS, and 2% of DDLPS, and deep deletions in RB1 observed in 14% of 

LMS, 16% of UPS and 24% of MyFS. This illustrates a common disruption of key 

pathways across STS, which is mediated by multiple mechanisms. 

1.3.1.2 Immune profiling of STS   

Given the recent advances in immunotherapy and the critical role the immune 

microenvironment plays in tumour progression, profiling the immune component of STS 

tumours is increasingly important. Historically, STS have been considered immune-

quiescent, particularly when compared to other malignancies. This is closely tied to the 

observed low TMB in STS (section 1.3.1.1), which has previously been identified as 

reflective of immune activity. High TMB results in increased immunogenic neoantigen 

expression on the surface of tumours cells. Neoantigen recognition within the tumour 

microenvironment (TME) can trigger CD8+ T cell activation, inducing T-cell response 

and tumour cell lysis. However, a low TMB is not necessarily indicative of an immune 

deserted tumour. In ovarian cancer, low TMB tumours show elevated memory B and 

plasma cells, illustrating that TMB may dictate the immune microenvironment 

composition rather than simply the presence or absence of all immune activity218. 

Furthermore, despite the overall low TMB and general low immune activity of STS, a 

subset of patients show favourable responses to immunotherapy (section 1.2.3.4), 

illustrating the presence of an active and targetable immune module within the STS TME. 

Accordingly, there is an ever-expanding body of evidence that suggests the simplified 

classification of STS as a non-immunogenic malignancy is not appropriate.  

The immune TME is considered comprised of: 1) an infiltrating immune cell population, 

made up of tumour associated neutrophils (TANs), TILs (T cells, B cell, natural killer (NK) 

cells), tumour associated macrophages (TAMs), and dendritic cells (DC); 2) soluble 

immune factors, including chemokines and growth factors such as the interleukins (ILs) 

and VEGFR; and 3) immune molecules presented on tumour and tumour-supporting 

cells, for example the immune checkpoint proteins PD1, PD-L1, and CTLA4219. All play 

integrated and critical roles in determining tumour immunity and by extension tumour 

progression. For example, the balance between pro- and anti-tumorigenic T cell 

signalling activity is modulated by immune checkpoint molecules. In STS, IHC has been 

utilised to assess both T cell TILs and immune checkpoint molecule expression. T cells 

are characterised as total, helper, cytotoxic, and regulatory cell populations based on 

CD3, CD4, CD8, and FoxP3, expression respectively. One of the most recent IHC 

studies profiled 192 tumours, spanning 5 ‘common’ and 12 ‘rare’ STS subtypes, in tissue 

microarray (TMA) format220. This identified T cell (CD3+) infiltration in approximately 50% 
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of STS, with the infiltrate accounting for an average of 1.02% of the total cellular 

population. There were a significantly higher number of CD3+ cells in higher grade 

(grade 3) tumours compared to lower grade (grade 1/2) samples. All TIL measures (CD3, 

CD4, CD8, FoxP3 in different expression combinations) showed histology-based 

differences. The highest TIL levels were observed in MyFS and UPS compared to SS, 

LPS, and the rare subtypes; however statistical significance was not always reached. 

Histology based differences were also observed in all PD1+ cell types and most PD-L1+ 

cell types. The checkpoint molecule profiles were more comparable across histology 

than TIL scores, with significantly higher levels observed only in MyFS when compared 

to LMS. Survival analyses identified higher regulatory T cells as associated with a poorer 

LRFS, however multivariable adjustments only considered tumour margin despite other 

clinicopathological variables being implicated in LRR (section 1.2.2.1), and so 

interpretation is restricted. Overall, this study revealed histology based immune variation, 

but did not robustly identify any association between immune composition in STS and 

outcome. Similar reports have also failed to identify any significant relationship with PD-

L1 expression, TIL level and outcome221. Although the literature is unclear, with others 

reporting high PD-L1 expression and high TIL as associated with a significantly improved 

OS and DSS222. Often, such inter-study variation is attributed to differences in the study 

cohort composition, highlighting one of the difficulties of working with a heterogenous 

and rare disease. In addition to the demonstrated importance of lymphocyte populations 

in STS, the myeloid component also plays a central role. Indeed, TAMs have been 

reported to outnumber TILs across most STS types, and within the macrophage 

population, M2 macrophages (immunosuppressive) outnumber M1 macrophages223,224. 

Furthermore, TCGA reported M2 macrophages to be correlated with DNA damage 

measures, illustrating potentially important interplay between the tumour and 

macrophages in the immune TME36. 

Within STS, IHC profiling was, and still is, fundamental in elucidating the immune TME. 

IHC is an accessible method that provides spatial resolution at the protein (ie. the 

effector) level. However, antibody-reliant methods can have limited reproducibility and 

poor specificity. This has led to the development and use of immune deconvolution 

strategies, which estimate immune infiltrate based on bulk transcriptomic data225–230.  

Deconvolution infers cell type and abundance by referencing the profiles of purified cell 

types. This provides a cellular signature score as a proxy for cellular infiltrate. In STS, 

limited spatial profiling studies have been performed, and thus most large-scale profiling 

data lack the dimensional resolution that IHC can provide. However, gene expression 

data offers a significant reproducibility advantage over IHC measures, meaning multi-
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experiment datasets are more comparable. In addition, the increased sampling depth of 

gene expression profiling derives a more comprehensive profile, with thousands of 

transcripts profiled in a single experiment. An immune response is multi-faceted and 

engages multiple cell types in a coordinated manner to define function; this level of 

complexity can only be uncovered by -omic scale profiling. TCGA utilised deconvolution 

methods to report immune estimations in STS and revealed that overall immune 

cells/functions show common patterns36. Tumours high in one immune signature were, 

for the most part, high in other immune signatures, indicative of a complete immune 

response. However, supervised histology-focused investigations did identify minor 

variations. Specifically, high macrophage scores were observed in UPS/MyFS and 

DDLPS, the highest CD8 levels were estimated specific to DDLPS, and the highest PD-

L1 levels were seen in stLMS tumours. These observations were not statistically 

interrogated. Further to histological subtype specific infiltrations and expression, scores 

derived from immune deconvolution also showed a subtype specific association with 

DSS. In brief, a high T helper 2 (Th2) signature was prognostic for poor DSS in DDLPS; 

high DC scores were prognostic for improved DSS in UPS/MyFS; high NK cell scores 

were prognostic for improved DSS in LMS, and UPS/MyFS, and high CD8+ and mast 

cells were prognostic for improved DSS in uLMS and LMS of other soft tissue sites 

(stLMS) respectively. However, this analysis was univariable and so did not involve 

correction for other clinicopathological variables. Interpretation is further limited as 

survival statistics were calculated based on the top and bottom 1/3rd scoring samples 

only. Any potential association between outcome in intermediate scoring samples in 

unknown, and information is lost as a result of categorising this continuous variable.  

Beyond descriptive analysis, immune deconvolution has also been utilised to identify 

histology independent STS molecular subtypes based on immune composition; named 

the sarcoma immune classes (SIC)231. SIC were characterised based on the gene 

expression profiles of 608 LMS, DDLPS, and UPS samples, and have been applied to 

SS, myxoid LPS and GIST tumours. This led to the identification of 5 SIC subtypes (A, 

B, C, D, E) showing variation in immune activity. From A to E, SIC increase in immune 

activity as measured by T cell activation, chemotaxis, and survival genes, major 

histocompatibility complex (MHC) class I genes, immune regulatory genes, and the 

presence of tertiary lymphoid structures (TLS). SIC A represents an immune desert 

population, SIC B a heterogenous immune-low group, SIC C a highly vascularised group, 

SIC D a heterogenous immune-high group, and SIC E an immune high group with TLS 

present in 82% of tumours assessed. TLS are lymphoid organs which develop in areas 

of chronic inflammation such as at tumour sites232. TLS facilitate anti-tumour immunity 
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through the local generation of autoreactive T/B cells and autoantibodies. It is striking 

that all except 1 TLS containing tumour was classified as SIC E; reflecting a sustained 

immune phenotype as characteristic to SIC E231. In relation to genomic profile, no 

difference in CNA level was seen across the SICs, yet mutation frequency in TP53, TTN 

and MUC16 was significantly higher in SIC D and E compared to the other SICs. 

However, the mutation rates did not increase linearly from A to E. In fact, the mutational 

occurrence of MUC16 was highest in SIC D, but lowest in SIC E. The relationship 

between these mutations and the overall level of immune activity is therefore unclear. 

Across all STS subtypes investigated, all SICs were represented in each histological 

subtype, illustrating histological independence. Yet patterns in histological distribution 

were observed. SIC A and B encompassed most of the LMS samples, C was 

approximately 50% DDLPS, and D and E showed a more equal representation of all 

subtypes. This alludes to a pan-subtype ‘immune hot’ population, which may benefit from 

immunotherapy interventions. As well as a potential use in predicting treatment 

response, SICs were also suggested to provide prognostic utility. The highest immune 

SICs (D and E) were shown to have a significantly longer OS compared to the lowest (A) 

in multivariable analyses. This supports the TCGA results and supports previous data 

highlighting TLS as associated with improved outcome in other cancer types36. Further 

analysis revealed the SIC survival difference to be specifically driven by a high B cell 

signature in high immune SICs231. It is hypothesised that this B cell signature is resultant 

of B cell germinal cores in mature TLS. Whilst B cells were not discussed by TCGA, Th 

cells which promote B cell proliferation and differentiation were. Contrary to the B cell-

outcome relationship in SIC, the TCGA reported Th signature correlated with worse 

outcome36. This may suggest the presence a more nuanced relationship between TLS 

composition, tumour immunity, and disease progression. Indeed, in colorectal cancer, 

Th-rich TLS are associated with an increased likelihood of recurrence233.   

Complementary to the STS specific molecular immune subtypes, the representation of 

pan-cancer defined molecular immune subtypes has also been studied in STS136. In 

2018, all publicly released TCGA data spanning 33 cancer types, was analysed to 

characterise pan-cancer immune features. This detailed 6 subtypes: C1 ‘wound healing’, 

C2 ‘IFNγ dominant’, C3 ‘inflammatory’, C4 ‘lymphocyte depleted’, C5 ‘immunologically 

quiet’, and C6 ‘transforming growth factor β (TGFβ) dominant’. Interestingly, none of the 

257 STS tumours assessed were classified as immunologically quiet, however STS were 

over-represented within the lymphocyte depleted group. In addition, STS were shown to 

display a moderate leukocyte fraction and a larger range of leukocyte fraction relative to 

other cancer types. This is reflective of the extreme diversity of STS and, in agreement 



 50 

with STS-specific studies, suggests the presence of an immune hot population that 

warrants further exploration. 

1.4 Clinicopathological and molecular features of select STS 

subtypes  

1.4.1 Leiomyosarcoma  

LMS  is one of the most common adult STS subtypes, accounting for between 10-25% 

of STS diagnoses234,235. LMS arise from the smooth muscle lineage, most often 

developing with no identifiable causative factor within the extremities, retroperitoneum, 

and uterus.  LMS of uterine origin (uLMS) occurs in a younger population than stLMS, 

with peak incidences in the 5th and 7th decades respectively236. Histopathological 

diagnosis of LMS is reliant on 1) morphologically identified fascicles of elongated and 

spindled cells, and 2) immunohistochemistry (IHC) detection of smooth muscle markers: 

alpha smooth muscle actin, desmin, and H-caldesmon237–239. These IHC proteins 

however are not disease specific or ubiquitously expressed across LMS. Between 5% 

and 34% of morphologically-LMS tumours do not stain positive for 1 or more of these 

routine markers240. Resultantly, misdiagnosis in LMS is a persistent risk. Molecular 

profiling studies often note reclassification of LMS diagnoses upon central pathology 

review (section 1.5.1), and several case reports describe LMS patients misdiagnosed 

with benign leiomyomas241,242. Furthermore, LMS lacking smooth muscle marker 

expression show an undifferentiated phenotype which can be challenging to discriminate 

from a UPS tumour243,244. Misdiagnosis carries huge risk as LMS is regarded as one of 

the most aggressive STS subtypes. Tumours show a particularly high propensity for 

metastasis and recurrence; even when patients present with primary localised disease 

and receive optimal surgical intervention. The 5-year recurrence rate varies from 10% to 

43% dependent on anatomical site, and long-term patient follow up shows late 

recurrences (> 10 years) can occur in extremity, abdominal and retroperitoneal 

patients245. In addition, only a subset of LMS patients respond to conventional 

chemotherapy and radiotherapy. Whilst distinct patterns in treatment response and 

clinical outcome are reported between uLMS and stLMS, the full spectrum of 

heterogeneity across patients exceeds that introduced by anatomy alone. Therefore, 

anatomical site is not a consistent factor in predicting disease course. In fact, in 

multivariable analyses, where multiple clinicopathological variables are adjusted for, only 

grade and size have been reported as significant prognostic factors for DSS following 

primary LMS245. Understanding of the molecular basis of LMS has been expanded 

greatly over the last decade and is hypothesised to explain some of these clinically 
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observed characteristics. As a relatively common disease type, LMS are frequently 

profiled as part of multi-subtype profiling experiments, and importantly have also been 

assessed in isolation, in attempts to appreciate intra-subtype heterogeneity.   

1.4.1.1 Key molecular features of LMS 

As with other STS subtypes, LMS show dysfunctional RB1 and TP53. However more 

frequent to LMS, these aberrations in RB1 and TP53 are often concomitant246. These 

seemingly coupled events are hypothesised to be early or driver occurrences in LMS 

tumorigenesis. Screening across STS subtypes revealed LMS as the adult tumour type 

with highest frequency in both Retinoblastoma and Li-Fraumeni populations247–249. In 

accounting for a non-trivial proportion of tumours in patients with hereditary RB1 or TP53 

loss, this illustrates the central role that RB1 and TP53 can play in LMS progression.  

In addition to the recurrent STS-wide genomic aberrations, LMS specifically show a 

particularly altered level of activity in the phosphatase and tensin homolog (PTEN)/PI3K- 

AKT Serine/Threonine kinase 1 (AKT) pathway36,43,246,250–254. This is not unique to LMS, 

and is observed in other STS subtypes, but at a comparably low frequency. PTEN is an 

established tumour suppressor with critical catalytic functions that modulate AKT 

signalling255–257. Briefly, PTEN is the antagonist of PI3K and sits downstream of growth 

factor receptor tyrosine kinases (Figure 1.4A). When activated, PTEN dephosphorylates 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) converting it to phosphatidylinositol 

(4,5)-bisphosphate (PIP2). PIP3 regulates the activation of phosphoinositide-dependent 

kinase 1 (PDK1), PDK1 activates AKT, and AKT inhibits tuberous sclerosis 1/2 protein 

(TSC1/2), relieving TSC-mediated inhibition of mTOR complex 1 (mTORC1). When 

activated, mTORC1 triggers multiple cascading signalling pathways to promote cell 

growth and tumourigenic survival. The other mTORC, mTORC2, sits upstream of AKT 

to activate signalling. Cross talk within the pathway is complex, and multiple feedback 

loops are present, such as mTORC1-mediated inhibition of mTORC2, and TSC-

mediated activation of mTORC2, which attenuate and promote AKT signalling 

respectively. In contrast to RB1 and TP53, germline altered PTEN (e.g., Cowden 

syndrome) has not been reported to translate to a significant predisposition to LMS258. In 

LMS, the PTEN/PI3K-AKT pathway is altered in an estimated 71% of patients, and loss 

or inactivation of PTEN specifically has been observed in 28-57% of LMS36,43,250,251. 

Mutations in PTEN itself are an infrequent event seen in approximately 5% of LMS36. 

However, chromosomal deletion of 10q (the region encompassing PTEN) occurs at a far 

higher rate (59% of LMS), and PTEN specific deletions are seen in 21-64% of 

LMS36,253,254. These deletions are mostly (~ 85%) predicted to be shallow (ie. 
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heterogyzous), with homozygous PTEN deletions rarer36. This is in agreement with 

PTEN alterations in other malignancies, which present mostly with PTEN loss of 

heterozygosity259–261. Following the traditional ‘two-hit tumour suppressor hypothesis’, 

biallelic inactivation of PTEN would be required to promote tumorigenesis262. However, 

studies in other cancers have illustrated haploinsufficiency to confer significant 

tumorigenic activity259–261. The mechanism in LMS is unclear, however irrespective of 

deletion type, PTEN deleted tumours show downstream changes in AKT signalling. 

TCGA found concordant high AKT pathway scores in both gene expression and RPPA 

analyses in LMS with PTEN loss36. Moreover, independent studies have identified 

overexpression of phosphorylated AKT (ie. activated AKT) in 20-75% of LMS tumours 

overall263,264. This expected relationship between PTEN loss of function and increased 

AKT signalling is more pronounced in well differentiated LMS, where significant 

overexpression of activated AKT and RICTOR (an mTORC2 component) is seen when 

compared to other LMS tumours also showing aberrant PTEN252. It has been 

hypothesised that the role RICTOR plays in smooth muscle differentiation may explain 

this observation, highlighting intra-subtype variations based on the smooth muscle 

differentiation phenotype. Further intra-LMS variations have also been observed, with 

one study finding PTEN inactivation to be significantly higher in non-primary stLMS 

compared to non-primary uLMS246. This anatomical difference was not observed in 

primary LMS lesions, and there was no overall significant difference between all primary 

LMS and all non-primary LMS. This is suggestive that PTEN inactivation may promote 

disease recurrence and/or be acquired during the progression of stLMS. Clinically, the 

identification of altered AKT signalling in LMS, indicates these patients may be 

susceptible to mTOR inhibition (eg. everolimus), or the more recently developed dual 

PI3K/MTOR inhibitors265–268.  

Interestingly, there is evidence which suggests cross talk between the PTEN/PI3K-AKT 

pathway and oestrogen receptor (ER) signalling, particularly in breast cancer269,270. 

Indeed, high ERα expression is seen in 15 - 60% of LMS, and it is particularly enriched 

in uLMS246,271,272. This contrasts other STS subtypes which show minimal, if any, 

expression of hormone receptors273. Expression of ER is not the only feature LMS 

tumours appear to have in common with breast cancers. Up to 98% of LMS have also 

been revealed to show a breast cancer gene (BRCA)ness signature274. BRCAness 

describes a signature characterised homologous recombination repair (HRR) defects 

that phenotypically mimics a BRCA1/2 mutation275. BRCA1/2 are both key proteins in the 

HRR pathway, which is relied upon for the repair of double strand DNA breaks (DSB; 

Figure 1.4B). BRCA1 has broad roles in controlling HRR signalling and is integral in the 
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processing of DNA break ends. BRCA2 has a more defined downstream role, binding 

RAD51 to facilitate its recruitment to DNA damage sites. There is no singular method for 

determining BRCAness. Instead, it can be molecularly characterised based on individual 

mutations in HRR components, broad mutational signatures, or transcriptional 

signatures corresponding to HRR defects. In LMS, BRCAness has been reported based 

on the detection of both a BRCAness mutational signature (‘Alexandrov-COSMIC 3: 

associated with defective HRR’), and loss of function mutations or deletions in HRR 

genes including BRCA1 (10%), BRCA2 (53%), PTEN (57%), ATM (22%), and RAD51 

(10%). One study has suggested BRCA2 mutations to be more prevalent in uLMS than 

stLMS (10% vs 1%), and overall alteration rates in HRR pathways to be similar276. There 

is little data on the prognostic repercussion of BRCAness in LMS, however patients with 

BRCA1/2 loss show a trend towards a higher mitotic count and more dedifferentiated 

histology; both suggestive of more aggressive disease276. Defects in HRR in LMS have 

been reported as associated with a significantly shorter OS in the univariable setting277.  

 

 

 

Figure 1.4 Diagrammatic representation of pathways altered in leiomyosarcoma 
(A) The phosphoinositide 3-kinase (PI3K) signalling pathway (B) The homologous recombination (HR) 
pathway for the repair for double strand DNA breaks. Figures construction based on the publications of 
Carracedo et al and Lord et al.275 
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In multivariable analysis, patients with HRR defects not in BRCA1/2 show significantly 

worse PFS than those with BRCA1/2 HRR defects or an absence of HRR defects. These 

findings raise the concept of shared biology between breast cancer and LMS and 

highlights the possibility that currently approved breast cancer drugs may hold utility in 

LMS. Olaparib is one such drug currently approved in select breast cancer patients with 

a BRCA mutation, which has been investigated in tumours demonstrating BRCAness278–

280 (section 1.5.3.2). 

1.4.1.2 Molecular subtypes of LMS  

The extensive clinical heterogeneity observed across LMS patients has long supported 

the concept of LMS subtypes. In most pan-STS studies, LMS are identified as a relatively 

homogeneous group, with high similarity between patient tumours36,41,165. However, in 

2009, molecular subtypes of LMS were first documented through focused LMS-specific 

microarray profiling in a cohort of 51 samples281. Since, numerous multi-institution 

studies utilising transcriptomics have repeatedly identified 3 molecular subtypes (Figure 

1.5 and Table 1.2)36,43,274,282,283. Methodologically, these studies mostly employed 

RNAseq, as well as microarray-based profiling, methylation profiling, and copy number 

analysis. Excluding the study by TCGA, all used an unsupervised approach to delineate 

LMS subtypes. Of note, the most recent study offered further stratification by use of pan-

cancer data to identify 4 subtypes, 2 of which (Anderson subtype 2a and 2b) were derived 

from 1 parent subtype (Anderson subtype 2)274. Whilst the relationship between the 

subtypes identified in different studies has not been formally assessed, these studies are 

broadly considered to have identified highly similar if not identical LMS subtypes. Across 

all studies, common subtype-specific features are reported, such as variations in 

anatomical site, the expression of myogenic markers, immune activity, and potential 

associations with outcome.  

Anatomical site distribution in LMS molecular subtypes  

LMS subtypes are reported to show differential distributions in anatomical sites. This 

includes the repeated detection of a uLMS-enriched subtype (Beck group III, Guo 

subtype III, Chudasama SG1, Hemming uLMS, Anderson subtype 3)43,274,281–283. 

However, this suggested uterine enrichment is ambiguous. The level of uterine 

overrepresentation varies greatly, with uLMS accounting for between 34% and 92% of 

all samples within the putative uLMS-enriched subtype. Moreover, uLMS are present 

within the other subtypes, comprising between 19% and 59% of samples in the other 

non-uLMS enriched groups. In support of anatomically driven subtyping, one study  
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reported preserved expression of uterine-specific transcripts in the uLMS-enriched 

subtype, and absent or minimal expression of these transcripts in other subtypes283. One 

such transcript, Wilms’ tumour gene (WT1), has also been reported elsewhere as 

overexpressed in uLMS, and has been revealed as associated with poorer OS and PFS 

across high grade uterine sarcomas284–286. However, whilst under normal physiological 

conditions it is rare for WT1 to be highly expressed beyond the uterus, aberrant WT1 

expression has been noted across non-uterine cancer types287–290. The specificity of a 

relationship between uterogenic transcript expression and a uterine-enriched LMS 

subtype is therefore unclear. Furthermore, whether the stLMS samples present within 

the uLMS-enriched subtype, or the uLMS samples in the non-uLMS-enriched subtypes 

also express WT1 is not reported283. In a separate study, unsupervised clustering 

illustrated most samples of the putative uLMS subtype to co-localise with normal 

gynaecological smooth muscle tissue274. Clustering in this study also sub-stratified a 

putative non-uLMS subtype (Anderson subtype 2) into 2 clusters, which appear driven 

 

Figure 1.5 Timeline and overview of the leiomyosarcoma transcriptomic subtype literature  
For each study, the type of data analysed is shown as well as the number of LMS samples, whether external 
data was included in the derivation of subtypes, the proportion of primary vs other tumour specimens, and 
the number of subtypes identified36,43,274,281–283. Abbreviations: CNA = copy number alterations 
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by anatomical site. Anderson subtype 2a comprised mostly abdominal lesions, and 

clustered with normal digestive smooth muscle. Whereas 2b comprised a mix of 

anatomical and extremity lesions, and clustered with normal vascular smooth muscle. 

Retroperitoneal and extremity LMS frequently arise in association with the vasculature, 

and therefore the stratification between 2a and 2b may illustrate distinct LMS tissue 

lineages. Overall, evidence suggests that anatomical site corresponds to differing 

molecular signatures across LMS. Yet there are notable exceptions, which weakens the 

hypothesised role of tissue lineage in driving LMS subtypes. This is therefore neither a 

robust nor definitive finding. Anatomical site may contribute to disease heterogeneity, but 

it does not fully explain the molecular differences observed across LMS.    

The expression of myogenic markers in LMS molecular subtypes 

LMS are derived of the smooth muscle lineage and diagnosis entails IHC assessment of 

smooth muscle markers. However different levels of myogenic expression have been 

observed across the LMS molecular subtypes. In most subtype studies, a ‘high-

myogenic’ group is reported (Beck group I, Guo subtype I, Abeshouse stLMS C1, 

Chudasama SG2, Hemming cLMS, Anderson subtype 2)36,43,274,281–283. These groups are 

characterised by overexpression of numerous muscle specific genes and are suggested 

to be a subtype of low/intermediate grade, majority non-uterine tumours of mostly 

conventional histology. Genomically, the ‘high-myogenic’ groups have been 

characterised by hypermethylation, lower genomic stability compared to other LMS, and 

myocardin (MYOCD) amplifications. MYOCD is a transcriptional co-activator of smooth 

muscle gene expression, and therefore is implicated in smooth muscle differentiation291. 

Consequentially, MYOCD amplicons may representant one underlying mechanism for 

the high myogenic activity and well differentiated smooth muscle phenotype observed in 

this subtype. In contrast to the ‘high-myogenic’ groups, the remaining ‘non-uterine’ 

groups show lower expression of myogenic genes. In the Anderson ‘low-myogenic’ group 

(subtype 1), a high occurrence of deletions in the smooth muscle marker dystrophin 

(DMD) was observed274. Mechanistically, DMD deletion may explain the observed lack 

of a myogenic signature in this subtype. Together, these observations are suggestive of 

an LMS population with a dedifferentiated phenotype. Indeed, pan-STS clustering 

showed the majority of Anderson subtype 1 tumours to localise with non-LMS tumours, 

including the dedifferentiated sarcoma type, UPS. Similarly, a small-scale proteomic 

study using 2-dimensional difference gel electrophoresis (2D-DIGE) noted co-clustering 

of a subset of LMS with UPS samples292. Moreover, histologically observed 

dedifferentiation within LMS tumours has also been reported293–296. These reports 

describe tumours with regions of classical LMS tissue, co-occurring alongside
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Table 1.2 Overview of leiomyosarcoma (LMS) molecular subtypes identified from transcriptomic studies 
Abbreviations: stLMS = soft-tissue LMS (non-uterine); uLMS = uterine LMS; NK = natural killer; DSS = disease specific survival; RFS = recurrence 
free survival; OS = overall survival.  
 

Subtype 
Proportion 

(%) 
Clinical features Biological features Survival analysis Comments 

Beck group I281 25% 
92% stLMS, 77% conventional 

histology 
Enriched in muscle related genes, phosphoproteins, 

and kinases. Lower genomic stability 
Improved DSS in multivariable 

analysis 
Survival analysis 

performed on 
seperate cohort 

using expression 

measure of 
unvalidated group I 

IHC markers 

Beck group II281 24% 
75% stLMS, 50% conventional 

histology  

Enriched in metabolic, cell proliferation and organ 

development genes 
- 

Beck group III281 51% 
42% uLMS, 79% 

pleomorphic/mixed histology, 
mostly non-primary 

Enriched in organ development, ribosomal, ECM and 
wound response genes 

- 

Guo subtype I282 35% 

72% stLMS, similar proportions 

of low, intermediate, and high 
grade tumours 

Enriched in muscle related genes 
Improved DSS in univariable 

analysis  Survival analysis 
performed on 

separate cohort 

classified based on 
unvalidated IHC 

markers 

Guo subtype II282 22% 59% uLMS, 68% high grade Enriched in translation & protein localization genes 
Poorer DSS in univariable 

analysis  

Guo subtype III282 29% 92% uLMS, 77% high grade  Enriched in metabolic and transcription genes - 

Guo ungrouped282 29% - - - 

Abeshouse uLMS36 34% 100% uLMS High DNA damage response, hypomethylation of 

ESR1 targets, altered AKT pathway 
- 

Supervised 

separation of 
uLMS from stLMS 

Abeshouse stLMS C136 31% 100% stLMS 
High HIF1α signalling compared to uLMS, altered 
AKT pathway, generally hypermethylated, 40% 

MYOCD amplification,  

Poorer RFS & DSS in 
univariable analysis compared 

to stLMS C2 

Abeshouse stLMS C236 35% 100% stLMS 

High HIF1α signalling compared to uLMS, generally 

hypomethylated, high inflammatory signatures (NK 
and mast cells) 

- 

Chudasama SG143 16% 34% uLMS 
Enriched in platelet degranulation, complement 

activation and metabolic genes  
- 

  Chudasama SG243 14% 19% uLMS Enriched in muscle related genes - 

Chudasama SG343 70% 19% uLMS 
Intermediate expression of muscle related genes, and 

cell-cell signalling genes 
- 
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continuation of table from previous page 

Hemming cLMS283 49% 10% metastasis 
High expression of muscle associated transcripts and 

IGF1R 

Improved DSS compared to 

iLMS in univariable analysis  

  Hemming iLMS283 28% 10% metastasis 
Enriched in immune related genes. Estimated high M2 

macrophage and CD8+ T cell infiltration 
- 

Hemming uLMS283 23% 88% uLMS, 40% metastasis Expression of uterogenic transcripts - 

Anderson Subtype 1274 18% 43% gLMS 

High occurrence of DMD deletions (evidence of 

dedifferentiation), high in immune activity (M2 
macrophages) 

- Subtype 2 split in 
to 2a (31%; mostly 

abdominal) and 2b 
(69%; mixed 

abdominal and 

extremity) 

Anderson Subtype 2274 65% 
81% abdominal or extremity 

LMS 
MYOCD amplifications 

Improved OS & DSS 
compared to combined 

subtype 1&3 in univariable 

analysis  

Anderson Subtype 3274 17% 91% gLMS DMD deletions & MYOCD amplifications - 
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de-differentiated non-myogenic components; reminiscent of mixed WDLPS and DDLPS 

tumours (section 1.4.3). Dedifferentiation is a well-studied phenomenon across 

oncology and often confers a higher grade more aggressive tumour type297–299. In line 

with this, dedifferentiated LMS tend to show a high mitotic index293,296. However due to 

the paucity of dedifferentiated LMS reports, the general aggressiveness of these tumours 

and overall clinical outcome for patients is not well defined. It is evident that the extent 

of differentiation in LMS tumours is molecularly rooted, which translates to the 

identification of molecular LMS subtypes. The presence of a dedifferentiated LMS tumour 

type is particularly pertinent, as in other cancer types, cellular dedifferentiation and a 

stemness phenotype identifies a high-risk patient population.  

The immune component of LMS molecular subtypes  

Dedifferentiation and increased cellular stemness has also been shown to be associated 

with immune cell exclusion, and therefore immune evasion across carcinomas300,301. 

Contrary to this, in LMS, the ‘low-myogenic’ subtypes have been shown to possess 

higher immune activity (Abeshouse stLMS C2, Chudasama SG1, Hemming iLMS, 

Anderson subtype 1)36,43,274,283. Across these subtypes, immune activity has been 

described through in-silico deconvolution estimation algorithms, which have reported 

high M2 macrophage, NK cell, CD8+ T cell, and mast cell infiltrations. In addition, over-

representation analyses have noted enrichment in platelet degranulation and 

complement activation pathways. This illustrates a wide-ranging increase in immune 

activity within this subtype, concurrent with the TCGA-observed ‘complete immune 

response’ in STS (section 1.3.1.2). High immune activity is also known to be associated 

with altered DNA methylation. In line with this, TCGA reported global hypomethylation in 

the ‘low-myogenic’/’high-immune’ LMS subtype36. Yet, akin to the dedifferentiation-

immune relationship in LMS, this appears contrary to the current carcinoma-centric 

literature. In carcinomas, global loss of methylation has been shown as correlated with 

immune escape mechanisms and low immune infiltrate302. The basis and consequence 

of an inverse immune-methylation and immune-dedifferentiation relationship as 

observed in this LMS subtype are therefore poorly understood.  

The clinical significance of LMS molecular subtypes 

Molecular subtyping of LMS has consistently identified a dedifferentiated subset of 

tumours. Across oncology, dedifferentiation is associated with a more aggressive tumour 

type. Accordingly, some studies report improved outcomes in the high-myogenic groups 

compared to the low-myogenic groups. Although these are neither consistent nor robust. 

Beck et al. and Guo et al. utilised TMA IHC to report survival analyses281,282. Both 
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suggested significantly improved DSS in the high-myogenic group. However, tumour 

classification into LMS subtypes was based on unvalidated IHC markers differentially 

expressed across subtypes, thus interpretation is highly tentative. More robust analyses 

were performed by Hemming et al. and Anderson et al., who directly analysed the 

survival of the profiled and subtyped LMS cohort274,283. The former found improved DSS 

for cLMS (high-myogenic) compared to iLMS (low-myogenic), and the latter similarly 

found improved DSS for subtype 2 (high-myogenic) compared to the other subtypes 

combined. However, neither subtype variables remained independent prognosticators 

upon the adjustment of key clinicopathological features in multivariable analyses. 

Contrary to all other studies, the TCGA study revealed a significantly poorer RFS and 

DSS in stLMS C1 (high-myogenic) than stLMS C2 (low-myogenic)36. However, 

significance of the subtype feature was again lost in multivariable analyses. The 

inconsistent survival observations made by TCGA compared to other studies may be 

explained in part by the semi-supervised approach TCGA took to LMS subtyping, where 

uLMS and stLMS were separated prior to analysis. Overall, no robust association has 

been found between outcome and LMS subtype, thus at present there appears little 

prognostic utility in LMS molecular subtyping. More promising however, is this use of 

LMS molecular subtyping for predictive stratification. In other cancer types, high immune 

activity can be a favourable indictor for response to immunotherapy-based interventions. 

The observation of a high-immune LMS subtype may therefore reveal a candidate 

population for immunotherapy. However, given the inconsistency between immune 

findings in LMS and immune findings in other cancer types, assessment of this 

hypothesis would require significant in-depth immune profiling to be performed.  

1.4.2 Undifferentiated pleomorphic sarcoma 

UPS is a heterogenous group of pleomorphic tumours accounting for approximately 16-

17% of STS diagnoses235,303. Tumours most often arise in the extremities, and the risk of 

UPS development increases with age. UPS possess no identifiable differentiation 

lineage, and there are no definable criteria for diagnosis. Instead, a UPS diagnosis is 

established through the exclusion of other STS subtypes304. Historically UPS were 

grouped under the MFH diagnosis. However seminal analyses in 1992, which leveraged 

developments in IHC technology, revealed differentiation lineages for approximately 

2/3rds of MFH (n = 159)244. This led to more routine implementation of IHC in STS 

diagnostics, and the reclassification of many MFH as pleomorphic LPS, LMS, or other 

poorly differentiated STS. Numerous MFH were also identified as non-mesenchymal 

tumours, and the remaining MFH with no discernible lineage were termed UPS. As with 

many STS, there are no subtype-specific guidelines established for UPS management, 
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and outcomes are poor. At 5-years, OS for UPS patients is 53-60%, LRFS is 

approximately 55%, and MFS approximately 70%305,306. However due to the ‘catch-all’ 

exclusion-based diagnosis of UPS, patients within this group show extreme 

heterogeneity and outcomes can vary greatly. Due to this high heterogeneity, UPS is 

often hypothesised as a group of multiple yet-to-be-defined STS, as opposed to a single 

disease type307. This has led to a dearth of molecular profiling studies; thus, UPS is one 

of the least molecularly characterised STS subtypes. As a subtype with huge unmet 

need, molecular profiling could have significant utility.  

1.4.2.1 Gene fusions in UPS 

Recurrent fusions have been characterised in a minority of UPS tumours (< 5%)308,309.  

A majority involve PR/SET domain 10 (PRDM10) fusions with either mediator complex 

subunit 12 (MED12) or Cbp/P300-interacting transactivator 2 (CITED2). Functionally, 

PRDM10 itself is poorly characterised, thus the mechanistic consequences of such 

fusions are speculative. Notably, other PRDM family members have been implicated in 

tumorigenesis. For example, inactivating mutations in PRDM1 are noted in lymphoma, 

deletion of PRDM4 prevalent in ovarian, gastric, and pancreatic cancer, and PRDM16 

fusions detectable in both myeloid and lymphoid cancers310–315. In these tumours, the 

PRDM family show functional duality with context-dependent tumour suppressive and 

oncogenic activity, further complicating the ability to hypothesise a role for PRDM in 

UPS316. The PRDM10 fusion partners, MED12 and CITED2, are better characterised 

and play major transcriptional, and developmental roles317–319. MED12 is a component 

of the mediator complex which can activate or repress transcription, dependent on its 

interacting factors320. Mutations in MED12 have been observed in several other cancer 

types including in uLMS319,321. CITED2 is known to regulate ER activity and is 

upregulated in breast cancer 322,323. Comprehensive profiling of PRDM10-fusion UPS has 

revealed a lack of co-occurring genomic alterations, indicating the fusions likely 

represent driver events, as in genomically simple STS324. Profiling also revealed 

PRDM10-fusion UPS to have a distinctive transcriptome, inconsistent with other UPS 

tumours, MyFS, dermatofibrosarcoma protuberans, and myxoinflammatory fibroblastic 

sarcoma. Differences have also been observed histopathologically, with PRDM10-fusion 

tumours showing low mitotic count and an absence of necrosis, indicative of a low-grade 

lesion. Whilst data is scant, these tumours appear to correlate to a more indolent clinical 

progression compared to other typically high-grade UPS. This therefore may reveal a 

subset of patient who require less aggressive treatment plans to achieve clinical benefit. 

Beyond the PRDM10 gene fusions, further novel gene fusions have been identified in 
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UPS tumours, although these appear non-recurrent309. At present, the low occurrence 

rate of fusions in UPS, and incomplete understanding of downstream fusion-effects 

currently limits clinical applications.  

1.4.2.2 Key molecular features of UPS 

The molecular basis of UPS has been assessed in the context of other STS types. 

Specifically, TCGA profiled a significant number of UPS tumours (n = 44) in a mixed 

cohort of 206 samples36. Across CNA, miRNA, mRNA, methylation and RPPA analyses, 

most UPS samples were found to be indistinguishable from MyFS. Both UPS and MyFS 

historically fell under the MFH diagnosis; the discriminatory diagnostic feature being that 

MyFS possess a myxoid stromal component whilst UPS do not. In line with this, UPS 

and MyFS could be differentiated by review of genes differentially expressed based on 

the myxoid stroma. The similarities between UPS and MyFS have led to a hypothesised 

UPS-MyFS spectrum of disease. Supporting this are histological observations which 

report the detection of UPS-like (ie. myxoid stroma absent) areas within MyFS 

tumours36,325. Considering UPS and MyFS as a single broad disease type, common 

recurrent amplifications have been identified. These include 2 components of the Hippo 

signalling pathway: vestigial like family member 3 (VGLL3) on chromosome 3p and yes1 

associated transcriptional regulator (YAP1) on chromosome 11q, amplifications of which 

occur in ~ 10-25% and ~ 3-10% of UPS/MyFS respectively36,208,326,327. VGLL3 and YAP1 

encode cofactors of the TEA domain containing transcription factors and functionally 

enhance Hippo signalling activity to promote proliferation328. Interestingly, VGLL3 plays 

a role in both adipocytic and skeletal muscle differentiation, and VGLL3 amplifications 

have also been noted in DDLPS and LMS, albeit to a far lesser extent326,327,329,330. It is 

notable that amplification is observed in the dedifferentiated form of LPS, and it would 

be of interest to assess VGLL3 amplification relative to the LMS molecular subtypes 

(section 1.4.1.2), to investigate any association and dedifferentiation/undifferentiation. 

However, irrespective of the absolute subtype specificity of VGLL3 amplifications, this 

highlights the Hippo axis as a candidate for therapeutic targeting in UPS and can be 

hypothesised as potentially targetable across complex genome STS with an 

undifferentiated phenotype.  

In addition to highlighting candidate therapy targets, the TCGA molecular profiling of 

UPS/MyFS has also shown prognostic value. Several miRNAs have been revealed as 

significant independent prognostic factors in multivariable analyses. These include 

miR194-5p, which was identified as associated with a significantly improved MFS and 

DSS. In glioblastoma and breast cancer, miR194-5p plays a tumour suppressive role by 
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promoting apoptosis and inhibiting epithelial-mesenchymal transition (EMT) 

respectively331,332. However, whether these mechanisms are active in STS is unclear, 

particularly considering the paradoxical nature of EMT in a mesenchymal tumour. 

Similarly, miR-22-3p was also identified as associated with a significantly improved DSS. 

This has been previously reported in osteosarcoma, bladder cancer, cervical cancer and 

acute myeloid leukemia333–336. miR-22 is inhibitory towards many signalling pathways, 

yet the exact mechanistic consequences in STS are undefined. Interestingly, miR-22 

downregulates PTEN, which is mutationally inactivated in a minority of UPS (~ 7%)254,337. 

Upregulation of miR-22 in UPS may therefore represent an alternative mechanism by 

which PTEN activity is lost in these tumours.  

On the genome-wide scale, UPS show high chromosomal instability. WGD is observed 

in an exceptionally high proportion of UPS (~ 90%) and is a putative driver event in 

tumour development. The high genomic complexity in UPS coupled with high inter-

patient variation has led to the hypothesis that UPS develop along distinct evolutionary 

paths. Investigations into this underlying evolutionary trajectory of UPS guided a 

proposal for 4 distinct routes of development (haploidization, genomic loss, 

chromothripsis, and endoreduplication; Figure 1.6)207. All pathways involve an early 

driver mutation within TP53 or RB1, and WGD and/or chromothripsis. As part of the 

haploidization pathway, early TP53/RB1 mutations are followed by extreme anaphase 

mis-segregation resulting in 1 hyperploid and 1 hypoploid daughter cell. The resultant 

genome-wide haploidy of the hypoploid daughter is then rescued by WGD resulting in a 

UPS tumour cell with a copy neutral LOH signature. In cases where the anaphase mis-

segregation is minor, 1 daughter will exhibit large regions of LOH which can be rescued 

by single or multiple sequential WGD events (genomic loss pathway). Alternatively, mild 

anaphase mis-segregation or anaphase lagging can trigger chromothripsis followed by 

WGD (chromothripsis pathway), or WGD can occur spontaneously following TP53/RB1 

mutations, without a LOH/CNA trigger (endoreduplication pathway). Each of these 

pathways corresponds to tumours with unique CNA signatures. It is hypothesised that 

these map to 4 distinct UPS subtypes, which may explain the genomic diversity observed 

across this histology, however these subtypes are yet to be correlated to independent 

datasets beyond the discovery cohort. Clinically, improved evolutionary understanding 

for UPS which undergo multiple WGD events may have revealed an actionable window 

intervention if early drivers/WGD can be detected. This illustrates the potential for clinical 

translation of basic biology research that is rooted in attempts to understand the 

molecular basis of a disease.  



 

 64 

 

 

1.4.2.3 Immune profiling in UPS 

UPS is consistently reported to show high immune activity compared to other STS types, 

across IHC, RNAseq, and proteomic data36,220. UPS-specific assessments however have 

revealed a spectrum of immune activity within this histology. Molecular profiling of UPS 

(n = 25) identified molecular subtypes of UPS which correspond to variable CD8+ TIL 

infiltrate levels338,339. Namely, 3 subtypes (A, B, C) were identified based on RNAseq data 

and recapitulated using proteomic data  with 82% precision. Of the 3, 2 (A, B) comprised 

88% of samples and were assessed further. Subtype A was identified as enriched in 

genes for normal development and stemness. Subtype B showed enrichment of an array 

of immune activities and components including inflammatory and interferon gamma 

(IFNγ) response pathways. Furthermore, immune deconvolution highlighted signatures 

corresponding to CD4+ TILs CD8+ TIL, monocyte, NK cell, DC, memory B cell, and 

regulatory T cell infiltration as higher in subtype B. IHC was used to confirm subtype B 

as a CD8+ TIL high group. Associations between subtypes and outcome were 

interrogated, revealing a significantly improved MFS in subtype B compared to subtype 

A. A comparable correlation was observed in the TCGA cohort where the immune high 

UPS population showed a significantly superior OS compared to immune low UPS36. 

 

Figure 1.6 Overview of the hypothesised evolutionary development routes for undifferentiated 
pleomorphic sarcoma (UPS) 
Adapted from Steele et al207. Abbreviations: WGD = whole genome duplication 
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Interrogation of the WES data revealed an overall low mutational burden, as is expected 

in STS, with no recurrently mutated genes identified339. Notably, the tumours with the 

highest mutational burden rates (> 5 mut/Mb) were all classified as immune high. 

However, the TMB high samples account for only 36% (4/11) of the total immune high 

population, and relative to other cancer types would still be considered ‘TMB low’. The 

importance of an immune-TMB relationship in this cohort is therefore not clear. The 

immune low tumours show higher CNA rates than the immune high; frequently showing 

deletion events in tumour suppressors involved in DNA repair, cell cycle, apoptosis, and 

the PI3K/mTOR signalling pathway. This reflects the high genomic complexity of UPS 

reported elsewhere, and furthermore delineates between 1) a subset of UPS showing 

complete immune response and a marginally higher mutational burden, and 2) a subset 

of UPS with low immune activity and higher CNA-driven genomic complexity. This 

relationship between aneuploidy and immune activity mimics reports in other cancer 

types. High CNA, and particularly high whole-arm or whole-chromosome CNA has been 

shown to correspond to lower expression of immune signatures and promote an immune 

evasive phenotype340. Furthermore, aneuploidy has been shown as a predictor of 

response to ICB. Immune-based molecular profiling in UPS has therefore identified 

subgroups of patients that may be vulnerable to different therapeutic strategies, and 

which may correspond to differences in patient outcome. 

1.4.3 Dedifferentiated liposarcoma 

LPS tumours arise from the adipocytic differentiation lineage, and can be sub-divided 

into pleomorphic LPS, myxoid/round cell LPS, well-differentiated LPS (WDLPS), and 

dedifferentiated LPS (DDLPS)4. Overall LPS account for between 15% - 20% of all STS, 

with WDLPS representing the most common LPS type (~ 50%)234,235. WDLPS is indolent 

is nature (7-year OS > 80%) and does not distally metastasise341,342. DDLPS, by contrast 

is an aggressive, higher-grade tumour that shows rapid growth and a high metastasis 

risk341. DDLPS arises subsequent to WDLPS and the 2 frequently co-occur  as 

WD/DDLPS disease. DDLPS typically presents at the primary WDLPS disease site, 

although, in some cases (10%) can present alone as an independent recurrent lesion 

following primary WDLPS343. Diagnosis of WD/DDLPS is based on the molecular 

detection of ring or giant marker/rod chromosomes containing genetic material from the 

12q13-15 region344,345. Histologically, WD/DDLPS show WD regions of low cellularity with 

mostly mature fat with fibrotic stroma and DD regions of dedifferentiated pleomorphic 

components. The most pressing risk for DDLPS patients is local recurrence, with patients 

often experiencing multiple recurrence events over many years. Distant metastasis can 

occur but at a much lower frequency than local recurrence. DDLPS of intermediate and 
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high grade show the same propensity for local recurrence (~ 40% at 7 years) but vary in 

likelihood of metastasis341. At 7-years post-surgery, approximately 10% of intermediate 

grade DDLPS will metastasise compared to 30% of high grade DDLPS. OS for DDLPS 

is comparable to other STS subtypes (~ 50% at 7 years). Molecular profiling in DDLPS 

has identified unique molecular features for this complex genome subtype, improving 

diagnostic confidence and accuracy. Beyond this however, molecular profiling DDLPS is 

limited. DDLPS has been profiled in the context of WDLPS to better understand 

malignant progression and help identify markers of progression. Yet compared to the 

comprehensive evolutionary studies in UPS and the transcriptomic subtyping of LMS, 

DDLPS tumours are yet to be comprehensively investigated. 

1.4.3.1 Key molecular features of WD/DDLPS 

WD/DDLPS is diagnostically characterised by amplicons of the 12q13-15 region. This 

region encompasses many genes reported as amplified in WD/DDLPS. Those of highest 

prevalence include MDM2, CDK4, and high mobility group AT-hook 2 (HMGA2), 

amplified in 96%, 96%, and 91% of WDLPS, and 91 - 100%, 91 - 100%, and 76 - 87% 

of DDLPS respectively36,214–217. Other genes of note include CPM and YEATS2, although 

data on their occurrence rate is highly inconsistent216,346–348. Irrespective of the exact 

composition of WD/DDLPS amplicons, amplification of these genes is central to 

WD/DDLPS tumorigenesis and alludes to common mechanisms driving tumour 

development. The molecular basis of WD-to-DD progression is less well understood. 

WD-to-DD progression is a time-dependent event that occurs in a subset of WDLPS 

patients. The co-occurrent nature of dedifferentated and well differentiated components 

has enabled studies to perform matched profiling of WD and DD samples from the same 

patient. One such study analysed a series of 17 patients and reported the WD and DD 

components to share only ~8% of mutations, suggesting early divergence between WD 

and DD lineages349. In general, WD-to-DD progression has been shown to correlate with 

increased genomic complexity, increased CNA, and an elevated level of MDM2 

amplification350. MDM2 amplification is a near universal characteristic, however the 

extent of amplification has been shown to follow a log-normal distribution and varies 

across patients351. MDM2 amplification level also appears to correlate with outcome. 

Higher amplification is significantly associated with a shorter recurrence free survival 

(RFS; n = 16), and a short OS (n = 25). The increased frequency of aberrations in DDLPS 

compared to WDLPS, is predominately due to losses on chromosomes 11, 13, and 15, 

and genome-wide amplifications349. Notable genes more recurrently amplified in DDLPS 

compared to WDLPS include JUN and mitogen-activated protein 3 kinase 5 

(MAP3K5)349,350,352–355. JUN encodes c-Jun, a component of the activator protein 1 (AP-
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1) transcription factor complex. MAP3K5 activates the c-Jun N-terminal kinase (JNK) 

signalling cascade, which triggers phosphorylation and activation of AP-1. AP-1 exhibits 

wide ranging transcriptional control, and specific to DDLPS is implicated in the 

differentiation of adipocytes through JUN and MAP3K5. Overexpression of JUN in 

mouse models results in suppression of adipocyte differentiation, and overexpression of 

JUN in liposarcoma specific models leads to aggressive and undifferentiated 

tumours352,354. In in vitro work illustrates MAP3K5 overexpression to result in suppression 

of functional adipocyte maturation, and amplification and coordinate overexpression and 

MAP3K5 has also been suggested to inhibit adipocyte differentiation in MFH355. The 

predominance of JUN and MAP3K5 amplification in DDLPS has led to the hypothesis 

that these alterations facilitate progression from a WDLPS to DDLPS disease state 

through suppressing differentiation. HMGA2 and CPM also show differentially altered 

patterns between WDLPS and DDLPS. Both HMGA2 and CPM amplifications are 

detectable in WDLPS353. In fact, amplifications at the proximal regions of HMGA2 are 

associated with WDLPS over DDLPS. However, unique to DDLPS, HMGA2 and CPM 

fusions have been identified349. HMGA2 fusions are predicted to retain protein function, 

leading to overexpression of functional HMGA2 in DDLPS compared to WDLPS. By 

contrast, CPM fusions are predicted to generate a truncated non-functional CPM 

transcript, resulting in a lower expression in DDLPS. HMGA2 encodes a transcriptional 

regulator and CPM a membrane bound enzyme with important functions in monocyte to 

macrophage differentiation. The mechanistic consequences of altered HMGA2 and CPM 

in WD/DDLPS is unknown, and whether a link between HMGA2 or CPM and adipocytic 

differentiation exists is not reported. Interestingly, the ratio of MDM2 to HMGA2 

amplification is prognostic356. MDM2 amplification twice or more the level of HMGA2 is 

associated with a shorter OS and MFS, although the mechanistic reasoning is unknown. 

Differences in RB1, a recurrently altered gene across STS, have also been revealed 

between WD and DD. Matched profiling of different areas of the same LPS tumour 

identified DD regions to possess higher rates of RB1 LOH (60% vs 12.5% in WD), RB1 

mutations (19% vs 0% in WD), and RB1 promoter methylation than WD regions (11% vs 

0% in WD)357. Accordingly, DD also showed generally lower and more heterogeneous 

RB1 expression as measured by IHC. Given the established tumour suppressive role of 

RB1 across cancer, it follows that RB1 is increasingly altered in the more aggressive 

LPS type (DDLPS). WDLPS and DDLPS also show differences in telomeric 

maintenance. The ALT mechanism, detected by heterogeneity in telomere length, is 

active in DDLPS (30%) yet absent from WDLPS (0%)358. In other cancer types, 

inactivating mutations in ATRX or death domain associated protein (DAXX) have been 
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shown to promote ALT359. Accordingly, loss of ATRX or DAXX expression was observed 

ubiquitously across DDLPS with ALT and was not seen in either ALT negative DDLPS 

or WDLPS358. Across LPS, detection of ALT activity, as measured by heterogeneity in 

telomere length, correlates with a poorer prognosis, and in DDLPS specifically, ALT is 

associated with poorer PFS and OS358,360. Further to inactivation of ATRX or DAXX, ALT 

is also suggested to be induced by hypomethylation of telomeres361. Whether this 

mechanism is active in DDLPS is unclear. Genome wide hypomethylation within DDLPS 

has been revealed to contrarily associate with an increased DSS36. Although, this is 

notably a global hypomethylation status as opposed to localised telomeric 

hypomethylation, and ALT was not specifically assessed in this cohort. Hypomethylated 

tumours however did show fewer genome doublings, a lower leukocyte fraction, and 

lower Th2 signature, alluding to immune heterogeneity across DDLPS tumours. 

1.5 Clinical applications of molecular profiling in STS 

1.5.1 Molecular profiling in STS diagnostics 

It is widely agreed that molecular profiling can vastly improve accuracy and confidence 

in diagnostics. The impact of integrating molecular testing with classical histopathology 

in STS was assessed formally by the GENSARC trial362. As part of GENSARC, expert 

pathologists reviewed 384 tumours by histology and standard-of-care IHC, identifying 

‘certain’ diagnoses for 43%, where ‘certain’ indicated the diagnosis as the only one 

possible. The tumours were then molecularly tested by FISH, aCGH, and/or RT-PCR, 

and reviewed again. Secondary review revealed 13.8% of diagnoses required 

modification, and 6% of ‘certain’ diagnoses could not be confirmed molecularly. Similar 

discordance rates between individual institution diagnoses and centralised diagnoses 

have been reported by TCGA (12%; 28/237), the French Sarcoma Group (FSG; 14%; 

341/2,425), and at MSKCC (10.5%; 789/7,494)36,363,364. It follows that centralised 

histological review and molecular testing at specialist centres well-practiced in molecular 

diagnostics is recommended for routine STS care44,365. Whilst such efforts can improve 

the diagnosis of STS with established genomic alterations, many STS subtypes lack 

unequivocal molecular features. This leaves room for misdiagnosis or the absence of a 

specific diagnosis (not otherwise specified (NOS) disease), and subsequent incorrect 

disease management366. Accurate STS diagnosis is therefore a continual challenge and 

is a particularly acute problem for poorly characterised subtypes.  

Novel tools are needed to address the limitations in STS diagnosis. One such effort 

employed DNA methylation profiling to improve sarcoma diagnosis accuracy367. 
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Methylation profiling of 1,077 reference tumours, including STS with both simple and 

complex genomes, revealed 62 tumour methylation classes. The identified methylation 

classes showed high agreement with the STS diagnoses established by WHO; with 48 

mapping to WHO classification entities, 9 mapping to subgroups of WHO classification 

entities, and 3 mapping to combined WHO classification entities. Building on the 

methylation classes as a reference point, the authors developed a random forest based 

classifier, which when applied to 428 further tumours identified diagnoses for 322 (75%). 

Of the 322, 263 matched the original diagnosis, however 59 were classified with high 

confidence to alternate diagnoses. Review of the 59 led to 55 being reclassified based 

on the methylation classifier (discordance rate = 17%). Notably, the classifier could not 

identify a diagnosis for 25% of tumours, a rate higher than that seen in pathologist-led 

diagnostics (7%, 0%, and 2% unclassified by TCGA, FSG, and MSKCC studies 

respectively)36,363,364. This may be resultant of methylation data failing capture complete 

biology, or may be attributable to an incomplete reference tumour cohort which did not 

span all STS subtypes.  

1.5.2 Molecular profiling in prognostic stratification 

It is notable that current prognostic tools used in clinic (section 1.2.2) do not incorporate 

molecular features. They therefore do not make use of the advancements in molecular 

profiling seen in cancer research. Across STS research, there are multiple molecular 

markers detailed as potentially prognostic, such as PDRM10 fusions and select miRNAs 

in UPS (section 1.4.2.1 and 1.4.2.2), and immune markers across STS subtypes 

(section 1.3.1.2). However, translation from bench to bedside is a challenge across 

cancer types. In particular, poor reproducibility across cohorts and limited benefits in 

unselected populations means biomarkers rarely achieve clinical adoption. Translation 

is undoubtedly complicated further in rare disease types such as STS, where cohort 

accrual is often limited. Heterogeneity across STS has limited the use of single 

biomarkers. Alternate to biomarkers are multi-molecule signatures, which comprise a set 

of biomolecular features. Signatures capture a more comprehensive picture of disease 

state than single biomarkers and have shown promise in the prognostic stratification of 

complex genome and non-translocation associated STS. The identification of low/high-

risk patients by such methods can enable informed decisions to be made regarding 

treatment pathways. High risk patients can be highlighted for adjuvant therapy, and 

patients classed as low risk can avoid unnecessary treatment. 
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1.5.2.1 Genomic signatures 

The most advanced multi-gene prognostic signature in STS is the genome complexity 

index in sarcomas (CINSARC) signature. Developed and validated by the French 

Sarcoma Group, CINSARC is a 67-gene expression index with prognostic value for 

metastasis in non-translocation associated STS368. CINSARC classifies patients as 

either low risk (LR) or high risk (HR) based on metastasis likelihood and has been shown 

to outperform the FNCLCC grading system. CINSARC is comprised mostly of genes 

encoding cell cycle and chromosome integrity regulators. Whilst it is evident that these 

components are central to tumour metastasis, mutations in the CINSARC genes 

themselves are rare36. Global profiling has revealed associations between a high 

CINSARC score and genomic instability, WGD events, and high CNA369. Focused 

analyses on key gene regulatory axes (micro RNAs (miRNA) and DNA methylation) have 

also shown differential patterns based on CINSARC. HR tumours show overexpression 

of putative onco-miRNAs, and anti-correlations with miRNAs related to tumour 

suppressors (eg. PTEN). Altered methylation has been observed between HR and LR 

on the global level, however no focal differences are identified at CINSARC gene loci. 

Due to this high genomic complexity, the exact regulatory mechanisms of CINSARC 

genes are undefined.  

In recent years, CINSARC has been retrospectively applied in the clinical trial setting. 

Specifically, to trial material from the phase III ISG-STS 1001 RCT370,371. ISG-STS 1001 

compared histology-directed chemotherapy with untailored anthracycline chemotherapy. 

Profiling found no difference in outcome between CINSARC LR and HR groups. This 

was unexpected and suggests CINSARC may not perform well in this population. 

However, considering the extensive validation CINSARC had undergone and high 

confidence in its ability to predict risk, another hypothesis raised is that the HR patients 

responded to chemotherapy and thus in post-trial analysis show outcomes comparable 

to LR patients. CINSARC was not developed to distinguish chemo-responders from non-

responders. Yet, the components of CINSARC span conserved biological processes 

intrinsic to tumour aggressiveness. It is therefore hypothesised that the same genes may 

dictate response to therapy in addition to disease progression. Accordingly, the phase III 

CHIC-STS and CIRSARC RCTs are underway to assess CINSARC stratification for peri-

operative care372,373. This in-clinic stratification has only recently been made possible by 

technological developments that permit CINSARC profiling on FFPE diagnostic biopsy 

material. This highlights the importance of parallel biological and technological 

developments to facilitate biomarker translation to the clinical setting374,375. CINSARC 

has also shown utility outside of STS, including in carcinomas and haematologic 
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malignancies376. This is particularly remarkable given the stark differences in origin 

between these tumour types: mesenchymal, epithelial, and blood-forming tissue 

respectively. CINSARC components are therefore hypothesised to show a high level of 

conservation across cancer types. It has been proposed that CINSARC could be used 

as a general marker for cancer aggressiveness.  

There are limitations to the application of CINSARC. CINSARC was developed on STS 

with complex genomes, thus it’s translatability across all STS subtypes is not clear. STS 

with complex genomes frequently show WGD (section 1.3.1.1), therefore in its current 

form CINSARC may not be optimal in tumours lacking aneuploidy. Indeed, in near diploid 

tumours, integration of miRNA and methylation data with CINSARC facilitated improved 

sub-stratification within HR and LR groups. Furthermore, application of CINSARC to a 

genomically simple STS (SS), revealed space for signature refinement. CINSARC did 

possess prognostic utility for SS, however this was driven largely by only 2 genes377. Cell 

division cycle A2 (CDCA1) and kinesin family member 14 (KIF14) were both 

independently associated with MFS at a level comparable to the complete CINSARC 

signature. Thus, in the application of CINSARC to STS with simple genomes, profiling 

all 67 genes may prove unnecessary. Such refinement of multi-gene signatures is an 

attractive avenue of research. Whilst technological advancements have abated many 

issues with multi-molecule profiling, as the number of genes in a signature increases, 

often so does the analysis time, associated costs, and amount of tumour material 

required for profiling.  

Another limitation of CINSARC is rooted in its original purpose. The signature was 

developed to address specific limitations in the FNCLCC grading system, such as inter-

pathologist variation, and limited utility in intermediate grade tumours, the neoadjuvant 

setting, and biopsies70–72. Therefore, it does not incorporate other known prognostic 

factors in STS. Since the publication of CINSARC, it has been explored in the context of 

other prognostic tools, such as the Sarculator nomogram. When applied an STS cohort, 

both CINSARC and Sarculator held independent prognostic value under multivariable 

analysis378. Within Sarculator groups (high-, intermediate-, and low-risk), sub-

stratification by CINSARC revealed significant differences between MFS. Hybrid use of 

CINSARC with Sarculator improved prognostic performance with respect to both MFS 

and OS. Whether CINSARC can replace FNCLCC grade as a variable within the 

Sarculator nomogram is yet to be assessed and would be of interest if CINSARC were 

to be considered an alternative grading system, as per its original aim.  
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CINSARC has also been compared to the Genomic Grade Index (GGI). GGI was 

developed to better stratify early/intermediate breast cancer tumours379. GGI is a 97-

gene expression signature, which spans 58% of the CINSARC genes. GGI offers 

prognostic utility for breast cancer that is superior to standard pathologic assessment 

alone, by classifying tumours as at a high or low risk of recurrence. In STS, GGI has 

been applied to a multi-subtype series of 678 tumours380. GGI classified 275 (41%) as 

GGI-low and 403 (59%) as GGI-high, illustrating good representation outside of breast 

cancer. Classification was found to be significantly associated with MFS (multivariable 

Cox regression HR = 2.23, 95% CI = 1.34-3.74, p = 0.0021). Comparative assessment 

showed significant overlap between GGI and CINSARC classification, with 71% of 

tumours assigned to the comparable risk groups. Inclusion of both GGI and CINSARC 

in multivariable analyses, revealed both as independent significant prognosticators for 

MFS, illustrating complementarity between the 2 signatures. The successful application 

of GGI to STS is reflective of the translation of CINSARC to non-STS malignancies, and 

conveys a generalisability in prognostic signatures, which often represent fundamental 

processes in tumourigenesis.  

1.5.2.2 Tumour microenvironment signatures 

Both GGI and CINSARC are genomic prognostic signatures, derived from characteristics 

of the tumour cells themselves. However, tumour cells do not exist in isolation, but sit 

within a TME inclusive of an immune component. Leveraging on the role of non-tumour 

cells in disease progression, the immune constant of rejection (ICR) signature uses 

immune features to predict outcome events in breast cancer381. ICR is a 20-gene 

signature encompassing genes encoding Th1 signalling, chemoattraction, cytotoxic 

activity, and immune checkpoints. ICR classifies tumours as ICR1, ICR2, ICR3, or ICR4 

where ICR1 has the lowest immune activity and ICR4 the highest. ICR4 possessed a 

notably strong Th1 response with profiles enriched in cytotoxic and Th1 cells. ICR4 

showed a lack of any adaptive immune signatures, and were enriched in Th17 cells, a 

pro-inflammatory Th cell type characterised by production of IL-17. Retrospective 

application of ICR to a series of 678 STS revealed significantly poorer MFS in ICR1 

compared to a pooled ICR2-4 class382. Lymphocyte infiltration as calculated by IHC was 

not associated with MFS. In contrast to Sarculator and GGI which show concordance 

with CINSARC classification, no significant associations were observed between ICR 

and CINSARC groups. Integration of ICR with CINSARC improved stratification, 

identifying 4 subgroups with differential MFS (the poorest being CINSARC HR/ICR1). 

Furthermore, integration of ICR, CINSARC, and histological subtype enabled the 

construction of a prognostic model to delineate ‘good prognosis MFS’ from ‘poor 



 

 73 

prognosis MFS’ patients (receiver operating characteristic (ROC) area under the curve 

(AUC) = 0.659).  

Whilst the immune contexture is a TME module hypothesised to be a consequence of 

genomic complexity, hypoxia is a TME feature hypothesised to be a driver of genomic 

complexity383. Reports concerning individual hypoxia markers such as pO2 and carbonic 

anhydrase 9 (CAIX) do reveal associations with MFS, however these are inconsistently 

reported within STS cohorts384,385. Multi-molecule hypoxic signatures have therefore 

been applied to STS. One of these signatures was developed for head and neck cancer 

and comprised 15 genes involved in ‘hypoxia-influenced’ pathways such as extracellular 

matrix (ECM) regulation and glycolysis386. This was applied to 132, most LPS and UPS, 

STS tumours, which were split into training and validation cohorts387. In both cohorts, 

DSS and RFS were significantly poorer in high hypoxia tumours, suggesting prognostic 

utility. However, the cohort size is insufficient to confidently claim, and integration with 

pO2 data (available for 16 tumours) found high pO2 (ie. low hypoxia) as associated with 

the high hypoxia gene signature, casting doubt on whether this signature is a measure 

of hypoxia applicable to STS. The hypoxia signature developed by Yang et al may be 

more appropriate as it was developed de novo using RNAseq data from STS cell lines 

exposed in a normoxic environment and 1% oxygen (ie. hypoxic) environment388. The 

resultant signature contained 24 genes. Overall, this signature separated 555 STS 

tumours into ‘normal’ (ie. low hypoxia) and hypoxic and reported the hypoxic patients to 

have a significantly poorer MFS in the training, validation, and external (TCGA) datasets. 

The 15-gene head and neck signature was applied to data in this study, however 

prognostic utility was only reported in 2 out of the 3 cohorts profiled (training and 

external). Application of CINSARC alongside this hypoxia signature revealed 

significantly highly representation of CINSARC HR (indicative of high genomic 

complexity) in the hypoxic group (78%) compared to the ‘normal’ group (48%). Moreover, 

within the TCGA cohort, CNA were also higher in samples categorised as hypoxic.  

1.5.3 Molecular profiling in predictive stratification 

In addition to prognostic stratification, patients can also be stratified for predictive 

purposes to differentiate between patients who will benefit from a particular therapy and 

those who will not. In oncology, it is well established that predictive stratification can 

provide improved cohort outcomes through prospectively selecting high-likelihood 

responders for treatment. Meta-analysis of 346 phase I and 570 phase II trials spanning 

over 43,000 patients has demonstrated the superiority of biomarker-guided intervention. 

Overall, phase I trials have shown a median PFS in biomarker arms of 5.7 months 
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compared to 2.95 months in non-personalised arms (p < 0.001)389. This gap is widened 

further in phase II trials where the overall median PFS in biomarker arms is 6.8 months 

compared to 2.8 months (p < 0.001)390. In STS, cohort sizes are drastically reduced, 

however similar observations have been made. Within genomically simple STS, 

established driver mutations or genomic alterations are often clear biomarkers for 

targeted therapies. For example, KIT/PDFRA mutations in GIST can dictate response to 

imatinib and NTRK fusion status can dictate response to larotrectinib/entrectinib 

(section 1.2.3.3). Furthermore, in MDM2-amplified tumours such as LPS, amplification 

status may act as predictive for response to MDM2 inhibitors. The first MDM2 inhibitor 

to be clinically evaluated was RG7112 in MDM2-amplified LPS, and there has since been 

extensive development in MDM2 inhibition391,392. More complex is predicting response to 

therapies with undefined or broad-spectrum mechanisms of action. As is predicting 

responses in STS with complex genomes. For example, impressive results to pazopanib 

are seen in a subset of patients (section 1.2.3.3). Yet in the trial, these results were 

masked by heterogeneity. Administering pazopanib to the STS-wide population is 

therefore not a viable option in the UK due to an overall poor response rate. The absence 

of a method to identify high likelihood responders underscores the withdrawal of 

pazopanib from routine UK clinical practice. Moreover, this illustrates a major challenge 

in improving STS patient outcomes, where the rarity and heterogeneity of the disease 

complicates clinical trial design and limits cohort sizes. In the absence of effective 

predictive stratification, patients continue to miss out on therapies which could be of 

benefit. One approach to address a rare patient population is to translate observations 

from other cancer types. Indeed, 2 of the drugs where predictive stratification in clinic 

appears most tangible for STS patients are the pan-cancer approved ICB 

pembrolizumab and breast and ovarian cancer approved PARPi.  

1.5.3.1 Pembrolizumab 

Pembrolizumab achieves low responses across STS (ORR 15.1%), although has been 

shown to elicit durable results in a subset of patients393. Pembrolizumab responders 

possess putative immune hot tumours. The definition of ‘immune hot’ however is 

ambiguous and often relative. Several biomarkers have been reported to characterise 

immune hot tumours and thus identify patients who may benefit form pembrolizumab. 

The earliest attempts in STS were based on the SARC028 trial139. Post-trial analysis of 

patient tissue reported higher PD-L1 expression in pembrolizumab responders394. 

However, this was based on only 2 evaluable tumours showing PD-L1 expression, 

restricting interpretation. Subsequent pooled analysis has shown an ORR of 28.5% in 

PD-L1 positive tumours compared to 6.7% in PD-L1 negative393. Yet as in SARC028, the 
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PD-L1 positive population here was small (< 16%) in comparison to the PD-L1 negative. 

As an alternative to transmembrane PD-L1, soluble PD-L1 (sPD-L1) has been shown to 

correlate well with ICB response in NSCLC and melanoma. Although sPD-L1 is yet to be 

comprehensively assessed in STS395,396.  

Despite apparent correlations between PD-L1 expression and ICB response, PD-L1 

proved inconsistent as a biomarker for response across cancer types397–402. Immune 

response is complex and shows extension cross-communication between cell types. 

Therefore, an alternative to relying on the expression of a single molecule for prediction 

is to use multi-marker signatures. PD-L1 expression is associated with an increased 

immune infiltrate of PD1+, Th1 CD4+, CD8+, and FoxP3+ Treg TILs, B cells, and 

DCs132,403–405. In STS, the SICs encompass many of these features (section 1.3.1.2), 

and thus may lend themselves to use as a ICB predictive signature. Indeed, the authors 

of SIC assessed the predictive capability of these subgroups in SARC028 trial tissue. 

Response to pembrolizumab progressively decreased from SIC E, to D, C, B, and A, 

reflective of the decreasing levels of immune expression across SICs. SIC E patients 

achieved highest benefit (ORR 50%), and notably no responses were seen in patients 

from SIC A and B231. SIC E is not only characterised by a high cellular immune infiltrate, 

but also by the presence of TLS. Interestingly, TLS presence has been utilised for patient 

enrolment in a phase II ICB trial. PEMBROSARC assessed pembrolizumab with 

cyclophosphamide in STS and was amended whilst underway to include a TLS-selected 

cohort406. Compared to the earlier recruited cohort where 40/41 patients were TLS 

negative, the TLS-selected cohort showed significantly longer PFS (4.9 vs 1.5 months) 

and a superior response rate (30% vs 2%). Since these observations, RCTs have been 

established to assess TLS-based selection for ICB therapy407,408. 

There is a well-established relationship between immune activity and genomic 

complexity. This includes the expression of PD-L1. Translocation associated STS are 

almost exclusively PD-L1 negative, and a higher TMB is reported in PD-L1 positive 

tumours132,405. Investigations into the TMB of PD-L1 positive tumours have shown high 

mutation rates in genes responsible for antigen presentation and T-cell infiltration132, 

suggestive of a coordinated increase in immune activity. Tumours with high TMB are 

therefore hypothesised to be primed for ICB intervention.  Indeed, tumours which show 

favourable response to ICB such as melanoma have a high TMB409–411. Conversely, a 

low TMB, as observed in STS, has been identified as an independent correlate for poor 

response to ICB. In addition to TMB, microsatellite instability (MSI) has also been 

highlighted as a candidate biomarker for ICB response412–414. MSI describes a 
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hypermutated phenotype where short repetitive DNA regions (known as microsatellites) 

accumulate deletion and insertion mutations, altering microsatellite length. This results 

in increased neoantigen presentation, a major determinant for PD-1 inhibitor 

response415,416. MSI is resultant of a defective mismatch repair (MMR) pathway. In 

colorectal cancer, a malignancy with frequent MSI, increased MSI is positively correlated 

with increased TMB and higher TILs412. The frameshift-inducing mutations of MSI often 

induce structural protein changes which can create antigen epitopes increasing tumour 

immunogenicity, as demonstrated by increased TILs. In STS, MSI is rare, but has been 

noted in case reports of ASPS, an ultra-rare fusion-positive STS, possibly offering an 

explanation for the strikingly high response rates that ASPS have shown to ICB417–419 

(section 1.2.3.4). 

 

1.5.3.2 Poly (ADP-ribose) polymerase inhibitors (PARPi) 

PARPi target the PARP family of enzymes, which are central to DNA damage repair 

pathways, and specifically to base excision repair of single strand DNA breaks. If single 

strand DNA breaks persist, DSB occur, requiring repair by HRR or non-homologous end 

joining (NHEJ). Whilst HRR is a conservative mechanism, NHEJ is highly error-prone 

and can lead to accrual of genomic instability and cell death. In cells with HRR 

deficiencies (HRD), inhibition of PARPs induces synthetic lethality due to a reliance on 

NHEJ activity. Oncogenic alterations in the HRR pathway are typically resultant of an 

altered BRCA1/2. It is therefore unsurprising that PARPi were first investigated for use 

in breast and ovarian cancer; where a subset of patients harbour germline BRCA1/2 

mutations420–423. Since, PARPi have been approved for select breast and ovarian cancer 

patients, and explored in other cancer types278–280.  

In STS, mutational rates in BRCA1/2 are low (~ 1-12% and ~ 1-6% respectively), 

however mutations in HRD and BRCA associated genes do occur at higher frequency. 

For example, BRCA1-associated protein 1 (BAP1) and fanconi anemia complementation 

group C (FANCC) mutations have been reported to occur in up to 29% of patients424. 

Notably, these number are not reflective of PARPi sensitivity, but provide insight into 

pathway alteration rates. Beyond considering single mutations, objective analysis aimed 

at defining somatic mutational signatures of STS has also been performed using WES 

data. This revealed 30 signatures, 1 of which corresponded to defects in DNA-DSB repair 

by HRR. Application of these signatures in the TCGA cohort revealed 37.05% of tumours 

to show BRCAness characteristics of high HRD and high CNA. BRCAness signatures 

present across subtypes but appear more enriched in osteosarcoma populations (> 80%) 
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and LMS populations (section 1.4.1.1)425. In agreement with this, pre-clinical work has 

long demonstrated a high sensitivity of osteosarcoma cell lines to PARPi, and favourable 

results are seen in clinic with PARPi intervention in LMS426–428. An early case study report 

details 4 heavily pre-treated advanced LMS patients selected for olaparib therapy based 

on detection of pathogenic BRCA2276. At the time of publication, 3 patients remained on 

olaparib with stable disease at 16 weeks, 16 months, and 17 months. Olaparib stabilised 

disease in the 4th patient for 15 months prior to progression. A phase II trial of olaparib 

with temozolomide in advanced uLMS (n = 22) has been conducted. This showed 

positive and durable responses (ORR = 27%; median duration of response = 12 

months)150. A subsequent larger scale RCT is planned to follow these results, as well as 

post trial analysis to assess the interplay between HRR deficiency, PARPi resistance, 

and response in LMS; however, at present this data is not reported.   

In addition to the use of BRCAness as a biomarker, ATRX has also been suggested as 

predictive of PARPi response. ATRX is implicated in DDR but its exact role is not defined. 

Pre-clinical in vitro work has shown loss of ATRX to promote ATR signalling and induce 

replication stress, which can be amplified by PARPi to induce cell death429,430. Significant 

further work needs to be conducted to establish whether pathogenic ATRX confers 

PARPi sensitivity in STS, however this is particularly interesting given ATRX is one of 

the few recurrently mutated genes in STS. Notably, a phase II trial assessing a 

combination of PARPi and ATR inhibitor ceralasertib in osteosarcoma is underway 

(NCT04417062), as are similar trials in prostate and ovarian cancer431–434. PARPi have 

shown limited benefit as monotherapies, and it is hypothesised that dual targeting of the 

DDR pathway may elicit a more potent effect.  

1.5.3.3 Clinical integration of predictive stratification  

In pembrolizumab and PARPi, biomarkers have been investigated and often validated 

across cancer types by large retrospective profiling experiments. Yet, STS is a 

heterogeneous disease, and thus the target population for these drugs is small. If strides 

are to be made in STS treatment pathways and advances in molecular profiling are to 

be leveraged effectively in the near future, profiling must be integrated into care. In line 

with these ambitions, several trials are underway to assess the feasibility and 

effectiveness of using NGS to identify treatment-linked alterations (TLA) and guide 

therapy. TLA encompass well validated biomarkers, as well as less comprehensively 

studied molecular features. Whilst founded in research, these features are often not 

robustly assessed in the target population. Tissue-agnostic studies assessing the 

integration of NGS to identify TLAs include the NCI MATCH and American Society of 
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Clinical Oncology (ASCO) TAPUR phase II basket trials. In these trials molecular 

profiling, the method of which is dependent on the trial arm, is performed to identify TLAs 

matching a drug in the treatment arms435,436. Similarly, the NCI comboMATCH trial aims 

to identify TLAs for combination therapy regimens, and the NCI iMATCH trial aims to 

stratify for immunotherapies437,438. As of 2020, NCI MATCH had accrued data from 5,954 

patients, identifying a TLA in 37.6%, and assigning a treatment arm to 17.8%439. Notably, 

if all NCI MATCH treatment arms were open at once, it would have been possible to treat 

26.4% of patients within this trial. As present, 3 NCI MATCH subprotocol arms have 

reported. Briefly, 48 patients with fibroblast growth factor receptor (FGFR) pathway TLAs 

were assigned to the FGFR inhibitor AZD4547, 61 patients with PIK3CA TLA were 

assigned taselisib, and 25 patients with PIK3CA TLA were assigned copanlisib440–442. 

Copanlisib achieved an ORR of 16%, however the results for taselisib and AZD4547 

have been underwhelming; the former showed only limited activity, and the latter failed 

to meet the primary endpoint. Poor responses may be attributable to the high 

heterogeneity of pan-cancer cohorts and/or the insufficient performance of TLAs in 

predicting response. However, more data is needed before conclusions as to the 

effectiveness of TLA-guided care can be drawn. 

Whilst STS patients are eligible for inclusion in NCI MATCH and ASCO TAPUR, no 

reports noting recruitment or response of STS cases have been made. Early profiling 

experiments specific to STS have detected an abundance of TLAs. One study reported 

60% of patients (n = 25)  to harbour one or more TLA for which clinical trials were ongoing 

at the time443. Whilst another study identified TLAs in 61% of patients (n = 102) and 

assigned 16% a targeted therapy based on TLA detection, 50% of whom showed stable 

disease at the time of publication444.  A more recent and more comprehensive (n = 5,635) 

retrospective study utilising targeted NGS revealed 16% of sarcoma patients harboured 

a FDA-approved drug TLA, 7% a study drug TLA, 42% a TLA within the MATCH or 

TAPUR trials445. The authors went on to screen 107 patients who were alive with 

advanced disease, finding 57% had at least one TLA. Of the 57%, 30% were enrolled on 

corresponding clinical trials. In addition to guiding therapeutic decisions, profiling also 

identified resistance-associated mutations in 5% of patients, therefore avoiding 

ineffective treatment. Since these reports, the STS specific MULTISARC phase II/III trial 

has been established446,447. MULTISARC aims to formally compare NGS guided 

treatment to standard of care in advanced STS patients. At present the trial is still 

recruiting and no results are reported.  
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Integrated NGS trials have demonstrated good feasibility, identifying a high proportion of 

patients with TLAs, and assigning treatments to 16 – 30% of patients. Moreover, these 

studies show that with cross functional collaboration, tissue profiling, analysis of the 

results, and treatment decisions can be conducted in a reasonable timeframe for the 

patient. Questions on the futility of such an approach remain. At present it is unclear 

whether patients will significantly benefit from TLA-guided treatment. In patients with 

advanced STS the difficulty in establishing robust and appropriate RCTs has led to 

treatment decisions being made based on small datasets of case reports and early phase 

clinical trial results44. It is therefore not unreasonable to assume that using TLAs reported 

in small datasets to guide treatment decisions could improve such practice and aid the 

treatment advanced STS patients where no evidence-based treatment guidelines exist. 

1.6 Proteomic profiling in STS 

Molecular profiling in STS has predominately utilised genomic and transcriptomic 

methods. This has greatly advanced STS disease understanding and contributed to the 

improvements in clinical practice. Yet, relative to the amount of research conducted, 

findings have been rarely translated to clinic. Proteins are the mediators of cell 

communication and activity, and therefore are key effectors of a cell. One explanation 

for the ineffective translation of current research in STS may be the lack of a proteomic 

disease understanding. Indeed, correlation between genomic/transcriptomic readouts 

and protein-level data are poor, thus using genomics/transcriptomics to describe protein-

based activity may not be appropriate448,449. Using genomics and transcriptomics to 

describe a protein-based cellular function or activity is therefore not always appropriate. 

Proteins govern a wide range of cellular activities, and are central to cell structure, 

function, and regulation450. Sitting downstream of the genome and transcriptome, 

proteins are a readout of gene expression, and as such are sensitive to the mutational 

alterations observed in cancer. Proteins are also responsive to changes in both the 

intracellular and extracellular environments and are under dynamic regulation through 

post-translational modifications (PTM)451. The proteome is therefore not static. As a 

result, the final form and expression levels of a protein can differ vastly from properties 

inferred at the gene or transcript level. Proteomics, the study of the proteome, offers 

many uses and applications452 (Figure 1.7). It can provide an accurate representation of 

the tumour and better understanding of disease understanding. In achieving a 

fundamental understanding of the ‘active’ component of a tumour through proteomics, 

biological findings may be more readily translated to the clinic, aiding improvements for 

patients. Specifically, proteomics can be used to identify candidate biomarkers, whether 
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prognostic, predictive, or diagnostic. Proteins are an attractive biomarker molecule, as 

they can be readily assessed by IHC, a well-established method already routinely used 

in clinical diagnostics453,454. In addition, given most drugs are directed towards proteins, 

proteomics is uniquely positioned to aid the identification of candidate drug targets455.  

It is important to acknowledge that proteomics, akin to all single-omic modules, 

encompasses only 1 component of a complex biological system. Therefore, whilst 

proteomics can contribute to disease understanding, alone it cannot comprehensively 

cover all tumour biology. There is a therefore need for multi-omics work spanning 

multiple biological modalities. Ideally, multi-omics involves profiling the same sample by 

multiple methods. However multi-omics can also be thought of as the integration of 

knowledge learnt from independent studies. Given the plethora of genomic and 

transcriptomic studies in STS, proteomics can complement this current literature. 

 

 

 

 

Figure 1.7 Overview of the applications of proteomics 
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1.6.1 Proteomic methods 

Due to technical challenges and the expanse of proteins and different proteoforms 

encoded by the same gene , the human proteome itself is not yet fully characterised456. 

Thus, the term proteome loosely refers to global protein analyses which attempts to 

capture a relatively large proportion of the human proteome. This is typically in the order 

of several hundred to several thousand proteins. One of the major tools for unbiased 

analysis of the proteome is mass spectrometry (MS). Many different variations of MS 

exist; however, the fundamental principles remain the same. MS measures the mass-to-

charge (m/z) ratio of molecules457,458. There are also non-MS-based proteomic methods 

such as antibody arrays. Whilst these are generally less comprehensive than MS, they 

are easily implemented and relatively low-cost; thus, their use in research is 

common459,460. All methods used to study the proteome, can be broadly separated into 

targeted approaches and unbiased approaches.  

1.6.1.1 Targeted proteomics  

Targeted proteomics describes a supervised profiling approach, whereby specific prior 

knowledge of a protein or proteins of interest is required to facilitate their identification 

and quantification. Targeted proteomics can be non-MS-based or MS-based. The non-

MS-based methods used in STS research typically involve microarrays such as reverse-

phase protein arrays (RPPAs) or antibody arrays. The former entails loading of tumour 

lysate onto a microarray and probing with antibodies (Figure 1.8A), whilst the latter 

entails the reverse, loading of antibodies onto a microarray and probing with tumour 

lysate427. These allow for the simultaneous assessment of numerous proteins/samples 

in a way that is rapid and requires minimal sample material. However, the use of 

antibodies has its limitations. Antibodies may not be truly specific to a target or may not 

be available for a protein of interest428. Microarray profiling is therefore restricted and 

often does not exceed several hundred proteins. By contrast, targeted MS does not 

suffer from antibody-reliance. Key targeted MS methods include selected reaction 

monitoring (SRM) and multiple reaction monitoring (MRM; Figure 1.8B). SRM scans a 

single fixed m/z window to isolate ions (i.e., precursor ions) of a particular m/z value462. 

These are then fragmented, and the fragmented ions (i.e., product ions) isolated and 

measured. MRM follows the same procedure but scans multiple m/z windows to isolate 

multiple ions. SRM and MRM have higher specificity and sensitivity compared to non-

MS approaches. However, as with microarrays, targeted MS requires prior biological 

knowledge to identify proteins of interest. Additionally, technical knowledge of the peptide 

fragmentation profile of a protein of interest is also needed; to identify the correct m/z 
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window for scanning. Whilst targeted proteomics is useful for defined hypotheses, the 

dependency of these methods on prior understanding means they are not appropriate 

for comprehensive discovery-based profiling.  

 

1.6.1.2 Unbiased proteomics  

Instead, comprehensive discovery-based proteomics, or ‘unbiased proteomics’ primarily 

involves the use of shotgun MS. In a typical shotgun MS workflow, peptides are 

separated based on polarity by liquid chromatography (LC)458. Peptides are injected into 

an LC column coupled to a mass spectrometer and are ionised as they elute to generate 

gas-phase ions. Inside the mass spectrometer, peptide ions (i.e., precursor ions) of the 

highest intensity are selected at the MS1 scan for fragmentation. The resultant 

fragmented ions (i.e., product ions) are then analysed in the MS2 scan, generating a 

tandem MS (MS/MS) spectrum. The MS/MS spectra produced are searched against 

known spectra in protein sequence databases, to assign a peptide and subsequently 

protein of origin. This is known as data dependent acquisition (DDA). Relative peptide 

quantification information can be extracted based on precursor signal intensities or 

spectral counting463. However, these methods of quantification, known as ‘label-free’, 

show low accuracy464. Superior approaches to relative quantification utilise multiplexed 

isobaric labels such tandem mass tags (TMT). TMT labels comprise an MS/MS reporter 

group, spacer arm, and an amine reactive group (Figure 1.9A)465. When labels are 

incubated with peptides, the amine reactive group binds to a peptide at either the N-

terminus or a lysine residue. The TMT tags are isobaric and thus have identical masses. 

This means the same peptide labelled with different tags will show the same behaviour 

inside the LC column and mass spectrometer. As a result, identical peptides are co-

isolated irrespective of labelling. Following precursor ion selection, fragmentation 

induces cleavage of the TMT labels, generating a unique reporter ion that is detectable 

 

Figure 1.8 Overview of targeted proteomics approaches  
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within a low m/z ratio spectral range (Figure 1.9B). The reporter ions can be used for 

relative quantification. Recent developments have led to the production of up to 18  

 

different TMT labels, each with a unique MS/MS reporter group465. The 18 labels can be 

pooled and analysed simultaneously within the mass spectrometer, enabling relative 

quantification of up to 18 samples at once. The major advantage of simultaneous profiling 

is the low missingness achieved across samples464,466. Missingness describes the 

situation where a peptide/protein is identified/quantified in one sample but not another. 

Missingness is prevalent within DDA MS, due to stochastic selection of precursor ions in 

MS1. This introduces difficulties in downstream data handling as it is not possible to 

determine whether the missing value represents an unexpressed protein or an 

unselected precursor ion. Many bioinformatic tools for MS data analysis require complete 

data and therefore missingness must be addressed, often by removal, imputation, or 

dimension reduction467–470. However, in multiplexing (e.g., with TMT) the precursor ions 

selected are derived from all samples the original peptide was present in, thus 

missingness within TMT batches is low. Where experiments require more samples than 

the TMT limit (currently 18), multiple batches can be performed. In multi-batch TMT, a 

reference sample containing material representative of the other samples is typically 

included and occupies 1 label channel within each batch. The reference sample is 

subsequently used in downstream data processing to adjust for inter-batch variations 

and facilitate the merging of datasets from multiple TMT batches.  

Another MS-based proteomic analysis method is data independent acquisition (DIA). In 

DIA, all peptides within sequential m/z windows are fragmented (Figure 1.10)471,472. This 

generates complex MS/MS spectra from multiple peptides, which require deconvolution.  

 

Figure 1.9 Overview of Tandem Mass Tag (TMT) quantitation in mass spectrometry (MS)  
(A) The structural basis of TMT labels. (B) Diagrammatic representation of how TMT is used for quantitation 
in tandem MS (MS/MS)  
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As peptide ions are not stochastically sampled based on intensity (as in DDA), label free 

quantification in DIA is considered more accurate than DDA methods. DIA also shows 

improved reproducibility of peptide identifications due to low missingness and requires 

far less sample material than DDA with label quantification. For example, in-house 

approximately 1-2 ug peptide is required for DIA injection, whereas, although only 1-2 ug 

of peptide is injected in DDA analyses, to facilitate fractionation, 25-100 ug peptide is 

recommended for TMT labelling approaches473. DIA is therefore particularly useful for 

samples where peptide yields are small. The main limitation of DIA is the lower proteome 

coverage compared to most DDA experiments472. One reason for this is the ability to 

couple DDA methods with additional orthogonal fractionation prior to LC. In these cases, 

samples are fractionated off-line, and each fraction is injected into the LC-coupled mass  

 

 

 

 

Figure 1.10 Diagrammatic comparison of data dependent acquisition (DDA) and data independent 
acquisition (DIA) in mass spectrometry (MS) 



 

 85 

spectrometer separately. Fractionation in DIA analysis is possible, yet only minor 

improvements in the number of proteins identified are seen, thus due to the extensive 

additional work required this it is not routinely performed472. Dependent of the additional 

fractionation steps, DDA experiments can identify upwards of 10,000 proteins, whilst 

state-of-the-art DIA detects up to approximately 4,000 proteins474–478. Recent 

developments in computational deconvolution strategies have demonstrated an increase 

in the number of proteins identified by DIA479. Yet at present these deconvolution 

methods identify more proteins at the cost of data completeness, by introducing a high 

number of missing values.  

1.6.1.3 Sample types for proteomics 

In proteomic workflows, one of the most crucial steps is protein extraction. Unlike nucleic 

acid, proteins cannot be amplified (i.e., by polymerase chain reaction (PCR)) prior to 

analysis. As such, the extraction of proteins is far more challenging than DNA or RNA, 

and sample requirements for proteomics are often difficult to meet. Small samples such 

as biopsies often do not contain enough protein for comprehensive analysis, and the 

high risk of sample exhaustion restricts extraction attempts. Specifically, this has limited 

the use of DDA with label quantification; the method which can provide the deepest 

proteome coverage, but demands some of the highest peptide input material. 

To maximise protein yields, studies profiling tumour proteomes by TMT DDA (e.g., 

CPTAC) often utilise fresh frozen (FF) tissue157. FF has undergone minimal processing, 

and therefore proteins can be readily extracted in high yields. Unfortunately, obtaining 

such material in sufficient numbers for a rare cancer is often not feasible. By contrast, 

formalin-fixed paraffin-embedded (FFPE) material is widely available. FFPE storage is 

routine in biobanking to ensure long-term sample stability at room temperature. However, 

formalin-processing introduces crosslinks between biomolecules which further 

complicates protein extraction480–482. Formaldehyde reacts with primary amine groups or 

thiol groups in proteins and nucleic acids to form stable inter-molecular methylene 

bridges. For example, formaldehyde can covalently bond a primary amine group of lysine 

to form an aminomethylol group. The methylol group can then condense with a free 

residue (e.g., primary amide, secondary amine or guanidyl) to form a crosslink. Whilst 

practical advancements now allow for effective reversal of crosslinks, yields from FFPE 

tissues remain significantly lower than those from FF tissue. In STS, the proteomes of 

FFPE tissue have been characterised, but at present this has only been achieve through 

utilising DIA which has exceptionally low input material requirements483.  
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1.6.2 Overview of the current status of proteomics in STS 

Comprehensive (i.e., MS-based) proteomic profiling in STS is limited452. TCGA 

incorporated RPPA analysis of 206 STS tumours using 192 antibodies; yet this covers 

only a small proportion of the proteome36. STS is included in the list of malignancies 

selected for CPTAC MS profiling, although data has yet to be deposited or published. 

Thus far, only smaller-scale proteomic studies focused on specific histological subtypes 

are reported.  

Protein and phosphoprotein profiling has been performed using TMT MS/MS in 17 

rhabdomyosarcoma (RMS) orthotopic patient-derived xenograft (O-PDX) models484. 

Clustering showed distinct (phospho)proteomes between embryonal RMS (ERMS), 

alveolar RMS (ARMS), and human myoblasts and myotubes (the putative cells of origin 

for RMS). ERMS and ARMS showed significantly different expression profiles of several 

key muscle development pathways and proteins. Specifically, whilst ARMS showed 

consistently high myogenin and low myogenic factor 5 expression, ERMS showed a 

more varied profiled. This suggests ARMS may arise further along the muscle 

development lineage than ERMS. Many proteins were also differentially expressed in 

both ARMS and ERMS relative to myoblasts and myotubes. One such protein was 

Wee1, a tumour suppressor that regulates cell cycle progression through the G2/M 

checkpoint. Wee1 is also a therapeutic target in many tumours which rely on the G2/M 

checkpoint to maintain genome stability485–487. Upon, in vitro treatment of RMS cell lines 

with a Wee1 inhibitor (AZD1775), cell cycle arrest, mitotic catastrophe and nuclear 

fragmentation were observed. Moreover, when AZD1775 treatment was combined with 

RMS standard of care (irinotecan and vincristine) extensive DNA damage was induced. 

The authors hypothesise DNA damage to be suggestive of genomic instability, which 

can induce cell death; illustrating therapeutic potential. Notably, this work does not profile 

human tumour material. Whether the O-PDX findings will be recapitulated in human 

tissue is yet to be seen. 

Tumour material from GIST patients has also been profiled488. One study employed TMT 

MS/MS to profile FF tumours specimens and matched normal tissue from 13 GIST 

patients. In total, 704 proteins were identified as differentially expressed between tumour 

and normal tissue. Of these there was a noted enrichment in spliceosome components 

and an underrepresentation of carbon metabolism (Krebs cycle) proteins. Additionally, 

expression of protein tyrosine phosphatase non-receptor type 1 (PTPN1) was identified 

to correlate with risk. Low risk patients, as defined by the NIH GIST risk criteria, showed 

significantly higher PTPN1 expression than intermediate and high-risk patients. This 
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association was validated by IHC in an independent series of 131 patients. PTPN1 is an 

established tumour suppressor that mediates cell adhesion, motility, and invasion489,490. 

Loss of PTPN1 is therefore hypothesised to confer metastatic potential. However, this 

could not conclusively be determined due to the low numbers of patients included and 

the unavailability of clinical outcome data in this study488. PTM profiling of GIST tumours 

has also revealed protein acetylation differences between risk levels491. TMT MS/MS 

was employed to assess FF GIST tumour specimens from 9 patients; 3 of low risk, and 

6 of intermediate/high risk. Key findings included the upregulation of acetylated Ki-67 

(K1063Ac) in intermediate/high risk GIST. Ki-67 is a nucleic antigen and marker of cell 

proliferation. The impact of K1063 acetylation in Ki-67 is unknown, however acetylation 

can dramatically modify protein function, altering the hydrophobicity and solubility492,493. 

This effects a range of protein functions including the ability to interact with other 

molecules. Ki-67 has been reported as prognostic in GIST, whether the acetylation status 

drives or alters the association between Ki-67 and outcome is unknown494,495.  

Proteomics profiling has also been conducted to profile a multi-histology cohort. Milighetti 

et al profiled FFPE tissue from 36 STS patients spanning LMS, DDLPS, UPS, and SS 

diagnoses483. This study noted distinctive proteomes in SS and LMS patients. LMS 

showed an enrichment of muscle related ontologies, and SS were enriched in splicing 

ontologies. DDLPS and UPS showed more mixed proteomic profiles. Clustering failed to 

distinguish DDLPS and UPS from each other, however supervised analyses did reveal 

UPS as specifically enriched in immune activity. This study also identified numerous 

proteins with prognostic significance for OS. These proteins were used to stratify the 

patient population into 3 groups, identifying 1 group, containing UPS, DDLPS, and LMS 

patients, with a significantly poorer OS. This not only demonstrates the clinical potential 

of proteomic profiling, but also the utility of profiling multiple histological subtypes 

together to reveal histology intendent patterns across STS.  

1.7 Conclusions, hypothesis, and aims 

The current understanding of STS biology is incomplete which has hindered 

improvements in patient management and outcome. Numerous studies provide evidence 

that  molecular variation both within and between histological subtypes exists. 

Heterogeneity in treatment responses and clinical course is also observed across 

patients. Whilst histology can explain some of this variation, the relationship between 

molecular and clinical heterogeneity is mostly undefined. As a result, current standard of 

care for most STS fails to consider biological heterogeneity. Accordingly, there is a 
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pressing unmet need to develop in depth disease understanding, and to leverage such 

knowledge to improve patient care. Specifically, there is a need to identify candidate 

biomarkers and drug targets in STS. At present, many candidate prognostic and 

predictive biomarkers have been reported, yet data is often not consistent and rarely 

have these candidates been successfully translated to clinic.  

Biological understanding can be greatly improved through comprehensive molecular 

profiling of tumour specimens. Indeed, increasing efforts to molecularly profile STS have 

been made over the recent decades. Such attempts have predominately utilised genomic 

and transcriptomic methods, yet there remains an absence of any proteomic 

understanding of the disease. Proteins are the central effectors of cellular processes and 

are targets for the vast majority of drugs. As such, it is crucial that the protein complement 

of STS is understood. Protein-level data can also be integrated with the current genomic 

and transcriptomic dominant literature. Biological systems are complex and multi-

faceted, thus multi-omic profiling is necessary for a complete disease understanding to 

be developed. The lack of proteomic understanding in STS is undoubtedly impeding 

advancements in disease understanding and by extension clinical care.  

In line with this, the hypothesis of my thesis project is that deep characterisation of the 

proteomic profiles of STS across multiple histological subtypes will reveal 

oncogenic pathways, and candidate biomarkers and drug targets of clinical 

relevance. This hypothesis will be addressed with the following aims: 

Aim 1: To profile the STS proteome of multiple histological subtypes (Chapter 3 and 

Chapter 4) 

Aim 2: To investigate intra-subtype heterogeneity in LMS, DDLPS, and UPS (Chapter 

5) 

Aim 3: To assess and characterise the unbiased, protein-centric pan-subtype STS 

proteome (Chapter 6) 
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Chapter 2 Materials and methods 

2.1 Research ethics and data management 

Collection of FFPE tissue and clinical data was approved as part of the Royal Marsden 

Hospital (RMH) PROgnoStic and PrEdiCTive ImmUnoprofiling of Sarcomas 

(PROSPECTUS) study (RMH Committee for Clinical Research reference 4371, NHS 

Research Ethic Committee reference 16/EE/0213), National Taiwan University 

Hospital (Research Ethics Committee Reference 201912226RINB), and as part of 

Children’s Cancer and Leukaemia Group (CCLG) Biological Study 2012 BS 05 

(Research Ethics Committee Reference 8/EM/0134). FreezerPro laboratory 

management software (Brooks Automation, Chelmsford, MA, USA) was used for logging 

tissue and tracking sample usage, in accordance with the Human Tissue Authority Codes 

of Practice and Standards. Pseudonymised clinicopathological data was stored in a 

locally maintained, and password-protected MySQL database (Oracle, Austin, TX, USA), 

and analyses performed blind to personal identifiable data. Samples obtained through 

external collaborators were obtained under Material Transfer Agreements.  

2.2 Cohort generation  

2.2.1 Patient selection and sample retrieval 

Patients were selected for inclusion based on the following criteria: 1) histopathologically 

confirmed diagnosis of AS, ASPS, CCS, DDLPS, DES, DSRCT, EPS, LMS, RT, SS, or 

UPS, 2) > 18 years of age at the time of sample collection (excluding RT), 3) FFPE 

tumour material available in quantities sufficient for analyses. Patients were excluded if 

the primary tumour specimen was FNCLCC grade 1. All RT samples and 2 AS samples 

were obtained externally from Newcastle University, England (Dr Daniel Williamson, Dr 

Stephen Crosier) and National Taiwan University Hospital (Dr Tom Wei-Wu Chen), 

respectively. All other samples were retrieved through RMH. Diagnoses were confirmed 

by expert histopathological review by soft tissue pathologists (Dr Khin Thway, Prof Cyril 

Fisher). Eligible patients were identified by retrospective search of the hospital 

databases, and inclusion finalised upon inspection of medical and histopathology 

records. Baseline clinicopathological characteristics and survival data were collected by 

retrospective review of medical records by persons independent of analyses performed. 

2.2.2 Histological review and FFPE tissue sampling 

Each FFPE block retrieved underwent histologic assessment though review of 

haematoxylin and eosin (H&E) stained sections. Tumour blocks were sectioned (20 um) 
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and where identified by review as < 75% tumour-containing, were macrodissected to 

enrich for tumour content. Liposarcoma (LPS) samples were assessed histologically for 

well-differentiated (WD) and de-differentiated (DD) areas, and macrodissected to enrich 

for DD histology. Samples with insufficient material were excluded from downstream 

processing and subsequent analyses.  

2.3 Mass spectrometry proteomics 

2.3.1 Protein extraction and digestion 

Each tumour sample was deparaffinised with 3 xylene washes, rehydrated twice in a 

decreasing ethanol gradient (100%, 96%, 70%), and dried in a SpeedVac concentrator 

(Thermo Scientific, Waltham, MA, USA). Lysis buffer (0.1 M Tris-HCL pH 8.8, 0.5% (w/v) 

sodium deoxycholate, 0.35% (w/v) sodium lauryl sulphate) was added at 200 ul/mg of 

dried tissue, samples homogenised by 3x 30 s pulses with a LabGen700 blender 

(ColePalmer, Vernon Hills, IL, USA), sonicated on ice for 10 min, and heated to 95 ⁰C 

for 1 h to reverse formalin crosslinks. Lysis was performed for 2 h by shaking at 750 rpm 

at 80 ⁰C. Samples were centrifuged at 14,000 x g at 4 ⁰C for 15 min, the supernatant 

retained, and protein concentration measured by bicinchoninic acid (BCA) assay 

(Thermo Scientific Pierce, Waltham, MA, USA). Tissue extracts were digested by Filter-

Aided Sample Preparation (FASP), as previously described496. Briefly, samples were 

concentrated in Amicon-Ultra 4 centrifugal filter units (Merck Group, Darmstadt, 

Germany), and detergents removed by washing with 8 M urea. Samples were transferred 

to Amicon-Ulta 0.5 filters (Merck Group, Darmstadt, Germany), reduced with 10 mM 

dithiothreitol (DTT) for 1 h at 56 ⁰C, and alkylated with 55 mM iodoacetamide (IAA) for 

45 min at room temperature in the dark. Samples were washed with 100 mM ammonium 

bicarbonate (ABC) and digested with trypsin (Promega, Madison, WI, USA) at a ratio of 

1:100 ug sample at 37 ⁰C overnight. Peptides were collected by three centrifugations at 

14,000 xg with 100 mM ABC, desalted using SepPak C18 Plus cartridges (Waters, 

Milford, MA, USA), and dried in a SpeedVac concentrator (Thermo Fisher Scientific, 

Waltham, MA, USA). 

2.3.2 Tandem-Mass-Tag labelling 

Tumour sample peptides and a pooled reference sample containing representative LMS, 

DDLPS, UPS, and SS material were labelled with TMT 11-Plex reagents (Thermo 

Scientific, Waltham, MA, USA) as per manufacturer’s guidelines. Briefly, dried peptides 

were labelled as per manufacturer’s guidelines. For the 11th (131C) channel, a pooled 

reference containing lysates from LMS, DDLPS, UPS and SS cases was used in all MS 
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experiments. Samples were incubated with respective TMT labels for 1 h at room 

temperature, and the reaction quenched with 5% hydroxylamine. Labelled peptides were 

pooled, dried in a SpeedVac concentrator, and desalted with SepPak C18 Plus 

cartridges as before. 

2.3.3 High-pH reversed-phase fractionation 

All samples were fractionated off-line by Dionex UltiMate3000 HPLC system (Thermo 

Fisher Scientific, Waltham, MA, USA). Each sample was dissolved in 100 µl of solvent A 

(0.1% NH4OH in water), sonicated for 5 minutes and centrifuged at 15,000 × g for 2 min. 

Supernatant was loaded onto a 2.1 × 150 mm, 5 µm Waters (Milford, MA, USA) XBridge 

C18 column (5µm particles) at a flowrate of 200 µl/min and peptides were separated 

using gradient of 5-40% of solvent B (0.1% NH4OH in acetonitrile) for 30 min followed by 

40-80% of solvent B in 5 min and held at 80% for additional 5 min. Overall 90 fractions 

(30 s per fraction) were collected by automatic fraction collector into a 96 well-plate and 

combined into 10 fractions with a stepwise concatenation strategy. Pooled fractions were 

dried in SpeedVac concentrator. 

2.3.4 Liquid chromatography and mass spectrometry  

The LC/MS analysis was performed on a Dionex UltiMate3000 HPLC coupled with the 

Orbitrap Fusion Lumos Mass Spectrometer (Thermo Scientific, Waltham, MA, USA). 

Each peptide fraction was dissolved in 40 μL of 0.1% formic acid and 10 μL were loaded 

to the Acclaim PepMap 100, 100 μm × 2 cm C18, 5 μm, trapping column (Thermo Fisher 

Scientific, Waltham, MA, USA) with a flow rate 10 μL/min. Peptides were then separated 

with the EASY-Spray C18 capillary column (75 μm × 50 cm, 2 μm) at 45 °C. Mobile 

phase A was 0.1% formic acid and mobile phase B was 80% acetonitrile, 0.1% formic 

acid. The gradient method at flow rate of 300 nL/min included the following steps: for 120 

min gradient from 5% to 38% B, for 10 min up to 95% B, for 5 min isocratic at 95% B, re-

equilibration to 5% B in 5 min, for 10 min isocratic at 5% B. The precursor ions were 

selected at 120k mass resolution, with automatic gain control 4×105 and ion trap for 50 

ms for collision induced dissociation (CID) fragmentation with isolation width 0.7 Th and 

collision energy at 35% in the top speed mode (3sec). Quantification spectra were 

obtained at the MS3 level with higher-energy C-trap dissociation (HCD) fragmentation of 

the top 5 most abundant CID fragments isolated with Synchronous Precursor Selection 

(SPS) with quadrupole isolation width 0.7 Th, collision energy 65% and 50k resolution. 

Targeted precursors were dynamically excluded for further isolation and activation for 45 

seconds. 
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2.3.5 MS data processing 

The SequestHT search engine in Proteome Discoverer 2.2 or 2.3 (Thermo Scientific, 

Waltham, MA, USA) was used to search the raw mass spectra against reviewed UniProt 

human protein entries (v2018_07 or later) for protein identification and quantification. 

The precursor mass tolerance was set at 20 ppm and the fragment ion mass tolerance 

was 0.02 Da. Spectra were searched for fully tryptic peptides with maximum 2 missed 

cleavages. TMT6plex at N-terminus/lysine and Carbamidomethyl at cysteine were 

selected as static modifications. Dynamic modifications were oxidation of methionine and 

deamidation of asparagine/glutamine. Peptide confidence was estimated with the 

Percolator node. Peptide False Discovery Rate (FDR) was set at 0.01 and validation was 

based on q-value and decoy database search. The reporter ion quantifier node included 

an integration window tolerance of 15 ppm and integration method based on the most 

confident centroid peak at the MS3 level. Only unique peptides were used for 

quantification, considering protein groups for peptide uniqueness. Peptides with average 

reporter signal-to-noise > 3 were used for protein quantification. Proteins with an FDR < 

0.01 and a minimum of two peptides were used for downstream analyses.  

2.3.6 Proteomic data imputation and normalisation  

All data was processed using custom R scripts in R v3.5.1 or later 497. Sample data with 

> 5% missing values relative to associated reference samples were deemed low quality 

and excluded from analyses (section 3.2.3.1). Proteins identified in < 75% of samples 

were removed, and those remaining imputed using the k-nearest neighbour (k-NN) 

algorithm in the impute R package 498. Data was normalised and batch effects removed 

in a multi-step procedure. Firstly, each sample was divided by the corresponding 

reference sample, data was then log2 transformed, median centred across samples, and 

standardised within samples. For subtype-specific analyses, data was filtered for 

samples of interest, and protein filtering, imputation, and normalisation performed as 

before.  

2.4 NanoString targeted transcriptomics   

2.4.1 RNA extraction  

Tumour total RNA was extracted using the All Prep DNA/RNA FFPE kit (Qiagen, Hilden, 

Germany) following vendor’s standard protocol. mRNA concentrations were measured 

using Qubit fluorometric quantitation (Thermo Fisher Scientific, Waltham, MA, USA). 

RNA Integrity Number and percentage of total RNA < 200bp in size was measured using 
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2100 Bioanalzyer system (Agilent, CA, USA). RNA samples were stored at -80C until 

use in downstream analyses.  

2.4.2 Nanostring data processing and analysis 

Tumour total RNA was extracted using the All Prep DNA/RNA FFPE kit (Qiagen, Hilden, 

Germany) following vendor’s standard protocol. mRNA concentrations were measured 

using Qubit fluorometric quantitation (Thermo Fisher Scientific, Waltham, MA, USA). 

RNA Integrity Number was measured using 2100 Bioanalzyer system (Agilent, CA, 

USA). RNA samples were stored at -80°C until use. Targeted gene expression profiling 

was performed using a custom panel of 21 immune-related genes and 3 housekeeper 

genes with the nCounter PlexSet-96 platform (NanoString Technologies, Seattle, WA, 

USA; Table 2.1). The gene panel was chosen as part of a previous project involving the 

profiling of STS tumours. It was constructed to select gene analogues of the proteins 

commonly examined by IHC, genes whose expression indicate T cell function, and genes 

with a stimulatory or inhibitory immune checkpoint function. Total RNA of 150-450 ng 

(variable to account for RNA degradation) of tumour samples and calibration samples 

was input for hybridisation and analysis performed per manufacturer’s instructions using 

the nCounter Max system (NanoString Technologies, Seattle, WA, USA). The 

expression values of calibration samples were used to adjust for differences between 

PlexSet plates (i.e., technical variance). The calibrated raw expression data was then 

normalised using the NanoStringNorm R package by ‘CodeCount’ = ‘geo.mean’, 

‘Background’ = ‘mean’, and ‘SampleContent’ = ‘housekeeping.geo.mean’. Additionally, 

values < 1 were set to 1, data log2 transformed and gene-level median centring 

performed. 

2.5 Analysis of The Cancer Genome Atlas data 

2.5.1 Reversed-phase protein microarray 

The level 4 (log2 transformed with loading and batch corrected) RPPA dataset from the 

TCGA sarcoma (TCGA-SARC) study36 was downloaded from The Cancer Proteome 

Atlas portal (https://tcpaportal.org/tcpa/) and clinical data downloaded from the TCGA 

Pan-cancer Clinical Data Resource (TCGA-CDR) within the NCI Genomic Data 

Commons (https://gdc.cancer.gov/about-data/publications/PanCan-Clinical-2018). The 

RPPA dataset was restricted to LMS, DDLPS, UPS, and SS cases and feature level 

(protein) median centred across samples. 
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2.5.2 RNA sequencing 

RNA sequencing (RNAseq) data (fragments per kilobase of exon per million mapped 

fragments (FPKM)) and corresponding clinical data from the TCGA-SARC study was  

 

downloaded from the TCGA-CDR within the NCI Genomic Data Commons 

(https://gdc.cancer.gov/about-data/publications/PanCan-Clinical-2018). Samples were 

restricted those analysed within the TCGA-SARC publication and further restricted to 

LMS for LMS-specific analyses or LMS, DDLPS, UPS and SS for WGCNA analyses36. 

FPKM data was converted to transcripts per million (TPM) and genes present in < 75% 

of samples were removed. A value of 1 was added to all measures to address missing 

values, data was log2 transformed, median centred across features (genes) and across 

samples. The TCGA clinical outcome data was censored at 5-years post-surgery.  

Table 2.1 Custom NanoString immune panel 

Gene Name Group 

LAMP3 Immune cell markers 

CD4 Immune cell markers 

KIR3DL1 Immune cell markers 

CD68 Immune cell markers 

FOXP3 Immune cell markers 

CD163 Immune cell markers 

NCAM1 Immune cell markers 

CD3G Immune cell markers 

CD8A Immune cell markers 

TNFRSF9 Immune checkpoint proteins 

CD274 Immune checkpoint proteins 

CTLA4 Immune checkpoint proteins 

LAAG3 Immune checkpoint proteins 

IDO1 Immune checkpoint proteins 

PDCD1LG2 Immune checkpoint proteins 

PDCD1LG2 Immune checkpoint proteins 

STAT6 Other 

HLA-A Other 

PRF1 Other 

TBX21 Other 

VTCN1 Other 
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2.6 Immunohistochemistry  

Tissue microarrays (TMA) containing 63 LMS, 50 UPS and 32 DDLPS with at least 2 

replicate cores were used for IHC. Consecutive 4μm TMA sections were stained for H&E, 

CD3, CD4, and CD8 using the DAKO link automated stainer (Agilent, CA, USA). Sections 

were deparaffinised by xylene and rehydrated by graded ethanol. Antigen retrieval was 

performed using DAKO FlexEnvision kit (K8002; Agilent, CA, USA) by either pressure 

cooking in citrate (pH6) for 2 min (CD3) or incubating with pH9 pre-treatment module 

(PTM) buffer (Agilent, CA, USA) for 20 min at 97 °C (CD4 and CD8). Incubation with 

primary antibody (CD3 DAKO M0452 at 1:600 dilution; CD4 DAKO 4B12 at 1:80 dilution; 

CD8 DAKO C8/144B at 1:100 dilution) was for 60 minutes at room temperature. 

Secondary antibody staining and visualisation was performed using DAKO FlexEnvision 

(Mouse) Kit, followed by application of DAB and haematoxylin counterstaining. H&E 

slides were assessed to confirm viable tumour content, and CD3/4/8+ TIL stains counted 

under direct brightfield microscopy at x400 magnification. For cores with section 

preservation of 50-100%, cell counts were corrected to 100% area. Data from cases 

where section preservation was < 50% were excluded. Replicate scores were averaged 

then multiplied by 1.274 to produce average CD3+, CD4+ or CD8+ TIL/mm2. Digital 

microscopy images for all stained TMA sections were captured at x40 resolution using 

Nanozoomer-XR (Hamamatsu Photonics, Japan). 

2.7 Bioinformatics and statistical methods 

Unless otherwise specified, all data was analysed using custom R scripts in R v3.5.1 or 

later 497.  

2.7.1 Differential expression analysis 

Differentially expressed proteins (DEP) were identified by significance analysis of 

microarrays (SAM) using samr in R499. Normalised and imputed datasets were run using 

the SAM multiclass test, with 100 permutations. For paired comparisons, two sample 

unpaired tests (Student’s T test statistic) were performed. In each test, delta was 

selected as the value at which median FDR < 0.01.  

2.7.2 Proteomic database representation  

The immune component was assessed using the ImmPort database500. The matrisome 

component was assessed using the MatrisomeDB database501. The adhesome 

component was assessed using the consensus integrin adhesome work of Winograd-

Katz et al502, the kinome was assessed using the work of Manning et al503.  
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2.7.3 Overrepresentation analysis, Gene Set Enrichment Analysis and 

single sample Gene Set Enrichment Analysis 

Overrepresentation analysis (OA) and Gene Set Enrichedment Analysis (GSEA) were 

performed with ClusterProfiler in R using the gene ontology (GO) biological process (BP) 

and hallmark gene sets with between 9 and 501 genes504–508. Proteins were ordered by 

Log2 fold change, and for OA were filtered to those identified as uniquely upregulated in 

histological subtype by differential expression analysis. Single sample GSEA (ssGSEA) 

was performed using ssGSEA (v10.0.11) on the GenePattern public server504,509. Rank 

normalisation and a weighting exponent of 0.75 were used to assess enrichment of the 

Hallmark, GO BP, Kyoto encyclopaedia of genes and genomes (KEGG), and Drug 

Signature database (DSigDB) v1.0 D1 gene sets containing at least 10 genes, and 

normalised enrichment scores were median centred across gene sets506–508,510,511. All 

gene sets except DSigDB were downloaded from the Molecular Signatures Database 

(MSigDB) v7.5.1512. A background of proteins within the proteomic dataset was used for 

all analyses.  

2.7.4 Clustering  

Hierarchical clustering and dimension reduction by principal component analysis (PCA), 

t stochastic neighbour embedding (tSNE), and uniform manifold approximation and 

projection (UMAP) were used513–516. For hierarchical clustering, a distance measure of 

Pearson correlation with average linkage was used, unless otherwise specified in the 

figure legend. For tSNE, perplexity was optimised by running analyses for a range of 

values (minimum 5 per analysis) and inspecting stability of the results. For UMAP, the 

same optimisation was performed, but addressed at the number of neighbours used. For 

all other tSNE and UMAP parameters, the default settings within their respective R 

packages were used514,516. For robust proteome clustering, unsupervised consensus 

clustering (CC) was performed using ConsensusClusterPlus in R517. CC was performed 

by agglomerative hierarchical clustering using Spearman’s rank with average linkage. 

Protein and item (sample) resampling was set at 80% and CC was run for 1000 iterations 

for up to 10 clusters (k). Optimal k was determined through inspection of consensus 

matrices, the cluster tracking plot, the consensus cumulative distribution function (CDF) 

plot, and the Δ area plot, and by calculating sample silhouette scores in 

CancerSubtypes518,519. Clusters were confirmed as statistically significantly different by 

SigClust with hard thresholding and 1000 sample simulations (p < 0.05)520. 



 

 97 

2.7.5 Weighted gene correlation network analysis 

Weighted gene correlation network analysis (WGCNA) was performed using the R 

WGCNA package521. Normalised proteomic data was used to construct a co-expression 

network. Network type was specified as signed hybrid and constructed with an optimal 

soft threshold value (β) of 5, determined by graphical inspection of network scale free 

topology and mean connectivity across a range of β values. Average linkage hierarchical 

clustering with dynamic cutting was used to identify modules of ≥ 30 proteins, and 1 - 

Pearson correlation cut height ≥ 0.25.  

2.7.6 Protein-protein interaction network analysis 

All protein-protein interaction networks were built in Cytoscape v3.9.18. To assess the 

complement and coagulation cascades, WikiPathway WP558 (63 nodes) was imported, 

adapted to include the C5 axis, and layout manually applied522. To visualise to the 

WGCNA-identified landscape, a protein co-occurrence matrix was used, with co-

occurrence scores between pairs restricted to > 0.05 and an edge-weighted spring 

embedded layout used. All network measures (degree, betweenness centrality, and 

closeness centrality) were calculated in Cytoscape.  

2.7.7 Survival analyses  

Survival analyses assessed 3 clinical outcome measures: 1) local recurrence free 

survival (LRFS) defined as time from primary disease surgery to radiologically confirmed 

local recurrence or death, 2) metastasis free survival (MFS) defined as time from primary 

disease surgery to radiologically confirmed metastatic disease or death, 3) overall 

survival (OS) defined as time from primary disease surgery to death from any cause. 

Data was censored at 5 years, and patients who had not experienced a survival event 

were censored at last follow-up. Kaplan Meier curves were used to visualise clinical 

outcome over time, and Cox proportional hazard regression was implemented for 

univariable and multivariable statistical analysis. To maximise statistical power, the 

group with the large n was selected as the reference for all Cox regression analyses. In 

all models, the Cox proportional hazard (PH) and linearity assumptions were assessed. 

Any minor or severe violation of this assumptions was interrogated by use of the 

Schoenfeld residuals and associated Schoenfeld test, deviance residuals, and 

martingale residuals. Where necessary, variable categories were grouped and/or 

transformed, the details of which are reported in the results chapters of this thesis.  
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2.8 Statistics and reproducibility 

No statistical method was used to predetermine cohort size; cases were included based 

on material and data availability. All statistical tests were two-sided and where required, 

p values were adjusted to false discovery rate (FDR) using the Benjamini-Hochberg 

procedure to account for multiple comparisons65. Where appropriate, distribution of the 

data was assessed using Shapiro-Wilk tests for normality, and tests not assuming a 

normal distribution implemented if p < 0.05. Kruskal-Wallis one-way analysis of variance 

(ANOVA) tests, Dunn’s tests, one-way ANOVA tests, Tukey’s honestly significant 

difference (HSD) tests, and chi-squared tests of independence were implemented. 

Further details of specific statistical tests are listed in figure legends.  

2.9 Data Availability  

Raw proteomic data are deposited on the ProteomeXchange Consortium via the PRIDE 

partner repository (dataset identifier PXD036226)66,67. At the time of writing, data is 

password protected whilst this work is under review for publication.  
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Chapter 3 Profiling the soft tissue sarcoma 

proteome 

3.1 Background and objectives 

At present, the STS proteome has not been comprehensively profiled. This represents a 

gap in the understanding of STS biology, which may hold clinically actionable insights. 

Standard of care for primary STS is surgical resection, therefore tissue archives surplus 

to diagnostic requirements contain a rich resource of STS tumour material, which this 

study seeks to utilise44. Tissue is stored as FFPE to increase sample longevity and to 

enable stability of specimens at room temperature; however, tissue fixation with formalin 

introduces crosslinks in biomolecules such a proteins. To facilitate protein digestion and 

analysis, these crosslinks must be reversed480–482. Experimental methods have been 

developed to successfully reverse crosslinking. However the extensive processing 

required to achieve this means that yields from FFPE tissues are significantly lower than 

those from the fresh-frozen material utilised by other studies (e.g., CPTAC). Moreover, 

the input material required for TMT-MS proteomics with offline fractionation far exceeds 

the amounts required for comparable genomic and transcriptomic profiling. For example, 

in-house standard operating procedures for our laboratory indicate a minimum 

requirement of 120 um for protein extraction for TMT analysis, compared to 80 um for 

combined RNA and DNA extraction. This presents a challenge for rare disease profiling 

where sample material is scarce.  

Our in-house protocol development has established a pipeline for TMT-MS analysis of 

STS FFPE tissue. However, the cohort herein introduces new challenges. Firstly, this 

cohort includes samples with lower tumour content, such as heavily pre-treated samples 

and specimens small in size.  Furthermore, histological subtypes of STS that have not 

previously been profiled are also included. This may translate to differences in the 

feasibility of sample processing and achievable yields. Secondly, this study underwent a 

cohort expansion part-way through. As part of the initial phase a pooled reference 

sample containing peptides from representative tumours was generated. The reference 

sample was created to monitor and address variation between MS runs. However, it did 

not include subtypes profiled following cohort expansion, and was therefore not 

representative of all STS histologies profiled. This may result in poor proteome coverage 

of some STS subtypes. And finally, this cohort is large and therefore requires multiple 

TMT sets to be run. This increases the risk of differences arising between runs (i.e., 

batch effects), and due to stochastic sampling of peptides is recognised to introduce high 
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amounts of missing data between the TMT sets466. There is no formally established 

pipeline for quality control, and normalisation of TMT data. As a result, appropriate 

methods for these steps are tailored to individual experiments.  

Accordingly, the objectives of this chapter are: 

1) To implement the in-house FFPE peptide extraction workflow in a heterogeneous 

STS cohort 

2) To identify appropriate data processing pipelines for large-scale multi-batch STS 

proteomics   

3.2 Results  

3.2.1 Patient selection 

Patients were selected for inclusion based on the following criteria: 1) histopathologically 

confirmed diagnosis of AS, ASPS, CCS, DDLPS, DES, DSRCT, EPS, LMS, RT, SS, or 

UPS, 2) ≥ 18 years of age at the time of sample collection (excluding RT), 3) FFPE 

surgical resection tumour material available in quantities sufficient for analyses. Where 

possible, patients were restricted to those where surgery was performed prior to 2014, 

to ensure sufficient follow up. For rarer subtypes and to facilitate cohort expansion, 

patients receiving surgery up to 2018 were considered for inclusion on a case-by-case 

basis. Patients were excluded if the primary tumour specimen was FNCLCC grade 1. RT 

samples and 2 AS samples were obtained externally. All other samples were retrieved 

through RMH. Eligible patients were identified by retrospective search of hospital 

databases, and inclusion was finalised upon inspection of medical and histopathology 

records. Further details are provided in section 2.2. 

3.2.2 Peptide extraction from formalin-fixed paraffin-embedded tissue 

The implemented peptide extraction protocol (Figure 3.1A) was assessed previously in 

ourlab for the profiling of LMS, UPS, DDLPS, and SS tumours483. Briefly, samples were 

histologically reviewed by H&E to identify viable tumour content. For samples with ≥ 75% 

tumour area, sections were taken. Where samples contained < 75% tumour content, 

macrodissection was performed prior to sectioning to enrich for tumour content. This 

method of enriched sectioning was performed to reduce tumour heterogeneity and 

ensure tumour cell features were dominant in the final profiling data. Estimation of tumour 

content and sampling of WD/DDLPS tumours was based on the DD region only. Sections 

were pooled, deparaffinised, crosslinks reversed by heating, and proteins extracted by  
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Figure 3.1 Implementation of the STS proteome profiling pipeline  
(A) Workflow overview. B) Modified deparaffinisation for angiosarcoma (AS) and alveolar soft part sarcoma 
(ASPS) samples. C) Modified sectioning for samples with low viable tumour content such as synovial 
sarcoma (SS). Scanned image of haematoxylin and eosin (H&E)-stained sample section. Dotted line 
indicates viable tumour cell area. Scale bars = 10 mm (left), 0.75 mm (right). D) Cohort overview through 
protein extraction, protein digestion and peptide labelling steps. Numbers in brackets indicate replicate 
samples. Abbreviations: TMT = tandem mass tag; HpH = high pH; LC = liquid chromatography; MS = mass 
spectrometry; MD = macrodissected. 
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homogenisation. Protein yields were measured by bicinchoninic acid (BCA) assay. 

Where yields were < 600 ug and sufficient tumour material remained, the sample was 

re-extracted. A filter-assisted sample preparation (FASP) protocol was implemented to 

remove the detergents used during extraction and to digest proteins into peptides496. 

Peptides were desalted and yields were measured by BCA assay. Where yields were < 

33 ug and sufficient tumour material remained, the sample was re-extracted. Peptides 

were then labelled with TMT 11-plex labels in batches of 10 unique tumour samples, and 

1 pooled reference sample. Labelled samples were pooled, fractionated by high pH and 

injected into an LC-coupled MS (full description of methods are described in section 2.3. 

Throughout processing, samples were handled in batches of mixed subtypes. This 

minimised the impact histological subtype had on inter-batch variation and therefore 

aided identification of batch-specific effects.  

Initial attempts made to profile other subtypes beyond LMS, UPS, DDLPS and SS 

identified several pitfalls. Firstly, AS and ASPS tumours failed to pellet during the 

centrifugation steps as part of sample deparaffinisation. The sequential washes required 

for deparaffinisation therefore resulted in significant losses of tumour material. To reduce 

tumour loss, the centrifugation time was increased from 3 to 20 minutes and the 

supernatant removed in a stepwise manner at each wash. If the sample re-suspended 

during removal of the supernatant, extra centrifugations were performed as needed 

(Figure 3.1B). Whilst the biochemical and biophysical reasons for this difference 

between subtypes were not formally assessed, it is hypothesised that the high vascular 

content of AS and ASPS samples contributed to handling difficulties. Secondly, due to 

the current standard of care for SS patients, a high proportion (58%) of the SS cohort 

received pre-operative treatment. Treatment effects were evident in many SS tumours 

upon inspection of H&E sections. These included nuclear and cytoplasmic enlargement 

and hyalinization (Figure 3.1C), as well as cellular necrosis. This reduced the viable 

tumour area for sampling. For large SS samples with treatment effects located to isolated 

regions within the tumour, macrodissection was performed and the impact of a reduced 

viable tumour area counteracted by increasing the sectioning depth. Yet, many SS 

samples could not be salvaged and thus were excluded from processing and analysis. 

This biased the SS cohort. Interpretation of downstream SS analyses must consider that 

this cohort likely underrepresents pre-treated SS patients, and that the full spectrum of 

the SS patient population is not captured herein. Finally, to ensure enrichment of tumour 

content in the tissue sample, each section was required to have a tumour cell content ≥ 

75%. For comparison, CPTAC proteomic pipelines deem 50 - 80% tumour cell content 

as acceptable, dependent on the malignancy523–529. As with treatment-impacted SS 
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samples, samples with < 75% tumour content were macrodissected to enrich for tumour 

cells, and the sectioning depth increased relative to the percentage tumour area 

sampled. Overall, these modifications to the protocol limited the numbers of repeat 

extractions required due to insufficient protein or peptide yields. By extension, this limited 

technical processing variability, and the risk of contamination and human error during 

peptide extraction.  

An overview of the samples extracted, processed, and analysed as part of this study is 

shown in Figure 3.1D. In total, 382 samples were sectioned and deparaffinised across 

40 batches. This includes 56 samples of repeat extractions due to low yields during the 

initial extraction round. On average, 170 um of tissue was sampled from cases with ≥ 

75% tumour cell content. Just over half of cases contained < 75% tumour cell content 

and required macrodissection. For those macrodissected, an average of 290 um tissue 

was processed. These tissue requirements are reflective of handling surgical resection 

specimens. The amount of material required for biopsies would be vastly greater. All 

deparaffinised samples progressed to homogenisation, which was performed over 51 

batches. The target protein yield after homogenisation was 600 ug. The achieved 

average yield, including samples where multiple extractions were merged, surpassed 

this at 907 ug. Following homogenisation, a total of 66 samples were excluded. This 

included 50 with low protein yields. Of these, 43 (86%) required macrodissection, 

indicating the low yields may be resultant of a reduced sampling area. Indeed, within the 

macrodissected samples, the viable tumour cell area was lower in those with proteins 

yields < 600 ug compared to those with yields ≥ 600 ug (36.5% vs 44.7%) despite being 

adjusted for by sectioning depth. This may suggest the implemented protocol performs 

well for samples of large tumour areas, but that it is challenging to achieve sufficient 

protein yields when the sampling area is reduced. Of the 7 excluded samples that did 

not require macrodissection, 5 (71%) were either AS or ASPS samples, reiterating the 

difficulty in handling these subtypes. The remaining 16 excluded samples (9 DES and 7 

LMS) where sufficient protein was extracted were stored for future studies. The resultant 

332 samples (including 16 sample processed by previous lab members) underwent 

FASP and desalting over 29 batches. Input material of 600 ug protein was used for FASP 

and resulted in an average of 80 ug peptide. For TMT analysis, 33 ug is required; thus, 

yields of approximately 80 ug permitted samples to be run in duplicate if necessary and 

left allowances for sample loss/degradation during lyophilisation and freezing. Following 

desalting, 4 samples were excluded due to damage during handling, 8 had low protein 

yields, and 28 were stored for future studies. The 28 were comprised of 9 AS (8 

recurrence, 1 primary), 8 primary uLMS, 7 DDLPS recurrences, 2 primary CCS, and 2 
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primary DES. After desalting, 594 samples (including 139 samples prepared by previous 

lab members and 109 replicates) were labelled with TMT 11-plex labels in 54 batches to 

be run by MS.  

3.2.3 Proteomic data processing 

3.2.3.1 Quality control & data exclusion 

Proteomic quality control (QC) is an important step in ensuring low quality data is 

identified and handled appropriately to maintain the robustness of downstream analyses. 

TMT MS provides a measure of relative abundance, dependent on the assumption that 

the same amount of labelled peptide from each sample was injected into the mass 

spectrometer and analysed. The proteins in a sample are assumed to follow a unimodal 

(normal or gaussian)  distribution, with few highly and lowly expressed proteins and many 

proteins expressed at intermediate abundances. A violation of one or both of these 

assumptions is indicative of low quality data. If not adjusted or excluded, low quality data 

can introduce significant skew to a MS dataset. Low quality data in TMT MS experiments 

can be the result of sample processing errors prior to MS analysis, inefficient TMT 

labelling, or technical problems with the LC or mass spectrometer. There is no 

consensus definition of low quality TMT MS data, however it is considered to possess 

few protein identifications, low protein abundances, high protein-level missing values 

(MVs), and a bimodal distribution. Notably, most of these measures are relative to each 

experiment and must be considered in the context of other MS data. The identification 

and removal of ‘extreme outlier’ data in this way is central to published MS QC 

approaches530. 

In this project, QC was performed at the point of data collection for each TMT set. Figure 

3.2A-B and Table 3.1 show QC of TMT set 32 as an example. The protein expression 

profile of each sample was assumed to follow a unimodal distribution. Density plots 

(Figure 3.2A) reveal that while most samples appeared to satisfy this assumption, 

sample A showed bimodality and significant skew towards low abundance proteins. 

Distributions were characterised using the bimodality coefficient (BC) and Hartigan’s Dip 

Statistic (HDS), where a bimodal distribution is indicated by BC values > 0.555, a high 

HDS statistic and a HDS p value < 0.05531–533. These methods showed discordance in 

this dataset; use of BC classified 9/11 samples as bimodal, whilst use of HDS classified 

no samples as bimodal (Table 3.1). In fact, across all TMT sets collected, BC and HDS 

classified 84% and 0% of samples as bimodal respectively. It was therefore not possible  
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Figure 3.2 Quality control of tandem mass tag (TMT) data.  
(A-B) Example TMT set, C-E) all data. A) Density plots showing protein abundance distribution within each 
sample. Top left shows all samples overlayed. B) Boxplots showing protein abundance across each sample. 
Boxes indicate 25th, 50th, and 75th percentile, with whiskers extending from 25th percentile-(1.5*IQR) to 75th 
percentile+(1.5*IQR), and outliers plotted as points. C) Boxplots showing protein abundance across samples 
that passed QC (combined; grey), and sample that failed QC (individual; red). Boxes drawn as in B. D) 
Density plot showing protein abundance distribution for all samples. Samples that passed QC in grey, 
samples that failed QC in red. E) Density plots showing percentage tumour cell content for samples that fail 
and pass QC. Dashed line indicates mean value.  
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to use empirical measures of bimodality to objectively identify low quality data. BC and 

HDS did however highlight sample A as an outlier. Sample A showed the highest BC 

and HDS statistic, and therefore had the distribution furthest from a perfect unimodal 

(Table 3.1). Sample A also showed a low mean protein abundance (51.1) compared to 

other samples (435.1 – 1413), fewer protein IDs (3251) compared to other samples 

(4515 – 4548), and a high percentage of MVs relative to the total number of IDs in set 

32 (28.5%; Figure 3.2B and Table 3.1). This revealed sample A as an extreme outlier 

within TMT set 32. Sample A was designated of low quality and excluded from analysis. 

Repeating this set-based inspection of data for each TMT set revealed the percentage 

of MVs to be a suitable and innate QC filter, consistently reflective of low protein 

abundance, few protein IDs, high MVs, and non-unimodal distribution. Maximal 

acceptable percentage of MVs was set as 5%, resulting in the exclusion of 23 samples 

from analysis. All 23 samples showed low protein abundances and unexpected 

distributions (Figure 3.2C-D). Whilst specimens were macrodissected to ensure a 

minimum of 75% tumour cell content was profiled, tumour cell content within the 

sampling area (i.e., sample purity) ranged from 75% to 100%. The potential impact of 

sample purity on data quality was therefore assessed. Interestingly, there was no 

apparent association. Samples that failed or passed QC showed similar average tumour 

cell contents of 83% and 84% respectively (Figure 3.2E). One caveat of this analysis is  

 

Table 3.1 Data metrics collected for each TMT sample.  
From left to right: number of proteins IDs, percentage missing values (MV %) relative to all proteins identified 
within the set, protein abundance mean and standard deviation (SD), bimodality coefficient (BC), Hartigan’s 
Dip Statistic (HSD), and HSD p value. 

 

Sample 
Protein IDs Protein abundance Data distribution 

n MVs (%) Mean SD BC HDS HDS p 

A 3251 28.5 51.1 235.3 0.788 0.006 0.577 

B 4515 0.7 779.4 2166.9 0.616 0.003 1.000 

C 4533 0.3 1067.0 2605.2 0.573 0.002 1.000 

D 4530 0.4 435.1 1971.8 0.710 0.002 1.000 

E 4541 0.2 734.8 1697.1 0.510 0.003 0.995 

F 4548 0.0 1247.5 2310.7 0.568 0.003 1.000 

G 4543 0.1 772.4 4030.1 0.733 0.003 0.999 

H 4537 0.2 685.9 1640.0 0.648 0.002 1.000 

I 4544 0.1 1183.5 2782.7 0.658 0.002 1.000 

J 4542 0.1 770.8 3620.2 0.713 0.003 0.998 

K 4546 0.0 1413.0 3405.8 0.545 0.003 1.000 
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that data on sample purity was only available for a subset of samples (RMH specimens 

processed by the candidate). Thus, sample purity measures may not be representative 

of the full cohort. In addition, the relationship between sample age and data quality was 

queried. Given the rarity of STS, samples over a large time period were collected to 

obtain a sufficiently sized cohort. Samples ranged from 3 years old (2018 sample 

extracted in 2021) to 25 years old (1995 sample extracted in 2020). FFPE storage 

provides good sample stability, yet some studies have noted DNA and RNA degradation 

to increase with block age534,535. Protein specific studies on FFPE have found age mainly 

impacted protein yield and did not significantly impact the quality of MS analysis, 

however reports are inconsistent536,537. Herein the age of the FFPE sample did not 

appear to impact sample quality. Median block year in both the QC fail and pass groups 

was 2011 and the 15 oldest samples from 1995 to 2002 all passed QC (Figure 3.3).  

 

 

In addition to the 23 samples that failed QC, unusable data from 126 other samples was 

also excluded. Of these, 110 (from 10 TMT sets, including 10 reference samples) were 

removed due to experimental errors in TMT labelling that resulted in a low labelling 

efficiency. 15 were removed as replicates, and 1 removed due to contamination. Usable 

data from 79 samples was also excluded but stored for future analyses following this 

study. The 79 samples profiled by TMT MS but not analysed herein, comprise 35 

recurrences spanning AS, DDLPS, DES, EPS, LMS and SS, 21 primary samples from 

subtypes excluded (atypical teratoid rhabdoid tumour, myxofibrosarcoma, myxoid 

liposarcoma, spindle cell sarcoma, chondrosarcoma, and solitary fibrous tumour), 15 

 
Figure 3.3 Sample age and quality control (QC).  
Histograms showing the distribution of sample age (the year of surgery) in QC fail and pass groups. Dashed 
line indicates median.  
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UPS samples obtained from external collaborators at UCL, 7 metastasis samples (EPS, 

LMS), and 2 samples from patients excluded after a cohort audit revealed they did not 

meet the study inclusion criteria. The final working dataset comprised data for 375 

samples including 44 reference samples (i.e., spanning 44 TMT sets). 

3.2.3.2 Performance of the reference sample 

A reference sample is included in TMT MS analysis to permit multi-batching within 

studies. The reference is most often a pooled sample comprised of representative 

material from specimens within the study. It is included in each TMT set to assess inter-

batch variations and adjust for batch effects. This study was initiated by previous 

members of the lab, and was initially designed to profile LMS, DDLPS, UPS, and SS 

only. It has since undergone an expansion phase to include multiple further histological 

subtypes into the cohort. The reference sample was designed at the commencement of 

the study, and thus was created based on the assumption that only LMS, DDLPS, UPS, 

and SS tumours would be profiled. As a result, the reference sample utilised does not 

span all subtypes profiled herein. To assess inter-batch variation and perform 

normalisation, it is vital that the reference sample has minimal MVs at the peptide and 

by extension protein level. If samples differ significantly from the reference sample, 

numerous proteins identified in samples will not be present in the reference, and vice 

versa. This is a major introducer of MVs in MS data, which if highly prevalent within a 

finalised dataset can restrict analysis and interpretation (as discussed in section 

1.6.1.2). The impact of using a reference sample that doesn’t include all subtypes profiled 

was therefore analysed. All references to MVs made in this chapter refer to protein-level 

data, not peptide-level data. 

Analyses were performed repeatedly during data collection to ensure potential issues 

were flagged early, however for completeness, Figure 3.4 presents all data collected. 

The reference sample was approximately equal part LMS, UPS, DDLPS, and SS (Figure 

3.4A). Due to sample availability, there were differences in the number of unique 

samples included. SS had the fewest unique samples (n = 8), then DDLPS (n = 10), then 

UPS (n = 19), and LMS had the most (n = 30; Figure 3.4B). Therefore, representation 

of the full spectrum of disease heterogeneity of each histological subtypes likely varied. 

Most TMT sets (n = 29) contained a mix of subtypes that are found in the reference 

sample as well as not in the reference sample (referred to as ‘mixed sets’), 14 sets 

contained only subtypes found in the reference sample (referred to as ‘reference sets’), 

and 1 set did not contain any subtypes present in the reference sample (referred to as 

the ‘non-reference set’; Figure 3.4C).  
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Across STS subtypes and TMT sets, the percentage of MVs relative to the reference 

sample varied from approximately 0 - 4 % (Figure 3.4D-E). I first focused on determining 

if disproportionate representation of subtype heterogeneity in the reference resulted 

different MV levels across subtypes. This revealed no discernible difference; in the 

reference sets DDLPS, LMS, SS and UPS consistently showed very low levels of MVs 

 

Figure 3.4 Reference sample (REF) composition and use in tandem mass tag (TMT) sets.  
(A-B) Pie charts showing the amount of peptide (A) and number of unique samples (B) per subtype in the 
REF. C) Histogram showing the distribution of TMT sets based on the percentage of refence subtypes in the 
set. D) Boxplots showing the % missing values (MVs) in different subtypes within different TMT set types 
(indicated by background colour). Boxes indicate 25th, 50th, and 75th percentile, with whiskers extending from 
25th percentile-(1.5*IQR) to 75th percentile+(1.5*IQR), and outliers plotted as points. E) Boxplots showing 
the % MVs in the tumour samples within each TMT set, coloured by set type. Boxes drawn as in D. F) Bar 
plot showing the % MVs in the reference sample within each TMT set, coloured by set type. G) Bar plot 
showing the number of low (dark grey) and high (light grey) confidence protein identifications within each 
TMT set. Background colour indicates set type. Abbreviations: AS = angiosarcoma; ASPS = alveolar soft 
part sarcoma; CCS = clear cell sarcoma; DDLPS = dedifferentiated liposarcoma; DES = desmoid tumour; 
DSRCT = desmoplastic small round cell tumour; EPS = epithelioid sarcoma; LMS = leiomyosarcoma; RT = 
rhabdoid tumour; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma 
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(mean < 1%), and there was no apparent relationship between the number of unique 

samples in the reference sample and MVs (Figure 3.4D).  

I then sought to assess the impact of profiling subtypes not included in the reference 

sample. Mixed sets showed slightly higher MVs compared to reference sets (mean = 

0.55% vs 0.25%; Figure 3.4E). In addition, within mixed TMT sets, samples from 

subtypes not present in the reference showed marginally higher MVs on average than 

samples from subtypes present (mean = 0.54% vs 0.44%; Figure 3.4D). This 

observation however is not consistent. The higher average MVs in subtypes not in the 

reference sample appears to be driven by CCS and DES samples, which showed mean 

MVs in the mixed sets of 0.65% and 0.71% respectively. Whilst, other subtypes also not 

in the reference sample (AS, ASPS, DSRCT, EPS, RT) showed low levels of MVs. This 

suggests variations in MVs were not due to the lack of subtype inclusion within the 

reference sample. It may be the case that CCS and DES show the most distinct 

proteomes compared to the reference subtypes. Yet contradicting this, in the non-

reference set DES showed very low MVs (0.23%); the caveat being that this was data 

from only a single sample in a single set. Further to assessing MVs within tumour 

samples relative to the reference, the MVs in the reference can also be used a measure 

of similarity between the reference and profiled specimens. The reference samples 

themselves in mixed and non-reference sets showed higher MVs relative to the other 

samples in the set, however this was minimal (mean MVs: reference sets = 0.02%, mixed 

sets = 0.18%, non-reference set = 0.43%; Figure 3.4F). 

Reflective of the variations in MVs across sets, the number of proteins identified also 

differed, although only minor (Figure 3.4G). During MS data processing, protein 

identifications can be classified as low confidence or high confidence, with only high 

confidence proteins used for downstream analyses. Herein, high confidence proteins are 

defined as having at least 2 identifiable peptides present for quantification, and an 

identification FDR ≤ 0.01. The average number of high confidence IDs seen in mixed 

and non-reference sets (4224 and 4061 proteins respectively) was highly comparable to 

number of IDs in the reference sets (4240 proteins). Moreover, the proportion of high 

confidence protein IDs relative to total IDs was also similar across set types (mean 

percentage of high confidence IDs out of all IDs: reference sets = 80%, mixed sets = 

81%, non-reference set = 82%). Therefore, the increased MVs observed was not due to 

low confidence in protein identification.  
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Overall, data did vary as a result of the inclusion of subtypes that were not in the 

reference composition. However, irrespective of set type, MVs were consistently very 

low in all tumour samples (mean < 2%) and all reference samples (< 1.2%). These levels 

of MVs are comparable to previous studies466. Furthermore, samples failing QC (section 

3.2.3.1) were distributed throughout both reference sets and mixed sets, indicating high 

quality data to be obtainable irrespective of the set type. The reference was therefore 

deemed suitably representative for use but was monitored throughout this study as new 

subtypes were included and data collected. 

3.2.3.3 Handling missing values  

One appeal of TMT MS is the low percentage of protein MVs observed within a single 

TMT set. However, due to the stochastic nature of DDA MS, peptide sampling, and 

therefore protein identification, can differ extensively between sets466. As a result, multi-

set TMT experiments often show high MVs (section 1.6.1.2)466. MS profiling in this study 

detected 8148 unique proteins across all 44 TMT sets. As anticipated, combining TMT 

sets introduced MVs between different sets (Figure 3.5A-B). MVs increased rapidly 

upon combination of the first 4 sets, resulting in 24% of the data being MVs, and 3029 

proteins identified at a 100% detection rate (i.e., detected in all samples). Combining 

more than 4 sets increased MVs further, albeit at a much slower rate. It was not until 

combining all 44 sets, that another 24% increase in MVs was observed. Combination of 

all 44 sets resulted in just 1786 proteins identified at a 100% detection rate.  

In DDA MS, as performed herein, precursor ions are selected in the MS1 scan for further 

fragmentation and subsequent identification. This selection, and therefore the overall 

peptide sampling of this procedure is based on abundance. As a result, proteins with 

MVs across TMT sets (i.e. those with <100% detection rate) were hypothesised to be of 

low abundance. Indeed, at low detection rate, more low abundance proteins are 

observed, the majority being in the lowest (1st) expression quartile (Figure 3.5C). At 

~75% detection there were no 1st quartile proteins, and at ~90% detection there were no 

1st or 2nd quartile proteins. By 100% detection, the vast majority of proteins retained were 

in the highest (4th) expression quartile. To handle the MVs, a conservative approach 

would be to only assess proteins detected in 100% of samples. However, such a strict 

requirement would limit the study to 1786 proteins, and result in the exclusion of many 

useful data points. Therefore, to address the MVs, imputation was used. Imputation was  
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performed using the k-nearest neighbour algorithm (k-NN). k-NN imputation finds the ‘k’ 

most similar samples/proteins to a MV based on data that is present538. It then averages 

the nearby data points to assign a value. k-NN is widely implemented in molecular 

profiling studies and is considered a robust, sensitive, and effective tool to address 

MVs538,539. Given k-NN utilises similar/neighbour data to impute, it relies on confidence 

in the existing data structure. Accordingly, allowing excessive amounts of MVs leads to 

poor imputation performance. Proteins were therefore filtered prior to imputation to 

 

Figure 3.5 The impact of combining tandem mass tag (TMT) sets on protein identification and 
missing values (MVs) within data 
A) The number of common proteins (proteins identified in all samples) as the number of TMT sets increases. 
B) Data-wide MVs (%) as the number of TMT sets increases. C) Density plot showing protein distribution 
across detection %. Proteins split based on average abundance where the 1st quartile indicates the 25% 
least abundant proteins. D) The number of proteins identified at each detection %. Blue dashed line indicates 
the chosen imputation level of 75%, corresponding to 3290 proteins.  
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increase data confidence. CPTAC studies permit the inclusion of proteins/genes with ≥ 

50% non-MVs523–529. Herein, proteins present in ≥ 75% of samples were included and 

considered robustly identified (Figure 3.5D). Filtering and imputation resulted in a final 

core dataset of 3290 proteins.  

3.2.3.4 Normalisation  

Acquisition of MS data from FPPE tumour specimens is a lengthy and involved process. 

This means there are many points at which bias can be introduced into the data. Despite 

ensuring the same amount of peptide is labelled and injected into the mass spectrometer, 

sample handling and instrument variation introduces inherent bias. This is amplified in 

TMT MS where samples are profiled in multiple batches. Normalisation is crucial to 

addressing this. Correct normalisation enables sample-to-sample comparisons and 

ensures the reliability of downstream analyses. Figure 3.6 shows an overview of the 

normalisation procedure implemented herein and the progressive transformations in 

data distribution. The first aspect to address was inter-batch variation. Principal 

Component Analysis (PCA) of the raw data revealed samples to cluster by TMT set, and 

showed that the reference samples did not cluster together despite being an aliquot of 

the same sample (Figure 3.7A and Figure 3.8). Principal component 1 (PC1) accounted 

for a significant amount of variance within the data (31.18%) compared to other PCs (≤ 

10.25%; Figure 3.8). Assessment of the PC loadings revealed albumin (ALB) as the 

most influential feature in PC1, and showed high component loading for ALB in PCs 2, 

3, and 5 (Figure 3.7B). ALB is the most abundant plasma protein in humans540. As DDA 

MS1 sampling is dictated by abundance, this suggests either inconsistent amounts of 

sample were labelled, or inconsistent amounts of peptide were injected into the mass 

spectrometer. As an orthogonal approach to PCA, unsupervised clustering was 

performed. Clustering reiterated PCA-based observations, showing the references did 

not cluster together, and that significant batch effects were present (Figure 3.7C). To 

adjust for these differences, samples were normalised within-set relative to each 

respective reference sample. Next, to support comparative analyses, data was log2-

tranformed and a pan-TMT set adjustment performed by within-protein median centring. 

This ensured the median value for each protein across all samples was 0, transforming 

the value ranges without changing the scale of the data.  Significant variation in the value 

range between samples persisted (Figure 3.6), and thus within sample standardisation 

was performed to enable valid downstream sample-to-sample comparative analyses. 

The resultant normalised data was re-assessed by PCA and unsupervised clustering 

and showed no evidence of batch effect (Figure 3.7D-F). Of note, the data features with 

highest component loadings in the top 5 PCs were proteins that have been differentially  
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reported across STS subtypes (Figure 3.7E). For example, myosin light chain kinase 

(MLYK) is an IHC marker for LMS, and cellular retinoic acid binding protein 1 (CRABP1) 

is expressed in monophasic SS281,282,541,542. This reassures that the proteomic data is 

appropriately normalised to reveal known biological differences within the cohort.  

 

 

 

Figure 3.6 Data normalisation overview.  
Sequential boxplots showing protein abundance of each sample throughout the normalisation procedure. 
From top to bottom plots show the imputed unnormalised data (n = 365), reference sample (REF) normalised 
data (n = 365), median centred data (n = 321), and standardised data (n = 321).  Boxes are coloured by 
TMT set, and indicate 25th, 50th, and 75th percentile, with whiskers extending from 25th percentile-(1.5*IQR) 
to 75th percentile+(1.5*IQR), and outliers plotted as points. 
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Figure 3.7 Assessment of batch effects in the unnormalised (A-C) and normalised (D-F) dataset.  
(A & D) Principal component analysis (PCA) biplot showing the dataset projected onto principal components 
(PC) 1 and 2. B & E) PC loading plot for PCs 1-5. Circles correspond to individual proteins and colour 
indicates component loading. Proteins of interest are annotated. C & F) Unsupervised hierarchical clustering 
dendrogram (Pearson’s correlation distance) with tandem mass tag (TMT) set (C & F) and reference sample 
(REF; C only) annotation. 
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3.3 Discussion and summary 

In this chapter, the proteomic data for multiple STS samples was collected and 

processed. Extraction of peptides from FFPE STS samples highlighted handling 

differences between different STS histologies, which led to improvements to the in-house 

peptide extraction protocol. This illustrates the challenges of working with a 

heterogenous group  of diseases, where standardised protocols cannot be applied to 

different samples and subtypes without consideration. Also illustrated herein are the 

complexities involved in rare disease research. To achieve a reasonable cohort size, the 

inclusion of sub-optimal samples (in this case, samples with lower tumour purity) was 

necessary. This resulted in the macrodissection of many samples and revealed 

challenges in achieving sufficient yields from such samples. The protocol additions made 

herein were minor and therefore downstream consequences in the data are not 

considered a risk. However, if more subtypes, samples with smaller viable tumour areas, 

or excessively treatment-impacted samples were to be profiled, the suitability of this 

method would need re-visiting. This is particularly pertinent for studies requiring biopsy 

profiling, such as those assessing metastatic or recurrent STS disease, which is often 

not managed by surgical resection. Surgical resection specimens profiled herein which 

underwent macrodissection required 290 um of tissue on average. Biopsies are vastly 

smaller than surgical resections and it is likely that under the current protocol 

 

Figure 3.8 Additional principal component analysis (PCA) plots assessing batch effects in the 
unnormalised data.  
(A) Scree plot showing the explained variance for the first 20 principal components (PC) in the unnormalised 
dataset. Red line shows cumulative variance. B) PCA biplots for PC 1 with PCs 2-4 in the raw dataset. Non-
reference samples (non-REF) are coloured grey, reference samples (REF) coloured individually. 
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requirements it would be near impossible to obtain sufficient tissue. One limitation in 

sample preparation was the reliance on a single clinical fellow to obtain tumour purity 

measures; tumour cell content is not a consistent measure between pathologists. If 

greater resources were available, it would have been preferable for at least 2 clinicians 

to estimate tumour purity independently and then establish a consensus score. 

Following data collection, metrics were assessed for their use as QC measures, and a 

high proportion of MVs was identified as a suitable indicator of low-quality data. The use 

of an MV measure in this study was supported by its association with other measures 

indicative of poor data, such as protein abundance and bimodality statistics. One caveat 

of using MV is that it is a relative measure within each TMT set. Therefore, its use, and 

the specific threshold applied herein was tailored. In addition, the suitability of the MV 

measure was also identified based on visual inspection of the data distribution. This was 

feasible herein as data was collected on a rolling basis in batches of 10 tumour samples. 

If MS data were collected more rapidly, or if retrospective analyses were to be performed 

on an already collected and complete dataset, visual inspection would be an exceedingly 

laborious task. Moreover, visual interpretation is reliant on an individual and is vulnerable 

to bias and human error. This leaves room for QC improvement. Notably, most proteomic 

QC methods involve relative measures. CPTAC typically perform QC by analysing 2 

reference samples within each batch543. Combining data from 2 TMT channels enables 

the creation of a more accurate ‘virtual’ reference, which acts a measure for overall data 

quality. However, this utilises double the amount of reference used herein. Given the 

scarcity of STS tumour tissue, it was not possible to use such large amounts of reference 

material. The reference samples utilised in most CPTAC studies, irrespective of cancer 

type, comprise breast xenograft tissue543. Similarly, the study herein utilised a non-

specific reference sample to profile multiple STS subtypes. This resulted in minor data 

variations between TMT sets comprising subtypes in the reference sample and those 

that did not. However, such variations were minimal. The number of protein IDs was 

highly consistent, and the levels of MVs were consistently low; comparable if not better 

than previously published studies466. The good performance of the reference sample 

indicates it captures a sufficient level of general STS biology to enable multi-subtype 

profiling. This may have been aided by the abundance-based sampling of TMT profiling, 

meaning lowly expressed proteins, were unlikely to be identified. However, if an 

increased proteome depth was sampled, for example by further fractionation, this may 

raise issues as the lowly expressed proteins will be identified. The suitability of the 

reference in this study permitted its use for batch correction. To combine TMT sets, data 

was successfully normalised using the reference sample, alongside additional inter-
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sample variation adjustments. This generated a dataset suitable for sample-to-sample 

proteomic comparisons.  

Overall, this chapter has established a core STS proteomic dataset, confidently 

quantifying 3290 proteins spanning 321 primary tumour samples of 11 histological 

subtypes. The applicability of collecting such a rich dataset can be demonstrated by the 

work of CPTAC and TCGA156,544. These consortiums have conducted numerous studies 

across multiple cancer types, revealing important insights into disease biology, and 

identifying candidate biomarkers and drug targets. This chapter has therefore 

established a rich resource for the STS research community. Not only can this dataset 

be mined for primary analyses as this thesis will go on to evidence, but it can also be 

used for validation purposes. Validation is central for robust statistical validity in bench 

to bedside research and is frequently lacking in rare disease studies due to small study 

populations.  
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Chapter 4 Overview of the soft tissue sarcoma 

proteome 

4.1 Background and objectives 

In Chapter 3 the collection and processing of proteomic data from primary tumours of 

patients with multiple histological subtypes of STS was described. In this chapter, the 

main objective is to provide a high-level, descriptive overview of the STS proteome of 

the profiled cohort. Multi-subtype profiling of STS has at present been comprehensively 

performed at the genomic and transcriptomic levels (discussed in section 1.3). Herein, 

by considering the protein complement in relation to the current literature, we anticipate 

the revelation of both known and novel biology. To achieve this, the clinicopathological 

characteristics of the cohort were detailed. Pairwise interactions between 

clinicopathological variables were assessed, and their relation to clinical outcome 

measures investigated. Outcome measures of local-recurrence free survival (LRFS), 

metastasis-free survival (MFS), and overall survival (OS) were used for analysis; all of 

which were censored at 5-years following surgical resection of the primary disease lesion 

(i.e., the profiled specimen). Full details as to how these outcome measures were 

calculated are detailed in section 2.7.7. The complete proteomic data was first assessed 

by unsupervised clustering. Supervised comparisons were then performed to reveal 

histology-specific proteins. In addition, the representation of several sub-proteome 

datasets (the adhesome, matrisome, immune component and kinome) in the proteomic 

data was investigated500,501,503,545. To build on proteome-wide observations, descriptive 

analyses were used to detail the relationship between sub-proteomes and histological 

subtype. As well as interrogating protein-level data, enrichment analyses were employed 

to query the overarching biological features within the data. This analysis generated 

summary enrichment profiles for each tumour, corresponding to specific biological 

activities, pathways, and drug target profiles. As with sub-proteome investigations, 

observations of broad biological features and targetable signatures were descriptively 

noted. By transforming the proteome-wide data into multiple working datasets, this 

chapter supports the development of a comprehensive proteome-centric understanding 

of STS. It is hypothesised that through extensive descriptive analysis of this data, several 

avenues for further research efforts will emerge.  
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4.2 Results 

4.2.1 Baseline cohort characteristics  

Baseline clinicopathological characteristics of the profiled cohort are detailed in Table 

4.1. In total, 321 primary tumours spanning 11 histological subtypes were profiled. Most 

tumours were either LMS (25%), UPS (17%), SS (13%), or DDLPS (12%). AS comprised 

a moderate proportion of the cohort (9%), and limited numbers of ultra-rare subtypes 

(EPS, ASPS, DSRCT, CCS) were included (5%, 1%, 1%, and 1% respectively). In 

addition, DES, a non-metastatic soft tissue tumour, and RT, a paediatric STS, were 

profiled and comprised 12% and 4% of the cohort respectively. Overall, 63% were 

genomically complex STS (LMS, UPS, DDLPS, AS), 16% genomically simple STS driven 

by fusion events (SS, ASPS, DSRCT, CCS), and 9% genomically simple STS with key 

recurrent mutations (EPS, DES, RT). There were extensive interactions between the 

clinicopathological variables. Pairwise associations are summarised in Supplemental 

Table 4.1. Higher order interactions (i.e., interactions between more than 2 variables) 

were not assessed, but likely exist. Due to the vastly different clinical presentation of 

DES and RT compared to the typical adult STS population, RT is a paediatric subtype, 

and DES a locally infiltrative subtype with no metastatic potential; for the purposes of 

evaluating clinicopathological associations, these diagnoses were included in descriptive 

analyses but excluded from statistical analyses. Median age of the cohort was 58.4 years 

(range: 0.1 - 90). The median ages were highest (> 60 years) for UPS, LMS, DDLPS, 

and AS, and lowest (< 30 years) for DSRCT and ASPS (Supplemental Figure 4.1A). 

Ages of the paediatric RT tumours ranged from 0.1 – 4.7 years. Age also showed an 

association with grade, tumour depth and PS (Supplemental Figure 4.1B-D); with lower 

grade, deep tumours, and a lower PS seen in younger patients. This cohort comprised 

more females than males (62.6% vs 37.1%), driven predominantly by the higher 

incidence of AS in females, which can arise subsequent to radiotherapy for breast 

carcinoma (Supplemental Figure 4.1E). An enrichment of males was seen in CCS, 

DDLPS and DSCRT. Sex was also associated with anatomical site, likely reflective of 

subtype differences and the inclusion of uterine tumours (Supplemental Figure 4.1F). 

Furthermore, sex showed a significant association with tumour size; males harboured 

larger tumours (Supplemental Figure 4.1G). Median tumour size was 90 mm (range: 4 

– 1090), with larger tumours seen in DDLPS patients (Supplemental Figure 4.1H). This 

was reflective of anatomical site, as most DDLPS were retroperitoneal and large 

(Supplemental Figure 4.1I and Supplemental Figure 4.1J). Across the cohort, 

extremities were the most common sites of disease (38.9%). Most AS were trunk wall, 

and most DSRCT were intra-abdominal (Supplemental Figure 4.1I). The only uterine  
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Table 4.1 Clinicopathological features of the cohort.  
Features of total cohort and individual histological subtypes of soft tissue sarcoma (STS). Continuous variables detailed as median, minimum (min), and maximum (max). 
Categorical variables detailed as count (n) and percentage. Abbreviations: AS = angiosarcoma; ASPS = alveolar soft part sarcoma; CCS = clear cell sarcoma; DDLPS = 
dedifferentiated liposarcoma; DES = desmoid tumour; DSRCT = desmoplastic small round cell tumour; EPS = epithelioid sarcoma; LMS = leiomyosarcoma; RT = rhabdoid 
tumour; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma; F = female; M = male; CTX = chemotherapy; RTX = radiotherapy.  

  Total  AS ASPS CCS DDLPS DES DSRCT EPS LMS RT SS UPS 

 n 321 30 4 3 39 37 4 16 80 12 43 53 

Age at 
excision 

(years) 

median 58.4 68.8 22.3 49.1 63 39.3 28.7 38.5 65.3 1.1 42.3 73.5 

min 0.1 27.3 18.1 25.2 35.1 21.2 16.6 18.3 29.3 0.1 19.6 28.2 

max 90 82.7 33.9 61.9 81.3 78.3 46.1 76.8 86.9 4.7 79.4 90 

Tumour 
size (mm) 

median 90 58 68 55 190 90 132.5 50 92.5 - 71 80 

min 4 4 30 9 35 25 70 10 5 - 18 15 

max 1090 400 100 95 1090 500 175 240 400 - 760 360 

Sex [n 

(%)] 

F 201 (62.6) 26 (86.7) 3 (75) 1 (33.3) 15 (38.5) 29 (78.4) 1 (25) 8 (50) 56 (70) 7 (58.3) 27 (62.8) 28 (52.8) 

M 119 (37.1) 4 (13.3) 1 (25) 2 (66.7) 24 (61.5) 8 (21.6) 3 (75) 8 (50) 24 (30) 4 (33.3) 16 (37.2) 25 (47.2) 

unknown 1 (0.3) - - - - - - - - 1 ( 8.3) - - 

Grade [n 

(%)] 

2 115 (35.8) 12 (40) 1 (25) - 19 (48.7) - - 10 (62.5) 47 (58.8) - 23 (53.5) 3 ( 5.7) 

3 139 (43.3) 13 (43.3) - 3 (100) 20 (51.3) - 3 (75) 5 (31.2) 33 (41.2) - 13 (30.2) 49 (92.5) 

unknown 67 (20.9) 5 (16.7) 3 (75) - - 37 (100) 1 (25) 1 ( 6.2) - 12 (100) 7 (16.3) 1 ( 1.9) 

Anatomica

l site [n 
(%)] 

Extremity 125 (38.9) 2 ( 6.7) 4 (100) 3 (100) 2 ( 5.1) 9 (24.3) - 9 (56.2) 31 (38.8) 1 ( 8.3) 26 (60.5) 38 (71.7) 

Head/neck 13 (4) 4 (13.3) - - - 1 ( 2.7) - - - 2 (16.7) 2 ( 4.7) 4 ( 7.5) 

Intra-abdominal 28 (8.7) 2 ( 6.7) - - 3 ( 7.7) 4 (10.8) 3 (75) - 10 (12.5) 3 (25) 2 ( 4.7) 1 ( 1.9) 

Retroperitoneal 57 (17.8) 1 ( 3.3) - - 32 (82.1) - 1 (25) - 19 (23.8) 2 (16.7) 2 ( 4.7) - 

Trunk 65 (20.2) 21 (70) - - 2 ( 5.1) 22 (59.5) - 1 ( 6.2) 2 ( 2.5) 2 (16.7) 7 (16.3) 8 (15.1) 

Pelvic 24 (7.5) - - - - 1 ( 2.7) - 6 (37.5) 9 (11.2) 2 (16.7) 4 ( 9.3) 2 ( 3.8) 

Uterine 9 (2.8) - - - - - - - 9 (11.2) - - - 
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Continuation of table from previous page

Tumour 

depth [n 
(%)] 

Deep 250 (77.9) 15 (50) 4 (100) 3 (100) 38 (97.4) 30 (81.1) 4 (100) 8 (50) 66 (82.5) - 39 (90.7) 43 (81.1) 

Superficial 54 (16.8) 15 (50) - - 1 ( 2.6) 2 ( 5.4) - 8 (50) 14 (17.5) - 4 ( 9.3) 10 (18.9) 

unknown 17 (5.3) - - - - 5 (13.5) - - - 12 (100) - - 

Status at 

excision 
[n (%)] 

Local 301 (93.8) 29 (96.7) 3 (75) 2 (66.7) 36 (92.3) 37 (100) 2 (50) 13 (81.2) 78 (97.5) 6 (50) 42 (97.7) 53 (100) 

Metastatic 15 (4.7) 1 ( 3.3) 1 (25) 1 (33.3) 2 ( 5.1) - 2 (50) - 2 ( 2.5) 5 (41.7) 1 ( 2.3) - 

Locally 

Metastatic 

3 (0.9) - - - - - - 3 (18.8) - - - - 

Multifocal 1 (0.3) - - - 1 ( 2.6) - - - - - - - 

unknown 1 (0.3) - - - - - - - - 1 ( 8.3) - - 

Radiation 

associate
d [n (%)] 

No 285 (88.8) 14 (46.7) 4 (100) 3 (100) 39 (100) 37 (100) 4 (100) 16 (100) 78 (97.5) - 42 (97.7) 48 (90.6) 

Yes 24 (7.4) 16 (53.3) - - - - - - 2 (2.5) - 1 (2.3) 5 (9.4) 

unknown 12 (3.7) - - - - - - - - 12 (100) - - 

Tumour 

margins [n 
(%)] 

R0 133 (41.4) 17 (56.7) 1 (25) 1 (33.3) 9 (23.1) 10 (27) - 11 (68.8) 42 (52.5) - 18 (41.9) 26 (49.1) 

R1 151 (47) 11 (36.7) 3 (75) 2 (66.7) 25 (64.1) 20 (54.1) 1 (25) 5 (31.2) 35 (43.8) - 22 (51.2) 27 (50.9) 

R2 4 (1.2) - - - - 1 ( 2.7) 1 (25) - 1 ( 1.2) - 1 ( 2.3) - 

unknown 33 (10.3) 2 ( 6.7) - - 5 (12.8) 6( 16.2) 2 (50) - 2 ( 2.5) 12 (100) 2 ( 4.7) - 

Performan
ce status 

[n (%)] 

0 158 (49.2) 15 (50) 4 (100) 2 (66.7) 17 (43.6) 28 (75.7) 3 (75) 7 (43.8) 40 (50) - 20 (46.5) 22 (41.5) 

1 82 (25.5) 12 (40) - - 12 (30.8) 4 (10.8) 1 (25) 5 (31.2) 16 (20) - 17 (39.5) 15 (28.3) 

2 16 (5) - - - 2 ( 5.1) - - - 7 ( 8.8) - 3 ( 7) 4 ( 7.5) 

3 5 (1.6) - - - 1 ( 2.6) - - - 1 ( 1.2) - - 3 ( 5.7) 

unknown 60 (18.7) 3 (10) - 1 (33.3) 7 (17.9) 5 (13.5) - 4 (25) 16 (20) 12 (100) 3 ( 7) 9 (17) 

Pre-op 
treatment 

[n (%)] 

CTX 19 (5.9) 5 (16.7) - - 1 ( 2.6) 3 ( 8.1) 3 (75) - - - 7 (16.3) - 

RTX 8 (2.5) - 1 (25) - - - - - 1 ( 1.2) - 6 (14) - 

CTX & RTX 13 (4) - - - - - 1 (25) - - - 12 (27.9) - 

None 267 (83.2) 25 (83.3) 3 (75) 3 (100) 38 (97.4) 34 (91.9) - 15 (93.8) 79 (98.8) - 17 (39.5) 53 (100) 

unknown 14 (4.4) - - - - - - 1 ( 6.2) - 12 (100) 1 ( 2.3) - 
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tumours were uLMS. Most tumours were deep seated (77.9%), with deep tumours 

unsurprisingly reflective of larger tumours (Supplemental Figure 4.1K). Superficial 

tumours were predominantly seen in AS and EPS patients (Supplemental Figure 4.1L). 

There was a slight enrichment of high grade tumours vs intermediate grade tumours 

(35.8% grade 2 and 43.3% grade 3), and this reflected histology (Supplemental Figure 

4.1M). The majority of the cohort were treatment naïve (83.2%). DSRCT and SS were 

the only subtypes where more patients received preoperative treatment than did not. 

Surgical margins were typically either R0 and R1, with an approximate equal split 

between them (41.4% and 47% respectively). At diagnosis, half (49.2%) of patients had 

a PS of 0, and 25.5% a PS of 1. Few patients had a PS > 1, indicative of high functional 

impairment of the patient546, and those that did had either DDLPS, LMS, SS, or UPS. 

7.4% (n = 24) of tumours were aetiologically identified as radiation associated. AS 

accounted for most of the radiation associated lesions overall (66.7%), and most AS 

were radiation-associated (53.3%) occurring secondary to breast carcinoma. 

Missing values in the clinicopathological data were few, although most variables had 

some level of missingness (range: 0% - 29%; Table 4.1). Grade showed the highest 

missingness, however this was due to the inapplicability of grading to DES and RT 

diagnoses. PS also showed high missingness due to incomplete clinical records. A large 

part of the remaining missingness was introduced by the RT cohort, as data was 

unretrievable through collaborators.  

4.2.2 Cohort outcomes and the prognostic significance of 

clinicopathological variables 

Survival data was censored at 5 years and therefore information on longer term 

outcomes was not available. Median LRFS was not reached (Figure 4.1A). Median MFS 

and OS for the cohort were approximately 48 and 52 months respectively (Figure 4.1B-

C). At 5-years post-surgery, 37% of patients had experienced a local recurrence event, 

48% had experienced a metastatic event, and 47% were deceased.  

The Kaplan-Meier curve and univariable Cox regression were used to assess the 

relationship between individual clinicopathological variables and each outcome 

measure. Results of the Cox regression analysis are summarised in Supplemental 

Table 4.2. Survival analyses excluded RT and DES as both differ significantly from the 

typical adult STS population. Due to the heterogeneity of this cohort, many grouped  
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variables were unbalanced. Where biologically, clinically, and statistically appropriate, 

features were combined. The ultra-rare subtypes (ASPS, CCS, DSRCT) were grouped 

as ‘Other’, PS of 2 and 3 were grouped, and tumour margins of R1 and R2 were grouped. 

Of the tumour characteristics, histological subtype was the only variable associated with 

all 3 outcome measures (Figure 4.2A). Compared to the reference population (LMS), 

DDLPS showed a significantly inferior LRFS (HR = 3.32; 95% CI = 1.87 - 5.87; p < 0.001), 

as did AS (HR = 4.45; 95% CI = 2.33 - 8.51; p < 0.001). DDLPS also showed a 

significantly superior MFS (HR = 0.417; 95% CI = 0.21 – 0.829; p = 0.013), and AS 

showed a significantly inferior OS (HR = 1.96; 95% CI = 1.09 – 3.53; p = 0.024). These 

observations are in line with the current literature, which reports DDLPS to have a high 

local recurrence rate and low metastasis rate compared to other common STS subtypes 

such as LMS and UPS341. AS is reported to have poor overall survival rates and a high 

propensity for recurrence (both local and distant)547,548. Notably, the LMS reference 

population also has a reported high metastatic potential245,549–551. Therefore, whilst the 

Cox regression did not show a significant difference in MFS between AS and LMS, 

inspection of the Kaplan-Meier curve did reveal AS to have one of the shortest median 

MFS (~ 28 months), along with EPS (~ 15 months) and ‘Other’ (~ 28 months; Figure 

4.2A). Anatomical site was significantly associated with LRFS (Figure 4.2B). Both 

retroperitoneal and trunk wall showed a poorer LRFS compared to extremity (HR = 2.33; 

95% CI = 1.42 – 3.82; p = 0.001 and HR = 2.08; 95% CI = 1.16 – 3.73; p = 0.014 

 

Figure 4.1 Clinical outcome of the proteome-profiled cohort.  

Kaplan Meier plots showing local recurrence free survival (LRFS; A), metastasis free survival (MFS; B), 
and overall survival (OS; C) up to 5-years post-surgery. Dashed line indicates median survival.  
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respectively). As in previous reports, a higher grade was significantly associated with a 

shorter MFS (HR = 1.89; 95% CI = 1.3 – 2.75; p < 0.001) and shorter OS (HR = 1.984;  

 
Figure 4.2 Clinical outcome of the proteome-profiled cohort stratified by key tumour characteristics 
Kaplan Meier plots showing from left-to-right local recurrence free survival (LRFS), metastasis free survival 
(MFS), and overall survival (OS) up to 5-years post-surgery. (A) Stratification by histological subtype, where 
‘other’ indicates ASPS, DSRCT, and CCS. (B) Stratification by anatomical site. (C) Stratification by French 
Federation of Cancer Center Sarcoma Group (FNCLCC) grade. Abbreviations: AS = angiosarcoma; DDLPS 
= dedifferentiated liposarcoma; EPS = epithelioid sarcoma; LMS = leiomyosarcoma; SS = synovial sarcoma; 
UPS = undifferentiated pleomorphic sarcoma. Corresponding univariable Cox regression results are detailed 
in Supplemental Table 4.2. 
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95% CI = 1.366 – 2.882; p < 0.001; Figure 4.2C), and tumour size was significantly 

associated with LRFS; although the effect size was negligible (HR = 1; 95% CI = 1 - 1; p 

= 0.001)45,46. Of the patient characteristics, a PS of 1 was significantly associated with a 

poorer LRFS compared to PS 0 (HR = 1.7; 95% CI = 1.09 – 2.64; p = 0.019; Figure 

4.3A), and PS of 1 and 2-3 were significantly associated with a poorer OS compared to 

PS 0 (HR = 2.18; 95% CI = 1.44 – 3.31; p < 0.001 and HR = 4.04; 95% CI = 2.31 – 7.09; 

p < 0.001 respectively). Notably, the group of patients for which PS is unknown also 

showed a significantly poorer OS (HR = 1.76; 95% CI = 1.05 – 2.96; p = 0.031). It is 

assumed that the true PS of this ‘unknown’ group, reflect the PS distribution within the 

rest of the cohort. PS is reported to be a strong predictor for overall patient outcome, 

which is corroborated in this cohort45,46,552. Therefore, is it possible that the patients with 

a higher PS in the ‘unknown’ group are driving the significant association with outcome. 

Also consistent with the literature, males are associated with a significantly shorter OS 

(HR = 1.63; 95% CI = 1.15 – 2.3; p = 0.006; Figure 4.3B)45,46. A higher age was 

significantly associated with OS, although as with tumour size the effect size was 

negligible (HR = 1.03; 95% CI = 1.01 – 1.04; p < 0.001). Notably, use of preoperative 

treatment did not impact outcome (Supplemental Figure 4.2A). Data on adjuvant 

therapy for patients was unavailable, limiting conclusions as to the impact of surgery 

alone compared to surgery in combination with chemotherapy or RTX in this cohort. 

Contrary to some published reports, the surgical margins achieved, and the tumour depth 

did not show any relation to outcome (Supplemental Figure 4.2B-C)45,46. 

Use of the Cox regression model relies on 2 assumptions553. Firstly, that the hazard 

functions are proportional over time, i.e., for any 2 individuals the ratio of the hazards are 

constant over time. This is known as the proportional hazards (PH) assumption. 

Secondly, the Cox model assumes that the log hazard of any continuous covariate is 

linear. The assumptions for each clinicopathological variable were therefore assessed in 

null univariable models. All variables satisfied the PH assumption (Schoenfeld test p > 

0.01); however, 4 variables did show minor violations (p: 0.01 - 0.05). Namely, subtype 

in MFS analysis (p = 0.022), preoperative treatment in MFS analysis (p = 0.014), sex in 

OS analysis (p = 0.039), and PS in both MFS and OS analyses (p = 0.043 and 0.026 

respectively). These violations were visually assessed by plotting the deviance and 

Schoenfeld residuals. The deviance residuals portray the contribution of each sample to 

the model. Outliers are indicated by deviance residuals with relative extreme values. As 

such, for model validity deviance residuals are expected to follow an approximate 

symmetrical distribution around 0. The Schoenfeld residuals directly reflect PH. Where 

the PH assumption is met, Schoenfeld residuals show time independence, thus a non- 
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random pattern once plotted indicates PH violation. Herein, the deviance residual plots 

showed reasonable symmetry around 0 in all cases where a minor PH violation was 

highlighted (Supplemental Figure 4.3A,C,E,G). This revealed no concerning outliers or 

overly influential observations. Plotting the Schoenfeld residuals showed minor trends, 

but no obvious difference was seen between the expected and observed events 

(Supplemental Figure 4.3B,D,F,H). Given all observations, use of these variables in the 

Cox regression model was deemed valid. The continuous variables of age and tumour 

size were also assessed for the presence of non-linearity by plotting the martingale 

residuals. Martingale residuals range from -∞ to 1, where in the case of OS a low value 

indicates the patient lived longer than expected based on the model fit, and a value close 

to 1 indicates the patient died sooner than the model would predict. For patient age, the 

linearity assumption was met (Supplemental Figure 4.4). Only minor deviations from 0 

were observed in the highest ages (> 75 years) in the MFS model. Importantly, in the OS 

model, where age was revealed to be significant, good linearity was seen. For tumour 

 
Figure 4.3 Clinical outcome of the proteome-profiled cohort stratified by key patient characteristics 
Kaplan Meier plots showing from left-to-right local recurrence free survival (LRFS), metastasis free survival 
(MFS), and overall survival (OS) up to 5-years post-surgery. (A) Stratification by performance status (PS). 
(B) Stratification by sex. Corresponding univariable Cox regression results are detailed in Supplemental 
Table 4.2. 
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size, clear non-linearity was seen in all outcome models (Figure 4.4A). Martingale 

residuals increased in LRFS up to tumours of 300 mm, and to 150 mm for MFS and OS, 

before decreasing. Strikingly, the case with the lowest martingale residual (LRFS and 

OS) was the largest tumour, indicative of an indolent nature in this case. By contrast, the 

second largest tumour (LRFS, MFS, and OS) had a martingale residual near 1. This data 

point corresponded to a grade 3 SS tumour with metastases present at diagnoses, 

explaining the high martingale residuals. It was evident that tumour size as an 

untransformed continuous variable was unsuitable for inclusion in the Cox regression 

model. To address this, data was log-transformed, and cut-points selected based on 

visual inspection of the martingale residuals. For continuity, the same stratification was 

used across all outcome measures. Cut points were selected at 4 and 5; close to the 

inflection points in LRFS, MFS, and OS, and balancing the number of patients in the 

smallest (< 4) and largest (> 5) groups (n = 65; Figure 4.4B). Implementation of this 

stratification revealed tumours > 5 log(mm) to have a significantly poorer LRFS (HR = 

1.99; 95% CI = 1.29 – 3.06; p = 0.002), and tumours < 4 log(mm) to have a significantly 

superior MFS (HR = 0.451; 95% CI = 0.272 – 0.746; p = 0.002) and OS (HR = 0.542; 

95% CI = 0.323 – 0.912; p = 0.021; Figure 4.4C). The general increase in risk with 

increasing size is consistent with previous studies45,46.  

Multivariable analysis was performed to assess the independent significance of each 

variable, when other clinicopathological variables were adjusted for. Results are 

summarised in Supplemental Table 4.3. Given preoperative treatment is inconsistently 

reported in the literature as a predictor, and herein was not significant in univariable 

analysis, was highly unbalanced, and showed minor PH violations, it was 

excluded45,46,87,88. In brief, multivariable LRFS analysis revealed histological subtype, PS, 

and log(tumour size) to be the only significant variables. The significance of anatomical 

site was lost upon multivariable adjustment. Multivariable MFS analysis revealed all 

variables significant in univariable analysis to retain significance (histological subtype, 

grade, and log(tumour size)). Multivariable OS analysis revealed histological subtype, 

PS, grade, anatomical site, and log(tumour size) as significant variables. The 

significance of age was lost. It is important to recognise that variables may not behave 

identically in univariable and multivariable models. Thus, following multivariable 

modelling, all assumptions were re-assessed as before. Continuity throughout was 

desirable and thus where possible, variables were handled as detailed in the univariable 

analyses. This means that whilst the variables were not optimised to the new model, 

statistical validity was ensured. As before, PH and linearity (for age) assumptions were 

found to be met. Use of the transformed and stratified version of tumour size was valid,  
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and only 2 variables showed minor PH violations (MFS histological subtype Schoenfeld 

p = 0.014; MFS log(tumour size) Schoenfeld p = 0.04; Supplemental Figure 4.5).  

 

 
Figure 4.4 Assessing the linearity of tumour size in Cox regression models 
(A-B) Left to right: plots for local recurrence free survival (LRFS), metastasis free survival (MFS), and overall 
survival (OS) showing martingale residuals against (A) tumour size (B) and log(tumour size). Blue line 
indicates a locally weighted smoothed fit and grey shading the coordinate 95% confidence intervals. Red 
dashed lines (B) indicate selected cut points for categorisation of the variable. (C) Kaplan Meier plots 
showing from left to right LRFS, MFS, and OS up to 5-years post-surgery. Stratification by log(tumour size). 
Corresponding univariable Cox regression results are detailed in Supplemental Table 4.2. 
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4.2.3 The pan-STS proteome landscape 

4.2.3.1 An overview of the proteome of STS 

Proteomic profiling of primary tumour specimens robustly identified and quantified 3,290 

proteins. To visualise the proteome in relation to key clinicopathological variables, 

unsupervised clustering was performed (Figure 4.5A). This evidenced histological 

subtype proteome differences, with some subtypes clustering as individual diagnoses, 

and some clustering in mixed groups. Beyond this, there was no apparent association 

between other clinicopathological features (anatomical site, grade, sex, age and tumour 

size) and the unsupervised clustering results. This was true both at the inter- and intra-

subtype level. For example, high grade tumours of different subtypes did not cluster 

together, and samples of the same histological subtype but different anatomical sites did 

not cluster closely together (e.g., uLMS and stLMS). One major caveat of these 

interpretations is the close associations noted between some of the clinicopathological 

variables (section 4.2.1). Such associations, coupled with the dominant relationship 

seen between histology and the proteome in our data, severely limit comparative 

assessment of other clinicopathological features. Thus, to provide an overview, the 

proteomic data was further analysed solely in the context of histological subtype.  

4.2.3.2 Histological subtype features of the STS proteome 

Individual, distinctive clusters of SS, DES, and LMS were observed; with a few tumours 

of these diagnoses clustering elsewhere (Figure 4.5A). Specifically, only 4 SS, 2 DES 

and 12 LMS clustered outside of their respective main subtype-specific clusters. DDLPS, 

RT, and to a lesser extent UPS tumours mostly clustered as diagnosis specific groups, 

albeit less robustly than SS, DES, and LMS. AS showed the highest level of 

heterogeneity. AS did not form a clear AS-specific cluster, but instead appeared spread 

in multiple clusters alongside other subtypes. However, there were exceptions to these 

clustering patterns, some of which are surprising. For example, SS tumours and LMS 

tumours in this dataset, and previously published transcriptomic studies, showed 

distinctive molecular profiles36,41,165. However, 1 EPS tumour and 1 LMS tumour were 

clustered with SS tumours, and 1 UPS tumour and 1 DSRCT tumour were clustered with 

LMS. These present as ‘outliers’. To better understand whether these are biologically 

true observations, the sample preparation records for these samples were revisited. In 

all cases, the ‘outlier’ was not processed alongside any sample that clustered in the 

vicinity of it (e.g., the DSRCT case was not processed in batches containing LMS 

tumours). As such, cross-contamination in these samples was highly unlikely to be 

driving the results.  
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Complementary to the unsupervised clustering,  PCA, t stochastic neighbour embedding 

(tSNE), and uniform manifold approximation and projection (UMAP) were also used to 

visualise data (Figure 4.5B-D). PCA, tSNE and UMAP are dimension reduction 

approaches which can project high dimensional data in a 2/3-dimension space513–516. 

 

Figure 4.5 The proteome landscape of soft tissue sarcoma (STS).  

(A) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 3290 proteins across 
the study cohort. From top to bottom, panels indicate histological subtype, anatomical site, tumour grade, 
patient sex, patient age, and tumour size. (B-D) Dimension reduction of the proteomic data with individual 
cases coloured by histological subtype, using (B) principal component analysis (PCA), (C) t stochastic 
neighbour embedding (tSNE), and (D) uniform manifold approximation and projection (UMAP). 
Abbreviations: AS = angiosarcoma; ASPS = alveolar soft part sarcoma; CCS = clear cell sarcoma; DDLPS 
= dedifferentiated liposarcoma; DES = desmoid tumour; DSRCT = desmoplastic small round cell tumour; 
EPS = epithelioid sarcoma; LMS = leiomyosarcoma; RT = rhabdoid tumour; SS = synovial sarcoma; UPS = 
undifferentiated pleomorphic sarcoma. 
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PCA is a linear method, which assigns equal weights to all pairwise distances. By 

contrast, tSNE and UMAP are non-linear algorithms which can often achieve better 

preservation of local data structure distances (i.e., within cluster distances) than PCA. In 

many cases, UMAP is superior to tSNE as it can also offer improved global structure 

preservation (i.e., between cluster distances). As a result, the inter-cluster distances in 

UMAP can have more ‘meaning’ than in tSNE and PCA. In this dataset, PCA achieved 

poor clustering with limited separation of samples in PC1 and PC2 (Figure 4.5B). tSNE 

appeared to approximately mimic the unsupervised clustering results (Figure 4.5C). 

UMAP however, due to its ability to preserve global structure, illustrated a strikingly 

prominent LMS signature to be present (Figure 4.5D). In UMAP, most LMS cases 

clustered separately from the rest of the data, suggesting LMS to have the most 

distinctive subtype-specific proteome within this cohort.  

Given the strong observed relationship between histological subtype and the proteomic 

data, supervised comparisons were performed to identify the proteins contributing to 

differences between histologies. To ensure robustness of results, only histological 

subtypes with ≥ 20 samples were interrogated. Each of these subtypes was compared 

to the rest of the cohort using Significance Analysis of Microarrays (SAM) 2-class 

unpaired tests499. Significant differentially expressed proteins (DEPs) were defined as 

those with an FDR < 0.01 and fold change ≥ 1.5. The upregulated DEPs across each 

comparison were then compared to identify subtype-specific (i.e., unique) upregulated 

DEPs. To investigate whether these subtype-specific DEPs contained shared biology, 

the significantly upregulated proteins were queried against the Gene Ontology (GO) and 

Hallmark gene sets from the Molecular Signature Database (MSigDB) using over-

representation analysis512. The GO and Hallmark gene sets comprise an expansive set 

of biological processes and the genes involved in them506–508. As suggested by name, 

gene sets were established at the gene expression level. However, they are applicable 

to any high dimensional data such as proteomics. The major limitation to the use of gene 

sets herein is the low proteome coverage in our dataset (3290 proteins) relative to the 

genome (~25,000 genes). Therefore, to prevent spurious results, a background of only 

those proteins detected in the dataset was used, instead of the whole genome.  

In AS, 386 DEPs were upregulated and 355 downregulated (Figure 4.6A). Of these, 191 

were uniquely upregulated in AS relative to all other samples (Figure 4.6G). AS is a 

disease of the vascular and lymphatic cell lineage4. In accordance with this, upregulated 

AS proteins included those central to angiogenesis (LYN, fold change = 2.841; CD93, 

fold change = 2.844; and PECAM1 (CD31), fold change = 6.25; Supplemental Figure 



 

 133 

4.6)554–556. Overrepresentation analysis of the AS-specific DEPs highlighted leukocyte 

activity and cell adhesion as two features significantly enriched. In DDLPS, 252 DEPs 

were upregulated, and 174 downregulated relative to all other samples (Figure 4.6B). 

Of these, 47 were uniquely upregulated in DDLPS (Figure 4.6G). These included CDK4 

(fold change = 13.14), which is known to be amplified in DDLPS (Supplemental Figure 

4.7)4. Equally, CPM is also reported as amplified in DDLPS by some studies and is 

uniquely upregulated herein (fold change = 1.619; Supplemental Figure 4.7)216. 

Notably, the expression of MDM2, also commonly amplified in DDLPS, was not captured 

within the proteomic data. Over-representation analysis of the DDLPS-specific DEPs 

identified no significant findings. Considering the limited number of DEPs this is 

 

 

Figure 4.6 Proteomic features of soft tissue sarcoma (STS) histological subtypes 

(A-F) Significant analysis of microarray (SAM) 2-class unpaired plots for angiosarcoma (AS; A), 
dedifferentiated liposarcoma (DDLPS; B), desmoid tumour (DES; C), leiomyosarcoma (LMS; D), synovial 
sarcoma (SS; E), and undifferentiated pleomorphic sarcoma (UPS; F) compared to the rest of the cohort. 
Each point is a protein. Proteins within the dashed lines have an FDR ≥ 0.01 and therefore are not 
significantly differentially expressed proteins (DEPs). Proteins in red are significantly upregulated DEPs (fold 
change ≥ 1.5) in the subtype, and proteins in green are significantly downregulated DEPs (fold change < 
0.667) in the subtype. (G) Heatmap showing the proteins (n=1362) uniquely upregulated in histological 
subtypes (FDR < 0.01, fold change ≥1.5), sorted by histology. Annotations indicate key proteins (DDLPS & 
SS) and gene sets identified by overrepresentation analysis (AS, DES, LMS, UPS).  
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unsurprising. In DES, 594 DEPs were upregulated, and 633 downregulated relative to 

all other samples (Figure 4.6C). Of these, 308 were uniquely upregulated in DES 

(Figure 4.6G).  Consistent with DES being characterised as a highly fibrotic tumour with 

abundant deposits of ECM, DEPs included several collagen chains 

(COL11A1/12A1/16A1), as well as P3H3 and P3H4, enzymes responsible for collagen 

hydroxylation and cross-linking (Supplemental Figure 4.8)557. In agreement with this, 

over-representation analysis highlighted ‘collagen organisation’ as enriched. In LMS, 378 

DEPs were upregulated, and 412 downregulated relative to all other samples (Figure 

4.6D). Of these, 256 were uniquely upregulated in LMS (Figure 4.6G). In agreement with 

the LMS cell of origin being smooth muscle, many of the DEPs were muscle-specific 

proteins558. These included MYH11 (fold change = 26.52), MYLK (fold change = 25.847), 

LMOD1 (fold change = 19.526), and SLAMP (fold change = 18.741; Supplemental 

Figure 4.9). As such, over-representation analysis revealed enrichment of ‘muscle 

system’ ontologies. In SS, 475 DEPs were upregulated, and 508 downregulated relative 

to all other samples (Figure 4.6E). Of these, 322 were uniquely upregulated in SS 

(Figure 4.6G). Among the DEPs uniquely upregulated were those involved in DNA 

double strand repair (Figure 1.4A), such as PRKDC (fold change = 2.498), RAD50 (fold 

change = 2.302), XRCC5/6 (fold change = 2.184 and 2.058), and MRE11 (fold change 

= 1.868; Supplemental Figure 4.10). This is in line with previously reported changes in 

the DNA repair activity of SS tumours559,560. Despite the seeming consistent upregulation 

of several DNA repair proteins in SS, over-representation analysis did not identify any 

biological pathways as significantly upregulated. This may be due to poor overall 

coverage of certain gene sets within the proteomic data. Finally, in UPS, 433 DEPs were 

upregulated, and 455 downregulated relative to all other samples (Figure 4.6F). Of 

these, 238 were uniquely upregulated in UPS (Figure 4.6G). Notably, cathepsin-B, -D, -

L, and -Z (CTSB/D/L/Z), key modulators of immune response, and PLAUR, a promoter 

of plasmin formation, were upregulated (Supplemental Figure 4.11)561. In agreement 

with this, over-representation noted and enrichment of the ‘complement cascade’, a 

pathway that amplifies immune response562. Overall, the subtype specific proteomic 

findings confirm expected observations for each subtype queried.  

To assess the expression of subtype-specific DEPs in an independent dataset, the 

TCGA RPPA data was analysed36. Of the subtypes profiled herein, TCGA also assessed 

LMS (n = 80), DDLPS (n = 50), UPS (n = 44), and SS (n = 10) using the RPPA platform. 

Of the proteins identified by MS-based proteomics as upregulated and unique to these 

subtypes, 13 (7 SS-specific, 3 LMS-specific, and 3 UPS-specific) were also assessed  
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Figure 4.7 Validation of subtype-specific enriched proteins. Boxplots showing the normalised 
abundance of proteins uniquely upregulated in (A-B) leiomyosarcoma (LMS) and (C-D) undifferentiated 
pleomorphic sarcoma (UPS) compared to dedifferentiated liposarcoma (DDLPS), and synovial sarcoma 
(SS) in two independent cohorts. (A,C) Normalised protein abundance based on tandem mass tag (TMT) 
mass spectrometry (MS) data from the cohort herein. (B,D) Normalised protein abundance based on the 
reverse-phase protein array (RPPA) data from The Cancer Genome Atlas (TCGA) Sarcoma cohort. Boxes 
indicate 25th and 75th percentile, with median line in the middle, whiskers extending from 25th percentile-
(1.5*IQR) to 75th percentile+(1.5*IQR), and outliers plotted as points. Significance determined by Dunn’s 
tests, * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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within the RRPA data. Given the low number of SS patients profiled as part of the TCGA 

cohort, the SS-specific proteins were not assessed. The LMS-specific proteins assessed 

were MYH11, GAPDH, and SRC. The UPS-specific proteins assessed were PRDX1, 

G6PD, and TFRC. Given, these subtype-specific proteins were derived from proteomic 

data comparisons performed against all other subtypes profiled herein; the MS-based 

proteomic data for TCGA-included subtypes was assessed alongside the RPPA data 

(against LMS, DDLPS, UPS, and SS only). Comparisons were reperformed using 

Kruskal-Wallis and post-hoc Dunn tests. Within both the MS and RPPA data, Kruskal-

Wallis tests identified all proteins to show significantly different expression based on 

histological subtypes (Supplemental Table 4.4, Supplemental Table 4.5). Post-hoc 

Dunn tests in both the MS and RPPA data, revealed MYH11 and SRC as significantly 

enriched in LMS relative to all other subtypes (Figure 4.7A-B, Supplemental Table 4.6, 

and Supplemental Table 4.7). RPPA revealed GAPDH as present at a significantly 

higher level in LMS compared to DDLPS and SS, but not UPS (Figure 4.7B and 

Supplemental Table 4.7); whilst the MS data found high GAPDH in LMS relative to all 

other subtypes (Figure 4.7A and Supplemental Table 4.6). Similarly, post-hoc tests 

illustrated the UPS-specific proteins to be inconsistently observed as enriched in UPS. 

In the MS data, PRDX1 and G6PD were significantly enriched in UPS compared to all 

other subtypes, and TRFC was significantly enriched in UPS compared to DDLPS and 

SS (Figure 4.7C and Supplemental Table 4.6). However, in the RPPA data: PRDX1 was 

significantly higher in UPS compared to LMS; TFRC was significantly higher in UPS 

compared to SS and DDLPS; and G6PD was significantly higher in UPS compared to 

LMS and SS (Figure 4.7D and Supplemental Table 4.7). Overall, subtype comparisons 

based on TCGA RPPA data largely recapitulated the previous SAM-based findings; 

validating LMS- and UPS-enriched proteins. Minor discrepancies in the comparison of 

UPS-specific proteins were highlighted and may be resultant of methodological 

differences between MS measures and antibody measures in RPPA. This illustrates one 

of the central difficulties in validating MS-based proteomic STS research; where no 

comparable independent MS datasets are publicly available. 

4.2.3.3 An overview of the sub-proteomes of STS   

To characterise the composition of the identified proteome, several publicly available 

databases were queried covering the matrisome (n = 1,027), adhesome (n = 232), 

immune component (n = 2,483), and kinome (n = 516)500,501,503,545.  

As mesenchymal tumours, STS are hypothesised to deposit excessive matrisomal 

proteins563. Matrisomal proteins encompass ‘core matrisome’ components, which form 
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the structural basis of the matrisome, as well as ‘matrisome-associated’ proteins, which 

cooperate to remodel ECM and modulate matrisome activity. Together, the core and 

associated matrisome provide architectural support to tissues and facilitate extracellular-

intracellular signalling. At present there is little knowledge surrounding the STS 

matrisome. However, in other cancer types the matrisome is known to modulate disease 

progression, and dictate response and resistance to treatment564–567. The proteomic data 

was therefore assessed for matrisomal content using the MatrisomeDB database501. 

Coverage of the matrisome was 19% (Figure 4.8A). This encompassed 34% of the core 

matrisomal proteins and 13% of the associated matrisomal proteins (Figure 4.8B). 

Unsupervised clustering showed highly similar patterns to proteome-wide data, with the 

main notable difference being a weaker grouping of UPS tumours (Figure 4.8C). 

Inspection of the heatmap illustrated generally higher levels of matrix proteins in DES 

compared to other subtypes. Given the fibrotic nature of DES this is unsurprising. 

Matrisome proteins strongly expressed in DES included collagen chains (e.g., 

COL1A1/2, COL2A1, COL3A1, and COL5A1/2/3) and many other core matrisome 

components (e.g., FBLN1 and PCOLCE). LMS also showed robust high expression of a 

subset of matrisome proteins. These included glycoproteins such as laminins 

(LAMA4/A5/B1/B2/C1) and nidogens (NID1/2), as well as 2 type-IV collagen chains 

(COL4A1 and COL4A2). Interestingly, type-IV collagen, laminins and nidogens are 

essential constituents of basement membrane (BM)568,569. The BM is a specialised and 

networked type of ECM, which structurally separates tissues570. By contrast, the DES-

upregulated matrisome components are not BM-specific but rather comprise mostly 

fibrillar collagen chains which provide tissue strength571. This illustrates the presence of 

structurally and compositionally distinct matrisomes between STS subtypes.  

Tumour cells interact with the matrisome through adhesion molecules. The interaction of 

adhesion receptors with matrisomal proteins triggers intracellular signalling pathways 

and cellular responses tailored to the external cell environment572. Therefore, the 

representation of adhesome proteins in the proteomic data was assessed using the 

function atlas of the integrin adhesome545. The adhesome showed high coverage (47%; 

Figure 4.9A). The bulk of these proteins comprised adapter proteins (coverage = 36%), 

adhesion receptors (coverage = 18%), and actin regulatory proteins (coverage = 14%; 

Figure 4.9B). Unsupervised clustering of the adhesome revealed similar patterns to 

whole proteome clustering (Figure 4.9C). LMS, DES, and SS presented with distinct 

adhesome components, and were grouped in in robust histology-specific clusters. 

Notably, the proteins most highly expressed were seen as enriched in LMS. In 

agreement with the LMS matrisome profile, these included several integrin subunits,  



 

 138 

 

 

Figure 4.8 The matrisome landscape of soft tissue sarcoma (STS).  

(A) Venn diagram showing the overlap between the proteomic dataset and the matrisome database. (B) 
Stacked bar chart showing the representation of each category of matrisome proteins in the proteomic 
dataset. (C) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 193 matrisome 
proteins across the study cohort. Regions of interest highlighted with black dashed boxes, and proteins 
within listed. From top to bottom, panels indicate histological subtype, anatomical site, tumour grade, patient 
sex, preoperative treatment status, patient age, and tumour size. Abbreviations: AS = angiosarcoma; ASPS 
= alveolar soft part sarcoma; CCS = clear cell sarcoma; DDLPS = dedifferentiated liposarcoma; DES = 
desmoid tumour; DSRCT = desmoplastic small round cell tumour; EPS = epithelioid sarcoma; LMS = 
leiomyosarcoma; RT = rhabdoid tumour; SS = synovial sarcoma; UPS = undifferentiated pleomorphic 
sarcoma; ECM = extracellular matrix.  
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Figure 4.9 The adhesome landscape of soft tissue sarcoma (STS).  

(A) Venn diagram showing the overlap between the proteomic dataset and the adhesome database. (B) 
Stacked bar chart showing the representation of each category of adhesome proteins in the proteomic 
dataset. (C) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 110 adhesome 
proteins across the study cohort. Regions of interest highlighted with black dashed boxes, and proteins 
within listed. From top to bottom, panels indicate histological subtype, anatomical site, tumour grade, patient 
sex, preoperative treatment status, patient age, and tumour size. Abbreviations: AS = angiosarcoma; ASPS 
= alveolar soft part sarcoma; CCS = clear cell sarcoma; DDLPS = dedifferentiated liposarcoma; DES = 
desmoid tumour; DSRCT = desmoplastic small round cell tumour; EPS = epithelioid sarcoma; LMS = 
leiomyosarcoma; RT = rhabdoid tumour; SS = synovial sarcoma; UPS = undifferentiated pleomorphic 
sarcoma;  GEF = guanine nucleotide exchange factor; GAP = GTPase-activating proteins. 
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which as dimers (α1β1, α3β1, α7β1) interact with the BM laminins573. As well as 

recapitulating proteome-wide observations, focused interpretation of the adhesome 

provided a different perspective and thus new insights. Whilst proteome-wide data 

showed UPS as a relatively homogeneous group clustered together, the adhesome 

revealed UPS to cluster in 2 spatially distinct regions of the heatmap. Similarly, whilst AS 

showed extensive heterogeneity in the proteome-wide data, use of the adhesome-level 

data identifies AS near exclusively grouped as 2 clusters. This suggests subsets of AS 

tumours share adhesome biology. Indeed, over-representation analysis of AS DEPs did 

identify cell adhesion as a feature uniquely upregulated in AS (Section 4.2.3.2).  

In addition to the matrisome, another key constituent of the tumour microenvironment 

(TME) is the immune component. Given the central role of immune cells in STS biology 

(discussed in section 1.3.1.2), and the promise ICB have shown in a subset of STS 

patients (discussed in  section 1.2.3.4), the proteome was assessed for immune specific 

proteins using the ImmPort database500. The proteomic data covered 13% of the immune 

component, with most immune proteins mapping to classifications of antimicrobial 

(coverage = 29%), antigen procession and presentation (coverage = 10%), or cytokine 

(coverage = 64%; Figure 4.10A-B). Unsupervised clustering showed similar profiles for 

LMS, DES, and UPS to the proteome-wide data (Figure 4.10C). Although, more mixing 

of DDLPS and UPS within clusters was observed here, and an increase in the number 

of LMS tumours clustering cluster away from the main LMS-specific cluster was seen. 

As in the adhesome level data, nearly all AS separated into 2 very distinctive groups. 

Both AS groups were within multi-subtype clusters, one mostly with subsets of DDLPS 

and LMS, and the other mostly with subsets of EPS, UPS, and SS. Immune protein 

abundance appeared higher in the AS, DDLPS, LMS mixed cluster, which specifically 

showed high expression of immunoglobulins and complement proteins. This alludes to 

the identification of an immune high population that spans multiple subtypes. Moreover, 

this reinforces LMS specific studies noting high immune activity in a subset of patients 

and agrees with the favourable responses to ICB seen in subsets of DDLPS 

patients139,140.  

Kinases are central to many oncogenic pathways, and thus are the targets of many anti-

cancer drugs (discussed in section 1.2.3.3). Accordingly, kinase representation in the 

proteomic data was assessed using the protein kinase complement characterised by 

Manning et al503. Of all databases queried, the kinome was the poorest represented 

within the proteomic data (7%; Figure 4.11A). Best coverage was seen for the 

serine/threonine-specific protein kinases (STE; 18%) and CMGC (cyclin-dependent  
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Figure 4.10 The immune landscape of soft tissue sarcoma (STS).  
(A) Venn diagram showing the overlap between the proteomic dataset and the immune database. (B) 
Stacked bar chart showing the representation of each category of immune proteins in the proteomic dataset. 
(C) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 331 immune proteins 
across the study cohort. Regions of interest highlighted with black dashed boxes, and proteins within listed. 
From top to bottom, panels indicate histological subtype, anatomical site, tumour grade, patient sex, 
preoperative treatment status, patient age, and tumour size. Abbreviations: AS = angiosarcoma; ASPS = 
alveolar soft part sarcoma; CCS = clear cell sarcoma; DDLPS = dedifferentiated liposarcoma; DES = 
desmoid tumour; DSRCT = desmoplastic small round cell tumour; EPS = epithelioid sarcoma; LMS = 
leiomyosarcoma; RT = rhabdoid tumour; SS = synovial sarcoma; UPS = undifferentiated pleomorphic 
sarcoma;  TNF = tumour necrosis factor; TGFβ = transforming growth factor β; TCR = T cell receptor; BCR 
= B cell receptor. 
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Figure 4.11 The kinome landscape of soft tissue sarcoma (STS).  
(A) Venn diagram showing the overlap between the proteomic dataset and the kinome database. (B) 
Stacked bar chart showing the representation of each category of kinome proteins in the proteomic dataset. 
(C) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 36 kinases across the 
study cohort. Regions of interest highlighted with black dashed boxes. From top to bottom, panels indicate 
histological subtype, anatomical site, tumour grade, patient sex, preoperative treatment status, patient age, 
and tumour size. Abbreviations: AS = angiosarcoma; ASPS = alveolar soft part sarcoma; CCS = clear cell 
sarcoma; DDLPS = dedifferentiated liposarcoma; DES = desmoid tumour; DSRCT = desmoplastic small 
round cell tumour; EPS = epithelioid sarcoma; LMS = leiomyosarcoma; RT = rhabdoid tumour; SS = synovial 
sarcoma; UPS = undifferentiated pleomorphic sarcoma. 
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kinases (CDK), mitogen-activated protein kinases (MAPK), glycogen synthase kinases 

(GSK) and CDK-like kinases) kinase group (10%; Figure 4.11B). As in the proteome-

wide data, unsupervised clustering showed distinct DES and LMS profiles (Figure 

4.11C). Proteins of note illustrated as highly expressed in LMS included integrin-linked 

kinase (ILK) and SRC. ILK is a β1 integrin signal transducer, notable due to the strong 

β1 integrin and BM signature observed in LMS, whilst SRC has previously been reported 

as a marker to discriminate LMS from UPS574. The kinome also revealed common AS 

biology. In all previous assessments, AS showed a consistently heterogeneous profile. 

Yet using the kinome, AS clustered together, and appeared to show enrichment of 

protein kinase N1 (PKN1), c-terminal Src kinase (CSK), and LYN. Therefore, despite low 

coverage of the complete kinome, this dataset was able to identify candidate kinase 

biology characteristic of the highly heterogeneous AS subtype. Similarly, robust 

clustering of DDLPS was seen; unsurprisingly driven by abundant CDK4.  

4.2.3.4 An overview of the biological features of STS 

To explore overarching biological features within the proteomic dataset, single sample 

GSEA (ssGSEA) was performed. ssGSEA queries pre-defined gene sets such as those 

available within the Molecular Signature Database (MsigDB) to calculate an enrichment 

score for each sample corresponding to each gene set504,509,512. This enrichment score 

is a measure of the coordinated expression of genes within a gene set. To achieve a 

comprehensive understanding of the proteome, ssGSEA was applied to several gene 

set databases: the GO biological processes (BP), the Hallmarks, and the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) 506–508,510. 

GO BP is comprised of 17,949 genes and 7,481 gene sets representing a wide array of 

biological activity506,507. GO BP is a comprehensive dataset that is structured 

hierarchically with broad ‘parent’ ontologies and more specialised ‘child’ ontologies. 

Unsupervised clustering of the ssGSEA GO BP normalised enrichment scores (NES) 

highlighted several notable insights. Consistent with protein-level interpretations, DES 

and SS each showed defined clusters enriched in developmental and ECM processes, 

and DNA processing and cell cycle activity respectively (Figure 4.12). The enrichment 

of DNA activity and cell cycle processes did not however appear restricted to SS. 

Enrichment of these gene sets was also observed in a mixed subtype group comprising 

mostly AS. Consistent with this, recent transcriptomic profiling of AS has noted the 

enrichment of cell cycle genes in a subset of patients575. In contrast to protein-level data, 

GO BP also revealed 2 distinct clusters of LMS. Whilst not formally interrogated it 

appeared that each cluster showed differential immune activity. Broad enrichment of 
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immune gene sets (inflammatory and cellular responses) was notable in 1 group of LMS, 

whilst absent in the other. Indeed, LMS transcriptomic subtypes have been reported to 

show immune variance36,43,274,283. Differences in immune activity were observed across 

the cohort. Yet interestingly this is not simply a presence and absence. There appear 2 

groups of immune related gene sets showing discordant expression across the cohort: 

1 mapping to inflammatory responses, and 1 to cellular response. This supports the 

concept of differential immune activation across STS and is in agreement with literature 

characterising STS into immune subtypes with different features136,231 (section 1.3.1.2).  

 

Within the GO BP gene sets, attempts to cover biology as comprehensively as possible 

have introduced significant redundancy. This often results in repetitive annotations of 

datasets, from which interesting findings can be challenging to decipher. Complementary 

 
Figure 4.12 Gene ontology biological processes (GO BP) landscape of soft tissue sarcoma (STS). 
(A) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 2267 GO BP gene sets 
across the study cohort. Regions of interest highlighted with black dashed boxes and annotated to provide 
an overview of the gene sets within, and the proteins within those gene sets. From top to bottom, panels 
indicate histological subtype, anatomical site, tumour grade, patient sex, preoperative treatment status, 
patient age, and tumour size. Abbreviations: AS = angiosarcoma; ASPS = alveolar soft part sarcoma; CCS 
= clear cell sarcoma; DDLPS = dedifferentiated liposarcoma; DES = desmoid tumour; DSRCT = 
desmoplastic small round cell tumour; EPS = epithelioid sarcoma; LMS = leiomyosarcoma; RT = rhabdoid 
tumour; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma. 
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to GO BP, and more streamlined, are the Hallmarks. The Hallmarks comprise only 4,383 

genes and 50 gene sets508. They concisely describe key biological activity and were 

constructed through the refinement of multiple other gene sets (‘founder’ sets). 

Application of the Hallmarks against the proteomic dataset and subsequent 

unsupervised hierarchical clustering revealed a starkly different profile to the protein-

level data and GO BP features (Figure 4.13). The only consistent finding was a robust 

separation of DES from the rest of the cohort; seemingly driven by an enrichment of   

 

TGFβ signalling, EMT, and angiogenesis. Beyond this, huge inter- and intra-subtype 

heterogeneity was revealed; even for the typically well-defined LMS and SS subtypes. 

For example, one group of Hallmarks which showed high pan-subtype (SS, RT, AS, 

DDLPS, LMS, UPS) enrichment were the MYC and E2 factor (E2F) targets, and G2/M 

 
Figure 4.13 Hallmark landscape of soft tissue sarcoma (STS). 
(A) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 45 Hallmark gene sets 
across the study cohort. Regions of interest highlighted with black dashed boxes. From top to bottom, panels 
indicate histological subtype, anatomical site, tumour grade, patient sex, preoperative treatment status, 
patient age, and tumour size. Abbreviations: AS = angiosarcoma; ASPS = alveolar soft part sarcoma; CCS 
= clear cell sarcoma; DDLPS = dedifferentiated liposarcoma; DES = desmoid tumour; DSRCT = 
desmoplastic small round cell tumour; EPS = epithelioid sarcoma; LMS = leiomyosarcoma; RT = rhabdoid 
tumour; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma. 
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checkpoint. These hallmarks are proliferative signatures associated with cell cycle 

activity. The subtype-independent enrichment of these scores highlights common 

biology within a subset of STS patients. Excessive proliferation supports rapid tumour 

growth which can confer aggressive tumour behaviour. Indeed, MYC deregulation and 

enrichment of the G2/M hallmark have been found to be associated with poor clinical 

outcome in other cancer types576–578. In STS, grade is a clear and consistent 

prognosticator for outcome (section 1.2.2.1 and section 4.2.2), thus it was hypothesised 

that tumours showing high MYC and G2/M activity were of higher grade. However, 

inspection of the clustering showed no apparent relationship between high enrichment 

of these hallmarks and high grade tumours.  

KEGG comprises 5,245 genes within 186 gene sets510. In contrast to GO BP and 

Hallmarks which are collections of gene sets describing broad biological activities, KEGG 

is a pathway database. Each KEGG gene set details a group of genes that exist within 

the same pathway or process. Unsupervised hierarchical clustering of the ssGSEA 

KEGG NES highlighted UPS as high in immune activity, in agreement with previous 

findings herein and in published literature36,220 (Figure 4.14). Analyses also illustrated 

robust clustering of LMS and DES as individual subtypes. However, within the LMS 

cluster evident heterogeneity was revealed. This heterogeneity was particularly seen in 

the enrichment level of metabolic pathways, consistent with a reported LMS subtype with 

metabolic enrichment281.  

4.2.3.5 An overview of drug target profiles in STS 

Current treatment for advanced STS is predominantly structured as a “one size fits all” 

approach, whereby molecular heterogeneity is not considered (section 1.2.3). Low 

response rates across the STS population illustrate a need for targeted approaches to 

treatment. Therefore, to assess whether the STS proteome can reveal candidate drugs 

for personalised treatment, the Drug Signature Database (DSigDB) was queried and 

ssGSEA performed as before511. DSigDB is a collection of gene sets which correspond 

to drug targeting profiles. It is categorised into 4 levels: D1 approved drugs; D2 kinase 

inhibitors; D3 perturbagen signatures; and D4 computational drug signatures. To reveal 

candidates with high clinical applicability, analysis was restricted to D1. Unsupervised 

clustering of the D1 NES revealed extensive heterogeneity within histological subtypes 

(Figure 4.15). Notably, there was no apparent correlation between pre-operative 

treatment status and the drug target profile of these tumours. Overall, clustering 

appeared influenced by vincristine, podophyllotoxin, paclitaxel, and vinblastine. Except 

for the tubulin inhibitor podophyllotoxin, these are anti-neoplastic drugs579–581. The target 
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profiles of these drugs showed high enrichment in DES and a subset of LMS, and 

strikingly low enrichment in a mixed group of mostly AS and DDLPS. Paclitaxel is a first-

line treatment of choice for AS, thus it is highly surprising that AS tumours show low 

abundance of the proteins targeted by paclitaxel104. Heterogeneity of AS may explain 

this, as responses to paclitaxel are not universally observed in all AS patients582,583. 

Alternatively, the restricted proteome coverage compared to the genome may be limiting 

interpretation. Indeed, of the 11 genes within the paclitaxel target profile, only 3 are 

captured within the proteomic data. Notably, TKIs (gefitinib, bosutinib, sunitinib, 

crizotinib, nilotinib, dasatinib, vandetanib, axtinib, and sorafenib) cluster together and all 

show similar levels of heterogeneity and subtype-independence across the cohort 

Figure 4.15). In TKI clinical trials in STS, poor ORR are frequently observed (as 

discussed in section 1.2.3.3). It has been hypothesised that heterogeneity in mixed  

 

 
Figure 4.14 Kyoto encyclopaedia of genes and genomes (KEGG) landscape of soft tissue sarcoma. 
(A) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 125 KEGG gene sets 
across the study cohort. Regions of interest highlighted with black dashed boxes and annotated to provide 
an overview of the gene sets within. From top to bottom, panels indicate histological subtype, anatomical 
site, tumour grade, patient sex, preoperative treatment status, patient age, and tumour size. Abbreviations: 
AS = angiosarcoma; ASPS = alveolar soft part sarcoma; CCS = clear cell sarcoma; DDLPS = 
dedifferentiated liposarcoma; DES = desmoid tumour; DSRCT = desmoplastic small round cell tumour; EPS 
= epithelioid sarcoma; LMS = leiomyosarcoma; RT = rhabdoid tumour; SS = synovial sarcoma; UPS = 
undifferentiated pleomorphic sarcoma; NSCLC = non-small cell lung cancer; NK = natural killer.  
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subtype STS clinical trials masks any ORR benefit that may be observable in a subset 

of patients. The enrichment of TKIs targeting profiles herein supports this clinically 

observed heterogeneity in responses across subtypes.  

 

4.3 Discussion and summary 

This chapter has presented a proteomic overview of multiple histological subtypes of 

STS. To date, this represents the largest proteomic profiling effort in STS by far, making 

the dataset a hugely rich resource.  

The profiled cohort had specific and deliberate features. Firstly, to establish the baseline 

proteomic profile of STS, this cohort was restricted to primary tumours only. This 

prevented the introduction of heterogeneity resultant of disease stage. Secondly, the 

cohort was designed to include multiple histological subtypes, reflective of disease 

incidence234,235. The inclusion of more prevalent subtypes (LMS, DDLPS, UPS, SS) in 

higher numbers enables data for these diagnoses to be utilised for in-depth and 

 
Figure 4.15 Drug target profile expression in soft tissue sarcoma (STS). 
(A) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 27 Drug Signature 
database (DSigDB) D1 profiles across the study cohort. From top to bottom, panels indicate histological 
subtype, anatomical site, tumour grade, patient sex, preoperative treatment status, patient age, and tumour 
size. Abbreviations: AS = angiosarcoma; ASPS = alveolar soft part sarcoma; CCS = clear cell sarcoma; 
DDLPS = dedifferentiated liposarcoma; DES = desmoid tumour; DSRCT = desmoplastic small round cell 
tumour; EPS = epithelioid sarcoma; LMS = leiomyosarcoma; RT = rhabdoid tumour; SS = synovial sarcoma; 
UPS = undifferentiated pleomorphic sarcoma. 
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statistically robust assessments. This facilitates analyses that may be applicable to a 

non-trivial proportion of the STS population. At the other extreme, including ultra-rare 

tumours (ASPS, CCS, DSRCT, EPS) provides invaluable data for patients with huge 

unmet need. Research and clinical practice in ultra-rare STS are often founded in data 

from limited case studies44. Thus, providing comprehensive molecular profiling for as few 

as 3-4 patients with ultra-rare diagnoses is vitally important. In line with standard of care 

for most primary STS in the UK being surgical resection alone, most of the cohort were 

treatment naïve44. The exceptions to this (DSRCT and SS) are known to routinely receive 

neoadjuvant therapy44,584,585. Also in agreement with literature reports, age was 

associated with subtype, and retroperitoneal tumours tended to be large at 

diagnosis586,587. This is due to the retroperitoneum having a large potential space which 

permits tumours to grow undetected. Given the study inclusion criteria herein, the cohort 

was therefore largely representative of the STS disease population. Features of note that 

may deviate from some other STS studies were: 1) a underrepresentation of uLMS 

tumours relative to incidence (9% of the LMS cohort vs 25% of all LMS diagnoses), and 

2) an enrichment of high grade tumours, likely reflective of the complex patient caseload 

seen at RMH, where most samples were sourced, and the inclusion of putative high-

grade subtypes (e.g., ASPS, CCS, EPS)303. As anticipated, clinicopathological variables 

showed extensive interactions, particularly with histological subtype. In addition, key 

clinicopathological features such as tumour grade, histological subtype, and anatomical 

site were associated with clinical outcome measures, consistent with current 

literature45,46. Thus, as a clinically annotated, representative cohort, the proteomic data 

generated is of wide-reaching relevance to the STS research and clinical communities.  

As well as providing an overview of the profiled cohort, this chapter also covered a top-

level interpretation of the STS proteome landscape. The comprehensive dataset was 

assessed by both unsupervised and supervised methods, revealing subtype-specific 

proteome features. By leveraging the richness of this dataset, sub-proteomes mapping 

to key biological entities were also characterised. Further to considering protein-level 

information, the expression of broader biological features from MSigDB and the 

targetable profiles of drugs from DSigDB were assessed. Specifically, these were 

descriptively detailed with reference to histological subtype. Taken together these 

analyses revealed both known and novel biological features and identified research 

avenues that warrant further investigation. 

The proteome-wide data was shown to strongly associate with histological subtype. 

Reiterating results of large-scale transcriptomic studies of STS, distinctive molecular 
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profiles of LMS, DES, and SS were seen, with clustering illustrating each subtype to 

harbour specific proteome features36,41,165. However, there were some ‘outlier’ cases 

unexpectedly clustering within the robust subtype-specific clusters of SS, DES, and LMS. 

One reason for this may be the significant heterogeneity within histological subtypes of 

STS. Alternatively, these may represent misdiagnoses. Although these patients were 

diagnosed by experienced histopathologists at a specialist sarcoma centre, STS 

diagnosis is challenging, and misdiagnosis can still occur. Indeed, other molecular 

profiling studies, such as the sarcoma methylation classifier and TCGA study have 

reported reclassification of STS following analysis36,367.  

AS showed the most heterogeneous profile of all subtypes assessed. This may be 

resultant of the inclusion of both secondary radiation-associated AS and primary 

sporadic AS. Despite this heterogeneity, supervised analysis did reveal an enrichment 

of cell adhesion and leukocyte-related activity to be specific to AS tumours. The 

relevance of cell adhesion to AS tumours is unknown, however an enrichment of an 

immune process is pertinent, as a subset of AS patients have been shown to respond to 

ICB intervention575,588–593. Also consistent with the known biology of each subtype: 

DDLPS, characterised by amplification of the CDK4-containing genomic locus, showed 

high CDK4 expression; DES, a fibrotic tumour, showed enrichment of ECM processes; 

LMS, a smooth muscle derived subtype, showed enrichment of muscle related 

processes; SS, a tumour with increased replication stress, showed enrichment of DNA 

repair proteins; and UPS showed enrichment of the complement 

cascade4,36,220,348,557,559,560. Interestingly, PLAUR a promoter of plasmin formation was 

also upregulated in UPS. Plasmin is central to the coagulation pathway, a process highly 

interconnected with the complement cascade594–596. These observations highlight 

immune activity in UPS and are consistent with previous molecular profiling studies 

showing UPS as immune-enriched36,220. Moreover, this is also in line with clinical trials 

showing favourable ICB responses in UPS patients139,140. This recapitulation of known 

tumour biology offers reassurances as to the ability of the MS dataset to accurately 

capture tumour profiles. 

The noted matrisomal enrichment in DES is expected given known tumour 

characteristics557. Yet, a surprising enrichment of matrisome components was also 

observed in LMS. Specifically, LMS were abundant in BM proteins. Furthermore, 

adhesome data highlighted an enrichment of BM-specific integrins in LMS. In cancer, the 

BM plays many important roles, such as relaying extracellular signals intracellularly and 

structurally encapsulating the tumour569,570,597. Structurally, the BM prevents local tumour 
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invasion of adjacent tissues. Therefore, it is hypothesised that the BM-dominant 

matrisome and adhesome of LMS underlies the relatively low likelihood of local 

recurrence in LMS. Equally, the lower expression of BM proteins in DES may explain the 

high locally invasive nature of this subtype557. Notably, the BM also functions to prevent 

metastasis569,598. It would therefore be of interest to investigate ECM, and specifically 

BM, changes in metastatic LMS disease. At present the biological roles of matrisome in 

LMS has not been explored, thus this illustrates an example of novel biology revealed 

through MS profiling.  

Further to deciphering contrasting features between subtypes of STS, this chapter also 

highlighted subtype-specific heterogeneity. In proteome-wide data, LMS show the most 

distinctive proteome with a strong smooth muscle phenotype. Yet, when the data was 

focused to the immune component, and GO BP and KEGG enrichment profiles 

generated, LMS heterogeneity was observed. This is consistent with multiple studies 

suggesting transcriptomic subtypes of LMS exist36,43,274,281–283. Notably, the 

transcriptomic subtypes have been revealed in cohorts restricted to LMS samples. It is 

striking that herein, where LMS data is relative to other STS, subtypes are also seen. 

LMS heterogeneity is observed in the context of immune features (immune component, 

and GO BP), and metabolic features (KEGG). In agreement, the reported transcriptomic 

subtypes of LMS exhibit differential immune and metabolic activity36,43,274,281,283. AS also 

showed proteomic heterogeneity. In the proteome-wide, adhesome, matrisome, and 

immune component data, AS cluster poorly and fall broadly into 2-3 heatmap regions. 

This is also observed in the GO BP, KEGG, and hallmark measures. Inspection 

suggested the level of immune activity, cell cycle activity, and DNA repair activity may 

underlie the observed heterogeneity. Supervised analyses noted leukocyte activity as 

enriched in AS, thus whilst this immune process may be dominant relative to other 

subtypes, immune activity within AS appears more nuanced. This may offer an 

explanation as to why ICB responses are only observed in a subset of AS patients575,588–

593. 

The inclusion of multiple histological subtypes and co-ordinate analysis in this study 

supported discovery of pan-subtype biology. For example, immune features (immune, 

GO BP, KEGG) are repeatedly identified to show differing expression across subtype. 

This expression showed limited relation to histology and is in line with previous 

literature136,231. In addition, pan-subtype analysis of DSigDB profiles also showed 

extensive heterogeneity with relation to histological subtype. This is in agreement with 

many clinical trials in STS and current clinical practice, where highly varied treatment 
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responses are achieved (as discussion in section 1.2.3). Whilst patients with certain 

subtype diagnoses do respond more favourably to certain interventions (eg. GEM+DOC 

in uLMS; section 1.2.3.2), trends are not consistent, and responses are seen across 

histological subtypes.  

Within this chapter there were limitations. In order to characterise the baseline proteomic 

profile of STS, the cohort comprised solely primary tumours. Yet this was at the cost of 

limiting the applicability of any findings. The extent to which primary and 

recurrent/metastatic STS proteomes share biology is unknown. Therefore, biological 

insights revealed in primary tumours may not be translatable to advanced STS patients. 

Given the baseline proteome has now been characterised as a result of this project, 

future directions of interest include the profiling of matched recurrence and/or metastasis 

samples. Indeed, several candidate samples for such analyses have been processed 

and data has begun to be collected (Chapter 3). Additionally, no ‘normal’ specimens 

were profiled. All data is therefore relative to the other STS samples analysed, and does 

not facilitate the differentiation between malignant STS and normal tissue. As a result, 

despite observed enrichment of a certain protein or biological process, such biology may 

not be specific to the malignancy. It is crucial to interpret any findings as relative to the 

full cohort. The absence of ‘normal’ tissue herein is due to a lacking definition of what 

‘normal’ represents in STS. For some subtypes, such as LMS, a clear cell of origin is 

known; yet in most cases the identification of a suitable ‘normal’ tissue is not possible4. 

Furthermore, even where a suitable ‘normal’ tissue is identified, availability is often 

limited. Practically, ‘normal’ tissue entails use of adjacent/margin tissue. Yet tissue 

adjacent to a tumour can vary extensively, is influenced by the tumour itself, and thus is 

not truly ‘normal’. 

In addition to cohort limitations, methodological limitations were also present. The gene 

sets and databases queried herein are rooted in transcriptomic data, and therefore 

subsequent analyses produce more robust insights when genome coverage is high. This 

is challenging to achieve with MS data and difficulties are heightened where the 

database or gene set profile is small itself. In most analyses herein, known biological 

features were observed suggesting use of these approaches is valid. However, the 

appropriateness of DSigDB use, given drug target profiles can be small, is unclear. 

Another limitation of this chapter is the reliance on descriptive analysis. This restricts 

interpretation and the robustness of observations and claims. Yet, descriptive 

assessment was sufficient in achieving the objectives of this chapter. A wide range of 

proteomic-derived information, both known and novel, has been captured and this has 
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led to promising avenues for future research being identified. Despite the lack of formal 

statistical assessments, this chapter forms the first step toward establishing a much-

needed proteomic understanding of STS. 
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4.4 Supplemental material  

4.4.1 Supplemental Figures  

 

 
 

 
 

Supplemental Figure 4.1 Associations between clinicopathological variables. 
(A-M) Density plots and box plots are shown for associations between continuous and categorical variables. 
Boxes indicate 25th and 75th percentile, with median line in the middle, whiskers extending from 25th 
percentile-(1.5*IQR) to 75th percentile+(1.5*IQR), and outliers plotted as points. Stacked bar plots for number 
and percentage are shown for associations between 2 categorical variables. Plots illustrate the relationship 
between (A) histological subtype and age, (B) grade and age, (C) tumour depth and age, (D) performance 
status and age, (E) histological subtype and sex, (F) anatomical site and sex, (G) tumour size and sex, (H) 
tumour size and histological subtype, (I) histological subtype and anatomical site, (J) tumour size and 
anatomical site, (K) tumour size and tumour depth, (L) histological subtype and tumour depth, (M) 
histological subtype and grade. Abbreviations: FNCLCC = French Federation of Cancer Center Sarcoma 
Group; AS = angiosarcoma; DDLPS = dedifferentiated liposarcoma; EPS = epithelioid sarcoma; LMS = 
leiomyosarcoma; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma. Corresponding 
statistical tests are detailed in Supplemental Table 4.1 



 

 155 

 

 

 
Supplemental Figure 4.2 Clinical outcome of the proteome-profiled cohort stratified by non-
significant tumour and patient characteristics.  
Kaplan Meier plots showing from left to right, local recurrence free survival (LRFS), metastasis free survival 
(MFS), and overall survival (OS) up to 5-years post-surgery. (A) Stratification by preoperative treatment 
status, where ‘Yes’ indicates patients that received either chemotherapy, radiotherapy, or chemotherapy and 
radiotherapy in the neoadjuvant setting. (B) Stratification by tumour margin. (C) Stratification by tumour 
depth. Corresponding univariable Cox regression results are detailed in Supplemental Table 4.2. 
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Supplemental Figure 4.3 Assessment of the proportional hazards (PH) assumption in null univariable 
Cox models.  
Plots shown for variable-model combinations where a minor violation of the PH assumption was identified: 
(A-B) histological subtype and metastasis free survival (MFS); (C-D) sex and overall survival (OS); (E-F) 
performance status and MFS; (G-H) performance status and OS. Deviance residuals (A,C,E,G) plotted for 
each observation. Red dashed line at 0, blue line indicates a locally weighted smoothed fit and grey shading 
the coordinate 95% confidence intervals. Scaled Schoenfeld residuals (B,D,F,H) plotted over time for each 
observation. Solid black line indicates a smoothed spline fit of residuals and dashed black lines indicate +/- 
2-standard error.  
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Supplemental Figure 4.4 Assessing the linearity of age in Cox regression models.  
Left to right: plots for local recurrence free survival (LRFS), metastasis free survival (MFS), and overall 
survival (OS) showing martingale residuals against age. Blue line indicates a locally weighted smoothed fit 
and grey shading the coordinate 95% confidence intervals. 
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Supplemental Figure 4.5 Assessment of the proportional hazards (PH) assumption in multivariable 
Cox models.  
Plots shown for variable-model combinations where a minor violation of the PH assumption was identified 
(subtype and metastasis free survival (MFS) and size and MFS). Scaled Schoenfeld residuals plotted over 
time for each observation. Solid black line indicates a smoothed spline fit of residuals and dashed black 
lines indicate +/- 2-standard error. 
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Supplemental Figure 4.6 Angiosarcoma (AS)-specific enriched proteins. 
Box plots showing normalised abundance of select significant differentially expressed proteins (DEPs; fold 
change ≥ 1.5; FDR < 0.01) in AS compared to the rest of the cohort. Boxes indicate 25th and 75th percentile, 
with median line in the middle, whiskers extending from 25th percentile-(1.5*IQR) to 75th 
percentile+(1.5*IQR), and outliers plotted as points. Abbreviations: CD93 = cluster of differentiation 93; 
PECAM1 = platelet and endothelial cell adhesion molecule 1; LYN = lyn proto-oncogene. 
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Supplemental Figure 4.7 Dedifferentiated liposarcoma (DDLPS)-specific enriched proteins.  
Box plots showing normalised abundance of select significant differentially expressed proteins (DEPs; fold 
change ≥ 1.5; FDR < 0.01) in DDLPS compared to the rest of the cohort. Boxes indicate 25th and 75th 
percentile, with median line in the middle, whiskers extending from 25th percentile-(1.5*IQR) to 75th 
percentile+(1.5*IQR), and outliers plotted as points. Abbreviations: CDK4 = cyclin dependent kinase 4; CPM 
= carboxypeptidase M. 
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Supplemental Figure 4.8 Desmoid tumour (DES)-specific enriched proteins.  
Box plots showing normalised abundance of select significant differentially expressed proteins (DEPs; fold 
change ≥ 1.5; FDR < 0.01) in DES compared to the rest of the cohort. Boxes indicate 25th and 75th percentile, 
with median line in the middle, whiskers extending from 25th percentile-(1.5*IQR) to 75th 
percentile+(1.5*IQR), and outliers plotted as points. Abbreviations COL11A1/12A1/16A1 = collagen type 
11/12/16 alpha 1 chain; P3H3/4 = prolyl 3-hydroxylase 3/4. 
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Supplemental Figure 4.9 Leiomyosarcoma (LMS)-specific enriched proteins.  
Box plots showing normalised abundance of select significant differentially expressed proteins (DEPs; fold 
change ≥ 1.5; FDR < 0.01) in LMS compared to the rest of the cohort. Boxes indicate 25th and 75th percentile, 
with median line in the middle, whiskers extending from 25th percentile-(1.5*IQR) to 75th 
percentile+(1.5*IQR), and outliers plotted as points. Abbreviations: MYH11 = myosin heavy chain 11; MYLK 
= myosin light chain kinase; LMOD1 = leiomodin 1; SLMAP = sarcolemma associated protein. 
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Supplemental Figure 4.10 Synovial sarcoma (SS)-specific enriched proteins.  
Box plots showing normalised abundance of select significant differentially expressed proteins (DEPs; fold 
change ≥ 1.5; FDR < 0.01) in SS compared to the rest of the cohort. Boxes indicate 25th and 75th percentile, 
with median line in the middle, whiskers extending from 25th percentile-(1.5*IQR) to 75th 
percentile+(1.5*IQR), and outliers plotted as points. Abbreviations: PRKDC = protein kinase, DNA-activated, 
catalytic subunit; XRCC5/6 = X-ray repair cross complementing 5/6; RAD50 = RAD50 double strand break 
repair protein; MRE11 = MRE11 homolog, double strand break repair nuclease. 
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Supplemental Figure 4.11 Undifferentiated pleomorphic sarcoma (UPS)-specific enriched proteins. 
Box plots showing normalised abundance of select significant differentially expressed proteins (DEPs; fold 
change ≥ 1.5; FDR < 0.01) in UPS compared to the rest of the cohort. Boxes indicate 25th and 75th percentile, 
with median line in the middle, whiskers extending from 25th percentile-(1.5*IQR) to 75th 
percentile+(1.5*IQR), and outliers plotted as points. Abbreviations: CTSB/L/Z/D = cathepsin B/L/Z/D; PLAUR 
= plasminogen activator, urokinase receptor. 
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4.4.2 Supplemental Tables 

 
 

  

 
Supplemental Table 4.1 Statistical associations between clinicopathological features. 
Significant results in bold. 

Variable 1 Variable 2 Test performed 
Test 

statistic 

Degrees 
of 

freedom 

p FDR 

Anatomical site Grade Chi-squared 8.847 6 0.182 0.274 

Anatomical site Performance status Chi-squared 25.094 12 0.014 0.038 

Anatomical site Tumour depth Chi-squared 29.272 6 < 0.001 < 0.001 

Anatomical site Tumour margin Chi-squared 20.942 12 0.051 0.098 

Histological subtype Anatomical site Chi-squared 230.782 36 < 0.001 < 0.001 

Histological subtype Grade Chi-squared 41.690 6 < 0.001 < 0.001 

Histological subtype Performance status Chi-squared 12.928 12 0.374 0.462 

Histological subtype Sex Chi-squared 17.220 6 0.009 0.026 

Histological subtype Tumour depth Chi-squared 35.450 6 < 0.001 < 0.001 

Histological subtype Tumour margin Chi-squared 8.174 4 0.085 0.149 

Performance status Grade Chi-squared 1.231 2 0.540 0.597 

Sex Anatomical site Chi-squared 19.526 6 0.003 0.012 

Sex Grade Chi-squared 0.012 1 0.914 0.914 

Sex Performance status Chi-squared 1.650 2 0.438 0.511 

Sex Tumour depth Chi-squared 4.467 1 0.035 0.081 

Sex Tumour margin Chi-squared 3.013 2 0.222 0.310 

Tumour depth Grade Chi-squared 0.018 1 0.892 0.914 

Tumour depth Performance status Chi-squared 13.071 2 0.001 0.006 

Tumour depth Tumour margin Chi-squared 6.393 2 0.041 0.086 

Tumour margin Grade Chi-squared 4.379 2 0.112 0.181 

Tumour margin Performance status Chi-squared 4.941 4 0.293 0.385 

Age Anatomical site Kruskal-Wallis 10.154 6 0.118 0.164 

Age Grade Kruskal-Wallis 18.347 1 < 0.001 < 0.001 

Age Histological subtype Kruskal-Wallis 68.073 6 < 0.001 < 0.001 

Age Performance status Kruskal-Wallis 28.290 2 < 0.001 < 0.001 

Age Sex Kruskal-Wallis 1.936 1 0.164 0.177 

Age Tumour depth Kruskal-Wallis 6.526 1 0.011 0.019 

Age Tumour margin Kruskal-Wallis 4.451 2 0.108 0.164 

Tumour size Anatomical site Kruskal-Wallis 73.934 6 < 0.001 < 0.001 

Tumour size Grade Kruskal-Wallis 0.199 1 0.655 0.655 

Tumour size Histological subtype Kruskal-Wallis 60.947 6 < 0.001 < 0.001 

Tumour size Performance status Kruskal-Wallis 3.989 2 0.136 0.164 

Tumour size Sex Kruskal-Wallis 12.030 1 < 0.001 0.001 

Tumour size Tumour depth Kruskal-Wallis 26.937 1 < 0.001 < 0.001 

Tumour size Tumour margin Kruskal-Wallis 3.928 2 0.140 0.164 
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Supplemental Table 4.2 Univariable Cox regression assessing clinicopathological features. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval. 

    LRFS MFS OS 

  
 

HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
1 (0.992-1.01) 0.581 

1.01 (0.996-

1.02) 
0.226 

1.03 (1.01-

1.04) 

<0.00

1 

Tumour size (mm) 1 (1-1) 0.001 1 (0.998-1) 0.662 1 (0.999-1) 0.307 

Sex F (ref) - - - - - - 

M 1.47 (0.994-

2.17) 
0.054 

1.01 (0.702-

1.45) 
0.966 1.63 (1.15-2.3) 0.006 

Histological 

subtype 

LMS (ref) - - - - - - 

UPS 1.26 (0.648-

2.44) 
0.499 

1.02 (0.628-

1.65) 
0.942 

1.56 (0.968-

2.5) 
0.068 

SS 1.36 (0.669-

2.77) 
0.395 

0.54 (0.286-

1.02) 
0.058 

0.793 (0.414-

1.52) 
0.483 

DDLPS 
3.32 (1.87-5.87) 

<0.00
1 

0.417 (0.21-
0.829) 

0.013 
1.25 (0.731-

2.12) 
0.420 

AS 
4.45 (2.33-8.51) 

<0.00
1 

1.39 (0.783-
2.46) 

0.261 
1.96 (1.09-

3.53) 
0.024 

EPS 1.96 (0.789-

4.85) 
0.147 

1.53 (0.747-

3.13) 
0.245 

0.996 (0.421-

2.36) 
0.993 

Other 
1.27 (0.38-4.28) 0.694 

1.39 (0.594-

3.27) 
0.445 

0.719 (0.222-

2.33) 
0.582 

Anatomical 
site 

Extremity (ref) - - - - - - 

Head & neck 
1.3 (0.397-4.27) 0.662 

0.766 (0.277-
2.12) 

0.607 1 (0.363-2.78) 0.994 

Intra-
abdominal 

2.06 (0.977-
4.34) 

0.058 
1.56 (0.849-

2.86) 
0.152 

1.68 (0.93-
3.03) 

0.086 

Pelvis 1.44 (0.631-

3.27) 
0.389 

0.954 (0.471-

1.93) 
0.896 

0.881 (0.418-

1.85) 
0.738 

Retroperitone
al 

2.33 (1.42-3.82) 0.001 
0.655 (0.395-

1.09) 
0.101 

0.925 (0.581-
1.47) 

0.742 

Trunk 
2.08 (1.16-3.73) 0.014 

0.924 (0.542-
1.58) 

0.771 
0.971 (0.562-

1.68) 
0.917 

Uterine 0.404 (0.055-

2.97) 
0.373 

1.42 (0.569-

3.56) 
0.451 1.2 (0.48-3.01) 0.693 

FNCLCC 
grade  

2 (ref) - - - - - - 

3 1.07 (0.718-

1.608) 
0.728 1.89 (1.3-2.75) 

<0.00

1 

1.984 (1.366-

2.882) 

<0.00

1 
  unknown 0.993 (0.423 - 

2.333) 
0.988 

0.858 (0.34 - 
2.166) 

0.746 
0.735 (0.263 - 

2.05) 
0.556 

Preoperativ
e treatment 

No (ref) - - - - - - 

Yes 
1 (0.547-1.83) 1.000 

0.945 (0.542-
1.65) 

0.843 
0.769 (0.414-

1.43) 
0.407 

Performanc
e status 

0 (ref) - - - - - - 

1 
1.7 (1.09-2.64) 0.019 

1.27 (0.838-
1.93) 

0.258 
2.18 (1.44-

3.31) 
<0.00

1 

2-3 1.16 (0.495-
2.73) 

0.730 
1.25 (0.596-

2.62) 
0.555 

4.04 (2.31-
7.09) 

<0.00
1 

unknown 1.11 (0.609-

2.01) 
0.738 

1.38 (0.837-

2.26) 
0.209 

1.76 (1.05-

2.96) 
0.031 

Tumour 

depth 

Deep (ref) - - - - - - 

Superficial 0.867 (0.515-

1.46) 
0.592 

0.716 (0.439-

1.17) 
0.181 

0.875 (0.548-

1.4) 
0.575 

Tumour 
margin 

R0 (ref) - - - - - - 

R1 & R2 1.31 (0.871-

1.97) 
0.194 

0.888 (0.62-

1.27) 
0.516 

1.01 (0.708-

1.43) 
0.971 

unknown 1.75 (0.786-
3.91) 

0.170 
0.764 (0.307-

1.9) 
0.563 

0.456 (0.143-
1.45) 

0.185 

Log(Tumour 
size [mm]) 

4-5 (ref)           

< 4 0.697 (0.394-
1.23) 

0.213 
0.451 (0.272-

0.746) 
0.002 

0.542 (0.323-
0.912) 

0.021 

> 5 
1.99 (1.29-3.06) 0.002 

0.746 (0.483-
1.15) 

0.186 
1.32 (0.893-

1.95) 
0.163 
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Supplemental Table 4.3 Multivariable Cox regression assessing clinicopathological features. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval. 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
0.999 (0.982-

1.02) 
0.919 1 (0.983-1.02) 0.97 

1.01 (0.997-
1.03) 

0.111 

Sex 

F (ref) - - - - - - 

M 
1.46 (0.907-

2.36) 
0.119 

1.22 (0.787-
1.89) 

0.37
3 

1.49 (0.968-
2.28) 

0.07 

Histological 

subtype 

LMS (ref) - - - - - - 

UPS 
1.51 (0.684-

3.31) 
0.309 

0.905 (0.505-
1.62) 

0.73
8 

1.4 (0.762-2.56) 0.279 

SS 
1.58 (0.681-

3.65) 
0.288 

0.591 (0.277-

1.26) 

0.17

3 
1.1 (0.522-2.33) 0.797 

DDLPS 
1.58 (0.772-

3.24) 
0.211 

0.333 (0.148-
0.75) 

0.00
8 

1.03 (0.508-
2.08) 

0.94 

AS 7.98 (3.15-20.2) 
<0.00

1 
2.94 (1.27-

6.78) 
0.01

2 
4.77 (2.12-10.7) 

<0.00
1 

EPS 
2.54 (0.769-

8.36) 
0.126 

3.05 (1.17-

7.98) 

0.02

3 

1.97 (0.646-

6.03) 
0.233 

Other 
1.39 (0.337-

5.72) 
0.649 

1.41 (0.464-
4.3) 

0.54
3 

1.87 (0.481-7.3) 0.366 

Anatomical 
site 

Extremity (ref) - - - - - - 

Head & neck 
0.935 (0.238-

3.67) 
0.924 

1.02 (0.295-
3.54) 

0.97
2 

1.1 (0.331-3.66) 0.877 

Intra-
abdominal 

2 (0.849-4.72) 0.113 
1.56 (0.792-

3.05) 
0.19

9 
2.08 (1.03-4.21) 0.042 

Pelvis 
1.75 (0.689-

4.47) 
0.239 

1.14 (0.526-

2.47) 

0.74

2 

1.64 (0.719-

3.72) 
0.24 

Retroperitonea
l 

1.45 (0.643-
3.29) 

0.369 
0.826 (0.409-

1.67) 
0.59

4 
0.902 (0.427-

1.9) 
0.786 

Trunk 1 (0.431-2.33) 0.998 
0.768 (0.365-

1.61) 
0.48

5 
0.773 (0.361-

1.65) 
0.507 

Uterine 
0.737 (0.087-

6.21) 
0.779 

1.43 (0.457-
4.49) 

0.53
7 

2.03 (0.668-
6.18) 

0.212 

FNCLCC 

grade  

2 (ref) - - - - - - 

3 1.23 (0.76-1.99) 0.401 1.94 (1.26-3) 
0.00

3 
1.88 (1.2-2.94) 0.006 

  unknown 
0.842 (0.319-

2.23) 
0.729 

0.711 (0.264-

1.91) 

0.49

8 

0.808 (0.265-

2.46) 
0.708 

Performanc
e status 

0 (ref) - - - - - - 

1 1.7 (1.02-2.81) 0.041 
1.56 (0.973-

2.51) 

0.06

5 
2.07 (1.31-3.29) 0.002 

2-3 
1.16 (0.463-

2.89) 
0.754 

1.24 (0.543-
2.82) 

0.61
2 

3.01 (1.55-5.84) 0.001 

unknown 
1.07 (0.561-

2.02) 
0.845 

1.4 (0.804-
2.44) 

0.23
4 

1.55 (0.875-
2.76) 

0.132 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 1.1 (0.567-2.13) 0.78 
0.571 (0.316-

1.03) 
0.06

4 
0.925 (0.512-

1.67) 
0.797 

Tumour 
margin 

R1 & R2 (ref) - - - - - - 

R0 
0.773 (0.492-

1.21) 
0.262 

1.1 (0.734-
1.65) 

0.64
4 

1.04 (0.698-
1.54) 

0.859 

unknown 1.2 (0.497-2.88) 0.688 
1.5 (0.519-

4.33) 

0.45

4 

0.775 (0.224-

2.68) 
0.687 

Log(Tumour 
size [mm]) 

4-5 (ref)           

< 4 
0.445 (0.231-

0.859) 
0.016 

0.39 (0.212-

0.716) 

0.00

2 

0.486 (0.266-

0.887) 
0.019 

> 5 
1.69 (0.897-

3.18) 
0.105 

1.03 (0.599-
1.78) 

0.90
8 

1.64 (0.987-
2.72) 

0.056 
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Supplemental Table 4.4 Associations between histological subtype and subtype-specific proteins in 
the proteomics data.  
Abbreviations: MYH11 = myosin heavy chain 11; GAPDH = glyceraldehyde-3-phoshphate dehydrogenase; 
SRC = proto-oncogene tyrosine-protein kinase Src; PRDX1 = peroxiredoxin 1; G6PD = glucose-6-
phoshphate dehydrogenase; TFRC = transferrin receptor. Corresponding post-hoc analysis results are 
detailed in Supplemental Table 4.6. 

Variable 1 
(continuous) 

Variable 2 
(categorical) 

Kruskal-Wallis test 

Test statistic 
(X2) 

Degrees of 
freedom 

p 

MYH11 Histological subtype 126.81 3 < 0.001 

GAPDH Histological subtype 89.303 3 < 0.001 

SRC Histological subtype 71.992 3 < 0.001 

PRDX1 Histological subtype 54.589 3 < 0.001 

G6PD Histological subtype 44.221 3 < 0.001 

TFRC Histological subtype 45.695 3 < 0.001 
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Supplemental Table 4.5 Associations between histological subtype and subtype-specific proteins in 
the reverse-phase protein array (RPPA) data from The Cancer Genome Atlas (TCGA).  
Abbreviations: MYH11 = myosin heavy chain 11; GAPDH = glyceraldehyde-3-phoshphate dehydrogenase; 
SRC = proto-oncogene tyrosine-protein kinase Src; PRDX1 = peroxiredoxin 1; G6PD = glucose-6-
phoshphate dehydrogenase; TFRC = transferrin receptor. Corresponding post-hoc analysis results are 
detailed in Supplemental Table 4.7. 

Variable 1 
(continuous) 

Variable 2 
(categorical) 

Kruskal-Wallis test 

Test statistic 
(X2) 

Degrees of 
freedom 

p 

MYH11 Histological subtype 74.199 3 < 0.001 

GAPDH Histological subtype 20.322 3 < 0.001 

SRC Histological subtype 51.369 3 < 0.001 

PRDX1 Histological subtype 18.378 3 < 0.001 

G6PD Histological subtype 18.917 3 < 0.001 

TFRC Histological subtype 21.026 3 < 0.001 
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Supplemental Table 4.6 Post-hoc test associations between histological subtype and subtype-
specific proteins in the proteomic data.  
Abbreviations: MYH11 = myosin heavy chain 11; GAPDH = glyceraldehyde-3-phoshphate dehydrogenase; 
SRC = proto-oncogene tyrosine-protein kinase Src; PRDX1 = peroxiredoxin 1; G6PD = glucose-6-
phoshphate dehydrogenase; TFRC = transferrin receptor; DDLPS = dedifferentiated liposarcoma; LMS = 
leiomyosarcoma; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma 

Protein Comparison 
Dunn's test  

Test statistic (Z) p p adjusted 

MYH11 

DDLPS - LMS -8.529 <0.001 <0.001 

DDLPS - SS -0.361 0.718 0.861 

LMS - SS 8.386 <0.001 <0.001 

DDLPS - UPS -0.504 0.614 0.921 

LMS - UPS 8.804 <0.001 <0.001 

SS - UPS -0.129 0.898 0.898 

GAPDH 

DDLPS - LMS -6.196 <0.001 <0.001 

DDLPS - SS 1.999 0.046 0.046 

LMS - SS 8.736 <0.001 <0.001 

DDLPS - UPS -3.076 0.002 0.003 

LMS - UPS 3.168 0.002 0.002 

SS - UPS -5.315 <0.001 <0.001 

SRC 

DDLPS - LMS -3.672 <0.001 <0.001 

DDLPS - SS 1.245 0.213 0.213 

LMS - SS 5.249 <0.001 <0.001 

DDLPS - UPS 3.430 <0.001 <0.001 

LMS - UPS 8.135 <0.001 <0.001 

SS - UPS 2.184 0.029 0.035 

PRDX1 

DDLPS - LMS 0.726 0.468 0.468 

DDLPS - SS 2.717 0.007 0.010 

LMS - SS 2.428 0.015 0.018 

DDLPS - UPS -3.999 <0.001 <0.001 

LMS - UPS -5.564 <0.001 <0.001 

SS - UPS -7.038 <0.001 <0.001 

G6PD 

DDLPS - LMS 1.397 0.162 0.162 

DDLPS - SS 2.901 0.004 0.006 

LMS - SS 1.949 0.051 0.062 

DDLPS - UPS -3.032 0.002 0.005 

LMS - UPS -5.153 <0.001 <0.001 

SS - UPS -6.242 <0.001 <0.001 

TFRC 

DDLPS - LMS -2.225 0.026 0.031 

DDLPS - SS 3.182 0.001 0.003 

LMS - SS 6.019 <0.001 <0.001 

DDLPS - UPS -2.435 0.015 0.022 

LMS - UPS -0.447 0.655 0.655 

SS - UPS -5.931 <0.001 <0.001 
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Supplemental Table 4.7 Post-hoc test associations between histological subtype and subtype-
specific proteins in the reverse-phase protein array (RPPA) data from The Cancer Genome Atlas 
(TCGA). 
Abbreviations: MYH11 = myosin heavy chain 11; GAPDH = glyceraldehyde-3-phoshphate dehydrogenase; 
SRC = proto-oncogene tyrosine-protein kinase Src; PRDX1 = peroxiredoxin 1; G6PD = glucose-6-
phoshphate dehydrogenase; TFRC = transferrin receptor; DDLPS = dedifferentiated liposarcoma; LMS = 
leiomyosarcoma; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma 

Protein Comparison 
Dunn's test  

Test statistic (Z) p p adjusted 

MYH11 

DDLPS - LMS -7.277 < 0.001 < 0.001 

DDLPS - SS -0.618 0.536 0.644 

LMS - SS 2.704 0.007 0.014 

DDLPS - UPS 0.138 0.890 0.890 

LMS - UPS 7.185 < 0.001 < 0.001 

SS - UPS 0.682 0.495 0.743 

GAPDH 

DDLPS - LMS -4.098 < 0.001 < 0.001 

DDLPS - SS 0.746 0.456 0.456 

LMS - SS 2.632 0.008 0.025 

DDLPS - UPS -1.670 0.095 0.142 

LMS - UPS 2.193 0.028 0.057 

SS - UPS -1.562 0.118 0.142 

SRC 

DDLPS - LMS -4.161 < 0.001 < 0.001 

DDLPS - SS 3.233 0.001 0.002 

LMS - SS 5.182 < 0.001 < 0.001 

DDLPS - UPS 1.531 0.126 0.126 

LMS - UPS 5.647 < 0.001 < 0.001 

SS - UPS -2.459 0.014 0.017 

PRDX1 

DDLPS - LMS 3.392 < 0.001 0.002 

DDLPS - SS 1.833 0.067 0.100 

LMS - SS 0.306 0.760 0.912 

DDLPS - UPS -0.203 0.839 0.839 

LMS - UPS -3.496 < 0.001 0.003 

SS - UPS -1.920 0.055 0.110 

G6PD 

DDLPS - LMS 3.239 0.001 0.004 

DDLPS - SS 2.223 0.026 0.039 

LMS - SS 0.771 0.441 0.529 

DDLPS - UPS -0.317 0.752 0.752 

LMS - UPS -3.468 < 0.001 0.003 

SS - UPS -2.363 0.018 0.036 

TFRC 

DDLPS - LMS -1.904 0.057 0.068 

DDLPS - SS 2.730 0.006 0.010 

LMS - SS 3.639 < 0.001 0.001 

DDLPS - UPS -2.774 0.006 0.011 

LMS - UPS -1.099 0.272 0.272 

SS - UPS -4.074 < 0.001 < 0.001 
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Chapter 5 Proteomic heterogeneity in LMS, UPS, 

and DDLPS  

5.1 Background and objectives 

Chapter 4 descriptively characterised the profiled cohort and proteomic landscape of 

multiple histological subtypes of STS. This alluded to the presence of proteomic 

heterogeneity within subtypes (‘intra-subtype’). Intra-subtype heterogeneity is clinically 

seen in STS as demonstrated by differing patient outcomes and responses to treatment 

intervention across patients (discussed in section 1.2.3). We hypothesis that this clinical 

heterogeneity is underscored by molecular biology, and in particular, proteome biology. 

This chapter investigates the intra-subtype biological heterogeneity of LMS and the 

immune intra-subtype heterogeneity of DDLPS and UPS, and discuses proteomic 

findings in relation to clinical applications.   

In Chapter 3, LMS showed a distinctive proteome relative to other STS subtypes. Yet, 

when analyses were focused on specific biological entities and broad measures of 

biological activity (e.g., the immune component, and GO BP and hallmarks of MSigDB), 

proteomic subtypes of LMS emerged. At present, there has been extensive 

transcriptomic work characterising 3 molecular subtypes of LMS (as discussed in 

section 1.4.1.2)36,43,274,281–283. Yet the clinical implications of LMS molecular subtypes are 

unclear, and it is unknown whether these transcriptomic findings are present at the 

proteome level. By design, this cohort profiled many LMS samples (n = 80). Such rich 

data could be leveraged to facilitate intra-subtype analyses. Herein, proteomic subtypes 

of LMS were discovered using unbiased methods and were characterised both 

biologically and clinically. Furthermore, indirect comparisons between the proteome-

derived subtypes and transcriptome-derived subtypes of LMS were performed by use of 

the TCGA RNAseq data.  

In Chapter 4, UPS and DDLPS were shown to harbour variable immune activity, with 

some tumours showing exceptionally high immune levels. Current STS literature notes 

high immune activity to exist in a minority of STS tumours across subtypes220,231. 

However, UPS is often highlighted as the subtype with the highest immune infiltrate36,220. 

Clinical trials evaluating immunotherapies in STS, and particularly ICBs, report 

favourable responses to be more prevalent in UPS and DDLPS populations compared 

to other subtypes139,140. As such, this chapter investigates the immune composition of 

DDLPS and UPS tumours. To increase to statistical power of such analyses and given 
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the similar ICB response rates seen in these 2 subtypes, samples were combined  as 1 

cohort (n = 92). Proteomics data collected herein (Chapter 3), as well as targeted 

immune transcriptomic data and IHC data were utilised to explore immune-associated 

heterogeneity. The findings of which were discussed in the context of clinical 

applications.  

In line with this, the objectives of this chapter are: 

1) To investigate and characterise proteomic heterogeneity of LMS. 

2) To assess immune-based heterogeneity within a mixed DDLPS and UPS cohort.  

5.2 Results 

5.2.1 Intra-subtype heterogeneity in LMS 

5.2.1.1 Clinicopathological features of the LMS cohort 

Tumour specimens from 80 primary LMS tumours were profiled. Clinicopathological 

features are summarised in Table 5.1. Briefly, patients had a median age of 65.3 years 

at the time of surgery and a median tumour size of 90 mm. There were more females 

than males (70% vs 30%) and more high grade tumours than intermediate grade (58.8% 

vs 41.2%). Most tumours were deep (82.5%) and located in either the extremities 

(38.8%) or retroperitoneum (23.8%). Low numbers of uterine tumours were present (9%). 

2 patients had metastatic disease at surgery, 2 had radiation-associated disease, and 1 

received preoperative treatment (RTX). Surgical margins were most often R0 (52.5%), 

and most patients had a PS of either 0 (50%) or 1 (20%). Most missing data was due to 

the PS variable, which was comparably missing in the LMS cohort (20%) as it was in the 

full cohort (18.7%). In addition, tumour margin information was not available for 2 

patients. Interactions between clinicopathological features were assessed and revealed 

a significant association to exist between tumour depth and anatomical site (FDR < 

0.001), and tumour depth and tumour size status (FDR < 0.001; Supplemental Figure 

5.1 and Supplemental Table 5.1). Superficial tumours were smaller than deep-seated 

tumours and were exclusively located in either the extremities or pelvis.  
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Table 5.1 Clinicopathological features of the leiomyosarcoma (LMS) cohort. 
Continuous variables detailed as median, minimum (min), and maximum (max). Categorical variables 
detailed as count (n) and percentage. Abbreviations: F = female; M = male; RTX = radiotherapy. 

    LMS 

  n 80 

Age at excision (years) 

median 65.3 

min 29.3 

max 86.9 

Tumour size (mm) 

median 92.5 

min 5 

max 400 

Sex [n (%)] 
F 56 (70.0) 

M 24 (30.0) 

Grade [n (%)] 
2 47 (58.8) 

3 33 (41.2) 

Anatomical site [n (%)] 

Extremity 31 (38.8) 

Intra-abdominal 10 (12.5) 

Retroperitoneal 19 (23.8) 

Trunk 2 ( 2.5) 

Pelvic 9 (11.2) 

Uterine 9 (11.2) 

Tumour depth [n (%)] 
Deep 66 (82.5) 

Superficial 14 (17.5) 

Status at excision [n (%)] 
Local 78 (97.5) 

Metastatic 2 ( 2.5) 

Radiation associated [n (%)] 
No 78 (97.5) 

Yes 2 (2.5) 

Tumour margins [n (%)] 

R0 42 (52.5) 

R1 35 (43.8) 

R2 1 ( 1.2) 

unknown 2 ( 2.5) 

Performance status [n (%)] 

0 40 (50.0) 

1 16 (20.0) 

2 7 ( 8.8) 

3 1 ( 1.2) 

unknown 16 (20.0) 

Pre-op treatment [n (%)] 
RTX 1 ( 1.2) 

None 79 (98.8) 
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5.2.1.2 Cohort outcomes and the prognostic significance of 

clinicopathological variables 

Survival data was censored at 5 years and therefore information on longer term 

outcomes was not available. Median LRFS and OS for the cohort were not reached 

(Figure 5.1A,C). Median MFS was ~ 36 months (Figure 5.1B). At 5-years post-surgery, 

26% of patients had experienced a local recurrence event, 56% had experienced a 

metastatic event, and 48% were deceased.  

 

To assess whether clinicopathological variables were associated with LMS patient 

outcomes, Kaplan Meier curves were plotted and univariable Cox regressions 

performed, the results of which are summarised in Supplemental Table 5.2. Due to 

small numbers within some of the categories, anatomical sites were merged. Trunk wall 

and extremity tumours were grouped, and intra-abdominal, retroperitoneal, and pelvic 

tumours were grouped. These are representative of extra-cavity and intra-cavity lesions 

respectively, and are the anatomical sites differentiated between by the TCGA sarcoma 

study36. Given the clinical differences between uLMS and stLMS (section 1.4.1), uterine 

tumours were kept as a distinct category despite n being small. All other variables were 

handled as in section 4.2.2. Univariable Cox regression revealed anatomical site to be 

a significant prognosticator across all clinical outcomes measured (Supplemental 

Figure 5.2A). Specifically, trunk wall and extremity tumours showed a significantly 

superior LRFS (HR = 0.27; 95% CI = 0.111 – 0.657; p = 0.003), MFS (HR = 0.392; 95% 

 

Figure 5.1 Clinical outcome of the leiomyosarcoma (LMS) cohort.  
Kaplan Meier plots showing local recurrence free survival (LRFS; A), metastasis free survival (MFS; B), and 
overall survival (OS; C) up to 5-years post-surgery. Dashed line indicates median survival. 
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CI = 0.207 – 0.742; p = 0.004), and OS (HR = 0.421; 95% CI = 0.21 – 0.844; p = 0.015). 

FNCLCC grade, tumour depth, and log(tumour size) were significantly associated with 

MFS (Supplemental Figure 5.2B-D) Grade 3 tumours showed a poorer MFS (HR = 

2.46; 95% CI = 1.35 – 4.46; p = 0.003), whilst superficial tumours and the smallest 

tumours (log(size) < 4 mm) showed superior MFS (HR = 0.291; 95% CI = 0.09 – 0.94; p 

= 0.039, and HR = 0.226; 95% CI = 0.069 – 0.74; p = 0.014 respectively). A performance 

status of 2 - 3 was significantly associated with a poorer OS (HR = 7.82; 95% CI = 3.15 

– 19.4; p < 0.001; Supplemental Figure 5.3). 

Following multivariable adjustment (summarised in Supplemental Table 5.3), 

anatomical site remained a significant prognosticator for LRFS, MFS, and OS. PS 

remained significant in the OS model, and FNCLCC grade remained significant in the 

MFS model. Notably, unlike in the univariable analyses, tumour depth and size were not 

significant for MFS, and thus do not hold significant independent prognostic value in this 

cohort. Additionally, grade gained significance for OS, and PS gained significance for 

LRFS.  A gain of significance in multivariable analyses is notable. One potential reason 

could be the influence of missing clinicopathological data, which resulted in the exclusion 

of 2 patients from multivariable analysis. However, neither of these patients presented 

with an extreme LRFS; 1 was censored at approximately 5 years, and 1 experienced an 

LR event at approximately 3 years. Similarly, OS for these patients was unremarkable; 

both censored at approximately 5 years. It is therefore unlikely that the exclusion of such 

patients in the multivariable model is driving a gain of significance in other 

clinicopathological variables. A more probable explanation is the presence of statistical 

suppression. In regression models variables often ‘interact’ with each other599. One type 

of  ‘interaction’ is suppression600. A suppressor variable is a weak predictor of the 

dependent variable (DV) itself, but when included in a model increases the predictive 

ability of other independent variables (IV). A suppressor can be conceptually thought of 

as a mediator (facilitating the effect of another IV to the DV) or a moderator (managing 

the strength of another IV to the DV). In the multivariable models herein, 7 variables are 

included. It is possible that multiple suppressors are present within the data, each 

conveying positive, negative, and/or reciprocal suppression. Grade and PS did not show 

any pairwise association with other clinicopathological variables in this cohort (section 

5.2.1.1), and thus, if indeed present, the mechanism of suppression in these models is 

unclear.  

As described previously (section 4.2.2), the use of a transformed and ordinal tumour 

size variable meant all assumptions of the Cox model were met. A minor PH violation 
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was noted in the univariable and multivariable MFS regressions for anatomical site 

(Schoenfeld p = 0.01 and p = 0.04 respectively; Supplemental Figure 5.4 and 

Supplemental Figure 5.5). However, this did not invalidate the use of the Cox model.   

5.2.1.3 Identification of LMS proteomic subtypes  

Molecular subtypes of LMS have been identified based on the transcriptome36,43,274,281–

283. Yet the presence of these subtypes at the proteome level is unexplored. Across the 

80 LMS samples profiled, 3,263 proteins were identified and quantified with high 

confidence. To investigate proteomic heterogeneity within LMS, consensus clustering 

(CC) was performed. CC is a robust method to identify clusters within a dataset601. CC 

iteratively clusters sub-samples of the original data. Each sub-sampled data does not 

include all original data, and therefore introduces a variability that permits cluster stability 

to be inferred. CC is simulated for different numbers of clusters (k), and cluster stability 

used to determine the optimal value of k. In a dataset of unique samples, clustering will 

be ‘perfect’ at k = n of samples. However, this provides no biological or clinical insight. 

Instead, insight is derived from an optimal k value identified as the value beyond which 

only minimal improvements in cluster stability are seen. There are several ways to 

assess stability. Consensus matrices of CC illustrate sample assignment over all 

iterations, where a value of 1 indicates a sample was assigned to the cluster every time 

and a value of 0 indicates a sample was never assigned to the cluster. The consensus 

empirical cumulative distribution function (CDF) plot corresponds to the consensus 

matrix, where steps at 0 at 1 are sized relative to the number of 0’s and 1’s in the matrix. 

‘Perfect’ clustering is indicated by a large step at consensus index 0, a flattening of the 

CDF between consensus index range 0 to 1, followed by a step at consensus index 1. 

The CDF can be partially summarised by calculating the change (Δ) in the area under 

the curves (AUC). When the Δ AUC is plotted, the inflection point can be used to identify 

the value of k beyond which only minimal improvements in clustering are seen. 

Additionally, a tracking plot can be used to visualise progression of sample assignment. 

Samples which repeatedly switch between clusters indicate poor stability. Finally, the 

assignment of a sample to a cluster over many iterations can also be numerically 

summarised by the silhouette width (Si). An Si close to 1 indicates highly robust 

clustering, an Si close to 0 indicates clustering equal to random assignment, and a 

negative Si (close to -1) indicates clustering is probably incorrect. Herein, CC was 

simulated up to k = 10. Visually, the consensus matrices from k = 2 to k = 5 showed 

similarly clean cluster separation with few intermediate values (i.e., close to 0.5; 

Supplemental Figure 5.6A).The CDF plot showed an obvious increase in the AUC 

between k = 2 and k = 3, with minor shifts in the curves beyond (Supplemental Figure 



 

 178 

5.6B). The Δ area plot showed an inflection point at k = 4, with minimal changes in the 

AUC of the CDF beyond this (Supplemental Figure 5.6C). The CC tracking plot 

indicated good cluster stability at all values of k except k = 4. At k = 4, one case was 

separated from the cohort, then reassigned at k = 5 to the same group as in k = 3, before 

being separated again at k = 7 (Supplemental Figure 5.6D). Silhouette plots indicated 

k = 2 and k = 3 to show good clustering results with the average Si for both > 0.8 

(Supplemental Figure 5.6E). Given all visual observations, k = 3 was deemed as 

optimal.  

SigClust was used to confirm the clustering at k = 3, by statistically assessing the 

significance of the results. The SigClust null hypothesis states that data is from a single 

Gaussian distribution520. Therefore, rejection of the null hypothesis indicates the 

presence of multiple significantly different Gaussian distributions (i.e., clusters) within the 

data. Running SigClust from the root of each node of the dendrogram found clusters at 

k = 3, k = 4, and k = 5 as significantly different dependent on the significance level (p < 

0.001, < 0.01, < 0.05 respectively).  

Using CC and SigClust, 3 objectively distinct proteomic subtypes of LMS were 

confidently identified: P1, P2, and P3 (Figure 5.2A). Complementary approaches to CC 

were used to visualise the subtypes. Hierarchical clustering, and dimension reduction by 

PCA, tSNE, and UMAP all illustrated a sample clustering pattern that is reflective of the 

CC results. Yet no dimension reduction method showed robust separation alone (Figure 

5.2B-E). This illustrates the necessity of iterative and statistical cluster identification 

methods such as CC and SigClust.   

5.2.1.4 Biological characterisation of LMS proteomic subtypes 

To identify DEPs between the LMS proteomic subtypes, 2-class unpaired SAM tests 

were performed (P1 vs ‘other’; P2 vs ‘other’; P3 vs ‘other’). In total, 101, 129, and 143 

DEPs were significantly upregulated in P1, P2, and P3 LMS respectively, and 110, 203, 

and 181 DEPs were significantly downregulated in P1, P2, and P3 LMS respectively 

(FDR < 0.01 and fold change ≥ 2; Supplemental Figure 5.7). As a result of performing 

multiple paired tests, there was significant overlap in the proteins identified as 

up/downregulated in each proteomic subtype. To assess proteins specifically altered in 

each subtype, the protein lists were reduced to those uniquely upregulated in each. This 

revealed 75, 129, and 117 proteins as uniquely significantly upregulated in P1, P2, and 

P3 LMS respectively (Figure 5.3A). These proteins were used to construct protein-

protein interaction (PPI) networks to allow inspection of the molecular subtype-specific 
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LMS proteomes. Networks were built based on interaction scores of the STRING 

Database (STRINGdb), which provides interaction measures based on biological 

database knowledge, experimental data, and literature records602,603. In each network, 

highly clustered and interconnected regions were manually inspected. The P1 PPI  
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Figure 5.2 Proteomic subtypes of leiomyosarcoma (LMS)  
(A) Heatmap showing the LMS consensus cluster dendrogram (at k = 3) and unsupervised clustering 
(Pearson’s distance) of 3,263 proteins across 80 LMS cases. Top annotation panel indicates the proteomic 
subtypes of LMS (B) Heatmap showing the unsupervised clustering (Pearson’s distance) of 80 LMS cases 
and 3,263 proteins. Top annotation panel indicates the proteomic subtypes of LMS (C-E) Dimension 
reduction of the proteomic data with individual cases coloured by proteomic subtype, using (C) principal 
component analysis (PCA), (D) t stochastic neighbour embedding (tSNE), and (E) uniform manifold 
approximation and projection (UMAP).  
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Figure 5.3 Leiomyosarcoma (LMS) proteomic subtype specific proteins 
(A) Heatmap showing the supervised clustering of 321 differentially expressed proteins (DEPs) uniquely 
upregulated in each proteomic subtype of LMS. Top annotation panel indicates the proteomic subtypes of 
LMS, and the left annotation panel indicates which proteomic subtype the DEPs correspond to (B-D) Protein-
protein interaction (PPI) networks, of (B) P1-, (C) P2-, and (D) P3-specific proteins. Regions of interest 
circled, and subnetworks constructed.  
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network comprised 4 clustered subnetworks (Figure 5.3B). Of these, 1 (subnetwork A) 

comprised components of the replication protein A (RPA) and minichromosome 

maintenance protein (MCM) complexes. RPA and MCM are both key to DNA replication 

activity and are considered pro-proliferative604,605. This suggests P1 may harbour a more 

proliferative phenotype. Subnetwork B comprised translation initiation factors and RNA 

processing proteins. Subnetworks C and D comprised predominantly mitochondrial 

enzymes. The P2 PPI network also comprised 4 subnetworks (Figure 5.3C). Here, 

subnetwork A contained several splicing factors and regulators. Subnetwork B contained 

cell adhesion and migration proteins, and subnetwork C contained mostly heat shock 

proteins. Interestingly, subnetwork D comprised muscle-specific proteins. This suggests 

P2 may show a more prominent smooth muscle phenotype relative to P1 and P3. The 

P3 PPI network comprised 2 subnetworks (Figure 5.3D). Subnetwork A exclusively 

contained proteins involved in vesicle budding: coatomers and coat protein complex II 

(COPII) proteins. Subnetwork B was notably large, comprising 26 proteins, most of which 

were ribosomal. Taken together, assessment of the proteins specific to each proteomic 

subtype of LMS suggest clear biological distinctions.  

To investigate whether each set of DEPs contained shared biology, the significantly up 

and downregulated proteins were assessed by over-representation analysis against the 

gene ontology and hallmark gene sets (MSigDB)506–508,512. To ensure the robustness of 

any results, a background of the 3,263 LMS dataset proteins was used for analysis, as 

opposed to the whole genome. Over-representation identified no significant results in 

any proteomic subtype of LMS. This may be due to the small number of DEPs, or the 

reduced 3263-protein background that has limited coverage of the gene sets themselves. 

As an alternate and complementary method for exploring broad biological features, 

ssGSEA was performed504,509. As in DEP analysis, ssGSEA enrichment scores between 

samples were compared to identify differentially expressed biological features. To 

assess for such differences, ANOVA and post-hoc Tukey’s multiple comparisons tests 

were used. This revealed 10 hallmarks as differentially expressed at the ssGSEA 

enrichment score level (Tukey’s p ≤ 0.001; Figure 5.4). P1 showed a notable and 

significant downregulation of all immune hallmarks (‘allograft rejection’, ’IL2 STAT5 

signalling’, ‘complement’, and ‘inflammatory response’) compared to P2 and P3. These 

immune hallmarks describe inflammatory signatures. P1 was therefore named the 

‘immune cold LMS’ proteomic subtype. P3 showed significant downregulation of  the 

hallmarks ‘spermatogenesis’ and ‘myogenesis’ relative to both P1 and P2. The biological 

basis for downregulated ‘spermatogenesis’ activity is unclear. The myogenesis hallmark 

captures genes involved in muscle development, suggesting tumours classified as P3 
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show lower expression of muscle specific proteins. Considering LMS are tumour of 

smooth muscle lineage this is indicative of poor differentiation or dedifferentiation. 

Accordingly, P3 was termed the ‘dedifferentiated LMS’ proteomic subtype. P2 showed 

upregulation of ‘apoptosis’. Yet beyond this, P2 lacked any defining feature. Whilst the 

hallmark myogenesis was not significantly upregulated in P2, PPI analysis did identify 

specific muscle-related proteins as upregulated. P2 was therefore denoted the ‘classical 

LMS’ proteomic subtype.  

 

5.2.1.5 Validation of immune cold and dedifferentiated LMS 

To further investigate the characteristics of the identified immune cold LMS subtype, IHC 

data on TMAs generated and collected by previous lab members for a subset of MS-

profiled cases was re-analysed. IHC data was available for 64/80 LMS samples in the 

cohort herein, covering assessment of CD3, CD4, and CD8; markers of total, helper, and 

cytotoxic T cell populations respectively. Data spanned 5 TMAs containing multiple 1 

mm cores from each sample. To account for intra-tumoural heterogeneity, IHC measures 

were required to be available from at least 2 TMA cores per sample. Most samples had 

usable data from 3 cores, however for 1 sample, data from only 1 core was available 

(Supplemental Figure 5.8A). This case was excluded leaving a dataset of 63 for 

analysis. IHC scores were adjusted to TIL/mm2 (section 2.6), and the mean of all scores 

 

Figure 5.4 Hallmarks of  the leiomyosarcoma (LMS) proteomic subtypes 
Heatmap of significant (one-way ANOVA & Tukey’s honestly significant difference (HSD) test; FDR < 0.001) 
biological features obtained from single sample Gene Set Enrichment Analysis (ssGSEA) of the MSigDB 
Hallmark gene sets, arranged by proteomic subtype (top annotation). Select enriched proteins from each 
hallmark are detailed in boxes. 
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used as the final sample measure. To assess to appropriateness of using mean in this 

data, the inter-core variability was explored. Across all markers, the largest differences 

between individual core measures and the mean value were observed in samples with 

higher immune infiltrate (Supplemental Figure 5.8B). This suggests that where immune 

infiltration is high within LMS tumours, spatial heterogeneity is observed. Such 

heterogeneity can undermine use of TMAs. In a study utilising data from the LMS 

samples profiled herein, intra-tumoural heterogeneity was investigated606. The authors 

found that whilst ≥ 11 cores were required for an estimate of absolute TILs, ≤ 3 cores 

were sufficient for the correct categorisation of most tumours into low and high based on 

the cohort median TIL counts. The mean count was therefore used, and data was 

assessed as both a continuous variable and dichotomised variable. 

Overall, CD3+ TILs, CD4+ TILs, and CD8+ TILs all showed similar distributions across 

LMS samples. Density plots showed left tailing illustrating most samples have relatively 

low infiltrate of CD3/4/8+ cells (Supplemental Figure 5.9). CD3+ cells and CD4+ cells 

were present at higher levels than CD8+ cells, and there was a significant range of TIL 

burden across patients. The number of CD3+ TIL/mm2 ranged from 0 – 843 TIL/mm2  

across the cohort (median = 72 TIL/mm2), CD4+ ranged from 0 - 1040 TIL/mm2  (median 

= 59 TIL/mm2), and CD8+ ranged from 0 - 180 TIL/mm2 (median = 16 TIL/mm2). CD4+ 

TILs and CD8+ TILs are traditionally considered subpopulations of CD3+ TILs. In 

agreement with this, CD3+ TILs and CD8+ TILs, and CD3+ TILs and CD4+ TILs showed 

strong positive correlations (Pearson correlation coefficient = 0.94; p < 0.001, and 

Pearson correlation coefficient = 0.7; p < 0.001 respectively; Supplemental Figure 

5.8C). CD4+ and CD8+ cells have complementary roles. As such they were positively 

correlated (Pearson correlation coefficient = 0.59; p < 0.001), although to a lesser extent 

than CD3/CD4 and CD3/CD8. As a total population, CD3+ TILs were expected to be 

higher than CD4+ TILs and CD8+ TILs. Yet, for 17 samples, the mean CD4+ cell infiltrate 

was higher than the mean CD3+ cell infiltrate. For 6 of these, CD4+ TILs were present 

at ≥ 1.5x the level of CD3+ TILs. Numerical interpretations between measures of total 

(CD3+) and helper (CD4+) T cell populations are therefore cautioned. 

To assess TILs in the context of each proteomic subtype of LMS, density plots stratified 

by subtype were generated (Figure 5.5A). These showed most ‘immune cold LMS/P1’ 

tumours had very low levels of CD3+ TILs, CD4+ TILs, and CD8+ TILs. ‘Classical 

LMS/P2’ and ‘dedifferentiated LMS/P3’ showed a similar CD8+ TIL profile to ‘immune 

cold LMS/P1’ (Kruskal-Wallis test: X2 = 3.522, p = 0.1719). However, in CD3+ TIL and 

CD4+ TIL measures, ‘immune cold LMS/P1’ showed a significantly lower TIL burden  
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(Kruskal-Wallis tests: CD3 X2 = 6.442, p = 0.039; CD4 X2 = 7.686, p = 0.0214). 

Interestingly, density plots revealed a subset of ‘immune cold LMS/P1’ tumours to have 

moderate CD3+, CD4+, and CD8+ TIL levels, as seen by a second peak at 

 

Figure 5.5 Characterisation of the tumour infiltrating lymphocyte (TIL) burden of leiomyosarcoma 
(LMS) proteomic subtypes. 
(A) Density plots of CD3+/4+/8+ TILs across the 3 proteomic subtypes of LMS. (B) Stacked bar plots 
showing the proportion of high and low CD3+/4+/8+ TILs across each of the 3 proteomic subtypes of LMS. 
Samples were categorised as high and low based on median TIL density. Chi-squared test results reported 
at the top of each plot. (C) Representative images of high and low CD3+/4+/8+ TIL staining by 
immunohistochemistry in exemplar LMS tissue specimens. 
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approximately 200, 140, and 65 TIL/mm2 respectively. This suggests some 

heterogeneity is present within ‘immune cold LMS/P1’, however relative to the other LMS  

proteomic subtypes, levels of CD3+ and CD4+ TILs were consistently low. For further 

investigation and considering low numbers of cores have been shown as sufficient for 

categorised TIL counts, data was dichotomised at the median and reanalysed606. 

Consistent with use of the continuous variable form, this revealed the ‘immune cold 

LMS/P1’ subtype to comprise a significantly higher proportion of CD3+ low and CD4+ 

low tumours (Chi-squared tests: X2 = 9.612, p = 0.008; Figure 5.5B-C). No significant 

difference in the proportions of CD8+ low and CD8+ high tumours was seen across the 

LMS proteomic subtypes (Chi-squared test: X2 = 2.253, p = 0.324).  

Subtype P3 was identified as dedifferentiated LMS. LMS is of smooth muscle origin and 

smooth muscle markers are routine in its diagnosis237–239,542. A dedifferentiated 

phenotype indicates loss or absence of such proteins. Indeed, the expression of known 

smooth muscle markers was markedly lower in ‘dedifferentiated LMS/P3’ (Figure 

5.6A)542. Specifically, CLF2, SLMAP, ACTA2, MYLK, and MYH11 were significantly 

lower compared to both other molecular subtypes. Desmin was significantly lower 

compared to ‘classical LMS/P2’, and CALD1 was significantly lower in ‘dedifferentiated 

LMS/P3’ and ‘immune cold LMS/P1’ compared to ‘classical LMS/P2’. To assess this 

dedifferentiation of LMS in the context of other STS, UMAP was utilised. This illustrated 

9 LMS to cluster away from the bulk LMS tumour cluster. (Figure 5.6B). All except 1 of 

the LMS tumours clustering outside of this group were ‘dedifferentiated LMS/P3’. Given, 

UPS is a tumour with no identifiable differentiation lineage, previous studies have 

suggested a disease spectrum between UPS and LMS tumours showing 

dedifferentiation243,244. However in my dataset, no co-clustering between UPS and 

‘dedifferentiated LMS/P3’ was observed in the UMAP analysis (Figure 5.6C).  

5.2.1.6 Clinical characterisation of LMS proteomic subtypes  

The transcriptomic subtypes of LMS have been suggested to be reflective of anatomical 

site36,274,283. Specifically, a uterine-enriched subtype has been repeatedly noted, and the 

most recent works by Anderson et al have suggested transcriptomic subtypes of LMS 

correspond to the lineages of vascular, gynaecological and digestive tissue. To explore 

whether this is true for the proteomic subtype, and to assess whether other 

clinicopathological features are associated with subtype, Chi-squared and Kruskal-Wallis 

tests were conducted. No statistical association between the proteomic subtypes of LMS 

and any clinicopathological variable was identified (Supplemental Table 5.4 and Figure 
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5.7A), however trends in anatomical distribution were observed (Supplemental Table 

5.4 and Figure 5.7B). Due to the small number of trunk wall LMS, the representation of 

proteomic subtypes at this anatomical site could not be assessed. Overall, the 

distribution of ‘classical LMS/P2’ was similar across all anatomical sites, yet the 

proportion of ‘immune cold LMS/P1’ and ‘dedifferentiated LMS/P3’ differed.  

 

 

Figure 5.6 Characterisation of the dedifferentiated (P3) leiomyosarcoma (LMS) proteomic subtype  
(A) Boxplots comparing expression of a subset of smooth muscle proteins between the three LMS proteomic 
subtypes. Boxes indicate 25th and 75th percentile, with median line in the middle, whiskers extending from 
25th percentile-(1.5*IQR) to 75th percentile+(1.5*IQR), and outliers plotted as points. Significance determined 
by Tukey’s honestly significant difference (HSD) tests. NS = not significant, * p < 0.05, ** p < 0.01, *** p < 
0.001, **** p < 0.0001 (B-C) Uniform manifold approximation and projection (UMAP) plot showing clustering 
of the three LMS proteomic subtypes in relation to other soft tissue sarcomas (STS) samples. (B) Other STS 
in grey, (C) UPS in purple and other STS in grey.  
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Retroperitoneal and intra-abdominal LMS tumours showed an over-representation of the 

‘immune cold LMS/P1’ subtype, which accounted for 48% and 50% of tumours 

respectively. Of the remaining tumours, all except 1 retroperitoneal and 1 intra-abdominal 

were classified as ‘classical LMS’. By contrast, ‘dedifferentiated LMS/P3’ accounted for 

approximately 1/3rd of pelvis, uterine, and extremity tumours.  

The clinical implications of LMS molecular subtyping are currently unclear. It is 

hypothesised that the distinctive biology observed between molecular subtypes may 

contribute to differences in disease progression and clinical course for the patient. 

Therefore, the LMS proteomic subtypes were assessed in the context of patient outcome 

(LFRS, MFS, and OS). Univariable analysis (Cox regression; summarised in Table 5.2) 

showed no significant association between any subtype and any outcome measure, and 

all PH assumptions were met. However, trends were observed by inspection of the 

Kaplan Meier curves (Figure 5.7C). ‘Dedifferentiated LMS/P3’ appeared to show an 

increased risk of local recurrence between 1- and 5-years following surgery. Similarly, 

‘dedifferentiated LMS/P3’ showed a shorter median MFS (1.9 years) than ‘immune cold 

LMS/P1’ (2.8 years) and ‘classical LMS/P2’ (3.9 years). In LMS care, local recurrence is 

considered a relatively low risk event for patients, with metastases more common and 

the cause of fatality607,608. Yet when LMS proteomic subtypes were compared to the full 

STS cohort, it was evident that a population of LMS (‘dedifferentiated LMS/P3’) are at 

higher risk of local recurrence compared to other LMS. The Kaplan Meier curve 

suggested ‘immune cold LMS/P1’ and ‘classical LMS/P2’ possess the longest LRFS of 

all histological and proteomic subtypes assessed (Supplemental Figure 5.10). 

‘Dedifferentiated LMS/P3’ showed a LRFS comparable to that of SS, UPS, and EPS. 

However, the sample size was limited, and these similarities were not statistically 

significant based on the univariable Cox regression. 

Further to the univariable analyses, multivariable Cox regression was also performed to 

adjust for other clinicopathological variables and assess whether the significance of LMS 

proteomic subtype exists independent of these variables (summarised in Table 5.3). 

Whilst proteomic subtype remained non-significant in OS analyses, it was found to be a 

significant prognostic marker for LRFS and MFS. Specifically, ‘dedifferentiated LMS/P3’ 

was found to be associated with a significantly poorer LRFS compared to ‘immune cold 

LMS/P1’ (HR = 8.04, 95% CI = 1.7 – 38, p = 0.009). Additionally, patient age, sex (male), 

and a PS of 1 were all significant features associated with a poorer LRFS in multivariable 

analysis (HR = 0.956, CI = 0.918 – 0.996, p = 0.031, HR = 5.554, 95% CI =  1.537 - 

20.002, p = 0.009, and HR = 7.819, 95% CI = 1.745 - 35.04, p = 0.007 respectively).  
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Tumours of the extremities and trunk wall were associated with a significantly improved 

LRFS (HR = 0.089, 95% CI = 0.018 - 0.452, p = 0.004). In the MFS model, 

‘dedifferentiated LMS/P3’ was associated with a significantly poorer MFS compared to 

‘immune cold LMS/P1’ (HR = 2.629, 95% CI = 1.065 - 6.489, p = 0.036). Grade was also 

associated with a significantly poorer MFS (HR = 3.282, 95% CI = 1.568 - 6.867, p = 

 

Figure 5.7 Clinical characterisation of leiomyosarcoma (LMS) proteomic subtypes 
(A) Summary plot showing clinicopathological variables across LMS cases (n=80), arranged by proteomic 
subtype. (B) Pie charts depicting the breakdown of LMS proteomic subtypes at different anatomical sites. 
(C) Kaplan-Meier plot of local recurrence free survival (LRFS) metastasis free survival (MFS), and overall 
survival (OS) up to 5-years post-surgery across the LMS proteomic subtypes. 
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0.002), and anatomical site (‘trunk wall and extremity’) and tumours of the largest size 

category (> 5 log(mm)) were associated with an improved MFS (HR = 0.316, 95% CI = 

0.131 - 0.76, p = 0.01 and HR = 0.306, 95% CI = 0.115 - 0.815, p = 0.018 respectively). 

A minor PH violation was observed in the MFS model form LMS proteomic subtype (p =  

0.033; Supplemental Figure 5.11), all other variables satisfied PH. The shift in 

significance and effect size of LMS proteomic subtype between univariable and 

multivariable analyses is of note. As in detailed in section 5.2.1.2, this can suggest 

statistical suppression. The cause of this suppression, if present, is unclear as no 

clinicopathological variable was statistically associated with proteomic subtype (section 

5.2.1.6). The strongest trends were observed between subtype and anatomical site, 

although notably the anatomical site groupings were transformed for survival analyses. 

Analysis of the relationship between the transformed anatomical groups and proteomic 

subtype revealed no significant association (Chi-squared test: X2 = 5.092, d.f = 4, p = 

0.278). Irrespective of suppression, it is evident that the proteomic subtypes of LMS hold 

prognostic value for LRFS and MFS. To assess the importance of proteomic LMS 

subtype in the multivariable models, each variable was added sequentially, and ANOVA 

used to compare the fit of the sequential models. The multivariable models with and 

without the LMS proteomic subtype variable were compared. There was no significant 

improvement in model fit between the MFS clinicopathological only model (section 

5.2.1.2) and the model inclusive of proteomic subtype (ANOVA X2 = 4.461, d.f = 2, p = 

0.108). However, the LRFS model including proteomic subtype was shown to fit the data 

significantly better than the model without proteomic subtype (section 5.2.1.2; ANOVA 

X2 = 8.752, d.f = 2, p = 0.013). 

 

Given the distinct biology of the LMS proteomic subtypes, it is hypothesised that 

subtypes may show differential drug responses. Indeed, a previous LMS transcriptomic 

study has alluded to targetable proteins specific to LMS transcriptomic subtypes282. 

However, this was based on the expression of individual differentially expressed genes 

Table 5.2 Univariable Cox regression assessing leiomyosarcoma (LMS) proteomic subtypes. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval. 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Proteomic 
subtype 

P2 (ref) - - - - - - 

P1 0.761 (0.255-2.27) 0.625 1.14 (0.571-2.27) 0.711 0.915 (0.428-1.95) 0.819 

P3 1.86 (0.691-5) 0.219 1.52 (0.737-3.13) 0.258 1.25 (0.57-2.72) 0.582 
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and did not statistically consider the full targeting profiles of drugs. To assess drug 

profiles herein, ssGSEA was performed on the LMS proteome dataset using the DSigDB 

D1 database511. Clustering of D1 NES across LMS proteomic subtypes did not reveal 

any obvious association between proteomic subtype and drug target profiles (Figure 

5.8).  

 

Table 5.3 Multivariable Cox regression assessing leiomyosarcoma (LMS) proteomic subtypes. 

Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 

Anatomical site of ‘Other’ indicates retroperitoneal, Intra-abdominal and pelvic cases. Significant results in 

bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
0.956 (0.918-

0.996) 
0.031 1 (0.974-1.03) 0.894 

0.983 (0.953-

1.01) 
0.291 

Sex 

F (ref) - - - - - - 

M 5.54 (1.54-20) 0.009 
1.03 (0.442-

2.4) 
0.944 3.1 (1.35-7.11) 0.008 

Anatomical 
site 

Other (ref) - - - - - - 

Extremity & 

trunk wall 
0.089 (0.018-

0.452) 
0.004 

0.316 (0.131-

0.76) 
0.01 

0.258 (0.095-

0.701) 
0.008 

Uterine 
0.148 (0.01-

2.29) 
0.172 1 (0.278-3.62) 0.996 

0.57 (0.166-

1.95) 
0.37 

FNCLCC 

grade  

2 (ref) - - - - - - 

3 2.89 (0.926-9) 0.068 
3.28 (1.57-

6.87) 
0.002 2.74 (1.25-6.03) 0.012 

Performanc
e status 

0 (ref) - - - - - - 

1 7.82 (1.74-35) 0.007 
1.91 (0.749-

4.86) 
0.176 

2.69 (0.986-

7.35) 
0.053 

2-3 
5.52 (0.334-

91.1) 
0.233 

2.14 (0.537-

8.53) 
0.281 24.6 (6.29-96.4) 

< 

0.001 

unknown 
1.59 (0.361-

6.96) 
0.542 

0.665 (0.254-

1.74) 
0.406 

0.976 (0.329-

2.9) 
0.965 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.514 (0.036-

7.41) 
0.625 

0.418 (0.087-

2.01) 
0.276 1.3 (0.303-5.61) 0.722 

Tumour 
margin 

R0 (ref) - - - - - - 

R1 & R2  1.8 (0.628-5.14) 0.274 
0.821 (0.414-

1.63) 
0.574 

1.27 (0.605-

2.65) 
0.532 

Log(Tumou
r size [mm]) 

4-5 (ref) - - - - - - 

< 4 
1.18 (0.158-

8.73) 
0.875 

0.55 (0.135-

2.24) 
0.404 0.85 (0.172-4.2) 0.842 

> 5 
0.538 (0.14-

2.07) 
0.368 

0.306 (0.115-

0.815) 
0.018 

1.07 (0.434-

2.63) 
0.887 

Proteomic 
subtype 

P2 (ref) - - - - - - 

P1 
1.19 (0.308-

4.61) 
0.8 

1.61 (0.719-

3.59) 
0.248 

1.08 (0.441-

2.66) 
0.862 

P3 8.04 (1.7-38) 0.009 
2.63 (1.07-

6.49) 
0.036 

2.18 (0.819-

5.78) 
0.119 
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5.2.1.7 Comparison of the proteomic and transcriptomic subtypes of LMS  

There are several transcriptomic studies describing molecular LMS subtypes (as 

discussed in section 1.4.1.2). It was therefore of interest to assess whether the 

proteomic LMS subtypes recapitulate, complement, or contrast transcriptomic subtypes. 

It was not possible to perform transcriptomic profiling on the cohort herein, nor is there a 

publicly available dataset of both transcriptomic and MS data for LMS patients. A direct 

assessment of whether the proteomic subtypes are recapitulating the transcriptomic 

subtypes was therefore not possible.  

With these limitations in mind, the TCGA RNAseq data was queried based on the 

proteins identified herein; to offer an informal comparison of the transcriptomic and 

proteomic subtypes36. Whilst individual RNA-protein correlations are typically poor, the 

expression of groups of RNA/proteins representing overarching biological features is 

hypothesised to have higher similarity448,609,610. Therefore, by assessing numerous 

genes/proteins, it is anticipated that, if present, similarities between the proteomic and 

transcriptomic subtypes will be observed. The TCGA dataset was selected due to its 

 

Figure 5.8 Drug target profile expression across leiomyosarcoma (LMS) proteomic subtypes 
(A) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of 27 Drug Signature 
database (DSigDB) D1 profiles across the LMS cohort. From top to bottom, panels indicate proteomic 
subtype, anatomical site, tumour grade, patient sex, and preoperative treatment status.  
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annotation with transcriptomic subtypes from 3 independent LMS studies, thus 

facilitating multi-study comparisons. The annotations describe 2 LMS subtypes from 

Abeshouse et al, 3 LMS subtypes from Hemming et al, and 4 LMS subtypes from 

Anderson et al36,274,283. To reveal whether cohort differences may impact cross-study 

translation of findings, the TCGA cohort and MS cohort were compared (summarised in 

Supplemental Table 5.5). Both cohorts comprised primary tumours from 80 LMS 

patients. The cohorts had a near identical number of females and males. However, all 

other overlapping clinicopathological variables assessed differed significantly. The 

significant difference of anatomical site was mostly attributable to the inclusion of more 

uLMS and fewer extremity tumours in TCGA. Tumour depth differences were mostly due 

to a high missingness for this variable in TCGA and low numbers of superficial tumours. 

Tumour margins were different due to more R1 margins in the MS cohort, and the 

distribution of grade was different due to the exclusion of grade 1 tumours in the MS 

cohort, and a coordinate increase in the inclusion of high grade tumours. The TCGA and 

MS cohort therefore represent two different patient populations within LMS. As a result, 

it is possible that intrinsic tumour biology may differ between the populations, restricting 

comparisons of the proteomic and transcriptomic subtypes.  

To assess whether the proteins identified herein can recapitulate the transcriptomic 

heterogeneity of LMS, the TCGA RNAseq dataset was reduced to only those 

proteins/genes identified by MS (n = 3,290). Strikingly, the clustering achieved by this 

reduced gene list in the TCGA cohort was highly comparable to the LMS transcriptomic 

subtypes identified by Abeshouse et al, Hemming et al, and Anderson et al (Figure 

5.9A). There were some exceptions. Most notable, a subset of ‘Abeshouse stLMS-like’, 

‘Hemming cLMS’ and ‘Anderson C2A/B’ clustered away from most other tumours of 

these classifications. However, within the 2 main clusters of ‘Abeshouse uLMS-like’ and 

‘Abeshouse stLMS-like’; the subtypes identified by Hemming et al and Anderson et al 

(iLMS and uLMS; C1 and C3) clustered separately within ‘Abeshouse uLMS-like’, as did 

the further subtypes identified by Anderson et al (C2A and C2B) within ‘Abeshouse 

stLMS-like’. To assess whether these transcriptomic patterns are driven by the same 

DEPs as the proteomic subtypes and to investigate whether the proteomic and 

transcriptomic subtypes are the same; the TCGA data was reduced to DEPs uniquely 

upregulated between the proteomic subtypes (n = 321). Clustering of this dataset 

generated comparable results to the data from 3290 genes (Figure 5.9B  vs Figure 

5.9A). The heatmap showed 2 near exclusive clusters of ‘Abeshouse uLMS-like’ and 

‘Abeshouse stLMS-like’ cases. Most ‘Hemming uLMS’ and ‘Anderson C3’ clustered as a 

subset of ‘Abeshouse uLMS-like’, and most ‘Anderson C2B’ and ‘C2A’ were clustered s 
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a subset of ‘Abeshouse stLMS-like’ and ‘Hemming cLMS’. However, the clustering of 

transcriptomic subtypes was less robust; in particular ‘Anderson C2B’ cases clustered 

across ‘Abeshouse stLMS-like’ and ‘Hemming cLMS’. Whilst use of the proteomic 

subtype DEPs did reproduce similar clusters to the published transcriptomic subtypes of 

LMS, visual inspection of the heatmap suggested each set of subtype-specific proteomic 

DEPs did not correspond to a particular transcriptomic subtype. Based on this, it was not 

possible to determine which proteomic subtypes map to which transcriptomic subtypes.  

 

 

  

 

Figure 5.9 Leiomyosarcoma (LMS) proteomic subtypes in The Cancer Genome Atlas (TCGA) RNAseq 
cohort.  
(A) Annotated heatmap showing the unsupervised clustering (Pearson’s distance) of all MS-identified 
proteins in the TCGA RNAseq dataset. Annotations show transcriptomic subtypes identified by Abeshouse 
et al, Hemming et al, and Anderson et al. (B) Annotated heatmap showing the clustering (Pearson’s 
distance) of all proteomic subtype specific differentially expressed proteins (DEPs; Figure 5.3) in the TCGA 
RNAseq dataset. Annotations show transcriptomic subtypes identified by Abeshouse et al, Hemming et al, 

and Anderson et al.
36,274,283
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5.2.2 The immune landscape of UPS and DDLPS 

5.2.2.1 Clinicopathological features of the UPS and DDLPS cohort 

Primary tumour specimens from 53 UPS and 39 DDLPS patients were profiled (total = 

92). Clinicopathological features are summarised in Table 5.4. Briefly, patients had a 

median age of 68.6 years at the time of surgery and a median tumour size of 120 mm. 

There were approximately equal numbers of females and males (43 and 49 respectively), 

and a strong enrichment of high grade tumours (75% vs 23.9% intermediate grade). Most 

tumours were deep (88%) and located in either the extremities (40%) or retroperitoneum 

(32%). 5 UPS patients had radiation-associated disease, 2 DDLPS patients had 

metastatic disease at surgery, 1 DDLPS patient had multifocal disease at surgery, and 

1 DDLPS patient received preoperative treatment (chemotherapy). Most surgical 

margins were either R0 (38%) or R1 (56.5%), and most patients had a PS of either 0 

(42.4%) or 1 (29.3%). Data was not available for 16 patients with missing PS data, 5 

patients with missing tumour margin data, and 1 patient with missing grade data. 

Interactions between clinicopathological features were assessed as before and are 

summarised in Supplemental Table 5.6. This revealed expected histological subtype 

differences. Most extremity tumours were UPS, and most retroperitoneal tumours were 

DDLPS (Supplemental Figure 5.12A). Histology was also significantly associated with 

grade, age, and size, where DDLPS were of lower grade (Supplemental Figure 5.12B), 

present in younger patients (Supplemental Figure 5.12C), and larger than UPS 

(Supplemental Figure 5.12D). Beyond this, significant associations were noted as in 

the full cohort (section 4.2.2): significant between anatomical site and size, size and 

tumour depth, and age and grade. In addition, specific to the DDLPS and UPS cohort, 

an association between anatomical site and grade was noted; with grade 2 tumours 

almost exclusively intra-abdominal and retroperitoneal (Supplemental Figure 5.12E). 

Size was also associated with grade (lower grade tumours were larger; Supplemental 

Figure 5.12F), and age was associated with anatomical site (head and neck, and 

retroperitoneal tumours occurred in a younger population; Supplemental Figure 5.12G).  

5.2.2.2 Cohort outcomes and the prognostic significance of 

clinicopathological variables 

Survival data was censored at 5 years and therefore information on longer term 

outcomes was not available. Within the mixed DDLPS and UPS cohort, median LRFS 

was ~ 44 months, as was median OS (Figure 5.10A,C). Median MFS for the cohort was 

not reached (Figure 5.10B). At 5-years post-surgery, 46% of patients had experienced  
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a local recurrence event, 39% had experienced a metastatic event, and 57% were 

deceased.  

There were extensive differences between the clinicopathological features of UPS and 

DDLPS. By extension, it was hypothesised that histology, as well as other 

clinicopathological variables may influence patient outcomes. To assess this Kaplan 

Meier curves were plotted and univariable Cox regressions performed (summarised in 

Supplemental Table 5.7). As in the LMS-specific cohort, some anatomical sites 

contained low numbers of patients. Therefore, intra-abdominal and retroperitoneal (i.e., 

intracavity) tumours were grouped, and tumours of all other anatomical sites grouped. 

Table 5.4 Clinicopathological features of the dedifferentiated liposarcoma (DDLPS) and 
undifferentiated pleomorphic sarcoma (UPS) cohort. 
Features of total cohort and individual histological subtypes. Continuous variables detailed as median, 
minimum (min), and maximum (max). Categorical variables detailed as count (n) and percentage. 
Abbreviations: F = female; M = male; CTX = chemotherapy. 

    Total  DDLPS UPS 

  n 92 39 53 

Age at excision (years) 

median 68.6 63 73.5 

min 28.2 35.1 28.2 

max 90 81.3 90 

Tumour size (mm) 

median 120 190 80 

min 15 35 15 

max 1090 1090 360 

Sex [n (%)] 
F 43 (46.7) 15 (38.5) 28 (52.8) 

M 49 (53.3) 24 (61.5) 25 (47.2) 

Grade [n (%)] 

2 22 (23.9) 19 (48.7) 3 ( 5.7) 

3 69 (75) 20 (51.3) 49 (92.5) 

unknown 1 (1.1) - 1 ( 1.9) 

Anatomical site [n (%)] 

Extremity 40 (43.5) 2 ( 5.1) 38 (71.7) 

Head/neck 4 (4.3) - 4 ( 7.5) 

Intra-abdominal 4 (4.3) 3 ( 7.7) 1 ( 1.9) 

Retroperitoneal 32 (34.8) 32 (82.1) - 

Trunk 10 (10.9) 2 ( 5.1) 8 (15.1) 

Pelvic 2 (2.2) - 2 ( 3.8) 

Tumour depth [n (%)] 
Deep 81 (88) 38 (97.4) 43 (81.1) 

Superficial 11 (12) 1 ( 2.6) 10 (18.9) 

Status at excision [n (%)] 

Local 89 (96.7) 36 (92.3) 53 (100.0) 

Metastatic 2 (2.2) 2 ( 5.1) - 

Multifocal 1 (1.1) 1 ( 2.6) - 

Radiation associated [n (%)] 
No 87 (94.6) 39 (100.0) 48 (90.6) 

Yes 5 (5.4) - 5 (9.4) 

Tumour margins [n (%)] 

R0 35 (38) 9 (23.1) 26 (49.1) 

R1 52 (56.5) 25 (64.1) 27 (50.9) 

unknown 5 (5.5) 5 (12.8) - 

Performance status [n (%)] 

0 39 (42.4) 17 (43.6) 22 (41.5) 

1 27 (29.3) 12 (30.8) 15 (28.3) 

2 6 (6.5) 2 ( 5.1) 4 ( 7.5) 

3 4 (4.3) 1 ( 2.6) 3 ( 5.7) 

unknown 16 (17.4) 7 (17.9) 9 (17.0) 

Pre-op treatment [n (%)] 
CTX 1 (1) 1 ( 2.6) - 

None 91 (99) 38 (97.4) 53 (100.0) 
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All other variables were handled as before (section 4.2.2). Univariable Cox regression 

revealed histological subtype as associated with a significantly different LRFS and MFS. 

DDLPS showed a significantly shorter LRFS (HR = 2.63, 95% CI = 1.4 – 4.94, p = 0.003), 

but significantly longer MFS (HR = 0.426, 95% CI = 0.205 – 0.889, p = 0.023; 

Supplemental Figure 5.13A). Lower grade tumours (grade 2 v 3) were associated with 

a superior MFS (HR = 0.284, 95% CI = =0.1 – 0.809, p = 0.018) and OS (HR = 0.435, 

95% CI = 0.204 – 0.926, p = 0.031; Supplemental Figure 5.13B), tumours of the largest 

size category were associated with a significantly poorer LRFS (HR = 2.14, 95% CI = 

1.08 – 4.22, p = 0.029; Supplemental Figure 5.13C), and age was associated with a 

superior OS (HR = 1.04, 95% CI = 1.02 – 1.07, p = 0.001). All PS categories were 

associated with a significantly inferior OS compared to the reference group of PS 0 (PS 

1: HR = 2.66, 95% CI = 1.35 – 5.24, p = 0.005; PS 2-3: HR = 4.21, 95% CI = 1.76 – 10.1, 

p = 0.001; PS unknown: HR = 2.7, 95% CI = 1.21 – 6.02, p = 0.015; Supplemental 

Figure 5.13D).  

 

Following multivariable adjustment (summarised in Supplemental Table 5.8), age and 

a PS of 1 were the only variables to retain significance as prognosticators (both for OS). 

Whilst anatomical site and tumour size gained significance in the LRFS and MFS models 

respectively, suggesting the presence of suppressor variables. Both anatomical site and 

tumour size both showed extensive interactions with other clinicopathological variables 

 
Figure 5.10 Clinical outcome of the dedifferentiated liposarcoma (DDLPS) and undifferentiated 
pleomorphic sarcoma (UPS) cohort. Kaplan Meier plots showing local recurrence free survival (LRFS; 
A), metastasis free survival (MFS; B), and overall survival (OS; C) up to 5-years post-surgery. Dashed line 
indicates median survival. 
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in this cohort (section 5.2.2.1). Namely, depth with size, age with anatomical site, 

histology and grade with both size and anatomical site, and anatomical site and size with 

each other. It is probable that these interactions underlie the differences seen between 

the univariable and multivariable model. Given suppressor variables show weak 

influence over the IV (explained in section 5.2.1.2), it is unlikely that histology (in LRFS 

and MFS) or grade (in MFS) are suppressive as both were found significant in univariable 

assessment. Therefore, it is hypothesised that depth or age drive the significance of 

tumour size and anatomical site.  

For all univariable and multivariable models, the PH assumption was met. Minor 

violations were observed for the PS variable in the univariable MFS model (p = 0.021), 

univariable OS model (p = 0.01), multivariable MFS model (p = 0.048), and multivariable 

OS model (p = 0.013; Supplemental Figure 5.14 and Supplemental Figure 5.15). 

However, these did not invalidate the use of the Cox model. 

5.2.2.3 Heterogeneity in TIL burden in UPS and DDLPS  

Given the previously reported immune heterogeneity in UPS and DDLPS that was also 

shown herein (Chapter 4, Figure 4.10), clinical trial results illustrating favourable 

responses to ICB in a subset of UPS and DDLPS patients, and the reported association 

between TIL levels and immune checkpoint expression levels across cancer types, the 

immune infiltrate of these two subtypes in our cohort was characterised139,140,611,612. IHC 

data on TMAs generated and collected by previous lab members and corresponding to 

CD3, CD4 and CD8 expression was available for a subset of the MS-profiled UPS and 

DDLPS cohort. Data was collected from 5 TMAs containing multiple 1mm cores from 

each sample. As in LMS analyses (section 5.2.1.5), 2 TMA cores were required for 

analysis to ensure the robustness of any findings. This resulted in a CD3+ TIL (total T 

cell) dataset of 50 UPS and 32 DDLPS samples (total = 82); a CD4+ TIL (helper T cell) 

dataset of 50 UPS and 35 DDLPS samples (total = 85); and a CD8+ TIL (cytotoxic T cell) 

dataset of 47 UPS and 32 DDLPS samples (total = 79; Supplemental Figure 5.16A). 

Scores were adjusted to TIL/mm2 (section 2.6), and the mean of all scores used as the 

final sample measure. The suitability of using mean as a summary statistic was assessed 

as in LMS (section 5.2.1.5). Briefly, inter-core variability was largest in samples with 

higher immune infiltrate (Supplemental Figure 5.16B). Therefore, one caveat of this 

approach is that the mean TIL measures may not accurately portray TIL burden. In LMS, 

it has been shown that where data is only available for a small number of cores, 

dichotomisation at the median can accurately classify most tumours as either ‘high’ or 

‘low’606. Data for each case was therefore dichotomised at each median TIL level.  
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Across the UPS and DDLPS cohort, CD3+ TILs, CD4+ TILs, and CD8+ TILs were 

similarly distributed. Density plots of each TIL population showed left tailing suggesting 

a relatively low infiltrate of CD3/4/8+ cells in most samples (Figure 5.11). However, 

CD3+ TILs did show less extreme tailing than CD4+ and CD8+ TILs, alluding to a larger 

population with intermediate CD3+ TIL levels. CD3+ and CD4+ TILs were generally 

higher than CD8+ TILs, with CD3+ ranging from 1 - 1238 TIL/mm2  (median = 107 

TIL/mm2), CD4+ from 1 - 1735 TIL/mm2  (median = 89 TIL/mm2), and CD8+ from 0 - 869 

TIL/mm2 (median = 31 TIL/mm2). All TIL measures were positively correlated but 

decreased in strength from CD3+ and CD4+ (Pearson correlation coefficient = 0.97; p < 

0.001), to CD3+ and CD8+ (Pearson correlation coefficient = 0.75; p < 0.001), to CD4+ 

and CD8+ (Pearson correlation coefficient = 0.68; p < 0.001; Supplemental Figure 

5.16C). As in LMS (section 5.2.1.5), despite CD4+ TILs being a theoretical 

subpopulation of CD3+ TILs, in some cases the mean CD4+ cell infiltrate was higher. It 

was not possible to identify the cause of this and therefore CD4+ TIL results require 

cautious interpretation.  

 

5.2.2.4 Clinical characterisation of UPS and DDLPS immune subtypes 

As a result of this cohort comprising 2 STS subtypes, significant variation in 

clinicopathological features was introduced (section 5.2.2.1). Similarly, these subtypes 

or any other clinicopathological variable group may show intrinsically different TIL 

burdens. It was therefore important to assess whether TIL burden correlated with 

clinicopathological features. Moreover, previous studies have highlighted an association 

 

Figure 5.11 CD3+/4+/8+ tumour infiltrating lymphocyte (TIL) burden in dedifferentiated liposarcoma 
(DDLPS) and undifferentiated pleomorphic sarcoma (UPS) 
Density plots showing the distribution of CD3+/4+/8+ TILs in DDLPS and UPS cases. Dashed line indicates 
median. 
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between immune activity and clinical outcome, thus the relationship between TIL burden 

and LRFS, MFS, and OS was also explored36,222,231.  

There was no statistical association between CD3+ TIL burden and any 

clinicopathological variable (Figure 5.12A and Supplemental Table 5.9). However, 

CD3+ TIL burden was associated with outcome. Use of the Kaplan Meier curve (Figure 

5.12B) and univariable Cox regression (Table 5.5), revealed high CD3+ TILs to be 

significantly associated with a superior LRFS and OS (HR = 0.489, 95% CI = 0.247 – 

0.969, p = 0.04, and HR = 0.43, 95% CI = 0.241 – 0.767, p = 0.004 respectively). 

Following multivariable adjustment, a high CD3+ TIL level retained independent 

significance in the OS model; associated with a superior OS compared to low CD3+ TILs  

 

 

Figure 5.12 Clinical features of high and low CD3+ tumour infiltrating lymphocyte (TIL) cases 
(A) Overview clinicopathological features of high and low CD3+ TIL cases. High and low determined by 
median value. Corresponding statistical tests for associations between variables are detailed in 
Supplemental Table 5.9. (B) Kaplan-Meier plots of local recurrence free survival (LRFS) metastasis free 
survival (MFS), and overall survival (OS) up to 5-years post-surgery for high CD3+ TIL patients compared 
to low CD3+ TIL patients. Corresponding univariable Cox regression results are detailed in Table 5.5. 
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(HR = 0.484, 95% CI = 0.236 – 0.992, p = 0.048; Table 5.6). The only other variable 

significantly associated with OS following multivariable adjustment was age. As with 

CD3+ TILs, CD4+ TILs also showed no association with any clinicopathological variable 

(Figure 5.13A and Supplemental Table 5.9). High CD4+ TILs were significantly 

associated with a superior LRFS and OS in the univariable setting (HR = 0.499, 95% CI 

= 0.258 – 0.967, p = 0.04, and HR = 0.532, 95% CI = 0.303 – 0.936, p = 0.029 

respectively; Figure 5.13B and Table 5.5). Following multivariable adjustment, the 

significance of high/low CD4+ TILs was lost (Supplemental Table 5.10). As with CD3+ 

and CD4+ TILs, CD8+ TILs also showed no associated with any clinicopathological 

variable (Figure 5.14A and Supplemental Table 5.9). High CD8+ TILs were significantly  

 

 

Figure 5.13 Clinical features of high and low CD4+ tumour infiltrating lymphocyte (TIL) cases 
(A) Overview clinicopathological features of high and low CD4+ TIL cases. High and low determined by 
median value. Corresponding statistical tests for associations between variables are detailed in 
Supplemental Table 5.9. (B) Kaplan-Meier plots of local recurrence free survival (LRFS) metastasis free 
survival (MFS), and overall survival (OS) up to 5-years post-surgery for high CD4+ TIL patients compared 
to low CD4+ TIL patients. Corresponding univariable Cox regression results are detailed in Table 5.5. 
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associated with a superior LRFS (HR = 0.452, 95% CI = 0.232 – 0.881, p = 0.02; Figure 

5.14B and Table 5.5). As was the case for CD4+ TILs, multivariable Cox models showed 

no significant relationship between high/low CD8+ TIL burden and outcome 

(Supplemental Table 5.11).  

As before, assumptions of the Cox regression model were assessed. This revealed 

minor PH violations in the CD4+ OS model for sex, and in the CD8+ MFS model for 

subtype, anatomical site, and PS. Inspection of the scaled Schoenfeld’s residual plots 

(Supplemental Figure 5.17), illustrated no obvious violations that would invalidate the 

model. However, PH violations (Schoenfeld’s p < 0.01) were observed in all OS models 

for PS (Supplemental Figure 5.18). Given the strong relationship between PS and 

outcome, not only identified in the UPS and DDLPS cohort (section 5.2.2.2), but also in  

 

Figure 5.14 Clinical features of high and low CD8+ tumour infiltrating lymphocyte (TIL) cases 
(A) Overview clinicopathological features of high and low CD8+ TIL cases. High and low determined by 
median value. Corresponding statistical tests for associations between variables are detailed in 
Supplemental Table 5.9. (B) Kaplan-Meier plots of local recurrence free survival (LRFS) metastasis free 
survival (MFS), and overall survival (OS) up to 5-years post-surgery for high CD8+ TIL patients compared 
to low CD8+ TIL patients. Corresponding univariable Cox regression results are detailed in Table 5.5. 
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Table 5.5 Univariable Cox regression assessing CD3+/CD4+/CD8+ tumour infiltrating lymphocyte 
(TIL) burden in dedifferentiated liposarcoma and undifferentiated pleomorphic sarcoma cases  
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval. 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

CD3 
low (ref) - - - - - - 

high 0.489 (0.247-0.969) 0.04 0.706 (0.355-1.4) 0.32 0.43 (0.241-0.767) 0.004 

CD4 
low (ref) - - - - - - 

high 0.499 (0.258-0.967) 0.04 0.737 (0.378-1.44) 0.37 0.532 (0.303-0.936) 0.029 

CD8 
low (ref) - - - - - - 

high 0.452 (0.232-0.881) 0.02 0.66 (0.332-1.31) 0.235 0.568 (0.321-1.01) 0.053 

Table 5.6 Multivariable Cox regression assessing CD3+ tumour infiltrating lymphocyte (TIL) burden 
in dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS) patients. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Anatomical site of ‘Other’ indicates extremity, trunk wall, and head/neck cases. Significant results in bold. 
Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval; IA = Intra-abdominal; 
RP = retroperitoneal 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
1.04 (0.995-

1.08) 
0.085 

1.02 (0.979-
1.07) 

0.317 
1.04 (1.01-

1.09) 
0.027 

Sex 

M (ref) - - - - - - 

F 
1.23 (0.536-

2.83) 
0.625 

1.4 (0.554-
3.56) 

0.475 
1.32 (0.668-

2.62) 
0.423 

Histological 
subtype 

UPS (ref) - - - - - - 

DDLPS 
0.937 (0.192-

4.58) 
0.936 

0.53 (0.094-
2.99) 

0.472 
0.559 (0.119-

2.62) 
0.461 

Anatomical 
site 

Other (ref) - - - - - - 

IA/RP 
5.47 (0.935-

32) 
0.059 

0.216 (0.036-

1.32) 
0.097 

1.59 (0.316-

8.01) 
0.574 

FNCLCC 
grade  

3 (ref) - - - - - - 

2 
0.91 (0.348-

2.38) 
0.848 

0.388 (0.105-

1.43) 
0.155 

0.618 (0.238-

1.6) 
0.323 

Performance 

status 

0 (ref) - - - - - - 

1 
1.8 (0.665-

4.87) 
0.247 

1.6 (0.611-
4.21) 

0.338 
2.16 (0.914-

5.09) 
0.079 

2-3 
1.11 (0.247-

5.02) 
0.888 

0.383 (0.07-
2.09) 

0.267 
1.98 (0.58-

6.76) 
0.275 

unknown 
1.18 (0.353-

3.93) 
0.79 

0.878 (0.208-
3.71) 

0.86 
1.92 (0.62-

5.95) 
0.258 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.57 (0.104-

3.12) 
0.517 

0.401 (0.097-

1.66) 
0.207 

0.807 (0.231-

2.82) 
0.738 

Tumour 
margin 

R1 & R2 
(ref) 

- - - - - - 

R0 
0.767 (0.305-

1.93) 
0.572 

0.994 (0.43-
2.3) 

0.989 
0.911 (0.421-

1.97) 
0.813 

unknown 
1.58 (0.284-

8.78) 
0.601 

1.62 (0.182-
14.4) 

0.667 
0.774 (0.079-

7.55) 
0.825 

Log(Tumour 

size [mm]) 

4-5 (ref) - - - - - - 

< 4 
0.796 (0.204-

3.1) 
0.743 

0.391 (0.118-

1.29) 
0.124 

0.325 (0.103-

1.02) 
0.054 

> 5 
0.855 (0.282-

2.59) 
0.781 

5.31 (1.52-
18.6) 

0.009 
1.75 (0.718-

4.26) 
0.219 

CD3 

low (ref) - - - - - - 

high 
0.517 (0.228-

1.17) 
0.114 

0.872 (0.356-
2.14) 

0.764 
0.484 (0.236-

0.992) 
0.048 
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the full cohort (section 4.2.2), it was deemed inappropriate to exclude the PS variable 

from the model. Instead, PS was included but interpretation cautioned. Importantly, in 

the CD4+ and CD8+ OS models inclusive of PS, the global Schoenfeld test identified no 

PH violation (p = 0.153 and p = 0.065 respectively). In the CD3+ OS model only a minor 

global PH violation (global Schoenfeld p = 0.03) was observed. Therefore, as complete 

models, interpretation is valid.  

5.2.2.5 Biological features associated with CD3+ TILs in UPS and DDLPS 

A significant association between CD3+ TILs and OS was revealed herein. To better 

understand the biological basis that may underpin differing outcomes in these patients, 

the wider immune biology in high and low CD3+ TIL groups was investigated. Targeted 

transcriptomic data (NanoString) corresponding to 21 immune components (detailed in 

section 2.4) was collected by previous lab members and available for analysis. 

NanoString data was present for 41 UPS and 26 DDLPS cases (total = 67) with both MS 

and IHC CD3 data. Gene expression profiles were compared between the low and high 

CD3+ TIL cases using Kruskal-Wallis tests (Figure 5.15A). This highlighted several genes, 

including CD3G and CD8G as expressed at a significantly higher levels in the high CD3+ 

TIL group. Several immune checkpoint regulation genes were also highlighted as 

enriched in the high CD3+ TIL group. These included PDCD1, the PD-1 receptor, 

PDCD1LG2, the PD-L2 ligand, as well as checkpoint genes IDO and LAG3. Following 

multiple testing adjustment, only PDCD1 remained significant. Together, these results 

suggest high CD3+ TIL burden to be associated with increased activity in immune 

checkpoint processes. Conversely, low CD3+ TIL patients harboured low expression of 

immune checkpoint genes. As immune checkpoint genes are suggested to be associated 

with ICB response (as discussed in section 1.5.3.1), ICB intervention may not be of 

benefit to the low CD3+ TIL population.  

Given the likely ineffectiveness of ICB in low CD3+ TIL patients and the significantly 

poorer OS seen in low CD3+ TIL compared to high CD3+ TIL cases (section 5.2.2.4); 

there is an evident and pressing need to identify clinically actionable biological pathways 

in these patients. Targeted gene expression analyses of selected immune components 

failed to highlight any upregulated genes within the low CD3+ TIL population (Figure 

5.15A). Therefore, to reveal such pathways, the more comprehensive proteomic data was 

interrogated. GSEA  was performed on the complete dataset against the Hallmark and 

GO BP databases of MSigDB. Strikingly, the top 20 significant (based on NES; adjusted 

p < 0.05) gene sets enriched in both high and low CD3+ TIL cases were exclusively 

immune-related. Furthermore, within the top 40 gene sets enriched in high  
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Figure 5.15 Characterisation of the immune profiles of dedifferentiated liposarcoma (DDLPS) and 
undifferentiated pleomorphic sarcoma (UPS) 
(A) Boxplots comparing expression of 21 immune-related genes in low and high CD3+ TIL cases. Boxes 
indicate 25th and 75th percentile, with median line in the middle, whiskers extending from 25th percentile-
(1.5*IQR) to 75th percentile+(1.5*IQR), and outliers plotted as points. p values determined by Kruskal-Wallis 
tests and adjusted to false discovery rate (FDR). (B) Gene Set Enrichment Analysis (GSEA) results applied 
to the proteomic dataset showing the top 15 gene sets enriched in CD3+ TIL-high and and-low cases based 
on normalised enrichment score (NES) with gene sets related to complement activity (blue) and coagulation 
processes (orange) highlighted. (C) Protein-protein interaction network of the coagulation and complement 
cascades). Node colour indicates Log2(Fold Change CD3+ TIL low: CD3+ TIL high) protein expression. Grey 
indicates nodes that are not in the proteomic data. Abbreviations: TIL = tumour infiltrating lymphocyte 
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CD3+ TILs and the top 40 gene sets enriched in low CD3+ TILs, only 6 and 15 described 

non-immune processes respectively. In agreement with IHC and transcriptomic data, 

GSEA revealed a robust enrichment of T cell immune responses in the high CD3+ TIL 

group (Figure 5.15B). The enriched gene sets included leukocyte and T cell specific 

activation and proliferation processes. Additionally, interferon α and γ responses were 

also enriched. In cancer, interferons α and γ are cytokines which show complex and 

reciprocal interplay with T cells: T cells can secrete interferons and interferons support T 

cell differentiation, priming, and activation613–616. By contrast, low CD3+ TILs showed an 

enrichment of the humoral immune response, of which key players include complement, 

antibodies, plasma cells, and B cells617. Additionally, the coagulation pathway, which is 

known to interact with the complement cascade was enriched618. To inspect the proteins 

contributing to the enrichment of complement and coagulation in these tumours, PPI 

networks were constructed based on the KEGG and WikiPathways databases (Figure 

5.15C). This analysis highlighted the serpin family of serine proteases to be strongly 

upregulated in low CD3+ TIL patients (SERPINA1/A5/C1/D1/F2/G1). Several 

complement proteins were also upregulated in low CD3+ TIL patients, including those of 

the membrane attack complex (MAC). Therefore, despite low CD3+ TIL patients showing 

a low TIL infiltration and low immune checkpoint activity, they are not ‘immune cold’. 

Instead, these patients harbour a distinctive and active immune component, which may 

have implications for disease progression, patient outcome, and response to treatment. 

5.3 Discussion and summary  

This chapter investigated the intra-subtype heterogeneity of LMS and the immune-

specific features of DDLPS and UPS. This heterogeneity was molecularly defined using 

multiple complementary datasets (MS, IHC, NanoString). In doing so, this chapter 

revealed clinical applications corresponding to molecular features of STS and identified 

multiple areas of interest for future research.  

The cohorts analysed describe LMS patients, and DDLPS and UPS patients. Limitations 

of these cohort designs due to the use of primary tissue only and an absence of normal 

tissue were discussion in section 4.3. Cohort features were largely in line with clinical 

presentation of each subtype. For example, most LMS were deep seated and occurred 

predominately in females, DDLPS tended to be large and retroperitoneal, and UPS were 

mostly high grade587,619–621. The DDLPS and UPS cohort showed extensive interactions 

between clinicopathological variables. This is hypothesised to be the result of histological 

subtype differences (e.g., the somewhat counterintuitive observation that larger tumours 
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were typically lower grade, can be explained by DDLPS tumours being large and lower 

grade). Therefore, despite reports suggesting similar immune profiles, there are limited, 

if any, clinicopathological similarities between DDLPS and UPS.  Furthermore, expected 

clinicopathological variables such as anatomical site and grade were associated with 

clinical outcome45,46. One LMS-specific limitation was an underrepresentation of uLMS 

tumours relative to incidence (9% of the LMS cohort vs 25% of all LMS diagnoses)303. 

This may limit the application of our findings in the uLMS group. Beyond this and given 

the inclusion criteria (detailed in section 3.2.1), these cohorts were deemed as 

representative of the disease population.  

5.3.1 Molecular heterogeneity in LMS  

This chapter identified 3 robust proteomic subtypes of LMS with different clinical 

outcomes, and distinct biological features. Some of these features are in agreement with 

the previously reported transcriptomic subtypes of LMS36,43,274,281–283.  

Specifically, network analysis of the ‘immune cold LMS/P1’ proteome revealed an 

upregulation of pro-proliferative complexes involved with DNA repair (RPA and MCM). 

This has not been previously reported in the transcriptomic subtyping of LMS.  ‘immune 

cold LMS/P1’ were also biologically characterised by a low expression of pro 

inflammatory immune hallmarks, including IL2-STAT5 signalling, complement and 

allograft rejection. IL2 is an inflammatory cytokine that triggers STAT5-mediated 

transcriptional activity, the targets of which include immune genes622–624. Complement is 

a key component of the innate immune system and a regulator of inflammation, and 

inflammation has been reported as a trigger for allograft rejection625–627. These indicate 

that ‘immune cold LMS/P1’ tumours exhibit a markedly low immune response in-situ. The 

identification of an immune cold proteomic subtype is consistent with transcriptomic 

reports. Namely, Abeshouse et al, Chudasama et al, Hemming et al, and Anderson et al 

highlight variations in immune infiltrate across subtypes36,43,274,283. These studies focus 

on a singular immune hot subtype, the implication being that other subtypes are immune 

cold. The transcriptomic studies highlight immune activity through transcriptomic data 

assessment, both by overrepresentation analysis and in some cases immune cell 

deconvolution. The efforts herein are the first to complement immune-based molecular 

profiling findings of LMS with IHC. Using IHC, the low immune activity in ‘immune cold 

LMS/P1’ was validated, and specifically revealed a significantly lower CD3+ and CD4+ 

TIL burden in these tumours compared to ‘classical LMS/P2’ and ‘dedifferentiated 

LMS/P3’. It is notable that both IL2-STAT5 signalling and CD4+ TILs were significantly 

downregulated in ‘immune cold LMS/P1’, as the CD4+ TIL transcriptional program sits 
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downstream of STAT5624. CD4+ TILs primarily function to activate CD8+ TILs, which 

elicit cytotoxic effects628,629. Previous studies have highlighted the presence of a subset 

of CD4+ TILs (follicular T helper cells) as correlated with better patient outcomes630. 

Additionally, high CD4+ TIL burden has been hypothesised as predictive of ICB 

response, and STS subtypes with high immune activity (i.e., ‘immune hot’ UPS and 

DDLPS) show the most favourable ICB responses140,631,632. In ICB basket trials, LMS 

have shown limited responses, and in a uLMS specific phase II trial evaluating 

nivolumab, no patients showed treatment response (n = 12)139,633. The work herein leads 

to the hypothesis that further efforts to assess ICB across LMS may be beneficial, and 

that non ‘immune cold LMS/P1’ patients would be the most promising candidates. The 

major restriction of this hypothesis is that the immune differences herein are relative to 

LMS tumours only. It is widely accepted that as a group of diseases STS show lower 

immune activity compared to other malignancies (as discussed in section 1.3.1.2). 

Furthermore, within STS, LMS are not highlighted as a typical immune hot histology. 

Indeed, IHC analysis of DDLPS and UPS within the latter analyses of this chapter 

showed higher CD3+/4+/8+ levels in these subtypes than LMS. Therefore, the immune 

hot LMS population may not harbour sufficient immune activity to warrant 

immunotherapy intervention. Future research directions of interest include the 

assessment of LMS immune profiles in the context of other cancers. Data from this 

project could facilitate comparisons within STS. Whilst comprehensive pan-cancer 

assessments linked to this cohort would require MS and/or IHC analysis of non-STS 

samples.  

The ‘dedifferentiated LMS/P3’ proteome showed a specific enrichment of numerous 

ribosomal proteins. In line with this observation, one transcriptomic study has reported 

an LMS subtype enriched in ribosomal gene expression281. Increased ribosomal 

expression implies increased ribosomal activity (i.e., protein synthesis) within these 

tumours. Aberrant protein synthesis can impact the fidelity of translation and drastically 

alter cell behaviour, which may contribute to tumourigenesis634. ‘Dedifferentiated 

LMS/P3’ also showed markedly lower expression of smooth muscle markers than 

‘immune cold LMS/P1’ and ‘classical LMS/P2’, and a low expression of the broader 

‘myogenesis’ hallmark. Mechanistically, this suggests a reduction, loss, or absence of 

smooth muscle lineage signatures, and as such indicates ‘dedifferentiated LMS/P3’ to 

harbour a dedifferentiated phenotype. Inspection of the proteomic dataset revealed 79 

‘myogenesis’ proteins to be present, the vast majority of which correspond to myosin 

chains, integrin subunits and ECM components. Notably, the hallmark ‘spermatogenesis’ 

was also significantly downregulated in ‘dedifferentiated LMS/P3’. The underlying 
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biology of this is unclear. Solid tumours have been reported to express germ cell (GC) 

specific genes (or ‘cancer testis (CT)’ antigens), markers usually only observed in 

reproductive development; the expression of which may be driving this observation in 

LMS635,636. Inspection of the overlap in genes/proteins between revealed 16 

spermatogenesis components in the proteomic data (ACE, AGFG1, CDK1, CSNK2A2, 

GSTM3, HSPA2, HSPA4L, IDE, LDHC, PEBP1, PGK2, PRKAR2A, RFC4, TALDO1, 

TSN, VDAC3). In support of the loss of a smooth muscle signature in a subset of LMS, 

dimension reduction revealed several LMS profiles, most of which were ‘dedifferentiated 

LMS/P3’, to cluster away from the LMS-specific cluster. Although we hypothesised that 

these ‘dedifferentiated LMS/P3’ may show similar profiles to the dedifferentiated subtype 

UPS, clustering did not reflect this. Despite this, the revelation of a dedifferentiated 

subtype is consistent with the transcriptomic LMS subtype studies, all of which highlight 

an LMS subtype with a more dedifferentiated phenotype36,43,274,281–283.  

Despite observed biological similarities between the proteomic and transcriptomic 

subtypes of LMS, clinical associations were not consistent. Unlike claims made for the 

transcriptomic LMS subtypes, no proteomic subtype was enriched in uLMS 

tumours36,43,274,281–283. The reason for this discordance is unknown. It may be the case 

that the uLMS features driving transcriptomic observations are not detectable at the 

proteomic level. Alternatively, compositional differences in the analysed cohorts may 

limit comparisons. Indeed, it is notable that the cohort herein had poor representation of 

uLMS cases. In addition, whilst no associations with clinical outcome have been robustly 

identified with the transcriptomic LMS subtypes, proteomic subtypes were associated 

with outcome. Specifically, following multivariable adjustment, ‘dedifferentiated LMS/P3’ 

showed a significant poorer LRFS and MFS compared to the reference group (’classical 

LMS/P2’). Model comparisons with and without proteomic subtype suggested proteomic 

data can provide significant added value to LRFS prognostication. These associations 

with outcome are consistent with carcinoma literature, which report dedifferentiation to 

confer a more aggressive malignancy297–299. Furthermore, in an LMS specific study which 

assessed smooth muscle marker expression by IHC, loss of myogenic differentiation 

markers was shown to be prognostic for a poorer OS542. Whilst this may also be the case 

here, many biological processes differ between the LMS proteomic subtypes, and the 

exact molecular driver(s) underpinning the variation in clinical outcome are unclear. All 

observations describe associations and are not necessarily causative. Yet these findings 

could have important clinical implications for LMS patients. In LMS, disease recurrence 

and metastasis are common events and the latter the cause of patient death607,608. The 

identification of a high risk subpopulation can stratify patients for further and more 
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aggressive treatment such as adjuvant regimens, as well as prolonged and more 

frequent monitoring.  

There is no publicly available, paired transcriptomic and MS data, and therefore to 

assess the relationship between proteomic and transcriptomic subtypes the TCGA 

RNAseq data was analysed. Use of the MS-identified proteins to cluster the RNAseq 

data illustrated an impressive ability of the MS-derived genes to capture transcriptomic 

subtype heterogeneity. However, this does not indicate the proteomic and transcriptomic 

subtypes are the same. Therefore, the RNAseq data was clustered using the proteomic 

subtype-specific DEPs. This showed comparable clustering with approximate separation 

of the transcriptomic LMS subtypes. Yet the subtype-specific DEPs did not appear to 

drive the clustering. It is therefore unclear as to whether the proteomic and transcriptomic 

subtypes are the same, and it was not possible to assign which proteomic subtype 

corresponded to which transcriptomic subtype. There are several caveats to this 

analysis. Specifically, comparing the datasets relied on the translation of proteomic 

findings to transcriptomic data. Protein-RNA correlations are known to be poor448,609,610. 

From the translation of RNA to proteins, extensive processing (e.g, to generate different 

proteoforms) occurs. Proteins are under regulation by PTMs, which alter activity, and in 

the case of ubiquitination can target proteins for degradation451. Therefore, the final 

protein levels and activity within a cell can vastly differ from measures of gene 

expression. This hinders proteomic-to-transcriptomic translation of findings. Additionally, 

the DEPs utilised were are not optimised for proteomic subtype classification. The DEPs 

are unlikely to perfectly recapitulate proteomic separation itself, therefore it is 

unreasonable to expect the same of transcriptomic data. As a result, interpretation of the 

clustering patterns must consider this as a limit to analysis. Future efforts should include 

a more in-depth investigation into the relationship between proteomic and transcriptomic 

subtypes, ideally through matched MS and RNAseq profiling of the same samples.   

There are several limitations to my study. It is important to note that these findings, whilst 

revealed in a relatively large cohort by rare disease standards, are derived from a small 

dataset from a single institution (RMH). These results are therefore highly overfitted to 

the cohort herein. To validate proteome-outcome associations, an independent 

validation cohort would be required. Additionally, this work would benefit from the 

development of a classifier for LMS proteomic subtypes. If a reduced number of proteins 

were identified as suitable for classification, these could be translated to IHC measures 

for low cost and rapid classification of patients. Notably, if the intention was to stratify 

patients for neoadjuvant therapy, these findings would need to be assessed in biopsy 
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samples as opposed to the resection samples analysed herein. Furthermore, if the 

intention was to stratify advanced disease patients, these findings would need to be 

assessed in metastatic and recurrent disease to determine whether LMS subtypes 

persist throughout disease progression. It is therefore evident that significant steps are 

required before clinical translation can be considered.  

Other efforts for future research could be focused on the assessment of drug targets for 

these patients. ‘Dedifferentiated LMS/P3’ showed poor outcome and therefore a high 

clinical need for treatment options, and ‘immune cold LMS/P1’ showed a lack of immune 

activity reducing the likelihood of immunotherapy utility. Disappointingly, the DSigDB 

analyses herein yielded little insight into targetable axes. This is likely attributable to a 

poor representation of protein targets within the MS data. As a result, there remains a 

pressing need for druggable axes to be identified in LMS. With this in mind, future efforts 

utilising the MS data could include investigating the GO BP, hallmark, and KEGG 

features, as assessed in the full cohort (section 4.2.3), within the LMS cohort. Starting 

from a broad signature standpoint may facilitate the identification of groups of drugs (e.g., 

those targeting metabolic activity), whose target profiles can individually be queried. 

These drugs could be assessed in vitro, where large scale drug screening can be 

performed. Such co-ordination between in vitro experimentation and bioinformatic 

profiling of tumour specimens may reveal promising candidate therapies. 

5.3.2 The immune landscape of DDLPS and UPS 

This chapter also characterised immune heterogeneity across UPS and DDLPS. 

Stratification of the cohort based on CD3+ TIL burden identified 2 subtypes with 

distinctive immune components and differing OS. These subtypes were independent of 

histology and all other clinicopathological features that are typically associated with 

outcome. Moreover, the association of CD3+ TIL burden remained significant following 

multivariable adjustment of the Cox model. This therefore illustrates the added 

prognostic value immune cell characterisation can provide. However, the validity of this 

model was questioned. The PS variable showed a strong association with outcome but 

did not satisfy the PH assumption. Herein, PS is a measure of functional status following 

at diagnosis. Although some analyses show PS as associated with long-term outcome 

(~ years), PS has also been noted to have prognostic value for survival in the short-term 

(~ months)45,46,637. It follows that patients with low functional ability at diagnosis are at 

higher risk of death, however as time passes and treatment commences and progresses, 

this risk may decrease. It is therefore unsurprising that PS may not show a constant 

relationship with OS over time, as is required to meet the PH assumption. In addition, 
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PS can impact treatment choices, further complicating its association with risk over time: 

patients with low functional ability often cannot tolerate treatment toxicities well and thus 

may not receive the aggressive regimens needed to induce remission. PH violation 

invalidated the univariable Cox assessment of PS, but in the multivariable models, the 

global PH was still met. Next steps could include optimisation of this model, by use of a 

PS-time interaction variable, or a time stratified model. This would provide a more 

statistically robust assessment of outcome. 

To better understand the boarder immune context of low/high CD3+ TIL-stratified UPS 

and DDLPS tumours, targeted transcriptomics was utilised. This revealed the high CD3+ 

TIL subtype to show concordant high expression of CD3G and CD8G, as well as several 

immune checkpoint genes. The observed high CD3G, encoding the γ subunit of CD3, is 

consistent with stratification of these groups based on CD3+ TIL burden. The high CD8G, 

encoding the γ subunit of CD8, in high CD3+ TIL cases may be reflective of the positive 

correlation observed between CD3+ TILs and CD8+ TILs in these samples. However, 

no differential transcriptomic expression of CD4 was observed, despite CD3+ TIL and 

CD4+ TIL correlation. This may be due to methodological differences: IHC measures 

protein abundance, whilst NanoString measures gene expression (RNA). Indeed, this 

would be agreement with many reports that note low concordance between individual 

RNA and protein levels448,609,610. The enrichment of immune checkpoint expression in 

high CD3+ TIL samples was consistent with current literature noting TIL and checkpoint 

expression correlation in many cancer types231,611,612.  

In addition to IHC and transcriptomic characterisation, the richness of the MS data was 

leveraged to identify broad biological activities differentially associated with low and high 

CD3+ TILs. Notably the most significant biological features were immune associated. 

This suggests these tumours present with highly comparable biological profiles in all 

aspects except immune response. Given these groups show significantly different OS, 

this highlights the importance of the immune environment in disease progression. MS 

analysis revealed that whilst the high CD3+ TIL subtype showed evidence of cell-

mediated immunity, the low CD3+ TIL subtype showed evidence of a humoral immune 

response (enrichment of B cell activity, complement and phagocytosis). Cell-mediated 

immunity relies on the activity of T cells638. By contrast, the humoral immune response 

is mediated by antibodies produced by plasma cells which differentiate from B cells617. 

Much focus in tumour immunology is directed towards T cell responses, and less so 

towards humoral responses. In sarcoma, B cells, players in humoral immunity, have 

been show as prognostic for improved OS and predictive of favourable responses to ICB 
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(discussed in section 1.5.3.1)231. However, this study also showed co-ordinately high T 

cell infiltrate (CD8+) in high B cell tumours, resultant of the presence of T and B cell-

containing TLS. The observations herein in low CD3+ TIL patients contrast this. There is 

no detectable enrichment in CD8+ TIL levels in these patients, and the opposite impact 

on OS is observed; low CD3+ TIL patients (i.e., enriched in humoral activity) were 

associated with a poorer outcome. In addition to B cells and antibodies, the humoral 

immune response also comprises the complement cascade. The complement cascade 

amplifies the activities of antibodies and is highly interconnected with 

coagulation562,595,596,618,639. Both complement and coagulation were enriched in CD3+ TIL 

samples. Within the complement and coagulation cascades, the MAC complex was 

highlighted. MAC binds to and disrupts the membrane of a target cell inducing cell lysis 

and death. The role of MAC in cancer is complex and recent reports provide evidence 

that MAC binding to cancer cells can activate pathways which inhibit cell death signals 

and promote long term cell survival640–642. Additionally, in melanoma and lung cancer 

activation of complement has been reported to promote tumour growth and, consistent 

with IHC data herein, suppress CD4+ and CD8+ TILs643–645.  

Given the poor outcome of low CD3+ TIL patients, and low checkpoint expression 

suggesting ICB response will be poor in these patients, there is high a clinical need to 

identify candidate treatment approaches. Targeting complement components could 

represent a viable option. Several inhibitors of complement are currently approved, or 

under investigation for a range of non-oncology uses including treatment of paroxysmal 

nocturnal haemoglobinuria and rheumatoid arthritis, and coronary artery bypass 

grafting646–648. Clinical trials for these drugs have not been conducted in cancer, although 

pre-clinical evidence suggests promise. In lung and colon cancer mouse models, co-

inhibition of complement and PD1/PD-L1 treatment led to a synergistic antitumour 

immune response649,650.  

Future avenues to investigate in DDLPS and UPS immunity include assessment of the 

other immune cell subsets and other TILs analysed in this project (CD4+ and CD8+). 

Herein these were not followed up due to a lack of association with clinical outcome. 

However, Kaplan Meier curves did show trends between CD4+ and CD8+ and outcome, 

and statistical assessment was based on an arbitrary cut point (the median). The median 

is highly unlikely to be the optimal point for identifying high and low TIL burden patients 

with clinical relevance. Furthermore, dichotomising results in groups where the highest 

low TIL sample and the lowest high TIL samples are highly similar. Therefore, future 

options for analysis include optimising a cut point based on outcome; various methods 
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are available for this purpose651–654. Additionally, as with the LMS analyses, it would be 

desirable to expand the cohort to include samples from independent research/clinical 

institutions to ensure results are not overfitted to this RMH cohort. Expansion efforts 

should also include metastasis/recurrent samples to assess whether findings are 

applicable in the advanced disease setting.  
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5.4 Supplemental material 

5.4.1 Supplemental figures  

 

Supplemental Figure 5.1 Associations between clinicopathological variables within the 
leiomyosarcoma (LMS) cohort. 
(A) Stacked bar plots (number and percentage) illustrating the association between anatomical site and 
tumour depth. (B) Box plots shown for associations between tumour size and depth. Boxes indicate 25th and 
75th percentile, with median line in the middle, whiskers extending from 25th percentile-(1.5*IQR) to 75th 
percentile+(1.5*IQR), and outliers plotted as points. Corresponding statistical tests are detailed in 
Supplemental Table 5.1. 
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Supplemental Figure 5.2 Clinical outcome of the leiomyosarcoma (LMS) cohort stratified by 
significant tumour characteristics.  
(A-D) Kaplan Meier plots showing from left to right, local recurrence free survival (LRFS), metastasis free 
survival (MFS), and overall survival (OS) up to 5-years post-surgery. (A) Stratification by anatomical site. 
(B) Stratification by grade. (C) Stratification by tumour depth. (D) Stratification by tumour size. Corresponding 
univariable Cox regression results are detailed in Supplemental Table 5.2. 
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Supplemental Figure 5.3 Clinical outcome of the leiomyosarcoma (LMS) cohort stratified by 
significant patient characteristics.  
Kaplan Meier plots showing from left to right, local recurrence free survival (LRFS), metastasis free survival 
(MFS), and overall survival (OS) up to 5-years post-surgery, stratified by performance status. Corresponding 
univariable Cox regression results are detailed in Supplemental Table 5.2. 
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Supplemental Figure 5.4 Assessment of the proportional hazards (PH) assumption in the null 
univariable Cox model for leiomyosarcoma patients 
Plot shown for variable-model combinatios where a minor violation of the PH assumption was identified. (A) 
Deviance residuals and (B) scaled Schoenfeld residuals plotted for anatomical site in the metastasis free 
survival (MFS) model. (A) Red dashed line at 0, blue line indicates a locally weighted smoothed fit and grey 
shading the coordinate 95% confidence intervals. (B) Solid black line indicates a smoothed spline fit of 
residuals and dashed black lines indicate +/- 2-standard error.  
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Supplemental Figure 5.5 Assessment of the proportional hazards (PH) assumption in the 
multivariable Cox model for leiomyosarcoma patients  
Plot shown for variable-model combination where a minor violation of the PH assumption was identified. 
Scaled Schoenfeld residuals plotted for anatomical site in the metastasis free survival (MFS) model. Solid 
black line indicates a smoothed spline fit of residuals and dashed black lines indicate +/- 2-standard error.  
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Supplemental Figure 5.6 Identification of leiomyosarcoma (LMS) proteomic subtypes. (A-E) 
Consensus clustering results. (A) Consensus matrices up to k = 5. (B) Consensus CDF plot up to k = 10. 
(C) Delta area plot showing relative change in area under the cumulative distribution function (CDF) curve 
up to k (n clusters) = 10. (D) Tracking plot up to k = 10. (E) Silhouette plots up to k = 5. 
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Supplemental Figure 5.7 Significant analysis of microarray (SAM) 2-class unpaired results for 
leiomyosarcoma (LMS) proteomic subtypes 
SAM plots for LMS P1 (A), LMS P2 (B), and LMS P3 (C) compared to the rest of the LMS cohort. Each point 
is a protein. Proteins within the dashed lines have an FDR ≥ 0.01 and therefore are not significantly 
differentially expressed proteins (DEPs). Proteins in red are significantly upregulated DEPs (fold change ≥ 
1.5) in the subtype, and proteins in green are significantly downregulated DEPs (fold change < 0.667) in the 
subtype. 
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Supplemental Figure 5.8 Assessment of the CD3+/CD4+/CD8+ tumour infiltrating lymphocyte (TIL) 
immunohistochemistry (IHC) tissue microarray (TMA) data in the leiomyosarcoma cohort.  
(A) Histogram showing the number of TMA cores with usable CD3+/4+/8+ TIL data in the LMS cohort. (B) 
Dotplot showing inter-core variability as individual core scores and the summary mean score for each case. 
(C) Scatterplots showing the correlation between CD3+/4+/8+ TIL scores for each case. Blue line indicates 
the regression line of the correlation, grey shading indicates 95% confidence intervals, and dashed black 
lines indicate median scores.  
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Supplemental Figure 5.9 CD3+/CD4+/CD8+ tumour infiltrating lymphocyte (TIL) burden in 
leiomyosarcoma (LMS) 
Density plots showing the distribution of CD3+/4+/8+ TILs in LMS cases. Dashed line indicates median. 
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Supplemental Figure 5.10 Clinical outcome of the proteome-profiled cohort stratified by histological 
subtype and leiomyosarcoma (LMS) proteomic subtype.  
Kaplan Meier plots showing local recurrence free survival (LRFS) up to 5-years post-surgery. (A) Plot 
coloured by histological and proteomic subtype. (B) Plot coloured by proteomic subtype. All non-LMS cases 
in grey. Abbreviations: AS = angiosarcoma; DDLPS = dedifferentiated liposarcoma; EPS = epithelioid 
sarcoma; LMS = leiomyosarcoma; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma; 
STS = soft tissue sarcoma 
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Supplemental Figure 5.11 Assessment of the proportional hazards (PH) assumption in the 
multivariable Cox model for leiomyosarcoma (LMS) patients including proteomic subtype 
Plot shown for variable-model combination where a minor violation of the PH assumption was identified. 
Scaled Schoenfeld residuals plotted for LMS proteomic subtype in the metastasis free survival (MFS) model. 
Solid black line indicates a smoothed spline fit of residuals and dashed black lines indicate +/- 2-standard 
error.  
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Supplemental Figure 5.12 Associations between clinicopathological variables within the 
dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS) cohort. 
(A-G) Density plots and box plots are shown for associations between continuous and categorical variables. 
Boxes indicate 25th and 75th percentile, with median line in the middle, whiskers extending from 25th 
percentile-(1.5*IQR) to 75th percentile+(1.5*IQR), and outliers plotted as points. Stacked bar plots for number 
and percentage are shown for associations between 2 categorical variables. Plots illustrate the relationship 
between (A) histological subtype and anatomical site, (B) histological subtype and grade, (C) histological 
subtype and age, (D) histological subtype and tumour size, (E) anatomical site and grade, (F) grade and 
tumour size, (G) anatomical site and age. Abbreviations: FNCLCC = French Federation of Cancer Center 
Sarcoma Group; DDLPS = dedifferentiated liposarcoma; UPS = undifferentiated pleomorphic sarcoma; I-A 
= intra-abdominal; RP = retroperitoneal. Corresponding statistical tests are detailed in Supplemental Table 
5.6 
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Supplemental Figure 5.13 Clinical outcome of the dedifferentiated liposarcoma (DDLPS) and 
undifferentiated pleomorphic sarcoma (UPS) cohort stratified by significant characteristics.  
(A-D) Kaplan Meier plots showing from left to right, local recurrence free survival (LRFS), metastasis free 
survival (MFS), and overall survival (OS) up to 5-years post-surgery. (A) Stratification by histological 
subtype. (B) Stratification by grade. (C) Stratification by tumour size. (D) Stratification by performance status. 
Corresponding univariable Cox regression results are detailed in Supplemental Table 5.7 
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Supplemental Figure 5.14 Assessment of the proportional hazards (PH) assumption in the null 
univariable Cox models of dedifferentiated liposarcoma and undifferentiated pleomorphic sarcoma 
patients.  
Plots shown for variable-model combinations where a minor violation of the PH assumption was identified: 
(A-B) performance status and metastasis free survival (MFS); (C-D) performance status and overall survival 
(OS). Deviance residuals (A) plotted for each observation. Red dashed line at 0, blue line indicates a locally 
weighted smoothed fit and grey shading the coordinate 95% confidence intervals. Scaled Schoenfeld 
residuals (B,D) plotted over time for each observation. Solid black line indicates a smoothed spline fit of 
residuals and dashed black lines indicate +/- 2-standard error.  
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Supplemental Figure 5.15 Assessment of the proportional hazards (PH) assumption in the 
multivariable Cox models of dedifferentiated liposarcoma and undifferentiated pleomorphic sarcoma 
patients.  
Scaled Schoenfeld residuals plotted over time for each observation. Solid black line indicates a smoothed 
spline fit of residuals and dashed black lines indicate +/- 2-standard error. Plots shown for variable-model 
combinations where a minor violation of the PH assumption was identified: (A) performance status and 
metastasis free survival (MFS); (B) performance status and overall survival (OS).  
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Supplemental Figure 5.16 Assessment of the CD3+/CD4+/CD8+ tumour infiltrating lymphocyte (TIL) 
immunohistochemistry (IHC) tissue microarray (TMA) data in the dedifferentiated liposarcoma and 
undifferentiated pleomorphic sarcoma cohort.  
(A) Histogram showing the number of TMA cores with usable CD3+/4+/8+ TIL data in the LMS cohort. (B) 
Dotplot showing inter-core variability as individual core scores and the summary mean score for each case. 
(C) Scatterplots showing the correlation between CD3+/4+/8+ TIL scores for each case. Blue line indicates 
the regression line of the correlation, grey shading indicates 95% confidence intervals, and dashed black 
lines indicate median scores 
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Supplemental Figure 5.17 Assessment of the proportional hazards (PH) assumption in the 
multivariable Cox models of dedifferentiated liposarcoma and undifferentiated pleomorphic sarcoma 
patients including tumour infiltrating lymphocyte (TIL) burden.  
Scaled Schoenfeld residuals plotted over time for each observation. Solid black line indicates a smoothed 
spline fit of residuals and dashed black lines indicate +/- 2-standard error. Plots shown for variable-model 
combinations where a minor violation of the PH assumption was identified: (A) sex and overall survival (OS) 
in the CD4+ TIL model; (B) histological subtype and metastasis free survival (MFS) in the CD8+ TIL model; 
(C) anatomical site and MFS in the CD8+ TIL model (D) performance status and MFS in the CD8+ TIL 
model.  
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Supplemental Figure 5.18 Assessment of proportional hazards (PH) assumption violations in the 
multivariable Cox models of dedifferentiated liposarcoma and undifferentiated pleomorphic sarcoma 
patients including tumour infiltrating lymphocyte (TIL) burden.  
Scaled Schoenfeld residuals plotted over time for each observation. Solid black line indicates a smoothed 
spline fit of residuals and dashed black lines indicate +/- 2-standard error. Plots shown for variable-model 
combinations where a violation of the PH assumption was identified: performance status and overall survival 
(OS) in the (A) CD3+ TIL model, (B) CD4+ TIL model, and (C) CD8+ TIL model. 
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5.4.2 Supplemental tables 

 
 

 
 
  

Supplemental Table 5.1 Statistical associations between clinicopathological features of the 
leiomyosarcoma cohort. 
Significant results in bold. 

Variable 1 Variable 2 
Test 

performed 
Test 

statistic 

Degrees 
of 

freedom 

p FDR 

Anatomical 
site 

Tumour depth Chi-squared X2 = 21.56 5 < 0.001 0.013 

Tumour depth 
Performance 

status 
Chi-squared X2 = 7.965 3 0.047 0.178 

Anatomical site 
Performance 

status 
Chi-squared X2 = 24.924 15 0.051 0.178 

Sex Anatomical site Chi-squared X2 = 10.015 5 0.075 0.233 

Sex Grade Chi-squared X2 = 1.415 1 0.234 0.459 

Anatomical site Grade Chi-squared X2 = 5.943 5 0.312 0.514 

Tumour margin Grade Chi-squared X2 = 2.107 2 0.349 0.543 

Sex Tumour depth Chi-squared X2 = 0.697 1 0.404 0.595 

Sex 
Performance 

status 
Chi-squared X2 = 2.619 3 0.454 0.611 

Grade 
Performance 

status 
Chi-squared X2 = 2.476 3 0.48 0.611 

Anatomical site Tumour margin Chi-squared X2 = 9.543 10 0.481 0.611 

Tumour depth Tumour margin Chi-squared X2 = 1.198 2 0.549 0.641 

Sex Tumour margin Chi-squared X2 = 0.881 2 0.644 0.716 

Tumour depth Grade Chi-squared X2 = 0.188 1 0.665 0.716 

Tumour margin 
Performance 

status 
Chi-squared X2 = 1.383 4 0.847 0.878 

Tumour size Tumour depth Kruskal-Wallis X2 = 10.996 1 <0.001 0.013 

Age Anatomical site Kruskal-Wallis X2 = 13.992 5 0.016 0.149 

Age 
Performance 

status 
Kruskal-Wallis X2 = 7.559 2 0.023 0.161 

Age Grade Kruskal-Wallis X2 = 4.436 1 0.035 0.178 

Tumour size Sex Kruskal-Wallis X2 = 3.919 1 0.048 0.178 

Age Tumour margin Kruskal-Wallis X2 = 4.655 2 0.098 0.273 

Tumour size Anatomical site Kruskal-Wallis X2 = 14.212 5 0.143 0.364 

Age Tumour depth Kruskal-Wallis X2 = 1.905 1 0.168 0.392 

Tumour size Tumour margin Kruskal-Wallis X2 = 2.822 2 0.244 0.459 

Tumour size 
Performance 

status 
Kruskal-Wallis X2 = 2.807 2 0.246 0.459 

Tumour size Grade Kruskal-Wallis X2 = 1.041 1 0.308 0.514 

Age Sex Kruskal-Wallis X2 = 0.4515 1 0.502 0.611 

Age Tumour size 
Spearman's 

rank correlation 
Rho = 0.007 - 0.948 0.948 
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Supplemental Table 5.2 Univariable Cox regression for leiomyosarcoma patients. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval 

 

    LRFS MFS OS 

    HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
0.983 (0.956-

1.01) 
0.21

7 
1 (0.984-1.02) 

0.70
7 

1.01 (0.99-
1.04) 

0.249 

Sex F (ref) - - - - - - 

M 
1.6 (0.662-

3.86) 
0.29

8 
0.596 (0.295-

1.21) 
0.15 

1.6 (0.832-
3.06) 

0.16 

Anatomical 
site 

Intra-abdominal & 
Pelvic & 

retroperitoneal (ref) 
- - - - - - 

Trunk wall & 
extremity 

0.27 (0.111-
0.657) 

0.00
4 

0.392 (0.207-
0.742) 

0.00
4 

0.421 (0.21-
0.844) 

0.014
7 

Uterine 
0.185 (0.024-

1.45) 

0.10

9 

0.714 (0.259-

1.97) 

0.51

4 

0.833 (0.299-

2.32) 
0.726 

FNCLCC 
grade 

2 (ref) - - - - - - 

3 
1.07 (0.443-

2.6) 
0.87

5 
2.46 (1.35-

4.46) 
0.00

3 
1.62 (0.857-

3.07) 
0.137 

Performanc

e status 
0 (ref) - - - - - - 

1 
1.87 (0.681-

5.14) 
0.22

5 
1.25 (0.58-

2.68) 
0.57

1 
1.82 (0.802-

4.13) 
0.152 

2-3 
0.859 (0.108-

6.81) 

0.88

6 

2.12 (0.717-

6.25) 

0.17

5 

7.82 (3.15-

19.4) 

< 

0.001 

unknown 
0.735 (0.205-

2.64) 
0.63

7 
0.793 (0.343-

1.84) 
0.58

9 
0.79 (0.289-

2.16) 
0.645 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.225 (0.03-

1.68) 
0.14

5 
0.291 (0.09-

0.94) 
0.03

9 
0.767 (0.299-

1.97) 
0.58 

Tumour 
margin 

R0 (ref) - - - - - - 

R1 & R2 
1.57 (0.651-

3.81) 
0.31

4 
1.06 (0.583-

1.91) 
0.85

9 
1.04 (0.549-

1.96) 
0.908 

unknown 
1.97 (0.248-

15.6) 
0.52

2 
0.694 (0.094-

5.14) 
0.72 

3.97e-08 (0-
Inf) 

0.997 

Log[tumour 

size(mm)] 
4-5 (ref) - - - - - - 

< 4 
0.505 (0.114-

2.24) 
0.36

9 
0.226 (0.069-

0.74) 
0.01

4 
0.426 (0.128-

1.41) 
0.162 

> 5 
1.3 (0.494-

3.42) 
0.59

6 
0.635 (0.303-

1.33) 
0.22

8 
1.12 (0.537-

2.33) 
0.767 
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Supplemental Table 5.3 Multivariable Cox regression for leiomyosarcoma patients. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval 

 

    LRFS MFS OS 

    HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
0.966 (0.923-

1.01) 
0.14 

1.02 (0.988-

1.05) 
0.233 

0.995 (0.962-

1.03) 
0.798 

Sex 

F (ref) - - - - - - 

M 
2.92 (0.827-

10.3) 
0.096 

0.739 (0.329-
1.66) 

0.465 
1.9 (0.803-

4.49) 
0.144 

Anatomical 

site 

Intra-abdominal & 

Pelvic & 
retroperitoneal (ref) 

- - - - - - 

Trunk wall & 

extremity 

0.303 (0.093-

0.989) 
0.048 

0.288 (0.126-

0.66) 
0.003 

0.345 (0.136-

0.878) 
0.026 

Uterine 
0.247 (0.023-

2.66) 
0.248 

0.699 (0.191-
2.56) 

0.588 
0.519 (0.151-

1.79) 
0.299 

FNCLCC 
grade 

2 (ref) - - - - - - 

3 
1.78 (0.637-

4.99) 
0.271 

2.41 (1.22-

4.77) 
0.011 2.19 (1.04-4.6) 0.039 

Performance 
status 

0 (ref) - - - - - - 

1 
4.66 (1.22-

17.8) 
0.024 

1.68 (0.691-
4.07) 

0.253 
2.08 (0.803-

5.41) 
0.131 

2-3 
3.55 (0.321-

39.2) 
0.302 

2.1 (0.577-

7.62) 
0.26 

15.9 (4.39-

57.2) 

< 

0.001 

unknown 
1.66 (0.375-

7.3) 
0.505 

0.985 (0.395-
2.45) 

0.974 
0.905 (0.3-

2.73) 
0.86 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.253 (0.024-

2.7) 
0.255 

0.282 (0.067-

1.19) 
0.085 

0.839 (0.238-

2.96) 
0.784 

Tumour 

margin 

R0 (ref) - - - - - - 

R1 & R2 
0.448 (0.158-

1.27) 
0.131 

1.13 (0.558-
2.27) 

0.741 
0.638 (0.292-

1.39) 
0.258 

Log[tumour 
size(mm)] 

4-5 (ref) - - - - - - 

< 4 
0.784 (0.122-

5.02) 
0.797 

0.499 (0.133-
1.88) 

0.303 
0.862 (0.195-

3.82) 
0.846 

> 5 
1.37 (0.352-

5.3) 
0.651 

0.719 (0.28-
1.85) 

0.493 
1.87 (0.694-

5.07) 
0.215 
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Supplemental Table 5.4 Statistical associations between leiomyosarcoma (LMS)  clinicopathological 
features and proteomic subtype. 
Abbreviations: RTX = radiotherapy.  

 

Variable 

LMS subtype Test results 

P1          

(immun
e cold)       
n = 25 

P2             

(classical)      
n = 36 

P3 

(dedifferen
tiated) n = 

19 

Test 
performed 

Χ2 

Degree

s of 
freedo

m 

p  

Age at 
excision 

(years) 

median 61.5 66.8 65.4 
Kruskal 
Wallis 

0.373 2 0.83 min 31.4 30.5 29.3 

max 83.6 86.9 83.5 

Tumour 

size (mm) 

median 100 80 110 
Kruskal 

Wallis 
3.131 2 

0.20

9 
min 50 25 5 

max 400 290 250 

Sex [n 
(%)] 

F 18 (72.0) 26 (72.2) 12 (63.2) 
Chi-squared 0.556 2 

0.75
7 M 7 (28.0) 10 (27.8) 7 (36.8) 

Grade [n 
(%)] 

2 15 (60.0) 21 (58.3) 11 (57.9) 
Chi-squared 0.024 2 

0.98
8 3 10 (40.0) 15 (41.7) 8 (42.1) 

Performan
ce status 

[n (%)] 

0 15 (60.0) 17 (47.2) 8 (42.1) 

Chi-squared 
13.30

4 
8 

0.10
2 

1 2 (8.0) 12 (33.3) 2 (10.5) 

2 2 (8.0) 3 (8.3) 2 (10.5) 

3 - 1 (2.7) - 

unknown 6 (24.0) 3 (8.3) 7 (36.8) 

Pre-op 
treatment 

[n (%)] 

RTX - - 1 (5.3) 

Chi-squared 3.251 2 
0.19

7 None 
25 

(100.0) 
36 (100.0) 18 (94.7) 

Anatomica
l site [n 

(%)] 

Extremity 7 (28.0) 14 (38.9) 10 (52.6) 

Chi-squared 
12.03

2 
10 

0.28
3 

Intra-
abdominal 

5 (20.0) 4 (11.1) 1 (5.3) 

Pelvic 1 (4.0) 5 (13.9) 3 (15.8) 

Retroperiton

eal 
9 (36.0) 9 (25.0) 1 (5.3) 

Trunk 1 (4.0) - 1 (5.3) 

Uterine 2 (8.0) 4 (11.1) 3 (15.8) 

Status at 
excision 

[n (%)] 

Local 24 (96.0) 36 (100.0) 18 (94.7) 
Chi-squared 1.749 2 

0.41
7 

Metastatic 1 (4.0) - 1 (5.3) 

Tumour 

depth [n 
(%)] 

Deep 22 (88.0) 28 (77.8) 16 (84.2) 
Chi-squared 1.118 2 

0.57
2 Superficial 3 (12.0) 8 (22.2) 3 (15.8) 

Tumour 

margins [n 
(%)] 

R0 13 (52.0) 20 (58.8) 9 (47.4) 

Chi-squared 5.342 6 
0.50

1 
R1 11 (44.0) 14 (41.2) 10 (52.6) 

R2 1 (4.0) - - 
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Supplemental Table 5.5 Comparison of the baseline clinicopathological factors in the proteomic and The Cancer Genome Atlas (TCGA) leiomyosarcoma (LMS) 
cohorts 
Chi-squared tests performed. Significant results in bold. 

 

    TCGA cohort (n = 80) Proteomic cohort (n = 80) 

p 

FDR 

    Observed Expected Residuals 
Contribution 

(%) 
Observed Expected Residuals 

Contribution 

(%) 
 

Sex 
F 55 55.5 -0.067 NA 56 55.5 0.067 NA 

1.000 1.000 
M 25 24.5 0.101 NA 24 24.5 -0.101 NA 

Anatomical 
site 

Extremity 14 22.5 -1.792 16.867 31 22.5 1.792 16.867 

0.004 0.005 

Head/neck 1 0.5 0.707 2.625 0 0.5 -0.707 2.625 

Intra-abdominal 14 12 0.577 1.749 10 12 -0.577 1.749 

Pelvic 4 6.5 -0.981 5.055 9 6.5 0.981 5.055 

Retroperitoneal 18 18.5 -0.116 0.071 19 18.5 0.116 0.071 

Trunk 2 2 0 0 2 2 0 0 

Uterine 27 18 2.121 23.629 9 18 -2.121 23.629 

Tumour depth 

Deep 67 66.5 0.061 0.016 66 66.5 -0.061 0.016 

< 0.001 < 0.001 Superficial 1 7.5 -2.373 24.195 14 7.5 2.373 24.195 

UNK 12 6 2.449 25.769 0 6 -2.449 25.769 

Tumour 
margin 

R0 56 48 1.155 7.919 40 48 -1.155 7.919 

0.001 0.001 
R1 12 23.5 -2.372 33.401 35 23.5 2.372 33.401 

R2 3 2 0.707 2.967 1 2 -0.707 2.967 

Rx 9 6.5 0.981 5.713 4 6.5 -0.981 5.713 

Grade 

1 12 6 2.449 34.702 0 6 -2.449 34.702 

0.000 < 0.001 2 51 49 0.286 0.473 47 49 -0.286 0.473 

3 17 25 -1.6 14.812 33 25 1.6 14.812 
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Supplemental Table 5.6 Statistical associations between clinicopathological features of the 
dedifferentiated liposarcoma and undifferentiated pleomorphic sarcoma cohort. 
Significant results in bold. 

 

Variable 1 Variable 2 
Test 

performed 
Test 

statistic 

Degrees 
of 

freedom 
p FDR 

Histological 
subtype 

Grade Chi-squared 18.274 1 0.000 < 0.001 

Histological 
subtype 

Anatomical site Chi-squared 57.895 5 0.000 < 0.001 

Anatomical site Grade Chi-squared 21.943 5 0.001 0.004 

Tumour margin Grade Chi-squared 6.592 2 0.037 0.194 

Histological subtype Tumour depth Chi-squared 3.610 1 0.057 0.241 

Anatomical site Tumour depth Chi-squared 8.042 5 0.154 0.377 

Tumour depth Grade Chi-squared 2.284 1 0.131 0.377 

Tumour depth Performance status Chi-squared 3.644 2 0.162 0.377 

Tumour margin Performance status Chi-squared 6.984 4 0.137 0.377 

Performance status Grade Chi-squared 2.716 2 0.257 0.540 

Histological subtype Sex Chi-squared 0.886 1 0.347 0.662 

Sex Anatomical site Chi-squared 4.477 5 0.483 0.670 

Sex Tumour depth Chi-squared 0.435 1 0.510 0.670 

Sex Tumour margin Chi-squared 1.690 2 0.430 0.670 

Anatomical site Tumour margin Chi-squared 9.227 10 0.511 0.670 

Histological subtype Tumour margin Chi-squared 3.532 4 0.473 0.670 

Anatomical site Performance status Chi-squared 8.838 10 0.548 0.676 

Sex Performance status Chi-squared 1.077 2 0.584 0.681 

Tumour depth Tumour margin Chi-squared 0.950 2 0.622 0.687 

Histological subtype Performance status Chi-squared 0.757 2 0.685 0.719 

Sex Grade Chi-squared 0.128 1 0.720 0.720 

Tumour size Anatomical site Kruskal-Wallis 33.341 5 0.000 < 0.001 

Tumour size 
Histological 

subtype 
Kruskal-Wallis 28.181 1 0.000 < 0.001 

Age 
Histological 

subtype 
Kruskal-Wallis 11.165 1 0.001 0.004 

Tumour size Tumour depth Kruskal-Wallis 10.559 1 0.001 0.004 

Age Anatomical site Kruskal-Wallis 19.373 5 0.002 0.005 

Tumour size Grade Kruskal-Wallis 8.550 1 0.003 0.008 

Age Grade Kruskal-Wallis 6.791 1 0.009 0.018 

Age Performance status Kruskal-Wallis 5.791 2 0.055 0.097 

Age Tumour depth Kruskal-Wallis 2.843 1 0.092 0.129 

Tumour size Tumour margin Kruskal-Wallis 2.851 1 0.091 0.129 

Tumour size Sex Kruskal-Wallis 2.256 1 0.133 0.169 

Age Sex Kruskal-Wallis 0.422 1 0.516 0.602 

Tumour size Performance status Kruskal-Wallis 0.779 2 0.677 0.729 

Age Tumour margin Kruskal-Wallis 0.085 1 0.771 0.771 
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Supplemental Table 5.7 Univariable Cox regression for dedifferentiated liposarcoma (DDLPS) and 
undifferentiated pleomorphic sarcoma (UPS) patients. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Anatomical site of ‘Other’ indicates extremity, trunk wall, and head/neck cases. Significant results in bold. 
Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval; IA = Intra-abdominal; 
RP = retroperitoneal 

 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
1.01 (0.983-

1.03) 
0.624 

1.03 (0.998-
1.05) 

0.068 
1.04 (1.02-

1.07) 
0.001 

Sex 

M (ref) - - - - - - 

F 
0.889 (0.482-

1.64) 
0.705 

1.4 (0.726-
2.69) 

0.316 
0.936 (0.541-

1.62) 
0.812 

Histological 

subtype 

UPS (ref) - - - - - - 

DDLPS 2.63 (1.4-4.94) 0.003 
0.426 (0.205-

0.889) 
0.023 

0.814 (0.467-

1.42) 
0.467 

Anatomical 
site 

Other (ref) - - - - - - 

IA/RP 2 (0.482-8.33) 0.339 3.91e-08 (0-Inf) 0.997 
2.56 (0.796-

8.26) 
0.115 

FNCLCC 
grade  

3 (ref) - - - - - - 

2 
1.39 (0.726-

2.65) 
0.322 

0.284 (0.1-

0.809) 
0.018 

0.435 (0.204-

0.926) 
0.031 

Performance 
status 

0 (ref) - - - - - - 

1 
1.91 (0.944-

3.88) 
0.072 

1.6 (0.746-
3.42) 

0.228 
2.66 (1.35-

5.24) 
0.005 

2-3 
1.23 (0.355-

4.24) 
0.746 

1.3 (0.371-

4.57) 
0.681 

4.21 (1.76-

10.1) 
0.001 

unknown 
1.98 (0.845-

4.65) 
0.116 

1.48 (0.573-
3.84) 

0.416 2.7 (1.21-6.02) 0.015 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.432 (0.133-

1.4) 
0.162 

0.752 (0.265-

2.13) 
0.591 

0.673 (0.268-

1.69) 
0.4 

Tumour 
margin 

R1 & R2 
(ref) 

- - - - - - 

R0 
0.778 (0.408-

1.49) 
0.447 

1.46 (0.745-
2.86) 

0.27 
0.815 (0.464-

1.43) 
0.476 

unknown 
1.29 (0.387-

4.29) 
0.68 

1.09 (0.252-
4.73) 

0.906 
0.28 (0.038-

2.05) 
0.21 

Log(Tumour 
size [mm]) 

4-5 (ref) - - - - - - 

< 4 
0.927 (0.352-

2.44) 
0.877 

0.679 (0.267-
1.73) 

0.417 
0.553 (0.237-

1.29) 
0.171 

> 5 
2.14 (1.08-

4.22) 
0.029 

0.793 (0.384-
1.64) 

0.532 
1.02 (0.57-

1.84) 
0.938 
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Supplemental Table 5.8 Multivariable Cox regression for dedifferentiated liposarcoma (DDLPS) and 
undifferentiated pleomorphic sarcoma (UPS) patients. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Anatomical site of ‘Other’ indicates extremity, trunk wall, and head/neck cases. Significant results in bold. 
Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval; IA = Intra-abdominal; 
RP = retroperitoneal 

 

  
LRFS MFS OS 

HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
1.03 (0.997-

1.06) 
0.077 

1.02 (0.984-
1.06) 

0.263 1.04 (1-1.07) 1 

Sex 

M (ref) - - - - - - 

F 
1.11 (0.551-

2.23) 
0.77 

1.63 (0.719-
3.68) 

0.243 
1.22 (0.65-

2.29) 
0.538 

Histological 
subtype 

UPS (ref) - - - - - - 

DDLPS 
0.747 (0.147-

3.8) 
0.725 

0.595 (0.12-
2.96) 

0.526 
0.568 (0.118-

2.73) 
0.481 

Anatomical 

site 

Other (ref) - - - - - - 

IA/RP 
6.42 (1.07-

38.7) 
0.042 

0.248 (0.043-
1.44) 

0.12 
1.4 (0.264-

7.45) 
0.691 

FNCLCC 
grade  

3 (ref) - - - - - - 

2 
0.836 (0.367-

1.9) 
0.669 

0.411 (0.129-

1.31) 
0.133 

0.518 (0.222-

1.21) 
0.128 

Performance 
status 

0 (ref) - - - - - - 

1 
1.99 (0.901-

4.38) 
0.089 

1.78 (0.741-
4.3) 

0.196 
2.57 (1.22-

5.42) 
0.013 

2-3 
1.28 (0.33-

4.94) 
0.724 

0.485 (0.101-
2.32) 

0.365 
2.12 (0.715-

6.29) 
0.175 

unknown 
1.29 (0.491-

3.39) 
0.606 

1.02 (0.299-

3.5) 
0.971 

1.95 (0.743-

5.14) 
0.174 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.35 (0.066-

1.84) 
0.215 

0.314 (0.081-
1.22) 

0.095 
0.556 (0.166-

1.86) 
0.34 

Tumour 
margin 

R1 & R2 

(ref) 
- - - - - - 

R0 
0.824 (0.383-

1.77) 
0.62 

1.16 (0.53-
2.54) 

0.708 
0.888 (0.446-

1.77) 
0.735 

unknown 
1.46 (0.364-

5.88) 
0.592 

1.22 (0.175-
8.43) 

0.844 
0.424 (0.047-

3.81) 
0.444 

Log(Tumour 
size [mm]) 

4-5 (ref) - - - - - - 

< 4 1.17 (0.341-4) 0.805 
0.472 (0.159-

1.4) 
0.177 

0.424 (0.152-

1.19) 
0.102 

> 5 
0.821 (0.296-

2.28) 
0.706 

4.12 (1.29-
13.1) 

0.017 
1.7 (0.721-

4.03) 
0.224 
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Supplemental Table 5.9 Statistical associations between dedifferentiated liposarcoma and 
undifferentiated pleomorphic sarcoma clinicopathological features and tumour infiltrating 
lymphocyte (TIL) burden. 
CD3+/4+/8+ TIL = categorical variable dichotomised at median.  

Variable 

1 
Variable 2 

Test 

performed 

Test 

statistic 

Degrees 

of 

freedom 

p FDR 

CD3 Anatomical site Chi-squared 1.314 1 0.252 0.412 

CD3 Grade Chi-squared 0.000 1 1.000 1.000 

CD3 
Histological 

subtype 
Chi-squared 1.281 1 0.258 0.412 

CD3 Performance status Chi-squared 2.977 3 0.395 0.527 

CD3 Sex Chi-squared 4.011 1 0.045 0.181 

CD3 Tumour depth Chi-squared 2.847 1 0.092 0.244 

CD3 Tumour margin Chi-squared 0.054 2 0.974 1.000 

CD3 Tumour size Chi-squared 8.071 2 0.018 0.141 

CD4 Anatomical site Chi-squared 1.710 1 0.191 0.319 

CD4 Grade Chi-squared 0.000 1 1.000 1.000 

CD4 
Histological 

subtype 
Chi-squared 1.649 1 0.199 0.319 

CD4 Performance status Chi-squared 3.596 3 0.309 0.411 

CD4 Sex Chi-squared 4.461 1 0.035 0.139 

CD4 Tumour depth Chi-squared 2.995 1 0.084 0.223 

CD4 Tumour margin Chi-squared 0.020 2 0.990 1.000 

CD4 Tumour size Chi-squared 9.012 2 0.011 0.088 

CD8 Anatomical site Chi-squared 1.403 1 0.236 0.378 

CD8 Grade Chi-squared 0.005 1 0.942 0.942 

CD8 
Histological 

subtype 
Chi-squared 1.974 1 0.160 0.320 

CD8 Performance status Chi-squared 2.416 3 0.491 0.654 

CD8 Sex Chi-squared 3.766 1 0.052 0.177 

CD8 Tumour depth Chi-squared 3.370 1 0.066 0.177 

CD8 Tumour margin Chi-squared 0.877 2 0.645 0.737 

CD8 Tumour size Chi-squared 7.428 2 0.024 0.177 
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Supplemental Table 5.10 Multivariable Cox regression assessing CD4+ tumour infiltrating 
lymphocyte (TIL) burden in dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic 
sarcoma (UPS) patients. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Anatomical site of ‘Other’ indicates extremity, trunk wall, and head/neck cases. Significant results in bold. 
Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval; IA = Intra-abdominal; 
RP = retroperitoneal 

 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
1.03 (0.996-

1.07) 
0.083 

1.03 (0.989-

1.08) 
0.145 1.04 (1-1.08) 0.037 

Sex 

M (ref) - - - - - - 

F 
0.984 (0.465-

2.08) 
0.965 

1.79 (0.767-

4.16) 
0.179 1.09 (0.569-2.1) 0.79 

Histological 
subtype 

UPS (ref) - - - - - - 

DDLPS 
0.802 (0.186-

3.45) 
0.767 

0.613 (0.142-

2.65) 
0.512 

0.619 (0.147-

2.61) 
0.514 

Anatomical 
site 

Other (ref) - - - - - - 

IA/RP 
6.82 (1.32-

35.1) 
0.022 

0.295 (0.059-

1.47) 
0.136 

1.67 (0.365-

7.63) 
0.509 

FNCLCC 
grade  

3 (ref) - - - - - - 

2 
0.867 (0.36-

2.09) 
0.751 

0.462 (0.146-

1.46) 
0.19 

0.525 (0.209-

1.32) 
0.172 

Performance 
status 

0 (ref) - - - - - - 

1 
2.59 (1.02-

6.55) 
0.045 

2.09 (0.797-

5.46) 
0.134 3.2 (1.4-7.29) 0.006 

2-3 
1.34 (0.335-

5.39) 
0.677 

0.394 (0.078-

1.98) 
0.259 

2.32 (0.733-

7.37) 
0.152 

unknown 
1.16 (0.402-

3.36) 
0.782 

0.68 (0.176-

2.62) 
0.576 

1.72 (0.583-

5.09) 
0.325 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.529 (0.096-

2.91) 
0.464 

0.313 (0.077-

1.28) 
0.106 

0.684 (0.199-

2.35) 
0.546 

Tumour 
margin 

R1 & R2 

(ref) 
- - - - - - 

R0 
0.866 (0.376-

1.99) 
0.735 

1.05 (0.464-

2.39) 
0.899 1 (0.473-2.12) 0.998 

unknown 
1.37 (0.333-

5.61) 
0.664 

0.934 (0.141-

6.17) 
0.943 

0.38 (0.043-

3.39) 
0.386 

Log(Tumour 

size [mm]) 

4-5 (ref) - - - - - - 

< 4 
0.812 (0.212-

3.11) 
0.761 

0.352 (0.108-

1.15) 
0.083 

0.337 (0.111-

1.03) 
0.055 

> 5 
0.931 (0.316-

2.74) 
0.897 5.13 (1.5-17.5) 0.009 

1.86 (0.759-

4.55) 
0.175 

CD4 

low (ref) - - - - - - 

high 
0.798 (0.362-

1.76) 
0.575 

1.04 (0.419-

2.58) 
0.933 

0.838 (0.401-

1.75) 
0.638 
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Supplemental Table 5.11 Multivariable Cox regression assessing CD8+ tumour infiltrating 
lymphocyte (TIL) burden in dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic 
sarcoma (UPS) patients. 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
Anatomical site of ‘Other’ indicates extremity, trunk wall, and head/neck cases. Significant results in bold. 
Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval; IA = Intra-abdominal; 
RP = retroperitoneal 

 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
1.02 (0.985-

1.06) 
0.258 

1.03 (0.982-

1.07) 
0.255 

1.03 (0.993-

1.07) 
0.114 

Sex 

M (ref) - - - - - - 

F 
1.07 (0.499-

2.28) 
0.869 

1.95 (0.804-

4.74) 
0.14 1.15 (0.596-2.2) 0.682 

Histological 

subtype 

UPS (ref) - - - - - - 

DDLPS 
1.65 (0.271-

9.99) 
0.588 

0.661 (0.108-

4.05) 
0.654 

0.809 (0.148-

4.41) 
0.806 

Anatomical 
site 

Other (ref) - - - - - - 

IA/RP 
3.16 (0.497-

20.1) 
0.222 

0.266 (0.042-

1.68) 
0.159 

1.22 (0.217-

6.82) 
0.823 

FNCLCC 
grade  

3 (ref) - - - - - - 

2 
0.55 (0.208-

1.46) 
0.23 

0.284 (0.059-

1.36) 
0.115 

0.353 (0.12-

1.04) 
0.058 

Performance 
status 

0 (ref) - - - - - - 

1 
2.64 (1.09-

6.43) 
0.032 

1.74 (0.661-

4.6) 
0.262 3.06 (1.3-7.19) 0.01 

2-3 
1.61 (0.406-

6.39) 
0.497 

0.551 (0.117-

2.59) 
0.451 2.9 (0.902-9.34) 0.074 

unknown 1.3 (0.411-4.1) 0.656 
0.677 (0.17-

2.69) 
0.579 

1.97 (0.627-

6.21) 
0.245 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.49 (0.09-

2.68) 
0.41 

0.328 (0.078-

1.38) 
0.129 

0.705 (0.203-

2.45) 
0.582 

Tumour 

margin 

R1 & R2 
(ref) 

- - - - - - 

R0 
0.885 (0.38-

2.06) 
0.777 

0.949 (0.406-

2.22) 
0.905 

0.982 (0.457-

2.11) 
0.964 

unknown 
1.9 (0.413-

8.78) 
0.409 

1.53 (0.126-

18.7) 
0.737 

0.779 (0.082-

7.42) 
0.828 

Log(Tumour 
size [mm]) 

4-5 (ref) - - - - - - 

< 4 
0.942 (0.24-

3.71) 
0.932 

0.423 (0.124-

1.45) 
0.171 

0.382 (0.122-

1.19) 
0.098 

> 5 
1.09 (0.392-

3.04) 
0.868 

5.27 (1.59-

17.5) 
0.006 

1.97 (0.788-

4.91) 
0.147 

CD8 

low (ref) - - - - - - 

high 
0.61 (0.297-

1.25) 
0.178 

0.629 (0.268-

1.47) 
0.286 

0.625 (0.322-

1.21) 
0.164 
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Chapter 6 Unbiased characterisation of the pan-STS 

proteome  

6.1 Background and objectives  

So far, this thesis has provided an overview of the STS proteome (Chapter 4), 

investigated intra-subtype heterogeneity and immune heterogeneity within select 

histological subtypes (Chapter 5). To do this, publicly available gene sets and protein 

databases have been utilised alongside the complete proteomic data. These analyses 

have focused on a histological subtype point of view and utilised the current 

understanding of STS biology to direct investigations. However, the STS proteome is yet 

to be defined from an unbiased protein-centric perspective.  

In this Chapter, network analysis is used to modularly defined the STS proteome as 

groups of co-expressed proteins. STS share a common mesenchymal origin3. It 

therefore follows that shared mesenchymal features may exist across histological 

subtypes. As such, these groups of proteins are hypothesised to be co-functioning and 

map to key biological activities underlying multiple subtypes of STS (i.e., ‘pan-subtype’). 

By extension, these common STS features may correspond to clinical differences across 

the STS population, and therefore the modular proteome was assessed for its 

relationship with clinicopathological features and patient outcomes.  

Accordingly, the objectives of this chapter are: 

1) To define the unbiased STS proteome network composition and structure  

2) To determine whether the STS proteome can provide clinical utility that is 

complementary to histological subtype information 

6.1.1 Results  

6.1.2 Weighted gene correlation network analysis of the proteomic dataset 

To characterise the pan-subtype STS proteomic network of the MS cohort, weighted 

gene correlation network analysis (WGCNA) was applied to the normalised expression 

values of 3,290 proteins across all profiled samples (n = 321). WGCNA utilises 

correlation networks to identify clusters (named ‘modules’) of highly correlated 

genes/proteins521. This method offers superiority over hierarchical clustering by providing 

improved sensitivity to correlations between proteins and considering inversely 

correlated patterns across the cohort which would not be identified otherwise. For clarity, 
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all references to the WGCNA method herein will refer to proteins, however WGCNA was 

developed on gene expression data, and thus WGCNA literature refers predominantly to 

genes. Biological networks comprise nodes (e.g., proteins) and edges connecting nodes 

(e.g., indicating an ‘interaction’). Networks can be described by many different measures. 

The measures primarily used by WGCNA include node degree, the number of edges 

connected to each protein, and topological overlap, a similarity measure based on how 

many neighbours are shared between protein pairs (a high topological overlap value 

indicates many common neighbours)521,655. The WGCNA method assumes a scale-free 

network is present in the data. A scale-free network has ‘hub-and-spoke’ architecture 

preserved throughout its structure (Figure 6.1A)656. This means that many nodes have 

low degrees, and few nodes (‘hubs’) have high degrees. This scale-free degree 

distribution is known as power law distribution; a continuous positive distribution where 

the degree distribution decreases as a power of its magnitude657. To contrast this, other 

common networks include random networks that show no structure or hierarchical 

pattern and small world networks which show high local clustering (Figure 6.1B-C)658,659. 

Both random and small world networks have a unimodal and approximate normal degree 

distribution. Scale-free networks are typical of protein interactions in biological systems, 

where hubs correspond to key proteins with wide ranging roles an high influence656. To 

identify WGCNA modules within the data, the scale free topology model fit was optimised 

to ensure the final network built had high similarity  

 

 

Figure 6.1 Types of networks  
Diagrammatic representation of a scale-free network (A), random network (B), and small world network (C), 
with approximated degree distributions plotted below.  
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to a ‘perfect’ scale-free network fit. This was achieved by raising gene correlations to a 

certain power to reduce background correlation noise and amplify the stronger 

correlations. The optimal power value can be defined as the point beyond which only 

minimal improvements in model fit are seen. As model fit can be measured as an R2 

value, the optimal value can also be selected based on a certain R2 threshold.  

Herein, when the WGCNA method was applied, an optimal power value of 5 was 

identified; close to the inflection point on the scale independence plot and where R2 > 

0.9 (Figure 6.2A). A value of 5 was also shown as appropriate based on mean 

connectivity. Considering the degree (i.e., connectivity) of a scale free network, mean 

connectivity is expected to be low (Figure 6.2A). The correlations were therefore raised  

 

Figure 6.2 Weighted gene correlation network analysis (WGCNA) for the identification of sarcoma 
proteome modules (SPM) 
(A) Scale free topology model fit and mean connectivity of model at Soft Threshold (power) values up to 20. 
Red line indicates R2 of 0.9. (B) Cluster dendrogram of all proteins where height indicates 1-Pearson’s 
correlation. SPM identification and protein assignments by dynamic tree cut annotated in colour. (C) 
Dendrogram of SPM module eigengenes (ME) where height indicates 1-Pearson’s correlation. Modules with 
height < 0.25 (red line) were merged. (D) Co-expression heatmap showing correlation of protein expression 
based on Topological Overlap Matrix (TOM) dissimilarity ((1-TOM)7). Cluster dendrogram height indicates 
1-Pearson’s correlation. (E) Cluster dendrogram of all proteins where height indicates 1-Pearson’s 
correlation. SPM identification and protein assignments by merged dynamic tree cut annotated in colour. 
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to the power of 5 to create an adjacency matrix. A topology overlap matrix (TOM) was 

then generated from the adjacency matrix, and modules identified by the dynamic tree 

cut algorithm applied to the dissimilarity TOM (further details in section X; Figure 6.2B). 

In this dataset, WGCNA and the use of a power value of 5, identified 16 modules which 

we termed as sarcoma proteome modules (SPM), 1 of which comprised proteins which 

could not be assigned to a highly correlated SPM. To assess the robustness of these 

SPMs as individual networks, the SPM eigengene values were hierarchically clustered 

(Figure 6.2D). This revealed 2 SPMs to be of particularly high similarity, diverging on the 

dendrogram at a height < 0.25, where height indicates 1 minus the Pearson correlation 

(1 – r). These SPMs were therefore merged, resulting in 14 robust SPMs and 1 SPM 

comprising the remaining proteins (named ‘SPM 15’; Figure 6.2D-E).  

6.1.3 Biological characterisation of the SPMs 

Across the 15 SPMs, 3,290 proteins with 10,820,810 interactions were identified. 

Interactions between protein pairs are quantified as the WGCNA ‘edge weight’ or ‘co-

expression score’. These values are derived from the adjacency matrix and can be 

interpreted much like a correlation measure: where a high value indicates a stronger 

correlation. For interpretation purposes it is important to remember that a power of 5 was 

used to scale the data (section 6.1.2). Therefore, a co-expression score of 0.5 is 

effectively equal to a correlation of 0.87 (0.875 = 0.5). SPMs comprised between 41 and 

420 proteins, with a median within-SPM co-expression score of 0.025, and a median 

between-SPM co-expression score of 0.002. Many interactions were weak. Therefore, 

to reduce noise within the network for visualisation purposes, the co-expression score 

between protein pairs was restricted to ≥ 0.05. This left 3,290 proteins and 168,574 

interactions, 32% of which were present in the STRINGdb602,603. To visualise this 

representative STS proteome, a protein co-expression network was constructed, 

revealing evident SPM-based structure (Figure 6.3).  

To identify SPM-specific biology, the proteins present in each SPM were assessed by 

over-representation analysis using the GO BP and Hallmarks of MSigDB506–508,512. This 

found no significant enrichment of any gene set in any SPM. Each SPM was therefore 

manually inspected as a PPI network, and each was revealed to comprise groups of 

proteins describing specific functional biology. Briefly, SPM 1 comprised 389 proteins 

with a median co-expression weight of 0.044 and most weights ranging from 0.01 - 0.04 

(Supplemental Figure 6.1A-B). Of all interactions measured by WGCNA, ~ 6% were 

present in the STRINGdb (Supplemental Figure 6.1C). The STRINGdb and WGCNA 

overlap was highest for WGCNA interactions with a higher co-expression weight ( ~ >  
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0.26). Key proteins present within SPM 1 included those related to muscle activity, heat 

shock proteins, and ECM components. (Supplemental Figure 6.1D). SPM 2 comprised 

420 proteins with a median co-expression weight of 0.035 (Supplemental Figure 6.2A-

B). Of all interactions measured by WGCNA, ~ 9% were present in the STRINGdb 

(Supplemental Figure 6.2C). As before, the STRINGdb and WGCNA overlap was 

highest for WGCNA interactions with a higher co-expression weight ( ~ > 0.3). Key 

proteins present within SPM 2 included those with immune roles (cathepsins, human 

leukocyte antigens (HLA), and S100 proteins) and cell surface markers (Supplemental 

Figure 6.2D). SPM 3 comprised 141 proteins with a median co-expression weight of 

0.046 (Supplemental Figure 6.3A-B). Of all interactions measured by WGCNA, ~ 17% 

were present in the STRINGdb (Supplemental Figure 6.3C), and the STRINGdb and 

WGCNA overlap was highest for WGCNA interactions with a higher co-expression 

weight ( ~ > 0.15). SPM 3 contained mostly splicing proteins (Supplemental Figure 

6.3D). SPM 4 comprised 356 proteins and had a median co-expression weight of 0.035 

 

Figure 6.3 The STS proteome network defined as sarcoma proteome modules (SPM) 
Protein co-expression network comprising 3290 nodes and 168,574 edges. Nodes indicate proteins and are 
coloured based on SPM membership. Edges show co-expression between protein expression, where a 
thicker line indicates a stronger correlation. Representative biological features and selected proteins are 
annotated for each SPM. 
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(Supplemental Figure 6.4A-B). Of all interactions measured by WGCNA, ~ 8% were 

present in the STRINGdb (Supplemental Figure 6.4C). The STRINGdb and WGCNA 

overlap was highest for WGCNA interactions with a higher co-expression weight ( ~ > 

0.2). Key proteins present within SPM 4 included those involved in splicing and 

ubiquitination (Supplemental Figure 6.4D). SPM 5 comprised 314 proteins with a 

median co-expression weight of 0.039 (Supplemental Figure 6.5A-B). Of all 

interactions measured by WGCNA, ~ 21% were present in the STRINGdb 

(Supplemental Figure 6.5C). The STRINGdb and WGCNA overlap was highest for 

WGCNA interactions with a higher co-expression weight ( ~ > 0.15). Key proteins present 

within SPM 5 included vesicle trafficking proteins: Rab proteins, Sec machinery, and 

TMED proteins (Supplemental Figure 6.5D). SPM 6 comprised 41 proteins with a 

median co-expression weight of 0.047, and a weight distribution showing 1 peak at 0.03 

and 2 small peaks at higher values (0.13 and 0.35; Supplemental Figure 6.6A-B). Of 

all interactions measured by WGCNA, a relatively high proportion (~ 38%) were present 

in the STRINGdb (Supplemental Figure 6.6C). The STRINGdb and WGCNA overlap 

was highest for WGCNA interactions with a higher co-expression weight ( ~ > 0.3). Key 

proteins present within SPM 6 included those in DNA replication (Supplemental Figure 

6.6D). SPM 7 comprised 185 proteins with a median co-expression weight of 0.167, and 

most weights ranging from 0.03 – 0.3 (Supplemental Figure 6.7A-B). Of all interactions 

measured by WGCNA, ~ 21% were present in the STRINGdb (Supplemental Figure 

6.7C). The STRINGdb and WGCNA overlap was highest for WGCNA interactions with a 

higher co-expression weight ( ~ > 0.35). Key proteins present within SPM 7 included 

those involved in the immune response: immunoglobulins and complement components. 

(Supplemental Figure 6.7D). SPM 8 comprised 66 proteins with a median co-

expression weight of 0.042 (Supplemental Figure 6.8A-B). Of all interactions measured 

by WGCNA, ~ 41% were present in the STRINGdb (Supplemental Figure 6.8C). The 

STRINGdb and WGCNA overlap was highest for WGCNA interactions with a higher co-

expression weight ( ~ > 0.15). Key proteins present within SPM 8 included ECM 

components, most notably several of collagen chains (Supplemental Figure 6.8D). 

SPM 9 comprised 254 proteins with a median co-expression weight of 0.036 

(Supplemental Figure 6.9A-B). Of all interactions measured by WGCNA, ~ 8% were 

present in the STRINGdb (Supplemental Figure 6.9C). The STRINGdb and WGCNA 

overlap was highest for WGCNA interactions with a higher co-expression weight ( ~ > 

0.15). Key proteins present within SPM 9 included splicing proteins, heterogenous 

nuclear ribonucleoproteins (HNRNP) and histone proteins (Supplemental Figure 6.9D). 

SPM 10 comprised 94 proteins with a median co-expression weight of 0.041 

(Supplemental Figure 6.10A-B). Of all interactions measured by WGCNA, ~ 11% were 
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present in the STRINGdb (Supplemental Figure 6.10C). The STRINGdb and WGCNA 

overlap was highest for WGCNA interactions with a higher co-expression weight ( ~ > 

0.2). Proteins of SPM 10 primarily harboured vesicle trafficking roles, such as the adaptor 

and COPI coat proteins  (Supplemental Figure 6.10D). SPM 11 comprised 409 proteins 

with a median co-expression weight of 0.065, and most weights between 0.02 - 0.03 

(Supplemental Figure 6.11A-B). Of all interactions measured by WGCNA, ~ 25% were 

present in the STRINGdb (Supplemental Figure 6.11C). The STRINGdb and WGCNA 

overlap was highest for WGCNA interactions with a higher co-expression weight ( ~ > 

0.45). Key proteins present within SPM 11 included translation initiation factors, 

ribosome, and proteasome components (Supplemental Figure 6.11D). SPM 12 

comprised 44 proteins with a median co-expression weight of 0.052, most weights 

between 0.02 – 0.06, and a relatively high proportion of high co-expression weights (> 

0.1; Supplemental Figure 6.12A-B). Of all interactions measured by WGCNA, ~ 60% 

were present in the STRINGdb (the highest of any SPM; Supplemental Figure 6.12C). 

Key proteins present within SPM 12 were primarily those of the mitochondrial ribosomes 

(mitoribosomes; Supplemental Figure 6.12D). SPM 13 comprised 239 proteins with a 

median co-expression weight of 0.042 (range = 0.025 – 0.05; Supplemental Figure 

6.13A-B). Of all interactions measured by WGCNA, ~ 28% were present in the 

STRINGdb (Supplemental Figure 6.13C). The STRINGdb and WGCNA overlap was 

highest for WGCNA interactions with a higher co-expression weight ( ~ > 0.2). Key 

proteins present within SPM 13 included those involved in oxidative phosphorylation 

such as the NDUF proteins which form complex I and II of the electron transport chain, 

as well as mitochondrial ATP synthase subunits (Supplemental Figure 6.13D). SPM 14 

comprised 177 proteins with a median co-expression weight of 0.036 (Supplemental 

Figure 6.14A-B). Of all interactions measured by WGCNA, ~ 20% were present in the 

STRINGdb (Supplemental Figure 6.14C). The STRINGdb and WGCNA overlap was 

highest for WGCNA interactions with a higher co-expression weight ( ~ > 0.2). Key 

proteins present within SPM 14 included the cullin molecular scaffold proteins and 

proteasome subunits (Supplemental Figure 6.14D).  Overall, unbiased analysis of the 

STS proteome has identified SPMs which span a range of key functional biological 

activities.  

6.1.4 Clinical characterisation of the SPMs  

Next, we sought to investigate the clinical feature inherent to different SPMs. To achieve 

this, the associations between SPMs and clinicopathological variables were interrogated. 

The median SPM expression was used to summarise each SPM for each patient. This  
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revealed a significant association between all SPMs and histological subtype (Figure 

6.4A and Supplemental Table 6.1). Given the dominance of histology in proteomic 

features revealed throughout this thesis, this is unsurprising. Specifically, SPM 1 and to 

a lesser extent SPM 6 were enriched in LMS compared to all other subtypes. SPM 2 and 

SPM 4 were enriched in UPS, and SPM 3 was enriched in SS and RT (Figure 6.4B). 

SPMs 7, 8, 9, and 10 were enriched in DES, with SPM 9 also enriched in UPS, and SPM 

10 also enriched in SS. Most SPMs (SPM 1, SPM 3, SPM 5, SPM 6, SPM 7, SPM 8, 

SPM 9, SPM 13, SPM 14, and SPM 15) were also significantly associated with grade 

(Figure 6.4A and Supplemental Table 6.1). However, this was driven by tumours where 

grading information was not available or applicable; high SPM 7, SPM 8, and SPM 9 

 

Figure 6.4 Associations between sarcoma proteome modules (SPMs) and clinicopathological 
variables 
(A) Overview of Kruskal Wallis tests assessing the statistical association between SPMs and 
clinicopathological variables. Colour indicates false discovery rate (FDR). (B-H) Supervised heatmaps 
showing the SPM median expression score for each case. SPMs included where significantly associated 
with variables: histological subtype (B), grade (C), anatomical site (D), tumour margin (E), tumour depth (F), 
sex (G), performance status (H).  
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expression was seen in these tumours (Figure 6.4C). Beyond this, SPM 5, SPM 6, and 

SPM 9 showed higher expression in grade 3 than grade 2 tumours. Additionally, SPM 1, 

SPM 4, SPM 7, SPM 10, SPM 11, and SPM 14 were significantly associated with 

anatomical site (Figure 6.4A and Supplemental Table 6.1). Whilst the anatomical site 

heatmap association showed extensive heterogeneity, a significant enrichment of SPM 

1 was consistently observed in uterine tumours, and in subsets of intra-abdominal, 

extremity, and retroperitoneal tumours (Figure 6.4D). Subsets of trunk wall and 

retroperitoneal tumours showed high SPM 7 expression. Other significant associations 

included SPM 12 with tumour margin, SPM 9 and SPM 12 tumour depth, SPM 9 with 

sex, and SPM 1 and SPM 15 with performance status (Figure 6.4A and Supplemental 

Table 6.1). Yet, inspection of these heatmaps revealed high heterogeneity in expression 

levels across groups of clinicopathological variables (Figure 6.4E-H).  

Further to assessing SPM associations with clinicopathological variables, we also 

interrogated the relationship between SPM and patient outcome. Due to the clinical 

differences between DES and RT, and the typical adult STS population, patients of these 

diagnoses were excluded from survival analysis557,660. Median SPM scores were 

assessed by univariable Cox regression (summarised in Figure 6.5 and detailed in 

Supplemental Table 6.2). This illustrated high SPM 1 expression as significantly 

associated with a superior LRFS (HR = 0.554, 95% CI = 0.372-0.825, FDR = 0.041), 

high SPM 6 as significantly associated with a poorer MFS (HR = 2.19, 95% CI = 1.52-

3.15, FDR = 0.001), and high SPM 15 as associated with a superior MFS (HR = 0.092, 

95% CI = 0.026-0.321, FDR = 0.003) and OS (HR = 0.087, 95% CI = 0.025-0.302, FDR 

= 0.003). Given several relationships between SPMs and clinicopathological variables 

were identified, survival analyses were reperformed using the multivariable Cox 

regression to adjust for such variables. To avoid inflating the type I error rate, only SPMs 

where a significant univariable relationship with outcome was seen were assessed. 

However, a more lenient significance cut off was used for selection (FDR < 0.1). This led 

to the inclusion of an SPM 10 MFS model (univariable: HR = 0.563, 95% CI = 0.367-

0.863, FDR = 0.063), SPM 4 OS model (univariable: HR = 1.85, 95% CI = 1.16-2.95, 

FDR = 0.065), and SPM 13 OS model (univariable: HR = 0.61, 95% CI = 0.427-0.871, 

FDR = 0.059) in analyses (Figure 6.5 and Supplemental Table 6.2). Following 

multivariable adjustment, SPM 6 remained associated with a significantly superior MFS 

(HR = 1.96, 95% CI = 1.19-3.25, FDR = 0.009; Supplemental Table 6.3), and SPM 10 

remained associated with a significantly superior MFS (HR = 0.466, 95% CI = 0.247-

0.879, FDR = 0.018; Supplemental Table 6.4). All PH assumptions were met within 

these models.   
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6.1.5 SPM 6 

SPM 6 was found to have a significant and independent prognostic value for outcome. 

Namely, a high expression of SPM 6 associated with a poorer MFS. To better understand 

this relationship, SPM 6 was analysed further. 

SPM 6 was one of the smallest SPMs identified, comprised of 41 proteins, which mostly 

possess roles in DNA replication. Leveraging on the network-basis of SPMs, the 

influence each protein had within the SPM 6 network was quantified. For each protein, 

the eigengene-based connectivity was calculated as a correlation between each protein 

expression profile and the SPM eigengene. Additionally, network measures of degree, 

closeness centrality, and betweenness centrality were extracted661,662. The closeness 

centrality describes the distance from each node to other nodes, where a high value 

indicates shorter distances and thus a more central node. Betweenness centrality 

describes the proportion of shortest paths between all pairs of nodes that pass through 

a specific node, where a high value indicates involvement in many shortest path and thus 

a more central node. Visualisation of these measures together highlighted 6 proteins to 

consistently have the highest values of all measures (Figure 6.6). These included 5 

MCM complex components (MCM2/3/4/6/7) and FEN1, an endonuclease involved in 

base excision DNA repair663,664.  

SPM 6, as with all other SPMs showed a significant association with histology; with 

higher expression of SPM 6 seen in LMS and AS, and lower expression seen in DES 

compared to all other subtypes. SPM 6 was also significantly associated with grade, 

which was driven by low expression in tumours where grading was not available or  

 

Figure 6.5 Associations between sarcoma proteome modules (SPMs) and clinical outcome 
Forest plots for local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival 
(OS) illustrating hazard ratio (HR), 95% confidence intervals (as bars), and false discovery rate (FDR). 
Significance indicated by * = p < 0.1, ** = p < 0.05, *** = p < 0.001 
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applicable. However, despite these associations, stratification of the SPM 6 median 

scores into tertiles showed representation of all histologies and grades within low, 

intermediate, and high expression groups (Figure 6.7A-B). When split into tertiles, SPM 

6 also showed a significant association with MFS in univariable and multivariable 

analyses, reiterating the previously highlighted prognostic value of this set of proteins 

(Figure 6.7C, Table 6.1 and Supplemental Table 6.5). No statistical association was 

revealed between SPM 6 expression and LRFS or OS (Supplemental Table 6.5), 

although a minor trend in OS was observed on the Kaplan Meier plot (Figure 6.7C). This 

was in agreement with MFS observations, suggesting low SPM 6 expression may be 

associated with a superior OS. The PH assumption was met for all variables of all models 

except histological subtype in multivariable MFS analyses (Schoenfeld p = 0.02). 

 
Figure 6.6 Network analysis of sarcoma proteome module 6  
From top to bottom, plot shows eigengene-based connectivity, degree, betweenness centrality, and 
closeness centrality for all proteins within sarcoma proteome module 6 (SPM 6). 
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However, inspection of the Schoenfeld residuals illustrated no severe violation of the 

model assumption, and therefore interpretation was valid (Supplemental Figure 6.15).  

 

 

 

 

Figure 6.7 Clinical characterisation of sarcoma proteome module 6  
(A-B) Alluvial plots illustrating the distribution of (A) histological subtype (excluding desmoid tumours (DES) 
and rhabdoid tumours (RT)) and (B) grade across three SPM 6 subgroups. Subgroups were identified by 
tertile stratification based on median SPM 6 expression across the full cohort. (C) Kaplan Meier plots of local 
recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) across the three 
SPM 6 subgroups. Corresponding univariable Cox regression detailed in Table 6.1. Abbreviations: AS = 
angiosarcoma; ASPS = alveolar soft part sarcoma; CCS = clear cell sarcoma; DDLPS = dedifferentiated 
liposarcoma; DSRCT = desmoplastic small round cell tumour; EPS = epithelioid sarcoma; LMS = 
leiomyosarcoma; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma. 
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6.1.6 SPM 10 

SPM 10 was also found to have a significant and independent prognostic value for MFS. 

However, in contrast to SPM 6, higher SPM 10 expression was associated with a 

superior MFS. To better understand this relationship, SPM 10 was analysed further. 

 

Table 6.1 Univariable Cox regression for sarcoma proteome module (SPM) 6 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
SPM subgroups identified by tertile stratification based on median expression across the full cohort. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

SPM6 low (ref) - - - - - - 

intermediate 1.15 (0.701-1.9) 0.573 1.4 (0.838-2.35) 0.197 1.48 (0.915-2.39) 0.11 

high 1 (0.6-1.68) 0.992 2.42 (1.48-3.95) <0.001 1.52 (0.946-2.46) 0.04 

 

Figure 6.8 Network analysis of sarcoma proteome module 10 
From top to bottom, plot shows eigengene-based connectivity, degree, betweenness centrality, and 
closeness centrality for all proteins within sarcoma proteome module 10 (SPM 10). 
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SPM 10 contained 94 proteins comprised primarily of vesicle transport proteins. Analysis 

of the SPM 10 network characteristics revealed 2 proteins to consistently have the 

highest influence (COPB2/G1; Figure 6.8). Other highly influential proteins illustrated by 

the network measures included COPB1, COPA, AP2B1, and ARCN1. COPB2/G1/A/B1 

are COPI coat complex subunit which coat vesicles budding from the Golgi complex665. 

ARCN1 is a coatomer protein, and AP2B1 links clathrin to coated vesicles666. 

SPM10 was shown to be associated with histological subtype and anatomical site. 

However, despite this, when cases were stratified by tertiles, all histological subtypes in 

the cohort were represented in each SPM 10 expression group (Figure 6.9A). 

Additionally, all anatomical sites except uterine were present in each of the three SPM 

10 expression group (Figure 6.9B). Uterine tumours were split between the low and 

intermediate SPM 10 groups. As for SPM 6, when split in to tertiles SPM 10 retained 

prognostic significance for MFS. High SPM 10 expression was significantly associated 

with a superior MFS in both univariable and multivariable analyses (Figure 6.9C, Table 

6.2 and Supplemental Table 6.6). Additionally, whilst SPM 10 showed no association 

with OS in univariable analysis, significance was seen in multivariable analysis 

(Supplemental Table 6.6). Specifically, as for MFS, a high SPM 10 expression was 

associated with a significantly superior OS (HR = 0.432, 95% CI = 0.238 – 0.782, p = 

0.006). No statistical association was revealed between SPM 10 expression and LRFS 

(Supplemental Table 6.6). The PH assumption of these models was met for all 

variables.  

6.1.7 Validation of the prognostic SPMs  

Next, we assessed whether the prognostic findings revealed for SPM 6 and SPM 10 

were reproducible in an independent dataset. There is no other publicly available MS 

STS dataset corresponding to an independent, multi-subtype cohort. Therefore, the 

TCGA STS RNAseq data was explored36. This data is derived from an independent 

patient cohort; however, it corresponds to gene expression measures as opposed to MS 

data. This introduces challenges as to the interpretation of any results; differentiating 

between the impact of different cohorts, and different methods is not possible. 

Nevertheless, the expression of genes in the TCGA dataset reflecting the proteins found 

in SPM 6 and SPM 10 was assessed. To facilitate appropriate comparisons, TCGA data 

for only those subtypes present in the proteomic data was assessed (LMS, DDLPS, UPS, 

and SS). Additionally, TCGA outcome data was censored at 5 years post-surgery, as 

was the case for the MS cohort. In line with associations revealed in the proteomic  
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Figure 6.9 Clinical characterisation of sarcoma proteome module 10  
(A-B) Alluvial plots illustrating the distribution of (A) histological subtype (excluding desmoid tumours (DES) 
and rhabdoid tumours (RT)) and (B) anatomical site across three SPM 10 subgroups. Subgroups were 
identified by tertile stratification based on median SPM 10 expression across the full cohort. (C) Kaplan Meier 
plots of local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) 
across the 3 SPM 6 subgroups. Corresponding univariable Cox regression detailed in Table 6.2. 
Abbreviations: AS = angiosarcoma; ASPS = alveolar soft part sarcoma; CCS = clear cell sarcoma; DDLPS 
= dedifferentiated liposarcoma; DSRCT = desmoplastic small round cell tumour; EPS = epithelioid sarcoma; 
LMS = leiomyosarcoma; SS = synovial sarcoma; UPS = undifferentiated pleomorphic sarcoma. 

Table 6.2 Univariable Cox regression for sarcoma proteome module (SPM) 10 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
SPM subgroups identified by tertile stratification based on median expression across the full cohort. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval 

    LRFS MFS OS 

   HR (95% CI) p HR (95% CI) p HR (95% CI) p 

SPM 
10 

low (ref) - - - - - - 

intermediate 1.28 (0.815-2) 0.287 0.882 (0.6-1.3) 0.523 0.889 (0.605-1.31) 0.551 

high 1.09 (0.649-1.83) 0.747 0.48 (0.285-0.803) 0.005 0.635 (0.389-1.04) 0.07 
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dataset, SPM 6 and SPM 10 were descriptively analysed for associations with histology, 

grade (SPM 6 only), and anatomical site (SPM 10 only). 

The TCGA data reduced to those genes/proteins identified in SPM 6 and unsupervised 

clustering was performed. Clustering annotations showed no association with grade, but 

a strong association with histological subtype (Figure 6.10A). Specifically, expression of 

SPM 6 tended to be highest in LMS cases. The univariable Cox regression showed a 

high median SPM 6 score to be significantly associated with a poorer MFS (Figure 6.10C 

and Supplemental Table 6.7), recapitulating proteomic observations. Application of the 

SPM 10 proteins to the TCGA data and subsequent unsupervised clustering again 

highlighted histology-based expression differences (Figure 6.10B). Most notably, a clear 

LMS specific cluster was observed, seemingly driven by the expression of approximately 

~ 4 proteins (ALDH1A3, HSPA12B, FSCN1, PYCR1). Additionally, within LMS, uterine 

and other tumours were separated showing anatomical site-based differences in SPM 

10 expression. Use of the univariable Cox regression and median SPM 10 score 

revealed no significant association with MFS or LRFS (Figure 6.10D and Supplemental 

Table 6.7). However, high SPM 10 was illustrated as significantly associated with a 

poorer OS (HR =  2.93, 95% CI = 1.27 – 6.76, p = 0.012). Notably, this is the inverse of 

the relationship shown in the proteomic data with MFS.  

6.1.8 Discussion and summary 

Using the comprehensive proteomic data from all MS-profiled cases, this Chapter 

defined the landscape of the STS proteome. By leveraging on the inherent network 

structure of protein systems, 14 SPMs were defined. The network model built showed 

impressive scale-free topology fit (R2 = 0.93). The WGCNA authors themselves note that 

the scale-free topology assumption can be challenging to meet, particularly where 

different tissue types are analysed521. However, despite this cohort comprising many 

different tumour types, a robust proteome network could be derived. Overall STRINGdb 

coverage of WGCNA interactions was 32% and ranged from 8% to 41% within 

SPMs602,603. The highest overlap between STRINGdb and WGCNA observations were 

seen in WGCNA interactions with high co-expression weights. This illustrates WGCNA 

to capture STRINGdb-described biology with high confidence, as well as revealing novel 

interactions based on de novo analysis of proteomic expression. 

Assessment of the functional biology of SPMs by overrepresentation analysis failed to 

yield any significant results. This was likely due to the small number of proteins present  
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Figure 6.10 Assessment of sarcoma proteome modules 6 and 10 in The Cancer Genome Atlas 
(TCGA) RNAseq data 
(A-B) Unsupervised clustering (Pearson’s correlation distance) of (A) 41 SPM 6 and (B) 94 SPM 10 proteins 
across leiomyosarcoma (LMS), dedifferentiated liposarcoma (DDLPS), undifferentiated pleiomorphic 
sarcoma (UPS), and synovial sarcoma (SS) cases of the TCGA cohort (n = 184). Top annotations show (A-
B) histological subtype, (A) grade and (B) and anatomical site. Bottom annotation shows median score for 
each SPM for each case. (C-D)  Kaplan Meier plots of metastasis free survival (MFS) across the 3 SPM 6 
subgroups (C) and 3 SPM 10 subgroups. Subgroups were identified by tertile stratification based on median 
SPM 10 expression across the full cohort. (D). Corresponding univariable Cox regression detailed in 
Supplemental Table 6.7. Abbreviations: I-A = Intra-abdominal   
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within each SPM and the reduced coverage of genome-wide gene sets in the MS data. 

However, inspection of each SPM PPI illustrated SPMs to capture a range of STS 

biological activity. Biology spanned the regulation of DNA, RNA, and proteins 

(replication, splicing, translation, and proteasomal degradation), vesicle trafficking, and 

matrisomal processes (cell adhesion, ECM, and immune proteins). The SPMs identified 

were, at least in part, reflective of cohort composition; evidenced by the identification of 

a muscle-related SPM (SPM 1) and ECM-related SPM (SPM 8). SPM 1 showed high 

expression in nearly all LMS tumours and showed low expression in all other histological 

subtypes, consistent with LMS being smooth muscle derived4. Whilst SPM 8 showed 

high expression in DES and low expression in almost all tumours of other histological 

subtypes, consistent with the fibrotic nature of DES557. In fact, the expression of all SPMs 

identified was associated with histology. Observations of interest include the high  

expression of SPM 9 in both DES and UPS, two tumours with very different biological 

and clinical features557,621. SPM 9 was enriched in vesicle transport proteins and antigen 

presentation machinery. The biological implications of the shared enrichment of these 

proteins in DES and UPS is unclear. Also of note is the unique co-upregulation of SPM 

2, SPM 5, and SPM 13 in SS tumours. SS are driven by the SS18-SSX1/2/4 fusion and 

show a distinctive profile at the proteomic level (Chapter 4), and transcriptomic level36,165. 

High SPM 2 in SS suggests an active immune component; however, this in contrast to 

the current literature which reports low immune activity in SS36,667. High expression of 

splicing proteins (SPM 5) in SS may be reflective of the underlying fusion gene 

characteristic of SS. Previous data has suggested alternative splicing to play a role in 

fusion transcript formation668. SPM 13 comprises oxidative phosphorylation proteins, and 

therefore high SPM 13 in SS indicates active mitochondrial respiration. The downstream 

consequences of this are unknown. However, oxidative phosphorylation has been 

reported as enriched in some STS subtypes relative to carcinomas, and hypoxia 

signatures have been reported to hold prognostic value in STS384,385,387,388,669. Finally, it 

is notable that of the 2 immune-related SPMs (SPM 2 and SPM 7), 1 (SPM 7) shows 

high heterogeneity within DDLPS and UPS. This may be reflective of observations made 

in Chapter 5 which showed distinctive immune processes to be active in subsets of 

DDLPS an UPS cases. A high number of SPMs were also associated with grade; 

however, this was driven by tumours where grading information was not available, and 

therefore was likely driven by histology. Indeed, DES are not graded and SPMs notably 

high in DES (7, 8, and 9) and low in DES (6) were amongst those identified in SPM-

grade analyses4,53,54,71. The association between SPM and anatomical site is also 

hypothesised to be driven by histological subtype. For example, SPM 1 showed high 

expression in all uterine tumours, yet all uterine tumours profiled were LMS. Overall, the 
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SPMs illustrated a recapitulation of known tumour biology, highlighted commonalities 

between distinct STS histological subtypes, and reproduced findings of heterogeneity 

investigated elsewhere in this project. To build on this work, future analyses include 

those to differentiate between SPMs which are noted to harbour similar biology. For 

example, 3 SPMs enriched in splicing activity are reported (SPM 3, SPM 4, and SPM 5). 

However, these SPMs show different expression profiles across tumours and therefore 

likely describe different functional biology. Important next steps involve attempts to 

delineate the proteins central to each SPM to better describe their function. 

As a proof-of-principle for the clinical utility of these SPMs, their association with outcome 

was assessed. This revealed SPM 6 and SPM 10 to harbour significant and independent 

prognostic value for MFS in multivariable analyses. SPM 6 comprised DNA replication 

machinery, and network analysis specifically revealed the MCM complex to have high 

influence within this group of proteins. This may indicate active and/or aberrant DNA 

replication in these tumours which can have consequences on cell cycle and proliferative 

activity670,671. As such, high MCM protein expression may be reflective of genomic 

instability and may represent a surrogate measure for such instability in these tumours. 

Irrespective of the underlying mechanism, this chapter showed a high expression of SPM 

6 to be prognostic for poor MFS. Moreover, application of SPM 6 to the TCGA cohort 

illustrated a recapitulation of its prognostic value in an independent cohort. This is in 

support of the hypothesis that high MCM expression indicates genomic instability, as 

tumours with high instability have been reported to have an increased metastasis risk 

(as measured by CINSARC; discussed in section 1.5.2.1) 

Whilst the prognostic value of SPM 6 can be rationalised based on the current literature, 

the prognostic value of vesicle trafficking proteins (i.e., SPM 10) in STS has not been 

reported before. Vesicular trafficking can correspond to the intracellular localisation, 

secretion, or endosomal trafficking of biological molecules such as proteins672. These 

processes cover a broad range of functions which can impact tumour behaviour in many 

different ways. For example, vesicle transport proteins such as the Rab GTPases have 

been shown to harbour both oncogenic and tumour suppressive effects, dependent on 

the context673. With the current data in this project, it was not possible to determine 

whether SPM 10 describes tumour suppressive and/or oncogenic activity. Although high 

SPM 10 expression was shown to be associated with a superior MFS in this cohort, thus 

suggesting the proteins in SPM 10 confer tumour suppressive effects in STS. Application 

of SPM 10 to the TCGA data did not recapitulate this prognostic significance. In fact, the 

inverse relationship was identified with OS. In TCGA high expression of SPM conferred 
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a significantly poorer OS. This may be reflective of the multiple and contrasting roles of 

vesicle trafficking proteins, or alternatively may indicate that the expression of SPM 10 

and it’s relation to a superior MFS is an attribute of the proteome not the transcriptome. 

This stresses the importance of protein-level characterisation of tumours. Additionally, it 

may be the case that the TCGA cohort composition itself is restricting recapitulation. In 

Chapter 5, clinicopathological features of the LMS cases were shown to significantly 

differ between the MS- and TCGA-profiled cohorts. Moreover, SPMs were derived using 

data from 11 different histological subtypes, of which TCGA profiled only 4. Despite not 

being recapitulated in the TCGA cohort, the revelation that vesicle trafficking proteins are 

associated with outcome illustrates one advantage of the de novo WGCNA approach 

used. Such unsupervised methods can identify novel findings without the use of prior 

biological knowledge. 

There are several future research avenues leading on from this work. Specifically, it 

would be interesting to assess SPM prognostication in an independent MS dataset, and 

benchmark its performance to current risk stratification tools within STS clinical practice 

(such as the nomograms; section 1.2.2.2). Whilst such analysis of an independent 

dataset could involve comprehensive MS as was performed for this project, given the 

SPMs of interest contain relatively low numbers of proteins, targeted MS may be more 

appropriate. Furthermore, it would be of interest to identify whether the proteins of 

influence revealed by network analysis of SPM 6 and SPM 10 capture sufficient biology 

to confer a prognostic value themselves. This would reduce the number of proteins 

needing assessment and may facilitate risk stratification by IHC. Another avenue for 

exploration includes the assessment of the remaining SPMs not focused on herein. This 

project demonstrated prognostic utility in 2 SPMs by use of a median summary score. 

However, there are 12 other SPMs which could be further explored using other 

approaches. As well as further analyses directed at prognostication, this proteome 

network could also be assessed for drug targets. Utilising the network structure of the 

proteome may be a promising approach to reveal candidate therapeutic choices. Though 

the network structure, drug targets can be assessed for their influence within SPMs and 

across the proteome network, which could highlight the pathways most vulnerable to 

therapeutic intervention.  
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6.2 Supplemental material 

6.2.1 Supplemental figures  

 
 

  

 
Supplemental Figure 6.1 Sarcoma proteome module (SPM) 1 
(A) SPM 1 protein co-expression network comprising 354 nodes and 17,475 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 1 
(C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.2 Sarcoma proteome module (SPM) 2 
(A) SPM 2 protein co-expression network comprising 383 nodes and 13,642 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 2 
(C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.3 Sarcoma proteome module (SPM) 3 
(A) SPM 3 protein co-expression network comprising 136 nodes and 5,186 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 3 
(C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
 



 

 267 

 
 
 
 

  

 
Supplemental Figure 6.4 Sarcoma proteome module (SPM) 4 
(A) SPM 4 protein co-expression network comprising 342 nodes and 18,828 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 4 
(C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
 



 

 268 

 
 
 

  

 
Supplemental Figure 6.5 Sarcoma proteome module (SPM) 5 
(A) SPM 5 protein co-expression network comprising 275 nodes and 13,853 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 5 
(C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.6 Sarcoma proteome module (SPM) 6 
(A) SPM 6 protein co-expression network comprising 41 nodes and 325 edges (restricted to co-expression 
weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, where a 
thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 6 (C) 
Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.7 Sarcoma proteome module (SPM) 7 
(A) SPM 7 protein co-expression network comprising 176 nodes and 9,809 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 7 
(C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  



 

 271 

 
 
 
 

  

 
Supplemental Figure 6.8 Sarcoma proteome module (SPM) 8 
(A) SPM 8 protein co-expression network comprising 63 nodes and 1,088 edges (restricted to co-expression 
weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, where a 
thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 8 (C) 
Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.9 Sarcoma proteome module (SPM) 9 
(A) SPM 9 protein co-expression network comprising 231 nodes and 6,527 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 9 
(C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.10 Sarcoma proteome module (SPM) 10 
(A) SPM 10 protein co-expression network comprising 84 nodes and 1,492 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 
10 (C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.11 Sarcoma proteome module (SPM) 11 
(A) SPM 11 protein co-expression network comprising 391 nodes and 36,419 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 
11 (C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
 



 

 275 

 
 
 
 

  

 
Supplemental Figure 6.12 Sarcoma proteome module (SPM) 12 
(A) SPM 12 protein co-expression network comprising 41 nodes and 335 edges (restricted to co-expression 
weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, where a 
thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 12 (C) 
Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.13 Sarcoma proteome module (SPM) 13 
(A) SPM 13 protein co-expression network comprising 231 nodes and 10,929 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 
13 (C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.14 Sarcoma proteome module (SPM) 14 
(A) SPM 14 protein co-expression network comprising 151 nodes and 2,690 edges (restricted to co-
expression weight ≥ 0.05). Nodes indicate proteins, edges show co-expression between protein expression, 
where a thicker line indicates a stronger correlation. (B) Distribution of co-expression weights within SPM 
14 (C) Dotplot showing the percentage overlap between STRINGdb interactions and WGCNA-revealed 
interactions, where different maximum WGCNA correlation weights are applied. (D) Subnetworks of interest 
manually selected from (A).  
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Supplemental Figure 6.15 Assessment of the proportional hazards (PH) assumption in the 
multivariable Cox model inclusive of sarcoma proteome module (SPM) 6  
Plot shown for variable-model combination where a minor violation of the PH assumption was identified. 
Scaled Schoenfeld residuals plotted for histological subtype in the metastasis free survival (MFS) model. 
Solid black line indicates a smoothed spline fit of residuals and dashed black lines indicate +/- 2-standard 
error.  
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6.2.2 Supplemental tables 

Supplemental Table 6.1 Statistical associations between clinicopathological features and sarcoma proteome modules (SPM) 
Significant results in bold. Abbreviations: d.f = degrees of freedom; FDR = false discovery rate 

Variable 1  Variable 2 X2 d.f p FDR Variable 1  Variable 2 X2 d.f p FDR 

SPM 1 Anatomical site 38.073 6 <0.001 <0.001 SPM 6 Anatomical site 14.586 6 0.024 0.062 
SPM 1 Grade 5.409 1 0.020 0.054 SPM 6 Grade 19.817 1 <0.001 <0.001 

SPM 1 Performance status 11.722 2 0.003 0.011 SPM 6 Performance status 6.028 2 0.049 0.117 

SPM 1 Sex 0.027 1 0.870 0.895 SPM 6 Sex 0.509 1 0.476 0.617 

SPM 1 Histological subtype 182.105 8 <0.001 <0.001 SPM 6 Histological subtype 160.058 8 <0.001 <0.001 
SPM 1 Tumour depth 1.095 1 0.295 0.450 SPM 6 Tumour depth 1.519 1 0.218 0.363 

SPM 1 Tumour margin 1.185 2 0.553 0.691 SPM 6 Tumour margin 4.709 2 0.095 0.190 

SPM 2 Anatomical site 9.142 6 0.166 0.300 SPM 7 Anatomical site 19.828 6 0.003 0.011 

SPM 2 Grade 14.489 1 <0.001 0.001 SPM 7 Grade 11.793 1 0.001 0.002 

SPM 2 Performance status 0.946 2 0.623 0.752 SPM 7 Performance status 0.438 2 0.803 0.870 
SPM 2 Sex 5.410 1 0.020 0.054 SPM 7 Sex 1.117 1 0.291 0.450 

SPM 2 Histological subtype 177.846 8 <0.001 <0.001 SPM 7 Histological subtype 63.291 8 <0.001 <0.001 
SPM 2 Tumour depth 2.828 1 0.093 0.190 SPM 7 Tumour depth 3.868 1 0.049 0.117 

SPM 2 Tumour margin 0.569 2 0.752 0.846 SPM 7 Tumour margin 2.037 2 0.361 0.503 

SPM 3 Anatomical site 7.260 6 0.298 0.450 SPM 8 Anatomical site 12.517 6 0.051 0.120 
SPM 3 Grade 0.078 1 0.780 0.863 SPM 8 Grade 14.074 1 <0.001 0.001 

SPM 3 Performance status 4.043 2 0.132 0.253 SPM 8 Performance status 6.479 2 0.039 0.098 
SPM 3 Sex 0.053 1 0.818 0.876 SPM 8 Sex 1.055 1 0.304 0.450 

SPM 3 Histological subtype 116.064 8 <0.001 <0.001 SPM 8 Histological subtype 104.626 8 <0.001 <0.001 
SPM 3 Tumour depth 0.425 1 0.514 0.659 SPM 8 Tumour depth 1.993 1 0.158 0.291 

SPM 3 Tumour margin 0.341 2 0.843 0.877 SPM 8 Tumour margin 1.646 2 0.439 0.583 

SPM 4 Anatomical site 18.669 6 0.005 0.016 SPM 9 Anatomical site 12.224 6 0.057 0.128 
SPM 4 Grade 18.304 1 <0.001 <0.001 SPM 9 Grade 27.683 1 <0.001 <0.001 

SPM 4 Performance status 5.407 2 0.067 0.147 SPM 9 Performance status 0.616 2 0.735 0.846 
SPM 4 Sex 0.396 1 0.529 0.669 SPM 9 Sex 5.699 1 0.017 0.048 

SPM 4 Histological subtype 116.164 8 <0.001 <0.001 SPM 9 Histological subtype 232.628 8 <0.001 <0.001 

SPM 4 Tumour depth 1.077 1 0.299 0.450 SPM 9 Tumour depth 7.184 1 0.007 0.023 

SPM 4 Tumour margin 2.392 2 0.302 0.450 SPM 9 Tumour margin 4.495 2 0.106 0.205 
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continuation of table from previous page 

Variable 1  Variable 2 X2 d.f p FDR Variable 1  Variable 2 X2 d.f p FDR 

SPM 5 Anatomical site 4.580 6 0.599 0.740 SPM 10 Anatomical site 29.210 6 <0.001 <0.001 

SPM 5 Grade 9.491 1 0.002 0.008 SPM 10 Grade 0.905 1 0.341 0.491 

SPM 5 Performance status 5.197 2 0.074 0.159 SPM 10 Performance status 4.689 2 0.096 0.190 

SPM 5 Sex 0.108 1 0.743 0.846 SPM 10 Sex 0.782 1 0.376 0.513 

SPM 5 
Histological 

subtype 104.620 8 <0.001 <0.001 SPM 10 
Histological 

subtype 166.794 8 <0.001 <0.001 

SPM 5 Tumour depth 0.072 1 0.789 0.863 SPM 10 Tumour depth 2.037 1 0.154 0.288 

SPM 5 Tumour margin 1.622 2 0.444 0.583 SPM 10 Tumour margin 1.928 2 0.381 0.513 

SPM 11 Anatomical site 18.179 6 0.006 0.019 SPM 14 Anatomical site 38.286 6 <0.001 <0.001 

SPM 11 Grade 0.049 1 0.825 0.876 SPM 14 Grade 16.823 1 <0.001 <0.001 

SPM 11 Performance status 3.424 2 0.180 0.321 SPM 14 Performance status 2.880 2 0.237 0.383 

SPM 11 Sex 0.823 1 0.364 0.503 SPM 14 Sex 0.165 1 0.685 0.799 

SPM 11 
Histological 

subtype 124.326 8 <0.001 <0.001 SPM 14 
Histological 

subtype 110.637 8 <0.001 <0.001 

SPM 11 Tumour depth 1.631 1 0.202 0.345 SPM 14 Tumour depth 0.004 1 0.948 0.957 

SPM 11 Tumour margin 0.997 2 0.607 0.741 SPM 14 Tumour margin 3.181 2 0.204 0.345 

SPM 12 Anatomical site 6.832 6 0.337 0.491 SPM 15 Anatomical site 1.435 6 0.964 0.964 

SPM 12 Grade 0.182 1 0.670 0.790 SPM 15 Grade 5.782 1 0.016 0.047 

SPM 12 Performance status 0.557 2 0.757 0.846 SPM 15 Performance status 9.637 2 0.008 0.025 

SPM 12 Sex 4.648 1 0.031 0.080 SPM 15 Sex 0.196 1 0.658 0.785 

SPM 12 

Histological 

subtype 114.231 8 <0.001 <0.001 SPM 15 

Histological 

subtype 64.364 8 <0.001 <0.001 

SPM 12 Tumour depth 8.763 1 0.003 0.011 SPM 15 Tumour depth 3.721 1 0.054 0.123 

SPM 12 Tumour margin 8.318 2 0.016 0.047 SPM 15 Tumour margin 4.837 2 0.089 0.187 

SPM 13 Anatomical site 6.560 6 0.363 0.503             

SPM 13 Grade 21.026 1 <0.001 <0.001             

SPM 13 Performance status 0.354 2 0.838 0.877             

SPM 13 Sex 1.663 1 0.197 0.345             

SPM 13 

Histological 

subtype 131.092 8 <0.001 <0.001             

SPM 13 Tumour depth 0.024 1 0.878 0.895             

SPM 13 Tumour margin 2.999 2 0.223 0.366             
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Supplemental Table 6.2 Univariable Cox regression for sarcoma proteome modules (SPM) 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
SPM measures are median scores for all proteins in the SPM. Significant results in bold. Abbreviations: ref 
= reference variable; HR = hazard ratio; CI = confidence interval 

 LRFS MFS OS 

 HR (95% CI) p FDR HR (95% CI) p FDR HR (95% CI) p FDR 

SPM 

1 

0.554 (0.372-
0.825) 

0.00
4 

0.04
1 

1.08 (0.794-
1.47) 

0.62
5 

0.82
1 

0.789 (0.571-
1.09) 

0.15
3 

0.37
7 

SPM 

2 

1.19 (0.775-
1.83) 

0.42
6 

0.67
3 

1.01 (0.681-
1.49) 

0.96
8 

0.99
0 

1.44 (0.984-
2.12) 

0.06
1 

0.21
5 

SPM 

3 

0.992 (0.672-
1.46) 

0.96
6 

0.99
0 

0.872 (0.612-
1.24) 

0.44
9 

0.67
4 

0.774 (0.536-
1.12) 

0.17
1 

0.38
5 

SPM 

4 

0.857 (0.509-
1.44) 

0.56
1 

0.78
9 

1.71 (1.08-2.71) 
0.02

3 
0.11

4 
1.85 (1.16-2.95) 

0.01
0 

0.06
5 

SPM 

5 

0.961 (0.544-
1.7) 

0.89
0 

0.95
4 

1.34 (0.817-
2.19) 

0.24
7 

0.49
3 

1.32 (0.813-
2.13) 

0.26
3 

0.49
3 

SPM 

6 
1 (0.664-1.51) 

0.99

0 

0.99

0 
2.19 (1.52-3.15) 

< 

0.00
1 

0.00

1 
1.47 (1.03-2.09) 

0.03

4 

0.15

3 

SPM 

7 
1.24 (1.01-1.52) 

0.04
2 

0.17
1 

0.842 (0.687-
1.03) 

0.09
9 

0.29
8 

1.02 (0.843-
1.23) 

0.84
6 

0.92
9 

SPM 

8 

0.965 (0.739-

1.26) 

0.79

4 

0.91

0 

0.908 (0.715-

1.15) 

0.43

0 

0.67

3 

0.828 (0.654-

1.05) 

0.11

6 

0.31

0 

SPM 

9 

1.12 (0.648-
1.95) 

0.67
6 

0.82
1 

0.903 (0.543-
1.5) 

0.69
3 

0.82
1 

1.75 (1.09-2.82) 
0.02

0 
0.11

2 

SPM 

10 

1.25 (0.793-

1.97) 

0.33

7 

0.58

3 

0.563 (0.367-

0.863) 

0.00

8 

0.06

3 

0.786 (0.516-

1.2) 

0.26

3 

0.49

3 

SPM 

11 

1.47 (0.908-
2.38) 

0.11
7 

0.31
0 

1.14 (0.741-
1.76) 

0.54
9 

0.78
9 

1.1 (0.718-1.69) 
0.65

8 
0.82

1 

SPM 

12 
1.1 (0.74-1.63) 

0.64

5 

0.82

1 

1.38 (0.984-

1.93) 

0.06

2 

0.21

5 
1.28 (0.908-1.8) 

0.15

9 

0.37

7 

SPM 

13 

0.721 (0.491-
1.06) 

0.09
5 

0.29
8 

0.821 (0.582-
1.16) 

0.26
1 

0.49
3 

0.61 (0.427-
0.871) 

0.00
7 

0.05
9 

SPM 

14 

1.08 (0.573-

2.04) 

0.80

9 

0.91

0 

0.884 (0.494-

1.58) 

0.67

9 

0.82

1 

1.33 (0.755-

2.35) 

0.32

3 

0.58

1 

SPM 

15 

0.565 (0.135-
2.36) 

0.43
4 

0.67
3 

0.092 (0.026-
0.321) 

< 
0.00

1 

0.00
3 

0.087 (0.025-
0.302) 

< 
0.00

1 

0.00
3 
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Supplemental Table 6.3 Multivariable Cox regression for sarcoma proteome module (SPM) 6 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
SPM measure is the median score for all proteins in the SPM. Significant results in bold. Abbreviations: ref 
= reference variable; HR = hazard ratio; CI = confidence interval 

    MFS 

    HR (95% CI) p 

Age at excision (years) 0.998 (0.981-1.01) 0.792 

Sex 
F (ref) - - 

M 1.24 (0.8-1.91) 0.339 

Histological 

subtype 

LMS (ref) - - 

AS 3.38 (1.42-8.05) 0.006 
DDLPS 0.523 (0.215-1.27) 0.153 

EPS 4.47 (1.64-12.2) 0.003 

SS 0.792 (0.357-1.76) 0.567 
UPS 1.08 (0.585-1.99) 0.809 
Other 2.33 (0.718-7.54) 0.159 

Anatomical site 

Extremity (ref) - - 

Pelvic 1.19 (0.547-2.57) 0.665 

Trunk 0.659 (0.303-1.43) 0.292 

Intra-abdominal 1.28 (0.634-2.59) 0.488 

Retroperitoneal 0.741 (0.363-1.51) 0.411 

Uterine 1.64 (0.518-5.21) 0.4 

Head/neck 0.973 (0.279-3.4) 0.966 

FNCLCC grade  
2 (ref) - - 

3 1.64 (1.03-2.61) 0.035 
  unknown 0.814 (0.3-2.21) 0.686 

Performance status 

0 (ref) - - 

1 1.62 (1-2.61) 0.048 

2-3 1.47 (0.639-3.39) 0.363 

unknown 1.58 (0.897-2.78) 0.114 

Tumour depth 
Deep (ref) - - 

Superficial 0.581 (0.32-1.05) 0.074 

Tumour margin 

R1 & R2 (ref) - - 

R0 1.06 (0.709-1.6) 0.763 

unknown 1.66 (0.582-4.74) 0.343 

Log(Tumour size 
[mm]) 

4-5 (ref) - - 

< 4 0.421 (0.228-0.779) 0.006 

> 5 1.01 (0.583-1.74) 0.979 

SPM 6   1.96 (1.19-3.25) 0.009 
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Supplemental Table 6.4 Multivariable Cox regression for sarcoma proteome module (SPM) 10 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
SPM measure is the median score for all proteins in the SPM. Significant results in bold. Abbreviations: ref 
= reference variable; HR = hazard ratio; CI = confidence interval 

    MFS 

    HR (95% CI) p 

Age at excision (years) 0.999 (0.983-1.02) 0.94 

Sex 
F (ref) - - 

M 1.24 (0.796-1.92) 0.345 

Histological subtype 

LMS (ref) - - 

AS 3.54 (1.51-8.26) 0.004 

DDLPS 0.521 (0.215-1.27) 0.15 

EPS 4.29 (1.58-11.7) 0.004 

SS 0.882 (0.391-1.99) 0.762 
UPS 1.01 (0.556-1.84) 0.971 

Other 1.85 (0.601-5.69) 0.284 

Anatomical site 

Extremity (ref) - - 

Pelvic 0.947 (0.432-2.08) 0.892 

Trunk 0.725 (0.342-1.54) 0.403 

Intra-abdominal 1.26 (0.628-2.53) 0.515 

Retroperitoneal 0.683 (0.335-1.39) 0.296 

Uterine 1.24 (0.396-3.91) 0.708 

Head/neck 1.03 (0.3-3.56) 0.957 

FNCLCC grade  
2 (ref) - - 

3 2.12 (1.36-3.32) <0.001 

  unknown 0.848 (0.31-2.32) 0.749 

Performance status 

0 (ref) - - 

1 1.64 (1.02-2.63) 0.041 

2-3 1.2 (0.522-2.74) 0.673 

unknown 1.44 (0.825-2.52) 0.199 

Tumour depth 
Deep (ref) - - 

Superficial 0.487 (0.266-0.89) 0.019 

Tumour margin 

R1 & R2 (ref) - - 

R0 1.15 (0.764-1.73) 0.502 

unknown 1.43 (0.498-4.08) 0.508 

Log(Tumour size [mm]) 

4-5 (ref) - - 

< 4 0.42 (0.228-0.773) 0.005 

> 5 1.12 (0.649-1.93) 0.683 

SPM 10  0.466 (0.247-0.879) 0.018 
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Supplemental Table 6.5 Multivariable Cox regression for sarcoma proteome module (SPM) 6 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
SPM subgroups identified by tertile stratification based on median expression across the full cohort. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval 

    LRFS MFS OS 

    HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 1 (0.984-1.02) 0.95 
0.998 (0.982-

1.01) 

0.76

1 

1.01 (0.996-

1.03) 
0.121 

Sex 

F (ref) - - - - - - 

M 
1.44 (0.912-

2.29) 
0.117 1.3 (0.854-1.98) 

0.22

2 
1.55 (1.03-2.34) 0.036 

Histological 
subtype 

LMS (ref) - - - - - - 

AS 
6.53 (3.12-13.6) 

<0.00

1 
2.6 (1.36-4.98) 

0.00

4 
3.58 (1.85-6.91) 

<0.00

1 

DDLPS 
1.74 (0.81-3.75) 0.155 

0.399 (0.175-

0.909) 

0.02

9 

0.732 (0.367-

1.46) 
0.376 

EPS 
3.55 (1.07-11.8) 0.038 4.91 (1.8-13.4) 

0.00

2 

2.35 (0.739-

7.44) 
0.148 

SS 1.67 (0.716-

3.88) 
0.235 

0.732 (0.347-

1.54) 

0.41

2 

1.02 (0.489-

2.14) 
0.95 

UPS 1.28 (0.608-

2.71) 
0.513 0.984 (0.56-1.73) 

0.95

5 

1.09 (0.613-

1.92) 
0.777 

Other 1.61 (0.377-

6.91) 
0.518 2.23 (0.736-6.77) 

0.15

6 

1.62 (0.419-

6.23) 
0.486 

FNCLCC 

grade 

2 (ref) - - - - - - 

3 
1.08 (0.669-

1.75) 
0.748 1.72 (1.11-2.65) 

0.01

4 
1.76 (1.13-2.74) 0.012 

unknown 
0.945 (0.362-

2.46) 
0.908 

0.896 (0.326-

2.46) 

0.83

2 

0.941 (0.309-

2.87) 
0.916 

Performanc

e status 

0 (ref) - - - - - - 

1 1.81 (1.08-3.05) 0.025 1.68 (1.04-2.72) 
0.03

4 
2.11 (1.33-3.36) 0.002 

2-3 
1.23 (0.485-

3.09) 
0.668 1.37 (0.581-3.25) 

0.46

9 
3.66 (1.86-7.18) 

<0.00

1 

unknown 
1.03 (0.542-

1.95) 
0.933 1.55 (0.897-2.68) 

0.11

7 

1.46 (0.834-

2.56) 
0.185 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.967 (0.521-

1.79) 
0.914 

0.539 (0.302-

0.964) 

0.03

7 

0.799 (0.457-

1.4) 
0.432 

Tumour 
margin 

R1 & R2 

(ref) 
- - - - - - 

R0 
0.725 (0.467-

1.13) 
0.153 1.13 (0.758-1.68) 

0.55

1 

1.06 (0.719-

1.57) 
0.766 

Rx 
1.35 (0.602-

3.01) 
0.469 1.68 (0.656-4.31) 

0.27

9 

1.03 (0.391-

2.71) 
0.952 

Log[tumour 

size(mm)] 

<4 (ref) - - - - - - 

4 - 5 2.23 (1.18-4.2) 0.014 2.32 (1.32-4.07) 
0.00

3 
2.06 (1.17-3.64) 0.012 

> 5 4.15 (1.88-9.15) 
<0.00

1 
2.24 (1.08-4.62) 

0.02

9 
3.37 (1.68-6.77) 

<0.00

1 

SPM 6 

Low (ref) - - - - - - 

Intermediat

e 

1.48 (0.794-

2.76) 
0.217 1.75 (0.924-3.3) 

0.08

6 
1.59 (0.9-2.82) 0.11 

High 1.34 (0.659-

2.74) 
0.415 2.42 (1.23-4.77) 

0.01

1 

1.15 (0.621-

2.14) 
0.653 
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Supplemental Table 6.6 Multivariable Cox regression for sarcoma proteome module (SPM) 10 
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
SPM subgroups identified by tertile stratification based on median expression across the full cohort. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval 

    LRFS MFS OS 

    HR (95% CI) p HR (95% CI) p HR (95% CI) p 

Age at excision (years) 
0.998 (0.981-

1.01) 
0.781 

0.996 (0.981-

1.01) 
0.581 

1.01 (0.991-

1.03) 
0.341 

Sex 

F (ref) - - - - - - 

M 
1.45 (0.919-

2.3) 
0.11 

1.33 (0.867-
2.03) 

0.192 
1.65 (1.09-

2.49) 
0.019 

Histological 

subtype 

LMS (ref) - - - - - - 

AS 
8.22 (3.88-

17.4) 
<0.001 

2.72 (1.42-
5.21) 

0.003 4.16 (2.17-8) <0.001 

DDLPS 
2.28 (1.07-

4.88) 
0.033 

0.359 (0.16-
0.805) 

0.013 
1.18 (0.593-

2.34) 
0.641 

EPS 
3.76 (1.15-

12.2) 
0.028 

3.51 (1.34-

9.19) 
0.011 

2.43 (0.767-

7.67) 
0.131 

SS 
1.93 (0.827-

4.51) 
0.128 

0.697 (0.329-
1.48) 

0.347 
1.21 (0.584-

2.52) 
0.606 

UPS 
1.5 (0.704-

3.21) 
0.293 

0.889 (0.502-
1.57) 

0.685 
1.27 (0.715-

2.25) 
0.415 

Other 
1.42 (0.355-

5.67) 
0.621 

1.53 (0.514-
4.55) 

0.445 
1.77 (0.459-

6.79) 
0.408 

FNCLCC 
grade 

2 (ref) - - - - - - 

3 
1.27 (0.793-

2.02) 
0.323 

2.26 (1.47-
3.47) 

<0.001 
2.23 (1.43-

3.48) 
<0.001 

unknown 
0.993 (0.379-

2.6) 
0.989 

0.859 (0.317-
2.33) 

0.764 1.1 (0.36-3.39) 0.863 

Performance 

status 

0 (ref) - - - - - - 

1 
1.79 (1.08-

2.97) 
0.023 

1.65 (1.02-
2.66) 

0.041 
2.24 (1.41-

3.56) 
<0.001 

2-3 
1.09 (0.437-

2.74) 
0.848 

1.27 (0.563-
2.85) 

0.567 
3.65 (1.89-

7.04) 
<0.001 

unknown 
1.01 (0.539-

1.9) 
0.967 

1.39 (0.808-

2.37) 
0.236 

1.56 (0.897-

2.73) 
0.115 

Tumour 
depth 

Deep (ref) - - - - - - 

Superficial 
0.883 (0.474-

1.65) 
0.696 

0.471 (0.262-
0.848) 

0.012 
0.699 (0.398-

1.23) 
0.212 

Tumour 

margin 

R1 & R2 
(ref) 

- - - - - - 

R0 
0.75 (0.484-

1.16) 
0.198 

1.12 (0.76-

1.66) 
0.557 

1.08 (0.736-

1.57) 
0.706 

Rx 
1.25 (0.532-

2.92) 
0.611 

1.17 (0.406-
3.38) 

0.77 
0.725 (0.213-

2.47) 
0.608 

Log[tumour 

size(mm)] 

4 - 5 (ref) - - - - - - 

<4 
0.488 (0.259-

0.916) 
0.026 

0.43 (0.247-

0.749) 
0.003 

0.564 (0.321-

0.993) 
0.047 

> 5 1.9 (1.1-3.27) 0.021 
1.02 (0.616-

1.68) 
0.947 

1.54 (0.969-
2.44) 

0.068 

SPM 10 

Low (ref) - - - - - - 

Intermediate 
0.656 (0.369-

1.17) 
0.151 

0.79 (0.481-

1.3) 
0.352 

0.629 (0.379-

1.04) 
0.073 

High 
0.553 (0.29-

1.05) 
0.072 

0.46 (0.249-

0.847) 
0.013 

0.432 (0.238-

0.782) 
0.006 
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Supplemental Table 6.7 Univariable Cox regression for sarcoma proteome modules (SPM) in The 
Cancer Genome Atlas (TCGA) cohort  
Local recurrence free survival (LRFS), metastasis free survival (MFS), and overall survival (OS) assessed. 
SPM measures are median scores for all proteins in the SPM. LMS, DDLP, UPS, and SS patients included. 
Significant results in bold. Abbreviations: ref = reference variable; HR = hazard ratio; CI = confidence interval 

 LRFS MFS OS 

 HR (95% CI) p HR (95% CI) p HR (95% CI) p 

SPM 6 0.806 (0.462-1.41) 0.448 2.94 (1.77-4.87) <0.001 1.09 (0.689-1.73) 0.713 

SPM 10 2.68 (0.989-7.25) 0.053 1.32 (0.572-3.04) 0.516 2.93 (1.27-6.76) 0.012 
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Chapter 7 Conclusions and future directions  

Our current biological understanding of STS is incomplete. This is due in part to the 

molecular heterogeneity observed between and within histological subtypes of 

STS4,36,41,165. This heterogeneity is reflected at the clinical level, through differential rates 

of disease progression, recurrence and metastasis, and disparate responses to 

treatment intervention5,44. Together, the biological and clinical heterogeneity, as well as 

the rarity of the STS complicates clinical management1. Across cancer care, the 

integration of molecular biology into clinical practice has been key in transforming patient 

outcomes159–163. However, this is yet to be fully realised in STS. There is a pressing need 

for prognostic risk stratification in STS, to identify high risk patients which may benefit 

from aggressive treatment regimens and/or increased monitoring. Furthermore, current 

treatment decisions for most adult STS patients do not integrate a molecular basis44. In 

line with this, there is a need for molecular stratification to support the use of targeted 

therapies. These limitations in STS care are underscored by gaps in our biological 

knowledge of this disease. Without comprehensive disease understanding, 

improvements in clinical outcomes for patients will continue to be restricted.  

Whilst large-scale genomic, epigenomic, and transcriptomic studies have been 

performed in STS, there is no comprehensive proteomic understanding of the 

disease36,41,165,207,367. My project has aimed to tackle this gap by using MS to profile the 

proteome of a large, retrospective, multi-subtype STS cohort. Analyses were directed in 

3 ways: 1) to compare biology between histological subtypes; 2) to compare biology 

within histological subtypes; and 3) to investigate biology independent of histological 

subtypes. At their core, these approaches aim to dissect disease heterogeneity. To 

reflect on the key findings of this thesis; the project aims, the extent to which they have 

been achieved, and the future directions associated with them are detailed below. 

7.1 Aim 1: To profile the STS proteome of multiple histological 

subtypes  

This project successfully profiled the proteome of 11 histological subtypes of STS 

(Chapter 3). For subtypes where proteomic data has previously been published, this 

study comprises the largest cohorts to date483. For other subtypes, this represents the 

first attempt at comprehensive proteomic profiling. Robust data acquisition was achieved 

through experimental optimisation and thorough data processing. Specifically, to capture 

a multi-subtype cohort, methodological steps were modified to handle highly vascular 

tumours, and samples of low tumour content. Furthermore, the inclusion of many 
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subtypes was facilitated by assessments of the reference sample. Quality control of the 

data was conducted, and appropriate normalisation procedures were implemented for 

the removal of batch effects. This established a robust high confidence proteomic dataset 

of STS.  

An overview of the proteomic data was provided in Chapter 4. This illustrated data to 

capture a range of functional biology spanning key stromal components of the TME (the 

immune component and matrisome), as well as the adhesome and the kinome500–503. 

This covers key modalities in STS that are therapeutically targetable; the immune 

component with immunotherapy, and the kinome with kinase inhibitors. Furthermore, it 

was demonstrated that the proteome could be analysed in the context of already 

established gene sets to reveal broad biological signatures across the STS cohort506–

508,510,512,674. Importantly, this work demonstrated known biology to be consistently 

identified, providing confidence in the ability of MS data to reflect STS biology. The top-

level interpretation within Chapter 4 also highlighted novel findings, such as the 

distinctive matrisome and adhesome of LMS. It therefore revealed many avenues for 

future research.  

Further to proteomic assessments, Chapter 4 also comprehensively profiled the 

clinicopathological features of the cohort. This illustrated a largely representative STS 

population, suggesting findings may be translated beyond this study to other patients. 

Key next steps in understanding the STS proteome include the profiling of advanced 

disease (metastatic and recurrent). Assessments of proteome stability throughout 

disease course will be crucial in establishing whether the proteome revelations herein 

(rooted in primary disease), are applicable to advanced STS patients with high clinical 

need. As metastatic disease is not routinely managed by surgical resection, concordant 

methodological developments for biopsy proteomic profiling will be required to facilitate 

this44.  

Additionally, in designing future analyses it is important to consider intra-tumoural 

heterogeneity. Herein whole tumour sections were profiled, which provided an overall 

proteomic profile that lacked spatial resolution. However significant intra-tumoural 

heterogeneity in STS is well established to exist56,606. The implication of not considering 

distinct regions of tumours is well demonstrated in LMS, where extensive heterogeneity 

often results in incorrect tumour grading by biopsy56. To move beyond bulk proteomic 

data, emerging single cell proteomic approaches could be deployed675,676. Alternatively, 

spatially resolved proteomic methods such as full section IHC, or matrix-assisted laser 
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desorption/ionization imaging MS (MALDI-IMS), an MS method whereby peptides are 

profiled from intact tissue sections to generate an ‘image’, could be used677,678. These 

methods would complement the aggregated tumour proteomic features identified by this 

project.  

7.2 Aim 2: To investigate intra-subtype heterogeneity in LMS, 

DDLPS, and UPS  

Within Chapter 5, this project conducted focused analyses on the proteome of LMS. The 

current literature notes molecular heterogeneity in LMS at the transcriptomic 

level36,43,274,281–283. However, no consensus molecular groups have been defined and the 

clinical applications of such subgrouping are currently unclear. Building on this, Chapter 

5 defined 3 proteomic subtypes of LMS, each with unique biology. Proteomic subtype 

heterogeneity was primarily characterised by differential immune infiltration, as well as 

variant expression of smooth muscle markers. Integration with clinical outcome 

measures illustrated the dedifferentiated subtype, characterised by low smooth muscle 

protein expression, to be associated with a poorer LRFS and MFS. This work suggests 

LMS patients may benefit from prognostic stratification based on the expression of 

smooth muscle proteins. Future directions for these analyses include IHC assessment 

of smooth muscle markers within this cohort. This would determine the feasibility of using 

IHC, a routine clinical diagnostic method, to identify dedifferentiated LMS patients.  

Chapter 5 also investigated the immune composition of DDLPS and UPS. Clinical trials 

have shown potential utility for ICBs in a subset of DDLPS and UPS patients139,140. 

Moreover, many studies suggest UPS to harbour the highest level of immune infiltrate 

across STS subtypes36,220. These highly infiltrated and ICB-responsive tumours are 

considered ‘immune hot’, and therefore vulnerable to immunotherapy intervention. 

Notably, there is no consensus on alternative therapeutic options for the so called 

‘immune cold’ tumours. Chapter 5 utilised TIL IHC data, immune-targeted transcriptomic 

data, and the comprehensive proteomic data to reveal therapeutic options for immune 

cold DDLPS and UPS. This work showed CD3+ TIL low patients (immune cold) to have 

a poorer OS compared to CD3+ high (immune hot). Biologically, these immune cold 

tumours were shown to have low expression of immune checkpoint genes, and a 

significant enrichment of humoral immune activity, including the complement cascade. 

This re-frames the concept of ‘immune-cold’ in DDLPS and UPS, suggesting that tumour 

with low TIL burden still harbour an active immune component. This is immune 

component is simply not a TIL-mediated immune response. Inhibitors of complement are 
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approved and in late-stage clinical trials for non-oncology medical purposes646–648. This 

work highlights the potential for repurposing of these therapeutics for STS care. Future 

directions applicable to these findings include targeted proteomic profiling, for example 

by IHC, of complement components, and in vitro assessments of the response to 

complement inhibition in STS cell lines. 

The proteome-based insights of LMS, DDLPS, and UPS described in Chapter 5, are an 

illustration of the potential clinical benefit that MS can drive. Proteomic heterogeneity 

was demonstrated as associated with patient outcome. Furthermore, broad proteomic 

features highlighted therapeutic vulnerabilities in patients with limited treatment options. 

The proteomic disease understanding therefore has huge potential to inform and improve 

the clinical management of STS. To validate these findings, the vital next steps include 

curation and analysis of independent LMS, DDLPS, and UPS cohorts. Currently, data 

herein is derived from a single institution, which may introduce bias into the cohort. 

7.3 Aim 3: To assess and characterise the unbiased, protein-

centric STS proteome 

The pan-subtype STS proteome was characterised by an unbiased and protein-centric 

approach within Chapter 6. Chapter 6 presented a conceptually modular proteome of 

STS across multiple histological subtypes, comprised of 14 SPMs. The SPMs defined 

and captured wide ranging functional biology, and several were identified as associated 

with clinical outcome. This included the novel finding that expression of vesicle transport 

machinery in STS held prognostic value. The revelation of this prognostic utility was 

made possible by the use of unbiased network analysis of the proteome, without the 

input of prior biological knowledge521. When patients were categorised based on 

prognostic SPMs, expression was shown to be independent of histological subtype. This 

suggests proteomic signatures can transcend histology and complement current 

strategies of patient care, which are largely directed in a histology-specific manner. The 

identification of groups of patients with shared tumour protein biology, can enable 

focussed clinical efforts to therapeutically target the molecular activity of such tumours. 

Alternatively, where no targeted therapies are available for the identified biological 

functions, this work can streamline future research efforts. Another future direction 

leading on from this work is to establish how these SPMs perform in the current risk 

stratification landscape of STS. Specifically, it would be interesting to benchmark SPM 

performance against other published molecular risk signatures, such as CINSARC376. 
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Furthermore, the SPMs may be integrated and assessed with non-molecular risk 

stratification methods such as nomograms 59,73–75.  

7.4 Final remarks 

To conclude, my work has revealed proteome features of STS which identify histology-

specific biology, characterised biological heterogeneity within and across histological 

subtypes, and established proteomic features which go beyond histology. Throughout 

this project, protein-based findings were consistently identified to be associated with 

clinical outcome. My project therefore demonstrates the feasibility of using proteomic 

biology to derive prognostic tools. In addition, this work has established an invaluable 

resource for the STS research community. By publicly depositing the raw proteomic data 

and accompanying clinicopathological annotations, this work can support orthogonal 

protein-level validation in a currently genomic- and transcriptomic-dominant STS 

research landscape. Furthermore, inherent to retrospective, large-scale profiling 

experiments, this project was hypothesis generating. As such, this work provides the 

basis for many further investigations. It is anticipated that this data will be re-mined in 

future studies centred on the STS proteome, and by extension will support improvements 

in outcomes for STS patients.  
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