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ABSTRACT Candida albicans is the principal causative agent of lethal fungal infec-
tions, predominantly in immunocompromised hosts. Extracellular vesicles (EVs) have
been described as crucial in the interaction of microorganisms with their host. Since
the yeast-to-hypha transition is an important virulence trait with great impact in
invasive candidiasis (IC), we have addressed the characterization of EVs secreted by
hyphal cells (HEVs) from C. albicans, comparing them to yeast EVs (YEVs). YEVs com-
prised a larger population of bigger EVs with mainly cell wall proteins, while HEVs
were smaller, in general, and had a much higher protein diversity. YEVs were able to
rescue the sensitivity of a cell wall mutant against calcofluor white, presumably due
to the larger amount of cell wall proteins they contained. On the other hand, HEVs
also contained many cytoplasmic proteins related to protein metabolism and intra-
cellular protein transport and the endosomal sorting complexes required for trans-
port (ESCRT) pathway related to exosome biogenesis, pointing to an intracellular
origin of HEVs. Interestingly, an active 20S proteasome complex was secreted exclu-
sively in HEVs. Moreover, HEVs contained a greater number of virulence-related pro-
teins. As for their immunogenic role, both types of EV presented immune reactivity
with human sera from patients suffering invasive candidiasis; however, under our
conditions, only HEVs showed a cytotoxic effect on human macrophages and could
elicit the release of tumor necrosis factor alpha (TNF-a) by these macrophages.

IMPORTANCE This first analysis of HEVs of C. albicans has shown clear differences
between them and the YEVs of C. albicans, showing their relevance and possible use
in the discovery of new diagnostic markers and treatment targets against C. albicans
infections. The data obtained point to different mechanisms of biogenesis of YEVs and
HEVs, as well as different involvements in cell biology and host interaction. YEVs played
a more relevant role in cell wall maintenance, while HEVs were more closely related to
virulence, as they had greater effects on human immune cells. Importantly, an active
20S proteosome complex was described as a fungal-EV cargo. A deeper study of its role
and those of many other proteins exclusively detected in HEVs and involved in different
relevant biological processes of this fungus could open up interesting new areas of
research in the battle against C. albicans.
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C andida albicans can be found as a commensal fungus of humans, mainly on skin
and mucosal surfaces, such as the oral cavity, gastrointestinal tract, and vagina.

However, when host immunity is disrupted, C. albicans can cause an infection known
as candidiasis, which can go from superficial candidiasis to life-threatening invasive
candidiasis in immunosuppressed patients (1, 2). The C. albicans yeast-to-hypha transi-
tion is highly studied since it is critical for virulence. The hyphal morphology is gener-
ally considered to be more related to the invasion of host tissues, while the yeast
morphology is more suited to bloodstream dissemination or surface commensalism
(3). Proteomic studies of C. albicans dimorphism have used a variety of approaches,
ranging from analyses of cytoplasmic and cell wall proteins from yeast cells, hyphae,
and biofilms to quantitative analysis of the proteome during the yeast-to-hypha transi-
tion (4, 5). Different strategies have also been developed, such as the one described by
Hernaez et al. based on “cell shaving” of live C. albicans cells (6, 7). This was applied to
both yeast and hyphae and led to interesting findings, such as the identification of
novel proteins involved in cell wall integrity, the yeast-to-hypha transition, and stress
response and/or host-pathogen interactions (6, 7). Moreover, a similar strategy was
used to decipher not only C. albicans proteins but also human serum proteins that
were linked to the hyphal surface when yeast cells of C. albicans were incubated with
serum, promoting their switch to hyphae (8).

Several proteins classically considered cytoplasmic because they lack signal pep-
tides, including components of metabolic pathways, chaperones, and ribosomal pro-
teins, have long been identified in proteomic studies as residing in the C. albicans cell
wall or as part of the C. albicans secretome (9–13). Some secretory pathways that are
alternatives to the endoplasmic reticulum (ER)-golgi apparatus for signal peptide-con-
taining proteins have started to emerge (10, 11, 14). In addition, the existence of
extracellular vesicles (EVs) in Gram-positive and Gram-negative bacteria and in fungi is
being recognized (15, 16). Nowadays it is widely accepted that cells from almost every
type of organism secrete these nano- to micrometer-scale lipid bilayer-delimited
vesicles (15). A very detailed review on EVs secreted by different fungi has recently
been published (17). In C. albicans, Anderson et al. demonstrated the existence of vesi-
cle-like compartments in cell wall pimples from opaque cultures of C. albicans cells in
1990 (18). C. albicans EVs were first isolated and observed by transmission electron mi-
croscopy (TEM) in 2008 by Albuquerque et al., who demonstrated the presence of
bilayered compartments similar to those initially described for Cryptococcus neofor-
mans and Histoplasma capsulatum (19, 20). EVs of C. albicans yeast cells were later fur-
ther analyzed to unravel their composition and implications for human immune
responses in wild-type and mutant strains (9, 21–23). All this work has been extensively
reviewed by Gil-Bona et al. (10).

Human EVs are well studied and have been classified as apoptotic bodies, microvesicles,
or exosomes, depending upon their cellular origin and size (24). Apoptotic bodies are the
largest (50 to 5,000 nm in size) and are derived from apoptotic cells. Microvesicles (100 to
1,000 nm) are generated by outward budding from the plasma membrane, followed by
pinching off and release to the extracellular space. Exosomes are the smallest EVs (30 to
150 nm), and these structures originate from endosomal compartments (24–26). EVs shut-
tle bioactive molecules involved in many processes, including cell-cell communication,
host-pathogen interactions, and even the sharing of microbial community resources in the
case of microbial EVs. For example, Cryptococcus neoformans’ extracellular vesicles contain
its major virulence factor, the capsular polysaccharide glucuronoxylomannan (27). EVs
secreted by wild-type C. albicans biofilm are able to rescue the antifungal resistance of a
defective biofilm produced by cells carrying mutations in genes encoding orthologues of
endosomal sorting complexes required for transport (ESCRT) subunits (28). Other authors
have proposed the use of these EVs as therapeutic carriers of drugs and metabolites, since
the internalization of EVs secreted by different microorganisms and different mammalian
cells has been widely proven in several recent research papers (29–31). The involvement of
EVs from different microorganisms in the immunomodulatory response of the host has
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also been widely demonstrated (30, 32–36). Moreover, the use of these membranous struc-
tures as vaccination agents is the focus of many researchers (32, 37, 38).

In this context, and given the established contribution of EVs to key physiological
aspects of cells from all kingdoms, we isolated and characterized EVs secreted by
C. albicans cells of both major morphologies, yeast and hyphae, to better understand
the mechanisms underlying the enhanced virulence associated with the morphologic
transition. Differences in EV size and physical properties were analyzed by means of
transmission electronic microscopy and dynamic light scattering (DLS). Protein cargoes
were analyzed using liquid chromatography-mass spectrometry (LC-MS). The more
interesting differences were observed in the proteomic analysis, suggesting that
hyphal EVs (HEVs) differ in their biogenesis and function from yeast EVs (YEVs).

RESULTS

We accomplished the study of YEVs and HEVs secreted by C. albicans cells using
YNBS (5 g/L ammonium sulfate, 1.7 g/L yeast nitrogen base, 20 g/L sucrose) with either
tartaric acid (pH 4) or a combination of MOPS (morpholinepropanesulfonic acid) and
N-acetylglucosamine (N-AcGlc) (pH 7) to obtain yeast and hyphal morphologies, respec-
tively. Prior to EV isolation, the morphological purity was assessed by microscopy, with
around 99% pure yeast or hyphae observed. In addition, a viability assay with propidium
iodide (PI) staining was conducted to verify the absence of cells with altered permeability.
All samples showed a PI staining rate below 1% (Fig. S1 in the supplemental material).

EVs secreted by hyphae are smaller than YEVs but carry a much more highly
diverse protein cargo. YEVS and HEVs collected from culture supernatants were ana-
lyzed using DLS and TEM (Fig. 1a and b). Based on the size distribution, we observed
that the majority of YEVs collected were significantly bigger than HEVs, most of them
being in the range of 400 to 500 nm. However, there was also a small percentage of
YEVs with a smaller size, more like the majority of HEVs, with a peak at 100 nm. HEVs
presented a less homogeneous population, with the size distribution ranging from 50
to 450 nm, and there was a higher proportion of HEVs in the range of 100 to 200 nm.
This difference in size could also be seen in the TEM analysis (Fig. 1a and b).

The protein cargoes of EVs from cells of each morphology were identified by a pro-
teomic analysis. The LC-tandem MS (MS/MS) results showed a great difference in terms
of the number of proteins identified, depending on the EVs’ origin (Fig. 1c). Taking into
consideration only proteins that were identified in at least two biological replicates
with at least two peptides in one of the replicates and a q value of ,0.01 (Table S1, a
and b), the numbers of proteins identified in HEVs and YEVs were 1,598 and 264,
respectively, revealing the higher protein diversity of HEVs’ protein cargo.

YEVs have a high proportion of cell surface-related proteins, which favors the
growth of the ecm33 mutant under cell wall-stressful conditions. Of the 264 pro-
teins identified in YEVs, 243 were also identified in HEVs (Fig. 1c).

Regarding the cell component category, and according to the Gene Ontology (GO)
enrichment analysis from the Candida Genome Database (CGD), a high degree of enrich-
ment in proteins from extracellular regions (including the cell surface, cell wall, or biofilm
matrix) or anchored to the plasma membrane was clearly revealed. A FunRich analysis,
which is based on a UniProt database and uses homologous proteins from all fungi, was in
agreement with the CGD analysis (Fig. 2a). These proteins included typical cell wall proteins
already described in numerous works, as well as cell surface-associated proteins, such as
glycolytic enzymes (Eno1, Tdh3, and Pgk1). As shown by the data in Fig. 3, cell wall-related
proteins had a higher relative abundance (normalized spectral abundance factor [NSAF]
value) in YEVs than in HEVs.

Due to the abundance of cell periphery proteins in both types of EVs, we tested
their effects on the growth of the C. albicans ecm33 mutant, which lacks the glycosyl-
phosphatidylinositol (GPI)-anchored cell wall protein Ecm33p and displays a defective
cell wall and higher sensitivity to several cell wall-disturbing agents (39, 40), in a me-
dium containing the cell wall-disturbing agent calcofluor white (CW). The addition of
YEVs not only rescued completely the growth rate of the mutant, it enhanced it
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compared to the growth rate in YPD (1% D-glucose, 1% Difco yeast extract, and 2%
agar) medium without CW (Fig. 2b). On the other hand, the addition of HEVs to the cul-
ture medium was able to minimally rescue the decreased growth rate of the ecm33
mutant provoked by the CW. This difference could be due in part to the greater abun-
dance of cell wall and periphery proteins within the YEVs’ protein cargo, as revealed by
a higher NSAF value (Fig. 3).

Only HEVs were enriched with proteins related to protein transport and protein
metabolism, including an active 20S proteasome complex. In clear contrast to the
enrichment in the extracellular component of proteins identified in both types of EVs or
exclusively identified or enriched in YEVs, a GO enrichment analysis of the cellular compo-
nent of the 1,355 proteins exclusively identified in HEVs revealed a predominantly cyto-
plasmic association, with remarkably high enrichment in GO categories related to protein

FIG 1 Differences in size and protein diversity between YEVs and HEVs. Size distribution by intensity
pattern (DLS) and appearance (TEM) of YEVs (a) and HEVs (b). d.nm, diameter in nm. (c) Venn
diagram showing the number of identified proteins that are in common or exclusive to EVs from
each cell morphology.
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metabolism (ribosome and the proteasome complex), protein transport (endocytosis and
protein processing in the ER), and purine metabolism (Fig. 4a and b). Furthermore, when
the proteins exclusively identified in HEVs were uploaded to STRING software, the rele-
vance of these processes and others, such as oxidative phosphorylation and biosynthesis
of amino acids also related to protein metabolism, was confirmed (Fig. 5).

Since we identified a much larger number of proteins in HEVs than in YEVs, we car-
ried out a proteomic analysis of whole-cell lysates (WCLs) of cells of both morphologies
in order to decipher whether this larger number of proteins in HEVs was merely due to
a higher content of those proteins in the cytoplasm of hyphae. We identified up to
1,065 proteins in yeast WCL (YWCL) and 954 proteins in hyphal WCL (HWCL) (Table S2a
and b). Interestingly, most proteins identified in the HEV cargoes were not identified in
HWCL (Fig. 4c).

Only proteins identified in HEVs were enriched with proteins from the ER mem-
brane, endosome membrane, transport vesicles, and exocyst (Fig. 4a), while the analy-
sis of proteins identified in HWCL did not show enrichment in those components.
Similarly, the enrichment of HEVs with enzymes from the de novo purine and pyrimi-
dine biosynthetic pathways, the ergosterol biosynthetic process, and processes related
to the maturation and transport of mRNA involved in translation were only observed
in proteins identified in HEVs (Fig. 4b). These results make it very unlikely that the
enrichment of HEVs with these proteins was a result of an artifact.

Thus, we further analyzed the proteins involved in cellular processes that were

FIG 2 Proteins identified in both types of EVs are enriched in cell surface proteins and contribute to rescuing the ecm33D phenotype. (a) FunRich
categorization of component enrichment of proteins identified in both YEVs and HEVs. The P value for significance is ,0.001. (b) Rescue of the calcofluor
white (CW) sensitivity exhibited by the ecm33 mutant through the addition of YEVs and HEVs. The growth of the ecm33 mutant was assayed in YPD and in
YPD supplemented with 7 mg/mL of cell wall-disturbing agent CW in the absence or presence of 5 mg of either YEVs or HEVs. Error bars show standard
deviations.

C. albicans Yeast and Hyphal Extracellular Vesicles Microbiology Spectrum

May/June 2022 Volume 10 Issue 3 10.1128/spectrum.00698-22 5

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00698-22


exclusively enriched within the HEVs’ protein cargo from hyphal forms. Table 1 shows
the proteins identified in YEVs and HEVs involved in these processes. In HEVs, regard-
ing the proteasome structure, we identified 12 (92%) of the 14 proteins that form the
20S particle core and 16 (80%) of the 20 proteins that form the regulatory particle.
Furthermore, two proteins (open reading frames [ORFs] Orf19.2278 and Orf19.6604)
with a putative role in 20S proteasome assembly, two proteins (Ecm29 and Hsm3) that
assist in the association of the proteasome core particle and regulatory particle, and
four other proteins also related to the proteasome, Ubp6 (a putative ubiquitin-specific
protease of the 26S proteasome), Ubc4 (with proteasome and ubiquitin binding activ-
ity), Pr26 (with similarity to the proteasomal 26S regulatory subunit of Saccharomyces
cerevisiae), and Orf19.1785 (with a PI31 proteasome regulator domain), were also iden-
tified as part of the HEVs’ protein cargo (Fig. 6a). Since blue native PAGE (BN-PAGE) has
been described as useful for the one-step isolation of protein complexes from biologi-
cal samples (41), we carried out the separation of protein cargo from YEVs and HEVs by
means of BN-PAGE to confirm the presence of the assembled complex in C. albicans
HEVs (Fig. 6b). We could observe a protein band with a molecular weight of around
700 kDa (compatible with the molecular weight of the 20S core particle of the protea-
some complex [42]) only in the HEV lane. Moreover, after the analysis of this band with
LC-MS/MS, we confirmed the presence of all the subunits of the 20S core particle of the pro-
teasome complex with high confidence and protein coverage, including the two subunits
(Pre6 [a4] and Pre7 [b6]) that had not been included previously (Table 1) since they were
only detected in one of the three biological replicates. The confirmation of the presence of
the assembled 20S complex in HEVs led us to investigate whether its proteolytic activity
was retained. A fluorometric assay based on the chymotrypsin-like protease activity associ-
ated with the proteasome complex was used. Interestingly, 10 mg of HEVs was able to sur-
pass the chymotrypsin-like protease activity of 100 mg of C. albicans cytoplasmic extract

FIG 3 (a) Heat map of all proteins identified in YEVs based on their relative abundances (NSAF) in YEVs and HEVs. (b) Heat map of proteins from (a) described as
cell surface related according to the CGD database. Proteins exclusively detected in YEVs show a value of zero for relative abundance in the HEV column.
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that is recommended as the positive control in the manufacturer’s instructions. In contrast,
the proteolytic activity of 10 mg of YEVs was comparable to that of the suggested negative
control with phosphate-buffered saline (PBS) (Fig. 6c). Interestingly, this proteolytic activity,
although higher with freshly isolated HEVs, was maintained over time for at least 2 weeks
(data not shown).

We also identified up to 100 proteins related to ribosomes and the translation process
in HEVs, including ribosomal proteins, translation initiation and elongation factors, and
tRNA amino acid synthetases, but only 7 in YEVs (Table 1). The presence of these proteins,
together with most of the proteins from the multi-eukaryotic initiation factor (eIF) complex,
led to the identification of almost the entire 48S preinitiation complex, making translation
one of the biological processes in which HEVs are significantly enriched (Fig. S2). Special
attention should be given to the high number of proteins involved in the synthesis of dif-
ferent amino acids within the protein cargo of HEVs. In fact, the HEV protein cargo included
all the enzymes necessary for the synthesis of valine, leucine, isoleucine, cysteine, serine,
glycine, methionine, threonine, alanine, proline, lysine, tyrosine, and glutamine from fruc-
tose-6P. Moreover, HEV proteins also comprised all but one or two of the enzymes neces-
sary for the biosynthesis of histidine, tryptophan, phenylalanine, and asparagine (Table 1).

Interestingly, only HEVs were enriched in proteins belonging to the oxidative phospho-
rylation route containing many of the F- and V-type ATPase subunits (Fig. S3), contributing
to making ATP metabolic processes one of the more significantly and exclusively enriched
processes in HEVs (Fig. S2). Also worth mentioning is the high significance of purine and
pyrimidine biosynthetic processes among the biological processes represented by proteins

FIG 4 HEVs are enriched in proteins related to protein metabolism, transport, and biosynthetic pathways. FunRich categorization of component (a) and
biological process (b) enrichment of proteins identified exclusively in HEVs and not in YEVs. Cellular components and biological processes marked with an
asterisk (*) were enriched exclusively in HEVs and not in HWCL. (c) Venn diagram showing the number of identified proteins that are in common or
exclusive to HEV and HWCL.
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exclusively identified in HEVs. All of the purine metabolic enzymes in the route from phos-
phoribosyl pyrophosphate (PRPP) to IMP and then to AMP were identified in HEVs, while
only three were identified in YEVs (Table 1). Therefore, it is not surprising that HEVs were
enriched in molecular functions like ATP binding, adenylate kinase activity, and AMP bind-
ing (Fig. S2). It is also remarkable that only HEVs were highly enriched with proteins that
belong to cellular components of the classical protein secretion pathway, such as the ER,
Golgi complex, or COPII vesicle coatings, or other components involved in vesicular traffic,
such as components of the ESCRT-0 complex, the endosome membrane, or the exocyst
(Table 2).

It is also interesting to note the enrichment of HEVs with proteins from the ergos-
terol biosynthetic pathway (Table 1), as ergosterol is the main target of azoles, a funda-
mental group of widely used antifungals. Furthermore, 127 of the proteins identified in
HEVs have been described as either induced by azole treatment or linked to azole re-
sistance (Table 1).

Differences in virulence factors and interaction with the immune system
between YEVs and HEVs. Lipases, phospholipases (PLBs), and secreted aspartic pro-
teases (Saps) are classical virulence factors secreted by C. albicans. We identified several
proteins with phospholipase and protease activity in both types of EV but differences
in the number and type depending on the EVs’ origin. Agglutinin-like sequence (Als)
proteins were also differentially identified regarding the EVs’ origin (Table 1). Not sur-
prisingly, HEVs contained a greater number of proteins related to C. albicans virulence
(Table 1).

An interesting result regarding virulence factors is the identification of Ece1p protein in
HEVs but not in YEVs. Ece1 proteolytic processing and maturation by Kex1 and Kex2 pro-
teins yields the C. albicans toxin candidalysin. Ece1p and both Kex proteins were identified
in the protein cargo of HEVs, but the peptide corresponding to candidalysin was not.

Since both types of EVs contained many proteins related to the cell wall and cellular
surface (Fig. 2a and 3), with many of them being reported as immunogenic, we tested

FIG 5 Protein-protein interaction network of proteins identified in HEVs using STRING software. Only nodes corresponding to proteins with the highest
confidence (0.900) in active interaction sources of cooccurrence, coexpression, experiments, and neighborhood are shown.
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TABLE 1 List of proteins identified in HEVs and YEVs related to biological processes that are enriched in HEV protein cargo and to virulence

Biological process

No. of proteins identified: name(s) or ORF(s)a

Total no. in:

In both YEVs and HEVs

Exclusively in:

YEVs HEVs YEVs HEVs
Cellular processes
Proteasome 2: Pre5 (a6), Orf19.1785 31: Scl1 (a1), Pre8 (a2), Pre9 (a3), Pup2

(a5), Prs1/Pre10 (a7), Pre3 (b1), Pup1
(b2), Pup3 (b3), Pre1 (b4), Pre2 (b5),
Pre4 (b7), Rpt1, Rpt2, Rpt4, Rpt5, Rpt6,
Rpn1, Rpn2, Rpn3, Rpn5, Rpn6, Rpn7,
Rpn8, Rpn11, Ubp6, Ubc4, Ecm29,
Hsm3, Orf19.2278, Orf19.6604, Pr26

33

Translation factors (initiation,
elongation, and release)

4: Ded81, Anb1, Tif, Tef2b 13: Fun12, Sui2, Eif4e, Tif11, Tif5, Nip1,
Prt1, Sui1, Sui3, Gcd2, Gcd11, Ria1,b Erf1c

4 17

tRNA synthetases and ligases 1: Orf19.6701d 14: Grs, Dps1-1, Gln4, Mes1, Orf19.4931,
Wrs1, Vas1, Tys1, Ths1, Hts1, Mes1, Frs1,
Frs2, Gus1d

1 15

Ribosomal proteins 4: Asc1, Rpl12, Rpl14, Rpl10a 68: Rps18, Rps3, Rpl23a, Rpl6, Rps14b,
Rpl3, Rpl20b, Rps8a, Rps26a, Rps27,
Rpl10, Rps15, Rps5, Rps6a, Rps9b, Rpp0,
Rps20, Rpl9b, Rpl4b, Rps22a, Rpl11,
Rpl16a, Rpl19a, Rpl28, Rps24, Rpl38,
Rpl24a, Rps17b, Rpl21a, Rps25b, Rps7a,
Rpl15a, Rpl18, Rpl17b, Rpl13,
Orf19.3341, Rps23a, Rpl5, Rpl7, Rps16a,
Rps1, Orf19.4149.1, Rps13, Rpl27a,
Orf19.2478.1, Rpl30, Rpl39, Rpl32,
Rps19a, Orf19.3572.3, Orf19.3690.2,
Rpl25, Rpl2, Rpl43a, Rpl35, Rps12,
Rps21b, Rpl42, Rpp2a, Rps28b, Rpp2b,
Rpl37b, Orf19.6220.4, Orf19.828,
Orf19.512, Orf19.3778, Orf19.3559,
Orf19.5698

4 72

Purine and pyrimidine
biosynthesis

4: Ade13, Ade17, Ade 6,
Ado1

17: Ade1, Ade2, Ade4, Ade5, Ade12, Imh3,
Gua1, Cpa1, Cpa2, Ura1, Ura2, Ura3,
Ura4, Ura5, Ura6, Ura7, Prs1

4 21

Amino acid biosynthesis 20: Hom6, Met6, Met15,
Sah1, Sam2, Shm2, Cys3,
Idp1, Idp2, Car2, His7,
Asn1, Aro4, Aro8, Leu2,
His1, Ser33, Arg1, Lys9, Ilv5

1: Hom2 46: Aro3, Aro9, Pro1, Pro2, Pro3, Lys1, Lys2,
Lys4, Lys12, Lys21, Lys22, Arg3, Arg4,
Arg5,6, Arg8, Trp2, Trp3, Trp4, Trp5
Cys4, Ser1, Ser2, His4, His5, His7, Tyr1,
Prs1, Orf19.6306, Met2, Met3, Met10,
Met13, Met14, Met16, Met18, Met13,
Ilv1, Ilv2, Ilv3, Ilv6, Hom3, Sam51, Shm1,
Leu1, Leu4, Leu42

21 66

Ergosterol biosynthesis 3: Erg10, Erg13, Erg20 2: Fmp45, Gcy1 11: Erg1, Erg3, Erg4, Erg5, Erg6, Erg9,
Erg11, Ncp1, Erg26, Erg27, Hmg1

5 14

Required for resistance to toxic
ergosterol analog

5: Car2, Dag7, Orf19.2047,
Mnn23, Ypt31

1: Sap3 4: Amo2, Apl2, Nat2, Vid27 5 9

Induced by azole treatment or
linked to azole resistance

52: Ach1, Aco1, Acs1, Adh1,
Ado1, Ahp1, Ald5, Atp1,
Cat1, Cht2, Dag7, Dak2,
Ecm33, Eng1, Erg10, Ero1,
Fba1, Fdh1, Fet34, Fma1,
Gdh3, Glk1, Glx3, Gpm1,
Grp2, Hhf1, Hsp70, Hsp90,
Hxk2, Mcr1, Mid1, Mp65,
Msi3, Orf19.1765,
Orf19.1766, Orf19.7306,
Pbr1, Pck1, Pdc11, Pet9,
Pga52, Phr2, Plb3, Png2,
Prx1, Pyc2, Rbt1, Rhd3,
Sah1, Sur7, Tos1, Xyl2

7: Ade17, Als2, Bat22,
Hom2, Orf19.4211,
Pir1, Plb1

75: Asm3, Cdc3, Cka1, Cka2, Cmp1, Csh1,
Cyb5, Ece1, Ecm331, Ena21, Erg11, Erg3,
Erg4, Erg6, Erg9, Fas1, Fas2, Frp3,
Fum12, Gal1, Gal10, Gal7, Glc3, Gph1,
Gst2, Hgt7, Hsp21, Hym1, Hyr1, Ifd6,
Ife2, Lsc1, Lys21, Lys22, Met13, Met3,
Mir1, Mis11, Ncp1, Ole1, Op4,
Orf19.1239, Orf19.2269, Orf19.2286,
Orf19.2452, Orf19.2473, Orf19.3475,
Orf19.3932, Orf19.4476, Orf19.6553,
Orf19.6554, Orf19.7310, Orf19.7459,
Orf19.851, Pda1, Pdb1, Pdr16, Pfk1,
Pfk2, Plb5, Pma1, Por1, Rct1, Rnr21,
Rpl35, Scs7, Sds24, Snf1, Snz1, Svf1,
Tub2, Ucf1, Vma8, Zpr1

59 127

(Continued on next page)
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the YEV and HEV protein cargoes for reactivity with human sera from invasive candidia-
sis patients. We had previously observed that protein cargoes from both types of EV
displayed different electrophoretic patterns but contained high-molecular-weight pro-
teins that were likely to correspond to highly glycosylated cell wall proteins (Fig. 7a).
Moreover, even though sera from patients with invasive candidiasis were able to rec-
ognize proteins from both types of EV, high-molecular-weight proteins were recog-
nized as having a stronger signal in YEVs (Fig. 7a). In contrast, other proteins with lower
molecular weights were exclusively detected in HEVs.

Since the proteomic study rendered results showing large differences in terms of
the diversity of the protein cargoes (HEVs containing many more virulence-related pro-
teins), we wanted to validate such differences by testing the influence of each type of
C. albicans EV on THP1 human macrophages. For this, we first tested their cytotoxic
effects in vitro on this cell line by incubating the THP1 cells with 5 mg of either HEVs or
YEVs for a period of 8 h and measuring the lactate dehydrogenase (LDH) activity (an in-
ternal enzyme that increases its abundance in culture supernatant upon cell damage)
from the culture supernatant. The increase in the LDH activity of the culture superna-
tants from the THP-1 macrophages incubated with HEVs compared to the LDH activity
of supernatants from the control macrophages was around 7%, while for the incuba-
tion with YEVs, this increase was not substantial. Therefore, the cytotoxic effects on
THP-1 macrophages were significantly different in HEVs and YEVs, supporting the dis-
parity in the contents of the two types of EVs (Fig. 7b).

Regarding the ability to stimulate the secretion of cytokines by THP-1-derived mac-
rophages, only HEVs were able to increase the secretion of tumor necrosis factor alpha
(TNF-a) at the two time points assayed, increasing the amount of this released cytokine
at 24 h (Fig. 7c). No significant differences were observed in the case of the secretion
of other cytokines, such as interleukin 10 (IL-10) and IL-12.

DISCUSSION

To the best of our knowledge, this is the first work to analyze the EVs secreted from
C. albicans during filamentous growth, comparing them to the EVs secreted by yeast cells.

Different sizes of EVs have been described in different works, and both the strain
and culture conditions seem to contribute to the wide heterogeneity in sizes, protein
cargoes, and biogenesis of EVs (10). Under our culture conditions, HEVs were in general
smaller than YEVs, with a larger population of vesicles in the size range of 100 to

TABLE 1 (Continued)

Biological process

No. of proteins identified: name(s) or ORF(s)a

Total no. in:

In both YEVs and HEVs

Exclusively in:

YEVs HEVs YEVs HEVs
Virulence related
Phospholipases 3: Plb4.5, Plb2, Plb3 1: Plb1 2: Plc2, Plb5 4 5
Sap proteins 4: Sap5, Sap7, Sap 9, Sap10. 1: Sap3 4: Sap2, Sap4, Sap6, Sap8 6 8
Als proteins 1: Als3 1: Als2 1: Als1 2 2
Proteins with a role in virulence
according to CGD

12: Mnt1, Phr1, Het1, BglII,
Rbt4, Rbt1, Asc1, Cdc42,
Mnt2, Hex1, Kex2, Cat1

0 56: Hsp104, Nag1, Cdc3, Fas2, Vps21,
Hxk1, Srv2, Rsr1, Mts1, Ras1, Tps1, Tps2,
Alo1, Rvs161, Cdc10, Dac1, Arp2, Lap3,
Kre5, Hsp21, Icl1, Ade5, Yhb1, Ade2,
Gna1, Tpk2, Ftr1, Ssd1, Cka2, Mkc1,
Orf19.3045, Ptc2, Met2, Nce103, Vtc4,
Cmp1, Erg3, Nag6, Ura3, Slk19, Vps4,
Orf19.3175, Och1, Ypt72, Csh3, Cek1,
Pmt1, Pmt4, Bem1, Tcc1, Ssn6, Spf1,
Pde2, Cla4, Mlt1, Spa2

12 68

aORF, open reading frame.
bThe protein is a translation elongation factor.
cThe protein is a translation release factor.
dThe protein is a tRNA synthetase or ligase.
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200 nm, in contrast to 400 to 500 nm for YEVs. In accordance with our results, an analy-
sis of EVs secreted by biofilm and yeasts from the reference C. albicans strain DAY286
revealed that the EVs secreted by biofilms were also of smaller size (43).

The differences in the protein cargoes were also very relevant with respect to protein
diversity. We identified 6-fold-more different proteins in HEVs than in YEVs, analyzing the
same amount of protein from each. Ninety-two percent of the proteins identified in YEVs
were also detected in HEVs, but in the latter EVs, these proteins only represented 16% of
their protein cargo. A disparity in the number of proteins identified depending on cell mor-
phology has also been observed in other C. albicans studies of extracellular proteins, e.g.,
Luo et al. identified 4-fold more proteins in the hyphal than in the yeast secretome (44).
Similarly, in a study of C. albicans cell surface proteins (the surfome), Gil-Bona and co-
workers described around 400 and almost 900 proteins in yeast and hyphal cells, respec-
tively (7). All these data are evidence that the extracellular environment has higher protein
diversity in hyphae than in yeast cells. Moreover, we confirmed that this higher protein di-
versity is not randomly due to a higher content of these proteins in the hyphal cell, since
many of the proteins identified in HEVs were not identified in the proteomic analysis of
HWCL. It is plausible that this higher protein diversity contributes to hyphal adhesion and
tissue invasion.

On the other hand, we observed that YEVs but not HEVs rescued the growth rate of
the ecm33 cell wall mutant in CW-containing medium and, in fact, the growth rate of
the mutant under these conditions was even better than that of the mutant growing
in YPD medium without CW. This is in line with a recent work from Zhao and col-
leagues that describes a potential role of S. cerevisiae EVs in cell wall remodeling (29).
We hypothesize that the abundance of cell wall proteins within YEVs would be the
main reason for the reduction of the sensitivity of the cell wall mutant ecm33 to CW.

Only HEVs contain an active 20S proteasome and other proteins that could be
relevant for the survival of the fungus. One of the most important results of this
work is the identification of an active 20S proteasome within the HEVs’ protein cargo.
We demonstrated that all of the proteins of the 20S proteasome were assembled, since
we were able to separate out the corresponding protein complex with a molecular
weight of around 700 kDa in a native PAGE gel. Although the presence of different

FIG 6 An active proteasome complex is only identified within HEVs’ protein cargo. (a) Schematic representation of the proteasome complex showing all
the proteins from the 20S core particle and 19S regulatory particle. Proteins identified in HEVs are marked in green. *, proteins only identified in the
proteasome complex from one-dimensional (1-D) blue native PAGE (BN-PAGE). a6 subunit, also identified in YEVs, is surrounded by a red line. (b)
Separation of YEV and HEV complexes by 1-D BN-PAGE. The band corresponding to the proteasome complex is indicated by an arrow. (c) Validation of the
chymotrypsin-protease activity of the proteasome through a fluorometric assay (in relative fluorescence units [RFU]). The chymotrypsin-protease activity of
the proteasome from 100 mg of cytoplasmic extract was evaluated as a positive control. A significant change is indicated as follows: ****, P , 0.0001
(unpaired t test). Error bars show standard deviations.
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TABLE 2 List of proteins identified in HEVs and related to pathways and structures
involved in vesicular transporta

aCategorization is according to the CGD. Conditional coloring is applied according to the relative
abundance of the protein (NSAF) within HEVs (red is the most abundant and green is the least). If
the protein has also been identified in YEVs, its relative abundance within YEVs is also shown,
while if such a protein has not been identified in YEVs, the YEV column is blank.
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proteins from this complex has also been reported in EVs secreted by other microor-
ganisms, such as Acanthamoeba castellani, and in other fungal EVs, including those of
other strains of C. albicans (collected in the ExVe database) (20, 45, 46), an active 20S
proteasome complex had not been observed in the EVs secreted by fungal cells so far.

This makes our result more interesting, since we have confirmed high proteolytic activ-
ity associated with the proteasome in C. albicans HEVs. Regarding the EVs secreted by
human cells, the presence of proteins belonging to the human proteasome complex has
been reported multiple times (see Vesiclepedia [www.microvesicles.org]). In some cases,
the 20S proteasome complex contained in EVs was confirmed to be inactive, as in the
study reported by Yunusova et al., regarding the plasma exosomes of patients with breast
and ovarian tumors (47). More recently, the presence of an active 20S proteasome in the
EVs secreted by platelets that has been involved in protein processing for antigen presen-
tation via major histocompatibility complex I (MHC-I) molecules has been described (48).
The presence of an active 20S proteasome in the EVs secreted by red blood cells (RBCs)
infected with Plasmodium falciparum parasites has been proven to modify the cell mem-
brane of naive RBCs, favoring the entrance of new parasites into them (49). Moreover, pro-
teasome inhibitors negatively impact cell survival and proliferation processes, becoming an
attractive niche for the treatment of cancer and inflammatory diseases (50, 51). All of these
studies show the significant biological importance of this complex.

Furthermore, our group analyzed the proteomic response of C. albicans to 10 mM
hydrogen peroxide (H2O2) and observed an increase in the abundance of different pro-
teasomal proteins from the catalytic subunit and in the proteolytic activity associated
with proteasome in the cytoplasmic extract (52). Since C. albicans faces oxidative con-
ditions in its battle against the human immune system, it could be interesting to fur-
ther investigate whether the release of large amounts of this complex within HEVs
could somehow benefit the survival of the fungus against the immune system.

On the other hand, the enrichment of HEVs in proteins related to protein synthesis,
including proteins from ribosomes, the translation initiation complex, and amino acid
biosynthetic pathways, suggests that HEVs are somehow involved in C. albicans protein
metabolism.

Also remarkable is the identification in HEVs of many enzymes involved in the bio-
synthesis of purines. Purines are essential molecules in DNA and RNA backbones,
energy utilization, the regulation of enzyme activity, and cell signaling. Hence, it is not

FIG 7 Differences in the immune response against YEVs and HEVs. (a) SDS-PAGE Coomassie-blue stained gel and Western blot showing the immunoreactive
patterns of YEV and HEV protein extracts to sera from patients suffering invasive candidiasis. (b) Percentage of cytotoxicity produced by either HEVs or YEVs to
TPH1 macrophages. (c) TNF-a release from TPH1-activated macrophages (mØ) incubated for 8 or 24 h with 5 mg of YEVs or HEVs. Negative and positive controls
(with the addition of PBS and LPS, respectively) were also evaluated. A significant change is indicated as follows: *, P , 0.05; **, P , 0.01; ***, P , 0.001
(unpaired t test). Error bars show standard deviations.
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strange that all the enzymes needed to synthesize this valuable resource are packaged
in EVs to be secreted and shared by all Candida cells in the community (28). Moreover,
HEVs also contain a higher number of proteins from ergosterol biosynthesis and many
proteins described in other works as required for resistance to toxic ergosterol ana-
logues, induced by azole treatment or linked to azole resistance, which could counter-
act, to some extent, the effect of certain antifungals, such as azoles, one of the main
treatments for fungal infections.

C. albicans EVs contain virulence factors and influence the host immune response.
Ece1p is the candidalysin preproprotein, a fungal peptide toxin critical for mucosal
infection (53, 54). After sequential proteolytic processing by Kex2 and Kex1, candidaly-
sin is secreted and can be detected in culture supernatants and during growth on epi-
thelial cells (53, 55, 56). We identified 13 different peptides from Ece1p covering 63%
of the protein sequence, as well as both Kex2 and Kex1, exclusively in HEVs, though we
did not identify the peptide corresponding to candidalysin. This does not necessarily
support the lack of the toxin in HEVs, because it could also be due to difficulties in its
ionization or detection. More experiments are needed to decipher the real presence of
candidalysin in HEVs, which would represent an alternative mode of Ece1 processing
and secretion.

Other virulence factors secreted by C. albicans, such as Sap, Als, and PLB proteins,
were also identified in both types of vesicles, although with marked differences in the
type and abundance depending on the morphology of origin and in agreement with
previous proteomic studies of the secretome from both morphologies (57). The pres-
ence in HEVs of Sap4, -5, and -6 (reportedly essential for C. albicans systemic invasion
[58]) and Als3 (which has been directly linked to adhesion to and invasion of human
cells [59]) could be one of the reasons behind the cytotoxic damage displayed by THP-
1 macrophages after 8 h of incubation with HEVs. Sap7, Sap9, and Sap10 showed
higher relative abundances in YEVs than in HEVs (Fig. 3). According to Albrecht et al.,
Sap9 and Sap10 are retained at the cell surface via a modified GPI anchor (60). In fact,
the higher abundance of these GPI-linked Saps and other cell surface-related proteins
within the YEV cargo agrees with the hypothesis, proposed by Gil-Bona et al. (21), of
YEVs’ main origin in outward budding from the plasma membrane. Moreover, the
abundance of cell surface-related proteins within YEVs was able to enhance the slower
growth of the defective cell wall mutant ecm33 in a medium containing CW (Fig. 2b).

On the other hand, the immunomodulatory effects of EVs secreted by different
organisms, including C. albicans, have already been described (17, 22, 30). Cell surface
and secreted proteins, as well as proteins of YEVs, have also been proven to be immu-
nogenic in many works (61–65). Moreover, the presence in both types of EVs of many
immunogenic proteins was demonstrated using Western blots probed with sera from
a patient suffering invasive candidiasis (Fig. 7a). However, it is worth pointing out that
the signal corresponding to highly glycosylated proteins, which are expected to mainly
be cell surface proteins, was stronger in YEVs, according to the proteomic data. On the
other hand, the larger number of virulence-related proteins in HEVs could be responsi-
ble for the higher cytotoxic effect displayed by HEVs (Fig. 8).

Regarding cytokine release by THP-1 macrophages, under the conditions tested,
only HEVs were able to enhance the induction of TNF-a when incubated with THP-1
macrophages (Fig. 8). Even though the release of TNF-a by bone marrow-derived mu-
rine macrophages stimulated by C. albicans YEVs has been described, it is worth men-
tioning that the strain of C. albicans used in that study was different from SC5314 and
that the EVs were also obtained under different culture conditions, which greatly alters
the composition of the vesicles, as has been suggested in several studies (22).

C. albicans HEV and YEV cargoes point to different mechanisms of biogenesis.
Apart from the cell surface proteins also contained in YEVs, HEVs contain numerous
cytoplasmic proteins. In fact, the 100 most abundant HEV proteins were cytoplasmic,
in contrast to YEVs, in which the 100 most abundant proteins were cell surface related.
This piece of evidence, together with the existence of a small proportion of larger
vesicles secreted by hyphae (more similar in size to YEVs), suggests that hyphae might
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produce two different types of EV: bigger HEVs whose protein cargoes are probably
cell surface- and membrane-related proteins commonly identified in YEVS and a larger
proportion of smaller HEVs enriched in cytoplasmic proteins (Fig. 8), with the two types
produced by different mechanisms. EV size has been one of the most widely used crite-
ria for vesicle classification, with small (,150 nm) vesicles being classified as exosomes
of endolysosomal origin, while larger vesicles (100 to .1,000 nm) are classified as
microvesicles (66–68). Components from ESCRT machinery that have been linked to
exosome biogenesis have been identified in exosomes in many proteomic studies (see
Vesiclepedia [www.microvesicles.org]). In C. albicans, ESCRT pathway-related mutants
were deficient in vesicles secreted from biofilms (a morphology intrinsically related to
hyphal forms) (28).

In line with these facts and based on the generally larger size of a considerable
number of YEVs and their preferential enrichment in cell wall and cytoplasmic mem-
brane proteins (Fig. 8), these bigger vesicles are more likely to be microvesicles that
budded, pinched off, and were released to the extracellular space from the plasma
membrane, as previously proposed by other authors (21). This is probably also the origin
of the smaller proportion of larger HEVs. In contrast, the contents of the larger proportion
of smaller HEVs, including ESCRT components and many proteins from different endo-
membrane compartments, such as the ER, COPII vesicles, endosomes, multivesicular bodies
(MVBs), and vacuole, suggest an origin of HEVs in these intracellular protein-trafficking
regions. For instance, proteins related to MVB formation have been exclusively identified in
HEVs, as have proteins belonging to the ESCRT pathway (Vps4 from ESCRT-III and Hse1
and Vps27 from ESCRT-0) (Table 2). In fact, the study on C. albicans EVs secreted by bio-
films, highlighted the relevance of this ESCRT pathway in the secretion of EVs, since most

FIG 8 Schematic representation of the main differences observed between HEVs and YEVs regarding their protein cargoes and interactions with THP1
macrophages. An enlarged view of an HEV and a YEV showing the main component-related protein enrichment of each type of EV is also presented.
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ESCRT-defective mutations caused reduced biofilm EV production, reduced matrix polysac-
charide levels, and greatly increased sensitivity to the antifungal drug fluconazole (28).
Furthermore, the protein composition of EVs secreted by ESCRT pathway-related mutants
was seen to be significantly different from the protein composition of those secreted by
wild-type cells (69). Moreover, turbinmicin, an antifungal with proven efficacy in disrupting
C. albicans biofilm growth, has been reported to exert its antifungal effect, at least in part,
though the inhibition of vesicle trafficking (70). All of these data are in accordance with our
hypothesis that, unlike YEVs, which seem to be budded and pinched off from the plasma
membrane, the smaller HEVs would have an intracellular origin related to the ESCRT
pathway.

MATERIALS ANDMETHODS
Fungal strains and culture conditions. The C. albicans clinical isolate SC5314 (71) and the cell wall

ecm33 mutant strain RML2U (ecm33D::hisG/ecm33D::hisG ura3D::imm434/ura3D::imm434::URA3) (39, 40)
were used in this work. EVs were obtained from strain SC5314. It was grown on YPD agar plates (1% D-
glucose, 1% Difco yeast extract, and 2% agar) overnight at 30°C prior to the experiment. Two isolated
colonies were used to inoculate 200 mL of liquid SD medium (20 g/L glucose, 5 g/L ammonium sulfate,
1.7 g/L yeast nitrogen base, 1.92 g/L synthetic amino acid mixture minus uracil Formedium supple-
mented with 0.1 g/L uracil). C. albicans cultures were grown for 6 h at 30°C and 180 rpm. Cells were then
collected by 10 min of centrifugation at 2,500 rpm in an Eppendorf 5810R centrifuge, the supernatant
discarded, and cells washed with 1 mL of phosphate-buffered saline (PBS) and collected again by 3 min
of centrifugation at 5,000 rpm in a Heraeus Fresco 21 microcentrifuge (Thermo Scientific). Cells were
then counted in a Neubauer chamber to inoculate 106 cells into 1-L volumes of the different media used
to obtain the specific morphologies.

For yeast morphology, 1 L of YNBS (5 g/L ammonium sulfate, 1.7 g/L yeast nitrogen base, 20 g/L su-
crose) was supplemented with 75 mM tartaric acid adjusted to pH 4.

For hyphal morphology, 1 L of YNBS was supplemented with 75 mM MOPS (morpholinepropanesul-
fonic acid) adjusted to pH 7.4 and 5 mM N-acetylglucosamine (N-AcGlc) (44, 57).

Cell wall mutant strain RML2U was maintained in YPD agar plates. The culture conditions used to cal-
culate its growth rates in YPD and YPD supplemented with 7 mg/mL of calcofluor white are described
next.

Complementation of calcofluor white sensitivity assay. The C. albicans ecm33 mutant (lacking the
GPI-anchored cell wall protein Ecm33p) (39) was used to test the ability of YEVs and HEVs to comple-
ment the sensitivity of this cell wall mutant to the cell wall-disturbing agent calcofluor white. For this,
the growth curve of the ecm33 mutant in YPD medium supplemented with 7 mg/mL calcofluor white
was measured in the presence of 5 mg of either YEVs or HEVs. As controls, measurements of the growth
rates of the ecm33 mutant in YPD medium and YPD medium supplemented with 7 mg/mL calcofluor
white were also performed. All growth curve experiments were carried out simultaneously in 96-well
Nunc plates with the same ecm33 inoculum of 104 cells in 180 mL of medium. Dissolved oxygen (DO)
measurements were taken every 30 min using a SPECTROstar Nano (BMG Labtech). Each growth curve
experiment was performed in triplicate with 3 different biological replicates.

C. albicans cell viability measurement. Prior to isolation of EVs, 1-mL amounts of yeast and hypha
culture media were treated with propidium iodide (PI) to test cell viability. PI is nonpermeable to intact
cell membranes but can enter dead cells with compromised membranes and dye DNA molecules.
Amounts of 106 cells were incubated with 10 mL of 5 mM PI (Fluka), and the fluorescent cells were
counted under a fluorescence microscope at l = 450 nm. Cells treated with 70% ethanol–PBS were used
as the positive control for dead cells. At least 500 cells of each sample were counted to calculate the per-
centage of nonviable PI-stained cells.

Isolation of extracellular vesicles. Three independent experiments were done with yeast and hyphal
cultures. The isolation of EVs was done according to Gil-Bona et al. (21). The whole process was conducted
at 4°C. In brief, the supernatants from 1-L volumes of yeast- and hypha-specific culture media grown dur-
ing 16 h at 37°C and 180 rpm were collected by 20 min of centrifugation at 8,000 rpm at 4°C in a Beckman
Coulter J2-HS centrifuge using the JA-10 rotor. The supernatants were then filtrated using a 0.45-mm filter
to ensure the elimination of all the cells and cell debris. One protease inhibitor tablet (Pierce, EDTA-free;
Thermo Fisher) along with 1 mL of phenylmethanesulfonylfluoride (PMSF) was added to each of the 1-L
volumes of filtrated supernatants. These supernatants were concentrated afterwards, using a Centricon
plus-70 filter (100-kDa-cutoff filter; Millipore), by centrifugation at 2,500 rpm in an Eppendorf 5810R centri-
fuge to a final volume of 8 mL. The concentrated supernatants were subsequently ultracentrifuged at
100,000 � g (34,200 rpm) for 1 h at 4°C in a Beckman Optima XL-90 using a 90 Ti rotor. The pellets contain-
ing the isolated EVs were washed twice with PBS and solubilized in 50 mL of 0.5 M triethylammonium bi-
carbonate (TEAB) buffer. Protein concentration was measured using the Bradford protein assay (Bio-Rad),
following the manufacturer’s instructions.

TEM. Transmission electron microscopy (TEM) was used to visualize EVs isolated from both yeast
and hyphal-cell morphologies. Samples were fixed for 2 h at room temperature in a buffer containing
2.5% glutaraldehyde and 0.1 M cacodylate and then incubated overnight at 4°C in 4% paraformalde-
hyde, 1% glutaraldehyde, and 0.1% PBS. After that, the samples were treated with 2% osmium tetroxide
(TAAB Laboratories, UK) for 90 min, serially dehydrated in ethanol, and embedded in EMBed-812 resin
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(Electron Microscopy Sciences). Thin sections (50 to 70 nm) were obtained by ultracut and observed in a
JEOL JEM 1010 transmission electron microscope operating at 100 kV. Pictures were taken with a
Megaview II camera. TEM images were analyzed with Soft Imaging Viewer software. TEM was carried out
in the Electron Microscopy Facility (ICTS) of the Complutense University of Madrid (UCM).

Analysis of vesicles by DLS. EV sizes (Z average diameter) were measured by dynamic light scatter-
ing (DLS) using a Zetasizer (Nano ZS; Malvern). Three biological replicates of EVs (from both types of
cells, yeast and hyphal) were transferred to a disposable cuvette, and 10 measurements for each were
performed with the refractive index at 1.33 and absorption at 0.01. Data analysis was performed using
Zetasizer software 7.11 (Malvern). DLS was carried out at the spectroscopy and correlation facility of the
Complutense University of Madrid (UCM).

Whole-cell lysate (WCL) protein extraction. Three independent experiments were done with yeast
and hyphal cultures. All the processes were conducted at 4°C. Amounts of 20 mL of yeast- and hypha-
specific culture media grown during 16 h at 37°C and 180 rpm were collected in a 50-mL Falcon tube by
10 min of centrifugation at 2,500 rpm at 4°C in an Eppendorf 5810R centrifuge. The cell pellets were sub-
sequently washed twice with 20 mL of ice-cold PBS and transferred to a 2-mL Eppendorf tube. Equal vol-
umes of 0.45-mm glass beads were added. The cell pellets were disrupted in 500 mL of lysis buffer
(50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 150 mM NaCl, 1 mM dithiothreitol [DTT]) with 1 mM PMSF and pro-
tease inhibitor cocktail tablets (Roche) by vigorous shaking in a FastPrep cell breaker (Bio 101) (level 5.5,
5 times for 30 s). Cell debris and glass beads were removed by centrifugation (13,000 rpm for 15 min),
and the cell extracts were collected in a new Eppendorf tube. Protein quantification was performed
using the Bradford assay (Bio-Rad, Hercules, CA, USA), and protein samples were stored at 280°C.

SDS-PAGE andWestern blotting. The EVs’ protein extracts (30mg of each) were denatured by heat-
ing for 5 min at 99°C in SDS-containing buffer (4% SDS, 100 mM Tris HCl, pH 6.8, 20% glycerol, 0.2% bro-
mophenol blue, and 20% DTT). Protein samples were separated in 10% SDS–polyacrylamide gels using
the Mini-Protean II electrophoresis system (Bio-Rad). The gel was stained with a fixative solution of 40%
methanol (MeOH), 10% acetic acid (vol/vol), and Coomassie brilliant blue G-250 (Bio-Rad). For Western
blotting, 30 mg of EV protein extracts were separated in 10% SDS-polyacrylamide gels, transferred to
nitrocellulose membranes, and blocked in 5% milk–PBS. Western blots were probed with sera from
patients suffering invasive candidiasis at a dilution of 1:3,000 (72). After an overnight incubation with
the sera, membranes were washed five times with 0.1% Tween 20 containing PBS and then incubated
with fluorescently labeled secondary antibodies at a dilution of 1/1,000 (IR dye 800-labeled goat anti-
human IgG; LI-COR Biosciences). The Western blotting was performed with the Odyssey system (LI-COR
Biosciences, NE, USA).

Digestion and desalting of peptides. In-gel protein digestion is useful to eliminate contaminants that
could interfere with MS/MS analyses. For this, 25 mg of each protein extract was concentrated in a stacking
gel, and protein bands were cut from the acrylamide gel for in-gel trypsin digestion. Briefly, cut protein
bands were first reduced with DTT (Sigma-Aldrich, St. Louis, MO, USA), then treated with iodoacetamide for
protein alkylation (Sigma-Aldrich, St. Louis, MO, USA), and ultimately digested with 1.25 mg of recombinant
trypsin (sequencing grade; Roche, Mannheim, Germany) overnight at 37°C (73). C18 reverse-phase chroma-
tography was used for desalting and concentration of the peptides from the digested proteins (Poros R2;
Applied Biosystems), which were then eluted with 80% acetonitrile/0.1% trifluoroacetic acid (Thermo Fisher
Scientific). The elution buffer was then evaporated in a SpeedVac vacuum concentrator (Thermo Fisher
Scientific, Rockford, IL, USA), and the freeze-dried samples resuspended in 2% acetonitrile, 0.1% formic acid
(Thermo Fisher Scientific, Rockford, IL, USA) before performing nanoscale liquid chromatography coupled
with mass spectrometry in tandem (LC-MS/MS).

LC-MS/MS. The desalted peptides were analyzed by reversed-phase liquid chromatography-electrospray
ionization-tandem mass spectrometry (RP-LC-ESI-MS/MS) in an Ultimate 3000 nLC (Thermo Fisher Scientific)
coupled to an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher) through an EasySpray nano
emitter (all from Thermo Scientific, Bremen, Germany). Peptides were loaded first onto an Acclaim PepMap
100 trap column (20 mm, 75-mm inner diameter [ID], 3 mm of C18 resin with 100-Å pore size; Thermo
Scientific, Germering, Germany) using buffer A (mobile phase A: 2% acetonitrile, 0.1% formic acid) and then
separated and eluted on a C18 resin analytical column NTCC (50 cm, 75-mm ID, 3-mm C18 resin with 100-Å
pore size; Nikkyo Technos Co., Ltd., Tokyo, Japan) with an integrated spray tip. The analysis was performed
with a 95-min gradient of 5% to 27% buffer B (100% acetonitrile, 0.1% formic acid), a 5-min gradient of 27%
to 44% buffer B, and finally, 10 min more to 95% buffer A at a constant flow rate of 0.3mL/min.

All data were acquired using data-dependent acquisition (DDA) in positive mode with Xcalibur 4.0
software (Thermo Fisher Scientific, Inc., USA). For the MS2 scan, the top 15 most abundant precursors
with charges of 2 to 71 selected in MS1 scans were selected for higher-energy collisional dissociation
(HCD) fragmentation with a dynamic exclusion of 60 s. The MS1 scans were acquired at an m/z range of
375 to 1,500 Da with a Orbitrap mass resolution of 120,000 and an automatic gain control (AGC) target
of 4E5 at a maximum ion time (ITmax) of 50 ms. The threshold to trigger MS2 scans was 5E3, the normal-
ized collision energy (NCE) was 30%, and the resolved fragments were scanned at a mass resolution of
30,000 and an AGC target value of 1E4 in an ITmax of 60 ms.

Protein identification. Peptide identifications from raw data were carried out using the Mascot version
2.6.1 (MatrixScience, London, UK) search engine through the Protein Discoverer 2.4 software (Thermo Fisher
Scientific, Waltham, MA, USA). A database search was performed against Candida albicans CGD21 (6,209
sequences) from http://www.candidagenome.org. The following parameters were used for the searches. For
tryptic cleavage, up to two missed cleavage sites were allowed, with tolerances of 10 ppm for precursor ions
and 0.02 Da for MS/MS fragment ions, and the searches were performed allowing optional methionine oxida-
tion and acetyl protein N-terminal and fixed carbamidomethylation of cysteine. A search against the decoy
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database (integrated decoy approach) was used to calculate the false discovery rate (FDR). The Mascot scores
were adjusted by a percolator algorithm. The acceptance criterion for protein identification was an FDR of
,0.01. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the data set identifiers PXD021488 and PXD021504. As an estimation of
the relative protein abundances, the normalized spectral abundance factor (NSAF) was used, and the average
of the normalized values was calculated (74).

Bioinformatic analysis. We used the Candida Genome Database (CGD; www.candidagenome.org) for
the analyses. Proteins that were identified in at least two replicates with at least two peptides in one of them
were used for the analysis. Venn diagrams were prepared using the Venn tool available in the program
FunRich 3.1.3 (75). The GO enrichment analysis of the set of proteins identified in yeast or hyphal EVs was
done using the Gene Ontology (GO) annotation application (http://www.candidagenome.org/cgi-bin/GO/
goTermFinder) from CGD and the GO enrichment analysis from the FunRich 3.1.3 program, which is based
on a UniProt database and uses protein homologues from all fungi (75).

Metabolic pathways were retrieved from the KEGG database (https://www.genome.jp/kegg/) (76).
THP-1 cell culture and macrophage differentiation. THP-1 cells (human acute monocytic leukemia

cell line) were grown and maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with antibiotics (10,000 U/mL each of penicillin and streptomycin), 2 mM L-glutamine, and 10% heat-
inactivated fetal bovine serum (FBS). THP-1 cultures were incubated in a humidified atmosphere con-
taining 5% CO2 at 37°C. Twenty-four-well plastic plates were seeded with THP-1 cells at a density of
3 � 105 cells per well in complete medium after being treated with 30 ng/mL phorbol 12-myristate 13-
acetate (PMA; Sigma-Aldrich). These 24-well plastic plates were then incubated for 48 h to induce matu-
ration mediated by PMA toward adherent macrophage-like cells. After this 48-h period, the medium
containing PMA was replaced with fresh medium without PMA to remove unattached cells.

Determination of cytokine production. For cytokine measurements, differentiated macrophages
from the THP-1 cell line were incubated for 8 and 24 h with or without 5 mg of YEVs or HEVs. As a posi-
tive control, macrophages were treated with lipopolysaccharide (LPS) (100 ng/mL). After the correspond-
ing incubation period, supernatants from THP-1 macrophages (untreated, LPS treated [1,000 ng/mL],
and YEVS or HEVS treated) were collected. They were tested for cytokine production by enzyme-linked
immunosorbent assay (ELISA) using matched paired antibodies specific for IL-12p40, TNF-a, and IL-10
(ImmunoTools) according to the manufacturer’s instructions. Cytokine concentrations were measured
spectrophotometrically at 450 nm in a total of 3 biological replicates.

Macrophage damage assay. A colorimetric assay based on the measurement of LDH activity released
by damaged cells was used (Roche). Experiments were performed in 96-well plates, and the manufacturer’s
instructions were followed. Briefly, differentiated macrophages from the THP-1 cell line were incubated for 8
h with or without 5 mg of YEVs or HEVs. Lysis buffer was added to the positive-control cells 15 min before
the end of the incubation time. To determine LDH activity, 100mL of reaction mixture (catalyst and dye solu-
tion) was added to each well on the 96-well plate and incubated (protected from light) for up to 30 min at
room temperature. After this, 50mL of stop solution (2 M H2SO4) was added to each well and the absorbance
at 490 nm was measured for each one. Cytotoxicity was calculated as follows: % cytotoxicity = (experimental
value2 low control)/(high control2 low control)� 100.

Three biological replicates were performed.
Proteasome activity assay. A fluorometric assay based on the chymotrypsin-like protease activity

associated with the proteasome complex was used (Sigma-Aldrich). Experiments were performed in trip-
licates in black 96-well plates with clear flat bottoms following the manufacturer’s instructions. Briefly,
different tested amounts of YEVs and HEVs were added to PBS to a final volume of 100 mL. Negative and
positive controls were also included by adding PBS or PBS with 100mg of cytoplasmic C. albicans extract,
respectively. This cytoplasmic C. albicans extract used as the positive control must be prepared without
adding protease inhibitors. Then, 100 mL of proteasome assay loading solution was added to each well.
Plates were incubated at 37°C overnight protected from light. The fluorescence intensity (directly related
to proteasome activity) was monitored at an excitation wavelength (lex) of 490 nm and emission wave-
length (lem) of 525 nm.

Three biological replicates were performed.
Blue native PAGE. Separation of complexes from protein samples can be carried out by means of elec-

trophoresis in a native PAGE bis-Tris gel system under native (nondenaturing) conditions. The NativePAGE
Novex gel system is based on the blue native polyacrylamide gel electrophoresis (BN-PAGE) technique devel-
oped by Schagger et al. (77) that uses Coomassie G-250 as a charge shift molecule. The NativePAGE system
from Life Technologies was used as reported before (78). HEV and YEV samples, each containing 25 mg of
protein, were mixed with 4� NativePAGE sample buffer (Life Technologies) and the nonionic detergent
Nonidet to a final concentration of 0.1%, and 1% NativePAGE G-250 sample additive (Life Technologies) was
added to a final concentration of 0.01%. The electrophoresis was performed using NativePAGE 3 to 12% bis-
Tris gels (Life Technologies). NativeMark unstained protein standard (20 kDa to 1.2 MDa; Life Technologies)
was used as a molecular weight marker. Electrophoretic buffers were prepared and used according to the
manufacturer’s protocol (Life Technologies). Gels were fixed in 40% methanol and 2% acetic acid for 30 min
and then left in water until further processing.

Statistical analysis. Bar graphs were plotted and statistical analyses (unpaired t test) were per-
formed using GraphPad Prism 8. Results represent the average values from at least three biological
replicates.

Data availability. The data set from this paper have been deposited in the ProteomeXchange Consortium
554 via the PRIDE partner repository with the data set identifiers PXD021488 and PXD021504.
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