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Identification of a minority population of LMO2+  
breast cancer cells that integrate into the  
vasculature and initiate metastasis
Shaheen S. Sikandar1*†, Gunsagar S. Gulati2†, Jane Antony2†, Isobel Fetter1, Angera H. Kuo2, 
William Hai Dang Ho2, Veronica Haro-Acosta1, Soumyashree Das3, Chloé B. Steen4,  
Thiago Almeida Pereira2, Dalong Qian2, Philip A. Beachy2, Fredrick Dirbas5, Kristy Red-Horse2,3,6, 
Terence H. Rabbitts7, Jean Paul Thiery8, Aaron M. Newman2,9‡, Michael F. Clarke2,10*‡

Metastasis is responsible for most breast cancer–related deaths; however, identifying the cellular determinants of 
metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ 
tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the 
expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial 
content and predicted poor distant recurrence–free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we 
demonstrated that Lmo2 lineage–traced cells integrate into the vasculature and have a higher propensity to 
metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, 
leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and 
is required for STAT3 activation by tumor necrosis factor– and interleukin-6. Collectively, our study identifies a 
population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis 
as a therapeutic target in breast cancer metastasis.

INTRODUCTION
While notable progress has been made to treat early-stage breast 
cancer, treatment options and outcomes for metastatic breast cancer 
have been largely unchanged in a decade (1–3). To improve out-
comes for patients with breast cancer, it is critical to identify and 
elucidate signaling pathways active in metastatic cells. However, 
it has been difficult to pinpoint cancer cell populations involved in 
metastasis as they represent a transient state (4). Previous studies 
using lineage tracing and cell surface marker profiling have impli-
cated distinct subsets of tumor epithelial cells in breast cancer 
metastasis, primarily using lineage markers such as E-cadherin (5), 
N-cadherin (6), and S100A4 (7). Recent studies have also suggested 
that metastatic cells display hybrid features of both epithelial and 
mesenchymal lineages (8), but the precise molecular identity of 
these cells remains unknown.

Our previous work has demonstrated that in breast cancer, 
minority populations of phenotypically immature cells in the tumor 
are enriched in tumor-initiating potential and metastasis (9–11). 
Recent advances in single-cell technologies have revealed complex 

transcriptional landscapes in human tumors and enabled precise 
molecular characterization of these minority cell populations (12). 
However, the functional and clinical significance of these popula-
tions remains unclear. To better understand the transcriptional 
heterogeneity in breast cancer, we recently performed single-cell 
RNA sequencing (scRNA-seq) in primary patient samples and 
developed a novel computational method that can predict imma-
ture cell populations in silico (13). Using our scRNA-seq data, bulk 
tumor expression deconvolution, lineage tracing, and functional 
assays, we have now identified a clinically relevant population of 
metastasis-initiating cells that express the hematopoietic transcrip-
tion factor and T cell oncogene, LMO2. Here, we mechanistically 
define the role of LMO2 in breast cancer metastasis by its associa-
tion with tumor vasculature and identify LMO2 as a previously 
unknown regulator of signal transducers and activators of tran-
scription 3 (STAT3) signaling in breast cancer.

RESULTS
LMO2 is expressed in a minority population of immature 
THY1+/VEGFA+ human breast cancer cells
To dissect the substructure of the epithelial cell populations in 
breast cancer, we started by analyzing scRNA-seq profiles (13) of 
triple-negative (n = 5) or estrogen receptor–positive breast cancer 
(n = 13) from patient tumor specimens. We identified a minority 
population of THY1+ cells that were largely restricted to the basal 
compartment, comprising 11% of all basal cells (fig. S1, A and B, 
and table S1). Moreover, within this subset, 33% of cells expressed 
VEGFA (fig. S1, A and B). We were struck by this combination 
since THY1+ cells are enriched in reconstitution potential in the 
normal mammary gland (14) and tumorigenic potential in mouse 
tumors (15), and VEGFA is a proangiogenic factor linked to tumor 
growth and distant metastasis (16,  17). To determine whether 
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THY1+/VEGFA+ cells represent a potential immature cell population, 
we applied CytoTRACE, a computational framework for predicting 
cellular differentiation status on the basis of single-cell transcrip-
tional diversity (13). We found that relative to other basal cells, 
THY1+/VEGFA+ cells are predicted to be significantly less differen-
tiated (Fig. 1A), suggesting a role for this population in tumor growth 
or metastasis. To understand the distribution of THY1+/VEGFA+ 
basal cells across breast cancer clinical subtypes, we performed 
deconvolution analysis using CIBERSORTx of three different clini-
cal cohorts (18–20). We found that THY1+/VEGFA+ basal cells were 
more abundant among human epidermal growth factor receptor 2 
(HER2)–enriched and basal subtypes of breast cancer compared to the 
luminal and normal subtypes (fig. S1C). Moreover, THY1+/VEGFA+ 
basal cells were significantly enriched in higher-grade tumors (fig. S1D).

To identify potential molecular regulators within this population, 
we next searched for genes with expression patterns that overlap 
THY1 and VEGFA expression in our dataset. Intriguingly, we found 
that LMO2, a hematopoietic stem cell regulator (21) and T cell 
oncogene (22), was among the top five hits (Fig. 1B and table S2). 
LMO2 also marked THY1+/VEGFA+ cells in an independent scRNA-seq 
atlas of triple-negative human breast tumors (23), corroborating 
this result (Fig. 1C). Analysis of the LMO2+ basal epithelial subset 
showed that these cells not only express THY1 and epithelial cyto-
keratins (Fig. 1D) but also display a coherent gene expression 
program significantly enriched in angiogenesis genes, including 
VEGFA and S100A4 (Fig. 1E and table S3).

We next measured the relative abundance of distinct endothelial, 
immune, stromal, and epithelial populations in human breast tumors 
with respect to LMO2+ basal cells. As LMO2 is expressed in multiple 
cell types, including immune, stromal, and endothelial cells (ECs) 
(21, 24, 25), the expression of this gene is insufficient to distinguish cell 
types. Therefore, we defined unique transcriptional signatures for various 
niche and breast epithelial cells from our scRNA-seq data and used 
CIBERSORTx to calculate the cellular composition of bulk RNA 
admixtures from breast cancer clinical cohorts (26) (Materials and 
Methods). In line with our previous results, we observed a notable 
correlation between the abundance of LMO2+ basal cells and EC con-
tent imputed in 508 breast tumors (r = 0.45; P < 2 × 10−16; Fig. 1F) (18).

Human LMO2+ basal cells are associated with poor outcomes 
in patients with breast cancer
Deconvolution of an additional 3024 human breast tumors from 
three clinical cohorts (18–20) found a significant increase in basal 
LMO2+ cells with worsening clinical grade and stage of the tumor 
(fig. S2, A and B), suggesting that LMO2+ cell number increase with tumor 
progression. Furthermore, our analysis revealed that basal LMO2+ 
cells are more abundant in “basal” breast cancer subtypes, which 
correlate with more aggressive breast cancers as compared to other  
Prediction Analysis of Microarray 50 (PAM50) classes (fig. S2C) (27). 
Importantly, higher levels of LMO2+ basal cells were significantly asso-
ciated with inferior distant recurrence–free survival (DRFS) (Fig. 1G 
and fig. S2D), independent of estrogen receptor status. These data 
link the abundance of LMO2+ basal epithelial cells with more ag-
gressive breast tumors and distant metastasis.

Lmo2 lineage–traced cells have a higher propensity 
to metastasize
To experimentally verify our in silico findings, we began by using 
the CreERT2 system to delineate the fate of epithelial cells that have 

expressed LMO2 in breast tumors. We obtained Lmo2CreERT2 mice 
and crossed them to Rosa26mTmG reporter and MMTV-PyMT tumor 
mice to generate triple-transgenic Lmo2CreERT2/Rosa26mTmG/MMTV-
PyMT mice, which we termed Lmo2-PyMT (Fig. 2A). MMTV-PyMT 
tumors are an aggressive luminal subtype of breast cancer (28) that 
metastasize to the lungs (29) and have been extensively used to 
explore the cellular underpinnings of breast cancer metastasis (5, 7, 30). 
Recent studies have also demonstrated that MMTV-PyMT tumors 
are heterogeneous and contain populations of cells with basal charac-
teristics (31, 32), allowing us to explore the role of Lmo2 in these tumor 
cells. As Lmo2 is expressed in other cells such as stromal and ECs (33), 
we orthotopically transplanted lineage-depleted (CD45−/CD31−/
Ter119−) tumor cells from TdTomato-fluorescent Lmo2-PyMT into 
nonfluorescent BL6 mice to clearly assess the contribution of Lmo2 
lineage–traced breast cancer cells from the tumor. After tumor for-
mation, we pulsed the mice with tamoxifen to induce expression of 
green fluorescent protein (GFP) in Lmo2-expressing cells (Fig. 2B). 
At 48 hours after pulse, we verified that expression of Lmo2 was 
enriched in the transplanted GFP+ cancer cells (Fig. 2C and figs. S3 
and S4A). Flow cytometry analysis and quantification demonstrated 
that GFP+ cells represented a minor fraction of all tumor cells and 
expressed epithelial cellular adhesion molecule (EpCAM), confirming 
their epithelial identity (Fig. 2C and fig. S3A). Moreover, as PyMT 
tumors are luminal in nature with a minority population of basal cells 
(31, 32), we found that at 48 hours after pulse, GFP+ cells expressed 
both luminal and basal cytokeratin with a slight reduction in luminal 
cytokeratins, specifically in cytokeratin-18 (fig. S4, A to D).

To assess the population dynamics of Lmo2 lineage–traced cells, 
we plated TdTomato+ tumor cells from Lmo2-PyMT mice in three- 
dimensional (3D) organoid assays and pulsed the organoids with 
4-hydroxytamoxifen. Consistent with the in vivo model, lineage- traced 
GFP+ cells comprised a minority of tumor organoids (~2%) 7 days after 
pulse (fig. S4E). This percentage was unchanged even after 4 weeks 
in culture (fig. S4E), suggesting similar proliferative capacity between 
GFP+ and TdTomato+ cells. We confirmed this by plating sorted GFP+ 
and TdTomato+ cells in 3D organoid cultures and showing that both 
populations formed organoids at similar frequencies (fig. S4F).

To determine whether Lmo2+ cells coassociate with ECs, as pre-
dicted in silico (Fig. 1F), we stained the vasculature with endomucin 
and visualized their colocalization with 3D imaging. Consistent 
with our in silico analysis, we found that GFP+ cells are significantly 
enriched in areas with higher endothelial content and vice versa 
(fig. S4G), with ~64% Lmo2 lineage–traced cells residing near tumor 
blood vessels (fig. S4H). Unexpectedly, ~14% showed colocalization 
with tumor vasculature and appeared to be incorporated into the 
tumor vasculature (Fig. 2E and figs. S4H and S5, A and B). We also 
found that Lmo2 lineage–traced cells that are closer to vasculature 
have an elongated cellular morphology or long projections, suggest-
ing that they are in the process of incorporating into the vasculature 
(fig. S5, C and D).

Given that the abundance of LMO2+ cells in patients with breast 
cancer predicts DRFS (Fig. 1G) and Lmo2 lineage–traced cells reside 
closer to and incorporate into tumor vasculature, we next tested 
whether Lmo2+ cells have metastatic capabilities. As dissemination 
of metastatic cells occurs continuously during tumor growth, to 
lineage trace tumor cells expressing Lmo2, we pulsed Lmo2-PyMT 
mice with tamoxifen two to three times per week once the tumors were 
palpable and continued until the tumor size endpoint (see Materials 
and Methods; Fig. 2F). At the end of the experiment, we found that in 
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Fig. 1. Identification of an immature basal epithelial population associated with proangiogenic signaling and poor survival in human breast cancer. (A) Differenti-
ation scores of basal epithelial cells from 17 human breast tumors profiled by scRNA-seq. Differentiation scores (0, more differentiated; 1, less differentiated) were deter-
mined by CytoTRACE (13). *P < 0.1; **P < 0.05; ***P < 0.01, unpaired two-tailed t test. (B) Plot showing protein-coding genes ordered by their enrichment in THY1+/ VEGFA+ 
basal cells from (A). (C) Paired bar plots showing fraction of LMO2+ cells in THY1+/VEGFA+ cells (red) and other cells (blue) in two human breast cancer datasets, tumor cells 
only, (n = 659) (23), and the basal cells (n = 910) from this study. Individual and combined P values by Fisher’s method. *P < 0.1; **P < 0.05; ***P < 0.01. (D) Heatmap depicting 
the top 30 differentially expressed genes, with selected lineage markers, in LMO2+ (n = 7 cells) versus LMO2− (n = 903 cells) basal epithelial cells from (A). A random subsample 
of 50 LMO2− basal cell transcriptomes is shown. Color scale (above) represents z score–normalized expression per gene. (E) Differential enrichment of the HALLMARK_
ANGIOGENESIS pathway in LMO2+ versus LMO2− human breast cancer datasets described in (C). An empirical P value was calculated by Monte Carlo Approach (Materials 
and Methods). Combined P value by Fisher’s method *P < 0.1; **P < 0.05; ***P < 0.01. (F and G) Cell-type and survival association of LMO2+ basal cells across 508 bulk human 
breast tumor transcriptomes (18) deconvolved using CIBERSORTx. ER, estrogen receptor. (F) Coassociation patterns among cell type abundance profiles in bulk breast 
tumors, quantified by Pearson correlation. (G) Kaplan Meier curves showing differences in distant recurrence–free survival (DRFS) stratified by the median abundance of 
LMO2+ basal epithelial cells. DRFS was modeled as a function of LMO2+ basal cell status and ESR1 status (Materials and Methods). Adjusted log-rank P value and hazard 
ratio (HR) with 95% confidence interval for LMO2+ basal cell status is shown. ER, estrogen receptor.
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the primary tumor, only 10 to 15% of tumor cells were GFP+ (Fig. 2G). 
Unexpectedly, although the tumor was mostly TdTomato+, the lungs 
had a disproportionately higher number of GFP+ metastases, several 
of which were larger than the TdTomato+ metastases (P = 0.034, 
Wilcoxon signed-rank unpaired test) (Fig. 2H). These data suggest 
that Lmo2 lineage–traced cells have a higher propensity to form 
metastases in the PyMT mice, although we cannot exclude that some 
TdTomato+ cells may have switched to GFP+ at the metastatic site. 
Our results are consistent with our findings in human breast cancer 
patients (Fig. 1G). Furthermore, a subset of GFP tumor cells did 
not remain Lmo2 positive (fig. S4I), suggesting that expression of 
Lmo2 in some cells represents a transient state, in agreement with 
previous studies linking transient cell states to metastasis (8).

LMO2 knockdown abrogates lung metastasis in human 
breast cancer models
To understand the functional role of LMO2 in human breast cancer, 
we knocked down LMO2 expression in MDA-MB-468 cells using 
two independent short hairpin RNA (shRNA) vectors tagged with a 
GFP reporter (fig. S6, A to C). We then implanted the cells orthoto-
pically in immunodeficient mice (Fig. 3A). In contrast to a previous 
report (34), knockdown of LMO2 did not significantly affect primary 
tumor growth (Fig. 3B and fig. S7, A and B) or proliferation in vitro 
(fig. S7C). Nevertheless, LMO2 knockdown tumors had significantly 
fewer lung metastases relative to control [P = 0.003, analysis of variance 
(ANOVA); Fig. 3C]. Moreover, LMO2 knockdown in tumor-bearing 
mice led to a significantly reduced number of circulating tumor cells 
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Fig. 2. Lmo2 lineage–traced tumor epithelial cells integrate into the vasculature and can form metastasis in PyMT tumors. (A) Schematic diagram showing generation 
of the triple transgenic Rosa26mTmG reporter with MMTV-PyMT and Lmo2-CreERT2 mice (referred to as Lmo2-PyMT). (B) Schematic diagram showing the experimental 
scheme for Lmo2-PyMT tumors treated with tamoxifen. (C) Left Panel: FACS analysis of Lmo2-PyMT tumors 48 hours after tamoxifen pulse. Cells are gated on lineage− 
(CD45−, CD31−, and Ter119−) and DAPI− cells (see fig. S3) and analyzed using TdTomato+ and GFP+. Middle and Right Panels: EpCAM and CD49f expression status in GFP+ 
and TdTomato+ cells. (D) Quantification of GFP+ cells from Lmo2-PyMT tumors (n = 5 mice). (E) Representative immunofluorescence image of Lmo2 lineage–traced cells 
(GFP+ green) colocalizing and integrating with endomucin (magenta)–stained tumor vasculature. High-resolution magnification of insets 1 and 2 are presented. 
Scale bars, 50 m. (F) Schematic diagram showing the experimental scheme for Lmo2-PyMT tumors treated with tamoxifen to trace metastatic cells. (G) Left Panel: FACS 
analysis of Lmo2-PyMT tumors at tumor end point from (F). Cells are gated on lineage− (CD45−, CD31−, and Ter119−) and DAPI− cells (see fig. S3) and analyzed using TdTomato+ 
and GFP+. Middle and Right Panel: EpCAM and CD49f expression status in GFP+ and TdTomato+ cells. Panel 4: Quantification of TdTomato+ and GFP+ cells from Lmo2-PyMT 
tumors (n = 4 mice). (H) Panel 1: Representative image of metastasis shown. Scale bar, 100 m. Panel 2: Quantification of total number and area of GFP+ and TdTomato+ 
lung metastasis in Lmo2-PyMT tumors. Each dot represents a single metastatic focus (n = 4 mice). Data are shown as means ± SD, and statistical analysis was performed by 
unpaired, two-sided Wilcoxon rank sum test, *P < 0.05.
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compared to control mice (P < 0.0001, ANOVA; Fig. 3D), implicating 
LMO2 in cancer cell shedding, a key step in metastasis initiation. To 
extend our findings to more clinically relevant models, we used patient- 
derived xenograft (PDX) models previously generated in our labo-
ratory (10). Consistent with our MDA-MB-468 studies, knockdown 

of LMO2 markedly decreased metastasis to the lung in three different 
PDX models of breast cancer (Fig. 3, E and F) but did not signifi-
cantly affect tumor growth (fig. S7, D to I).

To better understand how LMO2 affects metastasis, we rigorously 
studied the effects of LMO2 knockdown in vitro in MDA-MB-468 
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cells. Knockdown of LMO2 showed significant impairment in the 
ability of cancer cells to migrate across transwells and invade through 
a 3D hydrogel matrix (fig. S8, A and B). Since LMO2+ epithelial cells 
associated with ECs in patient samples and MMTV-PyMT tumors, 
we tested whether knockdown of LMO2 decreased this association 
in coculture assays. We found that in 3D coculture assays with 
human vascular ECs (HUVECs), LMO2 knockdown significantly 
affected incorporation of cancer cells into HUVEC tubes (fig. S8C). 
To confirm that the effects of knockdown were specific to LMO2, 
we overexpressed LMO2 in cells with shRNA targeting the 3′ 
untranslated region (3′UTR). We found that all phenotypes of 
migration (Fig. 3G and fig. S8D), invasion (Fig. 3H and fig. S8E), 
and incorporation into the vasculature in vitro (Fig. 3I and fig. S8F) 
could be rescued by overexpression of LMO2 in LMO2-deficient 
cells. Lastly, to test whether LMO2 is required after metastatic cells 
enter circulation, we injected control and LMO2 knockdown cells 
into the tail vein. We found that LMO2 knockdown did not signifi-
cantly affect the formation of lung metastases when cells were 
directly injected in the tail vein (fig. S8G). This suggests that LMO2 
is critical for the initial dissemination of cancer cells from the tumor 
but not for extravasation and formation of metastatic foci.

RNA-seq identifies LMO2 as a regulator of IL6-JAK-
STAT3 signaling
To elucidate the molecular function of LMO2 in breast cancer cells, 
we performed bulk RNA-seq of MDA-MB-468 cells after transfec-
tion with control and LMO2 shRNA vectors (Fig. 4A). Among the 
top 50 genes down-regulated after LMO2 knockdown were genes 
previously implicated in metastasis, such as BMP2 (35), LGR6 (36), 
EGR4 (37), TDO2 (38), and S100A4 (Fig. 4A and table S4) (39). 
Using gene set enrichment analysis (GSEA) (40), we found that 
inflammatory pathways, such as tumor necrosis factor– (TNF-) 
via nuclear factor B (NF-B) signaling, interleukin-6 (IL-6)–Janus 
kinase (JAK)–STAT3 signaling, and interferon- (IFN-) response, 
were significantly down-regulated in LMO2 knockdown as compared 
to control conditions (Fig. 4B). To confirm our findings in primary 
patient samples, we performed single-sample GSEA (ssGSEA) in our 
scRNA-seq dataset and a larger published dataset of primary human 
breast cancer cells (23). We found that IL6-JAK-STAT3 signaling 
was significantly enriched in LMO2+ versus LMO2− single cells 
(Fig. 4C) compared to other pathways (fig. S9, A and B). Moreover, 
IL6-JAK-STAT3 signaling was also significantly enriched in Lmo2+ 
PyMT cancer cells in two different scRNA-seq datasets (31, 32), 
further confirming our findings in a mouse tumor model (fig. S9C).

In the hematopoietic system, LMO2 is an adaptor protein that 
facilitates formation of functional protein complexes, which then 
activate transcription of downstream targets (25). Hence, we asked 
whether LMO2 may similarly behave as a bridging molecule to 
drive downstream signaling in breast epithelial cells. Using proximity 
ligation assays (PLA), we found that LMO2 had a significantly high 
binding affinity to STAT3 but not to NF-B, further confirming 
our pathway analysis (Fig. 4D).

As epithelial-to-mesenchymal transition (EMT) is linked to 
increased metastatic capability, we specifically tested whether LMO2 
knockdown affects EMT. Our comparison of classical EMT genes 
between control and LMO2 knockdown in MDA-MB-468 cells 
showed divergent expression of various EMT-related genes in the 
two populations (fig. S10, A and B). This suggested to us that the 
EMT pathway is not primarily affected after LMO2 knockdown, 

although we did observe minor changes in genes implicated in EMT, 
such as the epithelial marker EpCAM (41) and the mesenchymal 
marker S100A4 (39), which define the end points of each state 
(fig. S10A). We also analyzed our scRNA-seq data for canonical 
EMT genes and found that, consistent with our knockdown experi-
ments, EMT gene sets and specific cytokeratin, epithelial, and mesen-
chymal genes were expressed at similar levels in both LMO2+ and 
LMO2− basal cells (fig. S10, C and D).

LMO2 is required for STAT3 activation by IL-6 and TNF-
To demonstrate specificity and functional significance of the 
LMO2-STAT3 interaction, we first showed that LMO2 knockdown 
significantly reduced LMO2-STAT3 binding (P < 0.0001, ANOVA; 
Fig. 5A). We also confirmed the LMO2-STAT3 interaction using 
coimmunoprecipitation (co-IP) assays of LMO2 with STAT3 (Fig. 5B) 
and a reverse co-IP of STAT3 with LMO2 (Fig. 5C). In breast cancer, 
STAT3 is activated by cytokines, such as IL-6 (42), TNF- (43), IFN- 
(44), and IFN- (45) as well as growth factors such as epidermal growth 
factor (EGF) (42), leading to phosphorylation of STAT3. Dimerization 
of pSTAT3 and translocation to the nucleus activates transcription 
of downstream target genes involved in several processes, including 
metastasis (38, 46). To understand whether the STAT3-LMO2 inter-
action influences downstream STAT3 signaling, we used a STAT3- 
luciferase reporter assay. We stimulated control or LMO2 knockdown 
cells with IL-6, TNF-, IFN-, IFN-, and EGF. We found that cells 
with knockdown of LMO2 were unable to induce transcription of 
the STAT3-luciferase reporter when treated with IL-6 and TNF- 
as compared to control (Fig. 5D), but STAT3- luciferase was activated 
by IFN-, IFN-, and EGF treatment (Fig. 5D). On a molecular level, 
we found that LMO2 knockdown significantly reduced STAT3 phos-
phorylation at Tyr705 when treated with IL-6 and TNF- (Fig. 5E and 
fig. S11A). However, LMO2 knockdown did not affect STAT3 phos-
phorylation on treatment with other STAT3 activators such as EGF, 
IFN-, and IFN- (fig. S11, B and C), confirming our luciferase reporter 
assay. This suggests that LMO2 function in breast cancer cells is 
specific to activation of STAT3 signaling through IL-6 and TNF-.

To understand how LMO2 regulates phosphorylation of STAT3, 
we examined the interaction of STAT3 with its upstream activator 
JAK2 and its cytoplasmic inhibitor PIAS3. Knockdown of LMO2 
decreased the interaction of STAT3 with JAK2 (Fig. 5F) and allowed 
for increased interaction with its inhibitor, PIAS3 (Fig. 5G). This 
suggests that LMO2 works as an adaptor protein in the cytoplasm 
to stabilize the STAT3-JAK2 interaction, thereby allowing efficient 
phosphorylation and activation of STAT3 while simultaneously 
preventing its negative regulation by PIAS3 (Fig.  5H). Indeed, 
directly inhibiting STAT3 with the small molecule, Stattic (47), re-
duced the binding of MDA-MB-468 cells to HUVEC tubes in vitro 
(fig. S12). In addition, direct inhibition of STAT3 has been previously 
demonstrated to reduce metastasis in experimental models, but 
STAT3 inhibitors have had limited therapeutic success in human 
breast cancer (47). This LMO2-mediated control of a core inflam-
matory response pathway likely enables cancer cells to rapidly 
transition between cellular phenotypes required for metastasis and 
represents a therapeutic vulnerability that could be targeted.

DISCUSSION
Here, we have identified a population of THY1+/VEGFA+ human 
basal epithelial cells with higher transcriptional diversity that are 
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marked by expression of LMO2. LMO2+ basal cells were associated 
with inferior DRFS and enriched in the aggressive basal-like PAM50 
subtype (27). We demonstrated that Lmo2 lineage–traced epithelial 
cells have a higher propensity to form lung metastases. LMO2 
knockdown decreased lung metastasis in multiple tumor models of 
human breast cancer by affecting multiple steps during intravasation, 
resulting in fewer circulating tumor cells.

Efficient metastasis of tumor cells requires transition from a pro-
liferative state to an invasive state and back to a proliferative state at 
a distant site (5). Previous studies using mouse tumor models have 
demonstrated the requirement of a basal epithelial program in 
metastasis and acquisition of mesenchymal features (6, 48). We 

identified LMO2+ cells as a minority population of basal cells in human 
primary patient samples; however, its expression is not exclusive 
to the basal compartment. This is consistent with previous studies 
showing that luminal progenitors in triple-negative breast cancer and 
breast cancer gene (BRCA) mutated tumors acquire basal charac-
teristics, express basal cytokeratins, and are prone for metastasis (49). 
Our current data do not allow us to exclude the influence of EMT 
on metastasis downstream of the STAT3/LMO2 axis but does suggest 
that LMO2+ cells do not represent a fully mesenchymal state. Given 
recent studies showing that hybrid epithelial-mesenchymal states 
harbor higher plasticity (50), we speculate that LMO2+ cells could 
represent a hybrid cell population that has higher levels of activated 
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STAT3 signaling and ability to bind to tumor vasculature. Indeed, 
it has been shown that hybrid epithelial-mesenchymal cells in me-
tastasis express angiogenic factors (8).

Our results highlight a role for LMO2 in early metastatic dissemi-
nation by affecting intravasation but not extravasation. This differ-
ence is possibly because intravasation mostly occurs at an abnormal 
leaky tumor vasculature site, whereas extravasation of the migrated 
cancer cell involves normal blood vessels (51). In addition, previous 
studies have shown that creating a tumor microenvironment at the 
primary tumor is critical for metastasis (52). Thus, based on our data, we 
speculate that a minority population of cells is induced to express 
LMO2 in such an environment, thereby stabilizing STAT3 signaling 
to promote metastasis.

Although LMO2 knockdown did not significantly affect tumor 
weight, there was a trend toward slightly smaller tumors. Previously, 

it has been demonstrated that aggressive metastatic cancer cells can 
reseed the primary tumor and increase tumor growth in a process 
called tumor self-seeding (53). A previous study demostrated that 
LMO2 is among the top 50 genes overexpressed in self-seeding 
metastatic cells (53). Thus, reduction in self-seeding of the tumor 
can likely explain the nonsignificant decrease in tumor weight 
observed in LMO2 knockdown tumors.

It is also important to note that only a subset of Lmo2 lineage–
traced cells showed vascular phenotypes, suggesting specific epi-
genetic regulation that is activated in the presence of TNF- and 
IL-6 from the microenvironment. Our observations highlight a hetero-
geneous, cancer cell–intrinsic response to the microenvironment, while 
previous studies have demonstrated that there is a reciprocal effect 
of cancer cells on the tumor microenvironment with recruitment of 
macrophages and cross-talk with tumor ECs during metastasis (54). 
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and STAT3 to pull down LMO2. One representative blot (n = 3). (D) STAT3-luciferase reporter activity in control and LMO2 knockdown cells treated with IL-6, TNF-, IFN-, 
IFN-, and EGF. n = 3. *P < 0.05, ***P < 0.001 and ****P < 0.0001, n.s. P > 0.05, two-way ANOVA. (E) Immunoblotting (left) and quantification (right) of phosphorylated 
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STAT3 signaling in response to IL-6 and TNF- from the microenvironment, allowing these cells to intravasate into the circulation by incorporating into the vasculature.
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As our functional studies were done in immunocompromised mice, 
which have only some components of the innate immune system, 
future studies will explore the interaction of Lmo2+ cells with 
immune cells using syngeneic models of breast cancer.

LMO2 has been extensively studied in hematological malignancies 
(22, 39) and ECs (24, 33) and is well established as a transcriptional 
adaptor protein (25). Recent studies have attempted to understand 
the role of LMO2 in breast cancer (34, 55) but have suffered from 
contradictory results, were limited to cell lines, and did not attribute 
LMO2 to any particular tumor cell population. We demonstrate 
that LMO2 is a previously unidentified binding partner of STAT3 in 
breast cancer cells and modulates STAT3 signaling in response to 
IL-6 and TNF-. We speculate that the expression of LMO2 pro-
vides the necessary threshold to stabilize STAT3 signaling, which, 
in turn, enables the tumor cells to enter a transient metastatic state 
(4) and escape the primary tumor. STAT3 signaling is involved in 
several processes, and its targets may be defined in unison with other 
contextual signals such as inflammation. Several studies have linked 
chronic inflammation in cancer to metastasis (56). By serving as a 
critical molecular link between these processes, our results define a 
previously unidentified function for LMO2 in breast cancer metas-
tasis. The development of new methods targeting adaptor proteins 
(57) and small molecules that disrupt the LMO2-STAT3 axis (58, 59) 
could provide novel therapeutic strategies to modulate STAT3 signal-
ing and inhibit metastatic colonization in breast cancer.

MATERIALS AND METHODS
Preparation of single-cell suspensions for human 
and mouse tissues
For human samples, informed consent was obtained after the 
approval of protocols by the Stanford University and City of Hope 
Institutional Review Boards (IRB no. 4344). Tumor biopsies from 
human breast cancer patients (n = 18) were obtained from the pri-
mary site (n = 16), lymph nodes (n = 1; paired primary), or brain 
metastasis (n = 2) during surgical resection of breast tumors at 
Stanford Hospital and City of Hope National Medical Center (table S1). 
Samples were mechanically dissociated into <1- to 2-mm3 pieces 
with a razor blade and then digested at 37oC with 1500 U of collage-
nase and 500 U of hyaluronidase in advanced Dulbecco’s modified 
Eagle’s medium (DMEM)/F-12 (Thermo Fisher Scientific), 2 mM 
glutamax (Invitrogen), and an antibiotic/antimycotic mix containing 
penicillin (120 g/ml), streptomycin (100 g/ml), and amphotericin-B 
(0.25 g/ml) (PSA) for 4 to 6 hours with hourly pipetting for 5 min. After 
digestion, cells were treated with ammonium-chloride-potassium 
(ACK) lysis buffer to deplete red blood cells and then incubated 
with 10 U of dispase to further dissociate the tissue into single cells 
and 1000 U of deoxyribonuclease I to prevent cell clumping. Cells 
were filtered through a 70-m nylon mesh and washed with staining buffer 
containing 2% fetal bovine serum (FBS) and PSA in Hank’s balanced 
salt solution. Single-cell suspensions of fresh breast tissue were then 
stained with fluorescent antibodies to prepare for fluorescence- 
activated cell sorting (FACS).

Flow cytometry
To reduce nonspecific antibody binding, single cells were blocked 
with rat immunoglobulin G (IgG; 10 g/ml) on ice for 10 min. Cells were 
then stained, in the dark, on ice for 30 min. FACS was performed 
with a 130-m nozzle on a BD FACSAria II with BD FACSDiva 

software. Side scatter and forward scatter profiles (area and width) 
were used to eliminate debris and cell doublets. Dead cells were 
eliminated by excluding 4′,6-diamidino-2-phenylindole (DAPI)–
positive cells. For scRNA-seq, human breast epithelia and niche cells 
were isolated as described in the section below (“Single-cell RNA 
sequencing”). For mouse Lmo2-PyMT tumor studies, tumor epithelial 
cells were enriched by negative gating of lineage markers CD45, 
Ter119, and CD31. For xenograft studies, human tumor epithelial cells 
were enriched by negative gating of the major histocompatibility 
protein H-2kd, expressed on the plasma membrane of all nucleated 
mouse cells. A complete list of antibodies is provided in table S5.

Single-cell RNA sequencing
A total of 1902 scRNA-seq profiles of tumor and adjacent-normal 
human breast basal (n = 660), luminal progenitors (n = 532), and 
mature luminal (n = 710) cells were acquired from a previous study 
[accession code: GSE138536 (13)]. 250 additional basal epithelia 
and 207 stromal cells were collected from human breast tumors 
using the same strategies for cell sorting, library construction, and 
data processing as previously described (13). Briefly, by negative 
gating of lineage cells expressing CD45, CD31, CD3, CD16, and 
CD64, cancer-associated fibroblasts (CAFs; n = 6) and ECs (n = 126) 
were sorted as lineage−CD49f−EpCAM−. Although ECs are generally 
CD31+, the enzymatic digestion during tumor cell isolation cleaves 
surface CD31. Thus, these cells were detected on flow cytometry as 
CD31−. CAFs and ECs were then distinguished on the basis of tran-
scriptional expression of FAP and PDGFRA for CAFs and CDH5, 
EMCN, and PECAM1 for ECs. Hematopoietic populations were 
sorted separately based on surface expression of CD45 followed by 
CD14+ for macrophages (n = 21), CD3+CD4+ for CD4 T cells 
(n = 22), CD3+CD8+ for CD8 T cells (n = 21), and CD19+ for B cells 
(n = 11). A matrix containing gene-level transcripts per million 
(TPM) for all single cells (n = 2359) has been deposited in Gene 
Expression Omnibus under the accession GSE159285. Metadata 
for each single cell is also available in GSE159285 and in table S1.

Predicted ordering of single cells by differentiation status
Single-cell level prediction of differentiation states in human breast 
tumor basal epithelial cells (n = 910) was performed in R using the 
CytoTRACE package publicly available at https://cytotrace.stanford.
edu (13). In brief, CytoTRACE (13) is a computational tool that 
assigns a ranked differentiation score to each single cell in scRNA-seq 
data based on the number of genes expressed. Less differentiated 
cells are assigned a higher score, while more differentiated cells are 
assigned a lower score per the algorithm.

Deconvolution of bulk breast tumors
CIBERSORTx was used to deconvolve cell type abundances from (i) 
microarray gene expression data of 508 bulk breast tumors from the 
Investigation of Serial Studies to Predict Your Therapeutic Response 
with Imaging and Molecular Analysis (I-SPY1) clinical trial (18); 
(ii) microarray gene expression data of 1981 bulk breast tumors from 
Metabric Discovery (n = 995) and Validation (n = 986) cohorts (19); 
(iii) RNA-seq data from 1033 bulk breast tumors from The Cancer 
Genome Atlas (20). Default parameters as described in the “Tutorial” 
page at http://cibersortx.stanford.edu/ were used to generate a sig-
nature matrix from scRNA-seq data. Quantile normalization was 
run on microarray (but not RNA-seq) data, and bulk-mode batch 
correction (B-mode) was applied for cross-platform deconvolution.
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ssGSEA analysis
Single-sample enrichment of the “HALLMARK_ANGIOGENESIS,” 
“HALLMARK_E2F_TARGETS,” “HALLMARK_TNF_SIGNALING_
VIA_NFB,” “HALLMARK_IL6_JAK_STAT3_SIGNALING,” and 
the dbEMT (60) gene sets was calculated using ssGSEA as imple-
mented in the R GSVA package (v1.30.0) (61). To ensure a fair 
comparison between LMO2-positive and LMO2-negative popula-
tions, an empirical P value was calculated by comparing the mean 
enrichment in LMO2+ basal cells versus a size-matched collection 
of LMO2– basal cells randomly sampled 10,000 times. Enrichment 
was defined as the number of cells expressing a given gene (TPM > 0) 
divided by the total number of cells expressing that gene.

Survival analysis of deconvolved cell populations
The survival v3.1.12 R package was used to analyze the association 
of LMO2+ basal cells and other deconvolved cell populations with 
DRFS in the I-SPY1 cohort (n = 508 human breast cancer samples). 
Samples were evenly stratified into “high” and “low” groups based 
on whether tumors had greater than or less than the median 
abundance of the deconvolved cell population. A Cox proportional 
hazard model was then used to calculate the effect of the abundance 
of the deconvolved cell population on DRFS, adjusting for ESR1 
status as a possible confounder.

Mice
Rosa26mTmG (stock #007576), C57BL6 (stock #000664), NOD.
Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) (stock #005557), and MMTV-PyMT 
(stock #022974) mice were purchased from The Jackson Laboratory. 
Lmo2CreERT2 transgenic mice were generated by pronuclear injection 
in C57Bl/6/CBA (gift from T.R.). All tumor xenotransplantation 
was done in NSG mice. All mice used for this study were maintained 
at the Stanford Animal Facility in accordance with the guidelines of 
the animal care use committee [Administrative Panel on Laboratory 
Animal Care (APLAC) #10868].

Cell lines
MDA-MB-231, MDA-MB-468, and 293T cells were obtained from 
American Type Culture Collection. These cells were certified by the 
vendors to be mycoplasma free. None of the cell lines used are listed 
in the database of commonly misidentified cell lines maintained by 
International Cell Line Authentication Committee (ICLAC). Cell 
lines have not been authenticated, but all cell lines used were pas-
saged less than 10 times from when the original cells from the ven-
dors were thawed. Cell lines are routinely tested for mycoplasma 
contamination and were mycoplasma free. MDA-MB-231, MDA-
MB-468, and 293T cells were grown in DMEM (Invitrogen) supple-
mented with PSA, 10% FBS (Hyclone), Glutamax (Thermo Fisher 
Scientific), and sodium pyruvate (Life Technologies).

Immunofluorescence staining in paraffin sections
Tumors were fixed in formalin and embedded in paraffin for 
immunostaining. Sections were deparaffinized, dehydrated, and 
microwaved for 20 min at 95°C in sodium citrate buffer [10 mM 
sodium citrate and 0.05% Tween 20 (pH 6.0)] for antigen retrieval. 
Tissue sections were incubated overnight at 4°C with primary 
antibodies diluted in phosphate-buffered saline (PBS) + 5% bovine 
serum albumin (BSA) (antibodies are listed in table S5). Samples 
were subsequently washed with PBS and were incubated with anti- 
GFP in Alexa Fluor 488 (1:500), anti-mouse Alexa Fluor in either 

488 or 594 (1:500), anti-rat Alexa Flour 594 (1:500), and anti-rabbit 
in either Alexa Flour 488 or 647 (1:500) conjugated secondary 
antibodies (Invitrogen) at 1:500  in PBS + 5% BSA for 1 hour at 
room temperature (RT). All the immunofluorescence sections and 
cells were mounted in ProLong Gold with DAPI. Images were 
acquired by a Carl Zeiss LSM 710 Meta confocal microscope. Images 
were processed using ImageJ.

Real-time PCR
A total of 10,000 GFP+ or TdTomato+ PyMT tumor cells were sorted 
into 1.5 microfuge tubes and spun down, or lineage-depleted PDX 
cells were resuspended in RLT buffer. RNA was extracted using the 
RNeasy Micro Kit (Qiagen, #74034). RNA was reverse-transcribed 
to cDNA using a SuperScript III First Strand Synthesis kit (Life 
Technologies, #11752-050) according to the manufacturer’s instruc-
tions. cDNA was preamplified 15 cycles according to the cell number 
using TaqMan pre-amp mastermix (Applied Biosystems, #4391128) 
and target gene Taqman primer pool. Preamplified cDNA was then 
subjected to the real-time polymerase chain reaction (PCR) for spe-
cific gene target according to the manufacturer’s instruction using 
7900HT Real-Time PCR system (Applied Biosystems). All expression 
data are normalized to Actnb, Gapdh, ACTNB, and GAPDH. Data 
were analyzed by SDS2.4 software and Excel.

Whole-mount immunostaining in tumors
Procedure was performed as previously described (62). Tumors 
were dissected in PBS, immediately fixed in 4% paraformaldehyde 
at 4°C for 1 hour, followed by two 15-min washes with PBS at 
4°C. The tumors were then chopped to 3- to 4-mm3 chunks and 
incubated in anti-endomucin prepared in at least five volumes of 
PBS containing 0.5% Triton (0.5% PBT) for 6 hours at RT followed 
by incubating them at 4°C overnight. The tumor chunks were then 
washed in 20 volumes of 0.5% PBT for 6 hours with a change in 
wash buffer every hour at RT followed by a wash overnight at 
4°C. The tumors were then incubated in 1:250 dilution of secondary 
antibodies prepared in five volumes of 0.5% PBT for 2 hours at 
RT followed by overnight at 4°C. The tumors were then washed in 
20 volumes of 0.5% PBT for six consecutive days, for 6 hours at 
RT followed by overnight at 4°C each day. All steps were performed 
with gentle but continuous shaking. The tumors were lastly cleared 
with 2 volumes of Vectashield (Vector, catalog no. H-1000) for 
2 hours at RT, after which they were imaged immediately or stored 
in −20°C. Steps involving antibody or Vectashield incubations 
were performed in 1.5- to 2-ml tubes, and washes were performed 
in 50-ml tubes.

Confocal imaging for whole mounts
Tumor chunks were flattened between a 1.5-mm-thick microscope 
coverslip (Fisherbrand, catalog no. 22266858) and a double-concave 
microscope slide (Sail brand, catalog no. 7104) with their anterior 
walls (watershed regions) facing the coverslip. The tumors were 
then imaged using an inverted Zeiss LSM-700 confocal microscope. 
Digital images of multiple z-stacks for each scanned area were 
captured with Zeiss Zen software and complied together using the 
ImageJ software. Threshold limits were set to 80% saturation, and 
boundary of endomucin-stained channel was used to demarcate 
vasculature. Within demarcated boundary, GFP+ cells were counted. 
Total GFP+ cells were also counted. %Integrated into vasculature 
was determined as (GFP+ cells inside vasculature × 100/total GFP+ 
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cells in field) and as an average across all z planes per image. Stacks 
were analyzed individually to assess vascular integration in each 
plane and to reduce errors of maximum intensity projections. For 
GFP and endomucin area calculations, threshold limits were set 
using Otsu dark with a minimum value of 10,000 in FIJI for GFP and 
endomucin-stained channels and used to generate binary masks. The 
area of each masked image was measured with FIJI and then divided 
by the total area of the original image to calculate the area fraction of 
GFP and endomucin for each image. For cell length calculations, the 
scale is set using the scale bar associated with the image (Analyze>set 
scale). In the region of interest (ROI) manager, the line tool is 
selected, the diameter of the cell is drawn and recorded using the 
record function, and the measurements are documented in the 
ROI manager.

Plasmids and lentivirus
For knockdown experiments, the lentiviral vector used was pSicoR- 
GFP. The sequences for the LMO2 shRNA are 5′-GACGCATTTCG-
GTTGAGAA-3′ and 5′-GCATCCTGTGACAAGCGGATT-3′. For 
overexpression of LMO2, the cDNA was purchased from Genescript 
and cloned into the pHIV-Zsgreen vector (Addgene, #18121) for 
lentiviral expression. Ectopic expression was verified using immu-
noblotting. For rescue experiments, the LMO2 shRNA targeting the 
3′UTR (5′-GACGCATTTCGGTTGAGAA-3′) was cloned into the 
pRSI12-U6-(sh)-HTS4-UbiC-TagRFP-2A-Puro shRNA expression 
vector (Cellecta). Viruses were produced in 293T cells using the second- 
generation lentiviral system and transfection using Lipofectamine 
2000 (Life Technologies). Supernatants were collected at 48 and 
72 hours, filtered with a 0.45-m filter, and precipitated with lenti-
virus precipitation solution (Alstem LLC) per the manufacturer’s 
instructions or concentrated by ultracentrifugation. Viral titers were 
determined by flow cytometry analyses of 293T cells infected with 
serial dilutions of concentrated virus.

Xenograft tumor cell infection and engraftment
Dissociated single cells from xenografts were stained with biotin 
anti-mouse H-2Kd microbeads and depleted of mouse cells by 
using AUTO MACS (Miltenyi BioTec). Tumor cells were infected 
with pSicoR, shLMO2-1, and shLMO2-2, at a multiplicity of infec-
tion (MOI) = 25 for knockdown experiments for xenograft tumor. 
For MDA-MB-468 xenografts, cells in culture were infected at an 
MOI = 5 and sorted for GFP-expressing cells before xenotransplan-
tation. MOI is calculated on the basis of infection in 293T cells. The 
infected cells were washed and resuspended in staining media 
containing 50% Matrigel and injected in the fourth abdominal fat 
pad by subcutaneous injection at the base of the nipple of female 
NSG mice (20,000 cells per mouse), except for circulating tumor 
cell experiment, where infected MDA-MB-468 cells were injected 
contralaterally in the second/third and fourth mammary fat pads. 
Mice were monitored every week for tumor growth. All mice in the 
experiment (control and LMO2 knockdown) were euthanized if 
tumor growth reached end point (1500 to 2000 mm3) in any of the 
mice in the experiment, the tumors were ulcerated, or mice showed 
signs of distress. Tumor size was measured using a caliper. Tumors 
were harvested, weighed, and dissociated to determine percentage 
of infected cells using FACS analysis. Tumor weight is plotted as 
“weight × fraction infected.” The number of GFP+ lung metastases 
was counted using the ImageJ software. In the case of PDX2, lung 
metastases were not discrete, so the lungs were dissociated into 

single cells, and the percent of GFP+ cells was calculated. For the tail 
vein injection experiment, 20,000 PDX1 tumor cells were resuspended 
in PBS and injected via the tail vein. The mice were closely monitored 
to assess any signs of distress. All the mice were euthanized 6 weeks 
after injection, and the lungs were harvested. GFP+ lung metastases 
were counted using the ImageJ software.

For mouse tumors, lineage-depleted (CD45−/CD31−/Ter119−) 
tumor cells from TdTomato-fluorescent Lmo2-PyMT were orthoto-
pically transplanted into nonfluorescent BL6 mice. Mice were injected 
intraperitoneally with tamoxifen. Tamoxifen was dissolved in corn 
oil at a concentration of 10 mg/ml. Each mouse received a dose of 
1.5 mg, as previously described (63). The mice were analyzed either 
48 hours after a single pulse or pulsed with tamoxifen two to three 
times per week once the tumors were palpable until tumor end point 
at 2 cm3. At the end of the experiment, tumors were harvested, divided 
for histology, and FACS-analyzed as described above. Lungs were 
evaluated for both the number and area of GFP+ or red fluorescent 
protein–positive (RFP+) metastases and quantified using ImageJ.

Circulating tumor cell enumeration
Quantification of circulating tumor cells was performed in mice 
xenotransplanted with MDA-MB-468 cells infected with either pSicoR, 
shLMO2-1, or shLMO2-2. Blood (400 to 900 l) was collected via 
cardiac puncture using a 25-gauge needle attached to a 1-ml syringe. 
The blood was collected directly into K3-EDTA tubes. ACK lysis 
was performed to remove red blood cells. The cells were washed 
twice with FACS buffer and fixed with 2% paraformaldehyde in PBS for 
10 min. The cells were again washed twice in PBS and resuspended 
in 100 l of PBS. The cells were then spread on charged glass slides 
and allowed to air dry. Subsequently, the slides were counterstained 
with DAPI, and the number of GFP+ circulating tumor cells was 
manually counted under the microscope. The numbers were nor-
malized to represent 1 ml of blood collected for each mouse.

Migration and invasion assays
For migration assays, MDA-MB-468 and MDA-MB-231 cells were 
infected with either empty vector control or shRNA against LMO2. 
Subsequently, the cells were serum-starved for 24 to 48 hours, and 
100,000 cells were plated in a Transwell dish in a 24-well plate 
containing 5% serum. After 36 hours of incubation, the cells in 
the upper chamber were removed with a cotton swab, and the 
cells attached to the underside of the membrane were fixed in 
4% paraformaldehyde. The membrane was subsequently cut and 
stained with 0.1% crystal violet and mounted for imaging. For 3D 
spheroid invasion assays, the kit was purchased from Trevigen 
(#3500-096-K), and the protocol was performed as per manufacturer’s 
instructions.

HUVEC integration
Sixty microliters of growth factor–reduced Matrigel was plated 
per well in a 96-well plate and allowed to gel for 30 to 60 min 
at 37°C. HUVEC cells were trypsinized, neutralized, and resuspended 
in media. Calcein (0.5 l) was added per 5 ml of media and incubated 
at 37°C. Cells were washed once to remove calcein. A total of 15,000 cells 
were plated per well onto the Matrigel coating. Once HUVEC tubes 
were formed at 4 hours, 5000 MDA-MD-468 cells transduced with 
either pSicoR, shLMO2-1, or shLMO2-2 or treated with 5 M of 
Stattic were added. Images were acquired between 6 and 8 hours of 
tube formation.
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Bulk RNA-seq
MDA-MB-468 cells (200,000) infected with either pSicoR, shLMO2-1, 
or shLMO2-2 were harvested, and RNA extraction was performed 
using the RNeasy Micro Kit (Qiagen, #74034). RNA samples were 
then submitted to Novogene Co. for library construction and 
sequencing. Briefly, following RNA quality check, mRNA was 
enriched using the NEBNext Poly(A) mRNA Magnetic Isolation 
Module (#E7490), and cDNA libraries were constructed using the 
NEBNext Ultra II RNA Library Prep Kit for Illumina (#E7770 and 
#E7775). Libraries were fragment-analyzed by LabChip, quantified 
by quantitative PCR using the KAPA Library Quantification kit 
(#KR0405), and then sequenced on the Illumina NovaSeq 6000 
platform to obtain 2× 150 base pair paired-end reads.

For data processing, raw FASTQ reads were aligned to the GENCODE 
v29 reference transcripts (GRCh38.p12) using Salmon (64) v0.12 
with flags -l IU, --seqBias, --gcBias, --posBias, --useVBOpt, --range-
FactorizationBins 4, and --validateMapping. To calculate differen-
tially expressed genes between control and knockdown samples, we 
used the R package DESeq2 (65) (version 1.22.2) following the 
authors’ instructions. Briefly, the gene-level count matrices were 
created by importing the quantification data from Salmon using 
tximport (66) (version 1.10.1). The DESeqDataSet was constructed 
from the resulting tximport processed object along with sample 
information using the function DESeqDataSetFromTximport. The 
differentially expressed genes were calculated using the DESeq() 
function, and results were summarized with the results() function.

GSEA was performed on a preranked list of genes differentially 
expressed (Q value < 0.1) between control and knockdown condi-
tions (n = 1963 genes) ordered by log2 fold change using the Broad 
Institute’s software (40). The top and bottom 50 genes from the 
GSEA input list were mean-centered and scaled before presentation 
as a heatmap.

Co-IP assay
Co-IP experiments were carried out using the Pierce Co-IP Kit 
(#26149, Thermo Fisher Scientific) as per the manufacturer’s protocol. 
For LMO2 and STAT3 interaction, MDA-MB-468 were grown in 
complete medium in a 10-cm dish to reach 90% confluence. These 
were lysed with 0.6 ml of ice-cold IP lysis buffer containing protease 
and phosphatase inhibitors for 1 hour at 4°C upon gentle agitation. 
For the antibody immobilization step, 20 g of rabbit anti-LMO2 
(Abcam, #ab91652) or 20 g of rabbit anti-STAT3 [Cell signaling 
technologies (CST), #4904] or, as a control, 20 g of rabbit IgG, was 
diluted onto the AminoLink Plus Coupling Resin. The cell lysates 
were precleared with control agarose resin, and co-IP was carried 
out by adding 1 mg of the precleared cell lysate to the antibody 
immobilized resin, with end over end mixing at 4°C overnight. After 
elution into 50 l, the sample was analyzed by SDS–polyacrylamide gel 
electrophoresis (SDS-PAGE) gel and followed by immunoblotting 
to detect protein-protein interaction.

Western blotting
MDA-MB-468 cells were seeded and serum-starved for 24 hours. 
They were subsequently treated with TNF- (20 ng/ml), IL-6 
(20 ng/ml), EGF (10 ng/ml), IFN- (20 ng/ml), or IFN- (40 ng/ml) 
for 30 min. Whole-cell lysates were generated by lysis with radio-
immunoprecipitation assay buffer, along with protease and phospha-
tase inhibitor cocktails (Thermo Fisher Scientific). For cell fraction, 
the cells were lysed using the Pierce subcellular fractionation kit 

(PI78840). SDS-PAGE gels were run at 120 V for 75 min, transferred 
onto polyvinylidene difluoride membranes (#IPFL00010, Millipore, 
Billerica, MA) at 70 V for 90 min. Membranes were blocked with 
LI-COR blocking buffer (#927-40000) for 1 hour at RT and then 
subsequently probed with primary antibodies diluted at 1:1000 in 5% 
BSA/tris-buffered saline–Tween 0.1% (TBST) overnight at 4°C. In-
cubation with secondary antibodies for 1 hour at RT containing 
fluorophores at 1:20,000 dilution (IRDye 800CW conjugated goat anti- 
rabbit; #926-32211, LI-COR Biosciences, Lincoln, NE) enabled visual-
ization on the Odyssey Infrared Imaging System from LI-COR 
Biosciences. Washes in between incubations were done for 10 min × 
3 using TBST.

Luciferase reporter assay
STAT3 firefly luciferase reporter lentivirus (PLV-10065-50) was 
purchased from Cellomics Technologies. A stable cell line with 
MDA-MB-468 was generated using puromycin selection. The cells 
were then infected with either pSicoR, shLMO2-1, or shLMO2-2. 
For the reporter assay, 10,000 MDA-MB-468 cells were seeded in 
full serum media. After attachment, they were treated with TNF- 
(20 ng/ml), IL-6 (20 ng/ml), EGF (10 ng/ml), IFN- (20 ng/ml), or 
IFN- (40 ng/ml) in full serum for 4 hours. The cells were then lysed, 
and luciferase activity was measured using Dual-Luciferase Reporter 
Assay System (Promega, #E1960). All fold changes were calculated 
based on untreated cells in the same group, i.e., pSicoR, shLMO2-1, or 
shLMO2-2 that are untreated. All experiments were performed in 
triplicate, and the experiment was repeated three times.

DUOLink proximity ligation assay
For the proximity ligation (PLA) assay (DUOLink, OLink Biosci-
ences, Sigma-Aldrich, #DUO92102), MDA-MB-468 were seeded 
on 13-mm glass coverslips. The cells were fixed with ice-cold 100% 
methanol for 5 min at −20°C and then rehydrated thrice in PBS for 
5 min each. Coverslips were blocked for 30 min with 3% BSA/PBS 
and then incubated with appropriate dilution of primary antibodies 
in 1% BSA/PBS for 1 hour in a moist environment at RT. Primary 
antibodies were used at 1:200 dilutions to characterize the interac-
tion between LMO2, STAT3, JAK2, and PIAS3. All antibodies are 
listed in table S5. As a negative control, rabbit and mouse anti-IgGs 
were used in 1:200 dilutions. Subsequently, the manufacturer’s in-
structions were followed to complete the PLA assay.

Statistical analysis
All graphs show the average as central values, and error bars 
indicate ± SD unless otherwise indicated. P values are calculated 
using paired or unpaired t test, ANOVA, Extreme Limiting Dilution 
Analysis (ELDA), Wilcoxon rank-sum test, Fisher’s exact test, Monte 
Carlo Approach, Mann-Whitney, and log-rank test as indicated in the 
figure legends. All P and Q values were calculated using GraphPad 
prism or R version ≥3.5.2, unless otherwise stated. For animal studies, 
sample size was not predetermined to ensure adequate power to 
detect a prespecified effect size, no animals were excluded from 
analyses, experiments were not randomized, and investigators were 
not blinded to group allocation during experiments.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm3548

View/request a protocol for this paper from Bio-protocol.
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