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Abstract 
 
Introduction: 
Auto-contouring could revolutionise future planning of radiotherapy treatment. Lack of 
consensus on how to assess and validate auto-contouring systems currently limits clinical 
use. This review formally quantifies the assessment metrics used in studies published during 
one calendar year and assesses the need for standardised practice. 
 
Methods: 
A PubMed literature search was undertaken for papers evaluating radiotherapy auto-
contouring published during 2021. Papers were assessed for types of metric and the 
methodology used to generate ground-truth comparators. 
 
Results: 
Our PubMed search identified 212 studies, of which 117 met the criteria for clinical review. 
Geometric assessment metrics were used in 116 of 117 studies (99.1%). This includes the 
Dice Similarity Coefficient used in 113 (96.6%) studies. Clinically relevant metrics, such as 
qualitative, dosimetric and time-saving metrics were less frequently used in 22 (18.8%), 27 
(23.1%) and 18 (15.4%) of 117 studies respectively. There was heterogeneity within each 
category of metric. Over 90 different names for geometric measures were used. Methods 
for qualitative assessment were different in all but two papers. Variation existed in the 
methods used to generate radiotherapy plans for dosimetric assessment. Consideration of 
editing time was only given in 11 (9.4%) papers. A single manual contour as a ground-truth 
comparator was used in 65 (55.6%) studies. Only 31 (26.5%) studies compared auto-
contours to usual inter- and/or intra-observer variation. 
 
Conclusions: 
Significant variation exists in how research papers currently assess the accuracy of 
automatically generated contours. Geometric measures are the most popular, however 
their clinical utility is unknown. There is heterogeneity in the methods used to perform 
clinical assessment. Considering the different stages of system implementation may provide 
a framework to decide the most appropriate metrics. This analysis supports the need for a 
consensus on the clinical implementation of auto-contouring. 
 
  
  



Introduction 
 
Auto-contouring of radiotherapy target volumes and organs-at-risk using artificial 
intelligence (AI) could revolutionise radiotherapy treatments [1]. Before use in clinical 
practice, the performance of an auto-contouring system should be evaluated, to confirm 
efficacy on local clinical data [2-4]. Any contours produced by an AI algorithm should be 
checked by a clinician prior to clinical use and the validation process should not become 
susceptible to automation bias [5, 6].  
 
Despite exponentially increasing research into the field, auto-contouring software is not yet 
widely used in clinical practice. A 2020 survey of medical physicists reported that significant 
barriers to the use of AI included a lack of information or knowledge on how to implement 
AI into the clinical workflow and a lack of resources [7]. Limited guidance on how auto-
contouring systems should be validated may be a contributory factor to the delay in their 
widespread adoption. 
 
Auto-contouring Evaluation Metrics 
 
The goals of auto-contouring include reducing contouring time, reducing inter-observer 
variability and improving dose consistency and accuracy [8]. A wide range of metrics can be 
used to assess the quality of automatically generated contours [8-12]. Four categories of 
metric can be used; geometric, dosimetric, time-based and qualitative (table 1) [8]. 
 
Ground-truth 
 
Most metrics rely on the comparison of an auto-contour to a “ground-truth” in order to 
ascertain whether the system performs accurate segmentation. Unfortunately, a biologically 
perfect ground-truth contour is impossible to produce as it is defined on medical imaging 
which has contrast and resolution limitations. Instead, either a single manual contour or 
multiple manual contours have been used as reference or proxy of the underlying ground-
truth.  
 
Multiple contours are used in ground-truth generation to account for variation in manual 
contouring [13]. Variation may exist between different operators (inter-observer variation) 
and at different times (intra-observer variation). Since intra- and inter-observer variation 
exist, there may be a range to what constitutes an acceptable ground-truth. 
 
To minimise the impact of this variation, a single contour can be peer reviewed by one or 
more clinicians, or it can be generated by a group of clinicians (consensus contour). A 
popular method for creating a ground-truth contour is the Simultaneous Truth and 
Performance Level Estimation (STAPLE) [14]. This uses an algorithm to create a probabilistic 
estimate of the true contour, using the input of multiple contours. This creates a statistical 
ground truth from input data, but importantly does not consider the underlying spatial 
context or protocol for contouring. The ability of the STAPLE to normalise contour variation 
also depends on the number of input contours used, with smaller numbers being less able 
to appropriately establish a consensus contour. 
 



Auto-contouring implementation 
 
The range in metrics reflects the variety of approaches used to evaluate auto-contouring 
systems. Robert et al recently studied the implementation of auto-contouring models in 
three French centres which used a wide range of assessment metrics and ground-truths 
[15]. In total, seven different metrics were assessed, with only one metric (the Volumetric 
Dice Similarity Coefficient) used by all three centres. 
 
Guidance from the 3rd ESTRO physics workshop on the implementation of AI techniques 
recommends using a combination of qualitative and quantitative evaluation metrics and 
aiming for accuracy comparable to usual inter- or intra-observer variability [4]. However, 
this 2019 guidance does not specify exactly which metrics should be chosen.  
 
Auto-contouring research currently exists on a spectrum, from computer science-based 
method development to the clinical implementation of auto-contouring systems.. Gooding 
et al acknowledge that the assessment metrics used should relate to the overall study 
objective [12]. They propose that for computer science development studies, quantitative 
(geometric) measures are the most appropriate evaluation metrics. In contrast, methods 
evaluating clinical impact are needed for clinical commissioning studies. This is of inherent 
importance as there is evidence that geometric assessment metrics do not correlate with 
clinical or dosimetric acceptability of contours [16-18].  
 
This systematic review was undertaken to identify which auto-contouring evaluation metrics 
were used in literature published in 2021. The aim of this review was to assess current 
practice and identify whether there is a need for a standardised framework in the 
evaluation of auto-contouring tools in research and clinical practice. 
 
Methods 
 
A literature search was carried out using PubMed as a search engine with the following 
search terms: ‘radiotherapy’ and ‘auto- contouring’ or ‘auto-contouring’ or ‘autocontouring’ 
or ‘auto contouring’ or ‘automatic contouring’ or ‘auto-segmentation’ or ‘auto-
segmentation’ or ‘autosegmentation’ or ‘auto segmentation’ or ‘automatic segmentation’ or 
‘auto- delineation’ or ‘auto-delineation’ or ‘autodelineation’ or ‘auto delineation’ or 
‘automatic delineation’.  
 
All papers published between 1st January 2021 and 31st December 2021 were reviewed. 
Papers evaluating target or organ-at-risk auto-contours for radiotherapy in humans were 
included. Papers not published in the English language were excluded. Other exclusion 
criteria were: review articles, case reports, studies assessing only automated planning or 
quality assurance and studies using delineation not for the purpose of radiotherapy (e.g. for 
diagnostic purposes, radiomics, prediction of recurrence and automatic detection of needles 
in brachytherapy). Studies that used auto-contours but did not evaluate them were also 
excluded. 
 
All papers were reviewed by 1 reviewer. Any papers where it was not certain if they met 
inclusion criteria were reviewed by 2 additional reviewers. 



 
For each paper, data was collected regarding whether the study was using a newly 
developed model, the tumour type and the type of structures contoured. The method used 
to perform auto-contouring was recorded, based on the classifications set out by Harrison et 
al [1]. These are intensity analysis and shape modelling, atlas-based, non-deep machine 
learning and deep learning. The assessment metrics, the method for generation of a ground-
truth contour and whether there was any comparison to inter- or intra-observer variation 
were also recorded. 
 
Results 
 
There were 212 studies identified by the PubMed search of which 95 were excluded. 
Common reasons for exclusion included review articles and studies using auto-contouring 
not for the purpose of radiotherapy (see figure 1). In total, 117 papers were reviewed, with 
91 publications assessing a newly developed auto-contouring model. The other 26 papers 
evaluated a previously published or commercially available model, often with a clinical 
focus.  
 
Demographics 
 
The majority of papers (89/117) evaluated auto-contouring models built with deep learning 
architecture (76.1%). An additional 11 studies (9.4%) compared deep learning models to 
other types of models (atlas-based or intensity analysis/ shape modelling). Thirteen studies 
(11.1%) analysed atlas-based models and 4 (3.4%) studies used intensity analysis and shape 
modelling as their auto-contouring method.  
 
The most commonly investigated tumour site was head and neck (30.8% papers), followed 
by breast (14.5%), lung (13.7%), prostate (12.0%) and brain (11.1%). 40.2% studies analysed 
auto-contours for target structures, 42.7% studies analysed contours for organs-at-risk and 
16.2% looked at both (not specified in 0.9%). 
 
Overall 
 
The most frequently used type of assessment metric was geometric assessment metrics, 
being used in 99.1% of studies. The percentage of studies using each category of assessment 
metrics is summarised in Figure 2.  
 
Geometric 
 
The different geometric metrics and the number of studies they were used in is set out in 
table 2. All of the 91 studies presenting a new auto-contouring model reported geometric 
evaluation metrics compared with 96.2% (25/26) of studies using previously published or 
commercial models. The median number of geometric metrics used in the first group was 3 
(range 1-9), compared to 2.5 (range 0-23) in the second group. Two studies in the latter 
group used 23 and 18 metrics respectively to ascertain if any geometric metrics correlate 
with dosimetry [18, 19]. If these studies were excluded, the range of geometric metrics used 
would be 0-5 (median 2).  



 
Of all 117 studies, 115 (98.3%) published at least one overlap metric. Variations of each 
overlap metric existed and these are listed in Table 2. A variant of the Dice Similarity 
coefficient was published in 113 studies (96.6%), making it the most commonly used metric.  
 
A surface-based metric was analysed in 90 studies (76.9%). Volume statistics were published 
in 25 studies (21.4%) and classification accuracy statistics in 28 (23.9%). Over 30 different 
classification accuracy metrics were used in total. Nine studies (7.7%) used a measure of 
estimated editing and 7 (6.0%) used metrics that compared the location of the centre of a 
structure. 
 
Qualitative 
 
Qualitative assessment was performed in 22/117 studies (18.8%), in 19/91 using a new 
model and 3/26 using a previously established model. Ten of these studies performed more 
than one type of qualitative test. All 22 studies used a Likert scale to give a numerical value 
for qualitative assessment. In 20 studies, this was based on clinical acceptability. Other 
scales were based on estimated helpfulness of auto-contours, estimated difference of auto-
contours to manual contours and clinician satisfaction. Additional Turing tests assessing 
clinician contour preference or contour source were each performed in 5 studies. Some 
groups presented pictures of auto-contours as “qualitative” results however these were not 
always accompanied by an assessment. 
 
Of the 22 studies using a Likert scale for a qualitative analysis, 11 used a 4-point scale. The 
number of denominators on the scale ranged from 2 to 11 (table 3). Different scales with 
different descriptors were used in all but two studies published by the same research group 
(supplementary information) [20, 21]. 
 
The number of observers used to perform qualitative assessment varied between studies. 
The median number of observers performing assessment was 3 and the range of observers 
was 1 to 39 (not specified in 1 study), however many did not score the same cases. Two 
studies repeated the qualitative tests a few weeks later to measure reproducibility and 
consistency amongst the observers [21, 22]. 
 
Time-saving 
 
A comparison of auto-contouring time to manual contouring time was used in 18/117 
(15.4%) total studies, 14/91 studies presenting a new model and 4/26 studies using a 
previously presented model. Of these studies, 7 of the former and all of the latter accounted 
for how long it would take a clinician to check and edit auto-contours when calculating an 
overall time-saving benefit. Time-processing statistics for the auto-contouring model were 
more frequently reported in 32/117 (27.4%) studies; however, some of these studies did not 
consider how long it would take to perform manual contouring. 
 
Dosimetric 
 



The dosimetric impact of using auto-contours was measured in 23.1% (27/117) total studies 
including 15/91 new model studies and 12/26 studies using a previously published model. In 
16 papers, radiotherapy plans were generated using manual contours or manual beam 
selection (for tangential field breast radiotherapy). Auto-contours were then transposed 
onto these plans to assess the dose that would be received by these structures. Nine studies 
created new radiotherapy plans based on the automated contours and compared these to 
different plans generated from manual contours. One study performed planning just using 
auto-contours while the contour source used to generate a plan was not specified in 1 
study. 
 
Nine studies assessed the impact on target volume coverage by using auto-contours and 24 
studies assessed the impact on organ-at-risk coverage. Each study reported the differences 
in dose for either Dmean, Dmax or other important dose constraints for each structure 
generated using auto-contours and manual contours. Some studies performed additional 3D 
gamma analysis [16, 23] and calculated the homogeneity index and conformity index for 
plans [16, 24].  
 
Ground-Truth 
 
The most common method of creating a ground-truth for comparison against auto-contours 
was a single manual contour, used in 55.6% (65/117) studies. This was either the clinical 
contour used for treatment or a contour drawn by one clinician. A peer-reviewed contour 
was used in 26.5% (31/117) cases, a consensus contour in 12.8% (15/117) of cases while a 
STAPLE contour was only used in two studies (1.7%). 
 
Multiple clinical contours, either drawn by the same or different clinicians were used to 
perform all evaluations of auto-contours in 3.4% (4/117) of studies. 27/117 (23.1%) 
analysed multiple contours on a subset of cases, meaning 26.5% (31/117) of all studies 
considered inter- and/ or intra-observer variation in some way. The full breakdown of 
methods used to generate a ground-truth for each paper is included in the supplementary 
information. 
 
Discussion 
 
This review highlights that a wide range of assessment metrics were used to evaluate auto-
contours in literature published in 2021. The use of AI in radiotherapy planning has been 
exponentially increasing since 2012 [25]. It is for this reason that the most recent calendar 
year was chosen for this review. The heterogeneity demonstrated in literature from 2021 is 
likely to be present in 2022 and beyond without specific guidance. Geometric measures 
were clearly the most popular assessment metrics, being used in 99.1% of studies. 
Qualitative, dosimetric and time-saving assessment metrics were less popular, being used in 
18.8%, 23.1% and 15.4% studies respectively. Variation existed in the methodology for each 
metric category and only 26.5% of studies formally assessed auto-contours in the context of 
intra- and inter-observer variation. The Dice Similarity Coefficient was used in 96.6% studies, 
making it the most “standardised” metric to be used. Despite its popularity, the Dice 
Similarity Coefficient should not be presumed as the best metric. In the clinical setting, all 



assessment metrics need to be considered with regards to their strengths and weaknesses, 
and whether they demonstrate that the aims of auto-contouring have been met [8].  
 
The ultimate goal for assessment in AI is to demonstrate similarity to human-level 
performance. The popularity of geometric assessment metrics may be related to their 
relative ease of calculation and that they quantify similarity to a manual contour [1, 12]. This 
should enable direct comparisons between studies. This review however detected that over 
90 different names were used to describe geometric metrics, with multiple names 
sometimes used to describe the same or a very similar metric. The formulae used to create 
these metrics were sometimes not reported or were different. Variations can also exist for 
each metric. This is clearly demonstrated by the Hausdorff distance, which has been 
reported as the maximum, minimum, median, mean, 80th percentile, 90th percentile or 95th 
percentile Hausdorff distance. This choice of metrics could potentially result in bias, with 
studies choosing to report only their most favourable results. Having such variation makes it 
difficult to compare between studies or establish what should be deemed an acceptable 
result. 
 
Using numbers can be helpful when comparing different iterations of a model during the 
development stage [12]. However, if being used to clinically evaluate a model, these 
numbers should be interpreted with caution since it is difficult to attribute clinical meaning. 
Some groups have attempted this; for example Zhang et al used a Dice Similarity Coefficient 
value of 0.8 and a mean distance to agreement of less than 2 mm to define acceptable slices  
[26]. This was based upon image registration and fusion algorithm recommendations by the 
American Association of Physicists in Medicine (AAPM) task group, but ignores the AAPM 
recommendation to consider the size of the structure if using Dice [27]. The Dice Similarity 
Coefficient is influenced by the overall size of a structure and this means a threshold to 
predict clinical acceptability would change for each structure. Several studies have also now 
reported that geometric auto-contour evaluation metrics do not predict whether an auto-
contouring system produces clinically useful contours [16-18, 23, 28], and geometric 
thresholds should therefore be used with caution when clinically commissioning a system. 
 
When considering clinically relevant auto-contour assessment, qualitative metrics emulate 
real-world clinical practice in which the decision about whether a contour is acceptable for 
clinical use is ultimately a subjective process. Despite this, these metrics are less popular 
than geometric metrics and there is significant heterogeneity, with all but two studies (from 
the same research group) using a different method.  
 
The most common method of qualitative assessment was using a scale to assess clinical 
acceptability. This generally quantified the amount of editing required to make an auto-
contour safe to use. Interestingly, papers do not attempt to report “accuracy” or “time-
saving potential”, which are ultimately what a utility assessment is trying to demonstrate.  
The qualitative scales in use currently are varied in terms of numbers and instructions.  
Limited instructions may lead to inconsistencies in operator interpretation [12]. A lack of 
consistency in scoring between observers was clearly demonstrated in 5 studies [20, 21, 29-
31]. Interestingly, consistency did not improve by increasing the numbers of observers from 
2 to 9 [20, 21, 29].  Ying et al introduced a new scale whereby a score was allocated based 
on the proportion of slices on which a contour needed to be edited [32]. Different 



proportions were recommended based on the size of the structure. Unfortunately, only one 
observer was used in this study, so there was no consistency assessment. Cardenas et al 
recognised that different clinicians have their own contouring styles. In their trial, the best 
qualitative scores for auto-contours were given out by the clinician who had performed the 
manual delineation to train the auto-contouring model [30]. It therefore may be difficult to 
generate consistency in qualitive scoring whilst there is disagreement in how manual 
contouring should be performed [33]. 
 
There is potential to standardise and improve the utility of qualitative scoring. Using a 5-
point scoring system has been suggested, in line with scoring adverse events in clinical trials 
[8, 34, 35]. Performing a blinded Turing Test also introduces a manual contour as a control 
[36]. Finally, adjusting the scoring system to allocate scores based on the relative 
importance of different structures within different radiotherapy treatment protocols may 
improve clinical utility of qualitative scoring. Poel et al demonstrated that the direction of 
contour variation with respect to target volume location has a strong correlation with the 
effect on dose [18]. Vaassen et al concluded that delineation errors of the heart only need 
to be corrected if they overlap with the planning target volume [37]. Target structures, serial 
organs-at-risk and parallel organs-at-risk may have different editing priorities and scoring 
systems could be re-designed to reflect this. 
 
This review reveals that heterogeneity also exists for time-saving and dosimetric assessment 
metrics. Consideration was given to editing time in only 11/32 studies reporting a time- 
based metric. Auto-contouring is not clinically helpful if it takes longer to check and correct 
an auto-contour than to contour manually. Studies just reporting processing time may 
therefore not capture whether an actual time-saving benefit is achieved. Similarly, for 
dosimetric assessment, the method most frequently used was transposing auto-contours 
onto manual contour-based plans to compare dose to different structures. This does not 
reveal if a plan made using auto-contours would directly produce a dosimetrically safe and 
effective radiotherapy plan. 
 
Most studies used a single clinical contour as a ground-truth. Although incorporating an 
inter- or intra-observer assessment is best practice, only 26.5% studies used multiple 
contours at some point in their analysis. Inter-observer studies require significant resource 
and may not be feasible for each department wishing to implement auto-contouring locally. 
Some studies have attempted to create inter-observer surrogates by producing an auto-
contour uncertainty range [38]; producing auto-contour inner and outer boundaries [39]; by 
shifting manual contours by 5 mm [40] or by applying a tolerance factor (e.g. 3mm) to 
predict editing [41, 42]. However, in reality, tolerance for editing is likely to vary at different 
points within a structure and using a fixed distance may not predict clinically relevant edits.  
 
It was not always possible to segregate papers into the discrete categories of computer-
science method development and clinical studies due to frequent overlap: for example, a 
study publishing a new model could attempt to validate it for clinical practice. There was a 
distinction between studies presenting a system for the first time, and those presenting a 
previously published or commercially available system, with dosimetric and editing-time 
assessment metrics used relatively more frequently in the latter category 
 



The key factor in deciding the most appropriate tests to use when evaluating an auto-
contouring system should be the aim of the study. We propose a possible approach as 
presented in figure 3. When an AI model is being trained and compared with other models, 
geometric metrics may have a role in identifying models that have potential clinical use. 
When a model is being clinically commissioned, a clinically relevant comparison to usual 
practice is needed. For the ongoing quality assurance, qualitative checks will be performed 
by a clinician on each case. If qualitative assessment methods can be improved, this could 
support standardised quality assurance processes and provide the much-needed guidance 
for clinicians to safely use auto-contours.  
 
Conclusions 
 
There is currently significant variation in how auto-contouring systems are assessed which 
makes education, research, training and clinical implementation challenging. There is a lack 
of consensus over which metrics are most clinically useful and how ground-truth 
comparators can be created in a straightforward, reproducible way. 
 
Auto-contouring is anticipated to be used widely in the future and systems need to be 
appropriately validated to ensure they are safe to use in clinical practice [3, 43] Prior to 
clinical use, a clinically relevant assessment should be performed, ideally assessing the 
dosimetric impact resulting from the use of any uncorrected auto-contours and/or an 
assessment of the time required to correct auto-contours in comparison to drawing them 
from scratch. 
 
There is a clear need to develop standardised approaches for the validation of auto-
contouring systems and this should become a priority for the auto-contouring research 
community.
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Figure 1: Flow diagram to summarise the literature search process 

 

 
Figure 2: A bar chart showing the percentage of studies using each category of assessment metric 

Papers identified through 
initial Pubmed search (n=212)

Full Text Articles eligible for 
inclusion (n=117)

Papers presenting a new 
model (n=91)

Papers using a previously 
published or commercial 

model (n=26)

Papers excluded (n=95)

Exclusion criteria:

Not in English Language (n=2)

Review article (n=11)

Not assessing auto-contours or using auto-contours for purpose of 
radiotherapy (n=78)

Study in animals (n=1)

Case Report (n=2)

Duplicate paper due to epublication (n=1)

0

10

20

30

40

50

60

70

80

90

100

Geometric Dosimetric Time-saving Qualitative

P
er

ce
n

ta
ge

 o
f 

st
u

d
ie

s 
(%

)

Category of assessment metric

Percentage of studies using each type of metric (n=117)

Studies presenting a new model Studies using a previously published or commercial model All studies



 

Model Training and 
Choice

•Choice of 
training data 
(including 
patient 
population and  
imaging types)

•Use of 
guidelines and 
protocols to 
produce training 
data

•Geometric tests 
used to compare 
models in 
development

Commissioning 
(Physics)

•Commissioning 
of data transfer 
and software 
systems

Commissioning 
(Clinical)

•Comparison to 
normal practice 
(manual 
contours with 
consideration of 
usual inter and 
intra-observer 
variation)

•Performed on a 
sample of cases

•Clinically 
relevant 
assessment 
(dosimetry and 
time-saving)

Case-specific 
Quality Assurance

•Ongoing 
assessment of 
validity of 
contours 

•Predominantly 
qualitative 
assessment

•Performed on 
every case

Figure 3: A flowchart describing the proposed stages of auto-contouring implementation and the types of evaluation 
required at each stage 



Tables 
Table 1: The types of assessment metric currently available to evaluate auto-contours as discussed in review articles [8-12]. Note some metrics 
such as overlap metrics fit into more than one category however for simplicity they are just discussed in the most relevant category. 
Key: Blue contour=auto-contour and red contour= ground-truth contour 

Type of 
Assessment 
Metric 

Subtype of Assessment Metric and Explanations 

Geometric 
Metrics 
 
Compare an 
auto-
contour to a 
“ground-
truth 
contour 

Classification 
Accuracy 

Overlap 
Based 

Volume Based Surface 
Based 

Moment Based Measures of Estimated 
Editing [41, 42] 

Assesses if 
voxels within 
and outside 
the auto-
contour have 
been correctly 
labelled. 
 

Assesses 
the overlap 
between an 
auto-
contour 
and a 
reference 
structure 
using 
different 
formulae 
 

Compares the 
volume of an 
auto-contour to 
the volume of a 
manually labelled 
structure 

Compares 
the distance 
between two 
structure 
surfaces 
(either 
maximum 
distance, 
average 
distance or 
distance at a 
set percentile 
of ordered 
distances)  
 

Compares the 
location of an 
auto-contour 
structure centre 
to a reference 
structure centre 
in the x, y and z 
dimensions. 
 

Compares the 
anticipated amount of 
editing a structure may 
require by incorporating 
a tolerance parameter 
to the reference 
structure. 
 
(n.b. tolerance defined 
by blue arrow and 
dotted lines around 
ground-truth contour 
below) 

  
 

 
 

 
Example 
formulae 

Sensitivity= 
(TP/(TP+FN)  
 

Dice 
Similarity 
Coefficient
= 
2(VAVM)/(
VA + VM) 

Volume ratio= 
Volume A   ÷ 
Volume M 

Hausdorff 
Distance= 

(maxd(a,M),
maxd(A,m)) 

 

Distance from 
centre in x, y 
and z 
dimensions 

Surface Dice= | VAVM 
t|+| VMVA t|/| VA |+| 
VM | 

Dosimetric 
Metrics 
 
 

Compares radiotherapy plans generated for:  

• Manual Contours, un-edited auto- contours and edited auto-contours. 

Up to 9 sets of Dose Volume Histograms (DVH) can be compared, by transposing each set of contours onto each 
plan. Dose Constraints (e.g. Dmean, Dmax, V20) can be compared for each type of structure or plan. 

Time-saving 
Metrics 

Compares how long it takes to contour structures manually and how long it takes to produce, check and edit 
auto-contours. 

Qualitative 
Assessment 
Metrics 

Scale Scoring Blinded Tests (Turing Tests) [36] 

Uses a Likert scale (scale with varying descriptors) 
to grade the quality of auto-contours. The 
number of descriptive points on the scale can 
vary (commonly between 2 and 10). 
Can be used to assess auto-contours alone or 
auto-contours and manual contours. 
Can be performed for whole structures or single 
slices. 

Clinicians are blinded and shown a sample of manual 
contours and automatic contours for the same cases. 
Clinicians are asked to identify if:  

• The contour has been generated by a human or 
computer  

• Which contour is better  
If the auto-contours are comparable to manual contours, 
they will be indistinguishable from manual contours and the 
correct source will only be identified 50% of the time.  
 



 
Table 2: A table demonstrating the frequency of geometric assessment metrics used 

Metric Used Variations on Metric Used Frequency (number of studies and 
percentage) 

References 

Studies 
publishing a 
new model 
(n=91) 

Studies 
using a 
prior model 
(n=26) 

Total 
(n=117) 

Overlap- based metrics 

Dice 
Similarity 
Coefficient 
 
 

Dice per Case, Dice Global Score, Percentage Dice Similarity Coefficient 
2D Dice, 3D Dice, Volumetric Dice Similarity Coefficient 

90 23 113 
(96.6%) 

New Model: 
[20-24, 29-33, 38, 44-122] 
Prior Model: 
[16, 18, 19, 35, 37, 39, 40, 123-138] 

Jaccard 
Index 
 
 

Jaccard Similarity Coefficient, Concordance Index, Intersection over Union- (mean 
and frequency weighted), Jaccard Conformity Index (for multiple analyses) 

8 2 10 
(8.5%) 

New Model: 
[57, 68, 71, 75, 83, 84, 116, 139] 
Prior Model: 
[16, 18] 
 

Overlap 
Index 
 

Sensitivity Index 2 1 3 (2.6%) New Model: 
[74, 77] 
Prior Model: 
[136] 

Jaccard 
Distance 
 
 

 2 0  2 (1.7%) New Model: 
[77, 121] 
Prior Model: 
 

Simpson’s 
Coefficient 

Overlap coefficient 0  1  1 (0.9%) Prior Model: 
[140] 

Inclusiveness 
Index 

Coverage Fraction 
 

2  0  2 (1.7%) New Model: 
[77] [97] 

Surface- based metrics 

Average 
Surface 
Distance 
 
 
  

Mean Surface Distance, Median Surface Distance, Average Symmetric Surface 
Distance, Mean absolute surface to surface distance, Symmetric Mean Boundary 
Distance, Mean Contour Distance, Residual mean square distance, Minimum 
Average Distance, Median Hausdorff, Average (mean Hausdorff), Mean slice-wise 
Hausdorff Distance 

38 8 46 
(39.3%) 

New Model: 
[30, 32, 38, 45, 50, 53, 54, 56, 61-64, 67, 71, 72, 75-77, 79-82, 85, 90-92, 94, 96-98, 102-106, 
109, 110, 113] 
Prior Model: 
[18, 19, 37, 39, 40, 127, 135, 137] 

Hausdorff 
Distance 
 
 

Maximum Hausdorff, 2D Hausdorff, 3D Hausdorff 28 7 35 
(29.9%)  

New Model: 
[23, 30, 32, 44, 46, 48, 50, 56, 57, 60, 68, 73-75, 77, 78, 80, 82, 86, 88, 92, 98, 101, 103, 108, 
110, 115, 121] 
Prior Model: 
[16, 18, 39, 125, 127, 133, 137] 

Percentile 
Hausdorff 
Distance 
 
 

80% Hausdorff, 90% Hausdorff, 95% Hausdorff, 90th percentile symmetric surface 
distance 

37 3 40 
(34.2%) 

New Model: 
[20-22, 29, 31, 48, 49, 52-54, 58, 61-64, 67, 69, 71, 76, 79, 81, 85, 87, 92-94, 97, 98, 100, 
104, 105, 110-112, 118, 120, 122] 
Prior Model: 
[19, 132, 134] 

Distance to 
Agreement 

Mean distance to agreement 4 4 8 (6.8%) New Model: 
[23, 60, 65, 68] 
Prior Model: 
[16, 124, 131, 133] 



Other Maximum Diameter Difference, Shortest Distance to ITV, Landmark point 
difference, Manhabolis Distance, Probabalistic Distance, ComGrad Distance,  
Global consistency error, Variation of information 

3 2  
 

5 (4.3%) New Model: 
[60, 107, 139] 
Prior Model: 
[18, 130] 

Volume-based metrics 

Volume 
Difference  
 

Volume difference, Relative volume, Percentage difference in volume, Change in 
volume within a defined area, volume scatter plots 

17 8 25 
(21.4%) 
 

New Model: 
[32, 33, 50, 60, 61, 66-69, 73, 74, 77, 94, 98, 103, 107, 121] 
Prior Model: 
[19, 123, 126, 128, 131, 136, 138, 141] 

Classification Accuracy metrics 

Sensitivity 
and 
Specificity 

ROC curve, AUC (of ROC curve), Structure-wise sensitivity, Voxel wise recall rate, 
Recall 

15 
 
 
 
 

3 18 
(15.4%) 

New Model: 
[47, 63, 64, 69, 70, 72, 83, 93, 97, 99, 100, 104, 110, 115, 116] 
Prior Model: 
[18, 19, 129] 

Precision PR curve (Precision- recall curve), Positive Predictive Value 
 

14 1  15 
(12.8%) 

New Model: 
[47, 63, 69, 70, 83, 97-100, 104, 110, 114-116] 
Prior Model: 
[18] 

False 
Positive or 
False 
Negative  

False Positive Dice, False Negative Dice 5  1 6 (5.1%) New Model: 
[30, 69, 81, 97, 110] 
Prior Model: 
[19] 

Accuracy  3  1 4 (3.4%) New Model: 
[64, 93, 115] 
Prior Model: 
[18] 

F1 measure  2  1 3 (2.6%) New Model: 
[83, 84] 
Prior Model: 
[18] 

Cohen 
Kappa 
coefficient 

 1 1  2 (1.7%) New Model: 
[46] 
Prior Model: 
[18] 

Other True positive Volume Fraction, Volumetric Overlap Error, Relative Volume Error, 
False Detection Rate, Root Mean Square Error, Sensitivity/ Specificity Ratio, True 
Volume, False Volume, C factor, Deviance, Fallout, Rand index, Adjusted Rand 
index, Interclass correlation, Mutual information, Jacobian minimum and 
maximum, Matthews correlation coefficient, mean pixel accuracy 

4 4  8 (6.8%) New Model: 
[47, 84, 86, 90] 
Prior Model: 
[18, 19, 131, 133] 

Measures of estimated editing 

Surface Dice 
Coefficient 

Surface Dice score at 1mm 5  3  8 (6.8%) New Model: 
[33, 59, 100, 110, 122] 
Prior Model: 
[18, 19, 35] 

Added Path 
Length 

 1  2  3 (2.6%) New Model: 
[108] 
Prior Model: 
[19, 35] 

Moment Based metrics 

Centre of 
mass 
difference 

Centre of mass shift, Centroid Distance differences (in all planes) 3  4  7 (6.0%) New Model: 
[32, 67, 86] 
Prior Model: 
[19, 123, 131, 132] 



Table 3: A table showing the types of qualitative assessments performed on auto-contours 

Number (and Percentage) of studies using each type of qualitative assessment: 
Type of qualitative assessment Number (and percentage of studies) 

Clinical Acceptability 
Preference of Contour (Turing Test) 
Source of Contour (Turing Test) 
Estimated assistance of contours 
Estimated difference to manual contours 
Satisfaction rating 

20 (90.9%) 
5 (22.7%) 
5 (22.7%) 
2 (9.1%) 
1 (4.5%) 
1 (4.5%) 

Number (and Percentage) of studies using each size of qualitative assessment scale 

Number of points on qualitative assessment scale Number (and percentage) of studies 
2 
3  
4  
5  
6 - 11 

2 (9.1%) 
5 (22.7%) 
11 (50%) 
1 (4.5%) 
3 (13.6%) 

 
 
 
  



Supplementary Information 
 
 Supplementary Table 1: The different types of qualitative assessment used in 2021 

Study Type of 
Qualitative 
Assessment 

No. of 
points 
on 
scale 

Scale used Number 
of 
Assessors 
used 

Number of 
scans used 
for 
assessment 

Studies publishing first presentation of a model 

[24] Clinical 
Acceptability 

2 Auto- segmentation and auto-plan are clinically 
acceptable OR 
Auto-segmentation and auto-plan need editing 

1 40 
 

[31] Clinical 
Acceptability 

3 Acceptable with no corrections  
Acceptable with minor corrections OR 
Unacceptable 

6 (3 
groups of 
2) 

222 
 
 

[107] Clinical 
Acceptability 

3 1) No editing required  
2) Minor editing required 
3) Major editing required and not useful in clinical 
practice 

4  10  
 
 

[30] Clinical 
Acceptability 

3 1) Clinically acceptable without requiring edits 
2) Requiring minor edits (can be corrected within 2 
minutes and/ or are acceptable to use if a CTV to PTV 
margin of 4mm is to be used) 
3) Requiring major edits (would affect the likelihood of 
cure, adverse events or locoregional control) 

3 
 
 

32  
 
 

[64] Clinical 
Acceptability 

3 1) Accepted as is  
2) Needs manual correction  
3) Failed 

1 35 
 

[38] Clinical 
Acceptability 
AND 
Source of 
Contour 

4 4) Acceptable without changes  
3) Acceptable with minor changes (i.e. does not miss 
important pathology)  
2) Acceptable with major changes (the contour needs 
significant revision and the treatment should not 
proceed without contour correction)  
1) Completely unacceptable 

Not 
specified 
 

30 
 
 

[59] Clinical 
Acceptability 

4 1) Requires corrections, large obvious errors  
2) Requires corrections, minor errors  
3) Clinically acceptable, errors not clinically significant  
4) Clinically acceptable, contours are highly accurate 

3 99 
 
 

[29] Clinical 
Acceptability 

4 3) No need to be edited 
2) Number of layers to be edited </=4  
1) Number of layers to be edited >/=4  
0) Not acceptable 

2 20 for OAR 
10 for CTV 
 
 

[20] Clinical 
Acceptability 
AND 
Preference 
of Contour 

4 3) No revision- segmentation is perfect and completely 
acceptable for treatment  
2) Minor revision- the segmentation needs a few 
minor edits but has no significant clinical impact 
without correction  
1) Major revision- the segmentation needs significant 
revision. Treatment planning should not proceed 
without contour correction.  
0) Rejection- the segmentation is unacceptable and 
needs to be redrawn  
 

2 
 

10 
 
100 slices 
used for 
preference 
test 

[21] Clinical 
Acceptability 

4 3) No revision 9  
 

10 
 



AND 
Preference 
of Contour 

2) Minor revision (no significant clinical impact without 
correction) 
1) Major revision (treatment planning cannot proceed 
until corrected) 
0) Rejection 
 

200 slices 
used for 
preference 
test 
 
 

[22] Clinical 
Acceptability 
AND 
Preference 
of Contour 

4 0) Rejected- the contour is unacceptable and requires 
re-drawing  
1) Major revision- the contour requires significant 
revision and treatment planning should not proceed 
without correction  
2) Minor revision- the contour should be revised with a 
few minor edits but has no significant effect on 
treatment without correction  
3) The contour is perfect and completely acceptable 
for treatment. 

10  
 

10 
contours (5 
AI, 5 
manual) for 
each of 10 
patients 
(100 total 
contours) 
for scoring 
 
100 slices 
from 10 
patients for 
Turing Test 

[92] Clinical 
Acceptability 

4 1) The segmentation does not need to be modified and 
can be used in clinical practice  
2) The algorithm can be used as an auxillary contouring 
tool, since the segmentation result can be used in 
clinical practice after minor modifications  
3) The algorithm can be used as an auxillary contouring 
tool and the segmentation result can be used in clinical 
practice after significant modifications  
4) The algorithm has no auxillary contouring value. In 
addition, perceived errors in segmentation results 
have been identified. 

9  56  
 

[81] Clinical 
Acceptability  
AND  
Source of 
Contour 
AND 
Preference 
of contour 

4 1) Precise  
2) Minor error without revision  
3) Minor error with revision  
4) Major error with revision. 

26 
 

20 cases, 
using 4 
different 
methods 
(manual, 
2xDL, 1x 
DIR)- 198 
comparison 
scenarios 
total 
shown 

[32] Clinical 
Acceptability 

4 Descriptor >10 slices 
(% to be 
modified) 

3-10 
slices 
(slice 
number 
to be 
modified) 

<3 slices 
(slice 
number to 
be 
modified 
 

1 20 
 



1) Auto-
segmentation is 
not 
recommended  
2) Many manual 
modifications 
are required 
after auto-
segmentation  
3) Some manual 
modifications 
are required 
after auto-
segmentation  
4) Auto-
segmentation 
can completely 
replace manual 
delineation 

20-100% 
 
 
 
10-20% 
 
 
 
 
0-10% 
 
 
 
 
0 

>3 
 
 
 
2-3 
 
 
 
 
1 
 
 
 
 
0 

3 
 
 
 
2 
 
 
 
 
1 
 
 
 
 
0 
 

[110] Clinical 
Acceptability 
AND  
Source of 
Contour 

4 1) Requires corrections- large errors 
2) Requires corrections- minor errors 
3) Clinically acceptable- errors not clinically significant  
4) Clinically acceptable- highly accurate 

3 
 
 

30 
 
 

[120] Clinical 
Acceptability 
AND  
Source of 
Contour 
AND  
Preference 
of Contour 

4 For all contours (blinded manual and automatic): 
Would you  
a) require it to be corrected- there are large, obvious 
errors  
b) require it to be corrected, there are minor errors  
c) accept it as it is, but it needs a small amount of 
editing  
d) accept it as it is, the contour is very precise.  
 
Which contour do you prefer? 
 
Results classified as 
1) strong tendency to manual  
2) more inclined to manual  
3) no tendency  
4) more inclined to autosegmentation  
5) strong inclination to autosegmentation 

2-3 30 
 

[65] Clinical 
Acceptability 

7 1= Good agreement 
5= moderate manual edits needed in 20-50% of slices 
to be clinically acceptable 
7= Gross error 
 
n.b </=5 determined as clinically acceptable. 

3 28 
 
 

[97] Estimated 
helpfulness 
AND 
Source of 
contour 

10 1= delineation with little to no clinical value 
10= unable to identify whether CNN or human 
(implying high value and indistinguishable from 
manual delineation) 

1 15 
 

[52] Difference 
between 
contours 
AND 

11 What score would you give for the differences 
between manually delineated contours and auto-
segmented contours? (0= most different, 10= least 
different)  

26 
 
 

19 
 



Estimated 
assistance of 
contours 

 
How much do you think auto-segmentation would 
assist you in real-world clinical practice? (0= not 
helpful, 10= very helpful) 

Studies presenting a previously published model 

[130] Clinical 
Acceptability 

2 1) Meet  
2) Fail- contour has to be corrected 

2 
 

10 cases- 
97 sets of 
CBCT 

[35] Clinical 
Acceptability 

3 1) Acceptable without edits 

2) Need for minor edits 

3) Major edits 

18  43 

[134] Clinical 
Acceptability 
AND  
Satisfaction 
rating 

5 Editing rating 1= minimal editing 5= significant editing. 
Overall satisfaction rating 1= minimal 5= significant 

39  174 

  

  



Supplementary Table 2: A table showing the different methods to generate a ground-truth to compare auto-contours to 

Method 
of Ground 
Truth 

Use of additional inter- or intra- 
observer studies 

Total 
number of 
studies 

References 

STAPLE No additional interobserver/ 
intraobserver study 

0  

Intra-observer study only 0  

Inter-observer study only 2 New Model: 
[68, 86] 

Intra- and Interobserver study 0  

Consensus 
contour 

No additional interobserver/ 
intraobserver study 

7 New Model: 
[31, 54, 57, 63, 84, 97, 104] 

Intra-observer study only 0  

Inter-observer study only 6 New Model: 
[100, 107] 
Prior Model: 
[18, 39, 125, 142] 

Intra- and Interobserver study 2 New Model: 
[93] 
Prior Model: 
[129] 

Peer 
reviewed 
contour 

No additional interobserver/ 
intraobserver study 

26 New Model: 
[20, 21, 29, 30, 46, 47, 49, 58, 59, 67, 74, 75, 77, 89, 91, 94, 
95, 102, 103, 105, 112, 113, 122] 
Prior Model: 
[16, 130, 140] 

Intra-observer study only 0  

Inter-observer study only 4 New Model: 
[23, 66, 92, 106] 

Intra- and Interobserver study 1 Prior Model: 
[40] 

Multiple 
manual 
contours 

No additional interobserver/ 
intraobserver study 

0  

Intra-observer study only 0  

Inter-observer study only 4 New Model: 
[96, 139] 
[33]* 
Prior Model: 
[128] 
*peer reviewed 

Intra- and Interobserver study 0  

Single 
manual 
contour 

No additional interobserver/ 
intraobserver study 

53 New Model: 
[22, 24, 32, 44, 45, 48, 51, 53, 55, 61, 62, 64, 65, 69-73, 76, 
78, 79, 81, 83, 87, 88, 90, 98, 99, 101, 108-111, 114, 116-
121] 
Prior Model: 
[19, 35, 123, 124, 126, 127, 131-134, 136, 137, 141] 

Intra-observer study only 2 New Model: 
[50] 
Prior Model: 
[37] 

Inter-observer study only 8 New Model: 
[38, 52, 60, 80, 82, 85] 
Prior Model: 
[135, 138] 

Intra- and Interobserver study 2 New Model: 
[56, 115] 
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	Time-saving
	A comparison of auto-contouring time to manual contouring time was used in 18/117 (15.4%) total studies, 14/91 studies presenting a new model and 4/26 studies using a previously presented model. Of these studies, 7 of the former and all of the latter ...
	Dosimetric
	The dosimetric impact of using auto-contours was measured in 23.1% (27/117) total studies including 15/91 new model studies and 12/26 studies using a previously published model. In 16 papers, radiotherapy plans were generated using manual contours or ...
	Nine studies assessed the impact on target volume coverage by using auto-contours and 24 studies assessed the impact on organ-at-risk coverage. Each study reported the differences in dose for either Dmean, Dmax or other important dose constraints for ...
	Ground-Truth
	The most common method of creating a ground-truth for comparison against auto-contours was a single manual contour, used in 55.6% (65/117) studies. This was either the clinical contour used for treatment or a contour drawn by one clinician. A peer-rev...
	Multiple clinical contours, either drawn by the same or different clinicians were used to perform all evaluations of auto-contours in 3.4% (4/117) of studies. 27/117 (23.1%) analysed multiple contours on a subset of cases, meaning 26.5% (31/117) of al...
	Discussion
	This review highlights that a wide range of assessment metrics were used to evaluate auto-contours in literature published in 2021. The use of AI in radiotherapy planning has been exponentially increasing since 2012 [25]. It is for this reason that th...
	The ultimate goal for assessment in AI is to demonstrate similarity to human-level performance. The popularity of geometric assessment metrics may be related to their relative ease of calculation and that they quantify similarity to a manual contour [...
	Using numbers can be helpful when comparing different iterations of a model during the development stage [12]. However, if being used to clinically evaluate a model, these numbers should be interpreted with caution since it is difficult to attribute c...
	When considering clinically relevant auto-contour assessment, qualitative metrics emulate real-world clinical practice in which the decision about whether a contour is acceptable for clinical use is ultimately a subjective process. Despite this, these...
	The most common method of qualitative assessment was using a scale to assess clinical acceptability. This generally quantified the amount of editing required to make an auto-contour safe to use. Interestingly, papers do not attempt to report “accuracy...
	There is potential to standardise and improve the utility of qualitative scoring. Using a 5-point scoring system has been suggested, in line with scoring adverse events in clinical trials [8, 34, 35]. Performing a blinded Turing Test also introduces a...
	This review reveals that heterogeneity also exists for time-saving and dosimetric assessment metrics. Consideration was given to editing time in only 11/32 studies reporting a time- based metric. Auto-contouring is not clinically helpful if it takes l...
	Most studies used a single clinical contour as a ground-truth. Although incorporating an inter- or intra-observer assessment is best practice, only 26.5% studies used multiple contours at some point in their analysis. Inter-observer studies require si...
	It was not always possible to segregate papers into the discrete categories of computer-science method development and clinical studies due to frequent overlap: for example, a study publishing a new model could attempt to validate it for clinical prac...
	The key factor in deciding the most appropriate tests to use when evaluating an auto-contouring system should be the aim of the study. We propose a possible approach as presented in figure 3. When an AI model is being trained and compared with other m...
	Conclusions
	There is currently significant variation in how auto-contouring systems are assessed which makes education, research, training and clinical implementation challenging. There is a lack of consensus over which metrics are most clinically useful and how ...
	Auto-contouring is anticipated to be used widely in the future and systems need to be appropriately validated to ensure they are safe to use in clinical practice [3, 43] Prior to clinical use, a clinically relevant assessment should be performed, idea...
	There is a clear need to develop standardised approaches for the validation of auto-contouring systems and this should become a priority for the auto-contouring research community.
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