
LKB Model fitting 

The LKB model was then fit on constructed DVHs from the Training set for the dose delivered to the parotid 

glands.  The available training set features (V10,V20...V90) were used in combination with the mean dose in order 

to construct a differential DVH of the patient to be used as an input. Where patient DVH features were not 

available (even if mean dose was available), patients were excluded from the training set. This additional patient 

filtering meant that the LKB training set consisted of 176 patients. 

The loss function (aka error function) used was the binary cross-entropy, 𝐿𝐿(𝑦𝑦, 𝑝𝑝)   

𝐿𝐿(𝑦𝑦, 𝑝𝑝) = �−𝑦𝑦𝑖𝑖 log(𝑝𝑝𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑝𝑝𝑖𝑖)
𝑖𝑖

(2) 

Where 𝑝𝑝𝑖𝑖  is the model’s probability estimate of the 𝑖𝑖𝑡𝑡ℎ patient having toxicity, 𝑦𝑦𝑖𝑖  is whether the patient actually 

did have said toxicity (1 for yes, 0 for no), and the sum is performed over all patients. Ultimately, all our model 

fitting consisted of attempting to find values of ,𝑛𝑛,𝑚𝑚 and 𝐷𝐷50 that would minimize equation 2.We attempted 

fitting via a bounded Gradient Descent (GD) algorithm (L-BFGS-B), an evolutionary algorithm (differential 

evolution) and a stochastic algorithm (simulated annealing).  The bounds used were 𝑛𝑛 and 𝑚𝑚 between 0 and 1, 

and 𝐷𝐷50 between 1 and 100Gy. 

L-BFGS-B has some initial guess parameters that can affect the final values, so we examined the impact of initial 

guesses on algorithm performance in this case. We examined model convergence in the case of 1 million initial 

guesses, consisting of all possible combinations of the following parameters: 100 evenly spaced values for each 

𝑛𝑛 and 𝑚𝑚 ranging from 0.01 to 1, and the same for 𝐷𝐷50 ranging from 1 to 100Gy. The purpose of trying multiple 

initial guesses was to assess model stability as a function of initial conditions, as well as performance and 

generalizability in the case of convergence.  

When model convergence was achieved, the model was then evaluated on the test set DVHs to evaluate the ROC-

AUC. Optimization (using L-BFGS-B) was performed using SciPy’s 24 optimize toolbox with bounds of 0.001 to 

1.0 on 𝑛𝑛, 0 to 1.0 on 𝑚𝑚, and 1.0Gy to 150.0Gy on 𝐷𝐷50. Other metrics such as run-time for fit and performance on 

the test set were also collected. 

ML Model fitting 

Input features used in the ML models were DVH metrics of the parotid glands (Mean dose, Minimum Dose, 

Volume (cc), DMax, V10,V20...V90, etc.) as well as the patient gender and age. Additional demographic features 



of interest were also available in this dataset, however only gender and age were used as these were the only 

additional features also available in the test set.  

From the training set, DVH's were extracted from patient RT-Struct and RT-Dose DICOM files imported into 

CERR 25,26. From CERR, features of interest matching those of the training set were extracted from the raw DVHs, 

along with patient age and gender. 

We were able to correct batch effects with ComBat prior to ML model training19, however it is to be noted that 

this was not possible in the case of the LKB model. This is because batch effect correction via ComBat is done 

on set of numerical features on a feature-by-feature basis, but one of the inputs to the LKB model is an entire 

differential DVH. Therefore, only our ML models used data corrected for batch effects (and indeed the ability to 

do this is arguably a benefit of using ML).  

Next, we performed data scaling, principal component analysis (PCA), and hyperparameter tuning on ML models. 

Data scaling was done by subtracting the mean from all values and dividing the result by the standard deviation. 

We did this to both the training and testing data using the mean and standard deviation of the training set. We then 

optimized model hyperparameters using 20-fold cross validation according to the hyperparameter set shown in 

Supplementary Table 1, in addition to also tuning the number of PCA components (the number of components 

was chosen such that 10, 20, 30, 60, 80, 90, or 99 percent of variance was explained). Hyperparameter tuning was 

done to choose the model which maximized the ROC-AUC on the validation folds. 

Model Hyperparameter set 
AdaBoost • Base Estimator: balanced and unbalanced cases of LR and DT were tried:  

• Number of Estimators: 5,10,20,40,80,160,320,450 
Decision 
Trees 

• Minimum samples per leaf (as % of data): 0.01,0.05,0.1,0.2,0.5 
• Minimum number of samples required to split an internal node: 2,5,7,8,10 
• Maximum depth: 1,3,5, 10, 15, 30,58 
• Number of features to consider when looking for the best split: √𝑛𝑛 and 𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛 where n 

is the number of features 
Logistic 
Regression 

• Class Weight: balanced or unbalanced 
• Solver: liblinear or Newton-CG (where penalty allows) 
• Penalty: L1, L2, or none 

Gradient 
Boosting 

• Number of Estimators 20,40,80,160,320,640 
• Fraction of samples to be used for fitting the individual base learners: 0.2,0.5,0.8,1 

Supplementary Table 1: Hyperparameter tuning values used for ML fitting. In addition to all parameters shown 

above, the number of PCA components was also tuned for all models, keeping 10, 20, 30, 60, 80, 90, or 99 percent of 

variance. 



Following hyperparameter tuning, the best performing models for each algorithm were then fit on the test set and 

evaluated on their ability to assess G2 Xerostomia. The ROC-AUC and accuracy were assessed to check model 

performance. 

Data Processing and Description 

For the few cases where 6-month follow-up data was missing, data at a later follow-up (e.g. 12 months) was used 

where possible. Otherwise, if no data was available at 6 months or later, the patient was discarded from the set. 

Patients where a joint DVH could not be constructed for both parotid glands were also excluded.  

We summarize some data characteristics below in Supplementary Table 2. Here it can be seen that several dose 

characteristics can vary between the datasets, as well as the fraction of patients receiving primary RT. The % of 

patients receiving primary RT was quite different between training and test sets, and this could be a potential 

explanation for batch effects. However, as both datasets collected many various features, we cannot be certain as 

to the root of the batch effects but can nevertheless conclude that they are present.  

 Age 
Gender (% 

Female) 

Average Dose to Parotid Glands across all 
patients(Gy) 

Primary RT 
% 

Range (Max-Min 
dose) Median  Mean  

Train 62.64 0.29 51.18 16.65 17.22 0.97 
Test 58.16 0.275 52.18 42.09 46.54 0.74 
Train Xero+ 62.46 0.23 61.3 28.61 27.79 1 
Train (Xero-) 62.6 0.29 49.6 15.05 15.58 0.94 
Test (Xero+) 56.75 0.08 51.45 59.02 57.34 0.5 
Test (Xero-) 58.99 0.31 49.5 40.23 44.52 0.78 

Supplementary Table 2: Statistical characteristics in training and test dataset 

A visual representation of this phenomenon is shown in Supplementary Supplementary Figure 1, in which 

boxplots of the mean dose to patients in the data are shown. It can be seen from the raw data that that there are 

some noticeable batch effects between the training and test datasets, and that the mean dose is predictive of 

xerostomia incidence in both these datasets. 

 



For this reason, it seems that accuracy (defined as % of samples correctly classified) could be improved if batch 

effects could be accounted for (but not ROC-AUC).Therefore, we also examine and present the datasets after the 

application of the ComBat algorithm.19 The ComBat algorithm corrects for batch effects by estimating their impact 

and then performing an altered version location/scale adjustment of a mean and variance by mapping data to an 

intermediate probability distribution. We deployed ComBat with the pyComBat package on all patient dose 

features prior to training any ML models, but were not able to do the same for the LKB model as the LKB model 

takes in dose volume pairs from the differential dose volume histogram as an input. This is because batch effect 

correction via ComBat is done on set of numerical features on a feature-by-feature basis, but one of the inputs to 

the LKB model is an entire differential DVH. Therefore, only our ML models used data corrected for batch effects 

(and indeed the ability to do this is arguably a benefit of using ML). The effect of correcting for batch effects is 

also shown in Supplementary Supplementary Figure 1. 

While both the training and test set examined 6-month follow-up, the training set used CTC  20 and the test set 

used the LENT-SOMA 21–23 questionnaire. After examination and consultation with trial leads, it was decided that 

an appropriate agreement between these two datasets was that the CTC grade was one less than the LENT-SOMA 

Grade. i.e. CTC G2 Xerostomia = LENT-SOMA G3 Xerostomia, and we proceeded on this basis. However, it is 

to be noted that the translation between LENT-SOMA and CTC did not affect the area under the receiver operator 

characteristic curve (ROC-AUC), which was the primary metric used for model assessment; only the accuracy 

was impacted by decision. When referring to G2 Xerostomia in this manuscript, we are referring to G2 or higher 

in the training (CTC) set, which corresponds to G3 (LENT-SOMA) in the test set.  

Supplementary Figure 1: G2 Xerostomia incidence in the data relative to the mean dose to the parotid glands before and after applying 

ComBat correction. Diamond shapes represent datapoints that are significantly different than the rest of the dataset. The box shape is the 

difference between the third and first quartiles. 



Xerostomia incidence correlated well with the mean dose to the parotid glands (Supplementary Supplementary 

Figure 1). This situation bodes quite well for the performance of the LKB model as this is primarily a model based 

on the GMD, and when the GMD (which reduces to the mean dose for n=1) is predictive, the model itself is also 

predictive. Therefore, this is an optimal scenario in which to deploy the LKB model.  
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