1 Micro-CT image acquisition, processing, and segmentation to track lung cancer

2 progression and characterise pulmonary nodules in mice

- 3
- May Zaw Thin^{1,2,9*}, Christopher Moore^{3,9}, Thomas Snoeks⁴, Tammy Kalber⁵, Julian Downward^{3,6*}, Axel Behrens^{1,2,7,8}
 ¹Cancer Stem Cell Laboratory, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
 ²Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- ³Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1
 1AT, UK
- ⁴Imaging Research Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT,
 UK
- ¹⁸
 ⁵Centre for Advanced Biomedical Imaging (CABI), University College London, Paul O'Gorman
 Building, WC1E 6DD, London, UK
- ⁶Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, 237
 Fulham Road, London SW3 6JB, UK
- ⁷Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- ²⁶
 ⁸Convergence Science Centre, Imperial College London, South Kensington Campus, London
 SW7 2AZ, UK
- 29 30

34

- 31 ⁹Equal contribution
- 32
 *Corresponding authors: <u>Julian.Downward@crick.ac.uk</u>, <u>may.zawthin@icr.ac.uk</u>

Editorial Summary: A micro computed X-ray tomography-based approach for quantifying the number and volume of lung cancer nodules over time, enabling the tracking of individual nodule formation, tumour growth and response to therapy.

38

Twitter suggestion: Longitudinal tracking and radiological characterisation of lung cancernodules via micro computed X-ray tomography

41

42 Key references43

- Castellano, E. *et al.* Requirement for interaction of PI3-kinase p110α with RAS in lung
 tumor maintenance. *Cancer Cell* 24, 617-630, doi:10.1016/j.ccr.2013.09.012 (2013).
- 46 2. Molina-Arcas, M. *et al.* Development of combination therapies to maximize the impact
- 47 of KRAS-G12C inhibitors in lung cancer. Sci Transl Med 11,
 48 doi:10.1126/scitranslmed.aaw7999 (2019).

- van Maldegem, F. *et al.* Characterisation of tumour microenvironment remodelling
 following oncogene inhibition in preclinical studies with imaging mass cytometry.
 Nature Communications 12, 5906, doi:10.1038/s41467-021-26214-x (2021).

57 Abstract

X-ray computed tomography is a reliable technique for the detection and longitudinal monitoring of pulmonary nodules. In preclinical stages of diagnostic or therapeutic development, the miniaturised versions of the clinical CT scanners, are ideally suited for carrying out translationally relevant research in conditions which closely mimic those found in the clinic. In this Protocol, we provide image acquisition parameters optimised for low radiation dose, high-resolution and high-throughput CT imaging using three commercially available micro-computed tomography scanners, together with a detailed description of the image analysis tools required to identify a variety of lung tumour types, characterised by specific radiological features. For each animal, image acquisition takes 4 - 8 minutes, and data analysis typically requires 10 - 30 minutes. Researchers with basic training in animal handling, medical imaging and software analysis should be able to implement this protocol across a wide range of lung cancer models in mice for investigating the molecular mechanisms driving lung cancer development and the assessment of diagnostic and therapeutic agents.

73 Key words74

- 75 Micro-CT, lung, cancer, 3D, in vivo imaging

- -

88 89

90 Introduction

91 Lung cancer is the leading cause of cancer-related mortality worldwide affecting an estimated 92 1.8 million deaths per year¹. Animal models of lung cancer play an important role in 93 researching therapies by elucidating the mechanisms regulating the development of lung 94 cancer and can be adopted in the preclinical phase of drug discovery, to test the ability of lead 95 compounds to reduce the growth of a tumour. In preclinical studies, ex vivo histological 96 analysis is routinely applied to assess therapeutic response. However, the lack of longitudinal 97 information on tumour growth, reduction, or growth arrest, in addition to the large numbers of 98 animals per cohort required by histology-based methods due to significant inter-animal 99 variation, limit the utility of such data from a translational standpoint. Unlike histology-based 100 approaches, non-invasive in vivo imaging allows serial monitoring of the same animal over 101 time, which in turn enables a quantitative or semi-quantitative assessment of otherwise 102 unknown variables such as tumour onset (by detecting the early stages of mass formation), 103 progression (by detecting changes in tumour size), and therapy response (by detecting tumour 104 shrinkage or growth arrest). Non-invasive *in vivo* imaging is advantageous to experimental 105 design as it reduces the number of animals needed in each cohort and thereby allowing to 106 better account for, or even directly measure, inter-animal variability².

107 X-ray computed tomography (CT) is a widely available diagnostic imaging modality which uses 108 an X-ray beam to create a cross-sectional tomographic plane of the body. CT measures the 109 electron density of the tissue by calculating the attenuation coefficient of the X-ray beam as it 110 travels through the animal from data acquired by a detector array. The X-ray source and the 111 detectors typically rotate around the body on a gantry while the animal remains sedated at its 112 centre. A series of cross-sectional 2D slices is then reconstructed into 3D digital format with 113 each pixel representing a measurement of attenuation coefficient or density of the tissue which 114 the X-ray beam passes through. The measurement is expressed in Hounsfield Units (HU) 115 using water as a zero threshold on the scale³. The range and variation of HU values for 116 different types of tissues, as extensively discussed in the literature^{4,5}. Generally, tissues 117 denser than water, such as muscle and liver, are assigned positive HU numbers with high 118 density (compact bone having +1000 HU), whereas tissues less dense than water, such as 119 adipose tissue, are assigned negative HU numbers. Air displays extremely low density and is 120 associated with -1000 HU. Therefore, in a greyscale CT image of the chest, the lung which is 121 full of air appears dark, soft tissue or tumour nodules are grey and the ribs and the vertebrae 122 of the spine are white.

123 Due to its excellent air-tissue contrast, CT is the most frequently used imaging technique in 124 the clinic for lung cancer screening and therapy monitoring⁶. In preclinical research, micro-CT

scanners are frequently used for lung imaging^{7,8,9,10,11}. Micro-CT scanners are miniaturised 125 126 versions of their clinical counterparts, where the size of the gantry, bed and detectors are 127 tailored for small animals. Its use to study different types of lung cancer models has 128 nevertheless remained technically challenging due to motion artefacts (in particular chest and 129 lung expansions during breathing), the lack of documentation of detailed radiological 130 characteristics of each tumour type and a lack of robust analysis tools. The lack of a structured 131 and internationally recognised protocol to standardise in vivo preclinical imaging data 132 acquisition and analysis pipelines hinders the direct comparison of datasets acquired via 133 different instruments or even different users, hence reducing the reproducibility of research 134 findings in the field. Here, we present an optimised protocol for *in vivo* micro-CT imaging 135 setups and analysis tools for mouse models of lung cancer. This approach offers a simple to 136 implement and non-invasive method for accurate identification of lung tumour nodules and 137 enables the serial quantification of tumour and lung volume changes in response to a wide 138 range of genetic or therapeutic interventions.

139

140 **Development of the protocol**

141 The system design of the *in vivo* micro-CT is similar to the clinical scanner in which the gantry 142 mounted with the X-ray source and detectors rotates around the animal. However, the 143 scanning efficiency of a micro-CT scanner is lower than that possible with a clinical instrument, 144 as smaller devices trade efficiency for a higher image resolution, typically <100 μ m¹². The 145 choice of CT imaging parameters also needs to strike a balance between the radiation dose 146 and the desired spatial resolution. Small animals have fast respiratory and cardiac rates (adult 147 mice values range between heart rates of 310-840 beats per minute and respiratory rates of 148 80-230 breaths per minute), which pose a challenge for lung imaging. Bearing in mind that 149 both rate values significantly slow down under anaesthesia, the motion can be accounted for 150 using either prospective gating or retrospective gating. Although prospective gating can 151 provide images with better resolution and fewer motion artefacts¹³, the commercially available 152 micro-CT scanners are not equipped with x-ray shutters triggered by respiration motion, 153 leading to long scan acquisition timeframes. Retrospective gating is thus preferred for shorter 154 scan times which help lower radiation exposure^{14,15}.

To facilitate reproducibility across scanners and users, we have developed a set of CT acquisition parameters at low x-ray dose and tested these in two standalone micro-CT scanners and a preclinical multimodal positron emission tomography (PET) and CT instrument. Our protocol provides straightforward image acquisition steps with robust tumour analysis tools which can be easily adapted to a wide range of lung tumour types. We have obtained reliable and reproducible results with various tumour models, including genetically engineered mice^{8,9,16,17}, systemic cell injections through the tail vein¹⁸, a urethane-induced 162 lung tumour⁹, as well as orthotopic intratracheal cell transplantations⁷, achieving high 163 resolution images of small lung nodules $(0.06 - 0.08 \text{ mm}^3)$ and tracking individual tumours 164 over time without using contrast agents. Our analysis methods were optimised after noticing 165 that the analysis manual provided by the manufacturers of the scanners, resulted in 166 inconsistencies in tumour volume quantification between radiological phenotypes. Thus, we 167 developed a set of analysis methods suitable for each radiological feature which are 168 performed with commercially available software such as Bruker's CTAn and Analyze software, 169 widely available to the preclinical imaging community.

170

171 Applications

172 Micro-CT imaging enables researchers to study in vivo lung tumour initiation and development 173 in a pathophysiologically relevant context. Serial CT imaging and total tumour volume 174 analyses offer a non-invasive way of quantifying tumour burden with a strong correlation with standard histopathological assessments^{11,19,20}. We have applied our image acquisition and 175 176 tumour volume analysis protocols for determining the Ras protein interaction in KRAS-driven 177 lung tumours⁷ and for evaluating the efficacy of KRAS-G12C inhibitors^{9,21}. In addition, tracking 178 individual tumour nodules over time can be used to detect the emergence of nodule-specific 179 resistance to therapy in mutant EGFR-driven tumours⁸. Assessing lung volume changes can 180 help shed light on the mechanisms driving compensatory lung volume expansion in infectious 181 lung diseases²² and lung metastasis²³.

We have applied our image acquisition protocols to assess radiological characteristics 182 183 displayed by the tumour nodules in multiple lung tumour models. For example, in KRAS-driven 184 autochthonous tumour models (i.e., Cre-recombinase mediated expression of KRAS^{G12D} and 185 p53 loss of function)^{9,17,24}, several localised nodules (Fig. 1a) with smooth lobulated (Fig. 1b) 186 or spiculated margins (Fig. 1c) can be identified starting from ~6-8 weeks after the adenoviral delivery of Cre-recombinase using intratracheal intubation²⁴. Depending on the viral dose, on 187 188 average between 6 - 10 nodules per animal can be detected at 12 weeks after instillation. The 189 chemically-induced lung cancer model, for example, the administration of urethane (a known carcinogen) induces KRAS^{Q61R} mutations²⁵. This model is less aggressive and has fewer 190 191 nodules than the Cre-recombinase controlled KRAS mutation models^{9,25} but presents with the 192 similar radiological appearance (Fig. 1d). In an orthotopic model of intratracheal tumour cell 193 transplantation⁷, multiple nodules with defined margins can be observed (**Fig. 1e**), however 194 the rate of tumour development between animals typically varies from ~12-16 weeks after cell 195 transplantation.

196 We have applied two types of tumour volume analyses depending on the radiological 197 phenotypes of tumour models. Individual nodule segmentation and total tumour volume 198 quantification are more suitable for tumour models with localised pulmonary nodules 199 compared to widespread diffuse nodules. For example, a doxycycline inducible autochthonous mouse model of epidermal growth factor receptor (EGFR)^{L858R} -driven lung cancer^{8,26,27} usually 200 201 presents a mixture of diffuse nodules with ground-glass appearances (Fig. 1f-h) and discrete 202 lesions (Fig. 1i). These lesions can be detected via micro-CT starting from the fourth week of 203 doxycycline administration. Similar radiological characteristics can be detected in models 204 developed by administering cancer cells via the tail vein (Fig. 1), where the characteristics 205 vary depending on the type of cells and mouse strains used. In models with widespread diffuse 206 nodules, tumour burden can be indirectly measured by calculating lung (air inside the lung) 207 volume because individual tumour segmentation is very challenging to achieve accurately.

208

209 **Comparison with other methods**

210 A variety of commercially available non-invasive in vivo imaging instruments can be used for 211 the detection of lung cancer. The choice of which approach to use often depends on the 212 availability of the equipment and the departmental organisation (e.g., radiology or cancer 213 research) which runs the imaging suites. Magnetic resonance imaging (MRI) is a reliable 214 imaging method to monitor lung tumour growth^{10,28}. However MRI requires longer scanning time (~40 min per animal)²⁹ and provides lower resolution than CT. In addition, availability of 215 216 preclinical MRI scanners is limited due to its high cost. Optical imaging methods such as 217 fluorescence and bioluminescence imaging (BLI) are faster and more sensitive in detecting 218 lung tumours^{28,30}. Nonetheless, the spatial resolution of optical imaging approaches is poor 219 and individual nodules are difficult to discriminate. In addition, in vivo fluorescence imaging 220 suffers from the background autofluorescence and relies on imaging in the near-infrared (NIR) window using NIR probes^{30,31} and far-red fluorescence protein expressing cells³². BLI also 221 222 requires the use of tumour models with luciferase expressing cells³¹ and in genetically engineered mouse models, it can be time consuming and technically complexed to couple 223 224 genetically encoded bioluminescent reporter with an oncogenic pathway of interest^{33,34}. Single 225 photon emission computed tomography (SPECT) and positron emission tomography (PET) 226 can be used to detect lung cancers and can provide molecular and metabolic activity of tumours³⁵⁻³⁸, but their limitations are poor spatial resolution (≤ 1 mm in SPECT³⁹ and >1 mm in 227 228 PET)⁴⁰, long scanning time and require the use of radioisotopes. Depending on the amount of 229 radioactivity injected, the scanning time for SPECT imaging is 10 – 50 min per animal⁴¹⁻⁴³ and 230 PET imaging is 15 – 60 min per animal⁴⁴⁻⁴⁷. To co-register detailed anatomical localisation with 231 molecular information, commercial small animal SPECT (e.g., nanoScan SPECT/CT, Mediso), 232 PET (e.g., nanoScan PET/CT, Mediso) and optical (e.g., IVIS SpectrumCT, PerkinElmer) 233 imaging scanners are usually integrated x-ray CT inside the same imaging gantry or platform. 234 Therefore, further optimisation of our protocol in multimodal scanners may extend the use of 235 this protocol for imaging lung cancer. Micro-CT scanners have relatively straightforward

maintenance requirements (e.g., calibration of the x-ray tube), do not typically require contrast
agents (because the tissue/air interface in the lung provides high contrast) and are
inexpensive to operate, making them suitable for lung imaging.

239

240 Limitations

241 The main limitation of micro-CT imaging is the exposure to ionizing radiation, which, over time 242 (when used to serially image the same animal), could cause radiation-induced lung injury and 243 confound the imaging read-outs. However, radiation doses delivered with serial micro-CT of 244 animals (average 840 mGy for a single scan) are an order of magnitude lower than the typical 245 doses (4 - 20 Gy) applied in the field of radiotherapy^{48,49}. Based on our regulated use of the 246 protocol (see the Regulatory Approvals section) with various lung tumour models and different 247 micro-CT scanners, we have not observed any radiation-induced adverse effects or tumour 248 volume changes, consistent with other studies⁴⁹⁻⁵¹. CT is a high-resolution technique for 249 anatomical information, but it cannot provide molecular information without targeted contrast 250 agents, such as that provided by targeted gold nanoparticles⁵². The feasibility of using micro-251 CT for imaging squamous cell lung cancer models has not been assessed using this protocol 252 due to the lack of well characterised in vivo mouse models. It is useful to note that the majority 253 of autochthonous murine models of lung cancer display a mixture of adenocarcinoma and 254 squamous cell carcinoma⁵³⁻⁵⁶, our CT imaging protocol cannot conclusively disambiguate 255 between the two.

256 Although our simple, easily adaptable analysis tool can provide accurate measurements of 257 lung and tumour volume, it is mainly based on a semi-automated segmentation strategy which is more laborious than complex automated methods⁵⁷ or deep learning-based approaches⁵⁸. 258 259 The accuracy and reliability of deep learning tools have yet to be validated across multiple 260 lung tumour models. We envisage that our protocol could therefore also serve as a tool to 261 improve the efficiency of automated segmentation methods. Our lung segmentation tools are 262 based on density-based thresholding, therefore are not suitable for discriminating between 263 pulmonary vessels, necrotic tissues, and tumours, which all have a similar density. However, 264 we and others who used similar strategies have shown that tumour burden measurement from CT strongly correlates with histological assessments^{7,8,59,60}. The possible explanation is that 265 266 the intrapulmonary vessels and the necrotic tissues represent a relatively small part of the soft 267 tissue, and their incorporation does not have a notable difference in evaluation of therapy and 268 genetic intervention.

269

270 Experimental design

The protocol and steps here are optimised for the commercially available Skyscan 1176 (Bruker), the Quantum GX2 (PerkinElmer) micro-CT scanners and the nanoScan PET/CT 273 (Mediso) system. Our protocol could be adapted to other micro-CT scanners with similar 274 specifications. The image acquisition steps outlined here are straightforward and researchers 275 with no prior experience in CT lung imaging can easily apply it to their relevant research 276 projects. The image analysis tools described here are simple yet robust and easily adjustable 277 depending on the radiological phenotypes of the model. No MATLAB or programming 278 experience is required. All analyses are performed with two commercially available software 279 packages: Bruker's CTAn and Analyze which are part of software packages for Skyscan and 280 Quantum GX2 respectively. We have applied our protocol in several lung tumour models, for 281 example, Kras mutant model, doxycycline inducible EGFR mutant model, tail vein injection 282 model, urethane-induced model and intratracheal cell transplantation model. The protocol 283 presented here can be applied in other mouse models of lung cancer not limited to the models 284 that we provided as examples. We have used both male and female mice from different lung 285 cancer models and we have observed no sex differences in tumour engraftment, growth rate 286 and micro-CT imaging parameters, e.g., radiation side effect.

287 Figure 2 shows the overview of the Procedure: following a series of animal preparation and 288 image acquisition steps (Steps 1-15), respiratory gating and reconstruction steps (Steps 16-289 17) are explained in order to obtain good quality images for image analysis steps (Steps 18-290 22). Generally, there are two types of tumour volume analysis which can be performed: the 291 direct measurement of individual tumour volume or the indirect quantification of tumour growth 292 based on loss of air (healthy lung) volume depending on the radiological phenotype of the 293 tumours and the research questions being asked. Our analysis pipeline is mainly based on 294 the semiautomatic segmentation of images following the application of an intensity threshold 295 value and the selection of regions of interests and image processing (see steps 23-28 for 296 detail); however, the automated segmentation steps and analysis of lung volume with the 297 Analyze software use the surrounding organs as calibrators (see step 28B for detail).

298 For studies with genetic (e.g., CreERT2-mediated genetic deletion via tamoxifen 299 administration)⁷ or therapeutic intervention, a baseline scan should be performed on the day 300 before or the first day of treatment. Depending on the tumour development stage and 301 treatment approach, longitudinal scans should be performed weekly, twice, or once per month. 302 We ensure that all experimental groups receive the same number of scans but no more than 303 5 times per month to avoid radiation side effects. Before investing time, money, and animals 304 on one model, we advise researchers to review the radiological characteristic of the chosen 305 animal model and determine its suitability for their research objectives. For example, a mouse 306 model with diffuse, multiple lung tumours is not appropriate for identifying a specific lesion 307 resistance to targeted therapy. Bearing in mind that a quantitative tumour volume (e.g., in 308 mm³) assessment can take up to 30 min per mouse, the total number of tumours (e.g., 10 309 nodules) detected per animal (see steps 18-22 for detail) can be used as a rapid (up to 15 min

310 per mouse), qualitative evaluation of tumour burden for creating different treatment groups.

311

312 **Regulatory approvals** 313

314 All micro-CT studies described in this protocol are in compliance with the lonising Radiation 315 Regulations 2017 (IRR17). The Francis Crick Institute and the University College London 316 enforce the Ionising Radiation Medical Exposure Regulations and follow the guidelines for the 317 use of radiation in medical research.

318

319 **Materials**

320 Reagents

321	٠	Gibco™ Fetal Bovine Serum (FBS), qualified, heat inactivated, E.Uapproved, South
322		America Origin (Fisher Scientific, cat. no. 10500064)
323	•	Dulbecco's PBS, no calcium, no magnesium (Thermo Fisher Scientific, cat. no.
324		14190094)
325	•	Gibco™ DMEM, high glucose (Fisher Scientific, cat. no. 11574486)
326	•	Gibco™ L-glutamine (200 mM, Fisher Scientific, cat. no. 11539876)
327	•	Penicillin and streptomycin (10,000 units penicillin and 10 mg streptomycin per mL in
328		0.9% NaCl, Sigma-Aldrich, cat. no. P0781)
329	•	KPB6 (Cell Services at the Francis Crick Institute; RRID: CVCL_C0RJ)
330		! Caution
331		Cell culture should be checked regularly to ensure that cells are authentic and free
332		from mycoplasma infection.
333	•	Isoflurane (IsoFlo, Zoetis, cat. no. NDC 0044-5260-05)
334	•	Lubrithal ophthalmic soothing eye gel (10 g, Dechra)
335	•	3M [™] Transpore [™] surgical tape (3M ID 7100227485)
336	•	Adenovirus expressing Cre-recombinase (Viral Vector Core, U of Iowa-5 Ad5CMVCre,
337		Plasmid: G0166 pAd5CMVCreMT1pA)
338		! Caution
339		Handling and administration of viruses should take place in the class 2 biosafety hood.
340	•	Doxycycline-containing diet (Harlan-Teklad, cat. no. TD.01306, irradiated)
341		! Caution
342		To avoid accidental exposure to doxycycline, handle the food by using appropriate
343		personal protective equipment: gloves, mask, and lab coat.
344	•	Urethane ≥99% (Sigma-Aldrich, cat. no. U2500)
345		! Caution

- Toxic. May cause cancer. Work under a fume hood. Handle with care and appropriate personal protective equipment: gloves, mask, lab coat and protective goggles. Do not let product enter drains and dispose as required by local regulations.
- 22G (blue) catheter (25 mm, BD Insyte, cat. no. 381223)
- 350

351 Animals

All animal studies were approved by the Francis Crick Institute and the University College London Animal Ethics Committee and licensed under the UK Home Office regulations and the Guidance for the Operation of Animals (Scientific Procedures) Act 1986 (Home Office, London, United Kingdom) including Amendment Regulations 2012 and United Kingdom Coordinating Committee on Cancer Research Guidelines for the Welfare and Use of Animals in Cancer Research⁶¹. The protocol presented here can be used with both males and females.

358

359 Mouse models of lung cancer

360 Kras mutant model

Kras^{LSL-G12D/+}; *Trp53^{Fl/Fl}* (KP) mice were obtained from the Mouse Models of Human Cancer Consortium and mutant mice were generated as described previously⁶². In mixed-sex mice between 6-12 weeks of age and average weight of 25 g, lung tumours were initiated using intratracheal intubation of 1x10⁶ plaque forming units (pfu) adenovirus expressing Crerecombinase (Viral Vector Core) as previously described⁶³. Typically, lung tumours were first detected via micro-CT ~8 weeks after adeno-Cre infection.

367

368 Doxycycline inducible EGFR mutant model

The Clara cell secretory protein element - tetracycline-dependent activator (*CCSP-rtTA*) mice and *TetO-EGFR^{L858R}* mice were obtained from the Jackson Lab and Mouse Repository respectively, and the generation of both strains has been described previously^{26,27}. In mixedsex mice between 6-12 weeks of age and average weight of 25 g, tumour development is initiated by feeding mice with doxycycline-containing food pellets (625 ppm) continuously. Typically, lung tumours were first detected via micro-CT ~4 weeks after doxycycline administration.

376

377 IV injection model

378 KPB6, a murine lung adenocarcinoma cell line derived from KP mice (C57BL/6 background), 379 was grown in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin 380 and 100 μ g/mL streptomycin. 1 x 10⁵ KPB6 cells were injected intravenously into the tail vein

- of 8-12-week-old C57BL/6 mice (mixed-sex) with average weight of 25 g. In our experience,
- 382 lung tumours were first detected via micro-CT ~2 weeks after injection.

383					
384	Urethane-induced model				
385	Tumours were induced in 8-16-week-old mixed-sex FVB/NJ mice $(25 - 30 \text{ g})$ by giving them				
386	a singl	e intraperitoneal injection of 1 g/kg of urethane in PBS. Lung tumours were first detected			
387	via mio	cro-CT ~16 weeks after urethane injection.			
388					
389	Intratr	acheal cell transplantation model			
390	8-12-w	veek-old mixed-sex C57BL/6 mice (25 – 30 g) were anaesthetized and 1 x 10^5 KPB6			
391	cells p	er 50 µl of PBS were introduced directly into the lungs through the intratracheal catheter.			
392	Lung t	umours were first detected via micro-CT ~12-16 weeks after cell transplantation.			
393					
394	Equip	ment			
395	٠	Skyscan 1176 (Bruker)			
396	•	Quantum GX2 (PerkinElmer)			
397	•	nanoScan PET/CT (Mediso)			
398	٠	Perkin Elmer Rodent Anaesthesia System RAS-4			
399	٠	Induction chamber (Vet Tech, cat no. AN010R)			
400	•	Isoflurane vaporiser (Vet Tech, cat no. AN003A)			
401	•	Oxygen concentrator (NIDEK Nuvo Lite 5LPM)			
402	•	Scavenger (Harvard Apparatus FLUOVAC Anaesthesia System, cat no. MA1 34-0388)			
403	•	Chamber warmer (EZ anaesthesia corporation, cat no. HB-163)			
404	•	Small animal recovery chamber (Vet Tech, cat no. HE010)			
405	Comp	uter & Software			
406	٠	Image processing and analysis were performed using a dedicated imaging workstation			
407		with the following specifications: processor: Intel® Xeon® W-2223 3.6GHz; memory:			
408		128GB; SSD: 960 EVO 1TB; HDD Dell 1TB 7.2K SATA; OS: Windows 11; GPU:			
409		NVIDIA GeForce GTX 1080 Ti.			
410	•	Data from Skyscan were analysed using CTAn software version 1.18 and 3D			
411		visualisation was performed using CTVol software version 2.3.1.0 from Bruker.			
412	•	Data from Quantum GX2 were analysed and visualised in 3D using Analyze software			
413		version 12.0 from AnalyzeDirect.			
414	•	Data from nanoScan PET/CT were analysed using CTAn software after converting to			
415		compatible file format.			
416					

417 Equipment setup

 419 process is only required once a day and the duration is 15 – 30 minutes depending on the 420 type of scanner. To ensure a good quality image, we recommend regular calibration of 421 Hounsfield units, CT gain and scanner alignment. 422 For Skyscan users, to have a uniform background image for the detector, flat field correction 423 must be performed before a day's scanning. The following parameters need to be checked 424 before flatfield correction: the status of X-ray source and current, correct pixel size and filter 425 selected for lung scan and no object inside field of view (FOV). 426 427 Procedure 430 All experiments involving live animals must follow local, national, and institutional guidelines. 431 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. 432 2. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until 433 the mouse has lost its righting reflex and the breathing rate has become slower and 434 deeper. A CRITICAL STEP The mouse must be fully sedated before moving it to the 435 bed. 3. When the mouse is unconscious, transfer it to the bed. 436 Troubleshooting 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 4. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help 4. keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). A CRITICAL STEP It is important to make sure that the front paws are not covering the chest antefact from the bone. 7. To ensure serial scans of the same animal display in the similar orienta	418	All CT scanners require the X-ray source to warm up before scanning can take place. This					
 type of scanner. To ensure a good quality image, we recommend regular calibration of Hounsfield units, CT gain and scanner alignment. For Skyscan users, to have a uniform background image for the detector, flat field correction must be performed before a day's scanning. The following parameters need to be checked before flatfield correction: the status of X-ray source and current, correct pixel size and filter selected for lung scan and no object inside field of view (FOV). Procedure Animal preparation. Timing ~5-8 min I Caution All experiments involving live animals must follow local, national, and institutional guidelines. 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the bed. Troubleshooting 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 ~1L/min. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monitor the resp	419	process is only required once a day and the duration is 15 - 30 minutes depending on the					
 Hounsfield units, CT gain and scanner alignment. For Skyscan users, to have a uniform background image for the detector, flat field correction must be performed before a day's scanning. The following parameters need to be checked before flatfield correction: the status of X-ray source and current, correct pixel size and filter selected for lung scan and no object inside field of view (FOV). Procedure Animal preparation. Timing ~5-8 min I Caution All experiments involving live animals must follow local, national, and institutional guidelines. 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. 2. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. A CRITICAL STEP The mouse must be fully sedated before moving it to the bed. 3. When the mouse is unconscious, transfer it to the bed. Troubleshooting 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). A CRITICAL STEP It is important to make sure that the front paws are not overing the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monit	420	type of scanner. To ensure a good quality image, we recommend regular calibration of					
 For Skyscan users, to have a uniform background image for the detector, flat field correction must be performed before a day's scanning. The following parameters need to be checked before flatfield correction: the status of X-ray source and current, correct pixel size and filter selected for lung scan and no object inside field of view (FOV). Procedure Animal preparation. Timing ~5-8 min I Caution All experiments involving live animals must follow local, national, and institutional guidelines. 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. 2. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. A CRITICAL STEP The mouse must be fully sedated before moving it to the bed. 3. When the mouse is unconscious, transfer it to the bed. Troubleshooting 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). A CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxyg	421	Hounsfield units, CT gain and scanner alignment.					
 must be performed before a day's scanning. The following parameters need to be checked before flatfield correction: the status of X-ray source and current, correct pixel size and filter selected for lung scan and no object inside field of view (FOV). Procedure Animal preparation. Timing -5-8 min I Caution All experiments involving live animals must follow local, national, and institutional guidelines. 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. 2. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the bed. Troubleshooting 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.55 - 3%	422	For Skyscan users, to have a uniform background image for the detector, flat field correction					
 424 before flatfield correction: the status of X-ray source and current, correct pixel size and filter selected for lung scan and no object inside field of view (FOV). 426 427 Procedure 428 Animal preparation. Timing ~5-8 min 1 Caution 430 All experiments involving live animals must follow local, national, and institutional guidelines. 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. 2. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the bed. 436 3. When the mouse is unconscious, transfer it to the bed. 437 Troubleshooting 438 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	423	must be performed before a day's scanning. The following parameters need to be checked					
 selected for lung scan and no object inside field of view (FOV). Procedure Animal preparation. Timing -5-8 min I Caution All experiments involving live animals must follow local, national, and institutional guidelines. Line the induction chamber with paper towel and fill it with 4% isoflurane. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. A CRITICAL STEP The mouse must be fully sedated before moving it to the bed. When the mouse is unconscious, transfer it to the bed. Troubleshooting Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). A CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monitor the respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1.1/min) and return to 2% when the respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1.1/min) and return to 2% when the respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1.1/min) and return to 2% when the respiratory rate at 40-50 breaths/min by adjusting the isofluran	424	before flatfield correction: the status of X-ray source and current, correct pixel size and filter					
 Procedure Animal preparation. Timing ~5-8 min I Caution All experiments involving live animals must follow local, national, and institutional guidelines. 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. 2. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. A CRITICAL STEP The mouse must be fully sedated before moving it to the bed. 3. When the mouse is unconscious, transfer it to the bed. Troubleshooting 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). A CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	425	selected for lung scan and no object inside field of view (FOV).					
 427 Procedure 428 Animal preparation. Timing ~5-8 min 429 I Caution 430 All experiments involving live animals must follow local, national, and institutional guidelines. 431 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. 432 2. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until 433 the mouse has lost its righting reflex and the breathing rate has become slower and 434 deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the 435 bed. 3. When the mouse is unconscious, transfer it to the bed. 437 Troubleshooting 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 	426						
 Animal preparation. Timing ~5-8 min I Caution All experiments involving live animals must follow local, national, and institutional guidelines. Line the induction chamber with paper towel and fill it with 4% isoflurane. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the bed. When the mouse is unconscious, transfer it to the bed. Troubleshooting Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 	427	Procedure					
 429 ! Caution All experiments involving live animals must follow local, national, and institutional guidelines. 431 1. Line the induction chamber with paper towel and fill it with 4% isoflurane. 432 2. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until 433 the mouse has lost its righting reflex and the breathing rate has become slower and 434 deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the 435 bed. 3. When the mouse is unconscious, transfer it to the bed. 437 Troubleshooting 438 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 439 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help 440 keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and 443 secure the front paws gently to the bed using 3M transpore surgical tape to have a 444 clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that 445 the front paws are not covering the chest and they are not within the scan field of view 446 to reduce the motion artefact and streak artefact from the bone. 447 To ensure serial scans of the same animal display in the similar orientation, keep the 448 body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & 451 Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 	428	Animal preparation. Timing ~5-8 min					
 All experiments involving live animals must follow local, national, and institutional guidelines. Line the induction chamber with paper towel and fill it with 4% isoflurane. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the bed. When the mouse is unconscious, transfer it to the bed. Troubleshooting Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 	429	! Caution					
 Line the induction chamber with paper towel and fill it with 4% isoflurane. Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the bed. When the mouse is unconscious, transfer it to the bed. Troubleshooting Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	430	All experiments involving live animals must follow local, national, and institutional guidelines.					
 432 Anaesthetise the mouse by placing inside the induction chamber and wait ~2 min until the mouse has lost its righting reflex and the breathing rate has become slower and deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the bed. 436 When the mouse is unconscious, transfer it to the bed. 437 438 Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 440 Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	431	1. Line the induction chamber with paper towel and fill it with 4% isoflurane.					
 the mouse has lost its righting reflex and the breathing rate has become slower and deeper. A CRITICAL STEP The mouse must be fully sedated before moving it to the bed. When the mouse is unconscious, transfer it to the bed. Troubleshooting Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). A CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	432	2. Anaesthetise the mouse by placing inside the induction chamber and wait \sim 2 min until					
 434 deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the bed. 436 3. When the mouse is unconscious, transfer it to the bed. 437 Troubleshooting 438 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 440 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	433	the mouse has lost its righting reflex and the breathing rate has become slower and					
 bed. When the mouse is unconscious, transfer it to the bed. Troubleshooting Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	434	deeper. ▲ CRITICAL STEP The mouse must be fully sedated before moving it to the					
 3. When the mouse is unconscious, transfer it to the bed. Troubleshooting 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	435	bed.					
 437 Troubleshooting 438 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 439 - 1L/min. 440 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help 441 keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 442 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and 443 secure the front paws gently to the bed using 3M transpore surgical tape to have a 444 clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that 445 the front paws are not covering the chest and they are not within the scan field of view 446 to reduce the motion artefact and streak artefact from the bone. 447 7. To ensure serial scans of the same animal display in the similar orientation, keep the 448 body in midline and the spine straight. 449 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & 451 Quantum GX2) or the respiration pad (nanoScan PET/CT). 452 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 453 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	436	3. When the mouse is unconscious, transfer it to the bed.					
 4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	437	Troubleshooting					
 439 - 1L/min. 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	438	4. Turn isoflurane vaporizer dial to 2% (for maintenance) with an oxygen flow rate of 0.5					
 440 5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	439	- 1L/min.					
 keep the eyes moist. The gel lasts for the entire scanning duration (~10 min). Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. Maintain the temperature of the animal using a hot air heater which is set at 37°C. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	440	5. Apply a drop of ophthalmic soothing eye gel over the eyeballs of the mouse to help					
 6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	441	keep the eyes moist. The gel lasts for the entire scanning duration (~10 min).					
 secure the front paws gently to the bed using 3M transpore surgical tape to have a clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate reaches the desired range. 	442	6. Place the mouse in a supine position with nose inside the nose cone (Fig. 3a) and					
 444 clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that 445 the front paws are not covering the chest and they are not within the scan field of view 446 to reduce the motion artefact and streak artefact from the bone. 447 7. To ensure serial scans of the same animal display in the similar orientation, keep the 448 body in midline and the spine straight. 449 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & 451 Quantum GX2) or the respiration pad (nanoScan PET/CT). 452 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	443	secure the front paws gently to the bed using 3M transpore surgical tape to have a					
 the front paws are not covering the chest and they are not within the scan field of view to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 - 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 	444	clear view of the lungs (Fig. 3b). ▲ CRITICAL STEP It is important to make sure that					
 to reduce the motion artefact and streak artefact from the bone. 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	445	the front paws are not covering the chest and they are not within the scan field of view					
 7. To ensure serial scans of the same animal display in the similar orientation, keep the body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	446	to reduce the motion artefact and streak artefact from the bone.					
 body in midline and the spine straight. 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	447	7. To ensure serial scans of the same animal display in the similar orientation, keep the					
 8. Maintain the temperature of the animal using a hot air heater which is set at 37°C. 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	448	body in midline and the spine straight.					
 450 9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan & Quantum GX2) or the respiration pad (nanoScan PET/CT). 452 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	449	8. Maintain the temperature of the animal using a hot air heater which is set at 37°C.					
 451 Quantum GX2) or the respiration pad (nanoScan PET/CT). 452 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 453 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	450	9. Monitor the respiratory rate using the video recording inside the scanner (Skyscan $\&$					
 452 10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5 453 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	451	Quantum GX2) or the respiration pad (nanoScan PET/CT).					
 453 – 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate 454 reaches the desired range. 	452	10. Maintain respiratory rate at 40-50 breaths/min by adjusting the isoflurane flow rate (2.5					
454 reaches the desired range.	453	– 3% with an oxygen flow rate of 1L/min) and return to 2% when the respiratory rate					
	454	reaches the desired range.					

455	▲ CRITICAL STEP Isoflurane is an inhalational anaesthesia with variable sensitivity
456	and adverse effects in different mouse strains. The level of isoflurane should be
457	adjusted depending on the mouse strains used. Additionally, tumour burden in the lung
458	will also affect anaesthesia induction and stable breathing rate. The higher the tumour
459	burden in the lung, the greater the chance of the mouse having erratic breathing,
460	resulting in bad quality images.
461	Troubleshooting
462	
463	Image acquisition. Timing ~5-10 min
464	11. To position the mouse thorax within the scan field of view (FOV) (Fig. 3c), acquire the
465	scout view in Skyscan and nanoScan PET/CT scanner or move the bed in Quantum
466	GX2 scanner. A CRITICAL STEP Before starting scanning, it is important to make
467	sure that the whole lung is inside the FOV.
468	Troubleshooting
469	12. Choose the scanning parameters depending on the type of micro-CT scanner (see
470	Table 1).
471	13. When the scan is complete, remove the animal from the bed.
472	14. Place the animal in the heated recovery chamber (37°C). Recovery should occur
473	rapidly with the mouse conscious after 2 minutes and fully recovered and mobile within
474	5 minutes.
475	! Caution
476	Recovery of the mouse from anaesthesia will vary depending on strain and condition
477	of the mouse. The greater the tumour burden, the longer the recovery time. If the
478	mouse is breathing but not recovering from the anaesthesia after 20 minutes, or
479	moving around very slowly, sacrifice of the mouse should be considered. It is important
480	to make sure these adverse effects are described in the Home Office Project Licence
481	and conform to relevant institutional guidelines.
482	15. Place the animal back into normal home cage together with its littermates for it to be
483	returned to the animal housing facility.
484	
485	Respiratory gating and reconstruction. Timing ~3-5 min
486	16. To reduce the motion artefact and improve the spatial resolution, sort the raw
487	projection images into inspiration and expiration phases of respiratory cycle using the
488	third party RespGate software ⁶⁴ for Skyscan & nanoScan PET/CT scanner (option A)
489	or in-built respiratory gating software for Quantum GX2 scanner (option B). End
490	expiration phase is the most suitable for data analysis due to less respiration motion
491	and better image quality.

492	(A) RespO	Gate software – Skyscan & nanoScan PET/CT scanner
493	i.	Open the raw projection images with RespGate software.
494	ii.	Define the file path for saving gated data and then press start.
495	iii.	Check the 'End expiration' box in software interface for gating.
496	iv.	To track the upward (expiration) and downward (inspiration) movement of
497		the diaphragm, put medium sized square on the junction between lung and
498		diaphragm (one third over the diaphragm and two thirds over the lung) and
499		press left click on a mouse.
500	٧.	Repeat the same step (iv) for the eight different rotation angles of the raw
501		data. The software automatically presents these raw projection images
502		after each click and the gated data will be automatically processed at the
503		end.
504		
505	(B) In-buil	t respiratory gating software – Quantum GX2 scanner
506	i.	To track the upward (expiration) and downward (inspiration) movement of
507		the diaphragm in each raw projection, place the green rectangle partially
508		over the diaphragm during the acquisition (Fig. 3c).
509	ii.	At the end of image acquisition, the raw data will be automatically sort into
510		expiration and inspiration phases of respiratory cycle.
511	17. To recons	struct the gated data, choose the reconstruction parameters depending on
512	the type o	of CT scanner and software (see Table 2). Figure 3 shows the normal lung
513	images fro	om Skyscan (Fig. 3d), Quantum GX2 (Fig. 3e) and nanoScan PET/CT (Fig.
514	3f) after re	econstructing respiratory gated data.
515	Troubles	hooting
516		
517	Detection of turr	ours. Timing ~5-15 min per mouse depending on tumour models.
518	18. Since the	signal intensity (HU value) of tumour is similar to lung blood vessel and other
519	soft tissue	e (both appear grey in images), it is difficult to differentiate between blood
520	vessel and	d tumours in 2D images. Use the Data viewer software (Skyscan) or Analyze
521	(Quantum	GX2) to distinguish the tumours from lung blood vessels.
522	Optional -	\cdot other widely available 3D viewer software (e.g., ImageJ 3D Viewer.jar,
523	https://ima	agej.nih.gov/ij/plugins/3d-viewer/) ⁶⁵ can be used.
524	19. Open the	reconstructed data with appropriate 3D viewer.
525	20. Scroll thro	ough the image stacks in the Z axis (transverse/axial plane) in respective 3D
526	viewer. W	e prefer to use the Z axis as a reference plane because it is easier to note
527	down the l	ocation of suspicious nodules using the anatomical landmarks. For example,

528	detection of nodules in right or left lobe of the lung (by using heart), top or bottom of							
529	the lung (by using trachea and liver) and near the rib or the spine.							
530	21. Use the crosshairs as visual aids and locate them on the spherical shape	21. Use the crosshairs as visual aids and locate them on the spherical shape which						
531	resembles a tumour nodule observed on the Z axis (transverse/axial plane, ${f F}$	resembles a tumour nodule observed on the Z axis (transverse/axial plane, Fig. 4a,						
532	d).	d).						
533	22. Simultaneously, check the pattern of the structure on the X (sagittal plane, Fig.	4b, e)						
534	and Y axes (coronal plane, Fig. 4c, f). The blood vessel will appear cylindrical p	attern						
535	on X and Y axes (Fig. 4b, c) and tumours will remain spherical or oval shaped	l (Fig.						
536	4e, f). ▲ CRITICAL STEP Once the tumour nodule is detected, record the loca	tion of						
537	the tumour (as explained in step 20) to monitor the individual tumour volume ch	anges						
538	in serial scans.							
539								
540	Individual tumour volume analysis. Timing ~10-30 min depending on tumour mo	lels.						
541	23. Tumours with no visible margin (Fig. 5a) should be excluded from serial indi	vidual						
542	tumour volume measurement due to inaccurate tumour segmentation.							
543	24. For accurate tumour segmentation and tracking individual tumour nodules over	rtime,						
544	choose localised tumours without any attachment to surrounding structure and vessel							
545	and tumours located near the ribs (Fig. 5b, c), with visible boundaries throughout the							
546	slices.							
547	25. For individual tumour development overtime, select the tumours which are ident	ifiable						
548	throughout the serial scans for quantification. The same tumours can be identified by							
549	comparing the serial scans side by side and in relation to anatomical landmarks (as							
550	explained in step 20).							
551	26. Tumour volume analysis can be performed using CTAn software for Skysca	n and						
552	nanoscan PET/CT data (option A) or Analyze software for Quantum GX2 data (option						
553	В)							
554	(A) CTAn (tumour volume analysis) – Skyscan and nanoscan PET/CT							
555	i. Load and open the reconstructed dataset (*.bmp; one-bit monochro	me or						
556	eight-bit grayscale) with CTAn software.							
557	ii. Optional - change the appearance of the images to colour using a p	alette						
558	bar to enhance the visibility of the tumour (Fig. 5d).							
559	iii. Open 'Regions of Interest' tab from main tool bar and draw freehand	region						
560	of interest (ROI) around tumour and make sure not to include the	e area						
561	which has the same signal intensity as tumour tissue especially ne	ar ribs						
562	(Fig. 5e, f). Some parts of air should be included (Fig. 5g, h)							

563	iv.	Check ROI throughout the slices and draw and adjust accordingly to include
564		all area of tumour. Typically, the area of tumour is grey, and the surrounding
565		lung tissue is black.
566	٧.	Select 'Empty' from the 'Regions of Interest' tab to empty the ROI on the
567		image when there is no visible tumour to stop the ROIs interpolating.
568	vi.	Save ROI and name the ROI file with the number of tumour and the
569		corresponding Z stack position (e.g., T1-Z422) to prevent confusion in
570		output files.
571	vii.	Reset all ROI and repeat the same procedure (iii-vi). Find all tumours which
572		fulfil above criteria (steps 23-25).
573	viii.	After all tumours are identified, switch to the 'Binary selection' tab from the
574		main toolbar.
575	ix.	Set the threshold level for the tumour segmentation by adjusting the binary
576		threshold value to display the tumour area in the ROI as white voxels which
577		are included in the volumetric measurement and the surrounding air/lung
578		area as black voxels which are excluded from the analysis (Fig. 5i).
579		▲ CRITICAL STEP In order to ensure unbiased measurements, compare
580		the threshold level between two different datasets from the same animal,
581		for example, before and after the treatment. Set the threshold level which
582		is suitable for all the datasets from different timepoints.
583	х.	Once the threshold is set, create a task list in the custom processing tab
584		using the internal plugins (Fig. 6a).
585	xi.	To segment the tumour from the background, start with the plugin called
586		'Thresholding', key in the value from the binary thresholding and then select
587		global (Fig. 6b). Black and white image corresponds to the threshold value
588		set will appear after running the plugin (Fig. 6c-e).
589	xii.	Select 'Bitwise operation' and choose the option: Image = Image and RO
590		to combine image and ROI and generate an image which is the same as
591		the image inside ROI for further processing (Fig. 6f-h).
592	xiii.	Optional - To remove all black (space) regions that are fully enclosed by
593		white (solid) voxels select 'Despeckle' plugin and choose the option:
594		Remove pores in 2D space by image border and apply to image. This step
595		is useful for removing an abnormal gas-filled region or cavitation within lung
596		nodule (Fig. 6i-k).
597		! Caution
598		The cavitation can be caused by various aetiologies such as infection,
599		inflammation, and necrosis although it is a rare occurrence in mouse lung

600		tumour models. There is no standard practice whether to include or exclude			
601		the cavitation in the tumour volume measurement. However, the analysis			
602		step must be consistent for serial scans.			
603	xiv.	Optional - To remove certain white voxels which are not part of tumour,			
604		select 'Despeckle' plugin and choose the option: Remove white speckles in			
605		3D space less than 250 voxels (depending on the nature of the lesion) and			
606		apply to image.			
607	XV.	To calculate the 3D volume measurement, select the '3D analysis' plugin			
608		and choose the basic values displayed on the plugin such as total VOI			
609		volume, object volume, percent object volume, total VOI surface and object			
610		surface.			
611	xvi.	Select the value of object volume in mm ³ for the result of the segmented			
612		tumour volume.			
613	xvii.	Optional - To create a 3D model of the segmented tumours, end the task			
614		list with '3D model' plugin and choose the file type: *.ctm and the algorithm:			
615		Marching Cubes 33.			
616	xviii.	Save the task list and import it for the next dataset.			
617	xix.	Optional - CTVol software can be used for 3D volume rendering of			
618		individual tumour. It can be useful for demonstrating individual tumour			
619		volume changes over time (see an example in anticipated results).			
620	XX.	Optional - To perform batch analysis of multiple tumour ROIs from the same			
621		dataset, select batch manager icon in custom processing toolbar. Load the			
622		dataset and the saved ROI.			
623		! Caution			
624		Only one ROI can be applied at a time from the same dataset. Check the			
625		name of ROI in output files (see step 26. A (vi) for details) to prevent			
626		confusion.			
627					
628	(B) Analy	ze (tumour volume analysis) – Quantum GX2			
629	i.	Load the reconstructed data (*.vox files) on to the analysis program			
630		Analyze.			
631	ii.	Use Spatial filter under Process tab to improve image quality. Click			
632		'Process', 'Spatial filters' and then select 'Median' and all set to 3 (Fig. 7a-			
633		c).			
634	iii.	To crop the scans and reduce the file size, under Process tab, follow these			
635		steps: 'Image calculator', 'Region Pad' and 'Interactive'. Crop the image by			
636		clicking on 4 points around the lung image, this will create the yellow box.			

637		Position the box around the lung by dragging the lines so that they are just
638		outside of the rib cage.
639	iv.	Scroll through the image stack to make sure the lung stays within the yellow
640		box. If the lungs move outside the box, adjust the yellow box accordingly.
641		Click Done, then Apply on the Subregion-Pad value, which will now crop
642		the image around the lung (Fig. 7d-f). ▲ CRITICAL STEP Remember to
643		save the improved image before starting the analysis.
644	۷.	Load the images in 'Volume Edit' via 'Segment' tab. To improve the display
645		of the scan, click 'View' tab, select 'Intensities' and then adjust Min/Max
646		range and change the intensity of the image until the contrast between soft
647		tissue and air is clearly defined (Fig. 7g-i).
648	vi.	Scroll through the frames on the transverse plane and when a potential
649		tumour is located, click on the tumour and a cross hair will appear allowing
650		to differentiate tumour from pulmonary vessels (see steps 18-22 for
651		details).
652	vii.	For small tumours, it is easier to identify and draw the ROI around the
653		tumour by enlarging the lung image. Right click on lung image, click 'Size'
654		and 'Double' (Fig. 8a).
655	viii.	To separate the tumour from the background, click 'Add Object', select
656		'Wall' tab, tick 'Define Wall', click 'Draw Wall' and then 'Spline' with
657		sensitivity set at 7 (Extended Data Fig. 1a).
658	ix.	Draw around the tumour and make sure not to include other areas such as
659		ribs. Some parts of the air can be included.
660	х.	Once the ROI has been drawn around the tumour, right click on the ROI
661		and then click 'Apply' (Fig. 8b).
662	xi.	Continue to draw around the tumour every few frames (depending on the
663		size and irregularity of the tumour shape) until the entire tumour from
664		beginning to end is included in the ROI.
665	xii.	Under the 'Semi-Automatic' tab, select 'Region Grow' and click on tumour
666		within drawn line.
667	xiii.	To segment the tumour, adjust the threshold range by changing the
668		Min/Max values either manually or by adjusting the threshold bar
669		(Extended Data Fig. 1b).
670	xiv.	Scroll through the image stack from the beginning to the end of the tumour.
671		The tumour should be completely white (without any black pixels)
672		throughout the image stack, with a clean black outline around the tumour
673		(Fig. 8c, Extended Data Fig. 1c-e). Then, click 'Extract Object'.

- 674xv.If the tumour is isolated within the lung, only the tumour area will be675highlighted. Scroll through the image on the left and make sure that all part676of the tumour is correctly highlighted. Alternatively, click on the tumour677image in the right-hand box, hold down Ctrl on the keyboard and observe678the tumour at all angles.
- 679 xvi. However, if the tumour is attached to background soft tissue or incorrectly 680 drawn around, the whole image will be highlighted (Fig. 8d, Extended Data 681 Fig. 2a-c). To correct this, click 'Semi-Automatic' tab and 'Object 682 Separator'. Click on 'Original' in the object window and click anywhere in 683 the lung image other than the tumour (the heart is usually ideal) and then 684 click on the tumour to create two crossed markers. Then click 'Separate' 685 (Extended Data Fig. 2d). Scroll through the frames and confirm that the 686 tumour is correctly highlighted.
- xvii. If areas outside the tumour have also been highlighted, these can be
 removed frame by frame by clicking on the 'Manual' tab, select 'Draw' and
 click on 'Original' on the image window and then erase unwanted
 highlighted areas using the mouse cursor (Extended Data Fig. 2e).
 Alternatively, erase the sections by moving the cursor over the tumour
 image on the left-hand side of the screen (Fig. 8e).
- 693xviii.Once the whole tumour is highlighted and separated from the rest of the694image, click on the box marked 'Locked' (**Extended Data Fig. 2f-h**). This695will allow the created ROI to be fixed and separated from the next tumour696ROI.
- 697xix.Before drawing the next ROI, under 'Wall' tab, click 'Reset walls' and select698'All'.

699 xx. Locate next tumour (**Fig. 8f**) and repeat steps vi – xix.

- 700xxi.Once all the tumours have been highlighted, under 'File' tab, click 'Save701Object Map' and save in folder with scan data file.
- 702 xxii. To calculate the volume of each tumour segmented, go back to the Analyze
 703 main window. Click on the data file that you want to analyse. Click on
 704 'Measure' tab and select 'Region of Interest'.
- xxiii. Click 'File' on Region of Interest pop-up, select 'Load Object Map' and open
 the saved tumour object file just created and then click 'Sample Option' tab.
 Click on 'Objects' in sample type and this should display all the tumours
 highlighted previously.
- 709xxiv.Set parameters as shown in Figure 8g and then click 'Done'. The results710will be displayed in a window pop-up and save the file (Fig. 8h).

711					
712	Lung volume analysis. Timing ~10 – 30 min.				
713	27. To indirectly quantify total tumour volume in animal models with widespread diffuse				
714	tumour no	odules, analyse the lung volume from the end expiration respiratory gated			
715	data beca	use it has less motion artefacts and greater image quality.			
716	28. Lung volu	ume analysis can be performed using CTAn software for Skyscan and			
717	nanoscan	PET/CT data (option A) or Analyze software for Quantum GX2 data (option			
718	B)				
719					
720	(A) CTAn	(Lung volume analysis) – Skyscan and nanoscan PET/CT			
721	i.	Load and open the reconstructed dataset (*.bmp; one-bit monochrome or			
722		eight-bit grayscale) with CTAn software.			
723	ii.	Optional - change the appearance of the images to colour using a palette			
724		bar to enhance the visibility of the lung.			
725	iii.	Scroll through the images and identify the start of the airway which situated			
726		below the clavicle of the mouse (Fig. 9a, b).			
727	iv.	Switch to 'Regions of Interest' tab on main toolbar and draw first ROI on			
728		the airway (Fig. 9b) and set this position as the top of the selection and			
729		empty ROI from the below adjacent image.			
730	٧.	Draw the second ROI on the right lobe of the lung (Fig. 9c) and the two			
731		ROIs will be interpolated.			
732	vi.	Repeat the same procedure throughout the lungs and draw and adjust			
733		ROIs accordingly to make sure the whole lung area is included in ROIs			
734		(Fig. 9d, e).			
735		Troubleshooting			
736	vii.	Set the last ROI as the bottom of the selection and empty the ROI from the			
737		above adjacent image.			
738	viii.	Save the ROI and switch to the 'Binary selection' tab from the main toolbar.			
739		To set the threshold level for lung segmentation, adjust the binary threshold			
740		value to display the lung/air area in the ROI as white voxels which are			
741		included in the volumetric measurement (Fig. 9f).			
742		▲ CRITICAL STEP For an unbiased measurement, compare the threshold			
743		level between two different datasets from the same animal. For example,			
744		before the treatment and after the treatment. Set the threshold level which			
745		is suitable for all the datasets from different timepoints.			
746	ix.	Once the threshold is set, create a task list in custom processing tab.			

- 747x.To segment the lung from the background, start with the plugin called748'Thresholding', key in the value from binary thresholding and then select749global. Black and white image corresponds to the threshold value set will750appear after running the plugin (**Fig. 9g-i**).
- 751xi.Select 'Bitwise operation' and choose the option: Image = Image and ROI752to combine image and ROI and generate an image which is the same as753the image inside ROI for further processing (**Fig. 9j-I**).
- 754 Optional - Noise and image artefacts may appear as white speckles, 755 remove them by selecting the 'Despeckle' plugin and choose the option: 756 Remove white speckles in 3D space less than 200 voxels (depending on 757 the nature of the artefacts and radiological pattern) and apply it to image. 758 For example, in a doxycycline inducible autochthonous mouse model of epidermal growth factor receptor (EGFR)^{L858R} -driven lung cancer, the 759 760 diffuse pattern of air distribution needs to be finely adjusted using the 761 'Despeckle' plugin (Fig. 9m-o).
- 762xii.To calculate the 3D volumes, select the '3D analysis' plugin and choose763basic values displayed on the plugin such as total VOI volume, object764volume, percent object volume, total VOI surface and object surface.
- 765xiii.Select the value of object volume in mm³ for the result of the segmented766lung/air volume.
- xiv. Optional To create a 3D model of the segmented lung volume, end the
 task list with '3D model' plugin and choose the file type: *.ctm and algorithm:
 Marching Cubes 33.
- 770 xv. Save the task list and import it again for the next dataset.
- 771 xvi. Optional CTVol software can be used for 3D volume rendering of
 772 segmented lung.

(B) Analyze (Lung volume analysis) – Quantum GX2

773 774

- i. Repeat the steps i v from Analyze (tumour volume analysis). To perform
 the automatic segmentation of lung from the background, the signal
 intensity of trachea (for air) and heart (for tissue including blood, water,
 cells) will be used as calibrators.
- ii. Scroll through the beginning of the image stack until the trachea is observed
 (Fig. 10a).
- 781 iii. Under the 'Semi-Automatic' tab, select 'Region Grow', click on the middle782 of the trachea, and adjust the 'Threshold' to display the trachea as white

783		voxels and the background tissue as black voxels (Fig. 10b, Extended
784		Data Fig. 3a-d).
785	iv.	Click 'Extract Object'. Not all parts of trachea need to be thresholded and
786		highlighted when it appears in the 3D volume rendering window (Fig. 10c).
787	۷.	Click 'Add Object', under 'Manual' tab, select 'Draw' and highlight two points
788		in the heart by clicking and scrolling through the frames, and clicking again
789		(Fig. 10d, e, Extended Data Fig. 3e).
790	vi.	Under 'Semi-Automatic' tab, select 'Propagate Object' and 'Propagate'.
791		CRITICAL STEP Make sure the new object observed is cylindrical (Fig.
792		10f).
793	vii.	Save the object map in 'File' tab as 'calibration'.
794	viii.	To calculate the mean signal intensity of the trachea and heart, go back to
795		the Analyze main window and click on the data you want to analyse.
796	ix.	Select 'Region of Interest' under 'Measure' tab.
797	Х.	Select 'File' on region of interest pop-up, click 'Load Object Map' and open
798		the saved 'calibration' object file just created.
799	xi.	Click the 'Sample Option' tab and select 'Objects' in the sample type and
800		the two structures (trachea and heart) highlighted previously will appear.
801	xii.	Set the parameters as shown in Extended Data Fig. 4a and then click
802		'Done'. The results will be displayed in a window pop-up.
803	xiii.	Save the file.
804	xiv.	Create a linear HU calibration curve and equation as shown in $\ensuremath{\textbf{Extended}}$
805		Data Fig. 4b using the mean signal intensity of trachea (-1000 HU) and
806		heart (0 HU) from the results.
807	XV.	To perform the segmentation of the lung, go back to the Analyze main
808		window and click on the data you want to analyse.
809	xvi.	Click the 'Process' tab and select 'Image Algebra' (Extended Data Fig. 4c).
810	xvii.	Drag the data from the Analyze window to image in 'Input' and then click
811		on 'Output'. On 'Name' tab, click on the image ID and then add an
812		underscore (_) to the end of the ID (Extended Data Fig. 4d).
813	xviii.	Set 'Data type' to 'Signed 16-bit'.
814	xix.	Click 'Done' (Extended Data Fig. 4d).
815	XX.	In the formula section of Image Alegra, fill in this equation: Output = (Input
816		- 2 nd Y value)/1 st Y value and then click 'Go' (Extended Data Fig. 4d). This
817		should create a new lung image in the Analyze window.
818	xxi.	Click on the image and save the file.

819 xxii. Load the new lung image in 'Volume Edit' via 'Segment' tab. Under the 820 'Semi-Automatic' tab, select 'Region grow' and click on anywhere in the 821 lung image that is air. 822 xxiii. Set Min threshold to absolute minimum and Max to -300 (Fig. 10g, 823 Extended Data Fig. 4e). 824 xxiv. Click 'Extract Object' and the highlighted lung should appear in the volume 825 rendering panel. Hold Ctrl key on keyboard and rotate the image with the 826 mouse cursor to verify that the whole lung has been correctly highlighted. 827 Alternatively, right click on the image and select 'Reset rotation' to observe 828 at various angles (**Fig. 10h, i**). 829 XXV. Save the Object map by clicking on 'File' tab. 830 xxvi. To calculate the volume of the segmented lung, go back to the Analyze 831 main window. Click on the lung image you want to analyse. Under the 832 'Measure' tab, click on 'Region of Interest' and select 'file' on the region of 833 interest pop-up. 834 Click 'Load Object Map' and open the saved whole lung object file just xxvii. 835 created. 836 xxviii. Under 'Sample Option' tab, click on 'Objects' in the sample type and this 837 should display the segmented lung dataset. 838 Set parameters as shown in Figure 10j and click 'Done'. The results will be xxix. 839 displayed in a window pop-up. 840 XXX. Save the file (Fig. 10k). 841 To determine absolute air volume (i.e., removal of infiltrate etc), open an xxxi. 842 excel sheet and create the equations (see below) using the mean HU and 843 the volume (mm³) of whole lung from the results. 844 %change = Mean HU*- 0.001 845 Actual lung volume = Vol mm3*%change 846 xxxii. Calculate the percentage of air and tissue as shown in Figure 10I. 847 848 Troubleshooting 849 Troubleshooting advice can be found in Table 3. 850 851 Timing 852 The time required for each step depending on the experience of the user. The first-time users 853 may require more time for each step. 854 Steps 1-10, animal preparation: 5-8 min 855 Steps 11-15, image acquisition: 5-10 min

- 856 Steps 16-17, respiratory gating, and reconstruction: 3-5 min
- 857 Steps 18-22, detection of tumours: 5-15 min depending on tumour models
- 858 Steps 23-26, individual tumour volume analysis: 10-30 min depending on tumour models
- 859 Steps 27-28, lung volume analysis: 10-30 min
- 860

861 Anticipated results

862 This protocol will enable the researchers to acquire high-resolution images (see table 1 for the 863 resolution of each scanner) of lung tumours and allows to characterise radiological 864 phenotypes of each model, monitor tumour progression, track individual tumour nodules, 865 identify lung volume transformation, and evaluate therapeutic response. In order to 866 differentiate very small tumour nodules from the vessels accurately, we recommend starting 867 the analysis after two or more serial scans to track the changes in suspicious areas, for 868 example, the tumour will appear bigger whereas the blood vessels will remain the same (Fig. 869 **11a-f**). Although creating representative 3D images of analysed tumours and lungs is an 870 optional step, it is very useful in visualising contrasting therapeutic response in the same 871 animal over time. For example, in the KRAS-driven lung tumour model, increases, decreases 872 and no change of individual tumour volume after treating with mitogen-activated protein kinase 873 kinase (MEK) inhibitor can be detected very clearly using 3D models (Fig. 11g-i). Based on 874 our experience with this protocol, we anticipate any researcher with a basic scientific skillset 875 will be able to perform image acquisition independently after 5-8 animals. Image analysis, 876 however, likely requires more practice (up to 20 animals per model) to be able to execute the 877 steps efficiently.

878

879 Acknowledgements

880 We would like to dedicate this work to Francois Lassailly who was instrumental in setting up 881 the In Vivo Imaging Facility at the Francis Crick Institute. We thank Dr Elza de Bruin 882 (AstraZeneca) for providing images from EGFR mutation model. We thank Nicholas Corps 883 (Skyscan, Bruker), Sasha Belenkov and Jack Sharkey (PerkinElmer) and Miklos Kovacs 884 (Mediso) for providing technical assistance with the respective scanners and software. We 885 thank the Francis Crick Institute Biological Research facilities for technical assistance. This 886 work was supported by the Francis Crick Institute, which receives its core funding from Cancer 887 Research UK (FC001039), the UK Medical Research Council (FC001039) and the Wellcome 888 Trust (FC001039).

889

890 Author contributions

M.Z.T., developed and tested the protocol in PET/CT scanner. M.Z.T., C.M., and T.S.,
developed and tested the protocol in two micro-CT scanners. M.Z.T., C.M., and T.S., acquired

and analysed the data. M.Z.T. wrote the manuscript and C.M., and T.S., provided technical
details. T.K., A.B., and J.D. supervised the study. All authors edited the manuscript and
approved the final version.

898 Competing interests

J.D. has acted as a consultant for AstraZeneca, Jubilant, Theras, BridgeBio and Vividion, and
has funded research agreements with BMS and Revolution Medicines. None of the other
authors of this manuscript have a financial interest related to this work.

912 Table 1 Imaging parameters used in the study for respiratory gated lung scans. Individual

913	imaging parameters	should be optimised	depending on	the micro-CT scanner
912	inaying parameters	should be optimised	depending on	the micro-or scanner.

	Skyscan 1176	Quantum GX2	nanoScan PET/CT
X-ray source kilovolt peak	50	90	50
(kVp)			
X-ray source current (uA)	500	88	670

Exposure time (ms)	60	16.67	300
Field of view (mm)	35	36	52 (medium zoom)
Filter (mm)	AI 0.5	Cu 0.06+Al 0.5	AI 1.8
Scan mode	List mode (8)	High speed	Semicircular
		(Resp Gated)	
Scanning duration (min)	8	4	3.5
Resolution (µm)	35 (pixel size)	50 (voxel size)	65 (1:4 binning,
			voxel size)
Radiation dose (mGy)	1362.4	926.5 ^b	219°
	(170.3 mGy/min)ª		

- 914 ^aUsing SpekCalc⁶⁶⁻⁶⁸
- 915 ^bCT dose index 100 (CTDI₁₀₀, ionisation chamber)⁶⁹
- 916 °CT dose index (CTDI)
- 917
- 918 **Table 2** Example of reconstruction parameters for the respiratory gated lung scan. Individual
- 919 parameters should be optimised depending on the micro-CT scanner.

	Skyscan	Quantum GX2	nanoScan PET/CT
Retrospective	RespGate (End	End expiration	RespGate (End
Respiratory gating	expiration)		expiration)
Reconstruction	NRecon	Integrated in	Nucline
software		Quantum GX2 4.0	
		control software	
Reconstruction	Smoothing: 4	Ring artefact	Medium slice
parameter	Beam hardening: 30%	reduction and beam	thickness, medium
		hardening correction	in-plane voxel
		enabled	Butterworth filter

920

921 Table 3 Troubleshooting table

Step	Problem	Possible Reason	Solution
3	Mouse breathing	Movement of mouse causes	Increase O2 flow rate to
	increases when it is	breathing irregularities.	1L/min or the percentage
	transferred to the		of isoflurane to 3% and
	bed		return it back to 2% once
			the breathing is stable.
10	Mouse having	High tumour burden in the	Allow the mouse to fully
	erratic breathing	lung	recover from the

			anaesthesia and then
			anaesthetise again.
11	Part of the lung	Bed is too close to the X-ray	Rotate the CT gantry to
	image is cut out of	source	180 degrees around the
	the scan		mouse and check on the
			video display if all parts of
			the lung stay with the
			FOV. If not, adjust the
			position of the bed and
			repeat the same step.
17	Blurry image	Problem with scanner	Perform alignment or
		alignment	geometric calibration
28. A	Unrepresentative	Incorporation of fat (Extended	Re-draw or edit the ROI
(vi)	structures in 3D lung	Data Fig. 5b), gas shadow	of lung
	volume rendering	from stomach (Extended	
	(CTAn, Extended	Data Fig. 5c), motion artefact	
	Data Fig. 5a)	from the ribs (Extended Data	
		Fig. 5d) and the spine in ROI	
		of lung (Extended Data Fig.	
		5e)	

922 923

924 Figure legends:

Figure 1. Common radiological characteristics of lung tumour models. a-c) KRAS-driven multiple lung tumour nodules with (b) smooth and (c) spiculated margins. d) Lobulated lung nodules in urethane-induced model. e) Lung nodules with well-defined margin in orthotopic intratracheal model. f-i) EGFR^{L858R}-mutant lung tumours with (f) widespread diffuse nodules, (g) a mixture of (h) ground-glass appearances and (i) discrete lesions. j) Diffused pattern of lung tumours in tail vein cell injection model.

931

Figure 2. Summary of the workflow for the lung tumour imaging with micro-CT and tumour
volume analysis.

Figure 3. Micro-CT acquisition. a) The anesthetised mouse is inserted inside the nose cone
on the bed. b) The front paws of the mouse should be gently taped down to have a clear view
of the thorax. c) Video image pop-up screen of the mouse in the Quantum GX2 scanner, with
the blue square indicating the field of view for the scan and the green rectangle (arrow) placed

partially over the diaphragm for respiratory gating. d-f) Reconstructed normal lung images of
 different mice from (d) Skyscan, (e) Quantum GX2 & (f) nanoScan PET/CT.

941

Figure 4. Differentiation of tumours from normal structure in 3D. a-c) Blood vessel centred
with crosshairs appears (a) spherical shape in axial plane (Z axis, blue line) and cylindrical in
(b) sagittal plane (X axis, red line) & (c) coronal plane (Y axis, green line). d-f) Lung tumour
appears spherical shape in all axes (crosshairs) from the same animal.

946

947 Figure 5. Individual tumour nodule segmentation using CTAn software. a-c) Lung tumour with 948 (a) no visible margins (black arrow), tumours with no attachment to surrounding structures 949 (blue arrows) and (b-c) located near ribs (red arrows). d) A small tumour nodule locating near 950 spine (blue arrows) in enhanced colour display. e-h) Images of freehand ROI drawing on 951 tumours showing (e, g) before & (f, h) after ROI selections which exclude signal from the rib 952 and include some regions of air. i) Tumour segmentation using binary threshold adjustment 953 under binary selection tab to transform the area within ROI into white voxels for volumetric 954 measurement and the green area indicates outside the ROI. All the images are from Kras 955 mutant lung tumour model.

956

957 Figure 6. Individual tumour volume measurements using CTAn software. a) List of the internal 958 plugins under the custom processing tab. b) Pop-up window showing selected parameters for 959 thresholding. c-e) Binary thresholded images before bitwise plugin showing (c) image view of 960 the whole lung with (inset) tumour, (d, inset) image inside ROI view & (e, inset) ROI view of 961 segmented tumour from the background. f-h) Binary thresholded images of segmented tumour 962 after bitwise plugin creating (f, inset) the image which is the same as (g, inset) the image inside 963 ROI but leaving (h, inset) ROI view unchanged. i-k) Tumour with gas-filled area (blue arrows) 964 showing (i) ROI selection, (j) black and white image of ROI selection under binary selection 965 tab and (k) the black area inside the segmented tumour being removed by the despeckle 966 plugin.

967

968 Figure 7. Improving image quality with Analyze software. a) Image showing main command 969 window of Analyze. b) Screenshot of the pop-up window of the Spatial filter and the selected 970 parameters for the filter set. c-d) Data processing steps to crop the scan using (c) Image 971 calculator & region pad tool followed by (d) interactive window selection. e-f) Lung images 972 showing (e) before & (f) after cropping. g-i) Images showing how to achieve (g) lung images 973 with a well-defined contrast between air, soft tissue and tumour (centred with crosshairs) by 974 adjusting the signal intensity of the image via selecting (h) the intensities tab and (i) adjusting 975 the minimum and maximum values tool under the 'Volume Edit' command window.

977 Figure 8. Individual tumour segmentation and guantification using Analyze software. a-c) Axial 978 images showing step by step identification and highlighting of tumour starting with (a) 979 enlarging image to identify the tumours in the lung followed by (b) highlighting tumour using 980 drawing a wall and (c) adjusting the binary threshold range to segment and extract the tumour 981 from the background. d-f) Axial images showing how to (d) separate the tumour from 982 surrounding tissue when it is attached to the background, (e) remove any additional tissue 983 attachments using manual deletion tool and (f) lock previous tumour selection and reset wall 984 before highlighting new tumour for segmentation. g-h) Images showing step by step analysis 985 of tumour volume quantification by (g) setting parameters for tumour analysis and (h) 986 generating tumour volume measurement.

987

988 Figure 9. Lung volume segmentation using the CTAn software. a) Preview image of Z-stack 989 showing the start of the airway below the clavicle (black line). b-e) Drawing ROI on (b) the 990 start of the airway, (c) the right lobe, (d) the start of the left lobe and (e) the whole lung. f) Lung 991 segmentation using binary thresholding to transform the area within ROI into white voxels for 992 volumetric measurement. g-i) Binary thresholded images before bitwise plugin showing (g) 993 image view of the whole lung, (h) image inside ROI view & (i) ROI view of segmented lung 994 from the background. j-l) Binary thresholded images of segmented lung after bitwise plugin 995 creating (j) the image which is the same as (k) the image inside ROI but leaving (I) ROI view 996 unchanged. m-o) Lung images from EGFR^{L858R} mutant model showing (m) ROI selected 997 diffuse air pattern with artefacts from the spine, (n) thresholded image before & (o) after 998 despeckle plugin removing white speckles image artefacts (blue dotted box). All the images 999 are from the same mouse with EGFR^{L858R} mutation.

1000

1001 Figure 10. Automatic lung segmentation and volume quantification with Analyze software. a-1002 c) Images showing step by step identification and highlighting of trachea starting with (a) 1003 localisation of trachea, (b) inputting threshold for trachea and (c) 3D volume rendered image 1004 of extracted trachea. d-f) Images showing the highlighted regions of the heart (d) in axial 1005 (green dot) & (e) 3D volume rendered (green line) images by using the tool called 'Draw' and 1006 then (f) joining the highlighted sections via propagation as presented in 3D volume rendered 1007 image. g) Binary thresholded image of lung after calculating signal intensity of air inside the 1008 lung. h-i) Images showing (h) the segmented lung from the background after setting threshold 1009 values, and (i) how to inspect the segmented 3D lung image by right clicking on image and 1010 using rotation angle. j-l) Images showing lung volume analysis by (j) setting parameters for 1011 quantification, (k) generating the results and (l) acquiring absolute air volume in the lung using 1012 equation as shown in excel.

976

1013

Figure 11 Tracking individual tumour volume changes over time. a-f) Serial CT lung images from *Kras* mutant lung tumour model showing volumetric changes in tumour nodules (red arrows) and no alteration (blue arrows) detected in blood vessel. g-i) Serial 3D rendered images of *Kras* mutant lung tumours showing decrease (yellow), increase (magenta), and no changes (green) in tumour volume (g) before, (h) 1 week & (i) 2 weeks after treating with MEK

- 1019 inhibitor. All 3D models were generated with Bruker's CT vol software.
- 1020
- 1021

1022

1023 References

- Sung, H. *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA: A Cancer Journal for Clinicians* 71, 209-249, doi:<u>https://doi.org/10.3322/caac.21660</u> (2021).
 Graham, M. L. & Prescott, M. J. The multifactorial role of the 3Rs in shifting the
- harm-benefit analysis in animal models of disease. *Eur J Pharmacol* 759, 19-29,
 doi:10.1016/j.ejphar.2015.03.040 (2015).
 Hounsfield, G. N. Computed medical imaging. Nobel lecture, Decemberr 8, 1979. *J*
- 1031
 Comput Assist Tomogr 4, 665-674, doi:10.1097/00004728-198010000-00017 (1980).
- 10324Lev, M. H. & Gonzalez, R. G. in Brain Mapping: The Methods (Second Edition) (eds1033Arthur W. Toga & John C. Mazziotta) 427-484 (Academic Press, 2002).
- 10345Bibb, R., Eggbeer, D. & Paterson, A. in *Medical Modelling (Second Edition)* (eds1035Richard Bibb, Dominic Eggbeer, & Abby Paterson) 7-34 (Woodhead Publishing,10362015).
- 1037 6 Jonas, D. E. *et al.* Screening for Lung Cancer With Low-Dose Computed Tomography:
 1038 Updated Evidence Report and Systematic Review for the US Preventive Services Task
 1039 Force. JAMA 325, 971-987, doi:10.1001/jama.2021.0377 (2021).
- 1040 7 Castellano, E. *et al.* Requirement for interaction of PI3-kinase p110α with RAS in lung
 1041 tumor maintenance. *Cancer Cell* 24, 617-630, doi:10.1016/j.ccr.2013.09.012 (2013).
- 10428de Bruin, E. C. *et al.* Reduced NF1 expression confers resistance to EGFR inhibition in1043lung cancer. *Cancer Discov* 4, 606-619, doi:10.1158/2159-8290.Cd-13-0741 (2014).
- 10449Molina-Arcas, M. *et al.* Development of combination therapies to maximize the1045impact of KRAS-G12C inhibitors in lung cancer. *Science translational medicine* **11**,1046doi:10.1126/scitranslmed.aaw7999 (2019).
- 104710Spiro, J. E. *et al.* Monitoring treatment effects in lung cancer-bearing mice: clinical CT1048and clinical MRI compared to micro-CT. *European Radiology Experimental* **4**, 31,1049doi:10.1186/s41747-020-00160-7 (2020).
- 1050 11 Rudyanto, R. D. *et al.* Individual nodule tracking in micro-CT images of a longitudinal
 1051 lung cancer mouse model. *Medical Image Analysis* 17, 1095-1105,
 1052 doi:https://doi.org/10.1016/j.media.2013.07.002 (2013).
- 1053
 12
 Holdsworth, D. W. & Thornton, M. M. Micro-CT in small animal and specimen

 1054
 imaging. *Trends in Biotechnology* 20, S34-S39, doi:<u>https://doi.org/10.1016/S0167-</u>

 1055
 7799(02)02004-8 (2002).

1056	13	Clark, D. P. & Badea, C. T. Micro-CT of rodents: state-of-the-art and future
1057		perspectives. <i>Phys Med</i> 30 , 619-634, doi:10.1016/j.ejmp.2014.05.011 (2014).
1058	14	Ford, N. L., Wheatley, A. R., Holdsworth, D. W. & Drangova, M. Optimization of a
1059		retrospective technique for respiratory-gated high speed micro-CT of free-breathing
1060		rodents. <i>Phys Med Biol</i> 52 , 5749-5769, doi:10.1088/0031-9155/52/19/002 (2007).
1061	15	Ertel, D., Kyriakou, Y., Lapp, R. M. & Kalender, W. A. Respiratory phase-correlated
1062		micro-CT imaging of free-breathing rodents. <i>Phys Med Biol</i> 54 , 3837-3846,
1063		doi:10.1088/0031-9155/54/12/015 (2009).
1064	16	Kumar, M. S. <i>et al.</i> The GATA2 transcriptional network is requisite for RAS oncogene-
1065		driven non-small cell lung cancer. <i>Cell</i> 149 , 642-655, doi:10.1016/j.cell.2012.02.059
1066		(2012).
1067	17	Foster, H. <i>et al.</i> ATMIN Is a Tumor Suppressor Gene in Lung Adenocarcinoma. <i>Cancer</i>
1068		<i>Res</i> 79 , 5159-5166, doi:10.1158/0008-5472.Can-19-0647 (2019).
1069	18	de Carné Trécesson, S. <i>et al.</i> APOBEC3B expression generates an immunogenic
1070		model of Kras mutant lung cancer. <i>bioRxiv</i> , 2020.2012.2022.423126.
1071		doi:10.1101/2020.12.22.423126 (2020).
1072	19	Kennel, S. J. <i>et al.</i> High resolution computed tomography and MRI for monitoring
1073		lung tumor growth in mice undergoing radioimmunotherapy: correlation with
1074		histology. <i>Med Phys</i> 27 , 1101-1107. doi:10.1118/1.598974 (2000).
1075	20	Fushiki, H. <i>et al.</i> Quantification of mouse pulmonary cancer models by
1076		microcomputed tomography imaging. <i>Cancer Sci</i> 100 , 1544-1549,
1077		doi:10.1111/j.1349-7006.2009.01199.x (2009).
1078	21	van Maldegem, F. <i>et al.</i> Characterisation of tumour microenvironment remodelling
1079		following oncogene inhibition in preclinical studies with imaging mass cytometry.
1080		Nature Communications 12 , 5906, doi:10.1038/s41467-021-26214-x (2021).
1081	22	Vande Velde, G. et al. Longitudinal micro-CT provides biomarkers of lung disease
1082		that can be used to assess the effect of therapy in preclinical mouse models, and
1083		reveal compensatory changes in lung volume. <i>Dis Model Mech</i> 9, 91-98,
1084		doi:10.1242/dmm.020321 (2016).
1085	23	Marien, E., Hillen, A., Vanderhoydonc, F., Swinnen, J. V. & Vande Velde, G.
1086		Longitudinal microcomputed tomography-derived biomarkers for lung metastasis
1087		detection in a syngeneic mouse model: added value to bioluminescence imaging.
1088		Laboratory Investigation 97, 24-33, doi:10.1038/labinvest.2016.114 (2017).
1089	24	DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using
1090		adenoviral or lentiviral delivery of Cre recombinase. Nature Protocols 4, 1064-1072,
1091		doi:10.1038/nprot.2009.95 (2009).
1092	25	Westcott, P. M. et al. The mutational landscapes of genetic and chemical models of
1093		Kras-driven lung cancer. <i>Nature</i> 517 , 489-492, doi:10.1038/nature13898 (2015).
1094	26	Politi, K., Fan, P. D., Shen, R., Zakowski, M. & Varmus, H. Erlotinib resistance in
1095		mouse models of epidermal growth factor receptor-induced lung adenocarcinoma.
1096		<i>Dis Model Mech</i> 3 , 111-119, doi:10.1242/dmm.003681 (2010).
1097	27	Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors
1098		found in human lung cancers respond to a tyrosine kinase inhibitor or to down-
1099		regulation of the receptors. <i>Genes Dev</i> 20 , 1496-1510, doi:10.1101/gad.1417406
1100		(2006).

1101	28	Bianchi, A. <i>et al.</i> In vivo MRI for effective non-invasive detection and follow-up of an
1102		doi:10.1002/nbm $21/2$ (2014)
1103	29	Krunnick A S <i>et al</i> Quantitative monitoring of mouse lung tumors by magnetic
1105	25	resonance imaging Nat Protoc 7 128-142 doi:10.1038/nprot 2011 424 (2012)
1106	30	Neijenhuis, L. K. A. <i>et al.</i> Near-Infrared Fluorescence Tumor-Targeted Imaging in
1107		Lung Cancer: A Systematic Review. <i>Life (Basel)</i> 12 . doi:10.3390/life12030446 (2022).
1108	31	Imamura, T., Saitou, T. & Kawakami, R. In vivo optical imaging of cancer cell function
1109	0-	and tumor microenvironment. <i>Cancer Science</i> 109 . 912-918.
1110		doi:https://doi.org/10.1111/cas.13544 (2018).
1111	32	Christensen, J., Vonwil, D. & Shastri, V. P. Non-Invasive In Vivo Imaging and
1112		Quantification of Tumor Growth and Metastasis in Rats Using Cells Expressing Far-
1113		Red Fluorescence Protein. <i>PLoS One</i> 10 , e0132725,
1114		doi:10.1371/journal.pone.0132725 (2015).
1115	33	Kocher, B. & Piwnica-Worms, D. Illuminating cancer systems with genetically
1116		engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov 3,
1117		616-629, doi:10.1158/2159-8290.Cd-12-0503 (2013).
1118	34	Ju, HL. et al. Transgenic mouse model expressing P53R172H, luciferase, EGFP and
1119		KRASG12D in a single open reading frame for live imaging of tumor. <i>Scientific reports</i>
1120		5 , 8053, doi:10.1038/srep08053 (2015).
1121	35	Yeh, H. H. et al. Molecular imaging of active mutant L858R EGF receptor (EGFR)
1122		kinase-expressing nonsmall cell lung carcinomas using PET/CT. Proc Natl Acad Sci U S
1123		A 108, 1603-1608, doi:10.1073/pnas.1010744108 (2011).
1124	36	Price, D. N. et al. Longitudinal Assessment of Lung Cancer Progression in Mice Using
1125		the Sodium Iodide Symporter Reporter Gene and SPECT/CT Imaging. PLOS ONE 11,
1126		e0169107, doi:10.1371/journal.pone.0169107 (2016).
1127	37	Marsee, D. K. et al. Imaging of metastatic pulmonary tumors following NIS gene
1128		transfer using single photon emission computed tomography. <i>Cancer Gene Therapy</i>
1129		11 , 121-127, doi:10.1038/sj.cgt.7700661 (2004).
1130	38	Nielsen, C. H. <i>et al.</i> PET imaging of tumor neovascularization in a transgenic mouse
1131		model with a novel 64Cu-DOTA-knottin peptide. <i>Cancer Res</i> 70 , 9022-9030,
1132	20	doi:10.1158/0008-54/2.Can-10-1338 (2010).
1133	39	Umeda, I. O. <i>et al.</i> High resolution SPECI imaging for visualization of intratumoral
1134		neterogeneity using a SPECI/CI scanner dedicated for small animal imaging. Annals
1135	40	of Nuclear Medicine 26 , 67-76, doi:10.1007/S12149-011-0542-7 (2012).
1130	40	An Overview International Journal of Molecular Imaging 2011 , 706025
1120		An Overview. International Journal of Molecular Intaging 2011, 796025,
1120	<i>1</i> 1	UUI.10.1155/2011/790025 (2011).
1139	41	Dual-Modality Imaging in a CEA-Expressing Tumor Model I Nucl Med 58, 706-710
11/1		doi:10.2967/inumed 116.185/170 (2017)
1141	42	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1143	74	EDDA-HYNIC-c-Met for non-small-cell lung cancer. Chemical Biology & Drug Design
1144		93 , 447-453, doi:https://doi.org/10.1111/cbdd 13432 (2019)
1145	43	Versagli, C. <i>et al.</i> Multimodal Optical. X-ray CT. and SPECT Imaging of a Mouse Model
1146		of Breast Cancer Lung Metastasis. <i>Current molecular medicine</i> 13 .
1147		doi:10.2174/1566524011313030006 (2013).
		,,

1148	44	V, G. et al. Development of novel approach to diagnostic imaging of lung cancer with
1149		18F-Nifene PET/CT using A/J Mice treated with NNK. Journal of Cancer Research and
1150		Therapy 1 , 128-137, doi:10.14312/2052-4994.2013-20 (2013).
1151	45	Puaux, AL. et al. A Comparison of Imaging Techniques to Monitor Tumor Growth
1152		and Cancer Progression in Living Animals. International Journal of Molecular Imaging
1153		2011 , 321538, doi:10.1155/2011/321538 (2011).
1154	46	Yang, Z. et al. Dynamic FDG-PET Imaging to Differentiate Malignancies from
1155		Inflammation in Subcutaneous and In Situ Mouse Model for Non-Small Cell Lung
1156		Carcinoma (NSCLC). PLOS ONE 10, e0139089, doi:10.1371/journal.pone.0139089
1157		(2015).
1158	47	Molinos, C. et al. Low-Dose Imaging in a New Preclinical Total-Body PET/CT Scanner.
1159		Frontiers in Medicine 6 , doi:10.3389/fmed.2019.00088 (2019).
1160	48	Plathow, C. et al. Computed Tomography Monitoring of Radiation-Induced Lung
1161		Fibrosis in Mice. Investigative Radiology 39 , 600-609,
1162		doi:10.1097/01.rli.0000138134.89050.a5 (2004).
1163	49	Berghen, N. et al. Radiosafe micro-computed tomography for longitudinal evaluation
1164		of murine disease models. Scientific reports 9 , 17598, doi:10.1038/s41598-019-
1165		53876-x (2019).
1166	50	Detombe, S. A., Dunmore-Buyze, J., Petrov, I. E. & Drangova, M. X-ray dose delivered
1167		during a longitudinal micro-CT study has no adverse effect on cardiac and pulmonary
1168		tissue in C57BL/6 mice. Acta Radiol 54, 435-441, doi:10.1177/0284185113475608
1169		(2013).
1170	51	Vande Velde, G. et al. Longitudinal in vivo microcomputed tomography of mouse
1171		lungs: No evidence for radiotoxicity. Am J Physiol Lung Cell Mol Physiol 309, L271-
1172		279, doi:10.1152/ajplung.00098.2015 (2015).
1173	52	Li, J. et al. A novel functional CT contrast agent for molecular imaging of cancer. Phys
1174		<i>Med Biol</i> 55 , 4389-4397, doi:10.1088/0031-9155/55/15/013 (2010).
1175	53	Gómez-López, S., Whiteman, Z. E. & Janes, S. M. Mapping lung squamous cell
1176		carcinoma pathogenesis through in vitro and in vivo models. Communications
1177		<i>Biology</i> 4 , 937, doi:10.1038/s42003-021-02470-x (2021).
1178	54	You, M. S., Rouggly, L. C., You, M. & Wang, Y. Mouse models of lung squamous cell
1179		carcinomas. Cancer and Metastasis Reviews 32, 77-82, doi:10.1007/s10555-012-
1180		9406-4 (2013).
1181	55	Singh, A. P., Adrianzen Herrera, D., Zhang, Y., Perez-Soler, R. & Cheng, H. Mouse
1182		models in squamous cell lung cancer: impact for drug discovery. Expert Opinion on
1183		<i>Drug Discovery</i> 13 , 347-358, doi:10.1080/17460441.2018.1437137 (2018).
1184	56	Ruiz, E. J. et al. LUBAC determines chemotherapy resistance in squamous cell lung
1185		cancer. Journal of Experimental Medicine 216, 450-465, doi:10.1084/jem.20180742
1186		(2019).
1187	57	Montgomery, M. K. et al. Mouse lung automated segmentation tool for quantifying
1188		lung tumors after micro-computed tomography. PLoS One 16, e0252950,
1189		doi:10.1371/journal.pone.0252950 (2021).
1190	58	Birk, G., Kästle, M., Tilp, C., Stierstorfer, B. & Klee, S. Automatization and
1191		improvement of μ CT analysis for murine lung disease models using a deep learning
1192		approach. <i>Respir Res</i> 21 , 124, doi:10.1186/s12931-020-01370-8 (2020).

1193	59	Haines, B. B. et al. A quantitative volumetric micro-computed tomography method
1194		to analyze lung tumors in genetically engineered mouse models. Neoplasia 11, 39-
1195		47, doi:10.1593/neo.81030 (2009).
1196	60	Gallastegui, A., Cheung, J., Southard, T. & Hume, K. R. Volumetric and linear
1197		measurements of lung tumor burden from non-gated micro-CT imaging correlate
1198		with histological analysis in a genetically engineered mouse model of non-small cell
1199		lung cancer. <i>Lab Anim</i> 52 , 457-469, doi:10.1177/0023677218756457 (2018).
1200	61	Workman, P. et al. Guidelines for the welfare and use of animals in cancer research.
1201		<i>Br J Cancer</i> 102 , 1555-1577, doi:10.1038/sj.bjc.6605642 (2010).
1202	62	Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine
1203		lung cancer. Cancer Res 65, 10280-10288, doi:10.1158/0008-5472.Can-05-2193
1204		(2005).
1205	63	DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using
1206		adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4, 1064-1072,
1207		doi:10.1038/nprot.2009.95 (2009).
1208	64	Farncombe, T. H. Software-based respiratory gating for small animal conebeam CT.
1209		Med Phys 35 , 1785-1792, doi:10.1118/1.2905031 (2008).
1210	65	Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
1211		image analysis. <i>Nat Methods</i> 9 , 671-675, doi:10.1038/nmeth.2089 (2012).
1212	66	Poludniowski, G., Landry, G., DeBlois, F., Evans, P. M. & Verhaegen, F. SpekCalc: a
1213		program to calculate photon spectra from tungsten anode x-ray tubes. Physics in
1214		Medicine and Biology 54 , N433-N438, doi:10.1088/0031-9155/54/19/n01 (2009).
1215	67	Poludniowski, G. G. & Evans, P. M. Calculation of x-ray spectra emerging from an x-
1216		ray tube. Part I. Electron penetration characteristics in x-ray targets. Medical Physics
1217		34 , 2164-2174, doi: <u>https://doi.org/10.1118/1.2734725</u> (2007).
1218	68	Poludniowski, G. G. Calculation of x-ray spectra emerging from an x-ray tube. Part II.
1219		X-ray production and filtration in x-ray targets. Medical Physics 34, 2175-2186,
1220		doi: <u>https://doi.org/10.1118/1.2734726</u> (2007).
1221	69	Meganck, J. A. & Liu, B. Dosimetry in Micro-computed Tomography: a Review of the
1222		Measurement Methods, Impacts, and Characterization of the Quantum GX Imaging
1223		System. <i>Mol Imaging Biol</i> 19 , 499-511, doi:10.1007/s11307-016-1026-x (2017).
1224		

а					С					d	
Analyze 12.0				- 🗆 🗙	De	g 🕶		А	uto 🔻	🚮 Subregion - Pad	Volume - Image 🔲 🗙
File Display Process Segment Registe	er Measure App	s Other Help			Regio					SubReg	ion Low High
🛛 🏠 💪 🜔 😫		a 🛃 🛛	XIT SSS	<u>*-</u>	Pad	-	1			х	117 428
	Voxa	ROI		<u> </u>	CLF	B CLA	(Y	55 400
Main New				-	CLM	17	8	9	+	z	1 512
	100										Interactive
	(based				STO	4	5	6	_	Paddir	ig_Low_High_
0T_202(0222_1022 0T_202)0023_0063	CT_20210+23_11	01 0T_202	10524_1221		RCL	1 1	2	3	*	x	0 0
										Y	0 0
					EXC		<u> </u>	+/-		Z	0 0
Copyright 1986-2019, BIR, Mayo Clinic Portions of this software are covered under	r U.S. Patent # 5,5	68,384.			Off		888	pi	MOD	Apply	Reset Done
b				е				h			
👫 Filters - Spatial Filter			_ 🗆 X			101		💋 ст	_20210323_06	5315_P02 - Volume Edit	
Filter Tune		Kernel Siz	e		15						
	х	Y	z		1 Anna		•				
C None				10					Intens	ities	
C Low Pass	C 1	01	C 1			22.	- /				
C Unsharp					1	7 -					
C Unsharp Enhance					A COMPANY						-
C Sobel Enhance	• 3	• 3	• 3	f				Name	Original		
Median						· @ · _		Color	White		Add Object
C Rank					6				Display	Locked	
C Sigma	C 5	C 5	C 5	10	A		•	Edge	Strength	Walls Semi-Automatic N	/anual]
C VSF Mean				7.3	• an				se Edge Stre	ngth	
C Gradient					And States	19.50					
C AHE	C 7	C 7	07		•	4	-1	1	ntensity Image	s - VolumeEdit	<u>_ 🗆 ×</u>
C Anisotropic					X	<u> </u>		Туре	Object Co	olor 🔻	
C Convolution								Mod	le Window	/ed Object 🔻	
C Inhom. Correct.	C 9	C 9	C 9	<u>y</u>				0.5	how All	Enabled Only 💿 Color En	abled
C Sticks						-0-		Θı	Max/Min C	Level/Width	
C Chamfer Dist. Map					16			Mini	imum	🗖 Histogra	m Maximum
C Euclidean Dist. Trans.	C 11	C 11	C 11		1 Dans				400		2900
C Adaptive Restoration						Par All				Range 🖲 Volume	DataType
C Curvature	3	3	3			100			nvert		🔽 Show Now
Preview	Filter	D	one			0.	and a				Done

d

h

m

BK -

I.

j.	ROI Stat	: Log - Regio	n Of Interest								X
# · · · · · · · · · · · · · · · · · · ·	Wed S Volum Sampl Voxel	ep 22 1 eFile= eMax= 3 Width=	4:03:40 CT_20210 943 Samp 0.050000	BST 2021 323_095315 leMin= -14 00000000000	_PO2_instru 54 33 VoxelHe:	uctional_ ight= 0.0500	0000000000	0003 VoxelDe	pth= 0.050000	000000000000000000000000000000000000000	4
# .	Vol_#	Slice		Name	Mean	Std.Dev.	Voxels	Area_mm2	Vol_mm3		
#	1	340	whole	lung_sum	-524.84	105.96	3325890	8314.73	415,74		

1						
Name	Mean HU	Std.Dev.	Vol_mm3	%change	Actual lung volume	
whole lung	-524.84	105.96	415.74	0.52484	218.20	
 				(=Mean*-0.001)	(=Vol_mm3*%change)	

b

С

<u>4 mm</u>

