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Abstract 
Background 

The CHHiP trial assessed moderately hypofractionated radiotherapy in localised 

prostate cancer. We utilised longitudinal prostate-specific antigen (PSA) 

measurements collected over time to evaluate and characterise patient prognosis. 

Methods 

We developed a clinical dynamic prediction joint model to predict the risk of 

biochemical or clinical recurrence. Modelling included repeated PSA values and 

adjusted for baseline prognostic risk factors of age, tumour characteristics and 

treatment received. We included 3,071 trial participants for model development using 

a mixed-effect submodel for the longitudinal PSAs, and a time-to-event hazard 

submodel for predicting recurrence of prostate cancer. We evaluated how baseline 

prognostic factor subgroups impacted on the nonlinear PSA levels over time and 

quantify the association of PSA on time-to-recurrence. We assessed bootstrapped 

optimism-adjusted predictive performance on calibration and discrimination. 

Additionally, we performed comparative dynamic predictions on patients with 

contrasting prognostic factors and investigated PSA thresholds over landmark times 

to correlate with prognosis.  

Results 

Patients that developed recurrence had generally higher baseline and overall PSA 

values during follow-up and had an exponentially rising PSA in the two-years before 

recurrence. Additionally, most baseline risk factors were significant in the mixed-

effect- and relative risk submodels. PSA value- and rate-of-change was predictive of 

recurrence. Predictive performance of the model was good across different 

prediction times over an 8-year period, with an overall mean AUC of 0.70, mean 
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Brier score of 0.10, and mean integrated calibration index of 0.048; these were 

further improved for predictions after 5 years of accrued longitudinal post-treatment 

PSA assessments. PSA thresholds less than 0.23ng/mL after 3 years were indicative 

of a minimal risk of recurrence by 8 years.   

Conclusions 

We successfully developed a joint statistical model to predict prostate cancer 

recurrence, evaluating prognostic factors and longitudinal PSA. We showed 

dynamically updated PSA information can improve prognostication, which can be 

used to guide follow-up and treatment management options. 

Keywords: joint model, prostate cancer prognosis, biochemical and clinical failure, 

prostate-specific antigen (PSA), intensity modulated radiotherapy (IMRT), 

hypofractionation. 
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1 Introduction 

Prostate cancer is the second most common cancer in men globally 1. In the UK, at 

diagnosis over half of men (56%—61%) present with localised prostate cancer (TNM 

staging: T1b–T3aN0M0) 2. Radical treatment with neoadjuvant hormone therapy and 

intensity-modulated radiotherapy (IMRT) is less invasive and generally better 

tolerated for long-term quality-of-life than radical prostatectomy 3–5. Following the 

publication of three randomised controlled trials, including CHHiP, showed that 

moderately hypofractionated radiotherapy was non-inferior to conventional (2 

Gray/fraction) radiotherapy; hypofractionation is now used as a standard of care in 

Europe and North America 6–10.  

At diagnosis, patients are routinely stratified into the National Comprehensive 

Cancer Network (NCCN) risk groups, which guide initial treatment management 

decisions 11. NCCN risk groups are defined by presenting tumour features at 

diagnosis, including TNM staging, Gleason score (GS), and prostate-specific antigen 

(PSA), that are used to predict prognosis 12. Although these prognostic factors may 

stratify patient groups, they do not always accurately predict the risk of biochemical 

or clinical failure of individual patients 13. 

PSA is used in routine follow-up to monitor for cancer recurrence and define 

biochemical failure. After radiotherapy, typically nadir PSA values (the lowest 

concentration) are observed; the nadir directly defines each patient’s biochemical 

failure threshold 14. Data collected during routine follow-up, including repeat 

measures of PSA, may be of additional prognostic value to update the predicted risk 

of recurrence. Studies have investigated pre-treatment prognostic factors of the risk 

of biochemical failure in CHHiP 7. In this work, in addition to (baseline) pre-treatment 

information, we propose the use of joint modelling methodology 15–18. We incorporate 
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PSA values collected over time (the longitudinal process) to obtain updated 

predictions of the risk of biochemical- or clinical failure (the time-to-event process), 

as new information becomes available. This could lead to a more personalised 

approach to follow-up care and management. For instance, if a patient remains 

recurrence-free for a prolonged period, and the PSA trajectories would classify the 

patient as having a low recurrence risk, then a possible recommendation could be to 

reduce the patient’s follow-up schedule, resulting in less burden for both patients and 

clinics. Conversely, if the patient’s risk increases, it may enable the clinician to 

initiate more intensive follow-up or direct alternative therapies as appropriate 19.  

The objective of our research is to develop a clinical dynamic prediction joint model 

utilising longitudinally collected PSAs to then predict the risk of future recurrence in 

the CHHiP trial. We present dynamic predictions of the developed model on 

prognosis for two patients contrasting in their baseline prognostic factors, then 

evaluate the predictions and performance with internal bootstrapped validation. We 

then deduce PSA thresholds that are indicative of good prognosis, with minimal 

    risk of recurrence.  

2 Methods & Materials  

2.1 Study design & procedure 

CHHiP is an international, multicentre, randomised, phase III, non-inferiority trial. 

Men with localised prostate cancer (T1b-T3aN0M0) were randomised (1:1:1) to 

receive conventional radiotherapy 74Gy in 37 fractions (f) over 7.4 weeks, or one of 

two hypofractionated radiotherapy schedules: 60Gy/20f in 4 weeks or 57Gy/19f over 

3.8 weeks. The protocol mandated hormone therapy in men with NCCN intermediate 

and high-risk disease, for at least 3 months (maximum 6 months) before start of 
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radiotherapy and continued until the end of radiotherapy; this was optional for low-

risk patients. Bicalutamide monotherapy or luteinising-hormone-releasing-hormone 

analogue plus possible short-term anti-androgen (LHRHa) were permitted according 

to patient and physician’s choice. PSA values were recorded pre-hormone therapy 

and pre-radiotherapy; then at weeks 10, 18, and 26 after start of radiation therapy; 

and then at intervals of 6 months after end of radiotherapy for 5 years; then annually 

thereafter. The trial was registered (ISRCTN97182923), approved by the London 

Multicentre Research Ethics Committee (04/MRE02/10) and by the institutional 

research board of each participating international site. This study was conducted in 

accordance with principles of good clinical practice; full details of the trial design 

have been described previously 7. 

2.2 Outcomes  

Prostate cancer recurrence was defined as the composite of biochemical or clinical 

failure or death due to prostate cancer. Biochemical failure was defined using the 

Phoenix definition of a                          14. Clinical failure included: 

recommencement of hormone therapy, local recurrence, lymph node or pelvic 

recurrence, and distant metastases. Time-to-recurrence was calculated as the time 

between the patient’s closest pre-treatment PSA before hormone therapy (time origin 

    ,  and the first primary endpoint event. The median time between the closest 

pre-treatment PSA and randomisation was 15 weeks. Patients who were alive and 

recurrence-free or died due to causes unrelated to prostate cancer were censored at 

their last known follow-up date, with administrative censoring of longitudinal follow-up 

taking place at 10 years after time origin.  

For this study, only patients who received hormone therapy and had at least one 

post-treatment PSA were included for model development. Complete-case analysis 
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was undertaken for the baseline prognostic factors. We based analyses on a data 

snapshot taken on October 9, 2019.  

2.3 Joint modelling statistical methodology  

A Bayesian shared-parameter joint modelling framework was used to develop the 

clinical dynamic prediction joint model (CDPJM). We specify a mixed-effects 

submodel to model PSA trajectories over time, and a Cox hazard submodel to model 

the time-to-recurrence endpoint. The shared parameters link the two submodels 

together, allowing us to quantify how a specific PSA trajectory is associated with risk 

of prostate cancer recurrence.  

In the mixed effect submodel, baseline prognostic factors are included as fixed 

effects, while random effects are included to capture the individual variability of each 

patient’s presenting PSA (random intercept) and deviation over time (random 

slopes). Deviations of PSA from the predicted trajectory are assumed to follow 

normally distributed measurement errors; PSA is log-transformed to conform to the 

distributional assumptions. Natural (restricted) cubic splines are employed to capture 

the nonlinear PSA over time. Implementing these splines is advantageous as they 

allow nonlinear PSAs to be flexibly modelled, without specific parametric 

assumptions needed, such as exponential-decay-growth, or biphasic 

parameterisations 20,21. The splines split the range of the continuous PSA values into 

sub-intervals.  

In the Cox hazard submodel it is assumed that the risk of recurrence depends on the 

trajectory of the longitudinal PSA biomarker. Thus, the trajectory parametrised via 

the mixed-effect submodel, considering the entire longitudinal history up to a time 

point   for each patient, is imputed into the Cox parameterisation as a linear 
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predictor, with a specified association structure where the features of the longitudinal 

PSA biomarker outcome are included. Typical associations structures are the value 

or the rate-of-change of PSA, or a linear combination of the two. I.e., this 

combinatory association structure of the PSA trajectory (at time  ) could be 

associated with the hazard of recurrence at that same point in time.  

Models were developed using R software (v4.1.0). The individual submodels were 

fitted by maximum likelihood estimation using the survival (v3.2-11) and nlme (v3.1-

152) R packages; the fully specified joint model was estimated with Bayesian Markov 

chain Monte Carlo sample algorithm, using JMbayes2 (v0.1-64–0.2-3) 22–24. 

Computation was performed on a CentOS 8 Linux high-performance computer and 

Windows 10 Intel Core i9-8950HK CPU. Further details can be found in the 

supplementary materials.  

2.4 Dynamic predictions  

For each individual patient, we considered their longitudinal PSA biomarker values 

up to the landmark time point  , where we assumed they are recurrence-free. We 

wish to make predictions about their prognosis, within some clinically relevant 

prediction window in the future [   ]     , say two-, five-, or ten years from present 

landmark time  . The joint model estimates the probability of recurrence within time 

 , given the information available up to time  . These predictions are dynamic, as 

they can be updated as new follow-up and PSA information becomes available for 

that patient (that is, by increasing the landmark time  ) 17.  

2.5 Assessing predictive performance and risk thresholds 

Predictive performance of the joint model was evaluated at varying landmark times, 

by assessing its discrimination via time-dependent area under the curve (AUC) and 
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its calibration via the integrated calibration index (ICI) metrics 25,26. The ICI is the 

absolute mean difference between the predicted- and observed event probabilities. 

Overall prognostic performance was measured by estimating the Brier score, which 

is the expectation of the squared difference between the predicted and observed 

event probabilities, comprised of both calibration and discrimination 16,27. Higher AUC 

metrics indicate superior discrimination, for both ICI and Brier, smaller measures 

indicate closer predicted and observed agreement and better model calibration. 

Internal validation of the proposed CDPJM was pursued by internal bootstrapping 

(50 repetitions) to account for any over-optimism, and to correct biases accordingly. 

We then compared the CDPJM predictions at future landmark times, with the 

predictions obtained when no longitudinal PSA biomarker information is available 

(i.e., at    ), to assess the improvement that longitudinal PSAs make. 

As well as personalised predictions, it is often useful for clinicians to have threshold 

values of PSA which give acceptable risk profiles following radiotherapy and short-

course hormone therapy. We used linear regression to quantify the association of 

PSA values from zero (baseline) to five years to correlate to the predicted risk of 

recurrence by eight years. 

3 Results  

3.1 Dataset for model building 

The CHHiP trial randomised 3216 participants, of which data from 3071 (95%) were 

used to develop the statistical CDPJM. We excluded 104 participants who did not 

receive hormone therapy (    ) or had missing hormone therapy allocation 

(    ); 5 who received maximal androgen blockade; 3 with at least 1 baseline 

prognostic factor missing; 9 with no baseline pre-treatment PSA available, and 24 
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with missing PSA values beyond baseline over time (non-mutually exclusive). Table 

1 presents the baseline characteristics of the included patients. Median follow-up of 

this subset was 8.6 years (IQR=[6.3–10.1]), and the median number of PSA values 

per patient was 16 (IQR=[13—18]).  

Of the 3071 patients, 607 (20%) had recurrence, a composite endpoint of 

biochemical (n=541, 18%), clinical failure (n=65, 2%), or prostate cancer death 

(n=1). There were an additional 148 patients that exhibited PSA values that met the 

biochemical failure threshold but were not confirmed by a subsequent PSA 

observation. A further 355 (12%) patients died due to causes unrelated to prostate 

cancer. These patients were censored at the time of last follow-up for the primary 

analysis. This outcome was not considered a competing risk as the estimated 

cumulative incidence function accounting for competing risks and without (1 minus 

Kaplan-Meier estimate) yielded almost overlapping curves (e.g. the maximum 

difference was found at 10 years, between 0.216 and 0.23, respectively). 28.  

3.2 Modelling of PSA trajectories 

In Figure 1(a), PSA levels and boxplot distributions are presented, aggregated by 

years since starting treatment and outcome, with patients still at risk in the table 

below. There is much more variability and an increase in PSA values for those 

patients that recur at any time, compared to those that are alive and free from 

recurrence at their last follow-up. Presenting PSA values (   ) are higher for 

patients who recur. Apparent separation between the distributions of PSA is evident 

from year four onwards. Figure 1(b) shows the smoothed reverse-year PSA 

trajectories (i.e., the PSA course in the years before a recurrence or end of follow-

up) of those that are recurrence-free and those patients that develop recurrence. 

Patients who develop a recurrence have higher presenting PSA levels, and do not 
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achieve the same PSA reduction after treatment as patients who do not recur. In the 

final two-years before patients who developed recurrence, PSA increases at an 

exponential rate, compared with recurrence-free / censored patients whose PSA 

remains at a very low plateau.  

Figure 2 shows the mixed-effect joint model predictions and how each baseline 

factor impacts on the PSA trajectory, by outcome. We see initial high levels of PSA 

at diagnosis which drop for both groups during treatment. When treatment stops, 

PSA recovery/bounce is seen at 1-2 years after treatment, the slight bump around 2 

years is likely due to the effects of testosterone recovery. For those that go on to 

remain event-free, a slight decrease is seen and then a stable plateau.  

For fractionation schedule, there is generally little difference between the PSA 

trajectories for each schedule in the first year, and then PSA slightly deviates post-

two years with systematically lower predicted PSA values in the 60Gy/20f arm for 

those with no recurrence, but highest predicted PSA values for those that do recur. 

Visually there does not appear to be much predicted difference in the GS and T-

stage for the lower risk factors, but GS≥8 and T3 subgroups appear to exhibit lower 

PSA trajectories. Patients who received LHRHa appear to have lower predicted PSA 

values than those receiving bicalutamide; noting that allocation to hormone therapy 

was not randomised, with most patients (87%) receiving LHRHa. The biggest effect 

on PSA trajectories is age at diagnosis, with younger patients (ages 40-49, n=6) 

exhibiting higher post-treatment PSAs; for those who do not relapse, a stable PSA 

after 4 years is seen across all age groups. Parameter estimates for the final mixed-

effects submodel component can be found in the supplementary materials tables S1 

& S2.  
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3.3 Joint modelling time-to-recurrence 

Conditioning on the PSA trajectory, fractionation schedule did not show a statistically 

significant effect (ref 74Gy/37f; 57Gy/19f: HR=0.99 95% credible interval (CI)=[0.65, 

1.50]; 60Gy/20f: HR=1.01 95%CI=[0.71, 1.44]). GS (ref   ; 3+4: HR=1.81 

95%CI=[1.33, 2.49]; 4+3: HR=2.76 95%CI=[1.95, 3.95]; ≥ 8: HR=2.49 95%CI=[1.27, 

4.96]), T-stage (ref T1; T2: HR=1.47 95%CI=[1.10, 1.97]; T3: HR=2.41 95%CI=[1.52, 

3.76]) and age (HR=1.05 95%CI=[1.03, 1.08]) were associated with the risk of 

recurrence. Patients who received bicalutamide appeared to have lower risk of 

recurrence (HR=0.70 95%CI=[0.48, 1.00]), although this was not statistically 

significant (p=0.053), in line with previous results 29.   

For the association with the mixed-effect model, the log-hazard ratio parameter 

estimates for both the PSA value- and PSA gradient are 4.52 (95%CI=[4.07, 4.99]), 

and 2.08 (95%CI=[1.74, 2.43]), respectively, indicating that both absolute PSA value 

and its gradient at a given time as parameterised in the mixed-effects model are 

highly predictive of recurrence. Parameter estimates for the joint model can be found 

in the supplementary materials tables S3 & S4, including comparison with a Cox 

model with baseline-only covariates. 

3.4 Dynamic predictions 

We demonstrate how the model updates prognosis over time on two selected 

patients who received the same treatment (57Gy/19f radiotherapy schedule, LHRHa 

hormone therapy) and PSA follow-up schedule, similar age at diagnosis and 

contrasting NCCN risk groups at presentation (patient A: GS=8, T3, presenting 

PSA=5.3ng/mL, vs patient B: GS=6, T1, presenting PSA=9ng/mL), and outcome. 

Dynamic predictions for these two patients are presented in Figure 3 over five panels 

(V—Z) for different prediction landmark times (                years), to predict 

                  



Page 14 
 

risk ten years after initiating treatment. On each panel, the left-side of each figure 

depicts PSA (in blue, observed PSA values in dots, while line depicts estimated 

predicted PSA) and the right-side shows the point estimate of the cumulative risk of 

recurrence up to ten years from the landmark time (in green the curve for A who 

does not experience recurrence, the red for B who does). The shaded areas show 

the 95% credible intervals of the estimated predictions for each outcome. 

At baseline (at     years, Figure 3V), patient A has poorer baseline prognostic 

factors and worse ten-year prognosis (~45% recurrence risk) than patient B (~30% 

recurrence risk), despite having a lower presenting PSA. For both patients, using 

only presenting PSA gives very wide credible risk intervals for the predictions beyond 

two years. A year since starting treatment (Figure 3W), both patients exhibit a similar 

drop in PSA with patient prognosis slightly improving for B. In Figure 3X (landmark 

      , A’s PSA remains low whilst B’s PSA level starts to increase beyond the 

plateau. In Figure 3Y (landmark      ), A’s PSA continues to remain low and 

stable, with their risk substantially dropping, whilst B’s PSA continues to increase 

thereby further increasing his risk of recurrence. In Figure 3Z after 5 years follow-up, 

A’s PSA is very stable around 0.1 ng/mL, thus his updated prognosis is very good, 

with reduced credible intervals for his predictions, compared to B’s, whose post-

treatment PSA presents more variability and increases over time. The risk of 

recurring by 10 years for A is very small (~5%) compared to B’s risk of recurrence 

(>60%), with jumps in estimated risk at each previous landmark after a year. This is 

driven by the accrued PSA levels before 5 years, approaching biochemical failure. 

Patient A was recurrence-free by 9 years follow-up, whilst B had a recurrence by 5½ 

years. 
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3.5 Assessing predictive performance 

We assessed the CDPJM’s calibration and discrimination for predictions of risk to 

recurrence by 8 years. Presented in Table 2, the 50-times-repeated bootstrapped 

optimism-corrected metrics (mean for each time point) for the CDPJM to predict 

biochemical / clinical failure for landmark times at years zero (   , baseline) to 

seven (   ), with a fixed horizon prediction of eight years. Discrimination improves 

as more longitudinal PSA information becomes available after 3 years’ worth and 

AUC was maximised after 5 years of follow-up 0.84, 95% bootstrapped CI 

(bCI)=[0.81—0.87]. Similarly, calibration and Brier improves considerably after four 

years. The overall corrected AUC is 0.70, 95% bCI=[0.51—0.86]; ICI=0.05, 95% 

bCI=[0.014—0.089]; Brier=0.10, 95% bCI =[0.025—0.164].  

3.6 PSA risk thresholds 

In Figure 4, we performed linear regression analysis between the predicted risk of 

recurrence by eight years from the joint model, given the accrued longitudinal 

biomarker information up to landmark time   (            years), and the latest PSA 

value available prior to the landmark time. At all landmarks there is a strong positive 

correlation between latest PSA value and predicted risk of recurrence by eight years. 

As the latest PSA value nearest to landmark time increases, predicted prognosis 

worsens with an increased recurrence probability. The recurrence risk threshold is 

minimised at the origin for each landmark time  . This gives an approximate level of 

an ‘acceptable’ average PSA threshold on a continuous scale.  

For instance, we see that at the start of treatment (landmark          ) in Figure 4 

(top-left), for a minimal PSA, the lowest predicted risk is 13% (y-intercept) and a 

relatively small R² value as there is some heterogeneity here at baseline time origin 

with wider 95% prediction interval (PI) bands (8-year recurrence risk PI 0% to 29% at 
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the intercept). As follow-up continues (      years), PSA drops to the nadir (the 

lowest recorded PSA) which is near-zero. The intercept implies a minimal PSA 

predicts a recurrence risk of 11% and 7% at landmark time 1 and 2 years 

respectively. At landmark times 3, 4, and 5 years, the regression intercepts are 

negative (a nil PSA implying an infeasible negative risk), though their magnitudes are 

very small; PSA levels less than 0.23, 0.34, and 0.41ng/mL respectively predict a 

small (   ) risk of recurrence by 8 years.  

4 Discussion & conclusions  
In this study, we have developed a dynamically updated clinical prediction joint 

model for the risk of prostate cancer relapse in patients treated with both hormone 

therapy and IMRT in the CHHiP trial. We showed that incorporating longitudinal PSA 

values collected over time into the model, in addition to baseline prognostic factors 

and treatment schedules, aids and improves prediction of individual patient 

prognosis. We explored and quantified the effect of hypofractionation (3Gy/f) 

compared to conventional fractions (2Gy/f) on patients’ longitudinal PSA trajectories 

and on recurrence. There was no statistical evidence of a difference between either 

of the hypofractionation schedules, compared to the conventional fractionation arm, 

in terms of the PSA trajectories or reducing recurrence risk as expected due to the 

non-inferiority hypothesis of the study design.    

PSA levels typically started to rise exponentially approximately 1½-2 years before 

formal biochemical failure. We quantified the association of PSA values and its rate-

of-change, both being highly significant and predictive of recurrence. The rationale to 

include PSA gradient is that there may be non-recurring patients who have a higher 

post-radiotherapy PSA value but continues to be stable (non-increasing over time), 

compared with a patient who may have a lower PSA post-radiotherapy that 
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continues to increase post-treatment. With the entire PSA trajectory captured and 

supplied to the CDPJM, PSA to nadir is directly modelled and has previously been 

shown to be an important predictor of event-free survival 30. Similarly, inference in 

changes of the minimum (nadir) PSA between patients can be made. The nadir often 

occurred by two years since treatment commenced, with PSA value and gradient at 

the nadir both being close to zero. E.g., take two similar patients where their only 

clinical difference is a nadir of nil and 0.1 after a year of starting treatment. The 

predicted recurrence risk by 8 years of the patient with a higher nadir is 4.85%, over 

doubled from the risk of the patient with lower nadir, 2.06%. However, in absolute 

values, this is still a small increase, and would still be considered to have a good 

prognosis.  

We also attempted to quantify the relationship between PSA values at particular 

landmarks from starting treatment and subsequent recurrence. This is not 

straightforward as it is difficult to define precise or best cut-offs for PSA which need 

clinical (and patient) value judgements. For example, we saw some implausible 

predicted risk values from the regression parameter estimates (the intercept) 

between landmark times 3—5 years after treatment. Perhaps more careful 

consideration and sophisticated methods could be applied here or forcing the 

intercept to be zero. However, this was to give an indication of upper PSA bounds to 

predict a recurrence risk of     by 8 years at various landmarks in a simple ‘rule-

of-thumb’ without overcomplicating the interpretation. It is worth noting that the 

extracted risk predictions are obtained from the joint model. It is not just the PSA 

value by the landmark time which is considered, it is also its rate-of-change and its 

history modelled by the mixed-effects submodel. Using only the most recent PSA 

value predictor at the landmark time is a simplified approach, as the raw 
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concentration is a proxy to each patient’s PSA trajectory by the landmark time point. 

Additionally for personalised predictions it is difficult to give one-size-fits-all cut-offs, 

and a balance must be made to the weighting and importance of false-positives and 

false-negative predictions. Our data suggest that PSA levels ≤0.23, 0.34, and 

0.41ng/mL at 3, 4, and 5 years respectively give a reasonable indication of having a 

    risk of recurrence by 8 years. For those same landmark times and risk 

thresholds, 27%, 40%, and 51% proportion of patients have this PSA threshold (or 

less). It is encouraging that these thresholds are consistent with previous findings in 

the context of prognosis after brachytherapy 31 and mono-external-beam 

radiotherapy 32,33. Yock et al similarly state that a 5-year PSA ≤0.5ng/mL has very 

good prognosis (97% progression-free rates by 8 years) 33. These studies 32,33 have 

some differences with ours, being over 20 years old, lower radiation doses were 

delivered, with no hormone therapy, and they used PSA categories at a fixed time at 

5 years using a simplified Kaplan-Meier landmarking approach. This may explain the 

slightly lower threshold we found; our continuous method for ascertaining these 

thresholds is more flexible, without arbitrarily categorised PSAs.  

 Conversely a PSA of 1ng/mL at 5 years gives a predicted risk of recurrence of 20% 

(95% PI=[6%–33%]). The reason we report prediction intervals rather than the 

smaller confidence interval is to have a prediction range for new patients entering 

this treatment pathway where most patients are within the PIs. There is reasonable 

heterogeneity in the Figure 4 scatter plots at the earlier landmark times (indicated by 

the lower R² values). It is worth noting the individualised predictions directly from the 

joint model will give bespoke credible intervals too.  This study supports the 

importance of presenting, nadir, and post-treatment recovery levels of PSA. Findings 
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from this CDPJM suggest that patients with a PSA ⪅ 0.23ng/mL and stable (low or 

nil gradient) PSA from 3 years onwards have good prognosis.  

We chose to validate up to a fixed horizon time of 8 years, given that the median 

time at the date of data snapshot was 8.6 years, despite being able to extend this as 

seen in the dynamic predictions. We chose the fixed horizon approach to exemplify 

how predictions improve as more PSA information is collected. The model also 

allows predictions at fixed prediction windows, such as two- and five years from fixed 

landmark times (e.g., given data up to three years, what is the predicted risk of 

recurrence in the next two years). These (non-corrected) metrics are presented in 

the supplementary materials table S5. There is relatively little difference in the 

validation between the two methods (apparent vs bootstrapped-corrected) AUC and 

Brier scores – with some notable differences in the earlier landmarks. There are 

slightly bigger differences in the first two years for the ICI metrics.  

Diagnostics of the joint model were performed (not shown). The longitudinal 

component conforms to the assumptions, though there were some departures 

observed in the tails of the quantile-quantile plot, suggesting t-distributed residuals 

could be appropriate. The random effects themselves conform to normally distributed 

residuals. The Cox submodel proportional hazards assumption for baseline 

covariates were checked and found not to be violated; a joint model including time-

varying   (   showed some departures of PH for time-varying PSA process, which 

become reasonably constant after the nadir. Previous work has shown the joint 

model is highly robust to departures in the proportional hazards assumption 34.  

A limitation of the study is the inherent association of the longitudinal process and 

the outcome, as we included biochemical recurrence in the definition of the outcome. 
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This is because the primary endpoint in CHHiP captured failure-free survival, which 

is time free of any event that would trigger further treatment for the patient (or 

prostate cancer death). For this reason, for patients whose biochemical failure 

triggered treatment, it was not always possible to confirm clinical radiological 

progression. 

Furthermore, we acknowledge the relative complexity of the joint model, namely in 

the mixed-effect submodel. The parameterisation of the longitudinal mixed-effects 

model is complicated with four internal cubic spline knots over time to capture the 

exhibited nonlinear PSA, with 15 main-effect parameters and a total of 71 

parameters to estimate. We do feel that the complexity of the model is warranted. 

We further investigated (not presented) pairwise interactions of the baseline 

variables with time; an additional 45 parameters to be estimated and as most curves 

were reasonably parallel, this was considered adding unnecessary complexity and 

did not improve the deviance information criterion.  

When conditioning on PSA trajectory, it appeared that receiving Bicalutamide 

magnified a reduced risk of recurrence, compared to LHRHa (not randomised) when 

using the regular Cox model (see supplementary materials table S3, and Tree et al 

29). Conversely, PSAs remained higher than LHRHa patients (Figure 2). Surprisingly, 

we saw patients with worse prognostic factors (Gleason ≥ 8 & T3) have the lowest 

PSA trajectory, however there were relatively few patients in these subgroups (n=97 

and 270 respectively).  

Dynamic prediction models that incorporated longitudinal PSA levels to predict risk of 

recurrence in prostate cancer have been previously explored. A full review of these 

relevant studies can be found in Parr et al with similar dynamic prediction windows 
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and expected predictions to our study 18. However, these previous studies use PSA 

dynamics after standard external-beam radiotherapy has ceased and without 

neoadjuvant or concurrent hormone therapy; therefore, in their setting the PSA 

dynamics are different, with lower PSA values at    ,  slower PSA decrease to 

nadir, and elongation of its trajectory, compared to the PSA dynamics we observed 

from pre-hormone treatment PSA values. As recruitment of these previous studies 

occurred in the 1980s, there have been significant advances in treatment, with 5- 

and 10-year survival rates doubling (in the UK) since then 35. Additionally, the 

majority of CHHiP patients received neoadjuvant and concurrent hormone therapy, 

with hypofractionated radiotherapy regime, therefore our model and analysis is 

applicable to the current standard-of-care.  

We compared the prognostic performance of the CDPJM to other published articles. 

Arguably most similar to our work is Taylor et al who propose a joint model using 

real-time evaluation of predicting recurrence of prostate cancer 36. The longitudinal 

PSA biomarker was modelled using a biphasic exponentially decreasing-increasing 

parametric function. Some of their parameter estimates were remarkably similar to 

ours, namely in the log-hazard ratios to the PSA level, T-stage and Gleason. Their 

prediction time focuses on a window of no more than three years ahead, whereas we 

present a fixed horizon prediction time of eight years (see supplementary materials 

table S5). Their exhibited PSA trajectory is an elongated tick-shape, typical of 

radiotherapy-only treatment. Direct model comparison cannot be made due to their 

differing validation appraisal methods, and lack of androgen deprivation therapy. 

There is likely not much difference in predictability between mono-radiotherapy and 

dual-therapy at earlier landmarks. However, the nadir may occur later for 
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monotherapy patients, which could slightly decrease the predictability compared to 

dual-therapy at the nadir. 

As follow-up continues, and there are an ageing population of patients in CHHiP, we 

assessed whether deaths from non-prostate cancer related causes may represent a 

competing risk for our outcome of interest, but finding it was not an issue, these 

deaths were treated as censored in our model. Extensions exist for joint models 

accounting for competing risks, but extracting dynamic predictions and assessing 

their predictive performance is not trivial 37,38. Other extensions to our model could 

include an additional multivariate longitudinal process (e.g. with both PSA and 

testosterone), which is known to be prognostic in later disease stages 39, or novel 

biomarkers of early detection of recurrence, such as circulating-tumour DNA fraction 

40; or additional histopathological prognostic factors, such as Ki67 41. These however 

were not routinely collected in this trial.  

In this work, we proposed joint modelling to characterise PSA trajectories and how 

these impact on predicting risk of recurrence in the CHHiP trial. Further work 

includes developing a gold-standard dynamic predictive tool to be used within the 

clinic. Other sophisticated predictive algorithms exist, however typically use only 

baseline factors under varying treatment modalities and outcomes 42,43. For example, 

we saw that patient B in Figure 3 had poor prognosis evident from their increasing 

PSA from 3½ years, despite their relatively good baseline prognostic factors. 

Although worse baseline prognostic factors, PSA trajectory indicated patient A’s 

prognosis was good, and continued to be so after 4 years of follow-up; the model 

could be further extended to recommend and reduce follow-up frequency and 

burden. For instance, amongst the patients recurrence-free and alive at five years, 

the median time to failure for patients who recurred after 5 years was 7 years. In this 
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cohort, the median predicted cumulative incidence of recurrence is 4% by year 6, 

12% by year 7, 20% by year 8, 27% by year 9 and 34% by year 10. Amongst 

patients who do fail by 7 years [       ] (n=136), their median cumulative risk of 

failure is 30%; compared to a median of 2% risk of failure for equivalent patients who 

are censored by 7 years (n=423). This demonstrates the predictive difference of the 

two outcomes and the two-year lead-time capabilities of the model, suggested by the 

reverse-time plot (Figure 1(b)).  

Our clinical calculator would allow the clinician to visualise each patient’s 

personalised risk of recurrence over time; if the risk surpasses an unacceptable 

threshold, further investigation could be considered, and personalised follow-up 

schedules could be designed 19,44. To achieve this, we plan for the CDPJM to 

undergo robust external validation so we can assess its clinical utility in differing 

patient populations and alternative treatment modalities where similar PSA dynamics 

are expected. For instance, we hope to explore the generalisability of our proposed 

model with stereotactic radiotherapy or using longer hormone therapy schedules 

45,46. It may be that with differing treatments and disease stage, alternative model 

development and/or recalibration is required. Additionally decision analysis could 

quantify net benefit at various thresholds, versus a ‘do-all-or-nothing’ approach 47.  

To conclude, we quantified the impact of an increase in PSA value- and rate-of-

change on prostate cancer recurrence, adjusting for baseline prognostic factors and 

treatments in the CHHiP trial. Our model will be applicable to future patients who 

undergo hormone therapy with either conventional or hypofractionated IMRT. As 

expected, PSA is predictive of recurrence, as previous studies have shown. We also 

assessed the performance of the prediction model, which showed good calibration 

and discrimination, optimised after 4-5 years’ of accrued longitudinal PSA biomarker 
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information to predict recurrence by 8 years. We demonstrated the practical aspect 

of these models in performing dynamic predictions from the relevant patient 

population that can help to guide patient care and allocate limited resource more 

effectively. We have also proposed clinical thresholds at various landmarks, with 

simple continuous calculations to determine alternative PSA thresholds given the 

recurrence risk clinicians might be willing to accept, which is easily applicable in 

clinical practice.  
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Figure captions 

PSA distribution and reverse-year plot 

Figure 1 – top (a): aggregated PSAs and boxplots by year and outcome since 

starting treatment. Patient numbers still at risk are presented below the plot. Bottom 

(b): Smoothed reverse-years PSA trajectory plot, stratified by outcome, natural cubic 

spline smoothers shown. In the non-recurring patients, a few PSAs >5ng/mL are 

recorded; these PSAs were considered bounces/flares and therefore did not achieve 

the protocol’s definition of biochemical failure.  

Effect plots 

Figure 2 –The predicted effect plots of PSA, stratified by outcome (solid – 

recurrence, dashed – censored) and each baseline subgroup over time. The top-left 

panel are the overall PSA trajectories by outcome. The natural cubic spline smoother 

is depicted.  

Dynamic predictions 

Figure 3 - Dynamic predictions of two patients: A & B, over five panels (V—Z). 

Patients A & B are ages 63 and 64 respectively and both received the same 

treatments, with contrasting prognostic factors. The left-hand side of each plot shows 

their modelled PSA values over time and the right-hand side shows their risk of 
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recurrence at particular landmarks by ten years after initiating treatment. The 95% 

credible intervals are shown (shaded).  

Scatter plots of PSA predicting risk 

Figure 4 – Scatter plots of PSA predicting prognosis/recurrence risk by 8 years 

(horizon), each panel represents landmarks 0 – 5 years. Each grey dot indicates a 

patient’s PSA (nearest to that landmark time) and risk at each landmark time. PSAs 

≤ 3ng/mL are considered after t=1. The blue line indicates regression fit with the 

corresponding equation and R² labelled in each panel, with 95% confidence 

intervals. The wider grey bands indicate 95% prediction intervals. At the intercept (or 

less) indicates the predicted recurrence risk for a nil PSA; for the regression lines at 

t=3,4,5, each PSA threshold is labelled that predicts a <5% risk. 
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Tables  
Table 1 - Baseline characteristics, follow-up time (N=3071) considered in model 

development. LHRHa – Luteinizing-Hormone-Releasing-Hormone analogue + 

possible anti-androgen.  

Baseline Factors N = 3071
1 

1 
n (%); Median (IQR) 

Allocated fractionation group   

74Gy/37f 1017 (33%) 

57Gy/19f 1025 (33%) 

60Gy/20f 1029 (34%) 

Gleason score  

   1022 (33%) 

    1354 (44%) 

    598 (19%) 

≥   97 (3%) 

Clinical T-stage  

T1 1088 (35%) 

T2 1713 (56%) 

T3 270 (9%) 

Hormone Therapy  

LHRHa 2668 (87%) 

150mg Bicalutamide 403 (13%) 

Age (years) 69.1 (64.5, 73.2) 

Baseline/presenting PSA (ng/mL) 10.3 (7.3, 14.6) 
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Table 2 – optimism-corrected model metrics from landmark times t=0—7 predicting 

at a horizon time of eight years. Discrimination – AUC (area under the curve); 

calibration – ICI (integrated calibration index); overall predictive performance – (Brier 

score). Mean, [95% bootstrapped CIs] refers to the bootstrapped replications. The 

ICI & Brier are loss functions (where lower is better), with higher AUC measures 

indicating better discrimination. Ns are patients remaining at risk at development.  

  Optimism-corrected metrics 

Landmark tyears 
for prediction 
interval [t, 8] 

N still at risk AUC ICI Brier 

    (baseline) 3071 0.525  
[0.500—0.553] 

0.056 
[0.043—0.068] 

0.16 
[0.154—0.166] 

    3039 0.58 
[0.556—0.6] 

0.06 
[0.045—0.072] 

0.153 
[0.147—0.16] 

    2947 0.612 
[0.583—0.644] 

0.083 
[0.069—0.098] 

0.153 
[0.145—0.16] 

    2823 0.651 
[0.632—0.677] 

0.061 
[0.049—0.069] 

0.123 
[0.113—0.132] 

    2705 0.748 
[0.728—0.767] 

0.045 
[0.036—0.052] 

0.097 
[0.089—0.106] 

    2528 0.797 
[0.767—0.821] 

0.038 
[0.031—0.048] 

0.068 
[0.062—0.075] 

    2357 0.838 
[0.807—0.868] 

0.024 
[0.019—0.029] 

0.047 
[0.039—0.054] 

    2176 0.806 
[0.756—0.873] 

0.016 
[0.013—0.019] 

0.027 
[0.022—0.033] 

 

 

                  


