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Abstract

The tumour microenvironment can provide crucial information for disease diagnosis, treat-
ment planning, and prognosis. However, the complexity of its morphological, cellular, and
spatial architecture hinders accurate evaluation and quantification. Deep mining of its content
using knowledge-driven artificial intelligence methods can significantly benefit clinicians
and patients by uncovering new disease biology and generating objective assessments in the
decision-making process.

In this PhD thesis, we developed deep learning based image analysis pipelines to spatially
interrogate the role of the tumour microenvironment in various cancer types, including
follicular lymphoma, multiple myeloma, and ductal carcinoma in situ, using multispectral
immunofluorescence (MIF), multiplex immunohistochemistry (MIHC), and hematoxylin and
eosin (H&E) tissue staining technologies.

Firstly, we developed new deep learning-based pipelines to detect and classify single cells
and segment different tissue compartments on MIF and MIHC images. The deep learning
models were trained and validated using expert pathologists’ annotations. Secondly, we
developed tissue morphology and single-cell spatial analysis methods tailored to the tissue
structures’ complexity to identify spatially resolved phenotypes and spatial topography of
cells to predict disease prognosis. We showed the significance of the architectural distribution
of tumour infiltrating lymphocytes (TILs) on the prediction of disease outcome. Finally, we
implemented an automated TILs scoring pipeline from H&E images that account for ductal
carcinoma in situ spatial infiltration pattern and mimic pathologists’ TILs scoring procedure.
The spatial scores were associated with patient response to treatment and risk of recurrence.

In conclusion, we built new deep learning based image analysis pipelines that dissect
tissue structures and spatially map cell phenotypes in histopathology images and identified
novel spatial prognostic features in multiple cancer types. Once validated, these methods
could be utilised in clinics as decision support for the diagnosis and prognosis of cancer

patients for precision medicine.
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Chapter 1

Introduction

1.1 Tumour and tumour microenvironment

Cancer is a disease characterised by unregulated cell growth with the capability of spreading
throughout the body [1, 2]. Under normal conditions, cells divide to create new cells, and
aged cells die in a programmed way [1]. When this control is lost, aged cells continue to live
and cell divide without control and this forms a tumour (Figure 1.1A) [1, 2].

Although the tumour is one of the earliest documented diseases in history, we still
wonder about its initiation, development, and invasion. The name "cancer" was coined by
Hippocrates, a Greek physician, around 400 BC [3, 4]. However, the earliest description
of human cancer could be traced back to 3000 BC, as found in the Edwin Smith Papyrus
documenting the first human breast cancer case [3]. These ancient Egyptian reports described
cancer as a deadly, incurable sickness, and they believed it to be "the curse of the gods"
[3, 4].

Cancer was long thought to be a disease composed solely of abnormal cells with au-
tonomous proliferative, and survival abilities [4, 2]. Thus, cancer treatment has been limited
to targeting cancer cells. For example, according to Dilonardo et al. [4], ancient Egyptians
used heated substances to burn cancerous tissue. However, tumours develop within a body
surrounded by a complex and heterogeneous multicellular environment influencing their
survival. For example, abnormal cells could be created due to uncontrolled genetic changes.
However, can these cells multiply, grow, and become a tumour without interaction with
the surrounding environment? The surrounding environment is highly likely to influence
the tumours, either supporting or opposing their growth and survival. This surrounding
environment is called the "tumour microenvironment". Advances in cancer biology have
revealed that the tumour microenvironment (TME) plays an equal, if not greater, role in

cancer cell initiation, progression, and survival [5]. According to DiLonardo et al. [4], the
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importance of TME has triggered a shift in how cancer biology and treatment are perceived;
instead of considering cancer cells fully autonomous cells and a cancer-centred treatment
approach, cancer has begun to be viewed as a disease evolving in complex multicellular
tissue, determining its fate.

The TME is a rich resource, everything except the cancer cells. As shown in Figure 1.1B,
it includes fibroblasts, blood vessels, stromal cells, immune cells, and antigen-presenting
cells such as macrophages and dendritic cells, among others [9, 8, 10]. While some of these
cell types promote the growth and survival of cancer cells, others suppress them. Moreover,
cancer cells could hijack the control system of the host immune system, and even cells
thought to help the body will be recruited in favour of tumour invasion [5, 8, 10]. This helps
the tumour to alter the microenvironment to promote its growth, for instance, by forming
blood vessels towards the tumour mass [11]. In contrast, immune cells could suppress tumour
proliferation or be recruited by tumour cells to facilitate immune evasion [5, 10, 12].

The interaction between tumour and TME was first coined by Stephen Paget in his "seed
and soil theory", seeds as tumour cells and soil as the microenvironment [13]. However,
Paget’s work did not get much attention until mid-20"" century. In the 1960s, cancer re-
searchers started to study immunology in relation to tumour development [13]. This paved
the way for the development of innovative cancer treatment strategies such as immunotherapy
[8, 5].

It also led to the creation of advanced technologies to decipher the molecular, cellu-
lar, and tissue architectural features of tumours and the microenvironment. For instance,
molecular profiling technologies like whole genome sequencing and ribonucleic acid se-
quencing have helped us to learn more about cancer biology. These technologies provide
a high-dimensional profile of cancer and normal cells, revealing the underlying genetic
modifications and functional changes during cancer progression. While these technologies
initially did not preserve the tissue context, recent molecular profiling technologies such
spatial transcriptomics preserve the spatial context [14].

Moreover, spatial histology tissue staining technologies such as multiplex immunohis-
tochemistry (MIHC) and multispectral immunofluorescence (MIF) allow the examination
of cancer cells and TME at a single cell level while preserving spatial tissue context. The
MIHC and MIF technologies use antibodies and proteins to stain millions of cells within a
tissue section while preserving the tissue’s spatial context [15]. These technologies allow
investigation of cellular composition, cells spatial organisation, and tissue morphology in
normal vs tumour tissue, patients with the same cancer type but different clinical outcomes,
and patients with different cancer types. However, these technologies generate vast amounts

of data, making analysing them a bottleneck. Nevertheless, these limitations could be ad-
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Figure 1.1: Tumour microenvironment. A) Tumour block removed from a patient with
glioblastoma. Used with permission of Royal Society of Chemistry, from Ciasca et al. [6];
permission conveyed through Copyright Clearance Center, Inc. The tumour block contains
cancer cells and non-cancerous cells such immune cells. B) A cartoon showing cancer cells
initiate, grow and survive surrounded by various cell types and tissues in the TME such as
blood vessels, immune cells and cancer-associated fibroblast. These cells could promote or
impede the growth of the tumour and they possess an elastic behaviour. Pericytes are cell
types important for blood vessel formation and control of blood flow [7]. The main function
of blood vessels is to transport nutrients to tissues and waste materials outside the tissue or
organ. The lymphatic system transports white blood cells and fluid molecules to maintain
the cells. Tumour cells promote the growth of lymphatic and blood vessels in their area
to maintain their survival and fast growth. The image is taken from Junttila et al. [8] with
permission from the Springer Nature.
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dressed using advanced computing resources and deep learning-powered image analysis
tools [16-18].

The focus of this thesis is to study the tissue microenvironment and spatial immune
landscape of multiple cancer types including follicular lymphoma (FL), multiple myeloma
(MM) and ductal carcinoma in situ (DCIS) using spatial histopathology staining technologies
and deep learning based computational methods. In the following sections, we will have
a brief look at the TME and clinical management of FL., MM and DCIS, and applications
of deep learning in digital pathology highlighting the gaps in the literature which will be
addressed in this thesis.

1.2 Follicular lymphoma

1.2.1 What is follicular lymphoma?

Lymphoma is a type of blood cancer that affects white blood called lymphocytes [19].
Lymphomas are categorised into Hodgkin lymphomas or non-Hodgkin lymphomas based on
cell content. Hodgkin lymphomas are characterised by the presence of large, multinucleated
lymphocytes, also known as Reed-Sternberg cells [19, 20]. Lymphocytes are grouped into T
and B cells. Follicular lymphoma is a slow-growing (indolent) non-Hodgkin lymphoma that
affects B cells [19, 21].

The B cells are created in the bone marrow (BM) from lymphoid progenitors. Towards
their maturity, these B cells start to develop B cell receptors and they leave the BM and travel
through the bloodstream to other parts of the body such as lymph nodes and liver [21, 23]
(Figure 1.2A). In the lymph node, B cells reside and grow in a specific region called the
germinal centre, and their primary function is to generate antibodies that help our body fight
infections [23]. When these cells accumulate abnormal genetic alterations such as t(14;18)
translocation [21], they become neoplastic and start to multiply out of control and invade the
germinal centre. During the initial stage of FL, neoplastic cells penetrate existing lymphoid
follicles, interact with the germinal centre microenvironment, and emit signals that promote
survival and proliferation of B cells [21]. In the case of FL, the cancer cells develop in a
clustered or non-diffused way and form follicular or nodular structure (Figure 1.2B), and
hence the disease is named follicular lymphoma [21]. During the neoplastic progression,
neoplastic follicles destroy the natural lymph node tissue architecture and invade nearby

adipose tissues [21].
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Figure 1.2: B cells maturation and follicle histology image. A) A cartoon showing B cell
development from bone marrow to germinal centre. B cells develop in the bone marrow from
lymphoid progenitor cells. The stages of development include Pro-B, Pre-B, immature B and
mature B cells [22]. Mature B cells leave the bone marrow and travel to other organs such as
lymph nodes and reside in the germinal centre. B) Histology image showing annotation of
neoplastic follicles on FL tissue sample of lymph node. The black colour annotations show
the neoplastic follicles. DAPI (4, 6-diamidino-2-phenylindole) is a nuclear stain.
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1.2.2 Diagnosis and treatment follicular lymphoma

The diagnosis rate of FL is higher in developed counties than in developing countries, in
older than young people, and in men than women [21]. Follicular lymphoma accounts for
5% of all haematological neoplasms and 20%—-25% of non-Hodgkin lymphomas in western
countries [21].

The diagnosis of FL involves a combination of lymph node biopsy for morphological
analysis, blood test, and imaging test [21, 24]. Expert pathologists or haematologists analyse
these samples for prognostic features and genetic changes that help the disease staging,
grading and deciding treatment [25]. A blood test is used to count the proportion of clonal
B cells in the blood. In contrast, non-invasive imaging technologies such as computed
tomography are used for staging (I-IV) to identify areas affected by lymphoma and to
guide biopsy sampling [19, 21, 25]. Stage III and IV are considered advanced stages [19].
Moreover, FL grading involves examining the presence of large lymphocytes using tissue
biopsy of the lymph node. The FL grading system includes 1, 2, 3A or 3B, in increasing
order of the number of large lymphocytes. Grade 1, 2, and 3A are slow-growing FL, while
grade 3B is classified as fast-growing and treated in the same way as high-grade non-Hodgkin
lymphoma [19].

After the diagnosis, pathologists generate a prognostic score to estimate the best-suited
treatment. In the UK, Follicular Lymphoma Interntional Prognostic Index (FLIPI) is one
of the most commonly used prognostic scores. This score is computed based on clinical
information including age, haemoglobin levels, number of involved nodal areas, stage and
lactate dehydrogenase levels [19].

Treatment of FL depends on the stage and grade of the disease. For grade 1-3A (slow
growing FL), treatment is not always suggested [19]. For early stage FL, radiation therapy of
the affected area is recommended [19, 26]. For advanced stage FL, chemo-immunotherapy
treatment is applied [19]. The most commonly used chemo-immunotherapy treatment
regimes include bendamustine, CVP (cyclophosphamide, vincristine and prednisolone),
CHOP (cyclophosphamide, hydroxydaunorubicin, Oncovin, prednisolone) and rituximab
[19, 27]. The advent of rituximab treatment, which targets the B cell marker CD20, has
significantly improved patients’ overall survival [28, 21]. Thanks to the development of this
drug about 50% of FL patients survive > 10 years [21, 29].

Montoto et al. [30] evaluated the prognostic value of FLIPI in a cohort of study
containing 103 patients with FL. The patients received different types of treatments including
monotherapy with alkylating agents, CHOP chemotherapy, and CVP chemotherapy. They
found that the FLIPI score of the patients is associated with the survival of patients after the
progression of the disease. Another study by Nooka et al. [31] examined the prognostic values
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of FLIPI in patients who received rituximab and non-rituximab treatment regimens. The
FLIPI risk groups showed an association with the patient’s overall survival and recurrence
free survival for both treatment regimens. However, this index fails to predict the risk of
relapse in some patients [32].

However, FL remains incurable cancer. Particularly, about 20% of patients progress or
relapse in the first two years of treatment [21]. Thus, identifying these groups of patients at
diagnosis is crucial so that alternatives to the current treatment standard can be administered
[21]. It is also important to note that many individuals die from therapy-related toxicity or
secondary cancers [33]. Therefore, our priority should be on managing high-risk patients,
employing existing and novel medicines properly, and reducing therapy for low-risk patients
[21].

1.2.3 Follicular lymphoma microenvironment

Follicular lymphoma differs from other types of lymphoma by forming a nodular structure,
perhaps due to unique neoplastic B cells and TME interaction [21]. The FL microenvironment
comprises lymphoid cells, stromal cells, and extracellular matrix components in addition
to malignant cells [21]. The TME and neoplastic B cells engage in reciprocal signalling
crosstalk using cytokines and chemokines, neoplastic B cells thriving for their survival and
proliferation by recruiting cells that are supposed to fight cancer [34].

Despite the slow progression of FL, a significant proportion of patients experience relapse
or transform into high-grade lymphoma, which is associated with a poor prognosis [35, 36].
The disease has an indolent remitting and relapsing course, but there is a lot of individual
variation [37, 38]. While most patients respond to various chemotherapy regimens, some
develop de novo resistance. Some patients achieve remission, but relapse early and have a
poor prognosis. On the other hand, some patients experience remission that lasts for many
years and can be life-long [21, 39]. Over the years, several attempts have been made to
decipher biologic and genetic alterations [40—42], and morphological [43—45] characteristics
of FL that predict disease prognosis.

Dave et al. [40] from the Staudt laboratory analysed the gene expression profile of
samples from patients with FL to identify immune response (IR) signatures associated with
patient survival. They identified two immune signatures, IR1 and IR2, which predicted long
and short survival, respectively, in follicular lymphoma. The IR1 gene expression profiling
signature contained genes that encoded both T-cell and macrophage markers, whereas the
IR2 signature contained genes that were preferentially expressed in macrophages, dendritic
cells, or both. Cell sorting experiments revealed that these signatures were produced by
infiltrating immune cells rather than malignant lymphoma cells. Furthermore, subsequent
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gene expression profiling-based studies suggested the potential importance of immune
surveillance in this disease, raising the prospect of novel immune approaches [40, 46].

Moreover, to define which immune cells influence FL prognosis, either by supporting
tumour cell growth or by causing tumour cell death, several qualitative and quantitative
immunohistochemistry or immunofluorescence studies have been performed. Initial studies
assessed single markers such as CD3 or CD68 found that high levels of T cells were
generally associated with a good prognosis [47—49], whereas macrophage infiltrates were
usually associated with a poor prognosis [48, 49]. However, Taskinen et al. [50] found that
macrophage infiltrates were associated with favourable outcomes and no association with
outcome was observed in another study by Canioni et al. [51].

Recently, multiplex staining has enabled the identification of multiple immune cells with
high accuracy [45, 52, 53]. The T cells associated with a good prognosis in FL predominantly
have a cytotoxic CD8+ phenotype [47], and CD4+ cells with a follicular regulatory phenotype
also appear to be associated with a favourable prognosis [45, 54, 55]. On the other hand,
the extent of infiltration by CD4+ cells with a follicular helper phenotype does not appear
to be prognostic of patient outcome [48]. Multiple studies have suggested that the CD68+
M1 macrophages are associated with a poor prognosis [48], but this has not been found
in all situations [50]. Similarly, the presence of large numbers of CD163+, CD68- M2
macrophages has been reported to be associated with opposing prognostic impact in different
patient cohorts [56].

There are multiple reasons for the frequent discrepancies between studies. Firstly the
patient characteristics in the different cohorts may vary, and the different treatments admin-
istered may impact prognostic factors for patient outcomes. In one study, for instance, the
density of CD68+ cells in the inter-follicular areas was associated with a poor prognosis in
the cohort of patients treated with fludarabine but a good prognosis in those treated with
cyclophosphamide vincristine and prednisone [27]. The study reported by Kridel et al. [56]
found that the presence of CD68- M2 macrophages was associated with a poor prognosis
in patients from the British Columbia Cancer Agency treated with rituximab and a non-
anthracycline regimen. However, the presence of CD68- M2 macrophages was associated
with a favourable prognosis in those patients treated with rituximab and an anthracycline-
containing regimen such as R-CHOP (R stands for rituximab) in the PRIMA trial [56].

Technical issues may also account for the different observations concerning prognostic
biomarkers. There may be a lack of rigorous intra- and inter-laboratory standardisation for
both staining specific antigens and expert histopathologists’ interpretation of staining patterns.
The Lunenberg Lymphoma Biomarker Consortium accessed the reproducibility of manual

scoring of immune cell markers from histology images [57]. They unexpectedly found that
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there is high variability among pathologists in the scoring of nearly all cell markers in a study
of diffuse large B-cell lymphoma [57]. The same group also evaluated the reliability of the
immunohistochemical analysis of the TME in FL and again found significant discordance
among expert laboratories [57], when small sub-populations in an immune infiltrate are
assessed. These problems are further compounded by the fact that the number of cells
considered can be statistically insufficient unless large areas of a biopsy are evaluated, which
can be very time-consuming.

Another potential difficulty in comparing studies is that some examine the cellular
composition of entire slides, whereas others concentrate on a specific region such as a
neoplastic region only. In FL, the intra-follicular areas containing neoplastic cells are
morphologically distinct from the inter-follicular areas [44]. It has been shown that the
non-neoplastic immune infiltrates are quantitatively and qualitatively different between these
areas [27, 44, 58, 59] and that the nature of the infiltrate in both sites may be predictive of

outcome.

1.2.4 The spatial ecosystem of follicular lymphoma

High-throughput multiplex imaging technologies such as MIF and MIHC that provide
unprecedented spatial resolution are revolutionising histopathology and spatial biology.
These technologies enable capturing multiple proteins that show the function of cells within
a tissue section while preserving the tissue’s spatial context. In addition to the spatial cell
distribution, tissue structures such as neoplastic follicles could be identified either manually
by expert pathologists or automated image analysis methods as shown in Figure 1.2B. In FL,
once the neoplastic follicles are identified and cells are spatially mapped within the tissue
section, the spatial organisation cells within the neoplastic follicles, outside the neoplastic
follicles or across the entire tissue section could be analysed (Figure 1.3). As the number of
markers increase, morphological pattern quantification by human become more challenging
[45]. Thus, hypothesised or exploratory automated image analysis methods are crucial to
identifying spatial patterns or biomarkers of tumour-infiltrating cells. Previous works on the
spatially resolved analysis of FL TME will be discussed below.

A cell could have a different function depending on the microenvironment [62]. In col-
orectal cancer, Schurch et al. [62] showed that a patient with a separated tumour and immune
compartments showed higher survival compared with patients who have an overlapping
tumour and immune compartments, which could be due to the regulation of the anti-tumour
function of immune cells by the tumour. Thus, in the case of FL, analysing the immune
infiltration pattern of the intra-follicular (a region which mainly contains neoplastic cells) and
inter-follicular regions separately could provide more precise insight into the prognostic value
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Figure 1.3: A cartoon showing the analysis of the spatial immune landscape of follicular
lymphoma: A cartoon showing identification of neoplastic follicles and cell types, and
spatial features that could be measured in a FL tissue section. The coloured dots represent
cells and one colour represents one cell type. Segmentation of the follicles enables analysis
of the spatial organisation of cells in the intra-follicular and inter-follicular regions. The
follicular pattern of cells indicates a distribution of cells mainly in the intra- and per-follicular
region of follicles, while diffused pattern indicates a distribution of cells in the intra-follicular
and inter-follicular regions [44]. While the prognostic value of follicular and diffused pattern
of cells and density of cells have been studied [27, 43, 44, 47], the prognostic value of
spatial co-localisation of different cell types was not studied in the context of FL tissue
compartments.
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Table 1.1: Prognostic value of infiltration patterns of immune cells in follicular lym-
phoma. Good and poor represent association with good and poor prognosis, respectively.
CHOP: doxorubicin hydrochloride (hydroxydaunorubicin), vincristine sulfate (oncovin),
and prednisone; CVP: cyclophosphamide, vincristine sulfate, and prednisone; IAF: intra-
follicular; IEF: inter-follicular; na:no association; PFS: progression free survival; OS: overall
survival; Treg: T regulatory cells; *: prognosis depends on the treatment administered; —:
analysis was not done. The R in R-CHOP and R-CVP stands for Rituximab. The endpoint is
the clinical variable used to evaluate the prognostic value.

Pattern [27] [35] [43] [44] [45] [47] [54] [60] [61]

CD4+ dense na - na na - - Good na  Good

CD4+ sparse na - na na - - Poor na Poor

CD4+ IEF na na na - - - na Good Good

CD4+ 1AF - Good - - - - - - -

CD8+ dense na - - na - Good na na  Good

CD8+ sparse na - - na - Poor na na Poor

CD8+ IEF na na - — — na na na —

CD8+ IAF - na - - - - - - -

Treg dense * - Good Poor Poor - Good na  Good

Treg sparse na - Poor Good Good - Poor na Poor

Treg IEF Good na Good - - - Good Good Good

Treg IAF na na Good - - - - na -

CD68+ dense * - - Poor - - na na  Good

CD68+ sparse  na - - Good - - na na Poor

CD68+ IEF * na - - - - na - -
Information about the data used by the studies

Paper Endpoint Treatment type

[27] PFS CVP or fludarabine

[35] PFS Various treatment regimens

[43] (ON} Various treatment regimens, mostly CHOP

[44] PFS and OS Multiagent chemotherapy and radiation

[45] OS Rituximab plus other regimens

[47] (ON) Various treatment regimens

[54] OS Various treatment regimens

[60] Transformation Various treatment regimens, mostly CVP

[61] OS and PFS CVP, CHOP, R-CVP or R-CHOP
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of immune cells in FL. Table 1.1 summarises the prognostic value of the spatial distribution
of immune cells from previous studies.

To dissect the inter- and intra-follicular region of FL, manual annotation or automated
methods have been adopted. Samsi et al. [63] developed a watershed based image analysis
algorithm to segment follicles on CD10 antibody stained MIHC images. Colour and texture
features were employed to locate possible follicular locations achieving around 87% overlap
with expert annotation [63]. Senaras et al. [64] proposed U-Net [65] based deep learning
algorithm to delineate follicles on CD8 antibody stained immunohistochemical whole slide
images, achieving dice similarity coefficient around 86%. However, since no marker stains
the follicles accurately, most previous studies relied on the manual evaluation of infiltration
patterns in the inter- and intra-follicular regions of FL [27, 43, 44, 47, 54, 60, 61].

Daphne de Jong et al. [27] using immunohistochemical staining of immune T cells
markers (CD4, CDS8, CD69 and FOXP3), and macrophages marker (CD68) and evaluated
the prognostic value of infiltration pattern of different cell types. The infiltration patterns
were scored manually by experts. They showed that high inter-follicular infiltrate of FOXP3+
T regulatory (Treg) cells was associated with improved clinical outcomes. However, the
prognostic value of dense Treg cells and CD68+ cells and the inter-follicular pattern of
CD68+ cells was dependent on the type of treatment administered. As shown in Table 1.1,
other studies have also investigated the prognostic impact of the architectural pattern of
immune T cells and macrophages.

Some studies showed that spare Treg cells are associated with favourable prognosis
[44, 45], while others show poor prognosis [54, 43]. Farinha et al. [44] utilised immuno-
histochemical staining of immune cells and investigated the association between follicular
patterns (follicular and peri-follicular infiltration) or diffused pattern immune cells with
patients’ overall survival. The binary classification of the follicular or diffused pattern
was done manually, and diffused pattern of FOXP3+ Treg cells was associated with more
prolonged overall survival [44]. Nelson et al. performed a triplex MIHC staining of CD3,
FOXP3 and CD69 to the association between infiltration pattern of immune cells and overall
survival [45]. Similar to [44], FOXP3+ Treg cells diffused infiltration pattern measured by
hypothesised interaction distribution [66] was associated with favourable overall survival
[45]. However, other multiple studies found diffused infiltration was associated with poor
prognosis [43, 54, 61]. Moreover, Mondello et al. employed [35] MIF panel containing
ten immune-related markers and studied the association between the abundance of immune
cells in the intra- and inter-follicular regions and early relapse. They found that reduced

intra-follicular CD4+ T cell infiltration was associated with early relapse in FL patients [35].
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The discordance in the prognostic value of the cell types could be due to the varying

precision of T-cell subset identification, treatment administered and endpoint clinical variable.

Moreover, these studies were conducted on a different cohort of patients with different

characteristics [57].

1.2.5 Limitations of previous studies

As discussed above, while some studies investigated the prognostic value of spatial infiltration

patterns of various immune cells in the inter- and intra-follicular regions of FL, these studies

have some limitations:

* Some of the previous studies employed a tissue microarray with a small number of
cores. For example, the studies by Farinha et al. [44] and Mondello et al. [35] used
tissue microarrays with only two cores and five cores per patient, respectively. The use
of a small number of cores could introduce bias and shows a small spectrum of the

spatial heterogeneity of FL microenvironment.

The previous studies contained a limited number of immune cell markers in their assay,
which shows again a limited spectrum of the cell content of FL, although these studies

could have been interested in specific cell phenotypes only.

» With exception of a recent study by Mondello et al. [35], quantification of the spatial
distribution patterns was performed manually by expert pathologist(s) from MIHC
stained images [27, 44, 54]. While this could be achievable in studies employing
tissue microarray and MIHC, it is challenging on the whole slide tissue section and
highly multiplex images such MIF containing a large number of markers. It has been
also shown that manual immune scoring lacks consistency even among experienced

pathologists [57] and automated image analysis could generate objective quantification.

The studies presented in Table 1.1 analysed the spatial infiltration pattern only at the
single cell type level. In solid tumours such as oestrogen receptor-positive breast cancer,
it has been demonstrated that the spatial relationship of immune cells and tumour cells
was prognostic rather than the density of immune cells [67]. Thus, analysing the
relative spatial co-localisation of multiple cells using multiplex staining technologies
in the intra-follicular and inter-follicular regions of FL might provide new biological
insight into the interaction between the neoplastic and immune cells in the TME.

In this study, to investigate the spatial immune landscape of FL microenvironment, we

employed multiple MIF staining panels to capture a wide spectrum of immune cells on tissue



1.3 Multiple myeloma 14

sections including immune T cells, myeloid cells, natural killer T cells and macrophages.
We developed deep learning based automated image analysis method to spatially localise
cell types on multiplex images and a spatial analysis method to investigate the association
between spatial co-localisation of different cell types in the intra-follicular and inter-follicular

regions with the patient’s clinical outcome.

1.3 Multiple myeloma

1.3.1 What is multiple myeloma?

Multiple myeloma (MM) is a blood cancer of plasma cells that develops in the BM [68-70].
The BM is a spongy material in the middle of a bone. It is the factory where body cells are
created and differentiated into different types. Plasma cells are white blood cells that develop
from B lymphocytes [71]. Under normal conditions, plasma cells produce antibodies to fight
against diseases and infections. When the normal plasma cells undergo unwanted genetic
change, the plasma cells start to multiply faster, outnumbering the normal cells in the marrow
[68]. Then, they start producing harmful monoclonal proteins, also known as M-Protein, and
abnormal antibodies that damage the bones and other organs, such as the kidney [69]. This
leads to the development of MM.

1.3.2 The development of multiple myeloma

Cancer is generally known as a multi-stage disease caused by the heterogeneous accumulation
of genetic changes in cells [72, 73, 69]. While many human cancers do not have clinically
known phases, MM have clinically recognised stages with less adverse characteristics. It
is preceded by asymptomatic stages of monoclonal gammopathy of unknown significance
(MGUS) and/or smouldering multiple myeloma (SMM) also known as pre-cursor conditions
[69] as shown in Figure 1.4. Although these stages lack the clinical features of MM such as
organ damage, they share some genetic alteration with MM, making diagnosis and treatment
of MM challenging [74]. In precursor diseases, abnormal plasma cells reside within the BM.
During the disease progression, cells start to proliferate to tissue outside the BM through the
bloodstream [68, 75]. These cells mark the end stage of the transformation of normal plasma
cells to myeloma cells [68, 75].

The fundamental idea behind the onset and progression on MM is that distinct pathways
deregulate the plasma cell’s intrinsic biology, causing myeloma-like characteristics [69].
As shown in Figure 1.4 many genetic and microenvironmental mechanisms accompanying

transformation have been identified [68, 74]. Myeloma is caused by the non-linear and
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brunching combination of epigenetic and inherited genetic events that, when combined
with normal physiological processes needed to generate antibody diversity, lead to genetic
modifications that immortalise a myeloma-propagating cell [76]. Hyperdiploidy [69, 74],
MYC mutation [69, 76], copy number changes [69], and chromosomal translocation [74, 77,
69] are frequently observed in MM patients.

Myeloma cell proliferation requires a close connection with the bone marrow microenvi-
ronment [78, 74]. The myeloma plasma cells need a supportive microenvironment, such as
an increase in myeloid-derived suppressor cells and Treg cells [69]. Moreover, the myeloma
cells disrupt the normal cellular composition of the microenvironment to allow the myeloma
cells to immortalise [74]. These immortalised cells gain genetic alterations over time, leading
to clinically recognisable myeloma clinical features and treatment-resistant clonal expansion

into peripheral blood, which could lead to the leukaemic phase [74, 68].

1.3.3 Diagnosis of multiple myeloma

Multiple myeloma is difficult to diagnose because some people show little to no symptoms,
especially during the early phase of the disease [71]. It is mainly found in the ageing
population [79]. When suspected, usually urine and blood test are conducted to examine
the presence of MM associated M-proteins and antibodies [71]. During MM development,
the abnormal plasma cells outnumber other cell types. Thus, quantifying the proportion
of abnormal plasma cells in the BM or blood is one of the diagnostic methods. To assess
the proportion of abnormal plasma cells in the marrow, bone marrow aspirate and trephine
biopsy are taken [80, 81]. Figure 1.5 shows an illustrative image of BM trephine tissue
sampling from the pelvis. An aspirate sample is a liquid blood sample, while trephine is a
tissue sample taken from bone marrow.

From the aspirate biopsy, the abundance of cells and the presence of myeloma-associated
proteins are assessed [81]. The BM trephine sample is used to assess the morphology of
the cells and the bone microenvironment. Magnetic resonance and computed tomography
imaging are also used to assess any bone damage in arms, legs and pelvis [82].

The MGUS and SMM patients have 1% and 1-10% annual risk of progression to MM,
respectively [82, 84]. According to the International Myeloma Working Group guidelines
revised in 2014 [84], MGUS is characterised by < 3 g/dL. monoclonal protein and < 10%
clonal plasma cells on BM biopsy. The MM is characterised by > 3 g/dLL monoclonal protein,
> 60% clonal plasma cells on BM biopsy and damage of organs such as kidney and liver
[84]. SMM shows level of monoclonal protein and clonal plasma cells between MGUS and
MM [84].
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Figure 1.4: The genetic and cellular composition changes accompanying multiple
myeloma progression. The image is taken from Pawlyn et al. [69] with permission from the
Springer Nature. MM develops from normal plasma cells through precursor stages known as
MGUS and SMM [69]. The onset conditions include chromosomal translocation and hyper-
diploidy. The t(A:B) represents translocation between chromosomes A and B. Translocations
with an asterisk (*) are those with high risk. The progression of MM is accompanied by
co-evolution of genetic alteration in plasma cells such as genes translocation, hyperdiploidy,
copy number alteration, mutations, and a shift in the microenvironmental cellular composi-
tion of BM [69]. The TME of an advanced stage of MM is characterised by an increase in
tumour promoting and a decrease in tumour suppressing cells [69]. Amp: amplification; DC:
dendritic cell; Del: deletion; EMD: extramedullary disease; HR: high-risk; MDSC: myeloid-
derived suppressor cell; MGUS: Monoclonal gammopathy of undetermined significance;
MM: multiple myeloma; NK cell: natural killer cell; PCL: plasma cell leukaemia; pDC:
plasmacytoid dendritic cell; SMM: smouldering multiple myeloma; T, cell: T regulatory
cell; Ty cell: T helper cell; TSG: tumour suppressor gene.
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Biopsy needle
Skin Bone

Figure 1.5: Bone marrow trephine biopsy sampling. A biopsy needle is inserted through
the skin and the bone into the bone marrow to remove a small amount of tissue from the bone
marrow. Then, the tissue will be dissected into sections to be examined under a microscope or
converted into digital images to be analysed by a computer algorithm. The image was taken
from Alberta Health Services without any modification following the terms and conditions
mentioned in the website [83].
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1.3.4 Multiple myeloma treatment

Currently, there is no cure for MM. However, the advent of innovative chemoimmunotherapy
and autologous stem cell transplant (ASCT) has improved the survival of MM patients to a
median of 5-to-7-year depending on factors such as tumour stage [82].

A collection of genetic events determine the clinical behaviour of myeloma, and a batch
of features needs to be reported to perform effective risk stratification and identify high-risk
behaviour [74, 85]. Immunomodulatory drugs like thalidomide and lenalidomide are effective
in low-risk groups, allowing for long-term survival and cure [74]. However, high-risk groups
do not benefit as much from these drugs [74]. The recent development of ASCT treatment
has shown increased patient survival. However, there remain patients who have not benefited
[69, 86]. Current risk stratification and treatment strategies are based solely on molecular
profiling, which limits its efficacy as it shows only a limited spectrum of the malignancy
and its TME [87, 88]. In the study by Chiecchio et al. [89], MM and its asymptomatic
predecessors, MGUS and SMM, were also found to have similar genetic aberration patterns.

1.3.5 Multiple myeloma permissive microenvironment

A tumour grown to a clinically relevant size has already learned how to evade the host immune
system by modulating the cellular composition of the microenvironment and seizing immune
suppressive cells to modulate immune infiltration in favour of their growth [70, 73, 69, 86, 90].
The BM microenvironment is a rich ecosystem of diverse cells such as immune cells, dendritic
cells, macrophages, osteoclast, osteoblast and others, which either promote or inhibit MM
cells’ survival and progression either individually or through a bi-directional signalling
network [69, 70, 91].

Previous studies have shown that MM cells modulate the BM microenvironment by
upregulating osteoclast cells and deregulating osteoblast and immune-related cells [92-94].
Osteoblasts are bone-forming cells, while osteoclasts are bone-resorbing cells [94]. Like any
tissue, bone is a dynamic tissue that undergoes continuous changes throughout human life
[94]. Thus, damaged or old bones are removed, and new ones are created in a controlled
manner. An increase in the number and activity of osteoclast and early recruitment of
osteoblast by MM cells contributing to bone resorption have been observed in MM patients
[95, 96]. From histopathology images, features such as bone trephine thickness could be
measured using image processing algorithms to understand how bone physiology changes
during myeloma progression from precursors.

In the study by Darena et al. [97], they investigated the role of Treg cells in MGUS and

MM patients using flow cytometry of peripheral blood. The Treg cells showed immune sup-
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pressive phenotype in both patient groups and they did not observe a statistically significant
difference in the abundance of Treg cells between the patient groups. Similarly, another
study by Prabhala et al. [98] that was conducted using peripheral blood showed a similar
abundance of Treg cells in MGUS and MM patients. However, in some studies, a reduced
number of Treg have been observed in MM patients [98, 99].

Some studies compared the cellular composition of paired diagnostic and post-treatment
samples. Lee et al. [100] studied the immune microenvironment of BM of diagnostic MM
samples and post-treatment using flow cytometry technique. The patients received induction
chemotherapy and ASCT, and the post-treatment samples were taken 100 days after ASCT.
They reported that the percentage of CD8+ cells significantly increased while the percentage
of CD4+ cells significantly decreased post-treatment compared with at diagnosis. However,
there was no significant difference in the percentage of Treg cells between the two groups.
Another study by Lucas et al. [101] investigated the cellular composition of diagnostic MM
and post-treatment samples using flow cytometry technique on peripheral blood mononuclear
cells. Similar to [100], the patient received induction chemotherapy and ASCT, but post-
treatment samples were taken after 90 days from ASCT. Compared with diagnostic samples,
post-treatment samples showed a significant increase in CD8+ cells and a significant decrease
in CD4+ cells at post-treatment. Moreover, they reported that the percentage of Treg cells
significantly increased after treatment compared with diagnosis.

The discrepancy in the abundance of Treg cells could be partly due to the variation
in patient characteristics and treatment administered in the different studies. Moreover,
variation in sampling sites, which included BM, peripheral blood, and whole blood could
be one factor [102]. For example, the frequency of Treg cells has been found higher in BM
compared to peripheral blood [103]. Furthermore, these studies have been conducted using
BM aspirate liquid samples and looking at the Treg cells in the spatial tissue context of the

microenvironment could give more insight.

1.3.6 Spatial context in multiple myeloma

The BM is the primary site for blood cell formation, and it contains a unique milieu that
allows the continuous production and differentiation of cells [104]. Understanding the
mechanisms behind the spatial organisation and geographical closeness of immune cells with
tumour cells through visualisation and quantification could offer essential insights on MM
progression and treatment response [105, 104].

Although the majority MGUS and SMM patients do not progress to MM in their lifetime,
some patients do progress to MM with a higher chance for SMM [68, 74, 82, 84, 106]. To
date, no biomarker determines which MGUS or SMM individuals may eventually develop
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A Sample MIHC stained image of breast cancer tissue section

B Sample MIHC stained image of bone marrow tissue section
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Figure 1.6: Illustrative image showing morphologic diversity of bone marrow trephine
tissue section compared to breast cancer tissue sample: A) Multiplex immunohistochem-
istry taken from breast cancer tissue samples. The different colours indicate the marker
or protein expression status of cells. B) Multiplex immunohistochemistry image of bone
marrow trephine sample taken from a patient with multiple myeloma. The trephine sample
contains a more mosaic microenvironment of diverse tissue compartments or types compared
to the breast cancer sample in (A). The digital image of the trephine sample is composed of
blood, bone trephine, cellular tissue and fat regions.
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MM. In clinical practice, it is recommended to have a regular follow-up to check for MM-
induced end-organ damages before treatment [107].

In previous studies, understanding of MM disease stages and transformation of precursor
diseases to malignancy was mainly focused on genetic alteration in malignant cells and
cellular composition of the TME using bone marrow or peripheral blood aspirate [68, 74].
Genetic aberrations associated with progression have been found, but their clinical adoption is
limited due to patient heterogeneity [69, 105]. In some studies, genetic aberrations observed
in MM were also found in the precursors [69, 105]. This suggests that in addition to genetic
alteration in MM cells, the TME could significantly influence the disease progression and
treatment search. In various human cancer types, in addition to cellular composition, the
spatial organisation and interplay between tumour cells and immune cells, or among different
immune cell types was found prognostic [108, 109, 67, 110]. Despite the genetic similarity
between MM and precursor conditions, the spatial organisation of different cell types and the
tissue morphology of the microenvironment could be different. Salama et al. [111] suggested
that in haematopoietic malignancies such as MM, analysing malignant plasma cells in the
context of their hematopoietic niche could generate novel therapeutic targets. For multiple
myeloma, this remains under-explored, except for some recent works exploring the cellularity
of bone marrow using histology images [112—114].

A pilot study by Walters et al. [105] showed that multiplex staining technologies could be
applied to BM trephine samples following specialised decalcification and sample processing,
and these technologies could be used to understand the spatial interplay of malignant myeloma
cells and immune cells. Moreover, Walters et al. [105] shared a preliminary result showing
more CD8+ T cells in proximity with malignant plasma cells in MM sample compared with
MGUS.

1.3.7 Limitations of previous studies

In previous studies, exploration of TME of MM patients mainly involved liquid biopsy called
aspirate. In addition to the aspirate samples of bone marrow, whole blood and peripheral
blood were also employed to understand the cellular composition of TME [81]. However,
this approach loses the spatial tissue context, which could generate new biological insight
about the disease [111].

The BM morphological and immunological architecture can only be investigated using
BM trephine tissue biopsy. Trephine biopsy contains cells intact with the tissue structural
context, enabling spatial interrogation of the microenvironment. To capture the different cell

types and tissue structures intact, high throughput imaging technologies such MIF and MIHC
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could be used [15]. The investigation of the spatial phenotyping of samples from patients

with MM is lagging behind solid tumours for several reasons:
» Obtaining BM trephine tissue sample is difficult compared to aspirate liquid sample;

* BM trephine samples need specialised tissue preprocessing due to the spongy nature

of the bone marrow tissue;

* The mosaic architecture of the tissue and low tissue integrity of the BM trephine
tissue hinder the adoption of ecological spatial methods developed on solid tumours.
Figure 1.6 shows sample MIHC stained images of tissue sections from breast tumour
resection, and BM trephine tissue sample. The BM tissue sample is a mosaic tissue
that contains blood, bone trabeculae, cellular tissue and fat areas. Solid tumour (for
example, breast cancer) tissue sections often have continuous tissue integrity. Thus,
the spatial methods developed on such tissue might not be robust when adapted to a

fragmented microenvironment like in BM trephine samples.

In this study, using carefully obtained BM trephine tissue samples, MIHC staining of
immune cells and myeloma plasma cells and deep learning based computational methods,
we explored the spatial interaction between myeloma cells and Treg cells with immune T
cells in MGUS, MM and post-treatment samples to understand disease biology.

1.4 Ductal carcinoma in situ

1.4.1 What is ductal carcinoma in situ?

Ductal carcinoma in situ (DCIS) is a pre-invasive breast lesion, which is characterised by the
presence of abnormal cells within the breast duct. Figure 1.7 presents cartoons showing the
architecture of normal breast ducts and breast ducts with DCIS and invasive breast cancer.
In DCIS, the abnormal cells are isolated from the stromal region by a nearly continuous
basement membrane of the ducts [115, 116]. In the case of invasive breast cancer, the natural
basement membrane of ducts collapse and tumour cells migrate into the stromal tissue surface
[115, 116].

The introduction of organised breast cancer screening in the 1980s using mammography
increased the detection of DCIS [117]. Though this has contributed to the early detection
of breast cancer, it has lead also over-diagnosis and over-treatment in breast cancer [118].
In the United States, DCIS accounts for about 20% of all breast cancer [118]. According
to Cancer Research UK, about 6,900 cases are diagnosed with DCIS in the UK each year
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Figure 1.7: Cartoons showing the difference between normal duct, a duct with carcinoma
in situ and invasive breast cancer: A) A cartoon of a normal breast duct. The duct
contains only normal cells. B) A cartoon of a duct with ductal carcinoma in situ (DCIS).
The abnormal cells are contained within the duct. The abnormal cells are separated from
the stromal region (a region outside the duct) by a continuous myoepithelium layer, and
basement membrane [115, 116]. C) A cartoon showing a duct with invasive breast cancer.
The basement membrane is broken, and the tumour cells spread into the surrounding stromal
region [115, 116].

[119]. Similar to invasive breast cancer, the chance of developing DCIS increases with
age [118, 120]. With frequent detection of DCIS, this has led to more discussions on the
initiation, development and heterogeneity of the disease [119].

Though DCIS is considered a non-invasive lesion, if left untreated, it is likely to develop
into aggressive or invasive breast cancer [118, 120]. In the UK, about 55,920 new cases of
invasive breast cancer were diagnosed each year from 2016-2018 with 11,499 breast cancer
related death [119]. It is predicted that the incidence of breast cancer will increase by about
2% from 2014 to 2035 [119]. This indicates that the mortality rate of breast cancer is high,

and early detection and treatment could save many lives.

1.4.2 Pathologic and clinical characteristics of ductal carcinoma in situ

Pathologists sometimes misinterpret DCIS as atypical ductal hyperplasia or invasive ma-
lignancy [121]. This is due to histopathologic heterogeneity of DCIS and undersampling

during core-needle biopsies can potentially add to diagnostic ambiguity if the pathologist
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has insufficient representative material [121]. An insufficient amount of tissue biopsy could
lead to uncertainty during diagnosis and thus inter-observer variability [121]. The histologic
characteristics of DCIS involve DCIS tissue architectural, and nuclear features. DCIS is
characterised by heterogeneous histopathologic phenotypes. The fundamental classification
method includes mitotic figures, nuclear proliferation, and architecture [117]. Architectural
grouping involves assessing the malignant regions’ tissue structure; the commonly known
architectural subtypes are micropapillary, comedo, solid, cribriform, and mixed [122]. Nu-
clear grading involves identifying mitotic cells and nuclear deformation of cells [122, 118].
In terms of nuclear grade, the prevalence of high grade (42%) and intermediate grade (43%)
is similar, with less prevalent low grade DCIS, which accounts for about 14% [117]. The nu-
clear grade is one of the most important clinical parameters for the diagnosis of DCIS because
it predicts disease prognosis and the risk of progression to aggressive cancer [117, 123, 124].

Another clinical parameter is hormone receptors status [125]. Miligy et al. [125]
investigated the impact of estrogen receptor (ER) expression in predicting recurrence in
a cohort of 643 DCIS patients. About 74% of the DCIS cases were ER positive, and ER
positivity was strongly associated with favourable outcome [125]. Moreover, another recent
study by Thorat et al. [126] assessed the prognostic value of expression of ER and the impact
of multi-clonal expression for recurrence in DCIS. Formalin-fixed paraffin-embedded were
collected for 755 cases from the UK/ANZ DCIS trial, and ER expression was assessed using
immunohistochemistry staining [126]. The ER positive patients accounted for about 70% of
the cases, and ER positivity was a predictor of low risk of recurrence [126].

1.4.3 Ductal carcinoma irn situ treatment

Currently, breast-conserving treatment is commonly advised [127]. However, if the DCIS
is too widespread to permit breast conservation, then a mastectomy is the recommended
treatment [127]. Furthermore, employing mastectomy significantly reduces the likelihood
of recurrence [128]. After five years of follow-up, for both invasive and DCIS, mastectomy
was found to reduce the rate of recurrence by about ten times and five times, compared with
breast-conserving surgery alone and breast-conserving surgery and radiotherapy combined,
respectively [128, 129].

Similarly, Elshof et al. [130] showed that after a median follow-up of ten years, the
rates of invasive recurrence after mastectomy, breast-conserving surgery and radiotherapy
combined, and breast-conserving surgery alone were 1.9%, 8.8%, and 15.4%, respectively.
Another study by Darby et al. [131] investigated the magnitude of reduction in the rate of
recurrence for breast-conserving surgery followed by radiotherapy on 10,801 women in 17
randomised trials. Overall, They found that radiation decreased the chance of any initial
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recurrence, which included distant or local recurrence, within ten years from 35.0% to 19.3%,
and it decreased the risk of dying from breast cancer within 15 years from 25.2% to 21.4%
[131].

Another treatment regimen administered for DCIS is endocrine therapy. Compared
to either a mastectomy or breast-conserving surgery alone, endocrine therapy was most
commonly used among women with DCIS who underwent breast-conserving surgery plus
radiation therapy [132]. However, in many countries, postmenopausal women with DCIS are
rarely treated with endocrine therapy due to side effects and uncertain clinical trial results
[128]. Nevertheless, despite a lack of consensus on its effectiveness, in the United States,
endocrine therapy is more common than in other countries, and about 50% of ER+ patients
receive adjuvant tamoxifen (a drug that inhibits the oestrogen receptor) [133].

The goal of DCIS treatment is to stop DCIS progression into aggressive cancer and,
thus, to reduce breast cancer related deaths [118]. However, how do we know which
DCIS will progress into invasive breast cancer in future? Numerous research and clinical
trials have assessed DCIS prognostic variables and invasive propensity using clinical data,

histopathologic characteristics, and molecular features [118].

1.4.4 Progression from ductal carcinoma to invasive cancer

Currently, the biology of DCIS is poorly understood. Despite DCIS being a pre-invasive
lesion, untreated DCIS cases possess a high chance of progressing into aggressive breast
cancer [118, 120]. Collins et al. [134] reported that about 46% of 1,877 cases initially diag-
nosed with DCIS had developed into aggressive breast cancer upon follow-up (without any
treatment). Moreover, patients with DCIS treated with breast-conserving surgery followed
by radiation therapy showed about 26-36% risk of developing local recurrence after 13-20
years of follow-up [135] and 6% of developing invasive recurrence [136]. The progression
of DCIS into aggressive breast cancer with and without treatment makes it challenging to
understand what is driving the process.

From the molecular and histopathologic point of view, DCIS and invasive breast cancer
within the same histopathologic grade have shown molecular and histochemical similarities
[128]. This supports the theory that the progression of DCIS to invasive cancer might involve
parallel genetic pathways [137, 138, 128]. In addition, this highlights that DCIS is not an
obligate precursor of invasive breast cancer [139]. Both DCIS and aggressive breast cancer
could evolve separately in the same section, probably due to the microenvironmental effect
that favours carcinogenesis [117]. In this sense, DCIS and invasive ductal carcinoma should
have limited genetic overlap because they evolve separately, and neoplastic cells develop

within ducts until a mutation or other epigenomic event gives rise to a new population of
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cells that could break the natural basement membrane of ducts and invade the stroma area
[140]. The study by Kim et al. [141] showed that copy number changes and well-known
mutations associated with carcinogeneses such as TP53, PIK3CA, and AKT1 were present
in pure DCIS. However, driver genes and the co-occurrence of mutations were substantially
less common compared with invasive breast cancer [141].

In recent years, biomarkers that could stratify newly diagnosed DCIS lesions according
to the risk of recurrence have developed. Commercially available tools like the Oncotype DX
Breast DCIS Score [142] have shown promising potential for predicting the risk of recurrence
of DCIS after treatment [143—145]. The Oncotype DX Breast DCIS score is a continuous
score ranging between 0 and 100, and the score is computed based on the expression of 21
specific genes found in the surgically excised breast tumour tissue [142]. Rakovitch et al.
[145] conducted a population-based validation study of the Oncotype DX DCIS Score to
evaluate the prognostic significance of this score in predicting the likelihood of recurrence in
DCIS patients who only received breast-conserving surgery. Their study consisted of 828
patients with a median follow-up of 9.6 years. They found that in a population of individuals
with pure DCIS treated by breast-conserving alone, the score independently predicts and
quantifies recurrence risk at an individual level [145].

Moreover, recent research has indicated that understanding the interactions between
abnormal cells and the TME such as stromal tumour infiltrating lymphocytes (TILs) is
important to predict the likelihood of recurrence and to unveil the mechanism behind the
process [120, 146—150]. Stromal TILs are lymphocytes found outside the DCIS ducts.

1.4.5 Tissue staining modality for tumour infiltrating lymphocyte as-

sessment

Discussion on the different histopathology staining modalities can be found in Section 1.5.2
and this section discusses the histopathology staining modality suggested by the International
Immuno-Oncology Biomarker working Group (TIL-WG) for stromal TILs scoring in DCIS.

The TIL-WG [151] emphasise the use of hematoxylin and eosin (H&E) stained formalin-
fixed paraffin-embedded sections for the evaluation of stromal TILs since this modality is
cheap, widely available, and it clearly shows various tissue architecture [152—154]. Some
studies have used multiplexed whole tissue section staining techniques such as MIHC
[155, 156]. However, this multiplex staining is not routinely used in diagnostic applications
since it is expensive. Immunohistochemistry staining uses a specific marker to identify
specific cell type(s). Thus, no single immunohistochemistry marker identifies all mononuclear

lymphocytes and allows limited visualisation of tissue structures [152]. On the other hand,
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H&E staining is routinely used in hospitals all over the world. Hence, currently, the gold
standard for TILs assessment is H&E staining [152, 157]. However, multiplex staining is
important for sub-typing the cells, providing information on the activation and functional
status of cells [154].

1.4.6 Prognostic value of stromal tumour infiltrating lymphocytes in

ductal carcinoma in situ

Invasive breast cancer has been the primary focus of research on the immune system’s role
in the disease’s progression [158]. High numbers of immunological infiltrate, in particular
effector immune cells like CD8+ T cells, are detected more commonly in human epidermal
growth factor receptor 2 (HER2) positive and triple-negative invasive breast cancer (TNBC)
breast cancers than in other subtypes [159, 160, 147]. Recently, the existence and potential
clinical importance of the immune infiltrate in individuals with DCIS have garnered more
attention in recent years [158]. Similar to breast cancer, extensive immune infiltrates are
mainly found in DCIS that is HER2 positive and TNBC [158]. A detailed analysis of the
immune cell subsets linked to DCIS revealed that increased CD8+ T cell subsets [161] and
increased B lymphocytes [162] were linked to local recurrence, supporting the idea that TILs
play a crucial role in the development of DCIS.

Preventing invasive cancer is the primary objective of treatment for DCIS [120]. Because
low-grade DCIS is less likely to progress into high-grade aggressive breast cancer [120] and
therefore, biomarkers that identify a group of patients that are likely to progress into invasive
cancer are needed. There is growing evidence that indicates the presence of a strong immune
system in the host is necessary for improved outcomes, particularly in HER2 positive and
TNBC patients [163]. TILs are becoming more recognised as a promising biomarker in breast
cancer with the potential to contribute to the clinical decision-making process regarding
treatment [163, 148]. TILs are also increasingly being used as an important biomarker in
immunotherapy clinical trials, since the prognostic role of TILs is becoming obvious [164].

However, in order to assume that high DCIS TILs will prevent DCIS from progressing
into invasive breast cancer or recurrence as invasive breast cancer after treatment, this might
only make sense if there is a linear evolution between DCIS and invasive cancer [163].
However, DCIS is a precursor that may not necessarily lead to invasive cancer [118, 117]
because the presence of parallel evolution of both DCIS and invasive cancer within the same
tissue section [128, 137, 138]. Moreover, previous studies have shown about 46% of DCIS
cases do not develop into invasive breast cancer [134]. These findings might suggest that
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the host’s immune microenvironment could have a decisive impact on the progression of the
disease [163].

Some recent works interrogating the prognostic role of stromal TILs in DCIS have shown
promising results [120, 146—150]. The TIL-WG on breast cancer, which is a group of expert
pathologists, clinicians, and researchers in the field of immuno-oncology biomarkers of
breast cancer, has developed a set of guidelines to manually score stromal TILs on H&E
digital images of DCIS resections [151]. This guideline was developed to ensure standardised
reporting and reproducibility in stromal TILs assessment in DCIS [151]. The detail of the
guidelines for stromal TILs scoring in DCIS can be found in Dieci et al. [151].

Numerous studies have found a link between TILs and local recurrence. However, the
precise function of the immune system in the development of ductal carcinoma in sifu remains
to be fully understood [158]. The predictive effect of TILs in DCIS patients was investigated
in the randomised SweDCIS radiotherapy study by Schiza et al. [165]. TILs were evaluated
using H&E stained tissue sections for 711 cases following the guidelines provided by the TIL-
WG and dichotomised into high (> 5%) and low (< 5%) score [165]. Majority of women
(61.9%) had low stromal TILs [165]. After five years follow-up from surgery, DCIS cases
with a high TILs prevalence had a significantly elevated cumulative ipsilateral breast events
incidence [165]. For HER2 negative patients, high TILs was correlated with developing
ipsilateral breast events over five years follow-up [165]. This might suggest that TILs are a
response to extremely aggressive cancer cells that are present in the DCIS and the cancer
cells in the DCIS might have taken control of the immune system [163].

Agahozo et al. [166], using H&E stained tissue sections from 473 individuals, examined
the association between stromal TILs abundance and biomarker groups. The patients were
grouped based on their biomarker status: ER, progesterone receptor (PR), and HER2. About
28% of the patients had high TILs (>30%) [166]. Though the overall TILs composition
was not different between the different subtypes, the proportion of high TILs cases was
significantly higher in HER?2 positive and TNBC DCIS with the majority expressing CD4+
antibody [166].

Though more research works are using the guideline by TIL-WG [151], some works
employed an extended version of this guideline. The prognostic impact of TILs touching
TILs [146, 147] and circumferential TILs [167] were also investigated. Touching TILs are
lymphocytes that are found within the one lymphocyte thickness distance from the basement
membrane of the breast duct. In contrast, circumferential TILs are TILs in about three layers
of TILs from the DCIS boundary.

Toss et al. [146] investigated different stromal TILs scoring using manual pathologists

scoring, including stromal TILs touching the basement membrane of DCIS ducts and distant
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TILs and evaluated their prognostic values. For the distant TILs, they investigated TILs
within {0.2, 0.5, and 1}mm distance from the DCIS border. This study employed H&E
images of 150 patients for training and H&E images of 666 cases for validation. They found
that only touching TILs was associated with the patient’s outcome and showed the highest
concordance rate among expert observers [146]. Dense touching TILs was associated with
shorter recurrence-free survival independent of clinical parameters [146]. They reported a
lower concordance rate among observers for {0.2, 0.5, and 1}mm. This could be due to the
approximate nature of the scoring by the observers, and it is not easy to accurately define
larger distances such as 0.5mm compared to touching TILs. This suggests computerised
algorithms could be suited to objectively quantify stromal TILs for larger boundaries since
an exact distance could be set, which the algorithm will consistently use.

Another study by Xu et al. [147] also evaluated the prognostic value of touching TILs in
129 patients with DCIS, with 98 of those patients receiving whole breast irradiation treatment.
A high number of touching TILs was associated with ipsilateral breast tumour recurrence
[147]. Farolfi et al. studied the association of abundance of TILs level and second breast
event in 496 DCIS patients after a median follow-up of 8.5 years [150]. However, when
the whole cohort was considered, the 5-year cumulative incidence of second breast event
did not differ between patients with TILs <5% and >5%. However, in the cases which did
not receive radiotherapy treatment, high TILs was correlated lower risk of the second event
[150].

Another study by Badve et al. [167] explored the prognostic relevance of touching TILs
and circumferential TILs in predicting the risk of developing a second breast event. They
utilised a multi-national cohort of 266 patients, of which 70 patients had an observed event
and H&E staining. They found that higher circumferential TILs was associated with a low
risk of developing a second breast event; however, there was no association between touching
TILs and risk of developing a second breast event [167].

1.4.7 Limitations of previous studies

As discussed in the previous section, to facilitate the standardisation of TILs assessment
on H&E stained tissue sections, an international group of pathologists, physicians, and
researchers also known as TIL-WG developed a set of guidelines for breast cancer [151]. All
the studies discussed in section 1.4.6, which assessed the prognostic value of stromal TILs in
DCIS, were based on manual scoring from H&E whole slide image by expert pathologists.

However, the visual evaluation of gigapixel whole tissue section digital images by humans
has innate limitations that hinder the clinical adoption of this approach. Firstly, inter-observer
variability and bias due to perceptual limitation of human visual capability [168—172]. Toss
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et al. [146] evaluated the concordance between multiple expert pathologists on stromal TILs
scoring for different stromal boundary widths. They found that a high concordance rate
among expert observers was obtained for touching TILs, but not for TILs scores obtained
using larger stromal boundaries. Secondly, there is a shortage of experienced pathologists,
especially in developing countries and remote areas [173, 174]. Moreover, there is a time
limitation to generate a comprehensive assessment of numerous gigapixels of whole slide
images to meet research and clinical needs.

The TIL-WG in their recent work [152] suggested that developing an automated image
analysis method for stromal TILs assessment could address these limitations. For ease of
interpretation, they suggested the development of the algorithm should follow the guidelines
set for manual scoring when possible to facilitate ease of interpretation [152]. However, to
the best of my knowledge, there is no automated machine learning algorithm that follows the
guidelines for stromal TILs scoring in DCIS, despite the immense application of machine
learning in digital pathology.

Recent developments in powerful computing devices such as graphical processing unit
hardware and highly accurate methodologies have boosted the application of machine learn-
ing in digital pathology [152, 175]. Deep neural networks, especially convolutional neural
networks (CNN) have revolutionised the field of computer vision, giving a promising fu-
ture for digital pathology. Compared to traditional computational histopathology analysis,
remarkable performance boosts have been observed in digital pathology tasks such as cell
detection and classification [108, 176, 177], tissue segmentation [178—180], and predicting
patient outcome [18, 181-183]. Classical computational histology image analysis involves
hard-coded computer algorithms which require immense guidance from an expert and often
require features extracted by an expert to make predictions. Developing such algorithms
requires careful implementation, and it often suffers from generalizability to unseen data due
to some fixed parameters optimised using a limited amount of data. Moreover, this approach
is particularly time-consuming to apply on giga-pixel whole slide images in histology. On
the contrary, deep learning based approaches show outstanding diagnostic performance
and higher generalisation with the requirement of expert annotation only during model
development or training.

In this study, we implemented a fully automated deep learning based image analysis
pipeline for stromal TILs scoring in DCIS using single cell and tissue level algorithms to
follow the essential guidelines set by the TIL-WG [151].
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1.5 Histology staining technologies

1.5.1 Brief introduction on microscopy and digital pathology

Histopathology is the study of the symptoms and causes of diseases such as cancer using
tissue samples [184, 187]. In histopathology assessment, samples are first extracted from
the suspected area [186]. The sample could be a biopsy or surgical sample. During tissue
section preparation, thin slices are extracted and put on a glass.

In traditional histopathology, the sample is put in a glass slide and visually examined
by an expert histopathologist(s) using a microscope (Figure 1.8). Pathologists look for
morphologic abnormalities such as the abundance of specific cell types, cells morphology
(for example, nuclear shape and size), tissue abnormalities (for example, the architecture of
ducts in the breast for breast cancer and structure of lymph nodes for lymphoma cancers), or
cell infiltration patterns. However, the advancement of technology has brought the realisation
of digital pathology.

The introduction of digital images to pathology has transformed the historical microscopic
tissue assessment into what is now known as digital pathology [187]. In digital pathology,
a glass slide which contains a thin tissue slice is converted into a digital image which is
processed using computer algorithms [184, 188] (Figure 1.8). This has a lot more benefits
than traditional tissue assessment. Digital pathology allows the remote sharing of images,
enabling expert pathologists to collaborate all over the world to diagnose disease, facilitate
research on disease biology, and improve the precision of diagnostic procedures [188].
Moreover, the technology allowed the assessment of morphologic heterogeneities among
different tissue slides beyond a single glass slide [187]. Nowadays, digital pathology has
empowered computational pathology. Computational pathology utilises computerised image
analysis algorithms to harness diagnostic and prognostic features from digitised tissue
specimens [184]. Moreover, these digital images could be used to develop fully automated
machine learning methods to extract features of interest and evaluate the association between
these features with patients’ clinical data such as survival, treatment response, and molecular
data [184], which will be discussed in the coming sections.

Due to the advancements in hardware and software in the past few decades, digital
microscopy has emerged as an effective diagnostic mechanism in pathology [189]. The
digital version of a glass slide is called whole slide image (WSI) [189]. Compared to natural
images, the size of WSI is enormous and could reach up to 10GB. These images are visualised
using specialised image viewers, which allow zooming in and out and sliding to explore the
tissue at different scales. WSIs have gained a surge of interest in research and diagnostics.

However, still, it is not fully incorporated in pathology workflow due to costs associated
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Figure 1.8: A schematic diagram comparing traditional histology and digital pathology
workflows. In both workflows, tissue sections or thin slices are extracted from a tumour
block. In traditional pathology workflow, the tissue sections are analysed by an expert
pathologist(s) under a microscope to diagnose a patient (A) [187]. In digital pathology, the
tissue sections are converted into digital images and analysed by algorithms to automatically
generate diagnostic features from the images (B) [187].
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with scanning all materials, limitation of storage, compromised image quality, and regulatory
hurdles [189, 190].

The adoption of standardised diagnostic language and standards, as well as the devel-
opment of digital tools, including the problems of massive data management and image
processing, are the two main aspects that will increase accurate diagnosis [191]. With the aid
of these tools, all accessible clinical history data may be gathered and combined to help make
a diagnosis and connect pathologists for a second opinion [189]. Numerous possible benefits
of automatic image analysis include less inter-observer difference, increased uniformity, and
increased productivity [189]. Furthermore, the wealth of knowledge included in WSI offers
enormous prospects for the development and evaluation of novel, more efficient therapies
that may completely transform the treatment of patients with cancer and other disorders
[189]. However, the development of image processing and machine learning techniques for
decision-support diagnostic methods and validation for diagnostic applications is an ongoing
research topic in digital pathology.

One of the main challenges in replacing conventional microscopy with WSI image in
the diagnostic environment include the lack of experience of pathologists in using WSI,
compromised view of the tissue as some tissue structures are missed in digital images, which
could lead to the difference in diagnostic results among pathologist [189, 192]. However, the
digitisation of tissue slides has facilitated research in histopathology, and this was engined
by the development of advanced microscopic imaging technologies and image analysis
algorithms [188]. The following sections will briefly describe commonly used whole tissue

section staining modalities.

1.5.2 Histopathology spatial staining technologies
Hematoxylin and eosin staining

The standard histopathology staining in medical diagnosis is H&E [193]. H&E is composed
of hematoxylin and eosin stains. Cell nuclei are stained with haematoxylin in dark blue to
purple, while cytoplasmic regions and extracellular matrix are stained in pink to dark red
[194]. In H&E, different tissue structures are represented in different shades of these colours
[195].

One of the main advantages of H&E is that it is fast [196], cheap, and shows a significant
amount of microscopic tissue [197]. Moreover, the output images are not greatly influenced
by tissue processing or modest variations in laboratory procedure and staining device [198].
It allows the identification of histopathologic information that could help in disease prognosis,

diagnosis and treatment planning and follow-up [199]. In addition to the visualisation of cells
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and tissue structures, H&E allows the identification of cell types such as cancer, lymphocytes
and fibroblasts [108] (Figure 1.9A, B). However, from H&E the molecular sub-types of cells
could not be identified even by expert pathologists. Thus, it is frequently necessary to seek
special staining such as immunohistochemical staining to support the original diagnosis on
H&E stained tissue sections [193].

Immunohistochemistry staining

Immunohistochemistry is a bright field staining technique used in the diagnostic process
that allows staining for a specific protein using antibody reagents at single cell level on a
whole tissue section while preserving the tissue structure [199]. In immunohistochemical
staining, these terminologies - markers, proteins and antibodies are often used interchange-
ably. As shown in Figure 1.9C, a conventional immunohistochemistry stains one marker per
tissue section. This is subject to limitations, including high inter-observer variability, and
it requires multiple tissue sections to assess multiple proteins [15]. The number of tissue
sections that can be extracted from a biopsy or tumour surgical block is limited. To assess
multiple antibodies, consecutive sections are used. This makes it challenging to evaluate the
co-localisation of cells expressing these proteins due to the heterogeneity of tumours and
computational complexity of aligning the digital images of tissue sections [15]. Therefore, us-
ing conventional immunohistochemistry, some crucial diagnostic and prognostic information
could be missed [15]. This has led to the development of multiplexing technologies.

Multiplex staining technologies

Multiplexing technologies enable the simultaneous detection of multiple proteins on the same
tissue section at a resolution similar to H&E and conventional immunohistochemistry (Figure
1.9D, E). The localisation of multiple proteins and their contemporaneous interaction with par-
ticular tissue compartments or cell types are made more accessible by multiplexing [189, 15].
Furthermore, these technologies enable the identification of protein co-expression, showing
cells’ functional/molecular identity, and quantifying cellular composition and cell-cell spatial
interactions. Thus, multispectral assays pave an excellent potential for understanding cancer
biology and for building effective therapeutic methods [15, 189, 200].

Several highly multiplexed tissue imaging techniques have emerged, enabling thorough
analyses of cell makeup, function, and cell-cell interactions that point to better diagnostic
benefit [15]. The MIF and MIHC are among the most commonly used multiplex staining tech-
nologies. They have been also shown to be cost-effective, and reproducible with standardised

analysis pipeline [15].
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Figure 1.9: Example of images from commonly used histopathology staining technolo-
gies:
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Figure 1.9: A) A sample H&E image of ductal carcinoma in situ tissue section. B) Pathologist
annotation of different cell types from H&E images. The labels are, blue: lymphocyte; green:
cancer cell and yellow: fibroblast. C) A sample image of conventional immunohistochemical
staining containing only one marker, CD20 (brown). D) A sample image showing MIHC
staining of multiple markers. The labels are, blue: FOXP3; brown: CD4; and red: CDS. E)
A sample MIF images captured using the Vectra 3 multiplex imaging platform. DAPI stands
for 4’,6-diamidino-2-phenylindole.

In clinical and research areas, these high-plex and high-resolution imaging technologies
could play a crucial role in the development of cancer immunotherapy [201]. Lu et al. [201]
conducted a systematic review and meta-analysis on 8,135 patients samples belonging to
various solid tumours from different studies. The patients received programmed cell death
receptor 1 (PD1) or programmed cell death receptor ligand 1 (PDL1) immune checkpoint
inhibitor treatment. Lu et al. [201] showed that compared to single staining immunohisto-
chemistry and molecular profile-driven phenotypes, including gene expression profile and
tumour mutation burden, multiplex staining was found to be highly accurate in predicting
response to treatment [15].

As mentioned above, one of the main disadvantages of immunohistochemistry is that one
marker is used per tissue section. However, a given cell can express multiple markers showing
the multi-functionality of the cell. For instance, CD8+ tumour infiltrating lymphocytes could
be identified using CD8, CD20 or CD3 antibody staining [202, 15]. Moreover, expression of
markers such as PD1 or PDL1 on the surface of these CD8+ T cells of cancer patients could
be a good indication of effective PD1 or PDL1 inhibitor immunotherapy treatment [203, 204].
In addition, a better knowledge of cancer initiation and progression could be attained from
research on the pattern of markers expression and the relative spatial organisation of immune
cells, cancer cells, and stromal cells [2, 15, 205]. Thus, multiplex spatial staining technologies
provide a broader spectrum regarding the cellular microenvironment of a tissue section
compared to standard H&E and conventional immunohistochemistry.

In the market, there are different multiplex spatial staining technologies. Tan et al.
[15] presented an overview of different multiplex imaging modalities and vendors. These
technologies differ in their tissue processing, the number of markers that could be stained,
speed, cost and resolution of the output data [15].

In comparison to MIHC, MIF offers more optimal and increased multiplexing and contrast
capabilities [15]. Most studies using MIHC could go up to 3-plex, while MIF could provide
up to 50-plex markers [15].

Imaging mass cytometry is another high throughput spatial imaging technology [206,

207]. However, compared with MIF and MIHC, it is slower and has lower sensitivity and
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specificity [15]. Moreover, its resolution is limited to a maximum of about 1um per pixel,
while MIF and MIHC staining technologies could achieve up to 0.25um resolution per pixel
[15].

In general, these technologies capture multiple markers on the same tissue section with a
subcellular resolution while preserving spatial tissue architecture. However, the aggregation
of multiple colours/features in one image makes it challenging to analyse the images manually
for pathologists or analysis using traditional image processing algorithms used for other
imaging modalities. Moreover, the output data is even bigger than H&E in dimension since
multiple channels are generated for each marker, for example in MIF staining. When 10s
of markers are aggregated in one high-resolution image, it is beyond human perception to
estimate the spatial pattern of multiple expression profiles. Thus, the different multiplex
staining technologies come up with installed image processing algorithms. For example, the
Vectra platform has a built-in image analysis pipeline called inForm cell profiling. Moreover,
there are commercial and publicly available platforms to analyse multiple images.

The most commonly used commercial platforms to analyse MIF and MIHC images
are HALO and Oncotopix [15]. HALO and Oncotopix are developed by Indica Labs and
Visionpharm, respectively. Both platforms provide cell profiling, tissue segmentation and
cells neighbourhood analysis packages, and the platform can read different MIF and MIHC
image formats.

QuPath is a freely available open-source software for the visualisation and analysis of
biomedical imaging data including H&E and multiplex images [208]. Qupath provides
comprehensive image analysis tools based on traditional pattern recognition algorithms to
detect and classify single cells and tissue segmentation algorithms. Moreover, it allows
adding user-developed scripts to the existing functionalities and batch processing. Moreover,
spatial data and morphologic features could be exported in a tabular form for downstream
analysis [208]. Recent versions of QuPath also allow using deep learning based image
analysis algorithms such as StarDist [209] as plug-ins. However, the development of QuPath
is still in progress, and the traditional machine learning algorithms installed in the software
might contain user pre-defined parameters such as intensity threshold, which might not work
well on new images obtained using different devices and settings. In addition, this makes
the algorithm susceptible to the batch effect. Thus, users, most of the time, use separate
scripts with user-defined parameters which inherit QuPath functionality. While this allows
flexibility, but limits scalability to a large number of images.

In recent years, the development of highly accurate deep learning based computer vision
algorithms has impacted digital pathology image analysis. Thus, digital pathology has

witnessed a surge of interest in the application of deep learning by customising the algorithms
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that were developed on natural images to digital pathology problems. The next section gives

a brief overview of deep learning and its application in histopathology image analysis.

1.6 Deep learning for histology image analysis

Recently, artificial intelligence (Al) has gained a surge of interest in almost every field,
including in science [210], economics [211], and security [212]. Al is the engineering and
science of constructing intelligent machines with computer algorithms that demonstrate
human-like learning from data, decision-making, and problem-solving [213]. Al is not only
about replicating what we human beings can do; Al have been used in situations that are
risky for humans and computational-intensive environments. In fact, Al has become an
integral part of large search engines like Google. Al is a vast field that could range from a
simple room temperature controller using a user-defined algorithm to a self-driving car using
deep-learned data features to make decisions.

Deep learning is a subfield of machine learning, and machine learning is a subfield of
Al Machine learning enables computing devices to decide without strict instructions from
humans. On the other hand, deep learning introduces more freedom to computer algorithms
and uses multi-layered architecture to learn more abstract features at different scales. Deep
learning is inspired by biological neuron function, which is computationally realised by

artificial neurons.

1.6.1 Artificial neural networks

An artificial neuron is the building block of deep learning models. The computations in
artificial neurons are inspired by the function of a biological neuron [214]. Figure 1.10A
shows a schematic diagram of an artificial neuron [215]. Fully connected artificial neural
networks consist of interconnected artificial neurons that aim to solve a particular set of
problem(s). The network accepts a vector of input data and predicts an output (Figure 1.10B).

The algebraic representation of the artificial neuron displayed in Figure 1.10A can be

written as shown in Equation (1.1).

i=n

ﬁZf(Z):f<W0+ZWixi> (1.1)
i=1

where x; and w; represent the i/ input feature and it corresponding weight, respectively.

The wq represents a bias parameter. The function f is a non-linear activation function, which

has z as an input. The ¥ is the output of the neuron. The bias parameter is used as an
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Figure 1.10: Structure of artificial neural networks: A) A schematic diagram of an
artificial neuron. The xg,x1,x2,...,x, represents a set of input features. xo = 1 and wy is
called a bias. The parameters wy,ws, ..., w, are called weights. The circle with the summation
sign represents the weighted summation of the input features, which outputs z. The weighted
sum, z, is fed to a non-linear activation function to generate the neuron output, y. B)
Schematic diagram of a fully connected artificial neural network which contains an input
layer, two hidden layers and an output layer. The purple-coloured circles represent neurons
of the hidden layers. Every neuron in the hidden layers has input features, summation block
and activation functions.
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offset value which sets the threshold for the non-linear activation function f. In a real-world
application, the relation between an input variable and the output variable could be non-linear.
The activation functions are included to model the non-linear association between the input
and output variables. The most commonly used non-linear activation functions include
rectified linear unit, sigmoid, and hyperbolic tangent. The advantages and disadvantages of
different activation functions could be found here [216].

In a multi-layer artificial neural network as shown in Figure 1.10B, the output of a given
neuron at any layer could be computed similarly. For example, the output of the second

neuron of the first hidden layer in Figure 1.10B, hgl), can be computed using Equation (1.2).

hgl) =f (w(()g + iwg,lz) x,-) (1.2)
i=1

where the superscripts in weight parameters and /4 indicate the hidden layer number. The
wgylz) represents the multiplicative weight of the i feature from the input layer (layer 1), x; to
the second neuron in the first hidden layer. Similarly, the output of the remaining neurons in
the hidden layers and output layer could be computed.

The weight and bias parameters are learned or optimised from data. The process of
optimising the parameters from the data is called model training. In order to train the artificial
neural network, an objective function, also known as a loss function, should be defined. The
objective function computes the difference between the actual value and the value predicted
by the network. The choice of loss function depends on the task. For example, for the
classification problem, categorical cross entropy and its variants are commonly used, while
mean square error is commonly used for regression-related tasks. Model training aims to
find model parameters that minimise the error and it is an iterative process. The input data
is iteratively fed to the network to compute the predicted value. This is called forward
propagation. Subsequently, model parameters are updated to minimise the error in the model
prediction using a process called backward propagation. A detailed explanation of forward
propagation and backward propagation can be found in these books [217, 218].

Fully connected multi-layer artificial neural networks are suited for one-dimensional
data. However, they are not efficient for multidimensional data such as images. If a pixel
is considered a feature in an image, a small-sized image, for example, a 100 x 100 pixels
RGB image (coloured image), will result in a 30,000 dimensional feature after flattening.
Moreover, in an image, the two-dimensional or 3-dimensional spatial organisation of pixels

is important. Convolutional neural networks are specifically designed to address these issues.
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Figure 1.11: Working principle of convolutional neural networks: A) Schematic diagram
showing convolution operation on a 2-dimensional array, X. The weight (w) and bias (b) are
the parameters of the convolution operation. The receptive field is a region where convolution
is applied. The asterisk (*) represents the convolution operation. The shaded area in the
output (Y) represents convolution operation output over the shaded receptive field in X after
adding the bias. The convolution was applied using a sliding window stride of 1. B) A
schematic diagram showing max- and average-pooling operations. The receptive field of
pooling operation is a non-overlapping 2 x 2 window.
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1.6.2 Convolutional neural networks

Similar to fully connected artificial neural networks, CNN consists of an input layer, multiple
hidden layers, and an output layer. The most commonly used hidden layers include the
convolution layer and pooling layers. Convolution layers contain learnable convolution filters
and biases. The convolution is computed only from neighbouring neurons. Figure 1.11A
shows a diagram of the convolution operation. The neighbourhood region is known as the
receptive field [217]. In the case of fully connected layers, as shown in Figure 1.10B, the
receptive field is the entire previous layer’s output. On the other hand, in CNN, the receptive
field is much smaller than the entire image region.

Moreover, the filter is shared across the entire dimension of the image. Thus, CNN
create sparse connections and significantly reduces the number of parameters compared to
fully connected artificial neural networks. For example, as shown in Figure 1.11A, for a
5 x5 input matrix (which can be considered as an image), a 3 x 3 filter is used. To find the
output, a sliding window of different receptive fields was considered. This results in only ten
trainable parameters: nine weights and one bias. If a fully connected artificial neural network
is applied, 26 parameters will be needed: 25 weights and one bias. This makes CNN memory
efficient for image data. Moreover, such implementation of convolution layers enables to
detection of objects within an image irrespective of their location.

Another essential layer in CNN is the pooling or subsampling layer. It is usually placed
after the convolution layer. The most commonly used pooling operations are max- and
average-pooling, shown in Figure 1.11B. Pooling helps reduce the feature map’s size and
learn multi-scale features. A feature map is the output of a neuron in the hidden layers.
Pooling also serves as a regularisation method to avoid over-fitting. Similar to artificial neural
networks, activation functions are used in CNN as well.

A CNN consists of cascaded convolution and pooling layers to automatically extract
multi-scale features from images [219]. A CNN could be applied for an image-to-image
translation, to predict a single value, such as the class of the image, or to regress a specific
value, for example, the number of objects in an image. Thus, the last layers of CNNs are
task-specific. For the classification task, the cascaded convolution and polling layers are used
for feature extraction. The extracted features are flattened and fed to fully connected layers
to predict class probability [220]. A detailed explanation of the working principle of CNN
can be found in the book by Goodfellow et al. [217] and a detailed review of various CNN
architectures can be found in [221].

In the last decade, deep learning techniques have been enormously utilised in histopathol-
ogy image analysis. The following section gives an overview of the application of CNN in
histopathology image analysis.
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Figure 1.12: Overview on the application of deep learning in digital pathology. MIF =
multiplex immunofluorescence; MIHC = multiplex immunohistochemistry and WSI = whole
slide image.
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1.6.3 Application of deep learning in digital pathology

Pathology is the backbone of cancer diagnosis, pharmaceutical research, clinical research,
and treatment selection and follow-up [186]. The current gold standard for histopathology
evaluation is based on a manual assessment of samples by expert pathologists. For standard-
ised reporting, a lot of robust guidelines have been developed by a group of international
expert pathologists [151]. However, there is a shortage of expert pathologists all over the
world [222]. Moreover, manual assessment suffers from inter-observer and intra-observer
variability due to a subjective estimation of parameters and visual perception limitations of
humans, especially for gigapixel histopathology images [223]. These hamper the fulfilment
of current research and clinical needs, clinical adoption, and innovation of new prognostic
biomarkers [186, 152]. Furthermore, as we are moving towards individualised cancer therapy,
the need for an accurate histopathologic biomarker assessment is growing [186].

The advent of devices to convert glass slides into high-resolution digital images has
sped up research and training in pathology [186]. This has also enabled the development
of computer algorithms to analyse these digital images, which could be used as decision
support for pathologists. Due to the availability of increased histopathology images and
computing power, deep learning-powered digital image analysis offers hope for increasing the
scope of digital pathology and accuracy of cellular and morphologic biomarkers evaluation
[152, 186]. Moreover, digital pathology is gaining popularity due to the development of
high-plex and high-resolution spatial molecular profiling technologies such as MIF that give
quantitative results with minimal inter-observer variability [186]. While the adoption of
deep learning models in hospitals remains a milestone to be addressed in the future due to a
lack of interpretability and trust, it has been extensively used in research to address diverse
methodological and clinical problems in cancer research as shown in Figure 1.12.

Recent Al breakthroughs could change how pathologists identify and stratify cancer, and
deep learning techniques constitute a milestone in this change, as they are behind major
advancements in histology [186]. While various types of deep neural networks exist, CNNs
are the most commonly used architecture in digital pathology image analysis [224]. A
detailed review of the application of CNN in digital pathology could be found in [220, 224].
Recently, in digital pathology-focused research, a wide range of deep learning architectures
have been explored [225] aimed at various clinical and methodological goals (Figure 1.12).
Among them are below:

* Developing cell and tissue level deep learning models to identify diagnostic features;
* Predicting patient outcome;

* Predicting molecular features from digital pathology images.
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Developing cell and tissue level deep learning models to identify diagnostic features

The field of digital pathology has recently witnessed a surge of interest in the application
of deep learning for cell classification [176], cell detection [226], cell counting [227-229],
cell segmentation [178, 230, 231], tissue segmentation [178, 232]. However, automated cell
detection and classification remain challenging due to variations in slide preparation and
cell morphological diversity in shape and size. For example, closely located cells with weak
boundaries are often difficult to discern [226, 227, 233].

Mercan et al. [234] developed and evaluated a deep learning based WSI analysis decision
support pipeline for the diagnosis of breast cancer. The study consisted of 240 breast biopsies
categorised into benign, atypia, DCIS, and invasive cancer. Three expert pathologists
performed the diagnosis. First, to segment the tissue area into necrosis, stroma, background,
normal epithelium, malignant epithelium and blood, a ResNet based CNN was employed
[232]. Then, morphologic tissue texture and structure features were extracted from these
different compartments and used to predict a diagnosis of patients. The authors showed that
the deep learning-based approach is promising in assisting pathologists in differentiating
atypical samples from DCIS samples [234].

Campanella et al. [235] developed a multi-instance learning based weakly supervised
deep learning on H&E WSI to predict cancer versus normal on a large scale dataset consisting
of 44,732 whole slide images from 15,187 patients. The dataset belonged to breast metastasis
to lymph nodes, skin cancer, and prostate core biopsies. The authors evaluated the perfor-
mance of different CNN models, including ResNets [236], VGGs [237] and DenseNet201
[238] for the classification task. Their CNN based classifier achieved above 0.98 area under
the curve (AUC) for all cancer types on a test set. They claimed that the deep learning model
could be used as a decision support system and could enable pathologists to exclude about
60-70% of patients with 100% sensitivity [235]. Adopting a weakly supervised method
enabled them to avoid the need for time-consuming pixel-level annotation.

Another study developed a CNN based pipeline to identify and classify tumour-associated
stroma in diagnostic breast biopsies [239]. The algorithm was evaluated on 2,387 H&E
stained tissue sections from 882 women aged 40—65 years. The deep learning method was
trained to differentiate stroma regions in proximity to invasive regions and stroma from
benign samples. Using a stromal features-based binary classifier, they achieved an AUC of
0.96 for benign vs invasive classification. They showed that the morphology of the stromal
region could help classify breast biopsies and understand TME of breast cancer.

In the study by Nagpal et al. [240], they developed a deep learning algorithm to predict
the Gleason score of prostate cancer. The deep learning model was trained and validated on
12 million manually annotated patches from 1226 and 331 slides, respectively. Compared to a
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standard reference score, the automated deep learning method has significantly outperformed
29 pathologists (accuracy of 70% vs 60%). The authors suggested that the deep learning
method could be used in a situation where there is a smaller number of pathologists. Abdul-
Jabbar et al. [108] developed a deep learning methodology to interrogate the spatial immune
cell distribution in lung cancer. They developed CNN based deep learning pipelines to
differentiate the tissue regions from the background, detect cells, and classify cell phenotypes
on H&E and MIHC images. The H&E and MIHC images were from the same tumour block,
and AbdulJabbar et al. showed the density of tumour cells from H&E images and density of
TTF1+ tumour cells from MIHC images was highly correlated, showing the reproducibility
of their automated computational pipeline. Moreover, tumours with more than one immune
cold region had a high risk of relapse independent of standard lung cancer clinical variables.
The immune cold regions were identified using immune hotspot analysis [241]. They showed
that immune geographic variability reveals tumour ecological restrictions that may promote

immune evasion and aggressive phenotypes.

Predicting patient outcome

In recent years, deep learning algorithms have been employed to perform complex tasks from
high-resolution digital pathology images, such as predicting patient survival and treatment
outcome. Deep learning models could be trained using expert annotations for tasks such as
single cell detection, cell classification, and tissue segmentation. However, the pathologist
could not tell at least with high certainty the survival of patients solely from H&E images.
However, end-to-end deep learning algorithms have been employed to regress patients’
survival from only H&E WSI without any prior input from pathologists.

One of the main challenges in this approach is that WSI are too big to load into memory
and train deep learning models. Some images could reach up to 10GB in size, making it
difficult to fit into GPU for model training. Thus, patch-based approach is mainly adopted.
Moreover, it is not known prior which part of the gigapixel image is associated with patients’
survival. The algorithm should learn this automatically.

Yamashita et al. [242] proposed a deep learning method to score the risk of relapse of
hepatocellular carcinoma after surgery. About 70% of hepatocellular carcinoma patients
relapse within 5 years from surgery [242]. Yamashita et al. [242] first divided WSI into
patches and trained CNN based classifier to identify patches highly likely to be from the
tumour region. These patches were used to train another deep learning model to predict the
risk of relapse. They achieved a concordance score of 0.724 and 0.683 on internal and external
validation data, which was higher than the Tumor-Node-Metastasis standard classification

system. They suggested deep learning could be used to refine the clinical management of
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hepatocellular carcinoma. The drawback of this approach is that the relevance of the stromal
region is excluded during model training.

Courtiol et al. [243] developed a deep learning pipeline to predict the overall survival
of mesothelioma patients from H&E WSI that utilises patches in both tumour and stromal
regions. The deep learning model achieved a concordance index of 0.654 on separately held
test data. Another study by Wang et al. [244] demonstrated that recurrence in early-stage
non-small cell lung cancer could be predicted using automatically extracted nuclear features
from H&E tissue micro-array images. CNN was used to segment cell nuclei and nuclear
shape. Subsequently, texture features were extracted. To predict recurrence based on these
features, a support vector machine was used [244]. The model was developed using a cohort
of 70 (cohort 1) patients and then validated on two other cohorts, cohort 2 (119) and cohort
3 (116) patients. Their model achieved an accuracy of recurrence prediction of 81% on
the training set, and 82% and 75% on cohort 2 and cohort 3, respectively. They found that
nuclear histomorphologic features could robustly predict recurrence status in non-small cell
lung cancer.

Predicting patient outcomes from histopathology images is very complex. As presented
above, some studies trained a deep learning model to predict the patient outcome from the
whole region of the tissue section. In contrast, others trained deep learning models only on
the tumour regions of the tissue section. While patch prediction ranking was used to identify
regions or patches predictive of the outcome [242, 243], this approach is less interpretable
since the patches contain a composite of tissue and cellular features. Others used deep
learning as an intermediate step to extract human interpretable features such as nuclear
morphologic features [244], and these features were interrogated with patient outcomes.
This approach provides better interpretability than the earlier approaches. In this study, we

adopted this approach.

Predicting molecular profile from digital pathology images

Tumour molecular profiling is the characterisation of the genomic make-up of tumour [245].
In the era of personalised medicine, molecular profiling has become crucial for informing
therapeutic decisions, tumour diagnosis and prognosis in daily practice [246]. The number of
druggable tumour-related molecular abnormalities has increased significantly over the past
ten years, and biomarker-matched medicines have significantly improved survival in many
cancer types [246]. For example, HER?2 targeting drugs have significantly improved the
prognosis of HER2 positive breast cancer patients [247]. However, tumour molecular profile
is expensive and time-consuming. Due to these factors, molecular testing is challenging to

scale up to clinical needs. H&E histopathologic images are routinely available ubiquitously.
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Though pathologists are not able to estimate molecular profiles by simply looking at histology
images, some recent works based on deep learning have shown promising results.

Coudray et al. [248] trained CNN to predict the most commonly mutated genes in lung
adenocarcinoma from H&E images. They showed that mutation of six genes, including
STKI11, EGFR, FAT1, SETBPI1, KRAS and TP53, could be predicted from H&E images.
They trained a binary classifier, mutation exists or absent and obtained area under the curve
ranging from 0.733 to 0.85 on these genes. Using a similar approach, Anand et al. [249]
predicted BRAF mutation in thyroid cancer. In another study by Barbera et al. [250], it
was demonstrated that deep learning could predict HER2 status from H&E histopathology
images. Their pipeline mimics the pathologist strategy by first segmenting the tumour region,
and the status of HER2 was predicted from the tumour region. Similarly, Shamai et al. [251]
developed a ResNet-based deep learning classifier to detect ER status from H&E images.
They trained and validated their algorithm on 20,600 digitised images of 5,356 patients
with breast cancer from two cohorts. Their model achieved about 91% ER detection, and
they suggested that histopathology and deep learning could be adopted for mass molecular
profiling to meet the current clinical needs.

Another study by Kather et al. [18] developed a deep residual network to predict
microsatellite instability in gastrointestinal cancer directly from histology images with an
AUC of 0.84. They applied a multi-stage approach, where tumour vs normal tissue patches
was separated, and another classifier was applied to predict the microsatellite instability
status. Microsatellite instability determines gastrointestinal cancer patients’ response to
immunotherapy, and Kather et al. claimed that their approach could be used as a support
system to guide whether immunotherapy could be a better treatment for a given patient solely
from histology images. Xu et al. [252] postulated that the underlying genetic drivers are
responsible for the aberrant alterations in tumour cell nuclei morphologies and the TME
and that these features in histological images might therefore be used to predict genetic
status such as tumour mutation burden. Transfer learning based CNN model was applied
to predict mutation burden on 253 patients with bladder cancer from The Cancer Genome
Atlas (TCGA). Their model could differentiate low vs high tumour mutation burden with an
accuracy of 73%. Moreover, the survival of a patient with a predicted low mutation burden
and high mutation burden was significantly different.

All the above studies rely on CNN to directly predict molecular features. As mentioned
in the previous section on patient outcomes prediction, such approaches lack interpretability.
Dia et al. [253] proposed a novel approach to predict molecular phenotypes from WSI by
extracting human interpretable image features. They used more than 1.6 million single cell

annotations from board-certified pathologists from about 5,700 images to train deep learning
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models for high-resolution cell classification and cell detection. After segmenting cells and
tissue types, they extracted 607 histomorphologic features. These features were found to
be associated with molecular features such as checkpoint proteins. Another study by Lu et
al. [254] proposed a cell graph based graph deep learning approach that captures the whole
image instead of a small region to predict HER2 and PR status in breast cancer patients.
WSI could have hundreds of thousands of cells, and the cell graph was built by connecting
neighbouring cells with an edge. The authors showed that a graph based method outperforms
other deep learning approaches in predicting HER2 and PR status.

Gamble et al. [255] developed three separate deep learning models to predict ER/PR/HER2
biomarkers directly from H&E images. Their model was trained and validated on 3,274
slides from 1,249 patients collected from 37 sites. AUC values of 0.86, 0.75, and 0.60 were
obtained for ER, PR and HERZ2, respectively. They used saliency analysis and pathologist
reviews of clustered patches to interpret model learnt predictive features. Interpretability
analyses reveal established relationships between biomarkers and histomorphology, such as
those between low-grade and lobular histology, and ER/PR positive and higher inflammatory
infiltrates [255].

1.7 Thesis objective

The focus of this thesis is the study of the complex tissue microenvironment in multiple
cancer types that have unique tissue architectural features. In particular, we illustrate how
tailored deep learning and spatial statistical algorithms can be used to understand disease
biology and identify prognostic features in FL, MM and DCIS (Figure 1.13). Following
the overview of these diseases, their biology and clinical management in Chapter 1, here
I outline the specific objectives of this thesis along with the methodological and clinical
questions addressed.

1.7.1 Deep learning methods development for cell phenotyping on mul-
tiplex images

In oncology, spatial context is crucial to understand cells’ spatial organisation and interaction
within a tissue. As discussed in Section 1.5.2, MIF is a spatial imaging technology that
enables spatial single cell phenotyping of whole tissue sections at high resolution. This
technology is rapidly growing, and it needs advanced image analysis algorithms to fully
harness the available high-dimensional spatial data. Currently, there is no generally accepted

single pipeline to analyse MIF images due to the images’ complexity associated with the
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high dimensionality of the data, intermixing of multiple markers and variability in colour
and number of markers used. Some studies used commercially available software such as
HALO and Visiopharm. However, these tools are costly and lack flexibility, especially for
exploratory research. To resolve this situation, we aim to develop a new, fully automated,
deep learning based computational pipeline. While developing the pipeline, we aim to answer

the following crucial questions from domain knowledge of the data and its application:

* What is the efficient way of collecting single cell annotations to train and validate deep
learning models for MIF images?

* How to ensure the model generalises to multiple panels which use different proteins,

numbers of proteins and staining colours?

* How to include domain knowledge into deep learning model development to improve

performance?

Chapter 2 attempts to address these central questions to develop a scalable deep learning
based fully automated workflow called DeepMIF for spatial single cell phenotyping from
MIF image.

1.7.2 Spatially resolved analysis of follicular lymphoma microenviron-

ment using multiplex staining and deep learning

As discussed in Section 1.2.1, one of the distinguishing characteristics of FL from other
types of lymphoma is that cancer cells in FL. grow in clumps and form follicle-like tissue
structures due to its non-diffused nature. The intra- and inter-follicular regions of FL have
distinct cellular composition and morphological appearance. However, most previous studies
analysed FL as one homogeneous tissue ecosystem. Moreover, there is a lack of literature on
the topological organisation of immune cells in these tissue compartments and its association
with patients’ prognosis. These could be due to a lack of computational pipelines and spatial
statistical methods tailored to the tissue architecture of FL. To address these gaps, we have
been collaborating with Prof. Teresa Marafioti’s lab from University College London and
Dr. Giuseppe Gritti from the Ospedale Papa Giovanni, Italy to select immune cell markers
and MIF staining of tissue samples. Using MIF spatial imaging, the DeepMIF pipeline
developed in Chapter 2 and FL tissue compartments tailored spatial ecological analysis, we

aim to answer the following clinical questions.

* Are neoplastic follicle morphological features associated with patients’ prognosis?
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Figure 1.13: A) A diagram showing the process of spatial interrogation of the TME using
spatial histology staining technologies and automated computational methods. Under the
patients panel, different colours represent patients with different clinical outcomes. First,
tissue samples were taken from the suspected organ or tissue of the patients. Then, the
tissue section is divided into thin slices and put on glasses for digitisation using different
histology staining technologies. The digitised images were processed using deep learning
based computational methods developed in this thesis to identify spatial prognostic features.
B) Tumour types studied in this thesis, along with their distinct tissue microenvironment.
Voronois are polygons. DCIS: ductal carcinoma in situ; H&E: Hematoxylin and eosin; MIF:
multiplex immunofluorescence; MIHC: multiplex immunohistochemistry; and TIL: tumour
infiltrating lymphocyte.

* Is there specific spatial immune cell phenotype in the intra- or inter-follicular region of
FL which is associated with disease prognosis?

* Is the spatial organisation of cell phenotypes more prognostic than the abundance of
cells in FL.?

With these questions in mind, in Chapter 3, spatial analysis methods tailored to the
tissue structure of FL. microenvironment were proposed to identify prognostic morphological

and spatial features in the intra- and inter-follicular region of FL.

1.7.3 Spatial mapping of bone marrow trephine using deep learning

MM is a multi-stage disease that develops in the BM as described in Section 1.3. The trephine
biopsy of BM allows the evaluation of cellular, morphological, and spatial architecture of
the BM microenvironment of MM patients. However, as explained in Section 1.3.6, the
morphological and spatial microenvironment of BM tissue in MM has been under-explored.
This is due to its specialised tissue sampling and processing requirement, the mosaic nature
of the tissue landscape and the co-existence of rare and abundant cells in the marrow. These
tissue and cell level challenges hinder the development of unbiased automated computational
methods to interrogate the dynamic changes in the spatial microenvironment during MM
progression and post-treatment. Thus, in this thesis, we aim to address the methodological

and translational questions below:

* How to develop deep learning methods that accurately identify rare and abundant cells

and dissect the mosaic tissue compartments from MIHC stained WSI?

* Is there a change in the bone trabeculae physiology, and spatial organisation of

myeloma plasma cells and immune T cells during the progression of MM?
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* s there a change in the bone trabeculae physiology and spatial organisation of myeloma

plasma cells and immune T cells after treatment?

We have been collaborating with Prof. Kwee Yong’s lab at University College Lon-
don to address these central questions. In Chapter 4, we developed automated machine
learning based image analysis workflows to dissect the mosaic tissue habitats (MoSaicNet),
a cell imbalance aware deep learning pipeline (AwareNet) to enable accurate detection
and classification of rare cell types using weighting mechanism. Moreover, we developed
methods to interrogate the topological organisation of cells in the BM tissue sections and

bone morphology to answer the above questions.

1.7.4 Evaluation of morphological features and spatial immune infiltra-
tion patterns as a biomarker for recurrence in ductal carcinoma
in situ

In Chapters 2, 3 and 4, we focused on developing machine learning tools to analyse high

throughput multiplex histology images and identify prognostic spatial and morphological

features using algorithms tailored to the tissue architecture of the tumours. While high
throughput multiplex technologies are great tools for exploratory study, their clinical transla-

tion is currently limited since the technologies are expensive and not ubiquitous. The H&E

staining is cheap, ubiquitous and routinely used for cancer diagnosis. Thus, we extended the

idea of spatial interrogation of the TME in relation to tissue structures to DCIS using H&E

stained WSIs. As discussed in Section 1.4, stromal TILs are gaining interest in DCIS study

and the TIL-WG on breast cancer developed a set of guidelines for manual stromal TILs
scoring on H&E images of DCIS [151]. However, manual assessment has inherent limitations
such as intra- and inter-observer variability [172] and shortage of experienced pathologists

[174]. As suggested by the TIL-WG [152], an automated image analysis pipeline could

alleviate these limitations. Thus, in this thesis, we aim to address the methodological and

translational questions below:

* How to develop an image analysis pipeline that follows the essential guidelines outlined
by the TIL-WG?

* Are stromal TILs in proximity to the DCIS duct more prognostic than distant TILs in

predicting recurrence?

* [s there association between DCIS duct morphology, stromal TILs score, and DCIS
mutation burden?
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To address these challenges, we have been collaborating with Prof. Shelley Hwang’s
lab from the Duke University School of Medicine, Prof. Hugo M. Horlings from The
Netherlands Cancer Institute, Prof. Robert West from Stanford University Medical Center,
Prof. Carlo Maley’s lab from Arizona State University and Dr. Roberto Salgado from
GZA-ZNA Hospitals (Belgium). In Chapter 5, we developed an automated image analysis
workflow that captures the main concepts laid by the TIL-WG and interrogates the DCIS
TME addressing the above questions.

Chapter 6 covers general discussion and conclusions. We discuss the main contributions

of this thesis, the limitations and future directions.



Chapter 2

Deep learning based cell profiling for
multiplex images

2.1 Overview

Recently, spatial biology has gained a surge of interest in oncology to understand disease
biology. This is driven by the advent of high throughput spatial staining technologies such
as MIF that allow the examination of multiple proteins on a single tissue section without
losing spatial context. The MIF analysis is used to investigate the cellular landscape of tissue
sections in terms of abundance and spatial organization of cells. In this process, cell detection
and cell phenotype classification are often prerequisites to quantifying cell abundance and
exploring spatial heterogeneity of the cellular landscape. However, these tasks are particularly
challenging for MIF images due to high levels of variability in staining, expression intensity,
intermixing of colours and inherent noise as a result of preprocessing artefacts. The complex
makeup of markers in the multispectral images hinders the accurate quantification of cell
phenotypes.

Spatial staining technologies such as the Vectra 3 from Akoya Biosciences generates
a multiplex image and de-convoluted image (one image per marker). We developed a
new deep learning based image analysis pipeline with a graphical user interface (GUI) to
detect and classify cell phenotypes on MIF images (DeepMIF) and visualize WSI and cell
phenotypes. The cell detection algorithm was first developed on MIHC images and adopted
to the de-convoluted images of MIF data. This idea was inspired by the "divide and conquer”
algorithm design paradigm. Once the cells are detected on the de-convoluted images, an
algorithm that evaluates the co-expression of multiple markers was developed to identify
cells expressing single or multiple markers. We trained, tested and validated our model
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on > 50k expert single-cell annotations from multiple immune cells panels on 15 samples
of follicular lymphoma patients. Our algorithm obtained a cell classification accuracy and
AUC > 0.98 on an independent validation panel. The cell phenotype identification took on
average 27.5 minutes per WSI, and reconstruction of the WSI from tiles took on average
0.07 minutes. DeepMIF is optimized to run on local computers or high-performance clusters
independent of the host platform using docker packaging. These suggest that the DeepMIF
is an accurate and efficient tool for the analysis and visualization of MIF images, leading to
the identification of novel prognostic cell phenotypes in tumours.

2.2 Introduction

Recent advances in multiplex staining technologies enabled us to study the spatial interaction
of cell types in the tumour microenvironment [15, 256, 257]. These technologies allow the
detection of multiple proteins at a single cell level on a tissue section at high resolution while
preserving their spatial position [15, 258, 259].

For single cell spatial analysis, cell detection and classification are the first key steps
[260]. Combined with accurate cell detection and classification techniques, MIF has the
potential to allow detailed investigation of cell spatial organization to study tumour spatial
heterogeneity [260]. The field of digital pathology has recently witnessed a surge of interest
in the application of deep learning in cell detection and classification [175]. However,
automated cell detection and classification remain challenging due to variations in slide
preparation and cell morphological diversity in shape and size. For example, closely located
cells with weak boundaries are often difficult to discern [261, 227, 233, 226]. Moreover,
often a parameter such as a kernel size needed to be fixed [261], which cannot cater for cells
with a range of sizes and shapes. Furthermore, the need to differentiate cells with a subtle
difference in marker expression intensity, adds another layer of complexity to multiplex
image analysis.

Moreover, multiplex images come with complexity for analysis due to the intermixing
of the markers as a result of co-expression of multiple markers by single cell and weak
signals [262-264]. It has been shown that automated machine learning methods such as deep
learning excel at objectively identifying cell phenotypes and generating quantitative features
from images [259]. These methods can be trained end-to-end to extract features which are
robust to the heterogeneity of signal in MIF images [265, 266]. Previously, commercial
softwares have been used to analyse MIF images, such as InForm image analysis software
[267, 268] and Visiopharm [259]. Other studies have used deep learning to analyse MIF
images [259, 269, 270]. In [259, 269], to detect cell nuclei, 4’-6-diamidino-2-phenylindole
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(DAPI) DNA staining images were used. However, DAPI staining is not adequate to capture
all cell nuclei. Maric et al. [269] proposed to use a combination of DNA staining markers,
which is costly.

Here, to address the above stated challenges, we developed a multi-stage workflow that
accurately identifies cell phenotypes on MIHC and MIF. This work has the following main
contributions:

* We developed Cell COunt RegularizeD Convolutional neural Network (ConCORDe-
Net) inspired by Inception-V3 [271] and U-Net [65] architecture which incorporates
cell counter regularisation and designed for cell detection in MIHC without the need

of pre-specifying parameters such as cell size.

* The model parameters of ConCORDe-Net were optimized using a new objective
function that combines conventional Dice overlap and a new cell count loss function
which regularizes the network parameters to detect closely located cells and/or weakly
stained cells.

* The quantitative experiments support that ConCORDe-Net outperformed the state-of-

the-art methods at detecting closely located as well as weakly stained cells.

* We developed an accurate deep learning based computational pipeline to identify cell
phenotypes on MIF (DeepMIF) from its de-convoluted images instead of using DAPI

that generalizes across multiple panels.

* We developed a whole slide MIF viewer and DeepMIF could be used from the graphical
user interface. Thus the algorithm will be widely accessible to researchers with less/no

programming skills.

* DeepMIF is easily customizable to allow users to specify cell phenotype of interest in

a configuration file or from the graphical user interface.

* DeepMIF could easily run on local computers or high-performance clusters indepen-

dent of the platform and allows parallelization of tasks to speed up execution.

2.3 Materials

2.3.1 Gal8 dataset

The Gal8 dataset was a pilot study consisting of six ER negative breast cancer samples aimed

at assessing the association between galectin-8 (Gal8) positive tumour cells and immune
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infiltration in ER negative breast cancer patients. The samples were MIHC stained for CDS,
Gal8 and phosphorylated signal transducer and activator of transcription 1 (pSTAT1) (a
surrogate marker of immune activation and production). A sample MIHC image from this
dataset is shown in Figure 2.1A.

The MIHC were scanned at Prof. Marafioti’s lab at University College London. The
images were scanned at 40x resolution. The pSTAT1 protein presents a range of expression

profiles, and its expression was classified into strong, medium, and weak.

2.3.2 Follicular lymphoma dataset

The follicular lymphoma dataset contains MIF images of 39 patients diagnosed with follicular
lymphoma. The patients were diagnosed at Papa Giovanni XXIII Hospital (Bergamo, Italy)
with grade I-IIla FL between 01-Jan-2006 and 31-Dec-2015 and treated with standard
R-CHOP or R-CVP.

Multispectral immunofluorescence and staining assessment

Two to four micron thick formalin-fixed paraffin-embedded tissue sections were extracted
from patients with FL and normal tonsils and subjected to MIF staining. The MIF staining
was carried out by using the Vectra 3 platform (AKOYA Biosciences).

The tissue fixation, staining, and MIF panel optimisation were performed by Dr. Ayse U
Akarca from Prof. Marafioti’s lab at University College London.

The details of the antibodies used can be found in Table S2.1. Four MIF panels were devel-
oped to study specific immune-cell populations. The panels, along with the markers/proteins

in each panel, are listed below:
1. Immune T cells markers: CD4/CD8/FOXP3/PD1;
2. Tumour-associated macrophages markers: CD68/CD163/CD206/PDL1;
3. Myeloid cells markers: CD8/CD11b/CD14/CD15;
4. Natural killer T cells markers: CD8/Granzyme B (Granz B)/Granulysin/CD16/CD56.

To each panel, 4’,6-diamidino-2-phenylindole (DAPI) was added for nuclear counter staining.
Tissue sections were dewaxed, rehydrated and then submitted to the heat-induced antigen
retrieval solution either Tris EDTA (tris(hydroxymethyl) aminomethane—ethylenediaminetetraacetic
acid) (pH 9.0) or sodium citrate buffer (pH 6.0) on the Leica BOND RXm automated im-
munostainer (Leica Microsystems, Milton Keynes, UK). Following the pre-treatment, the

tyramide signal amplification (TSA)-based Opal staining method was used according to the
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Figure 2.1: A) Sample multiplex immunohistochemistry (MIHC) image taken from our
Gal8 dataset. The colours in the image show the positivity of the cells for a specific
protein or marker. B) Sample multiplex immunofluorescence (MIF) image taken from our
follicular lymphoma dataset. The MIF image contains CD4, CD8, FOXP3 and PD1 markers,
represented by different colours. C-D) De-convoluted images of the multiplex image in (B).
The MIF image in (B) shows all markers in one image, while the de-convoluted images
show a specific marker positivity status for each cell in the image. The MIF images were
scanned using Vectra 3 platform from Akoya Biosciences and the de-convoluted images were
generated by the platform. One de-convoluted image was generated for each marker used in
the MIF staining. In the de-convoluted images, brown colour represents marker positivity
while blue represents 4°,6-diamidino-2-phenylindole (DAPI), a nuclear marker.

manufacturer’s recommendations (Opal 7-Colour Automation IHC Kit, Akoya Biosciences,
Marlborough, MA, USA; Catalogue No. NEL811001KT).

The MIF protocol was optimised for each panel and validated against conventional single
immunohistochemistry on sequential tissue sections of human reactive tonsils and two other
FL samples (retrieved from the files of the Department of Histopathology, UCLH, London,
UK) which were used as lymphoma controls to determine optimal antibody conditions and
to establish the appropriate antibody staining order. For detection, each antibody was paired
with an individual Opal fluorophore that allowed its visualisation. For molecules expected
to co-localise in the same cellular compartment (e.g. cytoplasm, nuclei), each marker was
paired with spectrally separated Opals. Those antibodies showing weak protein expression
were paired with Opals that would emit a stronger spectral signal. The Opal fluorophores
were used at 1 in 50 to 1/200 dilutions. The optimal conditions were set by firstly performing
single multispectral fluorescence to QC the consistency/reproducibility of the staining pattern,
to check the specificity of the protein expression and to monitor any non-specific signal and/or
background. The staining pattern observed for each single MIF was compared and accepted

when the results were similar to those obtained with single chromogenic immunostaining.

Image acquisition

Slides were scanned on the Vectra 3 platform at 20 x magnification using appropriate expo-
sure times. A sample MIF image from the follicular lymphoma dataset is shown in Figure
2.1B. The Vectra 3 platform provides a protocol to scan either the whole slide or multispectral
regions of interest. For whole slide scanning, the platform allows scanning images at 4 X or
10x magnification with 2.5um or 1um pixel resolution, respectively. Under the multispectral
regions-based procedure, the platform can acquire images with magnification up to 40x and
pixel resolution of 0.25um. The whole slide MIF scanning is also slower than multispectral

region-based approaches. Thus, in this study, we used the latter approach. The regions of



2.4 Methods 61

interest, or multispectral regions, were selected by expert pathologists, and the regions were
exported in TIF image format. In addition to the MIF images, the Vectra 3 platform generates
de-convoluted images. A de-convoluted image contains the expression status of all cells
within the region of interest for a given marker or protein used in the MIF panel. Figure
2.1C-F show de-convoluted images for the CD4, CD8, FOXP3, and PD1 markers used in the
MIF image depicted in Figure 2.1B.

2.4 Methods

For single cell spatial analysis, cell detection and classification are the first key steps [260].
Multiplex images that allow capturing multiple proteins’ expression at a single cell level
enable spatial single cell phenotyping. It has been shown that automated machine learning
methods such as deep learning excel at objectively identifying cell phenotypes and generating
quantitative features from images [259]. Here, we developed ConCORDe-Net, a cell count
regularised convolutional neural network to detect single cells from WSI MIHC images,
which was specifically designed to address the challenges of detecting weakly stained and
touching cells. The ConCORDe-Net architecture was trained and validated using the Gal8
dataset described in Section 2.3.1.

As shown in Figure 2.1, the intensity profile of the de-convoluted images resembles that
of the MIHC images. This makes easy to adopt ConCORDe-Net developed for MIHC to the
de-convoluted images. Thus, ConCORDe-Net that was initially developed for MIHC was
trained on the de-convoluted images from MIF and developed DeepMIf, which allows single
cell spatial mapping on MIF images. The DeepMIf pipeline was trained and validated using
the Follicular lymphoma dataset, which is described in Section 2.3.2.

The next sections explain the details of ConCORDe-Net and DeepMIF deep learning
models.

2.4.1 ConCORDe-Net pipeline

ConCORDe-Net is a deep learning model that detects the position of single cells on MIHC
stained WSI. To improve cell detection accuracy, the model uses cell count as a regularisation
mechanism. The model was initially developed using the Gal8 dataset (Section 2.3.1). To
train and validate the model, single cell annotations were collected as described in the

following sections.
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Figure 2.2: Training data preparation from MIHC and de-convoluted images of MIF
images: A) Sample image showing the preparation of training data for cell detection and
classification models from MIHC image.
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Figure 2.2: Single cell dot annotation at the centre of the cell nucleus was obtained from a
pathologist using a unique colour for each cell type. For cell detection model development,
the annotated regions were divided into 224 x 224 x 3 patches. From the dot annotation, a
pseudo cell mask is generated with a radius of 4 pixels around the pathologist annotation and
the number of cells with the region was also counted. For cell classification, a 28 x 28 x 3
dimensional image centred on the pathologist dot annotation was extracted. B) Sample image
showing the preparation of training data for cell detection and classification models from
de-convoluted images of MIF data. A dot annotation at the centre of the nucleus of cells was
collected on the de-convoluted images, using white colour for cells positive for a marker and
green for cells negative for a marker. The input patch, pseudo cell mask images and single
cell patches were generated as explained in (A).

Gal8 single cell annotation

The Gal8 dataset as described in Section 2.3.1 contains MIHC whole-tumour slide images
from patients with breast cancer, and the images were scanned at 40 x magnification with
0.227um per pixel resolution. To train and validate ConCORDe-Net, a total of 175 regions
were annotated from different regions of six whole tumour images by an expert pathologist
using a web-based software called Polyscope developed in our lab. To incorporate the
variation present in the data, the annotations were collected from different regions of the
slides. These annotated regions were extracted from the software, using a separate script. The
annotated regions were then randomly split into three categories: training (120), validation
(28), and testing (27). Within these regions, a total of 20,477 cells were annotated, and these
belonged to five different types of cells: CD8+, GAL8+pSTAT1-, GAL8+pSTAT1+ strong,
GAL8+pSTAT 1+ moderate, and GAL8+pSTAT1+ weak. An illustrative example of patches
is shown in Figure 2.2A. Moreover, the distribution of the data for each cell is presented in
Table 2.1.

Some previous works on cell detection relied on single cell segmentation annotation
to detect cells [272]. However, collecting single cell segmentation annotation is laborious.
Thus, here, we proposed to use dot annotation at the centre of the nucleus of the cells, which
is faster and easier than careful segmentation of cell extent. Then, cell nucleus pseudo

segmentation was generated as described in the next Section to train ConCORDe-Net.

Dot annotation to cell pseudo segmentation transformation

The reference ground truth annotation obtained was a dot at the centre of a cell. However,
to train the proposed cell detection pipeline, a reference cell mask image (R) and scalar
cell count (C;) were needed as targets. C; is simply the number of annotated cells in the

input patch. The R was generated from dot annotation using Equation (2.1) as cell pseudo
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Table 2.1: Distribution of training, validation and testing Gal8 dataset single cell anno-
tations.

Cell type Training | Validation | Test
CDS8 2,971 653 624
GALS8+pSTAT1- 4,118 881 903
GALS8+pSTAT 1+ strong 919 183 200
GALS8+pSTAT 1+ moderate 1,558 295 279
GALS8+pSTAT 1+ weak 4,770 1,038 1,102

segmentation by dilating the single cell annotation.

R j) 1 ifd<r 20
i,j)= :
0 otherwise

where R(i, j) is pixel intensity value at (i, j) of pseudo-segmentation image (R), and d is
Euclidean distance between pixel location (i, j) and any of cell dot annotations location. r
is distance threshold which was empirically set to 4 pixels. While choosing the value of r,
we made sure, the pseudo mask of neighbouring cells does not touch. Figure 2.2A shows a
sample annotation image and its corresponding cell pseudo mask image.

Cell Counter from digital images

Cell counting is an essential part of the histopathologic assessment for diagnosis and treatment
planning [273, 274]. There have been previously developed deep learning based approaches
to counting cells from histopathology images [227, 233, 226, 228, 229] and these could be
categorized into two based on their approach. In [227, 233, 226, 228], cell density prediction
followed by post-processing image analysis was employed to count cells, while others directly
trained CNN to regress cell count from an input patch [229]. Here, similar to Xue et al. [229],
we implemented a CNN based network to regress the number of cells and incorporated the
cell counter model to regularise cell detection model. The cell counting model was integrated
into the cell detection model to improve its performance. The idea of incorporating the cell
counter model in the cell detection network was inspired by the idea of providing "hint"
while solving a complex computational problem or puzzle. The hint here will be the number
of cells in the image.

Figure 2.3A shows an image containing an array of handwritten digits. To find the
position of a given number (for example, the number 2) in the image, a question could be
asked in these ways:
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Figure 2.3: Deep convolutional neural network based cell counter: A) An image contain-
ing handwritten digits showing how providing hint improves human performance during
problem-solving that inspired incorporating cell count hypothesis in ConCORDe-Net model.
B) Model architecture. The numbers below the boxes indicate the number of neurons in the
layer. C) Cell counter model loss function profile.
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1. Find the x and y locations of number 2 in the image.
2. There are seven number 2 in the image and find their x and y location.

For a human, asking using the second way could improve the accuracy of the answer
since a hint is given, there are seven numbers. We hypothesized that incorporating such hint
or domain knowledge into the cell count model development could improve the performance
and ConCORDe-Net incorporates this idea in the model architecture. To incorporate this
concept, a model which can count cells is needed. Thus, a cell counter model was developed.
Cell count from binary images such as the cell pseudo mask image in Figure 2.2A could
be performed using image processing algorithms such as counting connected component
analysis. However, this is not possible especially from the output of model CNN models
during training since the prediction is noisy during the initial epochs. Thus, we developed a
CNN based cell counter model.

Our proposed cell counter network is shown in Figure 2.3B. It is a CNN architecture that
predicts the number of cells in an input image. Mathematically, it can be considered as a
mapping function, f : R¥** — R!, where k is the size of the input patch, which is 224 in our
case.

The cell counter CNN consists of feature extraction and regression parts. The feature
extraction section is composed of four consecutive convolutional layers of 3 x 3 filter size,
and same padding. The number of neurons in these layers are {16, 32, 64, 128} respectively.
Every convolutional layer was followed by a max-pooling layer of size (2 x 2) with stride
2 to reduce the dimensionality of features in the previous layer by half. The regressor part
has a series of two dense layers of {200, 1} neurons. The output dense layer has one neuron
which is the estimated number of cells in the input image. The activation of all convolutional
and dense layers was set to rectified linear unit (ReLU).

Parameters of all layers were randomly initialized using uniform Glorot initialization
[275]. The parameters were optimised using Adam optimisation [276] using a learning
rate of 10~*. Initially, we experimented with mean square error as an objective function.
However, as shown in Figure 2.4A, this results in an error that could reach up to 100 during
the initial epochs. As we will describe in section 2.4.1, to integrate a cell counter in our cell
detection model, which employs Dice overlap loss (bounded between 0 and 1), we intend to
develop a new loss function which has loss profile bounded between 0 and 1. Thus, we came

up with a new cell count loss (C;) function in Equation (2.2).

1
C=1- 2.2)

n
1+ % ,Zl Cpj = Gijl
j:
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Figure 2.4: Comparison between training loss history of mean square loss and our
proposed loss function: Line plots of training loss histories of cell count prediction from
an input image obtained using mean square error (MSE) loss function (A) and using our
proposed loss function (B). The values of our proposed loss function are bounded between 0
and 1, while MSE loss values could reach up to 100 during the initial epochs. To record both
loss histories, the same data was used.

where n is batch size, C),; and C;; are predicted and true number of cells in the 7 image,
respectively. Figure 2.3C shows the profile of C; as a function of cell count difference
(Cp — ). The loss is bounded between 0 and 1 (Figure 2.4B).

Before integrating the cell counter model into the cell detection pipeline, it was trained
and evaluated using pseudo-segmentation and the number of cells (Figure 2.2A) as an input
and output, respectively. To increase the amount of data, horizontal and vertical flipping was
applied to all input training patches. The pseudo-segmentation is a binary image, however,
when the cell counter model is integrated with the cell detection model, during model training
noisy (especially during a few initial epochs) tensors of floating value will be fed. To realize
such an environment, the following morphological and intensity deformation was applied to

the cell pseudo mask during cell counter model training;

* Morphological erosion using rectangular structuring element of width w = 2 was
performed to every patch with a probability p = 0.4, where p and w were empirically

chosen.

* The images were multiplied by a random matrix of the same size as the image with an
empirically chosen probability p = 0.4. All elements in the random matrix are in the

range [0.7, 1] to set pixel values between 0.7 and 1.
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Figure 2.5: Schematic diagram of ConCORDe-Net architecture. The network has two
outputs, a cell nucleus probability map and a predicted number of cells (C,). The likelihood
map was thresholded using an empirically optimized threshold T = 0.85 to convert to a
binary mask. The centre of every binary object represents the centre of a cell. In the
Inception-V3 module, 3 x 3 and 1x1 indicate filter size of convolutional layers. The numbers
in the pre-trained cell counter model indicate the number of neurons.

Cell detection on multiplex immunohistochemistry

Figure 2.5 shows the proposed ConCORDe-Net cell detection convolutional neural network.
The input is 224 x 224 x 3 size patch. The network has three parts; an encoder, a decoder and
a pre-trained cell counter. The encoder-decoder section is an extended version U-Net [65].
The standard U-Net architecture [65] uses VGG-style in its encoder and decoder section. We
have proposed to use the Inception-V3 module instead of the VGG block. The inception
module contains multiple parallel kernels of different sizes allowing the model to learn multi-
scale features at a given layer. The encoder contains three inception modules and the first two
modules were followed by 2D max-pooling layers. The decoder is composed of transposed
convolution, concatenation, and inception modules. The 1 x 1 filter size convolutional layer
at the end of the decoder is used to reduce the dimension of the tensor from 224 x 224 x 32
to 224 x 224 x 1. The decoder generates a cell nucleus prediction map (P). The cell nucleus
prediction map is connected to the pre-trained cell counter model, which generates the

predicted number of cells (C,). Therefore, the cell detection architecture has two outputs, a
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cell location prediction map and a predicted number of cells. Activation of all layers was set
to ReLLU, but sigmoid for the last layer in the decoder section.

The parameters of the cell counter model were transfer learned from cell pseudo-
segmentation as explained in Section 2.4.1. Parameters of the other layers were randomly
initialized using uniform Glorot initialization [275], and optimized using Adam [276], a
learning rate of 10~ and an objective function shown in Equation 2.3. The cell detection
loss (D;) in Equation 2.3 has two parts. The first part is Dice overlap loss, and the second
part is cell count loss.

Dl:<1_221€m®?“>+/1 1— ! 2.3)
LR+ P+e 1+%Z’ij_ctj|
=1

where R and P in the first part of the equation are the reference image and predicted cell centre
probability map image, respectively. Both R and P contain the batch size of images. The ® operator
represents element-wise matrix multiplication. The summation operator adds all the elements of the
matrix and generates a single value. The value € = 10~ was added to ensure computational stability
when the denominator is zero. The second part is the same as Equation (2.2). The value of Dice
overlap loss ranges between 0 and 1. Using mean square loss functions for cell count loss could result
in a loss value that could reach up to 100 as shown in Figure 2.4A. Thus, this will make the model to
focus on cell count but not on the spatial map of the cell detection map. To ensure fair learning from
the cell detection overlap and cell count losses, a cell count loss was designed to have a loss profile
which ranges between 0 and 1, similar to Dice overlap loss (Figure 2.3C and Figure 2.4B). For cell
detection, the spatial location matters more than cell count, and A = 0.3 was used to weight the cell

count loss. The value of A was optimized on the validation set with A value (0, 1] as a search space.

Cell probability map post processing

The model generates a predicted cell nucleus centre probability map image. To convert the probability
map to a binary image, we applied a threshold of 0.85. To fill holes in the binary image, we applied
morphological closing as follows:

Tow = (I ®5) O's 2.4)

where [, 1, s, & and © denote the input image, output image, disk structuring element, dilation
operator and erosion operator, respectively. The size of the structuring element was set to 5 pixels.
We excluded objects of area < 10 pixel?. The centre of every object in the binary image is a centre of
a cell. All the threshold parameters above were optimized on the validation dataset maximizing cell

detection F1-score.
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Cell Classification

The Gal8 dataset contains five types of cells: CD8, GAL8+pSTAT1-, GAL8+pSTAT1+ strong,
GALS8+pSTAT1+ moderate, and GAL8+pSTAT1+ weak. GAL8+pSTAT1+ cells were divided
based on the expression level of pSTATT1 into strong, moderate, and weak. Discriminating among
GALS8+pSTAT 1+ cells is challenging, even for experts. Inspired by the principle of the divide and con-
quer algorithm, we convert the problem into multi-stage classification. The first classifier (Classifier
1) differentiates between CDS8, GAL8+pSTAT1-, and all GAL8+pSTAT1+ cells. Then, a second
classifier (Classifier 2) was trained to further divide GAL8+pSTAT 1+ cells into GAL8+pSTAT 1+
strong, GAL8+pSTAT 1+ moderate, and GAL8+pSTAT 1+ weak.

Both classifiers were trained using 28 x 28 x 3 patches which can cover the whole cell area for
the majority of the cells. A similar network architecture was used for both classifiers.

The classifier has feature extraction and classification sections. The feature extraction part is a mod-
ified version of VGG architecture [237] consisting of four convolutional layers of {32, 64 128 128}
neurons with filters size 3 x 3, stride 1 and same padding. Each convolutional layers were followed by
2 x 2 max-pooling layer. The classification layer consisted of two dense layers of {200, 3} neurons
with a dropout layer, rate = 0.3 in between. Softmax activation was applied to the last dense layer
and ReL.U for other layers. Uniform Glorot [276] was applied to initialize model parameters. We used
Adam [276] optimizer with a learning rate of 107*. A categorical cross-entropy objective function
was applied. To handle class imbalance, in each mini-batch, an equal number of patches from all
cell types were fed to the network, and the number of iterations was determined by the number of
patches in the most underestimated class. Moreover, runtime augmentation of flipping, and zooming
with scale s = [0.85 1.15] was applied with a probability of p = 0.4, where s and p were empirically

optimized.

2.4.2 DeepMIF pipeline

For cell phenotype identification on MIF images, DeepMIF was proposed. The DeepMIF pipeline has
four main sections: cell detection, cell classification, co-expression analysis, and WSI viewer (Figure
2.6). Our MIF images were generated using Vectra 3 platform. The Vectra 3 platform generates MIF
and de-convoluted images corresponding to every protein/marker used in the MIF (Figure 2.1). While
the MIF image contains complex aggregate features of all markers used, the de-convoluted images
have simple features (negative or positive for a marker) Figure 2.1B. Thus, we applied deep learning
to the de-convoluted images followed by co-expression analysis to identify cells expressing either
single or multiple markers on MIF images (Figure 2.6). Moreover, the de convoluted images look like
a single marker immunohistochemistry image. Thus, we adopted ConCORDe-Net for cell detection
on the de-convoluted images. In multiplex staining images, colour is one of the main discriminating
features to identify cell phenotypes. Since the colours in the MIHC image and de-convoluted images

were different (Figure 2.1), new annotations were collected for training and evaluation.
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Figure 2.6: The overview of DeepMIF pipeline: A) MIF image and its corresponding
de-convoluted images. B) Overview of DeepMIF pipeline. C) Single cell detection and
classification on the de-convoluted images.
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Figure 2.6: ConCORDe-Net generates the x and y locations of the centre of the nucleus of
the cells. A patch centred on these cells’ location was extracted and fed to a VGG style CNN
based cell classifier (conv = convolution, maxp = maxpooling layer). The classifier generates
the probability of the input patch being positive (p+.) and negative (p_,.) for a marker. The
class of the cell was assigned to positive (p4ye > p—ye) OF negative otherwise. This repeats
for the n de-convoluted images. D) Marker co-expression analysis. The positive cells from
the n de-convoluted images were mapped onto one plane for co-expression analysis. Then,
cells were spatially mapped on MIF images. The bar indicates a 10um resolution. DI =
de-convoluted image; WSI = whole slide image

Single cell annotation from de-convoluted images

To train and validate ConCORDe-Net on the de-convoluted images of MIF images, we used diagnostic
MIF images of follicular lymphoma patients, as explained in Section 2.3.2. The MIF images were
obtained using the Vectra 3 platform at 20x magnification and 0.5um per pixel resolution. The
output of the Vectra 3 platform contains the MIF image and de-convoluted images (Figure 2.1B). The
de-convolution images were obtained from Vectra 3 platform. To optimize model parameters and test
the model, 40,327 single cells were annotated by experts from 10 samples (Table 2.2). The single
cell annotations were collected from the de-convoluted images (Figure 2.2B). To capture the tissue
heterogeneity, the annotations were collected from different regions of the slides. To make sure data
from the same patient is not used for training and testing, the training, validation and testing split was
done at patient level 60%, 20%, and 20%, respectively. These 40,327 single cell annotations were
collected from the immune T cells panel. To evaluate the generalizability of the model to other panels,
we validated the model on 10,038 cells collected from two independent MIF panels from 5 samples
(Table 2.2).

Table 2.2: Distribution of training, validation and testing single cell annotation dataset
from de-convoluted images of MIF images. The model optimization data was extracted
from the immune T cells panel. Annotations were collected from de-convoluted images of
non-nuclear (CD8, CD4, PD1, CD16 and CD206) and nuclear (FOXP3 and Granulysin)
markers. natural killer T = Natural killer T cells panel

Model optimizing data Model validation data
Training Validation Testing natural Killer T Macrophages
Positive 5,088 2,147 1,287 4,021 239
Negative 16,000 6,958 8,847 5,188 590
De-convoluted images CDS8, CD4, FOXP3 and PD1 CD16 and Granulysin CD206
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Cell detection on de-convoluted images

To detect cells on the de-convoluted images, we used ConCORDe-Net explained in Section 2.4.1
since the model was designed to give attention to weakly signal markers and touching cells, one of
the challenges in MIF due to co-expression of multiple markers. The model input is a 224 x 224 x 3
pixels image. To discern weakly stained cells and touching cells, the model uses cell count in the
training data. Here, the model was trained from scratch using human annotations (Table 2.2).

Cell classification on de-convoluted images

To predict cell marker positivity on de-convoluted images, separate models were trained for nuclear
and non-nuclear markers. The number of single-cell annotations collected from non-nuclear markers
was much higher than that of nuclear markers. To minimize the effect of the imbalance, we developed
separate CNN of the same architecture for nuclear markers and non-nuclear markers.

Patches of size 20 x 20 x 3 and 28 x 28 x 3 pixels were extracted for nuclear (e.g FOXP3) and
non-nuclear (e.g CD4) markers, respectively. We used smaller patch sizes for nuclear markers to
minimize the effect of background noise.

InceptionV3 [277] and VGG [278] are among the most commonly used classification CNNSs.
These architectures are deep and have a large number of parameters, which could result in overfitting
for a small dataset. Thus, we custom designed shallower versions of these CNN with a depth of 5
layers. The first model (Our model 1) uses the Inception module for the feature learning section,
while the second model (Our model 2) uses the VGG module. The Inception module uses multiple
kernel sizes at a given layer to extract multi-scale features, followed by a max-pooling layer, while the
VGG module uses a series of two convolutions of the same kernel size, followed by a max-pooling
layer.

The feature learning section starts with a convolution layer of 16 neurons, and the number of
neurons increases by 16 for every layer added. The classification section consists of two dense layers
of {200, 2$ neurons, with a dropout (ratre = 0.3) layer in between. The ReLU activation was used in
all layers, but softmax in the last layer to generate a probability. Model parameters were randomly
initialized using uniform Glorot [275] and optimized using Adam [276], learning rate of 10~ and
binary cross-entropy loss function. The model was trained for 500 epochs with patience = 50 epochs.

The deep learning-based cell detection and classification enabled us to spatially map cells positive
for all markers on the deconvoluted images. We then applied co-expression analysis to identify cells

expressing a single marker or co-expressing multiple markers in the MIF images (Figure 2.6).

Markers co-expression analysis

To identify cells co-expressing multiple markers, we first spatially mapped the location of cells
positive for the markers onto a single plane (Figure 2.6D). A cell is said to be co-expressing multiple

markers if detections on de-convoluted images overlap after mapping them onto a single plane. The
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cell detection algorithm is optimized to find the centre of the nucleus of cells. However, due to the
variation in the nature of markers (nuclear or cytoplasmic), the predicted location might slightly vary.
We empirically set threshold distance » = 1.5um (about a quarter of lymphocyte diameter). In the rest
of the paper, overlapping markers mean within a distance of r. Co-expression analysis was performed
as follows.

Suppose we have MIF panel with n markers {m; : i € {1,2,...n}}, which will generate n
de-convoluted images. Suppose, we want to identify cells (Cphenorype) cO-expressing k markers,
M, ={m;: i€ {1,2,...k}, k <n} and negative for [ markers M,, = {m; : je {1,2,....[}, | <n}.
Distance can only be computed between two points. So, k points are said to be overlapping with each
other if every pair of points is overlapping. The number of combinations, (N), is computed as follows:

k k! k(k—1)

N= Cz:zz(k—z)! ~ T2 25

The combinations are {(my,my), (my,m3), (my,ma), ...,(mg—1,my)}. The complexity of iterations is
O (k?). To speed up the computation, we used vectorized forms instead of single cell level looping.
The co-expression analysis have N iterations, each with 4 main steps.

Let CoExp is a dictionary of length k& with marker name and the location of cells co-expressing
the k markers as a key and value, respectively. Initially, the values are set to empty and updated as
follows:

Iteration 1:(m;, m;) combination.

Step 1: Get m; and my positive location. Suppose the de-convoluted images for marker m; has n
cells positive for my, U = {u; € R? i & {1,2...n}} and the de-convoluted images for 1, has a m cells
positive for my, V = {v; € R? i € {1,2...m}}. The u; and v; have its own (x,y) location in the image
space.

Step 2: Compute distance matrix, D € R, The distance is defined as follows:

Djj = [lui —vijll» = \/(xu,- *XV,-)2+ (Vi *}’v,-)2 (2.6)

Step 3: Identify cells Q C U and P C V which co-express m; and m,. The Q and P are the
subset of the original cell collection in which the items in i location of Q and P are overlapping.
Mathematically,

argmin D(U, V) : |lgi—pill2 < r, forqi€ Qand p; € P (2.7)
QeU,PeVv
Step 4: Update CoExp for m; and my, i.e, CoExp [m;] = Q and CoExp [m;] = P. The Q and P
contain a list of the (x,y) location of cells positive for marker m; and my, respectively.
Steps 1 to 4 will be subsequently applied for the other combinations. If a marker in the current
combination was considered in the previous combination, cells positive for that marker which co-

express all previous markers will be only considered. For example, for the second combination,



2.4 Methods 75

(m1,m3), Q will be used instead of the original collection U for m;. Again from (m;,m3) combination,
a subset of Q will co-express m3. Then, CoExp will be updated with values for m; and m3. Remove
cells form CoExp for my, that did not express m3 and their corresponding m; expressing cells. If any
of the combinations do not have overlapping markers, the iteration stops and there are no cells that
co-express the k markers.

After identifying the cells co-expressing the k markers based on the marker status on the de-
convoluted images, we computed the centre position of the cells co-expressing the markers. The
centre location of the j" cells in CoExp was computed using Equation (2.8).
i=k i=k
iZ Xji ig Vi

()= | = (2.8)

where the (x;;,y;) is the predicted (x,y) location of the j™ cell in CoExp for the i marker. Finally,

Chphenorype 18 a subset of C that doesn’t express any of the / markers in M,,. Mathematically,
Cphenotype = {ci €C, i € {1,2,...,n}} i |lci—2zj|la > r|Vz; € Z (2.9)

where Z is a set of locations positive for markers in M,,.

DeepMIF graphical user interface

To make DeepMIF easily usable and interactive for pathologists and the wider research community,
we developed a GUI. The GUI has two main components: the whole slide MIF image viewer and
the deep learning pipeline (Figure 2.7 and Figure S1.1). The viewer reconstructs the WSI from its
tiles and displays cell phenotypes using the location of tiles in their filename and position of the cells
generated using DeepMIF (Figure 2.6A, C, and Figure S1.1). The image viewer was developed using
an OS-independent PyQT Python package. It is interactive and allows batch processing of files. To
allow multi-tasking of rendering, visualization, and running the deep learning pipeline in parallel,

threading and multiprocessing are employed.

2.4.3 Model performance evaluation metrics

In machine learning, model selection is based on the performance evaluation on validation data. For
cell detection and classification, the most commonly used metrics include accuracy, precision, recall,
F1-score, and AUC (for classification). For a binary classifier, give a randomly selected negative (0)
and a positive (1), AUC shows the probability that the model prediction for the positive sample will
be higher than the negative sample. Considering a binary classifier (positive vs negative), here are

terms used in the computation of these metrics:

* True positive (TP): actual value (positive) and model prediction (positive)
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Figure 2.7: The DeepMIF pipeline graphical user interface. The graphical user interface
has two main components: image viewer and deep learning based spatial cell phenotyping
component. The image viewer can be used to visualise MIF images or cell phenotypes
as scatter plots. The viewer also displays the markers and cell phenotypes. To use the
DeepMIF pipeline from the graphical user interface, a user needs to input the input folder
which contains the images, and the output directory using their corresponding buttons. The
user should input also the nuclear markers and non-nuclear markers in the MIF panel, cell
phenotypes of interest. The co-expression distance is a distance in pixels in order to consider

to markers are overlapping.
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* False negative (FN): actual value (positive) and model prediction (negative)

* False positive (FP): actual value (negative) and model prediction (positive)

* True negative (TN): actual value (negative) and model prediction (negative)
The formula to compute accuracy, precision, recall and F1-score is shown below.

TP+TN

Accuracy = (2.10)

TP+FN+FP+TN

TP
Precision = ——— 2.11)
TP+ FP
TP
Recall = —— (2.12)
TP+ FN

Precisi Recall
F1 — score — 2 ~ciston=neca (2.13)

Precision + Recall

2.4.4 Implementation and code availability

Both ConCORDe-Net and DeepMIF were implemented in Python. Tensorflow 2.0 [279] was used
for the development of the deep learning pipeline. The graphical user interface was developed using
the PyQTS5 Python package. The implementation of CONCORDe-Net and DeepMIF are available in
GitHub.

2.5 Results and discussion

2.5.1 ConCORDe-Net performance evaluation on Gal8 dataset
Deep convolutional network accurately predicts number cells in an image

To investigate if CNN can regress the number of cells from an input image, the proposed cell counter
model was trained and evaluated on the test cell pseudo-segmentation images before integrating to
ConCORDe-Net. Pearson correlation r = 0.999 was obtained between the true and predicted number
of cells (Figure 2.8). The high correlation supports that the proposed cell counter network could be

reliably used as a cell count approximation function.

ConCORDe-Net outperforms state-of-the-art cell detection methods on MIHC images

Quantitatively, I evaluated ConCORDe-Net using standard metrics: precision, recall and F1-score. A
detection was considered true positive if it lies within a Euclidean distance of 8 pixels to a ground
truth annotation. Moreover, I compared ConCORDe-Net with state-of-the-art methods, MapDe [261]


https://github.com/YemanBrhane/CONCORDe-Net
https://github.com/YemanBrhane/DeepMIF

2.5 Results and discussion 78

Pearson corr =099, p = 1.0 x 10% o
80 1
2
8 =
]
g % »
§ &
c
B
S 407
=)
o
o
20 1
01
0 20 40 60 80

Actual number of cells

Figure 2.8: Cell counter performance evaluation.

and U-Net [65] as shown in Table 2.3. These models were trained from scratch using the data as
ConCORDe-Net.

ConCORDe-Net achieved the highest recall and F1-score compared to state of the art methods,
MapDe [261] and U-Net [65] Table 2.3. MapDe [261] was proposed for H&E stained images of
patients with lung cancer, and I used parameters that were specified in the paper and re-trained from
scratch. The precision of ConCORDe-Net was lower than the three other methods due to the following
reasons since ConCORDe-Net identifies weakly stained cells that were missed by other methods,
which could be missed by an expert too.

Figure 2.9 shows a visual output of ConCORDe-Net followed by cell classification and comparison
with MapDe [261] and U-Net [65] which uses Dice overlap loss as an objective function. ConCORDe-
Net is better in discerning touching cells with weak boundary gradient and weakly stained GAL8+
pSTAT1- cells compared to MapDe [261] and U-Net [65].

Cell classifier performance evaluation

To visualize the separation of the different classes, 128 dimensional deep learnt features were extracted

from the classifier and visualized in 2 dimensions after t-SNE dimensionality reduction. Both features

learnt by both Classifier 1 and Classifier 2 have shown the separation of classes Figure 2.10 A, B.
Then, the performance of both classifier models was qualitatively evaluated using receiver operat-

ing characteristic curve (ROC), the AUC, accuracy, precision, recall, and F1-score on a separately
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ConCORDe-net

Figure 2.9: Visual images comparing the performance of ConCORDe-Net and state-of-
the-art methods. Illustrative examples of the proposed unified cell detection and classifica-
tion on test data. and comparison with state-of-the-art method, MapDe [261] and U-Net [65].
White, red, yellow, cyan and dark green coloured points represent CD8, GAL8+ pSTAT1-,
GALS8+ pSTAT 1+ strong, GAL8+ pSTAT 1+ moderate, and GAL8+ pSTAT 1+ weak cells,
respectively. The red circles on the top left input images highlight cells that were missed by
MapDe [261] and U-Net [65], but detected using ConCORDe-Net.
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Table 2.3: Cell detection performance comparison of different models on the Gal8
dataset. Model_1 stands for ConCORDe-Net after cell counter removed.

Method Precision | Recall | F1-score
ConCORDe-Net 0.854 0.892 0.873
U-Net [65] + Cell Counter | 0.872 0.837 0.854
Model_1 0.908 0.80 0.845
U-Net [65] 0.908 0.785 0.841
MapDe [261] 0.804 0.876 0.838

held test data shown in Table 2.1. The ROC and AUC of Classifier 1 are presented in Figure 2.10C
and AUC value of greater than 0.99 was achieved for all cell types. For Classifier 1, the overall
accuracy computed on the original distribution of data was 98.1%. Figure 2.10D shows ROC and
AUC of this Classifier 2. For all cell types, AUC value was higher than 0.97 and overall accuracy
of 93% was obtained. The accuracy of Classifier 2 is lower than Classifier 1 (Figure 2.10C, D), due
to the intrinsic challenge in the data. All cells input to Classifier 2 expresses pSTATT1 at different
levels (weak, moderate and strong). There is no clear threshold for separating these classes even for
pathologists. Thus, there could be bias in the annotation data which could confuse the model to decide
the class of the cell. After cascading the two classifiers, overall accuracy of 96.5%, and precision,
recall and F1-score of 0.98 was achieved. These show the proposed cell classification models were
able to identify the marker status of the cells with high accuracy.

The limitation of the Gal8 dataset is that it contains a small number of patients/samples. The
dataset contains a pilot study of 6 patients and a limited number of human annotations were used
to train and validate ConCORDe-Net and classifier models. ConCORDe-Net was trained on a large
amount of human annotation data and was extended beyond MIHC images to detect cells on MIF

images.

2.5.2 DeepMIF performance evaluation: cell detection and classifica-
tion

To enable the automated detection and classification of diverse cell types in MIF images, we first
applied ConCORDe-Net on the de-convoluted images. The number of cells detected by the proposed
deep learning method significantly correlated with the cells annotated by the expert pathologists
(Spearman r = 0.94, p = 1.82x10!2 (Figure 2.11A). Moreover, to evaluate the performance of
ConCORDe-Net single-cell detection on the de-convoluted images, we used recall, precision and
F1-score. On separately held test data, we obtained recall, precision, and F1-score of 0.85, 0.86, and
0.86, respectively.

To evaluate the performance of cell classifier models, we used precision, recall, accuracy and
AUC. The performance of our proposed models (Our model 1 and Our model2) was compared with
ImageNet pre-trained models including VGG16, InceptionV3, ResNet50 and Xception models. These
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Figure 2.10: Cell classification models performance evaluation: t-SNE feature visual-
ization of Classifier] (A) and Classifier2 (B) learned features. A 128 dimensional features
vectors were extracted from the output of the first dense layer of the classifiers and reduced
to a two-dimensional vector using t-SNE. ROC and AUC of classifier] (C) and classifier2
(D). E. Sample patch showing DL spatial mapping of single cells. S=Strong, W=Weak,
M=Moderate.
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models were fine-tuned using our single cell annotation. All models were trained on the same data
from the immune T cells panel (Table 2.2).

On a separately held > 10k test data (Table 2.2), Our model 2 achieved recall (0.96), the highest
among all models (Figure 2.11B) and precision of 0.96, same as Our model 1, and VGG16. Using
1000 bootstraps taking 60% of the test data in each bootstrap, the recall estimate of VGG16 and
Our model 2 was 0.96, 95% CI (0.95 — 0.96), and 0.965, 95% CI (0.96 — 0.97), respectively. These
models achieved the same value of AUC (0.96), compared to Xception (0.91), InceptionV3 (0.89)
and ResNet50 (0.94) (Figure S1.2A). Our model 2 and Our model 1 achieved 0.98 accuracy (Figure
S1.2B), higher than ImageNet pre-trained models. Overall, Our model 2 outperformed all the other
models. This could be due to the less number of parameters (Figure 2.11B) compared to the other
models and thus, less chance of over-fitting. Moreover, due to the reduced number of parameters in
Our model 2, it takes less time and memory during training and inference.

Moreover, visualization of the features learned by the CNN using uniform manifold approximation
and projection (UMAP) dimensionality reduction demonstrated that cells of different classes are
separated (Figure 2.11C).

Subsequently, we validated Our model 2 on single cell annotation collected from panels and
markers not seen during model optimisation. On 10038 single cell annotations collected from natural
killer T cells and macrophages panels data, Our model 2 achieved AUC, precision, recall and accuracy
values > 0.98 (Figure 2.11B, D and Figure S1.2C-D). This shows Our model 2 is generalizable to

other panels and it could be reliably used to classify cells on de-convoluted images.

2.5.3 MIF markers co-expression analysis

The co-expression algorithm developed in Section 2.4.2 was tested on simulated data before applying
it to real MIF images (Figure 2.12A). A set of points in a 2D plane representing marker positivity
with semi-random (x,y) location were generated for k = 4 markers. During the simulation, some
points were set to overlap. On this simulated data, our co-expression algorithm was able to locate
overlapping markers (open circles).

Then, the algorithm was applied on real MIF data (Figure S1.3A, B). Although the model was
trained on images from immune T cell panel only, DeepMIF was able to accurately identify cell
phenotype on natural killer T cell panel images which have completely different markers and cell
phenotypes (Figure 2.12B, C). This shows DeepMIF pipeline is generalizable to multiple panels.

Though, MIF is a high-throughput approach to characterise immune phenotypes landscape in
tissue sections, the intermixing of colours deters accurate identification of cells and discernment of
touching cells. In a computerized analysis of MIF, colour (intensity) is the main discriminating feature
between different cell phenotypes. Multiple panels could have different colours, and a supervised
model trained on MIF data from one panel might not be generalized to another. However, irrespective
of the number of markers/colours used in the MIF panels, the de-convoluted images in all panels

have only brown (positive) and blue (DAPI, negative) colours. This suggests that a model trained on
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Figure 2.11: DeepMIF cell detection and classification models performance evaluation:
A) Correlation between the number of cells annotated by an expert and the number of
cells detected by deep learning. A dot represents a human-annotated rectangular region,
which contains around 450 cells. B) Scatter plot showing the comparison of precision
and recall values for the ImageNet pre-trained model and our models. size=number of
parameters. C) Two-dimensional representation of deep learned features after Uniform
manifold approximation and projection (UMAP) dimensionality reduction along with their
marginal distributions. Negative and positive classes represent cells negative and positive for
a marker, respectively. D) Performance evaluation of Our model 2 on external validation
panel. E-F) Illustrative images showing cell detection and classification results from the
immune T cell panel (the panel used for model development) (E) and from the natural killer
T cells panel (used for as external validation) (F).
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de-convoluted images from one-panel data could be generalized to the other panels. Thus, our newly
developed deep learning image analysis pipeline systematically detects and classifies cells in MIF
images from the de-convoluted images (Figure 2.6A) and this makes DeepMIF generalizable across
panels.

DeepMIF could be effectively used for exploratory analysis or hypothesis-driven research using
MIF data. In our DeepMIF pipeline, once cells positive for each marker are localised on the de-
convoluted images, the user can request to identify cell phenotypes expressing any combination of the
markers in the panel. Moreover, our approach enables exploring even rare cell types. In our immune
T cell pipeline, we were able to identify clinically relevant rare cell types such as CD8+FOXP3+ cells
which will be discussed in the next chapter.

Once cell phenotypes are identified for ease of downstream analysis, DeepMIF generates an excel
file with the cell phenotype name, x position and y position of the cell. This allows us to perform

spatial interrogation on cell-cell interaction and associate it with clinical data.

2.5.4 DeepMIF cell identification runtime evaluation

To statistically evaluate the speed of the DeepMIF pipeline, the execution time for 24 slides was
recorded. The algorithm was executed on a desktop using 12 cores. The speed evaluation was
conducted on the immune T cells panel which contains four markers and eight cell phenotypes of
interest (Figure 2.12B). On average the process from cell detection on the de-convoluted images to
cells co-expression analysis took 27.5 (range: 9.4 to 57.7) minutes per WSI (Figure 2.13A). The
variation in run time per slide is due to the variation in image size and the number of cells (Figure
2.13B). In one of the images, about 90 million cells were detected. Since the samples are from lymph
nodes, the tissue is densely populated with cells.

We then evaluated the whole slide MIF image reconstruction time from tiles. Upon evaluation on
24 slides, the average reconstruction was 0.07(range: 0.02 to 0.14) minutes for images size ranging
from 48.5 million and 388.2 million pixels, respectively (Figure 2.13C, D). This shows the image
viewer is fast.

In addition to the GUI, DeepMIF is available in Docker and it can run on high-performance
clusters using Docker or Singularity. Moreover, DeepMIF can be applied to any multichannel spatial
transcriptomics data, such as image mass cytometry (IMC) and CODEX data. These technologies
could have up to 40 markers/channels. After detecting cells positive for the markers on their respective
channel, our algorithm could be used to identify cells expressing single or multiple markers.

2.5.5 Limitation of DeepMIF and future directions

The DeepMIF pipeline has some limitations. Data generated from a small number of patients were
used to train and validate the algorithm. The MIF images were also from one cancer type generated

from one lab. Multi-centre MIF data incorporating inherent histopathology data variation in tissue
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Figure 2.13: DeepMIF pipeline speed evaluation: A) Distribution of time taken for cell
phenotype identification for n=24 slides. B) Scatter plot showing the time taken for cell
identification as a function of the number of cells and image size. C) Distribution of whole
slide image (WSI) reconstruction time from tiles. D) Scatter plot showing the distribution
of WSI reconstruction time as a function of image size and the number of tiles. A point
represents a WSI. Time is measured in minutes. The » indicates the number of slides.
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processing, scanning device, scanning setting and data from different cancer types could improve the
robustness of the DeepMIF pipeline. Having said that the cell detection performance of ConCORDe-
Net is evaluated on MIHC and de-convoluted images from the MIF data. Moreover, cell segmentation
instead of cell centre detection could allow more flexibility on downstream analysis [280]. But, this

needs a laborious single cell manual segmentation annotation to train and validate the algorithm.

2.6 Conclusion

We proposed a deep learning based unified cell detection and classification method for whole tissue
section multiplex images. Cell count regularised CNN was employed for cell detection, followed by
CNN based single cell classification. The parameters in the cell detection architecture were learnt
using a new objective function which optimizes Dice overlap and cell count. Our experiment shows
that incorporating problem-specific knowledge such as cell count improves the performance of the cell
detection algorithm. Moreover, we developed a deep learning based cell phenotype spatial mapping
method, DeepMIF with a GUI for MIF images analysis. On separately held test data, the DeepMIF
pipeline achieved a cell detection F1-score of 0.86 and cell classification accuracy and AUC of > 0.98.

This suggests DeepMIF could be reliably used to analyse MIF images to identify novel prognostic
cell phenotypes in the tumour microenvironment. Thus, in Chapter 3, DeepMIF was applied to
multiple immune cell panels to spatially map single cell phenotypes and understand the immune

landscape of follicular lymphoma.



Chapter 3

Spatial interrogation of follicular

lymphoma tumour microenvironment

3.1 Overview

As described in Section 1.2.1, in follicular lymphoma, cancer cells develop in clumps and form follicle-
like tissue structures. The heterogeneity of the inter- and intra-follicular regions of the lymphoid
tissue in follicular lymphoma presents challenges to studying its immune microenvironment. We
investigated the spatial interplay of T cells, macrophages, myeloid cells, and natural killer T cells
using multispectral immunofluorescence images of diagnostic biopsies from 32 patients.

A deep learning-based image analysis pipeline was tailored to the needs of follicular lymphoma
spatial histology research, enabling the identification of different immune cells within and outside
neoplastic follicles. Neoplastic follicles were manually segmented by accredited hematopathologists.
We analysed neoplastic follicles’ morphologic features and the density and spatial co-localisation of
immune cells in the inter-follicular and intra-follicular regions of follicular lymphoma.

The low inter-follicular density of CD8+FOXP3+ cells and co-localisation of CD8+FOXP3+
with CD4+CD8+ cells were significantly associated with relapse (BH corrected p = 0.0057 and BH
corrected p = 0.0019, respectively) and shorter time to progression after first-line treatment (Logrank
p =0.0097 and log-rank p = 0.0093, respectively). A low inter-follicular density of CD8+FOXP3+
cells is associated with increased risk of relapse independent of FLIPI (p = 0.038, hazard ratio
(HR) = 0.42, 95% [0.19,0.95], but not independent of the co-localisation of CD8+FOXP3+ with
CDA4+CD8+ cells (p = 0.43). Co-localisation of CD8+FOXP3+ with CD4+CD8+ cells is predictors of
time to relapse independent of the FLIPI score and density of CD8+FOXP3+ cell density (p = 0.027,
HR = 0.0019, 95% [7.19x107°,0.49]. This suggests a potential role of inter-follicular CD8+FOXP3+
and CD4+CD8+ cells in the disease progression of FL, warranting further validation on larger patient

cohorts.
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3.2 Introduction

In the western world, FL is the second most common subtype of non-Hodgkin lymphoma, accounting
for between 20% and 25% of cases [281, 21]. The disease tends to follow an indolent, remitting, and
relapsing course, with great individual variability. While patients achieving a sustained response to
first-line treatment show prolonged survival, those who fail to achieve a response or relapse early
after the end of the therapy have an adverse outcome [282, 283, 39, 284]. Early identification of
refractory/early relapsing cases and investigation of the biological basis is currently a major challenge
[285].

The TME plays a key role in the clinical course of FL. Two immune response (IR) gene expression
signatures, IR1 and IR2, were identified to be predictive of long and short survival, respectively,
in FL [40]. The IR1 signature included genes encoding both T-cells and macrophage molecules,
whereas the IR2 signature comprised genes expressed in macrophages, dendritic cells, or both.
This and subsequent molecular studies [40, 60, 46], suggested the potential importance of immune
surveillance in FL raising the possibility of novel immune approaches. The role of immune T cells
[47-49, 27, 286, 59, 35, 287], macrophages [50, 51, 288, 27, 286], natural killer T (NKT) cells
[289, 290] and myeloid cells [291, 292] were investigated in FL generating inconsistent results. These
studies were conducted on a different cohort of patients who might have different characteristics and
were analysed using different computational pipelines that could potentially hamper consistency and
comparison of the prognostic power of the different immune cell groups. Moreover, the composition
of the intra-follicular areas, which contain neoplastic cells, is distinct from the inter-follicular areas.
However, most of the previous studies considered the FL. TME as one homogenous ecosystem.
The pattern of immune infiltration in these two sites is predictive of outcome [286, 59, 44]. Thus,
investigating the spatial interaction of immune cells in the two regions could provide new insight
into the biology of FL. However, no computational image analysis software tailored to these cell
compartments is available.

Recently, deep learning has gained a surge of interest in digital pathology [293] demonstrating its
relevance to predict the diagnosis of several malignant diseases, including Lymphoma [294-296]. It
has been shown that this technology also serves as a discovery tool to identify novel cell populations
associated with tumour progression. Automated microscopy analysis is a more reliable approach to
enumerate infiltrating cell populations, but there has been limited use of deep-learning analysis to
study the microenvironment in FL [64, 57].

Thus, we decided to use MIF tissue spatial staining technology to study the morphological features

of neoplastic follicles and the spatial immune landscape of FL. We aim to:

* Develop a multi-panel MIF tissue spatial staining to capture a multitude of cell phenotypes and
a deep learning-based method to identify cell phenotypes;

* Study the morphologic features of neoplastic follicles;
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* Develop cell distribution and spatial analysis pipelines tailored to the tissue compartments of
FL;

¢ Identify novel immune phenotypes associated with risk of relapse in FL.

3.3 Materials

3.3.1 Patients studied

Patients diagnosed at Papa Giovanni XXIII Hospital (Bergamo, Italy) with grade I-I1la FL between
01-Jan-2006 and 31-Dec-2015, treated with standard R-CHOP or R-CVP and with the availability of
the diagnostic surgical biopsy were eligible for this study. Clinical information of 39 patients was
gathered from the electronic charts. The diagnosis of FL was confirmed by three haematopathologists
(Prof. Teresa Marafioti, Prof. Alan Ramsay, and Prof. Sabine Pomplun from the Department of
Histopathology, University College Hospitals London, London, UK). They independently reviewed
the morphology using H&E staining. The relevant immunostaining evaluated included CD20, CD3,
BCL-2, BCL-6, CD10, CD21, MIB-1. All cases expressed BCL-2, CD10 and BCL-6, and no areas of
diffuse growth pattern were present. The diagnosis of follicular lymphoma followed the criteria of the
revised 4'" edition of the World Health Organisation classification of tumours of haematopoietic and
lymphoid tissues [297].

The exclusion criteria included stage I disease, bendamustine therapy, and rituximab maintenance.
Seven cases were excluded, of which six showed suboptimal tissue sections affecting staining, and
the additional case had received bendamustine treatment. The final number of analysed cases was 32
(Figure 3.1).

The study was approved by the Ethics Committee (approval number REG. 197/17) and per-
formed following the ethical standards of the 1964 Helsinki declaration and its later amendments.
All patients provided written informed consent. The time to relapse, measured from diagnosis to

relapse/progression time, was used as a clinical endpoint.

3.3.2 C(linical characteristics

The clinical characteristics of the 32 patients included in this study are summarised in Table 3.1. The
histological grade for all patients who relapsed varied between grades 1 and 2, but only one patient
showed a focal grade 3A pattern. After a median follow-up of 10.4 years (range 0.25-15.2 years), 23
patients remained alive. A total of nine deaths occurred. The causes were related to the progression
of FL (three cases); transformation to diffuse large B-cell lymphoma (one case); secondary cancer
(one case); unknown (occurring >10 years post-treatment, two cases); complication of allogeneic

stem-cell transplantation (one case); and acute hepatitis (one case). Fifteen patients relapsed after a
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Table 3.1: Characteristics of follicular lymphoma patients.

Clinical Characteristics All patients(N, %)
All patients 32 (100)

Age

Median (range) 50.9 (30.5 -77.9)
>60 10 (31.3)

Gender

Male 16 (50)

Ann Arbor stage

m-1v 29 (90.6)

Bone marrow involvement

Yes 21 (65.6)

FLIPI

Low 3(9.4)
Intermediate 16 (50)

High 13 (40.6)
Treatment

R-CHOP 26 (81.3)

R-CVP 6 (18.7)

median of 2.83 years (range 0.6-14.8 years). The remaining 17 patients did not relapse after a median

observation of 11.5 years (range 0.25-14.8 years), with four deaths unrelated to disease progression.

3.4 Methods

3.4.1 Multiplex immunofluorescence images and cell phenotypes

To study the immune landscape of FL, we used four MIF panels staining different immune cell
markers from formalin-fixed paraffin-embedded diagnostic tissue sections of 32 FL (Figure 3.1A, B).
These MIF images were generated for this study and were not previously published. The immune
spatial phenotypes were investigated using four MIF panels for T cells, macrophages, myeloid cells,
and NKT cells. The markers used in these panels include:

1. Immune T cells markers: CD4/CD8/FOXP3/PD1;

2. Tumour-associated macrophages markers: CD68/CD163/CD206/PDL1;

3. Myeloid cells markers: CD8/CD11b/CD14/CD15;

4. Natural killer T cells markers: CD8/Granzyme B (Granz B)/Granulysin/CD16/CD56.

The panels were optimised by Dr. Ayse U Akarca from Prof. Teresa Marafioti’s lab in University

College London. The details on the panels optimization could be found in Section 2.3.2.
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Figure 3.1: Details of the study cohort and MIF images: A) Consolidated Standards
of Reporting Trials (CONSORT) Diagram. R = Relapsed; NR = Not relapsed. B) MIF
images were acquired using Vectra 3 platform with multiple markers in each panel. The scale
bar indicates 10um. C) Example image showing the multispectral regions of interest (tile)
selection from a whole tissue section. The tiles were selected by a pathologist from different
parts of the image to include heterogeneity of tissue. Each tile was exported as a TIF file. D)
Stacked bar plots showing the variation of the number of tiles obtained from the Vectra 3
platform for the 32 cases involved in this study for the four panels.
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The MIF images of diagnostic biopsies were acquired using the Vectra 3 platform as explained
in Section 2.3.2. The multispectral regions of interest or "tiles" (Figure 3.1C) were selected from
different region of the whole slide tissue section by expert pathologist and exported as TIF files. The
Vectra 3 platform’s Phenochart viewer allows pathologists to view a whole slide contextual scan
as H&E image and select different regions of interest for acquisition. The tiles were selected from
different areas to capture the heterogeneity in the tissue section. Depending on the size of the available
tissue section and region of interest decided by the pathologist, the number of tiles selected on each
sample could vary as shown in Figure 3.1D. A typical tile was 4032 x 3012 x 3 pixel size at 20X
magnification with 0.5um per pixel resolution. Different tissue sections were used for each panel.

I have been collaborating with Prof. Teresa Marafioti (histopathologist) from the University
College London, United Kingdom and Dr. Giuseppe Gritti (haematologists) from Ospedale Papa
Giovanni XXIII, Bergamo, Italy. Based on literature and my collaborators expertise in FL, we were
interested in a set of cell phenotypes from the four immune cell panels. The cell phenotypes of interest

are shown in Table 3.2.

3.4.2 Cell phenotyping on multiplex immunofluorescence images

The DeepMIF pipeline developed in Chapter 2 was used to spatially map the cell phenotypes on these
four panels (Figure 3.2A). First, cell positive for each markers were identified on the de-convoluted
images. Then, cells expressing single or multiple markers were identified as follows: Firstly, for
a given tile, we mapped the location of the positive markers from its de-convoluted images onto a
single plane. Then, to identify overlapping and non-overlapping markers, we computed a Euclidean
distance between the markers in the image space. If the distance between detected markers on the
de-convoluted images is less than 1.5um, the markers are co-expressed on a cell. The distance value
was empirically set. The detail of DeepMIF algorithm could be found in Section 2.4.2.

3.4.3 Deep learning model validation

The deep learning models of DeepMIF pipeline were trained on data from the immune T cells panel
and applied to all four panels. Validation ensures the cell detection and classification models training
on immune T cell data generalises to the other panels. Validation was performed using two types of
data. As explained in in Section 2.5.2, the DeepMIF cell classifier was validated on macrophages
and natural killer T cells panels single cell annotation data. Moreover, CD8 marker is included in
immune T cell, myeloid cells and NKT panel. This enabled us to verify the density of the CD8+ cells
in these panels. The correlation of density of CD8+ cells between the panels was used to measure the
generalizability of the deep learning models to the other panels. We expect a strong correlation of

CD8+ cell density between the panels if the deep learning method is generalizable to all panels.
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Table 3.2: Cell phenotypes of interest in each panel. The cell phenotypes were selected
based on literature and recommendations from haematologists with expertise in FL.

Immune T cell Macrophages
CD4-CD8+FOXP3-PD1- CD68+CD206-
CD4+CDS8-FOXP3-PD1- CD163+PDLI1-

CD4-CD8-FOXP3+
CD4-CD8-PD1+

CD68-CD206+
CD163-PDL1+

CD4+CD8+ CD68+CD206+
CD4+FOXP3+ CD163+PDL1+

CD8+PDI1+

CD4+PD1+

CD8+FOXP3+

Myeloid cells panel Natural Killer T cells panel
CD8+CD11B- CD8+Granulysin-Granz B-

CD8-CD11B+CD14-CD15-
CD11B-CD14+CD15-
CD11B-CD14-CD15+
CD11B+CD15+
CD11B+CD14+
CD8+CD11B+
CD15+CD14+

CD16+Granulysin-CD56-
CD56+Granulysin-CD16-
CD8-Granz B+
CD8-Granulysin+CD56-CD16-
CD8+Granulysin+

CD8+Granz B+
CD56+Granulysin+
CD16+CD56+
CD16+Granulysin+
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Figure 3.2: Computational deep learning and image processing pipelines: A) DeepMIF
pipeline for cell identification on MIF image. Details on DeepMIF could be found in
Section 2.4.2. B) Schematic diagram showing tissue and follicles segmentation. Follicles
are manually segmented by an expert pathologist. C) Spatial Voronoi tessellation of within
and outside follicles tissue compartments for Morisita-horn index spatial analysis. Following
the follicle segmentation in (B), the area within the follicle and outside follicle were divided

into smaller polygons called "Voronoi"

mapped onto these cells to apply spatial clustering analysis.

. Using cells location data obtained in (A), cells were



3.4 Methods 96

3.4.4 Tissue and follicles segmentation

To segment the tissue from the background, we first converted the MIF image into a greyscale image
with an intensity range from O to 1. A threshold, T = 0.03 was applied to convert the greyscale image
into a binary image. The value of T was optimised from the intensity profile of the greyscale images,
and by visual inspection of the segmentation results. To smooth and fill holes in the binary image,
we applied morphological closing (dilation followed by erosion) operations using disk structuring-
element of radius 10 pixels (5um). Mathematically, let /;, be the input image, and S be the structuring

element. The output image, 1, is computed as,

L = (In®)© S (3.1)

, where & and © are the dilation and erosion operations, respectively.

Follicles were manually delineated by three accredited hematopathologists (Prof. Alan Ramsay,
Prof. Sabine Pomplun, and Teresa Marafioti, from Department of Histopathology, University College
Hospitals London, London, UK). Two regions of interest were annotated for each FL tissue section:
the region representing the neoplastic follicle (called within follicle) and the areas between neoplastic
follicles (called outside follicles). To annotate the follicles, we used PD1, CD68, CD14, and Gran-
ulysin de-convoluted images for immune T cells panel, macrophage panel, myeloid panel and natural
killer T cells panel, respectively. The selection of these de-convoluted images was made because
follicles were more visible on these images than other de-convoluted images.

Finally, the output segmentation (S,,;) was obtained by combining tissue segmentation (S7) and

follicle segmentation (Sr) as shown in Figure 3.2B and Equation (3.2).

Sout - SL ®© ST (32)

where © represents element-wise matrix multiplication.

3.4.5 Image and spatial analysis tailored to follicular lymphoma tissue

compartments

The composition and spatial organization of immune cells in follicular lymphoma was analysed in the
intra-follicular (within follicles) and inter-follicular (outside follicles) regions, by developing a tissue
and follicles segmentation pipeline (Figure 3.2B). This approach was designed to investigate whether
distinct patterns of immune cell infiltrates in the two micro-ecosystems represent a robust tool to
predict clinical outcome. To quantify cells spatial co-localization and immune cell composition, we
applied a Morisita-Horn index [298, 299, 260] to the regions within and outside the follicles separately

(Figure 3.2C) and demonstrated differences between the two cellular compartments.
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3.4.6 Neoplastic follicles morphologic features

Following the neoplastic follicles segmentation, morphological features were measured. Here is the

definition of morphological features of neoplastic follicles used:

* Total follicle tissue area: it is computed as sum of neoplastic follicles tissue area measured in

wm? in all tiles of a given case. It is normalised by the total tissue area of the slide.
* Number of follicles. It is count of neoplastic follicles normalised by total tissue area.
+ Mean follicle area. It is the average area of each neoplastic follicle measured in pm?.

* Mean follicle solidity. Solidity of a neoplastic follicle measures its density or the extent to
which the neoplastic follicle covers its convex hull [300, 301] (Figure 3.3A). A given slide
has many neoplastic follicles. A slide level score was generated as a mean of solidity of all
neoplastic follicles in the slide. Its value is ranges between 0 and 1. Solidity is a measure of
irregularity of a shape [301]. A value of 1 indicates a solid follicle, while a value less than 1

indicates follicle with irregularities.

* Mean follicle eccentricity. It measures the elongation of the neoplastic follicles. An eccentric-
ity of fully circle is 0 and eccentricity of elliptical object is greater than O but less than 1 [302]

(Figure 3.3B). Similar to solidity, mean value was taken to get score at case level.

3.4.7 Cell density in the different tissue compartments of follicular
lymphoma

Figure 3.1D shows the variation of number of tiles between different cases. The difference is due to
variation in the amount tissue in the sample or variation in the number of region of interest during
MIF image scanning in the Vectra 3 platform. In such scenario, cell density is robust to variation in
the amount of tissue compared to the abundance of cells since the earlier is the normalised by tissue
area. Thus, we statistically compared cell densities instead of cell abundance between patient groups.
To identify prognostic cell types within and outside the neoplastic follicles, we mapped cells to their
respective region (within or outside follicle) and we computed cell density (cells per mm?) following
the tissue and follicle segmentation results. For a given cell type, cell density within follicles is
computed by dividing the number of cells within follicles by follicles tissue area (mm?). A similar

approach was applied for the outside follicles areas.

3.4.8 Tessellation of FL cellular compartments and Morisita-Horn in-
dex

Morisita-Horn index is a measure of co-localization of two spatial variables used in ecological and

immunological studies [298, 299, 260]. In FL, the inter- and intra-follicular regions have distinct
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Solidity = object area / convex hull area

Object

Convex hull

B
>

Increasing eccentricity

Figure 3.3: Morphological shape descriptors: A) A cartoon showing computation of
solidity shape feature of an object (for example, a neoplastic follicle). Small value of solidity
indicates shape irregularity. The value of solidity is bounded between 0 and 1. B) A set of
cartoon objects illustrating eccentricity shape descriptor measure. Eccentricity measures the
elongation of the object. The value of eccentricity is bounded between O and 1.

morphological and immune infiltration patterns [27, 286, 59, 44]. Here, we hypothesised, the two
tissue compartments differ in their cellular structure and thus we analysed the co-localization of cells
in these regions separately.

To compute the Morisita-Horn index, we first tessellated the tissue area into smaller regions
as shown in Figure 3.2C. The most commonly used tessellation strategies are square and Voronoi
tessellation [260]. We chose Voronoi tessellation because it mimics the natural distribution of spatial
point patterns [260]. In Voronoi tessellation, an image is divided into a set of polygons using randomly
selected seed points as a centre. The number of polygons (n) is determined by the tissue area as shown
in Equation (3.3) for an image at 20x resolution [303]. To generate and visualise tessellation, we
used scipy.spatial [304] Python packages.

VTissue area

ne - (3.3)

We computed the Morisita-Horn index for the tissue within follicles as follows. Let Z be the
number of tiles (T), collected from a given patient tissue section and let Y be the number of follicles
(F) in i tile, T;. Let L be the number of polygons in the j follicle, F ' obtained using Equation (3.3),
which depends on the area of follicle F;. Since the tiles are non-overlapping, the polygons within the

follicles from the Z tiles could be combined into a set P to apply the spatial analysis.

P={Pi11,Pi12,-.,Pojics s P3jic, Pjicy - PzyL } (3.4)
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where P, jk is the k;;, polygon in follicle F; of Tile T;.

Then, we computed the number and proportion of each cell types in each polygon using the
location and class labels of cells obtained from the output of DeepMIF pipeline.

We then computed the spatial co-localization measure of Morisita-Horn index (M) for a pair of
cell types, C and C’ as follows,

XX,
M=2 L XXy (3.5)

Y (X2 + X (X,)?

where X; and X] are the proportion of C and C’ in the k' polygon, and 1 < k < |P|, where |P|

is the number of polygons within follicles in Equation (3.4). A similar procedure was followed for
the region outside follicles. The value of m ranges from O (spatial segregation) to 1 (high spatial

co-localization).

3.4.9 Statistical analysis

All image and statistical analyses were carried out using the Python programming language. All
correlation values were measured using the non-parametric Spearman test. The p-values were
computed using the two-sided unpaired, non-parametric Wilcoxon method, considering p < 0.05 as
significant. To correct for multiple testing, we applied the Benjamini-Hochberg (BH) method.

As the main measure for prognostic analysis, we used relapse status and relapse free survival
(RFS), which is defined as the period of time from diagnosis to relapse or progression, with censoring
at death or the last follow-up date. Kaplan—Meier method was applied to estimate RFS. To quantify
the hazard ratio for the effect of biomarker groups, the Cox proportional hazard model was used. The
multivariate analysis included biomarkers identified from our analysis and FLIPI, a standard clinical
variable in the diagnosis of FL. The Kaplan—Meier analysis and multivariate Cox regression analysis
were performed using the Lifelines (v0.25.4) Python package [305]. Moreover, we measured the
concordance index (c-index) which is a measure of concordance between the observed and predicted
survival times. It is the fraction of individuals whose expected survival times are correctly arranged
out of all individuals that can actually be ordered [306] and it was computed using the Lifeline Python
package [305].

3.5 Results

3.5.1 Deep learning models accurately map single cells in multiplex

immunofluorescence images

To spatially map single cells on MIF images, we applied DeepMIF developed in Chapter 2. DeepMIF’s
single cell detection and classification were trained on the immune T cells panel data (Table 2.2).
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Figure 3.4: Evaluation and validation of deep learning models: A,B) Deep learning
model validation. The deep learning models were trained on immune T cell panel data. The
trained model was then applied to all panels. The density of CD8+ cells (cells per 1000um?)
across different panels was significantly correlated. A dot represents a sample or patient. All
correlation values were computed using a non-parametric Spearman correlation. C) After
detecting cells on the de-convoluted images, using the proposed co-expression analysis (see
Method), we were able to spatially map cells expressing single or multiple markers in all
panels, which allows us to visually validate the deep learning models and co-expression
analysis on MIF images. The scale bar is 10um.
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In Section 2.5.2, we showed that the models generalise to other panels using manual annotation of
single cells from images in the macrophages and natural killer T cells panel. Moreover, the immune T
cells panel, myeloid cells panel and natural killer T cells panel contain CD8 marker allowing us the
abundance of CD8+ cells in these panels. As shown in Figure 3.1D, the number of "Tiles" are different
between the panels. To overcome the amount of tissue bias, we correlated the density of CD8+
cells instead of cell count. The density of CD8+ cells in the myeloid cells panel was significantly
correlated with the density of CD8+ cells in immune T cells and natural killer T cells (spearman
r=0.81, p=1.03x 1078 spearman r = 0.72, p =2.54 x 1074, Figure 3.4A, B and Table S2.3).
Moreover, the density of CD8+ cells in the immune T cells and natural killer T cells panel was also
significantly correlated (spearman r = 0.55 p = 8.42 x 10~%, Figure S2.1D and Table S2.3). Figure
3.4C shows sample DeepMIF pipeline output images for the four panels. These indicate DeepMIF
could be reliably used to identify single cell phenotypes on MIF images.

3.5.2 Neoplastic follicles morphometric features and relapse status

We hypothesised that specific neoplastic follicle morphological features could be associated with
relapse after R-CHOP or R-CVP chemoimmunotherapy. Thus, after delineating the neoplastic follicles,
we measured solidity, area, eccentricity, total neoplastic area, and the number of follicles (Section
3.4.6). We observe that neoplastic follicles in the diagnostic samples of relapsed patients show a
borderline decrease in solidity score (increase in shape irregularity) compared with neoplastic follicles
from the diagnostic samples of patients who did not experience relapse (p = 0.02 (no correction
applied), Figure S2.11A), though this was not significant after the multiple testing correction (BH
corrected p = 0.1, Figure 3.5A). Illustrative images showing tiles which have neoplastic follicles with
low and high solidity scores are displayed in Figure S2.10A, B. The tile with low solidity contains
merged neoplastic follicles, creating shape irregularity (Figure S2.10A). The neoplastic follicles area,
eccentricity, total neoplastic area and the number of neoplastic follicles were not different between

the relapsed and not relapsed patients (Figure 3.5B-E).

3.5.3 Decreased inter-follicular CD8+FOXP3+ cells is associated with
relapse

To identify prognostic cell types, we first computed the density of cell phenotypes listed in Table
3.2 in the inter- and intra-follicular regions of the neoplastic follicles. Relapse status (relapsed or
not relapsed), and RFS were used for prognosis analysis. The prognostic significance of the cell
phenotypes of interest with respect to relapse status and RFS are summarised in Table S2.4 and 2.4)
and (Figures S2.3 and S2.5. After applying multiple test corrections, only the density of CD8+FOXP3+
cells outside the neoplastic follicles was prognostic.

A significantly lower density of CD8+FOXP3+ cells outside the neoplastic follicles was found in
diagnostic samples of patients who later relapsed, compared to those patients who did not relapse (BH
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Figure 3.5: Neoplastic follicles morphological features and follicular lymphoma progno-
sis. A-C) Boxplots showing the difference in neoplastic follicles solidity (A), average area
(B), and eccentricity (C) between relapsed (n = 15) and not relapsed (n = 17). D-E) Boxplots
showing the difference in total follicle area (D), and the number of follicles (E) between
relapsed (n = 15) and not relapsed (n = 17). These features were normalised by the total
amount of tissue in the slide. The area was measured in wm?. For statistical comparisons
among groups, a two-sided, nonparametric, unpaired, Wilcoxon signed-rank test was used.
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corrected p = 0.0057, Figure 3.6A). However, the density of CD8+FOXP3+ cells in the intra-follicular
region was not different between the relapsed and not relapsed cases (BH corrected p = 0.142, Figure
2.2). Using Kaplan-Meier estimates, increased CD8+FOXP3+ cells outside the neoplastic follicles
was significantly associated with improved RFS using a median split (high 50% vs low 50%: Logrank
p = 0.0097 and c-index = 0.68, Figure 3.6B).

The CD8+FOXP3+ cells accounted for 1.6% and 3.4% of CD8 marker and FOXP3 marker
expressing immune cells, respectively (Figure 3.6C, D). Moreover, in about 88% of the patients, the
density of CD8+FOXP3+ cells in the inter-follicular area of the tissue was higher than the density in
the intra-follicular region (Figure S2.7). This shows CD8+FOXP3+ cells are predominantly found in
the inter-follicular microenvironment.

We then asked if the CD8+FOXP3+ cells infiltration is associated with morphological irreg-
ularity of neoplastic follicles measured by solidity. We found that there was no association be-
tween CD8+FOXP3+ cells infiltration and neoplastic follicles morphological irregularity (spearman
r=0.145,p = 0.428, Figure S2.8A, B).

3.5.4 Clinical relevance of immune cells co-localisation in follicular
lymphoma

To understand the spatial interaction of the inter-follicular CD8+FOXP3+ cells with the other T cell
subsets shown in Table 3.2 in the TME, we first explored their spatial neighbourhood using nearest
neighbour (NN) analysis (Figure 3.7A-B). For each CD8+FOXP3+ cell, we identified the NN cell
phenotype and computed the distance in the tissue space (Figure 3.7A). In the inter-follicular region,
CD4+CD8+ and CD4+FOXP3+ NN cells tend to localise closer to CD8+FOXP3+ cells than other T
cell subsets including CD4-CD8+FOXP3-, CD4+CD8-FOXP3-, and CD4-CD8-FOXP3+ cells.

We then asked if the co-localisation of these T cell subsets with CD8+FOXP3+ cells in the
inter-follicular region is associated with relapse and RFS. To quantify spatial co-localisation, we
computed the Morisita-Horn index, which increases in value if there is a high degree of spatial
colocalization between two variables (Methods). The inter-follicular co-localisation of CD8+FOXP3+
with CD4+FOXP3+ cells was not associated with relapse status (BH corrected p = 0.142, Figure
S2.5A) and patient RFS (Logrank p = 0.06, Figure S2.5B) using Kaplan-Meier estimates. However, a
lower degree of inter-follicular co-localisation of CD8+FOXP3+ with CD4+CD8+ cells was associated
with relapse (BH corrected p = 0.0019, Figure 3.7C). Using Kaplan-Meier estimates, a higher degree
of co-localisation of CD8+FOXP3+ with CD4+CD8+ cells was associated with longer RFS (Logrank
p =0.0093 and c-index = 0.67, Figure 3.7D).
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Figure 3.6: Prognostic cell subsets outside the neoplastic follicles. A) Boxplot showing
difference in density of CD8+FOXP3+ cells (cells/1000um?) outside follicles between re-
lapsed (n = 15) and not relapsed (n = 17). B) Kaplan-Meier curves illustrating recurrence free
survival (RFS) of patients dichotomised using median CD8+FOXP3+ cells density outside
follicles. The c-index indicates the concordance index between the observed survival times
and predicted survival times. C) The percentage of CD8+ and FOXP3+ T cells expressing
both CD8 and FOXP3 markers. D) Sample illustrative image containing CD8+FOXP3+
cells. The arrows point to the centre position of CD8+FOXP3+ cells detected by our deep
learning method on MIF and de-convoluted images. The scale bar represents 10um. For
statistical comparisons among groups, a two-sided, nonparametric, unpaired, Wilcoxon
signed-rank test was used, unless stated otherwise. To correct for multiple testing, we applied
Benjamini-Hochberg (BH).
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Figure 3.7: Prognostic spatial co-localization of cell populations outside the neoplastic
follicles. A) Graphical representation of CD8+FOXP3+ cells nearest neighbour (NN) cells
outside the neoplastic follicles. A dot represents a cell and the different colours indicate
different cell phenotypes as shown in the legend in (B).
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Figure 3.7: B) The distribution of the distance of NN cells of different phenotypes. C) Boxplot
showing the difference in co-localisation of CD8+FOXP3+ with CD4+CD8+ cells outside
follicles between relapsed (n=15) and not relapsed (n=17). D) Kaplan-Meier curves illustrat-
ing recurrence free survival (RFS) of patients dichotomised using median co-localisation of
CD8+FOXP3+ with CD4+CD8+ cells outside follicles. The c-index indicates the concor-
dance index between the observed survival times and predicted survival times. E) Forest plots
showing multivariate Cox regression analyses. Continuous values were used for the density
and spatial localization parameters. Follicular lymphoma international prognostic index
(FLIPI). For statistical comparisons among groups, a two-sided, nonparametric, unpaired,
Wilcoxon signed-rank test was used, unless stated otherwise. To correct for multiple testing,
we applied Benjamini-Hochberg (BH)

3.5.5 Multivariate analysis to predict the risk of relapse in follicular
lymphoma

To investigate whether the inter-follicular density of CD8+FOXP3+ and co-localisation of CD8+FOXP3+
with CD4+CD8+ are predictors of RFS independent of FLIPI, we applied multivariate Cox regression
analysis. For the regression analysis, continuous values of the density and spatial co-localisation
scores were used. Tumours with low inter-follicular co-localisation of CD8+FOXP3+ cells with
CD4+CD8+ were at a significantly increased risk of relapse compared with tumours with a higher
inter-follicular co-localisation of these cell types (p = 0.027, HR = 0.0019, 95% confidence interval
(CI) [7.19 x 107°, 0.49], Figure 3.7E) that was independent of FLIPI and density of CD8+FOXP3+
cells. Moreover, both inter-follicular CD8+FOXP3+ cells density and co-localisation of CD8+FOXP3+
cells with CD4+CD8+ were not associated with FLIPI scores (Figure S2.6A, B). However, there
is a positive correlation between CD8+FOXP3+ density and co-localisation of CD8+FOXP3+ with
CD4+CD8+ (Figure S2.6C). Similarly, a low inter-follicular density of CD8+FOXP3+ was associated
with an increased risk of relapse independent of FLIPI (p = 0.038, HR = 0.42, 95% CI1[0.19, 0.95],
Figure S2.6D), but not independent of co-localisation of CD8+FOXP3+ with CD4+FOXP3+ cells
(p =0.42, Figure 3.7E).

3.6 Discussion

In this chapter, we employed a deep learning based image processing pipeline and spatial statisti-
cal analysis for MIF images to decipher the immune microenvironment in FL. To the best of our
knowledge, this is the first study to analyse the distribution and spatial interaction of immune cells
in the inter-and intra-follicular compartments of FL using high throughput MIF images and deep
learning image analysis. In FL, the abundance and distribution of immune cells within and outside
neoplastic follicles are distinct and heterogeneous [44], and thus the spatial interaction of the cells.
The combination of a high-plex MIF technique, deep learning-based image analysis, and spatial

ecological measures focused on the intra- and inter-follicular tissue compartments enabled us to
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identify prognostic neoplastic morphometric features, cell populations, and cells spatial patterns in
FL.

During the development of FL, neoplastic follicles invade the lymph node capsule, extend into
the perinodal adipose tissue, and replace the lymph node structure [21]. In contrast to the typical
reactive follicles engaged in immunological reactions, neoplastic follicles are rounded and uniform in
appearance [21]. However, neighbouring neoplastic follicles sometimes combine to create a diffused
pattern of disease [21], which could be a sign of aggressive lymphoma [307]. Our data shows that
there is a borderline increase in the neoplastic follicles’ shape irregularity in patients with adverse
clinical outcomes and these shape irregularities were due to the merging of expanding neoplastic
follicles (Figure S2.10A, B). Though the current FL diagnosis is mainly based on the cell morphology
[21, 307], the neoplastic follicles morphologic assessment could give additional insight into the
diagnosis of FL.

In terms of immune cell infiltration, our study shows that the inter-follicular CD8+FOXP3+ T
cells are prognostic and positively correlate with patients RFS. Even though these cells account for a
small fraction of CD8+ immune T cells in the TME of FL, it has been shown that rare cell types such
as antigen-specific T cells can play a crucial role in the development of cancer [308, 309]. In 1970,
Gershon and Kondo described a pool of CD8+ regulatory T cells that support tumorigenesis [310].
This type of cells were subsequently described in prostate [311, 312], colon [313] and non-small
cell lung cancer [312]. In a mouse model, Mayer et al. also showed that CD8+FOXP3+ cells have
a light suppressive function [314]. However, other studies supported our results and showed that
CD8+FOXP3+ cells have anti-tumour cytotoxic activity. Using flow cytometry on mice treated with
Granulocyte-macrophage colony-stimulating factor secreting HER-2/neu vaccine, CD8+FOXP3+ T
cells were abundantly found in regressing and immunogenic tumours [315]. Mayer et al. [314] and
Le et al. [315] showed that CD8+FOXP3+ is a phenotype for anti-tumour T cells, and such cells have
a similar expression profile to activated T cells.

Triggering an effective immune response promotes the expansion of CD8+FOXP3+ lymphocytes
[315]. In a mouse model, Le et al. demonstrated that CD4+ T cells promote the expansion of tumour-
specific T cells such as CD8+FOXP3+ cells by secreting stimulatory cytokines like interleukin-2
and transforming growth factor- 8 [315]. Moreover, K. Y et al. [311] showed that CD8+FOXP3+ T
cells are immunosuppressive, but their inhibitory function could be altered using toll-like receptors-8
signalling [311, 316] suggesting this could be utilised by immunotherapeutic strategies in cancer
[311, 316]. Furthermore, it is reported that toll-like receptor signalling pathways interact with R-
CHOP immunochemotherapy that is used in FL [317]. Further functional studies are needed to
understand whether the CD8+FOXP3+ T cells in the TME of FL have an “innate” anti-tumour
function or if this is modulated by exposure to the immunochemotherapy treatment.

To investigate the spatial interaction of inter-follicular CD8+FOXP3+ cells with other cell types
identified by our approach, we applied spatial co-localization analysis. We found that higher co-
localization of CD8+FOXP3+ cells with CD4+CD8+ in the inter-follicular regions is associated with
favourable outcome in FL. Previous studies described CD4+CD8+ cells as effector anti-tumour T cells
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in a series of tumour studies including cutaneous T-cell lymphoma [318, 319], nodular lymphocyte-
predominant Hodgkin lymphoma [320], and melanoma [319]. Nana et al. [318] showed that the
CD4+CD8+ T cells have a high interleukin-2 cytokine secretion profile [318] and interestingly, a
high level of interleukin-2 is reported to enhance the cytotoxic activity of CD8+ Tregs cells [321].
These results might suggest that CD4+CD8+ cells might have boosted the anti-tumoral activity of
CD8+FOXP3+ cells through an interleukin-2 dependent pathway and thus resulting in a favourable
patient outcome. Interleukin-2 treatment was approved by the U.S. food and drug administration
in 1998 to treat advanced stage myeloma [322]. In a study by Smith et al [323], high-dose bolus
intravenous interleukin-2 was administered to 684 individuals with metastatic melanoma either alone
or in combination with other melanoma vaccinations. The response rate was about 13% in the patients
who received interleukin-2 alone, and they observed a 3% increase in the response rate for the patients
who received additional vaccines. In another study by Davar et al. [324], for patients with advanced
myeloma treated by interleukin-2, the overall response rate was 18%. Though it is beyond the scope
of this PhD study, studying the efficacy of interleukin-2 treatment for FL patient and how this is
associated with the spatial organization of CD8+FOXP3+ cells and CD4+CD8+ could be interesting
future directions.

This study has some limitations. The sample size is small. FL is characterised by indolent
nature with highly variable clinical spectrum [325] and our results should be interpreted taking
into consideration the sample size. Secondly, the manual annotation of the neoplastic follicles is
laborious which could limit scalability to a larger cohort of studies. Thus an automated deep learning

methodology to segment neoplastic follicles is a valuable development.

3.7 Conclusion

We showed that the combination of MIF, deep learning and regional spatial analysis is a promising
strategy to identify novel immune cell phenotypes in FL that could stratify relapsed versus not
relapsed FL patients, and predict the risk of relapse. We showed that low inter-follicular density of
CD8+FOXP3+ cells or low inter-follicular co-localisation of CD8+FOXP3+ cells with CD4+CD8+
cells (Figure 3.8) is associated with relapse and shorter RFS in FL patients treated with R-CHOP
or R-CVP. The inter-follicular density of CD8+FOXP3+ and co-localisation of CD8+FOXP3+ with
CD4+CDS8+ appear to be predictive of RFS independent of FLIPI score, and combining these features
with FLIPI scores could improve FL prognostication. These findings require validation on a large
cohort of FL patients treated with the same or different treatment regimens.

In this chapter, we showed that the spatial organization of immune cells is more prognostic than
cell abundance using multiplex staining technology and spatial analysis algorithms tailored to the
complexity of FL tissue compartments. In the next chapter, we will look at spatial mapping of tissue

architectures and immune landscape of multiple myeloma across disease stages and post-treatment.



Chapter 4

The mosaic microenvironment of
myeloma bone marrow trephine biopsies
mapped by deep learning

4.1 Overview

As discussed in Section 1.3, BM trephine biopsy is crucial for diagnosing and studying multiple
myeloma. However, the complexity of tissue preparation for BM trephine biopsy and the heterogeneity
of cellular, morphological, and spatial architecture preserved in trephine samples hinders accurate
evaluation.

We used multi-panel multiplex immunohistochemistry staining of CD4/CD8/FOXP3/BLIMP1
markers to identify regulatory T cells, effector T cells and myeloma tumour cells. To dissect the diverse
cellular communities and mosaic tissue habitats, we developed a superpixel-inspired deep learning
method (MoSaicNet) that adapts to the complex tissue architectures, and a cell imbalance aware deep
learning pipeline (AwareNet) to enable accurate detection and classification of rare cell types using a
cell weighting mechanism. MoSaicNet and AwareNet achieved an area under the curve of >0.98 for
classification on separately held test data. We demonstrated how the application of MoSaicNet and
AwareNet enabled novel investigation of bone heterogeneity and thickness using an autoencoder-based
method, as well as spatial histology analysis of BM trephine samples from Monoclonal Gammopathies
of Undetermined Significance (MGUS), paired Newly Diagnosed Multiple Myeloma (NDMM) and
post-treatment patients.

The most significant difference between MGUS and NDMM samples was not related to cell
density, but spatial heterogeneity. We also observed significantly fewer BLIMP1+ cells in spatial
proximity to CD8+ cells in MGUS compared with NDMM samples (p = 0.036). Compared to NDMM
samples, bone heterogeneity was decreased in post-treatment samples (p = 0.01), with a concomitant
reduction in FOXP3+CD4+ regulatory T (p = 0.004) and BLIMP1+ plasma (p = 0.013) cells.
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Spatial analyses of BM trephine using histology, deep learning, and tailored spatial statistics
algorithms allow us to address questions about tumour topography and explore how the spatial
distribution of immune cells may relate to disease progression and treatment response. In summary,
deep-learning-based spatial mapping of BM complements can provide new insights into the myeloma

marrow microenvironment.

4.2 Introduction

As discussed in Section 1.3, MM is an incurable haematological malignancy characterised by the un-
controlled proliferation of abnormal plasma cells in BM [71, 326, 84]. According to the International
Myeloma Working Group, the current diagnosis of MM is based on the presence of clonal neoplastic
plasma cells and organ dysfunction, of which the most common is bone destruction [84]. This is
mostly investigated by BM aspirate, trephine biopsy samples, and whole body non-invasive imaging
[84].

Increasingly, there is growing appreciation that myeloma is not driven by malignant plasma cells
in isolation, but tumour growth is accompanied by global immune dysregulation in MM [327, 328].
These include impaired T cell effector function [329] and antigen presentation [330] and an increase in
suppressor cells such as Treg cells [331-333]. These studies were based on MM blood/BM aspirates
or MM cell lines employing flow cytometry and gene expression analysis, and not using biopsies
that preserve the architecture of the BM. Visualisation and quantification of the spatial arrangement
of immune cells and malignant plasma cells in the BM microenvironment and understanding the
complicated mechanisms behind these realities could give new insight MM [105].

BM trephine biopsy is a tissue sample that allows examination of BM cellular and morphological
environment. Multiplex staining of such tissue samples could allow spatial mapping of the BM of
MM patients. Moreover, deep learning methods, specifically CNNs, have been shown to accurately
identify complex visual patterns and single cell phenotypes in histopathological images without
handcrafted features [114, 334, 335]. This offers a unique opportunity to harness the cellular and non-
cellular mosaic spatial ecology of BM. Despite many studies in solid tumours employing multiplex
spatial staining techniques, this has not yet been realised in MM [105]. Thus, the spatial relationship
between BM cell types in MM has not yet been studied. This is due to the unique tissue integrity
and morphology of BM trephine samples. The BM trephine samples are intrinsically different from
those of solid tumours and require a specialised sampling process and decalcification (Figure 4.1A, B)
[105].

The BM also has a highly organised structure, being a specialised haemopoietic and immunologi-
cal organ [336]. Thus, the spatial context of cell-to-cell interactions is likely to be crucially important
in the development of immunity. The BM is one of the priming sites of T cells and contains both rare
and abundant cell types (Figure 4.1C) [337]. Deep learning methods are sensitive to the biases in

the data unless carefully designed. Thus, there are new challenges in developing reliable automated



4.3 Materials 112

analysis for BM trephine samples due to possible biases in cell abundance and tissue architecture
complexity.

Here, we proposed to use MIHC staining of immune T cells and MM tumour cells in situ on BM
trephine biopsy samples. Subsequently, we developed new deep learning-based image analysis and
spatial statistical analysis pipelines addressing the above challenges to explore the spatial heterogeneity
of MM. Thus, in this Chapter we aimed:

» To implement cell detection and classification deep learning framework that uses cell weighting

mechanism to accurately identify rare and abundant cell types on MIHC images;

* To develop a machine learning workflow to dissect the mosaic tissue microenvironment of BM

trephine samples;

* To develop an automated computational image analysis pipeline to analyse bone heterogeneity
and bone thickness from digitised trephine biopsy and understand the effect of our therapies on

bone density and heterogeneity;

* To develop single cell spatial statistical analysis methods tailored to the tissue complexity of BM
trephine biopsies to generate new insights into biology and function of tumour and non-tumour

cells in-situ, unveiling their dynamic changes across disease stages and post-treatment.

4.3 Materials

4.3.1 Patients studied

All patients were managed at University College London Hospital (UCLH). BM trephine biopsies
from two cohorts of patients were studied: nine patients with MGUS and ten with MM. Patients with
suboptimal tissue samples (less amount of tissue) were excluded. For the second group, we studied
MM sections at diagnosis prior to treatment initiation and also at repeat BM biopsies taken at 100
days (D100) following ASCT. All patients provided written informed consent for this project. Ethical
approval was granted by the Health Research Authority, U.K. (Research ethics committee reference:
07/Q0502/17).

Patient characteristics for the MGUS group are shown in Table 4.1. The median age was 61 years,
and 56% were male. The majority had IgG MGUS (56%), three had IgA MGUS (33%), and one had
kappa light chain MGUS (11%). Five patients were deemed to have a low risk of MM progression
(56%), two (22%) had intermediate risk, and two (22%) had a high risk [338].

The characteristics of the ten patients in the MM group are described in Table 4.2. The median
age at MM diagnosis was 56 years, consistent with an age group that would usually proceed with
treatment following induction therapy. Six (60%) patients were male, five had IgG disease (50%), and
half had standard cytogenetic risk by IMWG criteria. Four patients (40%) had ISS stage I disease,
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Figure 4.1: Challenges in analysing tissue sections of BM images: A,B) Sample MIHC
images comparing the tissue composition of tissue sections from breast cancer sample (A)
and BM trephine sample taken from a patient with multiple myeloma (B). The breast cancer
tissue section was taken from our Gal8 dataset described in Section 2.3.1. These sample
images show the complexity of BM trephine tissue architecture compared to tissue samples
from solid tumours (e.g., breast). The glsbm trephine tissue image is a mosaic of blood, bone,
cellular tissue and fat areas. C) The BM is a habitat for rare and abundant cell types. For
example, FOXP3+CD4+ cells are rare compared with CD8+ and FOXP3-CD4+ cells.
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Table 4.1: Patient characteristics: MGUS

Patient characteristics (n=9) Patient no. (%)
Age at diagnosis

Median (range) 61 (54, 89)
Gender

Male 5(56)
Immunoglobulin (Ig) isotype

IgG 5 (56)
IgA 3(33)
Light chains only 1(11)
Light chain isotype

Kappa 5 (56)
Lambda 3(33)
Polytypic 1(11)
IMWG Cytogenetics risk

Standard risk 5 (56)
High risk 1(11)
Unknown 3(33)
Risk categories for progression to MM

Low 5 (56)
Intermediate 2 (22)
High 2 (22)

five (50%) had stage II, and one (10%) had stage III [339]. All patients received first-line carfilzomib,
cyclophosphamide and dexamethasone (KCD) induction therapy, followed by Melphalan 200mg/m?2
as a conditioning regimen prior to ASCT.

4.3.2 Tissue processing

BM samples were collected and processed as per ICSH guidelines [340]. They were first fixed
in neutral buffered formalin and then decalcified with formic acid. After decalcification, biopsy
specimens were embedded in paraffin wax and cut on a microtome at 2—-3tm. Serial sections were

cut and mounted on glass slides.

4.3.3 Immunohistochemistry staining

The MIHC staining was performed using the fully automated Leica Bond slide stainer. Each slide
was serially stained to identify three different antigens using different membranous or nuclear stains.
The details of antibodies used are in Table S3.1. Two MIHC multiplex panels were used in this study.
Panel 1 included T cell markers CD4 and CDS8, as well as FOXP3, a transcription factor specifically
expressed by CD4+ Treg cells [341]. A sample image of panel 1 is shown in Figure 4.2A. Panel
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Figure 4.2: Sample multiplex immunohistochemistry stained bone marrow trephine
samples: A) Panel 1: CD4/CD8/FOXP3 markers. B) Panel 2: CD4/CD8/BLIMP1 markers.
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Table 4.2: Patient characteristics: Paired diagnostic and post-treatment samples. Carfil-
zomib, cyclophosphamide, dexamethasone (KCD); plasma cells (PC)

Patient characteristics (n=10) Patient no. (%)
Age at diagnosis

Median (range) 56 (53, 63)
Gender

Male 6 (60)
Immunoglobulin (Ig) isotype

IgG 5 (50)

IgA 2 (20)

Light chains only 3 (30)

Light chain isotype

Kappa 7 (70)

Lambda 3 (30)

IMWG Cytogenetics risk

Standard risk 5 (50)

High risk 5(50)

IMWG ISS staging

I 4 (40)

II 5 (50)

III 1 (10)

PC % in diagnostic bone marrow biopsy

Median (range) T70%(13%, 80%)
Line of therapy at treatment

1 10 (100)
Induction therapy

KCD 10 (100)

PC % at D100 bone marrow biopsy post-treatment

Median (range) 0.5% (0%, 10%)
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2 comprised CD4, CD8 and B lymphocyte-induced maturation protein-1 (BLIMP1), an important
transcriptional repressor required for plasma cell formation that is also expressed on MM cells [342]
and their survival [343, 344]. We have used BLIMP1 to identify MM tumour cells as the more
commonly used antigen, CD138, is cytoplasmic and so unsuitable for combining with CD4 and CD8
stains for T cells. A sample image of panel 2 is shown in Figure 4.2B. Staining protocols can be found
in Table S3.2 and S3.3. Stained slides were then scanned using the Hamamatsu Nanozoomer s360
scanner and analysed by the deep learning models. The optimisation of the panels and slides scanning
were done by my collaborators from Prof. Kwee Yong’s lab at University College London Cancer
Institute: Catherine SY Lecat, University College London Cancer Institute, Research Department of
Haematology and Dominic Patel, University College London Cancer Institute, Research Department
of Pathology.

In MIHC, colour is the main discriminant feature used by machine learning algorithms. To avoid
collecting new single-cell annotations and training separate models for each panel, we used the same
colours for protein expression on the MIHC panels. The markers and their corresponding col can be
found in Table S3.2 and S3.3.

4.4 Methods

Unlike solid tumours, BM trephine sections consist of isolating structural elements over different
spatial scales, reflecting a mix of cellular communities and mosaic habitats. To dissect this complex
tissue landscape and detect rare cells in MIHC (Figure 4.1), we specifically designed two deep learning
methods, MoSaicNet (Morphological analysis with Superpixel-based habitat detection Network) to
dissect the mosaic landscape of BM tissue (Figure 4.3A) and AwareNet to detect and classify cells
(Figure 4.3B). First, to dissect the MM tissue into blood, bone, fat, and cellular tissue patches/habitats,
a superpixel-based deep learning method was designed to capture the complex landscape (Figure
4.3A). To train and validate MoSaicNet, we collected expert segmentation annotations for 260 regions,
which resulted in 69884 superpixels (Table 4.3). Subsequently, we were able to quantify the amount
of cellular tissue, which served as an important quality control parameter, to determine whether a
slide would be considered for further analysis.

To optimally detect and classify cells within BM trephine samples, that contain both rare (e.g
FOXP+CD4+) and abundant cells (Figure 4.1C). Thus, to optimally detect and classify these cell
types, we developed AwareNet [345]. Subsequently, we analysed the BM spatial microenvironment
in terms of cell density, cell ratio, cell spatial proximity and clustering, and bone physiology in terms
of bone density heterogeneity, and bone thickness (Figure 4.3C). The next sections provide the details
of methods developed in this Chapter.
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4.4.1 Preprocessing of whole slide images

The MIHC were scanned at 40x magnification with a pixel resolution of 0.23um per pixel. A
representative image has a 40,000 x 40,000 pixel size at 40x magnification. For efficient image
processing, the images were downscaled to 20 x magnification. The images were further divided into

"tiles" of size 2,000 x 2,000 pixels, which could be loaded into memory.

4.4.2 MoSaicNet: Segmenting BM trephine components using deep

learning and superpixel

The digital image of the BM trephine is a mosaic landscape of background, blood, bone, cellular
tissue, and fat region (Figure 4.1B). To automatically segment these regions, we developed MoSaicNet
(Figure 4.3A). MoSaicNet contains superpixel extraction and a CNN superpixel classifier. The next

sections describe the development of the MoSaicNet pipeline.

MoSaicNet training and validation data preparation

To train, validate, and test MoSaicNet, we collected 260 regions of interest from 19 samples (Table 4.3)
annotated by expert pathologists (Figure S3.1A) from the different regions whole tissue section MIHC
images. These annotated regions were split into training, validation and testing sets. The training
(47%), validation (31%), and testing (22%) split were randomly done at the patient level. These
annotated regions were extracted from the WSIs and divided into superpixels using the simple linear
iterative clustering (SLIC) superpixels algorithm [346] (Figure 4.3A). The SLIC algorithm groups
neighbouring pixels with similar pixel intensity into one superpixel. The shape of the superpixels
is controlled by the compactness (C) parameter of the SLIC algorithm. The number of superpixels
depends on the size of the image and the parameter k as shown in Equation 4.1. The values C and k are
optimised by a user to ensure superpixels are capturing homogeneous pixels and bounding to region
boundaries in the image under consideration depending on the scenario [346, 347]. The number of
superpixels (rn) was computed using Equation 4.1.

b [lmagearﬂ @1

k
where the symbol [ | represents ceil operator. Upon visual assessment, superpixels with k = 2,000 and
C = 30 best adhere to the boundaries of tissue and fat regions. This resulted in about 40 x 40 pixel
(18.4u x 18.41) sized superpixel regions (Figure 4.3A). After applying SLIC, we generated 69, 884
superpixels from the 260 regions (Table 4.4). These superpixels belonged to blood, bone, fat and
tissue classes. The class label of the superpixels was the class of the region it belongs to. Then, we

implemented and trained a custom-designed CNN to automatically classify these superpixel regions.
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Table 4.3: Number of manual region segmentation annotation data.

No. patients No. regions
Training 9 126
Validation 6 83
Test 4 51

Table 4.4: Number of superpixels extracted from the human annotation of blood, bone,
fat, and tissue regions.

Categor Number of superpixels
89TY No. Patients No. regions Blood Bone Fat Tissue

Training 9 126 4,560 12,991 10,523 14,338
Validation 6 83 1,913 5,642 4,484 6,103
Test 4 51 1,091 2275 1,626 4,338

Deep superpixel classifier

For a superpixel-based classifier, Konstantinos et al. [347] showed a shallow model performs
comparably with VGG [237], InceptionV3 [271], and ResNet50 [348] models while reducing the
number of parameters by about 10 times. Thus, we implemented and trained a custom-designed
network to automatically predict the class of the superpixel regions. The proposed CNN based
superpixel classifier consists of convolution layers with {16,32,64} neurons followed by two dense
layers with {200,4} neurons. All convolutions were performed using a 3 x 3 filter and followed by
a max-pooling layer with a receptive field of 3 x 3 pixels. To minimise the chance of overfitting, a
dropout layer (rate = 0.3) was used between the dense layers. ReLU activation was applied to all
layers, but Softmax was for the last layer to transform the tensors to probabilities. Parameters were
initialised using uniform Glorot [275] and optimised using Adam [276] using a learning rate of 10~*.
We used categorical cross-entropy loss with class weighting. The model was trained for 500 epochs
with the patience of 50 epochs.

MoSaicNet pipeline post-processing method

The output of the classifier is a 4-dimensional class probability vector. The output class/label will
be the class with the maximum probability. To convert class labels into segmentation images, all the
pixels within the superpixels were assigned the same label/colour. The pixels within a superpixel
have similar intensity values, and the superpixels are irregularly shaped polygons. To smooth the
prediction, we applied a morphological closing operation (Equation (4.2)) with a structuring element
(s) of a disk with a radius of 20 pixels.

Low = (Iin@> SN 4.2)
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Figure 4.3: Overview of computational deep learning and image processing pipelines
for BM MIHC images: A) MoSaicNet pipeline. The polygons (black) indicate superpixels.
MoSaicNet dissects a tissue section into bone, blood, fat, and cellular tissue regions.
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Figure 4.3: B) AwareNet method which utilises cell weights for cell detection and classifica-
tion. The weight image pixel values were generated from the abundance and spatial location
of the cell types using the pathologist’s manual annotation. A weight image was applied
to the objective function during model parameter optimisation to regularise the algorithm
by assigning high weight to rare cell types. The cell detection algorithm generates a cell
probability map. A post-processing algorithm was developed to find the cell nucleus centre,
(X, y) location, from the probability map. A patch centred on each cell was extracted and
fed to deep learning (DL) based classifier to infer its class. C) Spatial and morphological
analysis of BM trephine samples. Bone density heterogeneity was investigated using an
auto-encoder-based machine learning method. We used spatial proximity analysis to study
the spatial relations of cells. r = radius. Cell density refers to the number of cells per unit of
tissue area.

where I, 1,,,, ® and © are input image, output image, dilation operation, and erosion operation,
respectively.

The trained model was applied to WSIs to quantify the amount of cellular tissue in the image.
The amount of tissue present in the image was used as quality control for further analysis. Moreover,
to speed up the processing time, cell detection and classification models were applied only to the

cellular tissue region of the image.

Bone density representation learning using a convolutional auto-encoder

To understand bone density heterogeneity, the bone region of BM WSI was divided into superpixels
and transformed into feature vectors that represent the semantic information. Auto-encoder and
patch-based approaches were used to learn the representation of WSIs. However, pixels within a patch
might have non-homogenous pixel values. Here, we divided the WSI into superpixels which contain
homogenous pixel intensity instead of patches and applied a convolutional auto-encoder to learn the
lower-dimensional representation of the superpixels.

The convolutional auto-encoder learns a low dimensional representation of superpixels such that it
can recover the input from the representation (Figure S3.1B). The convolutional autoencoder consists
of encoder and decoder parts. The encoder transforms the superpixels into a low dimensional latent
variable (learned representation) and the decoder reconstructs the input superpixels from the latent
variable. The encoder consists of 4 convolutional layers with {8,16,32,64} neurons. Each layer is
composed of a 2D convolution layer (filter = 3 x 3, and stride = 2), LeakyReL.U activation, and
batch normalization. The decoder section consists of four layers with a reversed order of the number
of neurons with a transposed 2D convolution layer instead of a 2D convolution layer. We experimented
with {2,8,32,64} latent variable dimensions. To optimise model parameters, we applied the mean

squared error loss function.
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Table 4.5: Distribution of training, validation and testing single cell annotation data.

No. slides CD8+ FOXP3-CD4+ FOXP3+CD4+
Training 5 2,244 1,000 243
Validation 3 1,555 689 140
Test 3 1,304 692 135

We used a learning rate of 10~* and a batch size of 64. Parameters were initialised using uniform
Glorot [275] and optimised using Adam [276]. The model was trained for 500 epochs with a patience
of 50 epochs.

4.4.3 AwareNet: weight-based deep convolutional network for cell de-

tection and classification

The BM microenvironment is a home for both rare and abundant cell types [337]. To accurately
detect and classify single cells on MIHC images, we developed a cell abundance aware weight-based
deep learning based single cell identification model. AwareNet is published in IEEE International
Symposium on Biomedical Imaging (ISBI) 2021 [349]. A schematic overview of AwareNet is
displayed in Figure 4.3B. The models were trained and validated using a manual pathologist’s

annotation.

Single cell annotation

To train, validate and test our proposed deep learning-based single cell detection and classification
models, we first collected 8,004 single cell annotations from 11 samples by expert pathologists
(Figure S3.1A) using web-based WSI viewer and annotation tool developed in our lab (not published).
The single cells annotations belonged to CD8+, FOXP3-CD4+ and FOXP3+CD4+ cells. Figure 4.4A
shows sample cells belonging to these classes. The training (46%), validation (27%) and test (27%)
split was done randomly at the patient level to ensure that cells from the same patients are not included
in different categories (Table 4.5).

Data preparation for cell detection
For training, the annotated regions were divided into 256 x 256 x 3 patches. Let n be the number of
training patches, the training data, T; was represented by a set

T;={L R, W)} = {(I',R",W"), (%, R*, W?),(*, R®*, W%),...,(I",R",W")}

, Where I € R236%x256x3  pi ¢ R256x256x1 a5 Wi ¢ R26%256x1 gre the i input, reference and weight
images, respectively. Sample /, R and W images are shown in Figure 4.4B. The weight and reference

images were generated from single cell nucleus dot annotation.
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Figure 4.4: AwareNet training data preparation: A) Sample patches for all cell types. B)
Sample annotated, reference (R) and weight (W) images for an input image (/). In W, a less
abundant cell type is assigned a larger weight. FOXP3+CD4+ cells have a larger weight than
FOXP3-CD4+ and CDS cells.
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Figure 4.5: Profile of cell weight image generating methods: A) Simulated profile of ratio
weight image generating method. The x-axis represents the abundance of cells ranging from
10 up to 200. This is for simulation purposes only, in reality, the number of cells in each
class is more than the maximum value in this range. B) Simulated profile of ExpTypel and
ExpType2 weight image generating method.

Reference image

The reference image is the ground truth binary image with a pixel value of 1 at the nucleus centre and
zeros elsewhere. It is an artificial image generated from the expert single cell dot annotation using
Equation (4.3).

o 1 ifd<r
R(i,j) = (4.3)
0 otherwise
where R(i, j) is pixel value at (i, j) and d is an Euclidean distance from (i, j) to the closest cell
centre. The value of r was set to 4 pixels ( 1.768um). The value of r was chosen empirically, making
sure blobs in R do not touch each other (Figure 4.4B).

Weight image

The idea of weight image was inspired by the class weighting method in classification tasks. In the
class-weighted classification approach, class weights are generated based on the abundance of data in
each class [350]. Higher weight is assigned to the under-represented class. Then, while optimising
the classifier, the error in each sample is scaled by the weight assigned to its class.

Here, we extended this idea to cell detection on MIHC images. Similar to the classification task,
the weights were inferred from the relative abundance of each cell type in the training data of the
pathologist’s annotation. Rare cells are given larger weight. Let n be the number of cell types in the
dataset and suppose N = {N I N2 N3, ...,N™} represents a set of the abundance of the 7 cell types in
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the training set. Then, using the spatial location of the cells, and the weight scores, we generated a

weight image. We implemented three different cell abundance weighting strategies:

» RatioWeight: This approach assigns weight 1 for the most abundant cell class and a weight
great than 1 to other classes (Figure 4.5A). Once these scalar weights are computed for each
class, to create a weight image (W), which has the same size as the input image I, we applied
Equation 4.4.

max(N) g gk <

Wi, j)=q ™ (4.4)
1 otherwise

where, the list (i, j) represents pixel location and d* is a Euclidean distance from k" cell type
centre to pixel location (i, j). This is iteratively applied to all annotated cells in the image. The
value of r was set to 4 pixels ( 1.768 um). Pixels outside the cell nucleus centre are assigned a

value of 1, the same weight as the cells of the most abundant class.

* ExpTypel: This is a negative exponential weighting that squashes the weights to a range

between 0.37 and 1 as shown in Equation 4.5 and Figure 4.5B. Pixels outside the cell nucleus

-1

centre are assigned a value of exp™' = 0.37, the same weight as the cells of the most abundant

class.

N* e gk
max(N) ifd“<r “5)
exp—1 otherwise

. exp—
A(i, j) =

» ExpType2: This is a negative square exponential weight method which as lower decay rate as
shown in Equation 4.6 and Figure 4.5B. Pixels outside the cell nucleus centre are assigned a

1

value of exp™" = 0.37, the same weight as the cells of the most abundant class.

exp—(imalzgm)z ifd* <r

Wi, j) = (4.6)

exp—1 otherwise
For our dataset, the cell classes are CD8+, FOXP3-CD4+, and FOXP3+CD4+, and the abundance
of these classes was 2,244, 1,000 and 243, respectively. These cell abundance values were used to
generate weight image (W) using Equations (4.4 - 4.6). The weight image shown in Figures 4.4B was
generated using the RatioWeight method in Equation 4.4.

4.4.4 AwareNet cell detection model architecture

The schematics diagram of the AwareNet cell detection pipeline is shown in Figure 4.6. It is a
U-Net [65] based CNN inspired by InceptionV3 [271]. We applied inceptionV3 blocks which extract

multi-scale features at a given layer. The model has an encoder and decoder part. The encoder learns
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Figure 4.6: Schematic of AwareNet cell detection model: The number on the top and
side of the blocks indicate the size and spatial dimension of the features, respectively. The
reference image (R), which is a binary image, is a ground truth cell nucleus map. The weight
image (W) is a cell weight image to penalise model prediction error during training. The
output of U-Net (P) architecture is a cell nucleus centre probability map. During model
training, the prediction error (loss) was computed as a function of W, P and R.
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a low-dimensional representation of the input image, and the decoder reconstructs a target image.
The 1 x 1 convolutional layer at the end of the architecture transforms 256 x 256 x 16 dimensional
features to 256 x 256 x 1, size of the reference image (R). Parameters were initialised using uniform
Glorot [275]. We used Adam optimizer [276] with a learning rate of 10~* and a Dice overlap loss
weighted by the weight image. The output (Y) in Figure 4.6 is a cell centre probability map.

4.4.5 AwareNet training objective function

The AwareNet cell detection model was trained using a reference image (R) as a ground truth cell

nucleus map. The output of the AwareNet model (P) is the cells nucleus centre probability map which

has the same dimension as the input image. During model training, the prediction error (loss) was

computed using P, W and R as shown in Equation 4.7. The error is weighted Dice overlap loss. The

weight image (W) penalises model prediction error during training. It applies a high penalty to errors

in less abundant cell types, minimising the effect of cell class imbalance during cell detection.
2Y(WOROP)+e

Dl:l_z(W@R)JrZ(W@P)Jrs “.7)

where W, R and P are the weight, reference and predicted output images, respectively. The ® operator

represents element-wise matrix multiplication. The summation operator adds all the elements of the
matrix and generates a single value. The value € = 10~ was added to ensure computational stability

when the denominator is zero.

AwareNet post-processing: From cell probability map image to cell location

As shown in Figure 4.3B, AwareNet generates cells nucleus centre probability map image. Then,
using the image post-processing algorithm, we extracted the spatial coordinates of the centre of the
cell’s nucleus.

To convert the probability map image to a binary image, we applied a threshold of 0.8. To fill
holes in the binary image, we applied morphological closing as shown in Equation 4.8 using disk

structuring element (S) of radius 5 pixels.

L= Iin®)SS (4.8)

, where I, and [;, are are input image and output images, respectively. The & and & are dilation
and erosion operations, respectively. After the threshold, sometimes some artefacts are detected as the
cell nucleus. To remove these false positive predictions, we excluded objects with an area smaller
than 10 pixel®. In the cleaned image, each object represents a cell. An object is a set of connected
pixels with a pixel value of 1. Then, the centre x and y location of each cell were extracted using
region_props function of Scikit-image Python library [351].
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All the threshold hyper-parameters were optimised on validation data by maximizing the cell
detection F1-score. The AwareNet cell detection pipeline generates the (X,y) positions of the cells in
the image space and saves it to an excel file.

To identify the type of the detected cell, we extracted a 28 x 28 x 3 patch centred on the cell
nucleus (Figure 4.3B) and applied a custom-designed CNN classifier which will be explained in the

next section.

4.4.6 Cell classification model

To train a cell classification model, we extracted 28 x 28 x 3 patches as shown in Figure 4.4A from
pathologist annotation. For cell classification, we applied a custom-designed shallow VGG [237]
style architecture, which contains three convolutional layers with {16,32,64} neurons followed by
two dense layers with {200,3} neurons. Each convolution layer was configured as follows: filter size
(3 x 3), stride (1) and ReLU activation function. To reduce the dimensionality of the feature map,
each convolution layer was followed by a max-pooling layer with 2 x 2 receptive field and stride
of 2. ReLU activation was used for the first dense layer and Softmax for the last layer to transform
the tensors into probabilities. Parameters were initialised using uniform Glorot [275] and optimised
using Adam [276] with a learning rate of 10~*. We applied categorical cross-entropy loss with class

weighting explained in Equation (4.4 - 4.6).

Visualisation of features learned by classifier

A CNN classifier model has feature extraction and classification parts. To visualise the features
learned by a classifier model, we took the features at the output of the first dense layer of the classifier
section, which is a 200-dimensional vector. To reduce the dimensions of features into 2D without
losing information, we applied manifold approximation and projection (Umap).

4.4.7 Cell density

We used cell density to statistically compare the abundance of cells between patients in the different
clinical groups. Cell density is measured as the number of cells per unit of tissue area. Cell abundance
could be confounded by the amount of cellular tissue present in a given tissue slide, which could bias
the analysis. Cell density normalises the raw cells count by the amount of available tissue (Equation
4.9), removing the bias.

Cell count

Cell density = — 4.9)
Tissue area
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4.4.8 Cells proximity analysis

We investigated the spatial proximity of a pair of cell types (e.g., BLIMP1+ MM plasma cells and
CD8+ T cells) within the BM microenvironment as follows (Figure 4.3C): Consider a tissue section
that contains k number of type A cells located at {a;,i € {1,2,3,...,k}} and m number of type B
cells located at {b;, j € {1,2,3,...,m}}. Each cell has an (x,y) position. The number of type B cells
within a distance r from type A cell was computed using Equation (4.10 and 4.11).

k Q
Z j=1 (4.10)
o D

s

1=

Nprox(b—)a) =

o— 1, ifd(a;,bj) <r @1

0, otherwise
where d is the Euclidean distance function between the two cells, a; and b;. The ®; is a normalizing
factor, which is the total number of cells (all types) within r distance from a;. In BM trephine samples,
there is a huge variation in the tissue architecture caused by the prevalence of non-cellular regions
such as bone and fat regions (Figure 4.1B). Moreover, in single cell-based spatial analysis, the density
of cells could be a confounding factor. Incorporating ®; is aimed at correcting for these factors while

doing spatial analysis.

4.4.9 Bone density heterogeneity

To learn the low dimensional representation of bone superpixels, we custom-designed a convolu-
tional auto-encoder (Figure S3.1B). For ease of visualisation and applying unsupervised clustering
algorithms on the representation of bone superpixels, we applied Umap dimensionality reduction.

Then, we applied a clustering algorithm to divide the latent representation space into smaller
regions. Kmeans and Gaussian Mixture Models (GMM) are the most commonly used clustering
algorithms. We applied GMM to detect bone superpixel clusters in the embedding space due to
its flexibility to cluster shapes [352]. To determine the number of clusters, we used the Akaike
information criterion and the Bayesian information criterion from the Scikit-Learn python package
[353] (Figure S3.3E-F). A cluster contains superpixels with similar bone density. The clustering
enabled us to identify artefact bone superpixels with input from an expert histopathologist with whom
I have been collaborating on this project (Dr. Manuel Rodriguez- Justo, Manuel Rodriguez- Justo;
Research Department of Pathology, University College London Cancer Institute). These clusters were
excluded from further analysis.

To quantify the heterogeneity (H) of bone density within a slide, we computed the maximum

variance (Var) of the latent representations of all superpixels within the slide using Equation (4.12).

H = max(Var(Umap1),Var(Umap?2)) (4.12)
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Figure 4.7: Computational methods for bone thickness and cells clustering analysis:
A) Image analysis to estimate bone thickness. The bone segmentation (ii) is an output of
MoSaicNet, and each bone is displayed in a different colour. The colour bar shows the pixel
intensity of the image in (iii and iv).
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Figure 4.7: The pixel intensity on the skeleton indicates half of the bone thickness. B) Cells
infiltration pattern analysis using nearest neighbour distance (NND) and the null hypothesis
of complete spatial randomness (CSR). The blue curve shows the distribution of NND for
randomly distributed cells. It is a normal distribution with mean NND of t,,,s. When there
is clustered pattern of cells compared to CSR, the mean NND is less than p,,,, (for example,
d1,ps, Obs: observed). This results in a negative z-score. On the other hand, when there is a
scattered pattern of cells compared to CSR, the mean NND is higher than s (for example,
d2,ps). This results in a positive z-score. The d1,,, and d2,,, represent the mean NND of
the cell distribution in their respective panel. The values z1 and z2 are the z-scores for d 1,
and d2,,, respectively. Z < —1.96, Z > 1.96, and —1.96 < Z < 1.96 indicates a clustered,
dispersed, and random distribution of observed cells, respectively. std: standard deviation; :
mean NND of CSR; d,;s: observed distance.

4.4.10 Automated machine learning algorithm to quantify bone thick-

ness

The proposed method to quantify bone thickness is shown in Figure 4.7A. We extracted the bone
regions from the output of MoSaicNet. To compute bone thickness, first, we applied distance transform
[354], and medial axis transform [355] (Figure 4.7A). The Distance transform (DT) computes the
minimum distance from bone pixels to non-bone pixels. The medial axis transform (MAT) generates
the topological skeleton of the bone. The topological skeleton of a bone is a series of bone pixels
which have more than one closest equ-distant non-bone pixel. The distance values on the topological
skeleton show half the thickness (width) of the bone across its length. Within a given WSI, there
could be multiple bones. For instance, the WSI in Figure 4.7A has 20 bone regions. The thickness of
the bone could also vary along its length. The thickness of a bone is estimated as the mean thickness
along its length (skeleton). Then, the bone thickness (B7) for a given tissue sample is computed as the
mean of the mean thicknesses of all bones within the sample. Mathematically, suppose a given tissue
section has n bones. Each bone will have its corresponding topological skeleton after applying MAT.

The thickness (7)) of the j’h bone (B;) could be computed using Equation 4.13.
2
T = WZDT(Bj) ® MAT(B;)) (4.13)

where © represents element-wise matrix multiplication. MAT (B;) generates a binary image with
pixel values of 1 on the skeleton of B; and 0 elsewhere. |L| is skeletal length of B; and computed
using Equation 4.14.

IL| =) MAT (B)) (4.14)

Thus, multiplying the result of DT and MAT yields an image with distance values in the topological
skeleton of the bones as shown in Figure 4.7A(iv). These distance values represent half of the bone
thickness along its axis and this was multiplied by 2 to get the full thickness. Finally, By is the average

thickness of all bones present in the sample, which is computed using Equation 4.15.
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BT:EZTJ (4.15)

4.4.11 Cell infiltration patterns: spatial clustering, dispersion, or ran-

dom

Quantifying the degree of clustering or dispersion of cells in BM trephine samples is challenging as it
can be confounded by the mosaic tissue architecture of the BM trephine (presence of non-cellular
tissues, Figure 4.1B), cell abundance, and the amount of cellular tissue area.

In ecology, it was shown that the mean nearest neighbour distance (NND) of all pairs of variables
shows the spatial organization of the variables [356]. The NND is the distance from a spatial point to
its closest neighbour. Under the null hypothesis or complete spatial randomness (CSR), the distribution
of NND is normal [356] (Figure 4.7B). Here, we used the concept of NND and the null hypothesis to
identify the infiltration pattern of cells.

Let a given tissue section has k cells of type A (e.g BLIMP1+ cells), C = {c¢;:i € {l, 2, 3, k}}.
Each cell has an (x,y) position attribute. The NND for cell ¢;, the i* element of C, is computed using
Equation (4.16).

NND; = dci,N(ci) < dc,-,c_,- VC]‘ eC—g (4.16)

where d,, ., is a Euclidean distance between the i" and j'"* cells. The N(c;) is the nearest cell to
¢;. Then, the slide level observed NND was computed as mean NND over the k cells as shown in
Equation 4.17.

1 k
NNDops =+ } NND; (4.17)
i=1

Under a null hypothesis, the k cells could be at any location in the cellular tissue space (T) (Figure
4.7B). Thus, the k cells, C = {c; :i € {1, 2, 3, k}}, where the position of the i cell (x;,y;) € T, which
is a set of k randomly distributed cells across the cellular tissue region. The cellular tissue region was
segmented using MoSaicNet. To get the distribution of NND for CSR of cells over the tissue region,
we computed NND for 300 CSR iterations. Once the CSR cells are generated, NND computation in
Equation 4.16 and 4.17 could be applied. We computed Z-score, to measure the difference between
the NND for CSR cells and the NND of observed cells pattern (Equation (4.18)) (Figure 4.7B).

_ NNDobs — Hcsr

Z
stdcsgr

(4.18)

where Ucsg and stdcgg are the mean and standard deviation of NND for the CSR of cells. The
value of Z shows the cell infiltration pattern relative to the random distribution of cells. Z < —1.96,
Z > 1.96, and —1.96 < Z < 1.96 indicate clustered, dispersed and random distribution of observed
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cells, respectively. P values computed from spatial proximity data using different distance values

were corrected using the Benjamini-Hochberg correction method.

4.4.12 Statistical analysis

All statistical analyses were carried out using the Python programming language. All correlation
values were measured using the non-parametric Spearman test. The p-values were computed using
a two-sided unpaired (for MGUS vs NDMM) or paired (for newly diagnosed multiple myeloma
(NDMM) vs post-treatment), non-parametric Wilcoxon method, considering p < 0.05 as significant.

4.4.13 Implementation and code availability

All methods and analyses were implemented in Python. For reproducibility and ease of sharing,
the code and its dependencies are packed into a Docker container. The code runs on both local and
high-performance clusters. Python implementation of AwareNet, MoSaicNet, and spatial statistical
analysis could be found in this GitHub repository (BM-Spatial-Analysis).

4.5 Results

4.5.1 High accuracy of MoSaicNet classification model

To evaluate the performance of the MoSaicNet classification model, we used 9,330 superpixels
extracted from separately held manually annotated samples. The class labels include blood, bone,
fat and cellular tissue. To measure the classifier’s performance, we used accuracy, AUC, precision,
recall and F1-score. The performance evaluation of the classification model is shown in Table 4.6. To
estimate the 95% CI, we applied 1,000 bootstraps, each bootstrap taking 80% of the 9,330 superpixels
using random sampling with replacement. A confusion matrix was used to visualise the proportion of
correct and incorrect predictions by the model.

Taking all classes together, the superpixel classifier model achieved an AUC value of 0.99, 95%
CI[0.989, 0.991] as shown in Table 4.6. Moreover, at the individual class level, the mean bootstrap
AUC was > 0.984 for all the classes with a minimum 95% CI lower bound of AUC score of 0.983 for
the bone and cellular tissue classes (Table 4.6, Figure 4.8 A). The overall accuracy (unweighted) was
0.937,95% CI [0.935, 0.94].

Out of the 9,330 superpixels, 585 superpixels were misclassified. Out of the 585 misclassified
superpixels, 208 tissue superpixels were misclassified as bone, and 122 bone superpixel patches were
misclassified as tissue (Figure S3.2A). This is also evident reflected in the low precision value on
bone class 0.88, 95% CI [0.87, 0.89], low recall value in bone class (0.933, 95% CI [0.93, 0.94]) and
low recall value in cellular tissue class (0.932, 95% CI [0.93, 0.94]) (Table 4.6). Moreover, 88 tissue
superpixels and 29 bone superpixels were misclassified as a fat class, and the precision score for the


https://github.com/YemanBrhane/BM-Spatial-Analysis
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Table 4.6: MoSaicNet superpixel classifier performance evaluation. The 95% CI was
computed using 1000 bootstraps. Each bootstrap contained a randomly sampled 80% of the
instances with replacement. The metrics are reported with the mean value from the 1000
bootstraps and 95% CI. All classes indicate blood, bone, fat, and tissue classes combined.

Metric Mean, 95% CI Class name
AUC 0.984, [0.983, 0.985] Bone
Precision 0.88, [0.87, 0.89] Bone
Recall 0.933, [0.93, 0.94] Bone
Fl-score 0.906, [0.9, 0.91] Bone
AUC 0.999, [0.999, 0.999] Blood
Precision 1.0, [1.0, 1.0] Blood
Recall 0.933,[0.93, 0.94] Blood
Fl-score 0.966, [0.96, 0.97] Blood
AUC 0.984, [0.983, 0.985] Tissue
Precision 0.958, [0.95, 0.96] Tissue
Recall 0.932, [0.93, 0.94] Tissue
Fl-score 0.944, [0.94, 0.95] Tissue
AUC 0.993,[0.992, 0.994] Fat
Precision 0.933, [0.93, 0.94] Fat

Recall 0.954, [0.95, 0.96] Fat
Fl-score 0.943,[0.94, 0.95] Fat

AUC 0.99,10.989, 0.991] All classes
Precision 0.943, [0.94, 0.945]  All classes
Recall 0.938, [0.935, 0.942] All classes
Fl-score 0.94,[0.935,0.945] All classes

fat class was 0.933, 95% CI [0.93, 0.94] (Table 4.6). The mean value of the F1-score of 0.91 was
obtained for the bone class, and for the other classes, the mean value F1-score was 0.943. Taking all
classes together, F1-score of 0.94, 95% CI [0.935, 0.945] was obtained (Table 4.6).

To visualise the separation of the classes using the features learnt by the classifier, we extracted
the deep learnt features and applied Umap dimensionality reduction. This enables the inspection of
misclassified superpixels in the embedding space. Most of the tissue superpixels misclassified as
bone were superpixels with poor tissue quality, non-cellular regions, and bone bordering areas (Figure
4.8B). Most of the 122 bone superpixels that were misclassified as tissue were a result of background
staining of the bordering area (Figure 4.8B).

4.5.2 AwareNet accurately detects and classifies rare and abundant cells

To accurately detect rare and abundant cells within the tissue section of MIHC stained BM trephine
sample, we proposed AwareNet. AwareNet uses an weight mechanism to regularise cell detection
model training. We evaluated the cell detection performance of our proposed weight generation
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Figure 4.8: Performance evaluation of MoSaicNet and AwarNet deep learning models:
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Figure 4.8: A) ROC curves and AUC scores of MoSaicNet superpixel classifier. AUC
scores are displayed with mean and 95% CI. B) 2-dimensional mapping of superpixels using
MoSaicNet learned 200-dimensional features after dimensionality reduction by Umap. C)
ROC curves and AUC scores of classifier model on separately held test data. glsauc scores are
displayed with mean and 95% CI. D) Umap features visualisation of deep learned features by
AwareNet single cell classifier CNN. E-F) validation of AwareNet model using correlation
of density of CD8+ (E) and CD4+ cells (F) in panel 1 and panel 2.

Table 4.7: Cell detection performance of different models. U-Net [65] model is a model in
Figure 4.6 trained without applying weights. CONCORDe-Net [334] is our model developed
in Chapter 2. Both CONCORDe-Net and U-Net models were trained using the data as the
AwareNet models.

Method Precision | Recall | F1-score
ExpTypel based AwareNet 0.82 0.75 0.78
RatioWeight based AwareNet 0.80 0.75 0.78
ExpType2 based AwareNet 0.78 0.77 0.77
CONCORDe-Net [334] 0.81 0.72 0.76
U-Net [65] 0.80 0.70 0.75

strategies and compared their performance with state-of-the-art methods such as U-Net [65] and
CONCORDe-Net [334]. The comparison was done using precision, recall, and F1-score on separately
held test images. CONCORDe-Net (described in Section 2.4.1) is cell count regularised CNN designed
for cell detection for MIHC images[334].

Overall, the ExpTypel weight based AwarNet model that employs a negative exponential weight-
ing strategy outperformed the other models. An F1-score of 0.78 was obtained using ExpTypel and
RatioWeight based AwareNet models, a 3% increase compared to U-Net [65] and a 2% increase
compared to CONCORDe-Net [334] as shown in Table 4.7. Moreover, the recall of the ExpType2
based AwareNet model was higher than U-Net [65] and CONCORDe-Net [334] baseline models by
at least 5%. For the ExpTypel based AwareNet model, a detection was considered true positive if
it is within 10 pixels (4.42um) Euclidean distance to a ground truth annotation. For all models, the
distance was optimised independently, maximising the F1-score. We used a distance range of [3,12]
pixels as a search space. This suggests that class weighting improves cell detection performance.

AwareNet excels in detecting CD4+ FOXP3+ cells, which are rare in BM trephines (representing
7% of the training data) (Figure 4.9, Table S3.4). In our dataset, compared to CD8+ cells, there is
less number of FOXP3+CD4+ cells. The visualisation in Figure 4.9 indicates a model with ExpTypel
detected FOXP3+CD4+ cells, which were under-represented in the training dataset, while the model
trained without any weight (U-Net) missed some of these cells. The detection results for CD8+ and
FOXP3-CD4+ cells remain similar with and without weight.

To measure classification performance, we estimated accuracy, AUC, precision, recall and F1-
score on separately held 2,131 test images of cells. These cells belonged to CD8+, FOXP3-CD4+ and
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Figure 4.9: Samples results from different cell detection methods.
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Table 4.8: AwareNet single cell classification evaluation metrics. The 95% CI was
computed using 1,000 bootstraps. Each bootstrap contained randomly sampled 80% of the
instances. The metrics are reported with the mean value from the 1,000 bootstraps and 95%
CI. All classes indicate CD8+, FOXP3-CD4+ and FOXP3+CD4+ classes combined.

Metric Mean, 95% CI Class name
AUC 0.981, [0.977, 0.989] FOXP3+CD4+
Precision 0.857, [0.83, 0.89] FOXP3+CD4+
Recall 0.92, 0.9, 0.94] FOXP3+CD4+
Fl-score 0.887,[0.87,0.91] FOXP3+CD4+
AUC 0.98,[0.976, 0.983] CD8+
Precision .98, [0.98, 0.98] CD8+

Recall 0.98, [0.98, 0.98] CD8+
Fl-score 0.98, [0.98, 0.98] CD8+

AUC 0.98,[0.977,0.984] FOXP3-CD4+
Precision 0.964, [0.96, 0.97] FOXP3-CD4+
Recall 0.949, [0.94, 0.96] FOXP3-CD4+
Fl-score 0.956, [0.95, 0.96] FOXP3-CD4+
AUC 0.98,10.977,0.984]  All classes
Precision 0.933, [0.923, 0.942] All classes
Recall 0.949, [0.94, 0.96] All classes
Fl-score 0.941, [0.93, 0.95] All classes

FOXP3+CD4+ classes (Table 4.5). For cell classification, there was no significant difference on AUC
for the different weighting strategies. Figure 4.8C shows the performance of the cell classifier with
ExpTypel weighting. Similar to the MoSaicNet classification performance evaluation, to estimate the
95% CI, 1,000 bootstraps were applied, with each bootstrap taking 80% of the data with replacement.

Taking all the three classes together, the single classifier model of AwareNet achieved an AUC
value of 0.98, 95% CI [0.977, 0.984] as shown in Table 4.8. Moreover, at the individual cell class
level, the mean bootstrap AUC value was > 0.98 for all the classes with a minimum 95% CI lower
bound of AUC score of 0.976 for the CD8+ class (Table 4.8, Figure 4.8C). The overall accuracy was
0.965, 95% CI [0.962, 0.969].

Only 74 cells were misclassified out of 2131 cells (Figure S3.2B), resulting in 0.965, 95% CI
[0.962, 0.969] accuracy (unweighted). 11 cells out of 135 FOXP3+CD4+ cells were misclassified
as FOXP3-CD4+, and 12 FOXP3-CD4+ cells were misclassified as FOXP3+CD4+ cells (Figure
S3.2B). This resulted in Precision (0.857, 95% CI [0.83, 0.89]), Recall (0.92, 95% CI [0.9, 0.94]),
and F1-score (0.887, 95% CI [0.87, 0.91]) score for the FOXP3+CD4+ class (Table 4.8). For the
FOXP3-CD4+ and CD8+ class, the F1-score was 0.956, 95% CI [0.95, 0.96], and 0.98, 95% CI
[0.98, 0.98], respectively (Table 4.8). Moreover, when all classes combined, the classifier obtained an
F1-score of 0.941, 95% CI [0.93, 0.95].
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A Umap-based inspection of the misclassified FOXP3-CD4+ and CD8+ cells revealed that these
cells were mainly cells co-expressing both CD8 and CD4 proteins (Figure 4.8D). We also found
these rare cell types in follicular lymphoma [357], which is described in the previous Chapter but
not studied in myeloma. Overall, the proposed cell detection model achieved high cell classification
accuracy for both abundant and rare cell types.

AwareNet was trained on single cell data from CD4/CD8/FOXP3 panel data and directly applied
to both panels, CD4/CD8/FOXP3 and CD4/CDS8/BLIMPI. After applying the model to both panels,
the numbers of CD8+ cells and CD4+ cells in both panels were significantly correlated (r = 0.79,
p=2.97x10"7and r = 0.79, p = 3.43 x 10”7, Figure 4.8E-F, respectively), validating the reliability
of AwareNet.

4.5.3 MoSaicNet reveals changes in bone physiology post-treatment

Using MoSaicNet, we quantified the proportion (%) of blood, bone, fat, and cellular regions in all
sections (Figure 4.10A). In the NDMM group, trephine samples taken post-treatment contained a
greater proportion of bone (%bone) when compared with diagnostic samples (p = 0.037, Figure
4.10B). There was also a borderline decrease in the %bone with age (Figure 4.10D). There was,
however, no difference in the %bone between MGUS and NDMM (Figure 4.10C) or between male
and female patients (Figure 4.10E). The proportion of fat (%fat) showed a borderline increase post-
treatment compared with %fat at diagnosis (p = 0.05, Figure S3.3A) but was not different between
MGUS patients and NDMM patients without effect of age or gender (Figure S3.3B-D).

To investigate the heterogeneity of bone structure in BM samples, we used a convolutional
auto-encoder to learn the embedding of 177.6 thousand bone superpixels extracted from nine MGUS
(27.8%), ten NDMM (34.4%) and ten post-treatment (37.8%) WSIs (Figure S3.3G). Bone superpixels
were mapped into 32 feature vectors and clustered into 17 groups (Figure 4.10F, Figure S3.3E-F).
Based on this grouping, there was a positive trend on the similarity of bone superpixels from MGUS
to bone superpixels from post-treatment samples, however this was not significant (r = 0.4, p = 0.12,
Figure 4.10G).

We then asked if the bone density differed between the patient groups. The intra-and inter-
sample bone density heterogeneity in NDMM was significantly higher at diagnosis compared to
post-treatment (p = 0.0098, Figure 4.10H-I). We observe a borderline difference in the heterogeneity
of bone between NDMM and MGUS samples (p = 0.086, Figure 4.10H,J), but no difference between
MGUS and post-treatment samples (Figure 4.10H and p = 0.87, Figure S3.3H ).

Furthermore, to analyse bone thickness, we developed an automated image analysis algorithm
(Figure 4.7A). The bone thickness of NDMM samples was similar to post-treatment samples (p =
0.23, Figure 4.10K) and MGUS (p = 0.37, Figure 4.10L) patients. The bone thickness in patients
aged < 58 years (median) was significantly higher compared with that in patients aged >58 years (p =
0.018, Figure 4.10M), without variation between gender (p = 1.0, Figure 4.10).
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Figure 4.10: Studying bone physiology using MoSaicNet: A) Proportion of different
compartments of BM trephine digital images. One stacked bar represents a sample.
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Figure 4.10: B-E) Boxplots showing the difference in %bone between samples from NDMM
and post-treatment (B), MGUS and NDMM (C), different age groups (D) (median age=58.0
years), and gender groups (E). F) Scatter plot showing the distribution of the number of
bone superpixels in 17 clusters from MGUS, NDMM and post-treatment samples. The
size of the dot represent the percentage of bone superpixels in each cluster. To consider
the abundance of bone superpixels in each group, the percentage was computed per group.
For example, the size of the dot in cluster O for NDMM group indicates the percentage
of bone superpixels from NDMM samples belonging to cluster 0. The clusters contain
bone superpixels from different slides and the colour represents the number of slides in
each cluster. G) correlation of percentage of superpixels in each cluster between different
patient groups. A point represents a cluster. H) Scatter plot of slide-level heterogeneity of
bone features measured by features variance. A point represents a patient/slide. LJ) box
plots showing differences in bone density heterogeneity between NDMM and post-treatment
(I), and between MGUS and NDMM (J). K-L) Boxplots showing the difference in bone
thickness between samples from NDMM and post-treatment (K), MGUS and NDMM (L),
and different age groups (median age=58.0 years) (M) and gender (N).

4.5.4 Decreased FOXP3+CD4+ and BLIMP1+ cell density post-treatment

When comparing cells density on the NDMM and post-treatment samples, we observed a decrease in
Treg cells (FOXP3+CD4+ cells), CD8+ T cells and BLIMP1+ myeloma cells following treatment
(p =0.0039, p = 0.0039 and p = 0.013, respectively, Figure 4.11A-C, K.J). However, the density
of FOXP3-CD4+ T cell did not change post-treatment compared with diagnostic samples (p =
0.77, Figure 4.11D). We then compared the ratio of different cell types in the NDMM and post-
treatment samples. The FOXP3+CD4+:FOXP3-CD4+ ratio is significantly reduced post-treatment
compared with the ratio at diagnosis (p = 0.0137, Figure S3.5A), largely due to the reduction of
the density of FOXP3+CD4+ cells post-treatment. However, the FOXP3-CD4+:CD8+ ratio, the
FOXP3+CD4+:CD8+ ratio, CD8+:BLIMP1+, and CD4+:BLIMP1+ were not different between the
two-time points (Figure S3.5B-E, respectively). The density of FOXP3+CD4+ cells was significantly
correlated with the density of BLIMP1+ cells in the post-treatment (Spearman r = 0.79 and p = 0.006,
Figure S3.4C) samples but not in NDMM samples (Spearman r = 0.20, p = 0.58, Figure S3.4C).

4.5.5 Increased spatial proximity between BLIMP1+ cells and CD8+
cells in NDMM compared to MGUS

The density of FOXP3+CD4+, FOXP3-CD4+ and CD8+ cells were not significantly different between
MGUS and NDMM (Figure 4.11E, Figure S3.4A, B, respectively). Moreover, the FOXP3+CD4+:FOXP3-
CD4+ ratio, FOXP3-CD4+:CD8+ ratio, and FOXP3+CD4+:CD8+ ratio were not significantly different
between MGUS and NDMM (Figure S3.5F-H, respectively). However, there was a borderline in-
crease in tumour burden measured by density of BLIMP1+ cells and BLIMP1+:CD4+ ratio in the
NDMM sample compared to MGUS samples (p = 0.08, Figure 4.11F, and p = 0.08, Figure S3.51,
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Figure 4.11: (A-D) Boxplots showing the difference in density of FOXP3+CD4+ cells (A),
CD8+ cells (B), BLIMP1+ cells (C), and FOXP3-CD4+ cells (D) between paired NDMM
samples and post-treatment samples (n=10 pairs). E-F) Boxplots showing the difference
in the density of FOXP3+CD4+ (E) and BLIMP1+ (F) cells between MGUS and NDMM
samples (n=19). G-H) Sample images showing the reduction of the density of FOXP3+CD4+
(G) and BLIMP1+ cells (H) at post-treatment compared to paired NDMM samples. Cell
density is presented per 1 mm? tissue area.

respectively), largely due to the increase in tumour burden. However, Furthermore, the ratio of the
number of BLIMP1+ cells to CD8+ cells did not differ between MGUS and NDMM (p = 0.165,
Figure S3.5J). The density of FOXP3+CD4+ cells was not correlated with the density of BLIMP1+
cells in MGUS (Spearman r = 0.47, p = 0.205, Figure S3.4C)

Next we asked if the spatial proximity between immune cells and BLIMP1+ plasma cells differed
according to disease state and treatment. To demonstrate that the spatial analysis result is not dependent
on the distance threshold chosen, cell proximity was calculated for a range of distances with the
maximum distance set at the cell-cell communication distance of 250um [358, 108] (30, 50, 100, 150,
200, 250)um. Cell proximity data was corrected for cell abundance (Figure S3.7A-D). The number
of FOXP3+CD4+ cells in proximity to FOXP3-CD4+ cells decreased at post-treatment compared
with the paired diagnostic samples (BH corrected p = 0.023 for r = 30 — 250um Figure S3.8A).
However, the number of FOXP3+CD4+ cells in proximity to CD8+ cells was not different between
NDMM samples and paired post-treatment samples (BH corrected p > 0.05 for r = 30 — 250um
Figure S3.8B). The number of BLIMP1+ cells in proximity to CD8+ and CD4+ cells significantly
reduced after treatment (BH corrected p = 0.02 and p = 0.027 for r = 30 — 250um, Figure 4.12A
and Figure S3.8C, respectively), indicating a significant change in the immune microenvironment
post-treatment. However, the number of FOXP3+CD4+ cells in proximity to FOXP3-CD4+ and
CDS8+ cells and the number of BLIMP1+ cells in proximity to CD4+ cells was not different between
NDMM and MGUS samples (Figure S3.8D-F). Interestingly, despite similar cell density, the number
of BLIMP1+ cells in proximity to CD8+ cells in MGUS samples was significantly lower than in
NDMM samples (BH corrected p = 0.036 for r = 30 — 250um Figure 4.12B, C), which may indicate

variability in anti-tumour immune activity in the precursor stage compared with the malignant stage.

4.5.6 Significant spatial clustering of CD8+ cells in NDMM samples

compared with post-treatment

We next asked how cells distribute within the BM tissues; do they display a dispersion or spatial
clustering pattern? To identify the spatial pattern of a specific cell type, we compared the observed
nearest neighbour distance with spatial randomness of the cell type within the tissue section. In most
MGUS, NDMM, and post-treatment samples, we observed clustered patterns (Z-score < -1.96) of
CD8+, BLIMP1+ and FOXP3-CD4+ cells compared to spatial randomness (Figure 4.12D-H), but
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Figure 4.12: Spatial neighbourhood of immune and tumour cells:
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Figure 4.12: Spatial neighbourhood of immune and tumour cells: A-B) Point plots
showing the difference in the number of BLIMP1+ cells within a range of distance (r = 30 —
250um) from CD8+ cells between NDMM and post-treatment (A) and between MGUS and
NDMM (B). The p* indicate p values after multiple testing correction using the Benjamini-
Hochberg method. The points represent the mean and the bars are 95% confidence intervals
indicating uncertainty. C) Sample images showing an increased number of BLIMP1+ cells
in the neighbourhood with CD8+ on NDMM samples compared with MGUS samples. D-I)
Clustered or dispersed pattern of immune and tumour cells in BM trephine sample. Boxplots
showing the difference in NND and Z score between NDMM and post-treatment for CD8+
cells (D), BLIMP1+ cells (E), FOXP3-CD4+ cells (F). Boxplots showing the difference in
NND and Z score between NDMM and MGUS for CD8+ cells (G) and BLIMP1+ cells (H),
and between male and female for BLIMP1+ cells (I). The Z score shows the significance of
the difference between the NND distribution for a given cell type from a complete spatial
random distribution and the observed NND.

not for FOXP3+CD4+ cells (Figure S3.9A,B). The degree of clustering of CD8+ cells in the NDMM
was significantly higher at diagnosis than in post-treatment samples (p = 0.027, Figure 4.12D) but
not compared to MGUS samples (p = 0.514, Figure 4.12G). There was a borderline increase in the
clustering of BLIMP1+ cells in the NDMM samples compared with their paired post-treatment, and
with MGUS samples (p = 0.065 and p = 0.06, Figure 4.12B,H, respectively). The degree of clustering
of BLIMP1+ cells in female samples was significantly higher than in male patients (p = 0.039, Figure
4.12I) but not different between age groups (Figure S3.9D).

4.6 Discussion

Myeloma, like many other blood cancers, initiates and evolves largely in the BM. The BM ecological
niche is highly organised, where haemopoietic, including immune cells, osteoblasts, osteoclasts,
adipocytes, and other cells interact and co-evolve with neoplastic cells [359, 360]. The BM milieu and
its architectural pattern are therefore crucial to the decoding of neoplasm evolution for many blood
cancers. Analysis of the intact BM niche has been limited in the past, both due to the difficulty in
preserving epitopes and nucleic acid during the processing of BM trephines, and the lack of specialised
computational methods that are capable of removing sample artefacts and dissecting BM components.

Here, we demonstrate that through the generation of carefully preserved BM trephine tissue
sections and the development of spatial histology methods based on deep learning and spatial statistics,
new biological insights on MM neoplastic progression and treatment response can be derived. The
spatial architecture of MM BM was interrogated by establishing fully automated computational
pipelines to analyse immune cell topography and spatial aggregation, bone density heterogeneity
and thickness, in addition to the changes in tumour load and BM components during neoplastic
progression and treatment. Previously, spatial topography of stromal components in BM using 3D

microscopy in a mouse model [361] and spatial topography of BM adipose tissue and hematopoietic
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stem cells in rhesus macaques were studied [362]. To the best of our knowledge, this is the first
study to use spatial histology based on deep learning to explore spatial topological patterns in human
BM trephine samples that inform changes in disease status in MM. This is in contrast to the many
machine learning methods available for BM aspirate-derived cell suspensions for cell counts and bone
marrow evaluation [340, 363]. Methods developed in our study may impact the study of many other
diseases by unlocking the potential of deep learning and spatial tissue architecture, thus generating
new insights from routine BM trephine samples.

BM trephine tissue is a mosaic landscape of blood, bone, cellular tissue, and fat. To dissect the
complex mosaic tissue microenvironment into individual components in MIHC images, MoSaicNet
was developed. Instead of a standard application of CNNs to generate patch-level [364] or pixel-level
classification [365, 272], MoSaicNet can efficiently define the highly irregular tissue component
boundary without requiring large amounts of expert annotation training, thus combining the best of
two approaches. Patch-based approaches use rigid image patches as units for classification tasks,
requiring fewer annotations but cannot generate a detailed mapping of the tissue. In comparison,
pixel-based algorithms such as U-Net [365] or Micro-Net [272] generate detailed contour, but such
algorithms often require large amounts of training data. MoSaicNet combines a machine learning-
based approach, superpixel segmentation, and deep learning classification to efficiently map out the
MM BM tissue landscape using superpixels as spatial units, classifying them into cellular components,
blood, bone, fat, and background.

Building on MoSaicNet, a new autoencoder-based approach was developed to study bone phys-
iology. This was inspired by the potential role of bone and related cells, such as osteoblasts and
osteoclasts, in regulating BM remodelling [335, 91] and MM dormancy and proliferation [366].
Autoencoder is an effective method for dimension reduction and denoising. Here we demonstrated
its value in bone density heterogeneity analysis, using feature extraction based on autoencoder and
unsupervised clustering of the bone superpixels. We observed that the amount of bone in the biopsies
taken post-treatment was greater than those taken at diagnosis, reflecting the destructive effect of MM
tumour cells on bone. The bone density of NDMM samples was also more heterogeneous when com-
pared to matched post-treatment samples, and also with samples from MGUS patients, again reflecting
an effect of the disease process on bone physiology that occurs in a spatial heterogeneous manner
[367]. Moreover, a novel method was developed to study bone thickness using distance transform
and topological analysis. In agreement with the bone trabecular surface analysis on lymphoid cancer
samples [114], bone% and bone thickness decreased with ageing but were not different between male
and female samples. Taken together, our data indicate that bone analytical methods may be useful for
the study of bone degeneration during MM progression and treatment, and bone heterogeneity may be
a useful marker for disease activity.

Subsequently, AwareNet, developed specifically to identify rare immune cell types, enabled
us to dissect the hematopoietic ecosystem of BM, in the context of MM. Deep learning models
are often sensitive to class imbalance, resulting in lower accuracy in detecting rare cell types such
as FOXP3+CD4+ Treg cells in our samples. To resolve this, cell segmentation-based spatial cell
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weighting was proposed [365, 368]. AwareNet extends cell segmentation-based spatial cell weighting
[365, 368] by using cell identification instead of segmentation, which is less costly. Furthermore,
giving a higher weight score to rare cell types improved the detection of rare cell types compared to
U-Net [365] and CONCORDe-Net [334].

Using AwareNet, we observed a reduction in the density of BLIMP1+ tumour cells, and of the
immune cell subsets, CD8 and Treg cells in post-treatment BM, compared with diagnostic samples
from paired NDMM. While the reduction in tumour cell density is expected, the decrease in immune
cell subsets may suggest an alteration in immune function such as anti-tumour responses. Several
studies have reported on the changes in frequency or proportion of T cell subsets in post-treatment
BM or blood. However, all these studies have hitherto studied BM aspirate samples and assessed
immune cell subsets as a percentage of the CD138-negative fraction of mononuclear cells, while our
study quantified cell density as a function of tissue surface area. Thus, although we have reported
an increase in CD8+ T cells as a fraction of CD3+ cells in post-treatment BM aspirates compared
to pre-treatment samples [100], it is not possible to directly compare these data. T-regulatory cells
have attracted a great deal of attention in MM, and most studies, including our previous work in BM
aspirates, concur in reporting an increased abundance of these cells in MM patients compared with
healthy controls [333, 369, 370]. Hence, our observation in this study of a greater density of Treg
cells in NDMM samples compared with post-treatment samples is consistent with previous studies
[371]. On the other hand, our observation that the density of these cells falls following treatment may
be at odds with studies using aspirate samples, for the reasons described above, as well as variation
in sampling time and site, but the actual treatments received and type of transplant are also likely to
influence the results [331, 327, 328].

Importantly, new insights were derived from the topological analysis of MM plasma cells and
immune T cells. In solid tumours such as oestrogen receptor-positive breast [372] and lung tumours
[108], spatial scores were found to be more prognostic than cell counts. In MM, however, the
spatial relationship of cells and their prognostic value have remained unexplored. Our approaches
control for cell abundance and take into account the local tissue architecture and cell distribution.
Interestingly, the number of BLIMP1+ cells in spatial proximity with CD8+ cells was significantly
greater in diagnostic MM samples compared with MGUS and post-treatment samples. Given reports
of tumour-reactive CD8+ T cell populations in MM patients [373], the proximity of CD8+ T cells to
tumour cells may represent increased immune activity in MM, and the “homing” of CD8+ T cells to
tumour sites. This is consistent with the clustered pattern of CD8+, CD4+ and BLIMP1+ cells in most
cases. We observed a dispersed pattern of FOXP3+CD4+ Treg cells. The expansion of Treg cells has
been found to contribute to the growth, proliferation, and survival of myeloma plasma cells [331].
Thus, the dispersed pattern of Treg cells may be a phenotype of expansion, which may promote the
invasion and differentiation of MM plasma cells.

Limitations of this study include the limited number of samples. More samples are needed to
capture the full cellular and non-cellular region heterogeneity, and the results should be interpreted
with this consideration. Secondly, the samples used in this study were collected from one site, which
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could introduce tissue processing and staining bias. Thirdly, inter-and intra-observer variation was not

analysed for cell detection and classification tasks.

4.7 Conclusion

We demonstrated how spatial and machine learning methods can be used to dissect the mosaic tissue
microenvironment of BM trephine samples (MoSaicNet) and accurately identify immune T and MM
plasma cells (AwareNet). Despite the limited sample size, bone trabeculae morphologic and cell
topological spatial analyses enabled the deep mine of both cellular and non-cellular parts of the BM

niche. Possible future works include:

* Adopting MoSaicNet and AwareNet to routinely available H&E stain of BM trephine samples
to further explore bone remodelling;

» Exploring the association of bone morphologic features and cells spatial organisation features

with patients’ clinical outcomes such as treatment response, and survival.

* Integrating morphologic and spatial features with molecular features to identify genetic aberra-

tions associated with morphologic/spatial phenotypes in the BM niche.

* Identifying morphologic and spatial features of progressor and non-progression MM precursors
[374] to help refine risk models. Insights generated from this study warrant further validation

and investigation in larger cohorts, which is in progress.



Chapter 5

Evaluation of morphological features and
spatial immune infiltration patterns as a
biomarker for recurrence in ductal

carcinoma in situ

5.1 Overview

As we discussed in Section 1.4, DCIS is a pre-invasive lesion of tumour cells within the duct [116].
One of the distinguishing histologic features of DCIS from invasive breast cancer is that the tumour
cells are isolated from the breast stromal region by basement membrane and myoepithelium layer,
whereas in invasive breast cancer, these separating membranes are broken, and the tumour cells
have direct contact with stomal cells [116]. The prognostic evaluation of morphological features
of the DCIS duct, which contains the tumour cells, and the spatial organisation of stromal TILs in
the surrounding regions of DCIS are gaining interest [151, 116]. Currently, manual assessment of
TILs by expert pathologists is considered a gold standard and the TIL-WG on breast cancer has
developed a set of guidelines for manual stromal TILs scoring for DCIS on H&E images [151].
However, the manual assessment has inherent limitations associated with the shortage of expert
pathologists, inter-observer variability, and a comprehensive assessment of WSI H&E images is also
time-consuming. Thus, the TIL-WG has envisioned that machine learning methods could alleviate the
limitation of visual assessment, and when possible, the methods should follow the guidelines [152].
However, a reliable automated scoring method following the guidelines is yet to be developed due to
the inherent complexity of DCIS duct morphology and the assessment strategy.

Here, we aimed to simultaneously interrogate the association of DCIS duct morphological features
and the spatial organisation of stromal TILs (AI-TIL) in the surrounding region of DCIS duct with

recurrence. First, we developed an automated image analysis pipeline comprising of single cell level
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and tissue level algorithms to automate the stromal TILs scoring guideline by the TIL-WG [151]. The
pipeline consists of tissue segmentation, cell detection, cell classification, DCIS duct segmentation,
and scoring the spatial TILs pattern at a different distance around the DCIS duct. Moreover, we
analysed the association between DCIS morphological features, spatial stromal TILs and mutation
burden. We implemented a generative adversarial network (GAN) based segmentation method to
identify and segment DCIS duct automatically. To identify lymphocytes, we used a pre-trained deep
learning model. We collected single cell and tissue level annotations and slide level stromal TILs
scores from expert breast pathologists to train and validate our algorithms.

Our DCIS segmentation model achieved a dice overlap of 0.94 (£0.01), and the cell classifier
model achieved 92% accuracy compared to pathologists’ annotations. We observe a higher correlation
between pathologists’ scores and AI-TIL computed using broad stomal boundaries (Spearman r» =
0.67, p=3.83x 1077, W = 0.7mm) compared with circumferential AI-TIL (cAI-TIL) computed
using W = 0.03mm stromal boundary (Spearman r = 0.28, p = 0.12). Using multivariate COX
proportional hazard regression analysis, a low cAI-TIL was associated with an increased risk of
recurrence independent of standard biomarkers and clinical variables (HR = 0.56, 95% CI: 0.39 —0.80,
p = 0.002). cAI-TIL was not correlated with DCIS duct morphologic features or mutation burden. In
Invasive breast carcinoma recurrence (IBCr) patients, DCIS duct area was positively correlated with
mutation burden (Spearman r = 0.78, p = 0.0021), but not in the No ipsilateral breast event (no-IBE)
and ductal carcinoma in situ recurrence (DCISr) patients.

Taken all together, the spatial organisation of stromal TILs computed using an automated method
has prognostic relevance in DCIS, and this should be validated on larger cohorts of patients for use in

a clinical setting.

5.2 Introduction

As we discussed in Section 1.4, DCIS is a pre-invasive lesion of abnormal cells within the breast duct
that are separated from the stromal region by myoepithelium and basement membrane [375, 376, 116].
Before the development of breast cancer screening, DCIS was rarely recognised; however, it now
accounts for approximately 20% of all breast cancer [128, 120]. Usually, treatment is recommended
since there is about a 50% chance of transforming the DCIS into invasive cancer [120].

Over the past decade, sequencing-based methods have been employed to find molecular pro-
cesses leading to the transformation of DCIS into invasive breast cancer [141, 377, 378]. Molecular
alterations such as mutation of well-known genes including TP53, PIK3CA and AKTI, and copy
number variation were found to correlate with the progression of DCIS to invasive cancer [141, 378].
However, these studies lack consistency. In the current clinical management of DCIS, all patients are
recommended to undergo treatment similar to invasive breast cancer, which could lead to overtreat-
ment [116]. Thus, the unmet clinical question is which DCIS patients are likely to progress into

aggressive breast cancer over time. Despite all the knowledge about DCIS tumour cells’ molecular
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features, histopathology remains the only reliable approach to detect DCIS since the tumour cells are
restricted within the duct [116]. Thus, morphological analysis of the DCIS duct and stromal TILs
spatial organisation relative to DCIS duct are gaining interest.

A recent work by Risom et al. [116] showed that invasive recurrence in DCIS is accompanied
by changes in DCIS morphology and the structure and composition of the TME. Furthermore, the
spatial distribution of stromal TILs in the vicinity of DCIS duct has been found prognostic in DCIS
[120, 146-150].

Thus, to improve the reproducibility and standardise reporting of stromal TILs, the TIL-WG on
breast cancer has developed a guideline for manual stromal TILs scoring for DCIS on H&E images
[151]. However, even studies following the guidelines have shown inconsistency. The inconsistency
could be partly attributed to the inherent limitations of manual assessment such as intra- and inter-
observer variability [172, 170, 171]. Moreover, the shortage of experienced pathologists compared to
the demand limits the scalability of the manual scoring in research and clinical environment [173, 174].
Thus, the TIL-WG suggested that machine learning based assessment of stromal TILs might overcome
these limitations and advised the algorithm should comply with the guideline where possible for
ease of interpretation [152, 174]. To the best of our knowledge, there is no published computational
method that adheres to the essential concepts in the DCIS stromal TILs scoring guidelines set by the
TIL-WG.

Thus, here, we proposed a fully automated multi-stage image analysis workflow consisting of
single-cell level and tissue level algorithms to quantify spatial patterns of stromal TILs following the
essential steps set by the TIL-WG [151], and morphological features of DCIS duct from diagnostic
H&E WSI. Using our workflow and statistical analysis method, we evaluated the following:

* The prognostic relevance of DCIS duct morphological features and spatial stromal TILs patterns

as biomarkers of recurrence using diagnostic H&E images of DCIS patient;

* The concordance between the automated and pathologists’ stromal TILs score, estimated
following the TIL-WG guidelines [151];

* The association between DCIS duct morphology, automated spatial stromal TILs score,
andDCIS mutation burden.

5.3 Materials

5.3.1 Patients studied

The samples were collected from a retrospective multi-centre study activated at 12 participating
TBCRC (Translational Breast Cancer Consortium) sites, which identified women treated for DCIS at
one of the enrolling institutions between 01/01/1998 and 02/29/2016. The TBCRC and the Department
of Defense (DOD) approved this study for the collection of archival tissues. Duke University School
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of Medicine, Durham, USA, served as the initiating and central site for all data, samples, assays,
and analysis. The study was approved by the Duke Health Institutional Review Board (Protocol ID:
Pro00068646) as well as the institutional review boards of each participating institution. In addition,
individual sites reviewed medical records to identify patients eligible for the study.

Study inclusion eligibility criteria included: Women aged 38-76 years at diagnosis of DCIS
without invasion; no prior treatment for breast cancer; and definitive surgical excision with no ink on
tumour margins and treated with mastectomy, lumpectomy with radiation, or lumpectomy. All cases
consisted of an initial diagnosis of pure DCIS, with ipsilateral recurrence occurring no less than 12
months from the date of the primary diagnosis. Clinical data, including treatment data, were collected
at each site, and standardised data points were entered into a web-based portal. Tumour tissue was
collected from formalin-fixed paraffin-embedded blocks and cut into 5Sum sections. All slides were
scanned and reviewed centrally by a breast pathologist (Allison H. Hall, from the Department of
Pathology, Duke University School of Medicine, Durham, North Carolina, USA) to confirm the
diagnosis.

In total, a subset of 165 patients from the TBCRC study with primary DCIS was included in this
study. The clinical characteristics of the patients are summarised in Table 5.1. The cohort consisted of

three groups of patients:

1. no-IBE: patients with primary DCIS with no recurrence after > 5 years follow-up;

2. DCISr: patients primary DCIS with DCIS recurrence, recurrence diagnosed > 12 months after

initial diagnosis;

3. IBCr: patients with primary DCIS cases with invasive and or metastatic recurrence, > 12

months after initial diagnosis.

After a median follow-up of 69 months (range: 12-228 months) after the initial diagnosis,
115(70%) patients were diagnosed with a recurrence. These consisted of 64(39%) patients with
DCISr, and 51(31%) patients with IBCr. The remaining 50(30%) patients had no recurrence after a
median observation of 105 months (range: 60-228 months). The ER status, PR status, DCIS grade,
presence of necrosis, treatment administered and type of surgical procedure is shown in Table 5.1.

5.3.2 Sectioning and data acquisition

When a suspected DCIS case was detected, diagnostic H&E slides from the lumpectomy/mastectomy
resection containing the DCIS component were examined by the pathologists. Additionally, H&E
slides for recurrent surgery were sent to the pathologists for assessment and slides from a node as a
control sample. The healthy/control (normal tissue) was taken from a normal node or breast tissue
with no cancer. The control block was confirmed to be devoid of a tumour by pathologists. Two blocks

of tumours (Block A and Block B) were extracted from the tumour resection, each containing > 2mm
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Table 5.1: The characteristics of the TBCRC cohort data included in this study. no-IBE
= no ipsilateral breast event; DCISr = DCIS recurrence; IBCr = invasive breast carcinoma
recurrence; ER = estrogen receptors, PR = progesterone receptors.

Parameter No. patients (%)
Age at diagnosis

Median (range) 52 (38, 76)
H&E image available

Yes 127 (77)
Mutation data available

Yes 81 (49)
Relapse group

no-IBE 50 (30)
DCISr 64 (39)
IBCr 51 (31)
ER status

Positive 98 (59)
Negative 3521
Unknown 32 (20)
PR status

Positive 83 (50)
Negative 46 (28)
Unknown 36 (22)
Grade

I 12 (7)

11 62 (38)
111 91 (55)
Radiation therapy

Yes 90 (54)
No 69 (42)
Unknown 64)
Hormonal therapy

Yes 54 (33)
No 92 (56)
Unknown 9 (11)
Necrosis

Yes 127 (77)
No 35 (21)
Unknown 3(2)
Surgical procedure

Mastectomy 46 (28)
Lumpectomy 119 (72)
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DCIS area. The aim of having the two tumour blocks was to analyse the intra-tumour heterogeneity
of the DCIS. Then, these tumour blocks were sectioned into 25-30 slides of five microns thick tissue.

The first and last section was used for H&E staining. The slides were scanned at 20 x magnification
with 0.5um resolution using Aperio AT?2 brightfield imaging. Our dataset contains 243 diagnostic
H&E WSI from 127 DCIS patients, with some patients having only H&E images from one block.
Some of the middle sections were used for DNA whole exome sequencing of the DCIS. Moreover,
the normal tissue was sectioned into 10 slides, each five microns thick. Again the first section was
used for H&E staining and the rest for control DNA sequencing. The DNA extraction and sequencing
were conducted at Prof. Maley’s lab (Arizona Cancer Evolution Center, Arizona State University)
using formalin-fixed paraffin-embedded GeneRead DNA Kit as described in their recent work on a
similar study [379]. As shown in Table 5.1, 81 cases(49%) had DNA sequencing data.

5.4 Methods

We developed an automated image analysis pipeline to quantify the spatial distribution of stromal TILs
in the vicinity of DCIS duct following the guidelines by TIL-WG and quantify DCIS morphological
features (Figure 5.1). The pipeline combines machine learning and classical image processing/analysis
algorithms that operate at the single cell and tissue levels. As shown in Figure 5.1, the automated

image analysis pipeline consists of the following algorithms:
1. Image preprocessing to divide the WSI into smaller images or patches, also known as "tiling";
2. Tissue segmentation to delineate the area of WSI which contains tissue sample;
3. Cell detection and classification to identify the position of lymphocytes in the WSI;
4. Immune hotspot removal (as suggested by the working group and expert pathologists);
5. DCIS duct segmentation to extract DCIS duct boundary;

6. Finally, image analysis method to generate slide level of the spatial stromal TILs score and
quantify DCIS duct morphological features.

We used the TBCRC dataset described in Section 5.3. We collected single cell and tissue level
annotations and slide level stromal TILs scores from expert breast pathologists to train and validate

the algorithms.

5.4.1 A brief overview of the TIL-WG guideline for stromal TILs scor-
ing in DCIS

According to the TIL-WG guidelines [151], pathologists look at each DCIS duct within a WSI and

estimate stromal TILs score at duct level. Then, the slide level score is generated by averaging the duct
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Figure 5.1: Overview of the fully automated image analysis pipeline for spatial stromal
TILs scoring and DCIS morphological feature extraction: A) The input image is a
H&E stained WSI of diagnostic slide of DCIS patient. B) Dividing a gigapixel WSI into
smaller images or patches, which can be loaded into memory easily. C) Tissue segmentation
to remove slide area without tissue. D) Cell detection and classification to spatially map
lymphocytes and other cell types within the WSI. E) Immune hotspot region identification.
F) DCIS duct segmentation to localise and segment individual DCIS duct. G) Image analysis
to compute spatial stromal TILs for a given stromal boundary width and estimate DCIS duct
morphological features. This step utilises the outputs of cell detection and classification (D)
and DCIS duct segmentation (F) algorithms. The displayed boundary is 0.2mm. The features
were computed at the duct level, and mean aggregation was applied to generate a score for
WSL
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level scores. In DCIS, stromal TILs are TILs situated in a "specialised breast stromal region" around
each DCIS duct [151]. Though there is no currently agreed size for this region, the TIL-WG suggested
using a boundary that could extend up to 0.7mm until more data is found that supports a specific value.
The duct level TILs score is estimated as a percentage of the surrounding stromal area of the duct
covered by lymphocytes, excluding immune hotspots. Immune hotspots are specific regions within a
WSI with spatially clustered lymphocytes compared to the rest of tissue [241]. Moreover, TILs within
the DCIS duct and necrosis region should be excluded. A detailed explanation of the DCIS stromal
TILs scoring guideline could be found in Dieci et al. [151]. Sample images showing stromal TILs

scores by pathologists are presented in Figure S4.1.

5.4.2 Pathologists’ input for models training and validation
DCIS duct segmentation annotation

To train and validate our DCIS segmentation algorithm, we collected DCIS duct segmentation
annotation for 43 H&E WSI. The images were annotated by two expert pathologists in breast cancer:
Hugo M. Horlings from the Netherlands Cancer Institute and Robert West from Stanford University
Medical Center. The annotations were collected using a web-based WSI viewer and annotation
tool developed in our lab (unpublished). From these annotations, we extracted 2,550 "tiles" of
1,024 x 1,024 x 3 pixels size. Sample H&E images with DCIS duct segmentation are shown in
Figure 5.2.

Figure 5.2: Sample pair of images showing DCIS H&E images and DCIS duct segmen-
tation mask generated from pathologist annotation. The DCIS mask image shows the
DCIS duct (white) and stromal regions (black).

Single cell annotations

For cell identification on H&E, we employed an existing pipeline developed in our lab [108]. To
validate the performance of the pipeline in our DCIS dataset, we collected 10,486 single cell dot
annotations by an expert pathologist, Allison Hall, from Duke University School of Medicine.
These annotations fall into three classes: epithelial cells (n = 6,821), fibroblasts (n = 1,075), and
lymphocytes (n = 2,590).
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Pathologist DCIS stromal TILs scores

To validate the automated stromal TILs score with pathologists’ scores, we asked two pathologists
(Hugo M. Horlings from The Netherlands Cancer Institute and Roberto Salgado from GZA-ZNA
Hospitals, Antwerp, Belgium) to independently estimated DCIS stromal TILs for 46 samples. The
scores were estimated following the guideline by the TIL-WG [151]. The scores are continuous values
ranging between 0% and 100%.

5.4.3 Tiling

Tiling is the process of dividing the high-resolution WSI into smaller images or patches (Figure 5.1A,
B). The H&E WSI were scanned at 20 x magnification with a pixel resolution of 0.5um per pixel.
A representative image has a 53,784 x 37,284 pixel size at 20X magnification. Since the WSI are
too big to load into memory, they were divided into 2,000 x 2,000 pixel size images, which could be

loaded into memory for further processing.

5.4.4 Tissue segmentation

The H&E images contain both tissue or biopsy area and glass area (background pixels). Thus,
accurately removing the background region has advantages such as improving computational time
and avoiding false positive detections due to noisy pixels. For a multi-stage pipeline, removing the
background region at an early stage improves the speed of the workflow since the subsequent stages
will analyse only tissue pixels. Thus, after tiling, tissue segmentation was applied.

Tissue segmentation is a binary pixel classification, tissue and non-tissue (Figure 5.1C). This
could be achieved using traditional image processing algorithms or deep learning based approaches.
Some studies employed traditional image processing algorithms such as Otsu’s adaptive thresholding
[380] of the grayscale version of H&E image [179] and watershed segmentation [381] to segment
tissue from WSI to segment tissue region from H&E images. However, these methods might not
robustly learn weak features and often need preprocessing steps that induce bias in the model. This
process reduces the generalisability of the model to new data [272].

Here, we applied a pre-trained Micro-Net [272] to segment tissue on the H&E images. Micro-Net
uses multi-resolution images to capture multi-scale features, which enables the network to extract
varying scale features to differentiate tissue regions from artefact and background regions [108, 272].
This enables the model to capture essential features to identify tissue regions. Since an approximate
tissue boundary is enough, the segmentation was applied at 1.25x magnification. After tissue

segmentation, subsequent analyses were applied to tissue regions only.
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5.4.5 Cell detection and classification on whole slide H&E images

One of the essential steps in our automated spatial stromal TILs scoring is identifying lymphocytes’
location within the WSI. This was achieved using cell detection followed by cell classification. Cell
detection aims to find the spatial position of cells within the segmented tissue region, while cell
classification aims to identify the type of cells.

To detect and classify single cells, we used a well-established pipeline which was trained and
validated on 26,960 single cell annotations from 53 WSI [108] (Figure 5.1D). To handle stain
variability, the pipeline uses Reinhard colour normalisation [382]. The Reinhard colour normalisation
transforms the source image colour space into the target image colour space [383]. The target image
was selected from the images used during model development. The pipeline uses spatially constrained
CNN for cell detection and classification [108, 176]. For every pixel in the tissue region, the algorithm
computes the probability of the pixel belonging to the cell nucleus. Then, post-processing methods
such as thresholding, local peak intensities and pixel grouping were applied to identify the centre of
the nucleus [176]. The classifier network uses neighbouring ensemble prediction combined with the
standard softmax function for the classification [176]. The classifier categorises the detected cells
into four classes: epithelial cells, fibroblasts, lymphocytes, and others (Figure 5.1D). The details of
training parameters and hyper-parameters of cell detection and classification pipeline can be found in
[176, 108].

5.4.6 Immune hotspot identification

According to the stromal TILs scoring guidelines [151], immune hotspots should be excluded during
the DCIS stromal TILs reporting. Immune hotspots are specific regions within a tissue section with
spatially clustered lymphocytes compared to the rest of tissue [241]. To identify immune hotspots,
we applied Getis—Ord spatial statistics proposed by Nawaz et al. [241] (Figure 5.1E). Once the
immune hotspot regions were identified, lymphocytes residing in these regions were excluded from

the automated stromal TILs computation.

5.4.7 Automated DCIS duct segmentation

The DCIS duct segmentation is an integral part of the spatial stromal TILs scoring, and DCIS duct
morphological phenotype quantification (Figure 5.1F). For H&E images scanned at 20 x magnification,
the size of DCIS duct could range from thousands to millions of pixels. Thus, a larger receptive
field (patch) is required to fully capture the histological feature of a DCIS duct and to train a deep
learning algorithm to segment DCIS. Image segmentation is an image-to-image translation task.
Recently, adversarial learning has gained a surge of interest in image-to-image translation involving
semantic labelling [384, 385]. However, training GAN on high-resolution images could be unstable
[384, 386, 387]. Wang et al. [384] address these issues using a robust adversarial learning objective

together with a new multi-scale generator and discriminator architectures. For high-resolution images,
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conditional GAN proposed in [384] was found to outperform U-Net for segmentation task [65]. A
recent work from our lab by Sobhani et al. [388] showed that the conditional GAN proposed by Wang
et al. [384] performs well for DCIS duct segmentation on MIHC images. For DCIS duct segmentation
on H&E, we adopted the DCIS segmentation model on MIHC images [388] to H&E images. For
DCIS duct segmentation on H&E, I collaborated with Dr. Sobhani (first author of [388]). The model
was trained from scratch using pathologist DCIS segmentation annotation on H&E images described
in Section 5.4.2.

Image segmentation aims to transform an image from H&E image domain to a binary mask image.
The model comprises a generator and a discriminator. The generator’s objective is to generate a
DCIS binary mask from H&E stained histology image. At the same time, the discriminator learns to
distinguish the ground truth (human annotation) image from the generated mask. It is trained in a
supervised way, and the training dataset is prepared as sets of pairs (x,y) = {(x;,y;): i € {1,2, ...,n}},
where x; and y; are 1,024 x 1,024 x 3 histology image and 1,024 x 1,024 x 1 DCIS ground truth
mask, respectively (Figure 5.2). The objective of the network is to model the distribution of the DCIS
mask using Equation (5.1), given the input H&E image.

3
m(i;n( plax /;1 {E(y) llog Di(x,)] + Ex[log (1 — Dy (x,G(x)))]}) 5.1
where G denotes the generator, which contains a global generator to generate an initial DCIS map
and a local generator to enhance the quality of the output of the first generator [384]. The D denotes
the discriminator part that employs multiple discriminators with identical network structures that
operate at different scales of an image pyramid [384]. A three-level (k = 3) image pyramid was used
as proposed in the original paper by Wang et al. [384]. These multi-scare networks regularise the
generator to learn the coarse and fine features of the image [384].

Model parameters were randomly initialized using uniform Glorot [275] and optimized using
Adam [276] with a learning rate of (0.0002) and betal (0.5). The model was trained for 100 epochs.

The segmentation model was trained and validated using pathologist annotations described in
Section 5.4.2. The annotation consists of 2,550 tiles from 43 WSI/patients. To investigate the
generalizability of our segmentation model, we performed a 5-fold cross-validation. Around 1,900
tiles from 36 slides were used for training and the remaining for testing in each round. To remove
false-positive prediction from artefact regions and normal duct, we excluded predicted DCIS duct

with an area smaller than 1,2000um?.

5.4.8 Estimating pathologist’s stromal boundary width

As we stated above, the TIL-WG suggested using a stromal boundary width that could extend up
to 0.7mm from the DCIS border [151]. We asked a pathologist to annotate DCIS duct and stromal
boundary for some slides that he will use for stromal TILs scoring as shown in Figure 5.3. We extracted

the annotation and quantified the width as described below. The pathologist manually annotated
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individual DCIS duct border and stromal boundary. Multiple DCIS ducts were annotated within a slide.
The annotations are saved as polygons with x and y. Let A, € R"*? and A, € R™*? represent a matrix
notation of coordinates of the DCIS duct border annotation and the stromal boundary annotation of
the i annotated DCIS duct. n and m represent the length of the annotations in pixels. Every element
of A, and A have (x,y) attributes, which allows distance computation.

Suppose D € R denotes distance matrix and d; ; denotes the value of the element D[i, j]. The
d; j is a Euclidean distance between the i'" element of A, and the j’h element of A. Then, the average
thickness or width of DCIS duct level boundary (W) for one DCIS duct was computed using Equation
5.2.

n

1 . .
W:n;<mi1nd,-j>,]:1,273,...,111 (5.2)

The min operation is applied to every row of the matrix, D, and it finds the minimum distance for every
point in Aj to Ay, generating a n X 1 distance array. As can be seen in Figure 5.3, the boundary width
is not constant across the DCIS border. Thus, the boundary width from the pathologist annotation
(W) for i DCIS duct was computed as the mean of the width across its border. This enabled us to

evaluate the variability of stromal boundaries utilised by pathologists within a slide and across slides.

5.4.9 Image analysis algorithm to estimate spatial stromal TILs score

Following the identification of lymphocytes and DCIS duct segmentation described above, we
developed an image analysis algorithm (Figure 5.1G) to generate a stromal TILs score (AI-TIL)
considering only TILs in the vicinity of DCIS duct as proposed by the TIL-WG [151].

To compute the AI-TIL score for a given H&E WSI, we first computed stromal TILs for every
DCIS duct. Suppose a given WSI has n DCIS ducts, {D;: i € {1,2, ...,n}}.

We first defined the width of the stroma boundary in millimetres (W). Then, the stromal TILs

score for the "

DCIS duct was computed as a ratio of the number of lymphocytes in the stromal
boundary and the defined stromal area. While lymphocytes in the neighbourhood of DCIS duct
(within a distance (W)) could be identified by simply calculating a Euclidean distance between the
duct boundary and the lymphocytes, computing the stromal boundary area needs demarcating the
stromal tissue area. To delineate the stromal boundary, we applied a morphological dilation operation
over the DCIS duct binary mask image. The morphological operation is in image space using pixel
units. For ease of interpretation, the boundary width is in standard units in the tissue space, such as
mm [146]. For the desired boundary width W in millimetres, the width in pixels was computed using

Equation (5.3).

Wpixels = S 103 (53)

mmp
, where mpp stands for microns per pixel image resolution from the metadata of WSI images (e.g.

0.5 in our images). To demarcate the stromal boundary in Figure 5.1C, we applied morphological
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Figure 5.3: Sample image showing DCIS expert segmentation annotation and stromal
TILs scoring boundary.
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dilation operation as shown in Equation (5.4).
Isg = (Ip, ® Wixeis) — Ip, (54

, where Ip,, @, and IsB are cropped binary images of duct D; (Figure 5.1C), dilation operation, and
stromal boundary image, respectively. While cropping, a margin of W),y.; + 10pixels was included
beyond the bounding box of D; for the dilation operation. Cropping the duct image before the dilation
operation increases the algorithm’s speed. A dilated region that overlaps with a neighbouring DCIS
duct tissue was excluded while computing the stomal area. Then, stromal TILs score for duct D;,
score;, was computed using Equation (5.5).

#L

score; = 5.5
" stromal boundary area 5-5)

, where #L is the number of lymphocytes in the stromal boundary and the stomal boundary area is
measured in wm?. This is applied to all n ducts in each slide, resulting in a vector of (1 x n) duct level
TILs scores. TILs between adjacent ducts were counted in each duct. Finally, the slide level stromal
TILs score was computed as the mean of individual DCIS duct AI-TIL score using Equation (5.6). We
also analysed the heterogeneity of duct level AI-TIL measured as variance of AI-TIL within the slide.

n
Y score;

AI-TIL="71 (5.6)
n

The AI-TIL indicates the density of TILs in the stromal boundary and its unit is cells per unit pm?
tissue area. The statistical analyses were performed at the patient level. An average value of AI-TIL
was computed when there are multiple H&E images from one patient. Moreover, we analysed the
distance between the AI-TIL score of the slides from one patient.

While computing AI-TIL, the user defines the value of W. This allows assessing the prognostic
value of TILs depending on their proximity to the DCIS duct border. Here, we computed AI-TIL
for a set of stromal boundary widths, W = {0.03, 0.05, 0.067, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8 }mm. Previous studies utilising the TIL-WG guidelines for stromal TILs manual scoring in DCIS
analysed the prognostic relevance of circumferential TILs [167, 389]. Circumferential TILs were
defined as dense infiltrate of about three layers of lymphocytes around DCIS [167, 389]. The diameter
of lymphocytes ranges from 7 — 15um depending on their type [390]. Therefore, a 0.03mm (30um)
stromal boundary approximates the circumferential region of DCIS duct. Thus, in our automated
stromal TILs scoring, AI-TIL computed using W = 0.03mm boundary was called circumferential
AI-TIL (cAI-TIL).
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5.4.10 DCIS duct morphologic features

DCIS has diverse nuclear atypia and architectural patterns [139, 391]. These morphological features
have implications for recurrence risk, post-surgical recurrence time, and progression into invasive
cancer [391]. Here, after segmenting the DCIS duct, we analysed the following histomorphologic

features:

» Total DCIS tissue area. It is the total tissue area of DCIS normalised by the total amount of
tissue within in the WSI.

* Number of DCIS ducts. It is count of DCIS ducts within in a WSI normalized by the amount
tissue within in the WSIL.

« Mean DCIS duct area. It is the average DCIS duct area measured in pm?.

* Mean DCIS solidity. The solidity of a DCIS duct measures the extent to which the DCIS duct
covers its convex hull [300, 301]. A graphical illustration of the solidity measure can be found
in Figure 3.3A. Its value ranges between 0 and 1. It is a measure of shape irregularity [301]. A
value of 1 indicates a solid DCIS duct, while a value less than 1 indicates a DCIS duct with

irregularities. An average value was reported for a slide level DCIS duct solidity score.

* Mean DCIS duct eccentricity. It is a measure of elongation of DCIS duct. Its value ranges
between 0 and 1 as shown in Figure 3.3B. A value close to 0 indicates circular DCIS duct, and
for elongated DCIS duct, their eccentricity value increases. An average value was reported for

a slide level DCIS duct eccentricity score.

5.4.11 Mutation data preprocessing

To investigate the intra-tumour heterogeneity of mutation within a tumour, two blocks (block A
and block B) were created from the tumour resection. Tissue sections were extracted from these
blocks, and DNA whole exome was extracted and sequenced [379]. Single nucleotide variants were
called, and intra-tumour heterogeneity was estimated using the intra-tumour heterogeneity estimation
pipeline under the set of parameter values optimised using 28 technical replicates on similar DCIS
samples [379]. In short, this method uses Platypus to generate candidate single nucleotide variants,
asymmetrically filters them to determine if they are shared or private, and then refines them considering
several quality metrics, including their coverage in normal and tumour samples, patient-specific
germline variants (using normal tissue DNA sequencing) and known germline variants in human
populations. The asymmetric filter applies the notion that the presence of a high-confidence variant in
a sample increases the confidence of that variant in the other sample [379]. Thus, the mutation data
contains only somatic mutations.

Then, mutation burden, common mutations and mutation divergence % were recorded. Here, a

mutation denotes a single nucleotide variant. These features were computed as follows. Let A,, and
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B,, represent a set of mutations in blocks A and B, respectively. The computation of patient-level
mutation burden, common mutation, and mutation divergence % are shown in Equations (5.7-5.9),

respectively.

common mutations = A,, N By, 5.7

Mutation burden = A,, U By, (5.8)

An \BnU By \Ap
Mutation burden

Divergence% = (5.9)

Where N, U and \ are the intersection, union and relative difference set operations, respectively.
The number of common mutations indicates the number of mutations shared by the two tumour
blocks, while mutation divergence % is the proportion of mutations that are not shared between the
two tumour blocks. The whole exome sequencing, single nucleotide variants calling and computation
of mutation burden, common mutations, and divergence %, were performed by Dr . Diego Mallo
from Prof. Carlo Maley’s lab at Arizona State University (unpublished).

Using these mutation features, we investigated the following key aspects; (1) the prognostic impact
of these mutation features and (2) the association of these features with DCIS histomorphologic
features and AI-TIL. The mean histomorphologic feature of the WSI from block A and B was
compared with mutation burden. The histomorphologic feature distance was measured as the absolute
value of the difference between the histomorphologic feature from the two blocks. The same applies

to AI-TIL. The histomorphologic feature distance was compared with divergence %.

5.4.12 Statistical analysis

All correlations were computed using the Spearman method. The p-values were computed using
the two-sided unpaired non-parametric Wilcoxon method (if not stated), considering p < 0.05 as
significant.

As a primary measure for prognostic analysis, we used recurrence status (no-IBE, DCISr and
IBCr) and RFS, which is defined as the period of time from initial surgery to recurrence with censoring
at death or last follow-up date. The time-to-event curves were calculated using the Kaplan—Meier
methods and compared with the Log-rank test. Moreover, we measured the concordance index
(C-index) which is a measure of concordance between the observed and predicted survival times. It is
the fraction of individuals whose expected survival times are correctly arranged out of all individuals
that can actually be ordered [306].

The Cox proportional hazard method was used to quantify the hazard ratio for the effect of
biomarker groups and clinical parameters. The biomarker groups and clinical variables include

DCIS size, age (< 50 or > 50 [167]) years, grade, PR status, ER status, necrosis, surgical procedure,
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hormonal treatment, and radiation treatment. Only variables with a significant p-value in the univariate
Cox proportional hazards (p < 0.05 ) were included for multivariate analysis [392]. The multivariate
analysis only included cases with complete data.

5.5 Results

5.5.1 Deep learning models performance evaluation

The cell classifier model achieved an overall accuracy of 0.92 (Table 5.2) and a sample image showing
single cell detection and classification is presented in Figure 5.4A. In our AI-TIL scoring pipeline,
lymphocytes are of particular interest. For the lymphocyte class, the model achieved sensitivity (0.92),
specificity (0.98) and accuracy (0.95) (Table 5.2). This shows that the model could be reliably used.

The performance of our proposed DCIS segmentation algorithm was evaluated using 5-fold
cross-validation. The segmentation model achieved a dice overlap score of 0.94(4-0.01), precision of
0.95(4-0.012), recall of 0.94(£0.012), and specificity of 0.98(4-0.004) (Tables 5.3). The values are
represented as mean + standard deviation. Illustrative images of pathologist DCIS annotation and
predicted DCIS masks are shown in Figure 5.4B. The small deviation in metrics between folds shows

that the model is less sensitive to variation in the training and testing samples.

Table 5.2: Cell classification model performance evaluation.

Fibroblast | Lymphocyte | Tumour
Sensitivity 0.77 0.92 0.98
Specificity 0.98 0.98 0.93
Accuracy 0.88 0.95 0.95

Table 5.3: DCIS duct segmentation model performance evaluation.

Fold | Dice overlap | Precision | Recall | Sensitivity | Specificity

Fold 1 0.93 0.93 0.93 0.93 0.98
Fold 2 0.95 0.96 0.95 0.95 0.98
Fold 3 0.94 0.94 0.93 0.93 0.98
Fold 4 0.94 0.94 0.94 0.94 0.97

Fold 5 0.96 0.96 0.96 0.96 0.98
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Figure 5.4: Illustrative images comparing pathologist annotation and automated meth-
ods for single cell identification and DCIS duct segmentation: A) Sample pair of images
showing pathologist single cell annotation and deep learning single cell detection and classi-
fication output. A pathologist annotated cells only within the black rectangular box. B) Pairs
of images illustrating ground truth (blue colour) and predicted DCIS mask by the proposed
method. In the deep learning output, the white and black pixels represent, DCIS ducts and
stromal regions, respectively
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Figure 5.5: Inter-pathologists stromal TILs scoring association: A) Density plot showing
the inter-and intra-slide variation of TILs scoring boundary width (W) drawn by a pathologist
for 11 slides. B) Distribution of W after combining annotation from the 11 slides in (A). Each
DCIS duct was considered independently. C) Line plots showing intra-and inter-observer
variability of stromal TILs scoring for three slides or cases. D) Regression plot showing inter-
pathologists stromal TILs score correlation. The shaded area indicates the 95% confidence
interval of the regression plot. A point represents a slide. E) Distance between pathologists
TILs scores for 46 slides. The maximum distance was 45%. The distance was computed as
the absolute value of the difference between the scores by the two pathologists.
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5.5.2 Pathologists stromal TILs scoring analysis

In DCIS, there is no single agreed stromal boundary for stromal TILs estimation [151]. To get an
idea of the boundary width that expert pathologists use for TILs, we collected manual DCIS duct and
stromal boundary annotations for 11 WSI as shown in Figure 5.3. On average, 39 DCIS ducts were
annotated per WSI. For every duct, the average width of the stromal boundary, W, was computed
(Methods). There was high intra-and inter-slide variation in the value of W (Figure 5.5A). At slide
level, the average standard deviation of W was 0.032mm. Taking each DCIS duct individually, the
average W was 0.067mm with a standard deviation of 0.041mm. The values of W ranged from
0.014mm to 0.228mm (Figure 5.5B). This shows high variability in the stromal boundary width
annotation by a pathologist.

Then, we investigated intra- and inter-pathologist variation of stromal TILs scoring on 46 slides.
Pathologists’ scores are continuous values between 0 and 100% (Figure S4.2A). The pathologists
were given three slides with duplicates among the 46 slides without letting them know the existence
of duplicates. The scores by both pathologists for the three slides are shown in Figure 5.5C. For two
slides, there was an intra-pathologist agreement but an inter-pathologist variation. In one slide, both
pathologists showed intra-pathologists variation. Overall, the scores of the two pathologists were
significantly correlated (Spearman r = 0.78, p = 1.19 x 10~'°, Figure 5.5D). The two pathologists’
scores showed agreement in 52.2% of the 46 slides (Figure 5.5E and Figure S4.2B). In the remaining
47.8% slides, the difference in the pathologists stromal TILs score ranged between 3% and 45%.
The pathologists show high concordance for slides with low stromal TILs. 16 slides out of the 46
slides scored 1% by both pathologist (Figure S4.2B). High inter-pathologists variation was observed
mostly in WSI with high stromal TILs. For example, for the sample image shown in Figure S4.3, the
stromal TILs score by the two pathologists was 25% and 70%. These results suggest there is intra-

and inter-pathologist variation for DCIS stromal TILs scoring.

5.5.3 The association between manual and automated stomal TILs
scoring methods

We analysed the correlation between pathologists’ scores and AI-TIL generated using our automated
pipeline. Our pipeline allows estimation of stromal TILs infiltration at different boundary scales
(Figure 5.6A). We computed AI-TIL for W = {0.03, 0.05, 0.067, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8 }mm stomal boundaries. The AI-TIL values computed using {0.03, 0.05, 0.067, 0.08, 0.1}mm
boundaries were correlated (Figure S4.4). Moreover, the AI-TIL values computed using {0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8 }mm boundary widths were also correlated (Figure S4.4). The correlation coefficient
between AI-TIL score and pathologists’ average score asymptotically increased until W = 0.2mm
and converges to about Spearmanr = 0.65, p = 1.12 x 10~® (Figure 5.6B, C, and Table S4.1). The
pathologists’ score was not correlated with cAI-TIL, computed using W = 0.03mm, (Spearman
r=0.23, p =0.12, Figure 5.6B, and Table S4.1). The higher correlation at higher W compared to
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Figure 5.6: Comparison between manual stromal TILs score and AI-TIL: A) A cartoon
showing DCIS duct and stromal boundary annotation with different widths. B) Correlation
(r) between pathologists’ score and AI-TIL for W = {0.03, 0.05, 0.067, 0.08, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8}mm. The W = 0.067mm represents the width obtained from a
pathologist annotation presented in Figure 5.5B. C) Regression plot showing correlation
between pathologists (average) TILs scoring and AI-TIL for W = 0.2mm. The shaded area
indicates the 95% confidence interval of the regression plot. A point represents a slide.
Outlier slides are annotated by the dark red circle (slides with matched pathologists’ stromal
TILs scores) and dark blue (slides with high inter-pathologist variability).
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lower W value suggests that pathologists visually capture a large stromal TILs boundary, even though
exact annotation shows an average of W = 0.067mm (Figure 5.5B).

A perfect correlation between the automated and manual scoring was not expected since the
automated method quantifies the number of stromal TILs per unit tissue area, whereas the pathologists
report the percentage of the stromal area covered by TILs. Moreover, the manual TILs score is
compared against the mean score of the two pathologists’ scores, and cases where the two pathologists
disagree will impact the degree of correlation. Similar to the inter-pathologists agreement, we observed
disagreement between the manual and automated method for WSI with high stromal TILs (Figure
S4.3). A previous study by Thagaard et al. [174] comparing automated stromal TILs, and manual
scoring also observed discrepancies on slides with high TILs. In Figure 5.5C, for the four outliers
slide (outside the 95% CI of the regression plot) annotated by dark blue circles, the difference between
the two pathologists’ manual scores ranged from 20% to 45%. We also observed disagreement
between pathologists and the automated method on slides with inter-pathologist matched low stromal
TILs (dark red annotation in Figure 5.5C). These slides were characterised by the presence of scarce
stomal area or immune hotspots in the vicinity of DCIS duct, which could have been classified as

non-immune hotspots by the automated method (Figure S4.5).

5.5.4 The association between spatial stromal TILs score, DCIS duct

morphological features and clinical variables

The percentage of lymphocyte infiltration was not different between no-IBE, DCISr and IBCr patients
(Figure S4.6A). We computed AI-TIL for W = {0.03, 0.05, 0.067, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 }mm stomal boundaries. Using our approach, which assesses TILs in the neighbourhood of
DCIS duct, the stromal TILs score computed using a smaller boundary was more prognostic than
stromal TILs score computed using a larger stromal boundary (Figure 5.7A and Figure S4.6B, C).
Diagnostic samples of no-IBE patients showed higher cAI-TIL (computed using W = 0.03mm )
compared with DCISr patients and IBCr patients (p=0.0083 and p=0.041, Figure 5.7A, respectively).
There was no difference in cAI-TIL between the diagnostic samples of DCISr and IBCr patients.
Moreover, after combining invasive and DCIS recurrence groups, no-IBE patients showed significantly
higher cAI-TIL compared with recurrence samples but not for larger boundaries (p = 0.011, Figure
5.7C and Figure S4.6C). For W = 0.05mm, diagnostic samples of no-IBE patients showed higher
AI-TIL compared with IBCr patients (p=0.04, Figure 5.7A). However, for W = 0.05mm, there was
no difference in AI-TIL when comparing DCISr vs IBCr patient and patients with recurrence vs
no-IBE patient (Figure 5.7A and Figure S4.6C), respectively). For stromal boundaries > 0.05mm,
AI-TIL was not different among the recurrence groups (Figure 5.7A and Figure S4.6B, C). Despite a
higher correlation of AI-TIL with pathologists’ scores for higher W (Figure 5.6B), AI-TIL was better
associated with recurrence status for smaller W values. Thus, for the subsequent analyses, we only
considered cAI-TIL (computed using W = 0.03mm). Using 5% threshold on pathologist score (the
average of the two pathologists’ stromal TILs score) [146], the cAI-TIL score for pathologists’ high
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Figure 5.7: Association of morphologic features and automated stromal TILs with
recurrence status, biomarkers and clinical variables: A Boxplots showing the difference
in AI-TIL between recurrence groups for various TILs scoring boundary size. Only P values
< 0.05 are displayed. B) Boxplots showing the difference in cAI-TIL (stromal boundary
width = 30um) between Low and High stromal TILs groups from pathologists’ scores; Low
(stromal TILs < 5%) and High (stromal TILs > 5%). C-J) Boxplots showing difference in
AI-TIL (C-F) and total DCIS tissue area (G-J) between different patient groups. The label
of the y-axis is shared among all plots in a row. The number of patients: recurrence groups
(no-IBE (n=19), DCISr (n=61) and IBCr (n=47)); Grade (III (n=68), II (n=49), and I (n=10));
ER status (+ve (n=71) and -Ve (n=28), and PR status (+Ve (n=60) and -Ve (n=35)). ns =
not significant; PR = progesterone receptor; ER = estrogen receptor; +Ve = Positive; -Ve =
Negative. The p-values were computed using a two-sided unpaired non-parametric Wilcoxon
method considering p<0.05 significant.
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score group was significantly higher than the cAI-TIL score for the pathologists’ low group (p = 0.04,
Figure 5.7B).

Then, we analysed the association of cAI-TIL, DCIS duct solidity and DCIS area with biomarkers
including DCIS grade, ER and PR. cAI-TIL was not associated with DCIS grade, ER, and PR status
(Figure 5.7C-F). Moreover, DCIS duct solidity was not associated with DCIS recurrence, grade, ER,
and PR status (Figure S4.7E-H). Patients with DCIS and invasive recurrence showed higher total
DCIS tissue area compared to patients with no-IBE (p = 8.0 x 10~* and p = 0.031, Figure 5.7G,
respectively). However, the average area of DCIS duct was not associated with recurrence (Figure
S4.7A). Grade III patients also showed higher total DCIS tissue area and average DCIS duct area
compared to grade II (p = 0.022, Figure 5.7H and p = 0.003, Figure S4.7B). However, total tissue
area and average DCIS duct area were not associated with ER and PR status (Figure 5.71, J and Figure
S4.7C, D).

Our automated pipeline allows evaluation of slide level heterogeneity of cAI-TIL and DCIS duct
morphologic features. Figure S4.8 shows the density plots of DCIS duct level cAI-TIL distribution for
multiple slides. As can be seen in the density plot, there is intra- and inter-slide cAI-TIL variability
or heterogeneity among DCIS duct. We then asked whether this heterogeneity is associated with
the morphological phenotype of the DCIS duct. To test this hypothesis, we recorded cAI-TIL and
morphological features, including area, solidity, and eccentricity at DCIS duct level. Then, we analysed
the correlation between cAI-TIL and morphologic features, treating every DCIS duct independently.
However, we did not observe a correlation between cAI-TIL and DCIS duct morphological features
such as area, solidity and eccentricity (Figure S4.9). This suggests the circumferential TILs is not
associated with DCIS duct morphology.

We then explored if the heterogeneity of DCIS duct level cAI-TIL and DCIS duct morphology
are associated with recurrence, grade, ER status, and PR status. The heterogeneity was measured by
the variance of DCIS duct level features within a WSI. When there are multiple WSI per patient, an
average value of the variance was computed. Grade III DCIS showed significantly higher heterogeneity
of cAI-TIL and DCIS duct area compared to grade II DCIS (p = 0.012 and p = 0.019 Figure S4.10B,
F, respectively). However, heterogeneity of cAI-TIL, DCIS duct area and DCIS solidity were not
associated with recurrence, ER status or PR status (Figure S4.10). Furthermore, 103 out of 127
patients had two H&E slides from two tumour blocks. The cAI-TIL and morphometric distance
measured by the absolute value of the difference in cAI-TIL, DCIS duct area and DCIS solidity were

not associated with recurrence, grade, ER status or PR status (Figure S4.11).

5.5.5 Correlation between histologic features

Subsequently, the correlation of DCIS morphologic features and immune infiltration was analysed.
Expectedly, the number of DCIS ducts was significantly correlated with the total DCIS area, both
normalised by the amount tissue (Spearman r = 0.85, p < 0.001, Figure 5.8A). DCIS solidity was
negatively correlated with eccentricity (Spearman r = —0.62, p < 0.001 Figure 5.8A). The cAI-TIL
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was not correlated with DCIS morphology features such as tissue area, the number of DCIS ducts, duct
area, solidity and eccentricity (Figure 5.8A). However, it was significantly correlated with lymphocyte
percentage in the WSI, irrespective of the recurrence status (Spearman r = 0.6, p < 0.001, Figure
5.8A, B).

5.5.6 Association between AI-TIL and recurrence-free survival

To investigate the association between AI-TIL and RFS, Kaplan—Meier estimation statistics was
applied using different commonly used stratification quantiles ( 25%, 33%, 50% 67%, and 75%
)(Figure 5.9A). First, using our automated image analysis pipeline, we computed AI-TIL for different
stromal boundary values, W = {0.03, 0.05, 0.067, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 }mm.
Then, to investigate if AI-TIL computed using a specific stromal boundary width is associated with
RFS, we stratified the patients into groups with high and low AI-TIL scores. We evaluated different
stratification quantiles as shown in Figure 5.9A. The RFES curves of these groups were estimated using
the Kaplan—-Meier method and compared using the Log-rank test. As shown in Figure 5.9A, cAI-TIL
(AI-TIL computed using stromal boundary width of 0.03mm) consistently resulted in improved RFS
prediction for 25%, 33%, 50%, and 67% stratification quantiles. Using median cAI-TIL to stratify
patients into high and low cAI-TIL values, a higher cAI-TIL value was associated with longer RFS
(Log-rank p = 0.036, Figure S4.13). The cAI-TIL achieved concordance index of 0.58 (Table S4.2)
in predicting RFS. Even though the concordance index of cAI-TIL is low, it achieved the highest
concordance index compared with the AI-TIL computed using wider stromal boundaries (Table S4.2).

5.5.7 Univariate and multivariate analyses

To evaluate and compare the prognostic relevance of cAI-TIL as a continuous variable, DCIS morpho-
logical features, clinical variables and biomarkers, we conducted univariate Cox proportional hazards
regression analysis. The results for the univariate analyses are shown in Table 5.4. Using continuous
values of cAI-TIL, higher cAI-TIL was associated with significantly prolonged RFS (HR = 0.62,
95% CI: 0.44-0.88 p = 0.008, Table 5.4). Moreover, ER+ status, PR+ status, and hormonal therapy
were associated with prolonged RFS. However, grade III and the presence of necrosis were associated
with shorter RFS (Table 5.4). The size of DCIS, number of DCIS ducts, total DCIS duct area, average
DCIS duct area, lymphocyte % and type of surgical procedure (lumpectomy vs mastectomy) were not
associated with RFS (Table 5.4).

Then, to explore if cAI-TIL predicts the risk of recurrence independent of the standard biomarkers
and clinical variables, we conducted a multivariate COX proportional hazard regression analysis.
Only variables with significant p-values from the univariate analysis were included in the multivariate
analysis [392]. After the multivariate analysis, cAI-TIL was the only parameter prognostic for RFS
(HR =10.56,95% CI: 0.39-0.80, p = 0.002, Figure 5.9B). Thus, cAI-TIL is a predictor of an improved
RFS in DCIS independent of grade, ER status, PR status, necrosis and hormonal therapy.
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Figure 5.8: Correlation between histologic features: A) Spearman correlation matrix of
histomorphologic features. The correlation was computed at the patient level (n = 127).
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the Benjamini-Hochberg method. B) Scatter plot showing correlation between cAI-TIL
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Table 5.4: Univariate analysis of cAI-TIL, lymphocyte percentage, DCIS duct morpho-
logical features, clinical parameters and biomarkers for RFS. The number of DCIS ducts

represents an increment of 1 DCIS duct per mm

2

area. Continuous values of cAI-TIL were

used but normalised to increment of 300 stromal TILs per mm? stromal area for ease of

interpretation [174].

Feature HR 95% CI P value
cAI-TIL 0.62 0.44-0.88 0.008%**
Lymphocyte % 1.00 0.97-1.04 0.93
Size of DCIS (cm) 1 1.000-1.001 0.6
Number of DCIS ducts 1.4 0.77-2.4 0.29
Total DCIS area 2.26 0.27-19.13 045
Mean DCIS duct area 1 0.999-1.00 0.32
Mean DCIS duct eccentricity 0.0339  0-5.36 0.19
Age

>50 1.07 0.66-1.74 0.78
Grade

Grade 11 1.73 0.66-4.56 0.27

Grade III 2.6 1.02-6.64 0.046*
ER status

Positive 0.46 0.27-0.78 0.0043%*
PR status

Positive 0.54 0.33-0.88 0.013*
Necrosis

Yes 2.15 1.12-4.15 0.022*
Hormonal therapy

Yes 0.59 0.36-0.97 0.037*
Radiation therapy

Yes 0.74 0.46-1.21 0.24
Surgical procedure

Mastectomy 0.85 0.47-1.56 0.61
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A KM estimate using Al-TIL for different stromal boundaries and strattification quantiles
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Figure 5.9: Low cAI-TIL is associated with risk of recurrence: A) Line plots showing
the variation of RFS Kaplan—Meier (KM) estimator Log-rank p values as a function of Al-
TIL computed using different stromal boundary widths (W, in millimetre) and stratification
quantiles. The stratification quantiles were used to group the patients into high and low
scores. The RFS curves of these groups were estimated using the KM estimator and compared
using the Log-rank test. The black horizontal line shows Log-rank p = 0.05, a threshold
for a significant difference. B) Forest plot showing multivariate COX proportional hazard
regression analysis. Continuous values of cAI-TIL were used. cAI-TIL is stromal TILs score
computed using stromal boundary width of 0.03mm. PR = progesterone receptor; ER =
estrogen receptor
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Figure 5.10: Association between mutation data, DCIS duct morphology, cAI-TIL
and recurrence: A) Boxplots showing the difference in mutation burden between no-
IBE (n=37), DCISr (n=23) and IBCr (n=21) patients. B) Boxplots showing difference in
mutation divergence % between no-IBE (n=27), DCISr (n=20) and IBCr (n=20) patients. For
mutation divergence, patients with zero mutation were excluded. C) Scatter plots showing
the correlation between mean cAI-TIL and mutation burden. no-IBE (n=6), DCISr (n=14)
and IBCr (n=14). D) Scatter plots showing the correlation between DCIS duct area distance
and mutation divergence %. no-IBE (n=6), DCISr (n=12) and IBCr (n=13). E)Scatter plots
showing the correlation between DCIS duct area and mutation burden. no-IBE (n=6), DCISr
(n=14) and IBCr (n=14).
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5.5.8 High mutation burden is associated with recurrence but not mu-

tation divergence

Next, we analysed the association of mutation burden and mutation divergence with recurrence, clinical
variables and biomarkers. The IBCr and DCISr patients showed higher mutation burden compared with
no-IBE patients (p = 0.002 and p = 0.04, Figure 5.10A, respectively). However, mutation divergence
% was not different between these groups (Figure 5.10B). Similarly, after combining invasive and
DCIS recurrence groups, a higher mutation burden was associated with recurrence but not mutation
divergence (Figure S4.16A, B). The number of shared mutations between the pair tumour block was
significantly correlated with the mutation burden of the patients (Spearmanr = 0.98, p = 3.7 x 1077,
Figure S4.15A). We observe a similar pattern while comparing the recurrence groups based on shared
mutations (Figure S4.15B). Both mutation burden and mutation divergence % were not associated
with DCIS grade, ER status, and PR status (Figure S4.16D-J).

Using Kaplan—Meier estimate, both mutation burden and divergence were not associated with
RFS using median stratification ( Log-rank p = 0.09 and Log-rank p = 0.07, Sup. Figure 5.10A, B,
respectively). Moreover, we conducted univariate analysis on both mutation burden and divergence %
as continuous variables. Similarly, both mutation burden and divergence were not associated with
RFS (Table S4.5).

5.5.9 Association between cAI-TIL, DCIS duct morphological features,

and mutation burden

Then, we asked if DCIS morphologic features and cAI-TIL are associated with mutation burden and
mutation divergence %. The cAI-TIL and DCIS duct solidity were not associated with mutation
burden or divergence % in IBCr, DCISr and no-IBE patients (Figure 5.10C, Figure S4.17D-F and
Table S4.3 and S4.4). Moreover, there was no association between DCIS duct area distance and
mutation divergence % in the IBCr, DCISr and no-IBE patients (Figure 5.10D). The number of
DCIS ducts was not also associated with mutation burden or divergence % (Table S4.3 and S4.4).
However, in IBCr patients, DCIS duct area was positively correlated with mutation burden (Spearman
r=10.78, p =0.0021, Figure 5.10E), but not in the no-IBE and DCISr patients (Spearman r =
0.6, p =0.21; Spearman r = 0.06, p = 0.81, Figure 5.10E, respectively). This might suggest that
morphologic phenotypes associated with genomic changes might be visible in patients with adverse

clinical outcomes.

5.6 Discussion

Morphological assessment of DCIS and spatial organisation of stromal TILs are gaining interest

in DCIS progression study [116, 151]. Previous research on the progression of DCIS to invasive
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breast cancer revealed that the process is accompanied by changes in the morphological phenotypes
of membranes holding the tumour cells within the duct [116] and spatial organization of TILs in
surrounding stromal regions of DCIS duct [392, 151, 167, 389]. Here, we aim to 1) develop a
computational pipeline to simultaneously quantify these features from H&E image, 2) evaluate their
prognostic relevance in DCIS progression, and 3) assess the association of these features and mutation
burden.

The TIL-WG on breast cancer has developed a guideline for manual quantification of stromal TILs
on H&E images of DCIS to ensure reproducibility and standardized reporting [151]. According to the
guideline, TILs should be reported only in "specialised regions" around the DCIS duct instead of the
whole stromal tissue area [151]. However, due to human visual limitations, intra- and inter-observer
variability have been reported, even when following the guideline [152, 172]. Here, we compared
stromal TILs scoring of 46 slides by two pathologists following the TIL-WG guidelines and the
disagreement ranged between 3% and 45% (Figure 5.5E). The inter-pathologist variability was high
on slides that have high TILs, which is consistent with previous studies [172, 174]. Locy et al. [172]
reported that using MIHC staining reduces inter- and intra-observer variability on TILs scoring.
However, MIHC staining is expensive, and there is no single marker capable of capturing all single
nucleated immune cells [152]. As suggested by the TIL-WG, machine learning methods could help
alleviate the perceptual and practical limits of manual scoring [152, 174]. They also suggested that
these machine learning methods should follow the TIL-WG to facilitate interpretation and clinical
adoption [152, 174].

Here, we present a fully automated image analysis workflow that incorporates cell and tissue
level computational algorithms to mimic the TIL-WG essential guidelines to score stromal TILs
on DCIS H&E images. Our single cell level and tissue level algorithms and stromal TILs scoring
achieved high concordance with expert pathologists’ inputs. Machine learning methods allow exact
quantification of the spatial distribution of TILs in the stromal regions at different distances, which is
difficult for pathologists. We observed high inter- and intra-slide variability on the stromal boundary
width annotation that will be used for TILs scoring by a pathologist (range:0.014 - 0.228mm, Figure
5.5A, B). Toss et al. [146] also noted that manual scoring of larger stromal boundaries is challenging
and lacks consistency compared to touching TILs [146]. We found that the correlation between
pathologists and our automated pipeline scores was high for stromal boundaries > 0.2mm, though the
pathologist’s exact annotation was 0.067mm. This could be explained by the variability of stromal
boundary width annotation explained above. Pathologists might also look at a wider stromal boundary
while scoring the slides due to the short time they spend on a WSI.

Using our automated image analysis pipeline, we demonstrated that the continuous value of cAl-
TIL, which is computed using stromal boundary width of 0.03mm, is an independent predictor of the
risk of recurrence in DCIS (HR = 0.56, 95% CI: 0.39-0.80, p = 0.002, Figure 5.9B), after correcting
for clinical variables and biomarkers. Prior to our work, the prognostic relevance of TILs distribution
in DCIS was assessed using stromal TILs%, immune hotspot, touching TILs, and circumferential TILs
[167, 389, 392]. Immune hotspot and stromal TILs% were not associated with risk of relapse in DCIS
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[146, 167]. However, some studies have shown that touching and circumferential TILs are associated
with a risk of recurrence in DCIS following standard treatment. Xu et al. [392] and Toss et al. [146]
independently reported that a high touching TILs (> 5%) is associated with shorter recurrence-free
survival in cohorts of 129 patients and 816 patients, respectively. In Xu et al. [392], 16 out of 129
patients showed ipsilateral breast tumour recurrence after a median follow-up of 53 months. However,
Badve et al. [167] showed that circumferential TILs are associated with a favourable outcome but not
touching TILs. In a study by Farolfi et al. [150], a high stromal TILs level estimated using TIL-WG
guideline (boundary width not mentioned), was associated with a reduced risk of recurrence only in
the group of patients who did not receive the radiation therapy. In others, no association between TILs
level and the outcome was reported [148, 149].

These previous studies were based on manual TILs scoring following the guidelines by TIL-WG
[151]. The discrepancies in these studies could be partly due to inter-observer variability, event rates,
and endpoint variability, including ipsilateral recurrence and invasive carcinoma, and low event rates
generating weak statistical evaluation [167]. Moreover, the variation could be due to the difference in
the spatial configuration of stromal TILs scoring, such as the duct boundary width or the number of
ducts considered. For example, in [146], a maximum of 20 ducts were considered, where small or big
ducts were excluded. With automated image analysis methods like ours, the biases that come from
computation and boundary configuration could be avoided. Moreover, the computational methods
allow quantification of the morphology of DCIS duct.

Given that in invasive breast cancer, the basement membrane of the duct is broken and DCIS
tumour cells spread into the stroma, we hypothesised that the morphological disruption in DCIS duct
structure could be associated with recurrence and molecular characteristics of DCIS. Our findings show
no link between these features and recurrence. However, DCIS duct area was positively associated
with mutation burden in patients who developed invasive recurrence, but no association in patients
with DCIS recurrence and patients with no recurrence event. This could suggest that morphologic
phenotypes linked to changes in the genome are only seen in people with worse clinical outcomes.

Our work has some limitations associated with the computational pipeline development and study
population, which should be considered while interpreting the results. Firstly, the sample size used
in this study is small, which might introduce bias during our statistical analysis. Thus, a follow-up
study with large cohorts of patients is needed to validate our results. This is currently in progress, and
the image analysis pipelines developed here will be used. Secondly, regarding DCIS segmentation,
limited pathologist annotation was used to train and validate our deep learning model. Since accurate
DCIS duct segmentation is the heart of the automated spatial stromal TILs scoring and DCIS duct
morphology estimation, more annotations from multi-centre studies capturing the inherent variation in
slide digitisation might be needed to ensure the adoption of our model to other studies and in a clinical
setting. Thirdly, according to TIL-WG [151], stromal TILs in necrosis and regressive hyalinisation
regions should be excluded. This was not considered in our automated model development and future
work will focus on automating the segmentation of these regions. Fourthly, similar to Badve et al.

[167], due to longer follow-up time, the event rate in our dataset is higher compared to some previous
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studies such as the study by Xu et al. [392], which consisted of only 16 recurrence events from 129
patients studied. Thus, this could introduce bias when comparing our findings with previous studies.
Additionally, we had pathologist stromal TILs scoring for a limited number of patients, making
it difficult to assess the additional prognostic value of the automated TILs score to pathologists’
assessment. Finally, while we find that high circumferential TILs are associated with a low risk of
recurrence, the type and functional status of the cells cannot be determined from this study using H&E
images. Knowledge of the cells’ types and functional status is essential for developing therapeutic
mechanisms for DCIS. High throughput spatial staining techniques such as MIF or MIHC image
could be employed to unveil the phenotypes and functional status of these cells in sifu [116, 151]. In
Chapter 2 and 4, we developed deep learning based single cell and tissue analysis methods to process
MIF and MIHC images, and these methods could be employed here.

5.7 Conclusion

In this chapter, we developed an automated image analysis pipeline consisting of cell and tissue level
algorithms to simultaneously interrogate the association of morphological phenotype of DCIS and
spatial organisation of TILs in the surrounding stromal region of DCIS duct. Our stromal TILs scoring
pipeline follows most of the essential steps set by the TIL-WG guideline for stromal TILs scoring
in DCIS [151]. We found that high circumferential TILs is correlated with a low risk of recurrence
independent of clinical variables and biomarkers. However, there was no association between DCIS
morphological phenotype and recurrence. Taken all together, the spatial organisation of stromal TILs
computed using an automated method have prognostic relevance in DCIS, and this should be validated
on a larger cohort of patients for use in a clinical setting.



Chapter 6
General discussion and conclusions

In this thesis, we studied the complex spatial microenvironment of FL, MM and DCIS using tailored
algorithms. These cancer types develop in different organs with unique tissue architectures; as a
result, the tissue architecture of these tumours is distinct. We developed deep learning and spatial
statistical methods tailored to the complexity of the tissue of these tumours to look at their spatial
microenvironment and find phenotypes that were linked to the patient’s prognosis. We developed deep
learning based computational methods to delineate tissue compartments and spatially map cell types.
Subsequently, spatial statistical methods were used to identify spatial phenotypes associated with
patient treatment outcomes and recurrence free survival. By studying these multiple cancer types, we
found that to evaluate the prognostication of cell phenotypes, algorithms considering the complexity
of the tissue architecture of the microenvironment are essential.

The contribution of this thesis could be viewed in two ways, methodological developments,
and biological insights and biomarkers development. In terms of methodological contributions, we
developed novel deep learning based image analysis workflows to identify single cells and dissect
tissue comportments on H&E, MIHC and MIF whole tissue section histology images. We also
implemented spatial statistical analysis methods tailored to the nature of the tissue and cellular
architectures to quantify cells’ spatial organisation in different tissue compartments available in the
tumour resection. As biological insights and biomarkers development, we identified spatial immune
phenotypes and tissue morphological features that correlate with disease prognosis and provide
new insights into disease biology. In the following sections, we will discuss the main findings and
contributions, the limitations of this thesis, and future directions.

6.1 Methodological contributions

In Chapter 2 and Chapter 3, we developed DeepMIF, a fully automated, deep learning based MIF

images analysis workflow to spatially map single cell phenotypes on high-resolution image and to
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interrogate the spatial immune landscape of the intra- and inter-follicular region of FL. The main

methodological contribution in these chapters could be summarized as follows:

1. We developed ConCORDe-Net, a cell count regularised CNN to detect cells on MIHC images
and demonstrated how to incorporate problem domain knowledge into deep learning model

development to improve performance;

2. We developed the DeepMIF pipeline, a highly accurate, fast and cost-effective deep learning
method to identify cell phenotypes on MIF images from its de-convoluted images, which
generalises across multiple panels. To make the pipeline easily usable by the wider research
community, a GUI was developed which allows batch MIF images analysis, whole slide MIF
image reconstruction from tiles and visualisation. The pipeline’s code and dependency libraries

were packaged using Docker and it runs in both local and high-performance clusters;

3. We implemented an automated spatial analysis pipeline to quantify spatial co-localisation of
cells in the intra- and inter-follicular regions of FLL whole slide tissue section.

The development of ConCORDe-Net and DeepMIF took into consideration several methodologi-
cal challenges in annotation data collection and model development. Training and validating deep
learning models need huge amounts of data, which is laborious. For cell detection, several previous
works relied on single cell segmentation annotation. ConCORDe-Net uses single cell dot annotation
at the centre of the cell’s nucleus, which is less time costly than single cell segmentation. Moreover,
inspired by the significance of providing hints while solving a challenging problem, ConCORDe-Net
incorporates cell count as a regulariser during cell detection that improved cell detection performance
compared to state-of-the-art methods. Moreover, DeepMIF, which was extended from ConCORDe-
Net, utilises de-convoluted images of MIF data to ensure the model’s generalisability and flexibility
on cell phenotype exploration. Once cells positive for each marker are detected on their corresponding
de-convoluted images, a user could request to quantify and visualise cell phenotype expressing any
combination of markers used in the MIF panel. Furthermore, in Chapter 3, a pipeline that enables
spatial interrogation of cells’ spatial interaction within and outside the neoplastic follicles of FL was
developed, which enabled the identification of clinically relevant spatial phenotypes of FL.

Though ConCORDe-Net developed in Chapter 2 showed significant improvement in cell de-
tection accuracy on MIHC images, it was not robust for the detection of rare cell types which is
present in the BM trephine samples of MM patients. From a tissue perspective, while lymph node
biopsies of FL cases contain only the intra-follicle (neoplastic) and the inter-follicle regions, the BM
trephine tissue sample is a mosaic habitat of cellular tissue (neoplastic and normal tissue), fat, bone,
and blood. Considering this limitation in ConCORDe-Net and tissue architecture complexity, in
Chapter 4, AwareNet and MoSaicNet were proposed. Moving forward, image analysis algorithms
were developed to interrogate the spatial cell-cell interaction and bone morphology of MM patients.
The methodological significance of Chapter 4 could be summarized as follows:
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1. We developed AwareNet, which employed a cell abundance weighting mechanism that demon-
strated better cell detection of rare and abundant cells compared to other state-of-the-art
methods;

2. AwareNet and MoSaicNet addresses the computational challenges of analysing BM trephine
images that could have broad implications on studies of other haematologic cancers beyond
MM;

3. We implemented an automated computational image processing pipeline to analyse bone
heterogeneity and bone thickness from digitised trephine biopsy, providing insight into the

effect of therapies on bone density and heterogeneity;

4. We implemented spatial statistical analyses of bone marrow trephine biopsies considering
the tissue complexity to generate new insights into the biology and function of tumour and
non-tumour cells in situ, unveiling their dynamic changes across disease stages and after

treatment.

Using multiplex imaging technologies and machine learning algorithms (ConCORDe-Net, Deep-
MIF, AwareNet, MosaicNet) developed in Chapter 3 and Chapter 4, we found that spatial organ-
isation of immune cells and/or tumour cells in distinct tissue structures is prognostic in MM and
FL. While multiplex technologies are great tools for exploratory study and research, their clinical
translation is limited (at least up to now) because these technologies are expensive and thus not
available in many hospitals. The H&E staining is cheap, ubiquitous and routinely used for cancer
diagnosis. In Chapter 5, we extended the idea of spatial interrogation of the TME in relation to tissue
structures to H&E WSI in DCIS. In DCIS, tumour cells are contained within the DCIS ducts. Recent
studies have shown that stromal TILs (TILs outside the DCIS ducts) correlates with patients’ prognosis
of recurrence. Thus, the TIL-WG on breast cancer developed a set of guidelines for stromal TILs
manual scoring from H&E images in DCIS [151]. Briefly, the stromal TILs score is the percentage
of the stromal area around the DCIS ducts covered by stromal TILs where areas of normal ducts,
necrosis, immune hotspots, and intra-ductal TILs are excluded [151]. Pathologists ideally generate
a score per DCIS duct and report the average score over all DCIS ducts in the H&E image. The
guideline is developed to ensure standardised reporting and reproducibility and to facilitate clinical
adoption of stromal TILs [151, 174]. However, manual assessment has inherent limitations such as
intra- and inter-observer variability [172] and shortage of experienced pathologists [393, 174]. Whole
tissue section H&E are giga-pixel images, and the intra- and inter-observer variability could be due
to the perceptual limitation of human observers [152] and pathologists put an estimated score, not
an exact value. Thus, to alleviate these limitations, the TIL-WG suggested the development of an
automated image analysis pipeline which adheres to the guidelines [152].

To automate the stromal TILs scoring and follow the essential steps in TIL-WG guideline, in
Chapter 5, we implemented an automated image analysis pipeline which contains cell level and tissue

level algorithms. The methodological significance of Chapter 5 could be summarised as follows:
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1. We implemented a GAN based DCIS segmentation workflow to localise and segment individual

DCIS ducts. This workflow enables quantifying DCIS duct morphological features.

2. We optimised and validated TILs identification pipeline on H&E WSI, which contains methods
for tiling, tissue segmentation, cell detection and cell classification to spatially localise the
TILs within the WSI, and exclude immune hotspot. We used pre-trained deep learning models,
and for scalability to a large dataset and ease of sharing, all the codes and dependencies of the

pipeline were packaged using a Docker container.

3. We implemented an image analysis algorithm which delineates a stromal area of specific
width around each segmented DCIS duct considering neighbouring DCIS ducts and computes
duct level stromal TILs score, the density of stromal TILs in this area. Slide level score was
computed as the average of scores over all DCIS ducts within the image. This algorithm mimics
the pathologists’ strategy as suggested by TIL-WG [151]. However, beyond the pathologists’
capability, it accurately counts TILs and generates stromal TILs scores for different boundary
scales.

The methodological contributions discussed above enabled the identification of features that
provide new biological insight and correlate with treatment response and recurrence-free survival in
FL, MM and DCIS as discussed below.

6.2 Biological insights and biomarker development

Following the development of the deep learning based single cell phenotyping method in Chapter
2, the model was applied to diagnostic samples of FL patients. Lymph node biopsies of FL contain
morphologically distinct regions: intra-follicular (neoplastic region) and inter-follicular region. A
disruption in the topographic distribution of immune cells in the intra- or inter-follicular region of
the lymph node reflects a dysregulated activity of the cells and microenvironmental deviation from
the normal condition [394]. Thus, we investigated if there are specific cells spatial co-localisation
biomarker in the intra- and inter-follicular regions of FL that predicts the risk of recurrence after
standard treatment using R-CHOP or R-CVP.

DeepMIF was employed to spatially localise different immune cell phenotypes from multiple MIF
panels including immune T cells, macrophages, natural killer T cells and myeloid cells as presented
in Chapter 3. Follicles regions were annotated by expert haematologists. Spatially resolved cells
spatial co-localisation analysis revealed that co-localisation of CD8+FOXP3+ cells with CD4+CD8+
cells outside the neoplastic follicles is a predictor of a favourable outcome in FL patients. FLIPI is a
clinically used prognostic score commonly used to decide the better treatment strategy and predict the
likely outcome of a treatment [395]. This score is computed based on clinical information including
age, haemoglobin levels, number of involved nodal areas, stage and lactate dehydrogenase levels
[19, 396].
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Interestingly, the spatial co-localisation of CD8+FOXP3+ with CD4+CD8+ outside the neoplastic
follicles was a predictor of the risk of recurrence in FL independent of FLIPI and the abundance of
CD8+FOXP3+ and CD4+CD8+ cells. High spatial co-localisation of CD8+FOXP3+ with CD4+CD8+
outside the neoplastic follicles was associated with a lower risk of recurrence in FL patients who were
treated with R-CHOP or R-CVP chemoimmunotherapy drugs. Though this prognostic cell phenotype
was explored using MIF staining (which is mainly employed in the research area), after validating
the efficacy of this biomarker on large cohorts of patients, a triplex MIHC (which is less expensive
and available in more places) could be used to stain for CD4, CDS8, and FOXP3 markers. AwareNet
(described in Chapter 4) which was optimized to detect cells on MIHC images which contain CD4,
CD8, and FOXP3 markers could be employed here.

Next, we explored the association between the spatial interaction of immune cells and myeloma
cells and bone physiology with MM stages and post-treatment. The cells’ spatial proximity and image
processing algorithms to quantify bone physiology are described in Chapter 4. Previous research
showed that the cellular composition of the BM is different across MM disease stages and MM
treatment drugs influence the cellular composition of BM microenvironment. In line with the previous
works, there were a reduction of Treg cells and myeloma (cancer) cells after treatment compared with
their paired diagnostic samples. Of particular interest was that the difference between MGUS and
MM was in the spatial proximity of immune T cells and myeloma cells, but not the abundance of
either immune T cells or myeloma cells. Moreover, our newly developed image analysis pipeline to
explore bone density heterogeneity and bone thickness convincingly showed that bone heterogeneity
was significantly reduced after treatment revealing the effect of therapies on bone density and bone
reconstitution. Overall, the proposed methods to spatially interrogate the spatial and morphological
features of BM of MM patients generated insightful views on MM disease stages and post-treatment,
adding to the current literature, which is mainly focused on aspirate blood samples (without spatial
context).

Similarly, we explored the prognostic relevance of the spatial pattern of stromal TILs in DCIS
using a fully automated image analysis approach. There is growing evidence supporting that the
host immune system is crucial in fighting cancer, and stromal TILs are increasingly being used as an
important biomarker in immunotherapy clinical trials [164]. Thus, to ensure standardized reporting
and reproducibility, The TIL-WG has developed a guideline to score stromal TILs in DCIS from
routinely available H&E images [151]. In Chapter 5, we demonstrated that high stromal TILs in
the neighbourhood of DCIS ducts (within 0.03mm distance from DCIS duct boundary) is associated
with a low risk of recurrence after correcting the effect of clinical variables and biomarkers used
in DCIS diagnosis. It is also worth mentioning that the total percentage of lymphocytes was not
associated with recurrence status. Previous studies based on manual scoring showed conflicting
results [136, 397-400]. This could be in part due to the subjective nature of manual scoring, but our
automated stromal TILs scoring method generates unbiased assessment of stromal TILs.

On the debate about the role of cells in the TME on patient prognosis, this study suggests that the
cells should be assessed in the context of tissue architectures they reside in and their neighbourhood
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cells. I believe that the advancement of high-plex and high-resolution imaging technologies coupled
with deep learning based image analysis could significantly improve our understanding of the TME
and guide the identification of innovative therapeutic mechanisms.

6.3 Limitations

The limitations of this study have been discussed throughout the thesis. These could be summarised
into three categories. Firstly, the datasets used contain a relatively small number of patients. This
could limit the statistical power of the clinical analysis, and the effect of sampling bias could not be
completely ignored, even though we used stringent statistical measures. Secondly, a limited number
of human annotations and data from one centre were used to train and validate the proposed deep
learning models. Having said that, our deep learning models were validated on separately held data
and compared against the existing state-of-the-art methods. However, to adopt our deep learning
methods and clinical findings in a clinical environment, multi-centre cohorts of data capturing the
heterogeneous patient characteristics, intrinsic data variation associated with staining devices, staining
settings, and tissue preprocessing are crucial. Lastly, from a clinical perspective, the scope of this
study was to find spatial cell phenotypes and morphological features of TME that are associated or
correlated with patients’ outcomes. Causality studies and biological mechanisms were beyond the
scope of this study.

6.4 Future directions

This section describes suggested research directions that could be pursued in continuation of this
study’s methodological and biomarker advancement.

Spatial biology technologies have brought together years of advancements in tissue microscopy,
genomics, and transcriptomics, enabling simultaneous spatial interrogation of TME to assess tissue
structure and cellular heterogeneity in tissue context [401-404]. These technologies powered by
Al hold massive potential in understanding healthy tissue, tumour initiation and progression, drug
development and prognostic feature identification. This thesis provides Al based computational
tools to identify cell phenotypes, dissect tissue compartments and quantify morphological and spatial
context heterogeneity from such high-plex and high-resolution MIF and MIHC imaging data. As
described in Chapter 2, DeepMIF detects the location of cells and identifies the markers’ expression
status (positive or negative). The algorithm is fast and generalises to multiple panels. However,
cell segmentation could provide more flexibility for downstream analysis instead of cell detection.
Another interesting continuation of DeepMIF is developing a machine learning model to identify cell
types and functional status on H&E stained image using co-registered MIF image. The MIF staining
is expensive, but H&E is routinely available. Thus, predicting cell types and functions from H&E

images will be economical.
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In our FL study, using high throughput MIF spatial staining and DeepMIF, we demonstrated
that co-localisation of CD8+FOXP3+ cells with CD4+CD8+ cells in the inter-follicular region is a
predictor of the risk of recurrence in FL as described in Chapter 3. For the first time, this study
reported the prognostic association of these cell phenotypes with FL recurrence. Future studies could
be pursued to understand these cell types’ functions and how they interact with each other and with
tumour cells in the context of FL.

In our work on MM in Chapter 4, we developed computational methods tailored to the tissue in-
tegrity and cellular ecosystem of BM to interrogate the cells’ spatial organisation and bone physiology
with MM disease stage and post-treatment. The proposed methods showed new insights, unveiling the
cellular organisation and bone morphological dynamic changes across disease stages and after treat-
ment. In the current management of MM, asymptomatic MGUS and SMM precursors of MM, are not
treated until end-organ damage is observed. Identifying high-risk patients and treating these patients
before the event will be of great value [69]. The current risk model focuses mainly on clinical metrics,
and molecular profiling BM [87, 88]. Moreover, sequencing based studies have identified some
genomic alteration associated with the progression of MM from precursors but lacked consistency
[405]. The proposed methods in Chapter 4 could be used on a cohort(s) containing progressor and
regressor patients to explore bone morphological features and cellular spatial phenotypes associated
with the risk of progression and to evaluate if incorporating these features could improve the risk
prediction accuracy. Moreover, another fascinating research direction is exploring the association of
bone morphologic features and cells spatial organisation metrics with patients’ clinical outcomes such
as treatment response, and survival.

Finally, in our work on DCIS, we developed a computational image analysis pipeline to evaluate
the prognostic value of the spatial pattern of stromal TILs and DCIS morphological features in
predicting recurrence. Some recent studies [136, 397-400], which are based on manual stromal TILs
scoring and according to the TIL-WG [151], TILs within a "specialised stromal region" around the
DCIS ducts have been found to be associated with prognosis of DCIS. However, the precise size of
the region has yet to be determined [151]. Manual assessments are prone to intra- and inter-observer
variability [172]. Moreover, with visual assessment, it is difficult to accurately define the size of
stromal boundary and count TILs, especially for large stromal boundaries [397]. Our proposed
computational methods provide accurate stromal TILs quantification at various scales, as presented
in Chapter 5, enabling assessment of spatial differential immune infiltration. The proposed method
could be employed for a large multi-centre cohort(s) of patients to objectively compare the prognostic
value of stromal TILs at different scales and thereby define a specific distance for standardisation
of the assessment. Our data shows that circumferential TILs are prognostic but not stromal TILs
far away from DCIS ducts. This raises an interesting research question: are the type and functional
status of circumferential TILs different from distant TILs? This could also provide new insight into
the biology of DCIS tumour cells and their interaction with immune cells, which could pave the

way to developing novel immunotherapeutic techniques. MIF staining technologies could provide
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information on the functional status and phenotypes of the cells, and the DeepMIF method presented

in Chapter 2 could be employed here to map the cell phenotypes spatially.
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Figure S1.1: DeepMIF Graphical user interface: A) an Overview of the user interface. It
has image viewer and deep learning-based image analysis section. B) sample reconstructed
image. The IF images from Vectra 3 scanning system are tiles of around 4000x3000 pixels
size. For visualization, the whole slide image will be reconstructed back and rendered
using our image viewer. C) Scatter plot of cells detected by our dlearning-basedased cell
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Figure S1.2: Models and graphical user interface performance evaluation: Cell classi-
fiers’ performance evaluation on independent data from immune T cell panel data using area
under the curve (AUC) (A) and accuracy (B) and on independent data from natural killer T
cell and macrophage panels using AUC (C) and accuracy (D). Speed of cell identification E)
and image viewer reconstruction statistics (F).
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Table S2.1: Description of antibodies used in the follicular lymphoma study. MM
= Mouse Monoclonal; PR = Rabbit polyclonal; RM = Rabbit monoclonal; LM = Leica
Microsystems Ltd., Newcastle-upon-Tyne, UK; AT=Agilent Technologies LDA UK Ltd.
Cheshire, UK; AP = Abcam Plc. Cambridge, UK; SCB = Santa Cruz Biotechnology, Inc.,
Texas, U.S.A; *Dr G Roncador, CNIO, Madrid (Spain)

Molecule Antibody type Clone name Dilution Source Opal fluorophore
Anti-CD4 MM 4B12 1:50 LM Opal-620
Anti-CD8 MM 4B11 1:200 LM Opal-650
Anti-CD11b RM EP1345Y 1:500 AP Opal-520
Anti-CD14 MM SP192 1:100 AP Opal-570
Anti-CD15 MM MMA RTU LM Opal-650
Anti-CD16 MM 2H7 1:40 LM Opal-570
Anti-CD56 MM CD564 RTU LM Opal-520
Anti-CD68 MM PGM1 1:100 AT Opal-520
Anti-CD163 MM 10D6 1:200 LM Opal-690
Anti-CD206 RP - 1:250 AP Opal-620
Anti-Granulysin MM F-9 1:300 SCB Opal-690
Anti-Granzyme B MM 11F1 1:80 LM Opal-540
Anti-FOXP3 MM 236A/E3 1:2 *Gifted Opal-570
Anti-PD1 MM NAT 105/E3  1:350 AP Opal-540
Anti-PDL1 RM 22C3 RTU AT Opal-570

Table S2.2: Distribution of human annotation collected from deconvoluted images
belonging to negative and positive cell classes.

Deconvoluted image Negative cells Positive cells

Training (75%) and testing (25%) dataset from Immune T cells panel
CD4 6 651 3992

CDS8 5254 985

FOXP3 12413 1 809

PD-1 7527 1 696

Validation data from NK/T cells and macrophages panels

CD16 425 107

CD206 594 241

Table S2.3: Validation of MIF panels and our cell identification method using correlation
between CD8+ cells density in the MIF panels.. All correlation values were computed
using a non-parametric Spearman correlation.

Panel names Correlation (r) P value

Myeloid cells panel vs. immune T cells panel 0.81 1.03x 1073
Myeloid cells panel vs. NKT cells panel 0.72 2.53x107°
NKT cells panel vs. immune T cells panel 0.55 8.42x 1074
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Table S2.4: Statistical significance p value (between relapsed and not relapsed cases)
and RFS logrank p values for density of cells outside follicles. For statistical comparisons
among groups, a two-sided, nonparametric, unpaired, Wilcoxon signed-rank test was used,
unless stated otherwise. To correct for multiple testing, we applied Benjamini-Hochberg
(BH).

Cell Name P value RFS logrank p value
CD16+/Granulysin-CD56- 0.23016  0.695645
CD4-CD8-FOXP3+ 0.233 0.281826
CD11B+CD14+ 0.316867 0.058755
CD15+CD14+ 0.316867 0.153487
CD11B+CD15+ 0.316867 0.232623
CD8-CD11B+CD14-CD15- 0.360238 0.675889
CD11B-CD14-CD15+ 0.469798 0.622003
CD4+FOXP3+ 0.53056  0.833982
CD11B-CD14+CD15- 0.61019  0.866561
CD8+CD11B+ 0.61019  0.253616
CD163+PDLI1- 0.79584  0.293668
CD68-CD206+ 0.79584  0.397422
CD68+CD206+ 0.89485  0.405931
CD163+PDL1+ 0.89485  0.684397
CD68+CD206- 0.89485  0.713578
CD163-PDL1+ 0.89485  0.781852
CD4-CD8+FOXP3- 0.92479  0.456855
CD56+Granulysin+ 0.92479  0.767382
CD8+Granulysin+ 0.92479  0.807344
CD4+CD8+ 0.92479  0.207722
CDS8-Granulysin+CD56-CD16- 0.92479  0.757035
CD16+Granulysin+ 0.92479  0.844875
CD16+CD56+ 0.92479  0.177508
CD56+Granulysin-CD16- 0.92479  0.212977
CD4+CD8-FOXP3- 0.92479  0.952659
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Table S2.5: Statistical significance p value (between relapsed and not relapsed cases)
and RFS logrank p values for density of cells inside follicles. For statistical comparisons
among groups, a two-sided, nonparametric, unpaired, Wilcoxon signed-rank test was used,
unless stated otherwise. To correct for multiple testing, we applied Benjamini-Hochberg
(BH).

Cell Name P value REFS logrank p value
CD8+FOXP3+ 0.14226  0.076275
CD56+Granulysin+ 0.325973  0.259931
CD16+Granulysin-CD56- 0.325973  0.550402
CD8-Granulysin+CD56-CD16- 0.325973 0.259931
CD16+CD56+ 0.325973 0.310445
CD4-CDS8-FOXP3+ 0.326 0.084855
CD8-CD11B+CD14-CD15- 0.369798 0.766891
CD8+CD11B+ 0.369798 0.763889
CD11B+CD15+ 0.369798 0.763889
CD11B+CD14+ 0.369798 0.550043
CD15+CD14+ 0.369798 0.763889
CD11B-CD14-CD15+ 0.369798 0.763889
CD8+Granulysin+ 0.371392  0.310445
CD4-CD8+FOXP3- 0.39792  0.309384
CD4+CD8+ 0.39792  0.529019
CD4+FOXP3+ 0.425844 0.495265
CD68-CD206+ 0.503355 0.944195
CD68+CD206+ 0.503355 0.606061
CD163+PDLI- 0.503355 0.606061
CD68+CD206- 0.503355 0.944195
CD163-PDL1+ 0.52662  0.944195
CD56+Granulysin-CD16- 0.651385 0.310445
CD163+PDL1+ 0.74822  0.944195
CD16+Granulysin+ 0.8061 0.550402
CD11B-CD14+CD15- 0.86506  0.766891
CD4+CD8-FOXP3- 0.89485  0.921643
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Figure S2.1: Deep learning models performance evaluation. A,B) Classifier performance
evaluation using receiver operating characteristic curve (ROC) and area under the curve
(AUC) (A) and confusion matrix (B) on a separately held test data. C) Image scatters
plot showing two-dimensional mapping sampled testing data after UMAP dimensionality
reduction of deep learning features. D) Spearman correlation of density of CD8+ cells. E,F
Classifier performance evaluation using receiver ROC and AUC (E) and confusion matrix
(F) on validation data collected from macrophages and NK/T cells panels.
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Figure S2.2: Distribution density of CD8+FOXP3+ cells within follicles. Cell density
is measured per 1000um? between relapsed (n = 15) and not relapsed (n = 17) cases. For
statistical comparisons among groups, a two-sided, nonparametric, unpaired, Wilcoxon
signed-rank test was used. To correct for multiple testing, we applied Benjamini-Hochberg
(BH). All p values displayed are after multiple testing correction.
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Figure S2.3: Distribution cell phenotypes outside follicles. A-D Boxplot showing differ-
ence in density of cells (cells/ 1000um?2) outside follicles between relapsed (n = 15) and not
relapsed (n = 17) cases. For statistical comparisons among groups, a two-sided, nonparamet-
ric, unpaired, Wilcoxon signed-rank test was used. To correct for multiple testing, we applied
Benjamini-Hochberg (BH). All p values displayed are after multiple testing correction.
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Figure S2.4: Distribution cell phenotypes inside follicles. A-D Boxplot showing difference
in density of cells (cells/ 1000um2) inside follicles between relapsed (n = 15) and not relapsed
(n = 17) cases. For statistical comparisons among groups, a two-sided, nonparametric,
unpaired, Wilcoxon signed-rank test was used. To correct for multiple testing, we applied
Benjamini-Hochberg (BH). All p values displayed are after multiple testing correction.
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Figure S2.5: Co-localization of CD8+FOXP3+ with CD4+FOXP3+ outside follicle. A)
Boxplot showing difference in co-localization of CD8+FOXP3+ with CD4+FOXP3+ cells
outside follicels between relapsed (n = 15) and not relapsed (n = 17) cases. B) Kaplan-
Meier curves illustrating RFS of patients dichotomized using median co-localization of
CD8+FOXP3+ with CD4+FOXP3+ cells outside follicles.
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Figure S2.6: Association of inter-follicular CD8+FOXP3+ cell density with other stan-
dard scores. A) Boxplot showing difference interfollicular CD8+FOXP3+ cell density
between the three FLIPI categories. B) Boxplot showing difference interfollicular spatial
score between the three FLIPI categories. C) Correlation between spatial score and density
values. For statistical comparisons among groups, a two-sided, nonparametric, unpaired,
Wilcoxon signed-rank test was used, unless stated otherwise. D) Forest plots showing mul-
tivariate Cox regression analyses. Continuous values were used for the density parameter.
Follicular lymphoma international prognostic index (FLIPI).
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Figure S2.7: Difference in density of CD8+FOXP3+ cells in the inter- and intra-follicular
regions. In 24 cases out of 32 cases, the density of CD8+FOXP3+ cells was higher in the
inter-follicular region than in the intra-follicular region.



234

A
Spearman r=0.145, Q§0.428
0.971 s,
[ ]
2 o °8 °
2096{ . o« _ o
@ O
8 * .
= [ ]
o ° ° e
L 0951 o
e [ ]
[ ]
0.941 °
[ ]
0.934, . . . . .
0.00 0.01 0.02 0.03 0.04 0.05
CD8+FOXP3+ cells density outside follicles
B Group = NotRelapsed Group = Relapsed
[ ] Spearman r =-0.41, p=0.11 Spearman r=0.23, p=0.41
0.97 7 T
e
(]
>
£ 096 1® L
g )./
(O]
= [
£ 095 1 1e
2 e °
0.94 T 4 °
[
0.93 T T T T T T
0.00 0.02 0.04 0.00 0.02 0.04

CD8+FOXP3+ cells density outside follicles

CD8+FOXP3+ cells density outside follicles

Figure S2.8: Association of inter-follicular CD8+FOXP3+ cell density and neoplastic
follicles morphology: A,B) Correlation between CD8+FOXP3+ cell density and neoplastic

follicles solidity for all patients and group-wise (B).



235

Comparison of CD8+FOXP3+ cells
density outside follicles, n=37

0.071 0.551
.032
0.061 .ﬂ
0.001
e Group
_.‘;’ 0.051 1 Diagnostic not relapsed sample
S Diagnostic relapsed sample
'g_ 0.04- Relapse sample
0
g o
+ 0.031 .
™
& o
2 002y [ ——
0]
[a) [J
O 0.011
[ [ ]
0.00+
Group

Figure S2.9: Difference in inter-follicular CD8+FOXP3+ cell density between relapse
and diagnostic samples:
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Figure S2.10: Sample images showing tiles with high and low solidity scores of follicles.
Solidity (S) is a measure of shape irregularity. Its value ranges between 0 and 1. From 1
to 0 the level of irregularity increases. Colours represent neoplastic follicles label, it is not
associated with solidity score.
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Figure S2.11: Neoplastic follicles morphological features and follicular lymphoma
prognosis. A-C) Boxplots showing difference in neoplastic follicles solidity (A), average
area (B), eccentricity (C) between relapsed (n = 15) and not relapsed (n = 17). D-E) Boxplots
showing difference in total follicle area (D), number of follicles between relapsed (n = 15)
and not relapsed (n = 17). These features were normalised by total amount of tissue in the
slide. Area was measured in um?. For statistical comparisons among groups, a two-sided,
nonparametric, unpaired, Wilcoxon signed-rank test was used.
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Supplementary data for Chapter 4

Table S3.1: Antibodies used for Leica Bond slide stainer. *RTU — ready-to-use from
manufacturer

Antibody Supplier Species Dilution Control

BLIMP-1 CNIO Mouse 14 Tonsil
CDh4 Novocastra Mouse RTU* Tonsil
CDS8 Novocastra Mouse RTU Tonsil

FOXP3 eBioscience Rat 1:100 Tonsil
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Table S3.2: Staining protocols: CD4 / FOXP3 / CD8 panel. ERP = Epitope retrieval
protocol; AIT= Antibody incubation time (min); PPIT = Post primary incubation time (min);

PIT = Polymer incubation time (min)

AIT PPIT PIT

Antibody Colour Dilution ERP
CDh4 Brown RTU ER2: 20
FOXP3 Blue 1:100 ER1: 10
CD8 Red RTU

15
15
15

8
8
8

8
8
8

Table S3.3: Staining protocols: CD4 / CD8 / BLIMP1 panel. ERP = Epitope retrieval
protocol; AIT= Antibody incubation time (min); PPIT = Post primary incubation time (min);

PIT = Polymer incubation time (min)

Antibody Colour Dilution ERP AIT PPIT PIT
CD4 Brown RTU ER2: 20 15 8 8
BLIMP1  Blue 1:4 15 8 8
CD8 Red RTU 15 8 8

Table S3.4: Cell detection model Recall evaluation on detecting rare cell type,

FOXP3+CD4+.
Model CellName Recall
CONCORDe-Net FOXP3+CD4+ 0.5897
RatioWeight FOXP3+CD4+ 0.5983
ExpTpe2 FOXP3+CD4+ 0.641
ExpTypel FOXP3+CD4+ 0.6325
U-net FOXP3+CD4+ 0.547
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Figure S3.1: Machine learning algorithms to understand bone physiology: A) Sample
image showing expert manual segmentation annotation used to train and validate deep

learning models. B) Autoencoder architecture that learns low dimensional embedding of
bone structure superpixels.
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Figure S3.2: Confusion matrix showing classification performance of MoSaicNet based
compartment classification (A) and AwareNet single cell classifier (B) models.
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Figure S3.3: Understanding bone physiology from BM tissue samples: A-D) Boxplots
showing the difference in %fat between NDMM and post-treatment (A), between MGUS
and NDMM (B), and between different age groups split by median (C) and Gender groups
(D). E) A 2-dimensional mapping of superpixels using MoSaicNet learned 200-dimensional
features after dimensionality reduction by Uniform Manifold Approximation and Projection
(UMAP). To group similar bone superpixels, we applied Gaussian mixture clustering. The
numbers indicate the clustered index. Sample images are displayed for some of the clusters.
F) Finding the optimal number of clusters using the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC). The optimal number of clusters was 19. G)
Number of bone superpixels extracted from MGUS (9 patients), NDMM (10 patients) and
post-treatment (10 patients) samples. H) Bone density heterogeneity difference between
MGUS and post-treatment samples.
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Figure S3.4: Comparison of density of immune T cells and plasma cells in MGUS and
NDMM samples: (A-B) Boxplots showing the difference in density of FOXP3+CD4+ cells
(A), and BLIMP1+ cells (B) between MGUS samples and NDMM samples (n=19 samples).
C) Correlation between the density of FOXP3+CD4+ and BLIMP1+ cells in the different
patient groups. The cell density is presented per 1 mm? tissue area. Cell density is presented
per 1 mm? tissue area.
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Figure S3.5: Comparison of ratio of abundance of different cell types: A-B) Boxplots
showing the difference in FOXP3+CD4+:FOXP3-CD4+ ratio (A), FOXP3-CD4+:CD8+ ratio
(B), FOXP3+CD4+:CD8+ ratio (C), CD8+:BLIMP1+ ratio (D), and CD4+:BLIMP1+ ratio
(E) between paired NDMM and post-treatment samples. The outlier sample (Sample id =
UH15-19506) in (D), contains high number of CD8+ cells but low density of BLIMP1+ cells.
A region from this sample’s tissue section is shown in Figure S3.6. F-J)Boxplots showing
the difference in FOXP3+CD4+:FOXP3-CD4+ ratio (F), FOXP3-CD4+:CD8+ ratio (G),
FOXP3+CD4+:CD8+ ratio (H), CD8+:BLIMP1+ ratio (I), and CD4+:BLIMP1+ ratio (J)
between paired NDMM and MGUS samples.
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Figure S3.6: Sample image with high number of CD8+ cells but low BLIMP1+ cells.
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Figure S3.7: Correlation between cell density and cells’ spatial proximity scores: Scat-
ter plots showing the correlation between cells’ spatial proximity scores before and after
correcting for density. A, B) Correlation between the number of (#) FOXP3+CD4+ cells
in proximity with CD8+ cells before (A) and after (B) correcting for FOXP3+CD4+ cell
density. After correction, the correlation was reduced in all patient groups. C, D) Correlation
between the number of (#) BLIMP1+ cells in proximity with CD8+ cells before (C) and after
(D) correcting for BLIMP1+ cell density. After correction, the correlation was reduced in the
MGUS and post-treatment groups, but not in the NDMM group. All cell spatial proximity
scores were computed for 100um distance.
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Figure S3.8: Spatial proximity of immune cells to regulatory T cells and tumour cells:
A-B) Point plots showing the difference in the number of FOXP3+CD4+ cells within a
distance (um) from FOXP3-CD4+ cells (A) and CD8+ cells (B) between paired NDMM and
post-treatment samples. C) Point plot showing the difference in the number of BLIMP1+
cells within a distance from CD4+ cells between MGUS and NDMM samples as a function
of distance. D-E) Point plots showing the difference in the number of FOXP3+CD4+ cells
within a distance (um) from FOXP3-CD4+ (D) cells and CD8+ (E) cells among MGUS
and NDMM samples. F) A point plot showing the difference in the number of BLIMP1+
cells within a distance from CD4+ cells between MGUS and NDMM samples. In the point
plots, the points represent the mean and the bars are 95% confidence intervals, indicating
uncertainty. The p* indicate p values after multiple testing correction using the Benjamini-
Hochberg method.
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Figure S3.9: Clustered or dispersed pattern of immune and tumour cells in a
BM trephine sample: A-B) Boxplots showing the difference in NND and Z score of
FOXP3+CD4+ cells between NDMM and post-treatment (A), FOXP3+CD4+ cells between
NDMM and MGUS (B), FOXP3-CD4+ cells between NDMM and MGUS (C), and BLIMP1+
cells between age groups (median split) (D). The Z score shows the significance of the dif-
ference between the NND distribution for a given cell type from a complete spatial random
distribution and the observed NND (Methods).
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Supplementary Data for Chapter 5

Table S4.1: Correlation between pathologists stromal TILs scores and cAI-TIL com-
puted using different stromal boundary scales. Correlation (r) and p values were computed
using Spearman method.

Boundary (millimetres) r value p value

0.03 0.23 0.12

0.05 0.35 0.017

0.067 0.43 0.0029

0.08 0.45 0.001788976
0.1 0.53 1.45E-04
0.2 0.65 1.12E-06

0.3 0.66 5.99085E-07
0.4 0.66 6.28E-07

0.5 0.66 5.12E-07
0.6 0.67 3.28E-07

0.7 0.67 3.83E-07

0.8 0.66 7.075E-07
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Table S4.2: The concordance index (C-index) between observed time and predicted
recurrence free survival using cAI-TIL feature. Continuous values of cAI-TIL were used

to measure C-index.

Stromal boundary (mm) C-index
0.03 0.58
0.05 0.55
0.067 0.54
0.08 0.54
0.10 0.53
0.20 0.51
0.30 0.51
0.40 0.51
0.50 0.51
0.60 0.52
0.70 0.52
0.80 0.52

Table S4.3: Patient level: DCIS morphology and mutation burden association for all
cases: Correlation (r) values were computed using Spearman method. Stromal cAI-TIL was
computed using stromal boundary of 30um. n=34 patients.

Features r value p value
Common mutations vs cAI-TIL 0.113 0.526
Common mutations vs Duct Area 0.122 0.492
Common mutations vs Duct Solidity 0.041 0.817
Common mutations vs Num Ducts 0.11 0.537
Mutations divergence % vs cAI-TIL -0.133 0475
Mutations divergence % vs Duct Area 0.016 0.93
Mutations divergence % vs Duct Solidity 0.171 0.357
Mutations divergence % vs Num Ducts -0.062  0.742
Total vs cAI-TIL -0.006  0.974
Total vs Duct Area 0.386 0.024
Total vs Duct Solidity 0.179 0.312
Total vs Num Ducts 0.17 0.335
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Table S4.4: Patient level: DCIS morphology and mutation burden association for no-
IBE, DCISr and IBCr cases: Correlation (r) values were computed using Spearman method.
Stromal cAI-TIL was computed using stromal boundary of 30um. IBCr (n=14), DCISr
(n=14),n0-1BE (n=6).

Patient group Features r value p value
DCISr Common mutations vs cAI-TIL -0.269  0.352
no-IBE Common mutations vs cAI-TIL 0.257 0.623
IBCr Common mutations vs cAI-TIL 0.382  0.178
DCISr Common mutations vs Duct Area -0.194  0.506
no-IBE Common mutations vs Duct Area -0.2 0.704
IBCr Common mutations vs Duct Area 0.629 0.016
DCISr Common mutations vs Duct Solidity 0.011 0.97
no-IBE Common mutations vs Duct Solidity 0.2 0.704
IBCr Common mutations vs Duct Solidity 0.205 0.481
DCISr Common mutations vs Num Ducts 0.301 0.296
no-IBE Common mutations vs Num Ducts -0.314  0.544
IBCr Common mutations vs Num Ducts -0.033 091
DCISr Mutations divergence % vs cAI-TIL -0.039  0.904
no-IBE Mutations divergence % vs cAI-TIL -0.714  0.111
IBCr Mutations divergence % vs cAI-TIL -0.283  0.349
DCISr Mutations divergence % vs Duct Area 0.128  0.691
no-IBE Mutations divergence % vs Duct Area 0.314  0.544
IBCr Mutations divergence % vs Duct Area 0433  0.139
DCISr Mutations divergence % vs Duct Solidity 0.637  0.026
no-IBE Mutations divergence % vs Duct Solidity  0.257  0.623
IBCr Mutations divergence % vs Duct Solidity -0.008  0.978
DCISr Mutations divergence % vs Num Ducts -0.117  0.716
no-IBE Mutations divergence % vs Num Ducts 0.086  0.872
IBCr Mutations divergence % vs Num Ducts -0.02 0.949
DCISr Mutation burden vs cAI-TIL 0.033 0911
no-1BE Mutation burden vs cAI-TIL 0.143 0.787
IBCr Mutation burden vs cAI-TIL -0.154  0.599
DCISr Mutation burden vs Duct Area 0.068  0.817
no-IBE Mutation burden vs Duct Area 0.6 0.208
IBCr Mutation burden vs Duct Area 0.748 0.002
DCISr Mutation burden vs Duct Solidity 0.02 0.946
no-IBE Mutation burden vs Duct Solidity 0.429  0.397
IBCr Mutation burden vs Duct Solidity 0.176  0.547
DCISr Mutation burden vs Num Ducts 0.218  0.454
no-IBE Mutation burden vs Num Ducts 0.486 0.329
IBCr Mutation burden vs Num Ducts 0.004 0.988
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Table S4.5: Univariate analysis of prognostic value of mutation burden and mutation
divergence. Continuous values of mutation burden and mutation divergence were used.

Feature HR 95% CI P value
Total 1.01 0.99-1.03 0.0518
Divergence 1.01 0.99-1.02 0.271

Figure S4.1: Sample images showing how pathologists score TILs in DCIS. Image credit:
https://www.tilsinbreastcancer.org/
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A Distribution of TIL scores from two pathologists
Pathologist = Pathology 1 Pathologist = Pathology 2
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Figure S4.2: Distribution of pathologists stromal TILs scoring: A) Frequency plot of
pathologists TILs scores. B) Frequency plot of matched stromal TILs scores.

Figure S4.3: Inter-pathologist stromal TILs scoring variation was mostly in high TILs
slides. The stromal TILs scores for this was 25% by pathologist 1 and 70% by pathologist 2.
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Figure S4.5: Sample images with low inter-pathologist stromal TILs scoring variability
but high disagreement between pathologists score and automated method.
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Figure S4.6: Association between lymphocyte infiltration and recurrence in DCIS:A
Boxplots showing the difference in lymphocyte % (A) between patient groups. B) Boxplots
showing the difference in DCIS AI-TIL between recurrence groups for various TILs scoring
boundary. B) Boxplots showing the difference in DCIS AI-TIL between recurrence and
non-recurrence patients for various TILs scoring boundary. Number of patients: recurrence
groups (no-IBE (n=19), DCISr (n=61) and IBCr (n=47)); IBE is combination of DCISr
and IBCr groups (n=108). The p-values were computed using a two-sided unpaired non-

parametric Wilcoxon method considering p<0.05 significant. ER = estrogen receptor; +Ve =
Positive; -Ve = Negative.
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Figure S4.7: Association of DCIS ducts morphology with recurrence status, grade, ER
status, and PR status: Boxplots showing difference in DCIS duct area (A-D) and DCIS
duct solidity (E-H) between different patient groups. The label of y-axis is shared among all
plots in a row. Number of patients: recurrence groups (no-IBE (n=19), DCISr (n=61) and
IBCr (n=47)); Grade (C) (III (n=68), II (n=49), and I (n=10)); ER status (+ve (n=71) and
-Ve (n=28), and PR status (+Ve (n=60) and -Ve (n=35)). ; PR = progesterone receptor; ER
= estrogen receptor; +Ve = Positive; -Ve = Negative. The p-values were computed using a

two-sided unpaired non-parametric Wilcoxon method considering p<0.05 significant.
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cAl-TIL density plot showing variability of cAl TIL
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Figure S4.8: Kernel density plot showing heterogeneity of cAI-TIL score within and
between slides. One plot per slide. cAI-TIL score was computed for every DCIS duct and
density estimation was applied. cAI-TIL was computed using boundary width of 0.03mm.
Wider bandwidth indicates higher cAI-TIL heterogeneity. The label of y-axis is shared
among all plots in a row.
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Figure S4.9: DCIS ducts morphology and cAI-TIL infiltration at duct level: Correlation
between of DCIS duct area (A,B), solidity (C,D), and eccentricity (E,F) with stromal cAl-
TIL computed using boundary width of 0.03mm. n represents number DCIS ducts. A point
represents a DCIS duct. All correlations were computed using spearman method.
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Figure S4.10: Association between heterogeneity of DCIS morphology and cAI-TIL at
duct DCIS duct level with clinical variables: Boxplots showing difference in variance
of cAI-TIL (A-D), DCIS duct area (E-H) and DCIS duct solidity (I-L) between different
patient groups. The label of y-axis is shared among all plots in a row. Number of patients:
recurrence groups (no-IBE (n=19), DCISr (n=61) and IBCr (n=47)); Grade (C) (III (n=68),
II (n=49), and I (n=10)); ER status (+ve (n=71) and -Ve (n=28), and PR status (+Ve (n=60)
and -Ve (n=35)). ns = not significant; PR = progesterone receptor; ER = estrogen receptor
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Figure S4.11: Association between inter tumour block heterogeneity of DCIS morphol-
ogy and cAI-TIL with clinical variables: Boxplots showing difference in inter tumour
block difference in cAI-TIL (A-D), DCIS duct area (E-H) and DCIS duct solidity (I-L)
between different patient groups. The label of y-axis is shared among all plots in a row.
Number of patients: PR = progesterone receptor; ER = estrogen receptor. Slide level features
were computed as mean of DCIS level feature. Then, inter block heterogeneity was computed
as absolute value of difference between the scores from the two blocks.
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Figure S4.12: Difference between patients with IBE and no-IBE in terms of DCIS ducts
morphologic features and cAI-TIL heterogeneity: cAI-TIL (W = 0.03um), solidity, DCIS
duct area, and eccentricity were computed at duct level. This allows estimating the mean and
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Figure S4.13: B) Kaplan-Meier curves illustrating RFS of patients dichotomized using
median cAI-TIL. Median value of cAI-TIL was used to stratify the patients into high and
low group.
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Correlation between mutation burden and common mutations, n=81 {'no-IBE": 37, 'DCISr": 23, 'IBCr": 21}
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Figure S4.15: Analysis of number of common mutations: A) Correlation between number
of common mutation and mutation burden. B) A boxplot showing difference in common
mutations between recurrence groups.
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Figure S4.16: Association of mutation data with recurrence, grade, ER status, and PR
status: A,B Boxplots showing difference in mutation burden (A) and mutation divergence %
(B) between IBE and no-IBE cases. C-J) Boxplots showing difference in mutation burden
(C-F) and mutation divergence %(G-J) between different patient groups. Number of patients:
recurrence groups (no-IBE (n=37), DCISr (n=23) and IBCr (n=21)); Grade (C) (III (n=33), 1T
(n=13), and I (n=2)); ER status (Positive (n=33) and Negative (n=15), and PR status (Positive
(n=26) and Negative (n=22)). IBE group contains combined DCISr and IBCr patients (n=44).
PR = progesterone receptor; ER = estrogen receptor
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Figure S4.17: Association of mutation features with histologic features and recurrence
free survival A,B) Kaplan—Meier curves illustrating RFS of patients dichotomized using
median mutation burden (A) and mutation divergence % (B). C) Forest plots showing
multivariate Cox regression analyses. Continuous values of mutation burden, cAI-TIL and
mutation divergence % were used. D-F) Scatter plot showing correlation of cAI-TIL distance
vs mutation divergence % (D, no-IBE (n=6), DCISr (n=12) and IBCr (n=13)), mean duct
solidity vs mutation burden (E, no-IBE (n=6), DCISr (n=14) and IBCr (n=14)) and DCIS
duct solidity distance vs mutation divergence (F, no-IBE (n=6), DCISr (n=12) and IBCr

(n=13)).
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