1 Dose escalated simultaneous integrated boost radiotherapy in early breast cancer: results of the

- 2 IMPORT HIGH multi-centre phase III randomised controlled trial (ISRCTN47437448)
- 3

4 Authors

*Charlotte E Coles¹, *Joanne S Haviland², Anna M Kirby³, Clare L Griffin², Mark A Sydenham², Jenny C
Titley², Indrani Bhattacharya⁴, A Murray Brunt⁵, HY Charlie Chan⁶, Ellen M Donovan⁷, David J Eaton⁸,
Marie Emson², Penny Hopwood², Monica L Jefford⁹, Sara V Lightowlers¹, Elinor J Sawyer¹⁰, Isabel
Syndikus¹¹, Yat M Tsang¹², Nicola I Twyman¹³, [#]John R Yarnold¹⁴ and [#]Judith M Bliss², on behalf of the
IMPORT Trial Management Group.

10

1112 Affiliations

- ¹³ ¹Professor Charlotte E Coles FRCR, Department of Oncology, University of Cambridge
- ²Joanne S Haviland MSc, The Institute of Cancer Research Clinical Trials and Statistics Unit, London SM2
 5NG
- ³Anna M Kirby, FRCR Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Downs Road,
 Sutton, Surrey SM2 5PT UK
- ¹⁸ ²Clare L Griffin MSc, The Institute of Cancer Research Clinical Trials and Statistics Unit, London SM2 5NG.
- ²Mark A Sydenham, BSc Hons, The Institute of Cancer Research Clinical Trials and Statistics Unit, London
 SM2 5NG.
- ²Jenny C Titley BSc, The Institute of Cancer Research Clinical Trials and Statistics Unit, London SM2 5NG
 ⁴Indrani Bhattacharya FRCR, Department of Oncology and Radiotherapy, Cambridge University Hospitals
 NHS Foundation Trust, Cambridge
- ²⁵ NGS Foundation Trust, Cambridge
 ⁵Professor A Murray Brunt, FRCR, David Weatherall Building, School of Medicine, University of Keele,
- Keele, Staffordshire ST5 5BG and University Hospitals of North Midlands NHS Trust, Stoke-on-Trent,
 Staffordshire, ST4 6QG
- ²⁷ ⁶HY Charlie Chan FRCS, Department of Breast Surgery, Nuffield Health Cheltenham Hospital,
- 28 Gloucestershire
- ⁷Ellen M Donovan PhD, Centre for Vision, Speech and Signal Processing, University of Surrey
- ³⁰ ⁸David J Eaton PhD, Department of Medical Physics, Guy's and St Thomas' Hospitals, London
- ³¹ ²Marie Emson BSc, The Institute of Cancer Research Clinical Trials and Statistics Unit, London SM2 5NG.
- ³² ²Penelope Hopwood MD, The Institute of Cancer Research Clinical Trials and Statistics Unit, London
 ⁹Monica L Jefford MBA, Independent Cancer Patients Voice, London
- ¹Sara V Lightowlers FRCR, Department of Oncology, University of Cambridge
- ¹⁰Professor Elinor J Sawyer FRCR, Guys Cancer Centre School of Cancer and Pharmaceutical Sciences,
 Guy's and St Thomas' Foundation Trust, Kings College, London
- ³⁷ ¹¹Isabel Syndikus FRCR, Department of Radiotherapy, Clatterbridge Cancer Centre, Bebington UK
- ¹²Yat M Tsang PhD, Radiotherapy Trials QA Group (RTTQA), Mount Vernon Cancer Centre, Northwood,
 UK
- ¹³Nicola I Twyman MSc, Medical Physics, Cambridge University Hospitals NHS Foundation Trust,
 Addenbrooke's Hospital, Cambridge
- ¹⁴Professor John R Yarnold FRCR Department of Radiotherapy and Imaging, The Institute of Cancer
 Research, Surrey
- ⁴⁴ ²Professor Judith M Bliss MSc, The Institute of Cancer Research Clinical Trials and Statistics Unit, London
 ⁴⁵ SM2 5NG.
- 46 47
- 48 * joint first authors
- 49 *[#]* joint last authors

5051 Corresponding author52

Professor Charlotte E Coles, Department of Oncology, University of Cambridge, Box 193, Hills Road,
 Cambridge, CB2 0QQ. <u>cec50@cam.ac.uk</u>

55 ABSTRACT

56 Background

A tumour bed boost delivered after whole-breast radiotherapy increases local cancer control rates but requires more patient visits and can increase breast hardness. IMPORT HIGH tests simultaneous-integratedboost (SIB) against sequential-boost aiming to reduce treatment duration whilst maintaining excellent local control and similar/reduced toxicity.

61 Methods

IMPORT HIGH (ISRCTN47437448) is a non-inferiority open-label randomised controlled trial allocating women after breast-conserving surgery for pT1-3pN0-3aM0 invasive carcinoma between 40Gy/15F to wholebreast (WB) + 16Gy/8F sequential photon tumour bed (TB) boost ("40+16Gy"; control), 36Gy/15F to WB, 40Gy to partial-breast + 48Gy ("48Gy") or + 53Gy ("53Gy") in 15F SIB to TB (1:1:1). Boost clinical target volume was the clip-defined TB. Primary endpoint was ipsilateral breast tumour relapse (IBTR); assuming 5% 5-year incidence with 40+16Gy, non-inferiority was pre-defined as <3% absolute excess in test groups (upper limit of 2-sided 95%CI). Adverse events (AE) were assessed by clinicians, patients and photographs.

69 Findings

70 2617 patients (871: 40+16Gy, 874: 48Gy, 872: 53Gy) were recruited 03/2009-09/2015 from 76 UK centres. Median boost CTV was 13cm³ (IQR 7, 22). At 74-months median follow-up there were 76 IBTR events 71 72 (40+16Gy: n=20, 48Gy: n=21, 53Gy: n=35). Five-year IBTR incidence was 1.9% (95% CI 1.2, 3.1) for 40+16Gy, 2.0% (1.2, 3.2) for 48Gy, 3.2% (2.2, 4.7) for 53Gy, with estimated absolute differences versus 73 40+16Gy: 0·1% (-0·8, 1·7) for 48Gy, 1·4% (0·03, 3·8) for 53Gy. Upper confidence limit for 48Gy versus 74 75 40+16Gy indicated non-inferiority for 48Gy. Cumulative 5-year incidence of clinician-reported 76 moderate/marked breast induration was 11.5% for 40+16Gy, 10.6% for 48Gy (p=0.40 versus 40+16Gy) and 77 15.5% for 53Gy (p=0.015 versus 40+16Gy).

78 Interpretation

In all groups five-year IBTR incidence was lower than the 5% originally expected regardless of boost
 sequencing. Dose-escalation is not advantageous. 5-year moderate/marked AE rates were low using small
 boost volumes. IMPORT HIGH-SIB is safe and reduces patient visits. 297/300

82 Funding

- 83 Cancer Research UK (CRUK/06/003)
- 84
- 85

86 **RESEARCH IN CONTEXT**

87 Evidence before this study

A comprehensive literature search was carried out before the trial opened using PubMed and Medline to 88 review all publications addressing (i) pathological and clinical studies investigating patterns of ipsilateral 89 breast tumour relapse following radiotherapy (RT) (ii) breast tumour bed boost studies (iii) methods of tumour 90 91 bed definition and localisation for breast boost. It was concluded that most ipsilateral breast tumour relapses 92 occur in and around the tumour bed; all published breast boost trials used sequential boost RT, and historical methods of breast boost localisation and treatment were suboptimal - large volumes were needed to reduce 93 94 risk of tumour bed "miss", which could also cause increased normal tissue toxicity. It was hypothesised that dose intensity modulation using simultaneous integrated boost (SIB) offers a novel and effective alternative 95 96 to conventional sequential boost techniques with a reduction in number of treatments.

97

98 Added value of this study

99 IMPORT HIGH is the first phase III randomised trial to publish 5-year outcome data using hypofractionated SIB and is substantially larger than any other reported SIB studies. In addition, as far as the authors are 100 101 aware, it is the first breast boost trial to use smaller, more targeted boost volumes with intensity modulated radiotherapy (IMRT) and image-guided radiotherapy (IGRT) in all groups, including the control group. This 102 103 ensured consistent boost volumes across the treatment groups, leaving timing of boost (synchronous versus sequential) as the main variable in the trial. At 5 years, hypofractionated SIB (48Gy) shows non-inferiority in 104 terms of ipsilateral local relapse compared with sequential boost with incidence of relapse much lower than 105 anticipated, and with low late adverse effect rates in all groups. There was no advantage for escalating to 106 53Gy SIB, which was associated with increased breast induration. In contrast, 48Gy SIB showed similar or 107 reduced normal tissue toxicity compared with control. Follow-up is on-going and reporting of 10-year results 108 109 is envisaged.

110

111 Implications of all the available evidence

Standard linear accelerators can deliver both IMRT and IGRT, making it possible to deliver SIB in most countries worldwide using existing resources. Breast-boost radiotherapy usually consists of 4-6 weeks of treatment, so a reduction to just 3 weeks SIB would be beneficial for patients and healthcare systems. For those centres who have adopted 1-week whole breast RT followed by 1 week boost, 3-week SIB is still an important treatment for patients requiring 3-week nodal RT, including internal mammary irradiation. The results of IMPORT HIGH will also facilitate new studies to investigate 1-week SIB to include patients needing nodal radiotherapy.

119

120 INTRODUCTION 4863/4500

Data from pathological breast specimens and clinical studies suggest that most ipsilateral breast tumour 121 relapses occur close to the original site of resection - the tumour bed (TB) (1-3). Furthermore, randomised 122 trials of breast conserving surgery (BCS) followed by whole-breast radiotherapy with or without a TB boost 123 demonstrated that a boost roughly halves the risk of breast tumour relapse (4, 5). Although individual boost 124 125 trials have not shown an overall survival advantage over whole-breast radiotherapy alone, breast tumour 126 relapse should be minimised as it is a significant life-event for patients often requiring mastectomy and 127 systemic therapy. Independent prognostic factors for local relapse include young age and high tumour grade (6). In the EORTC boost versus no boost trial, risk of local failure at 10-years with boost was 13.5% and 8.7% 128 in patients <40-years and 41-50-years respectively. 129

The potential local control gain with boost is offset by an increased risk of late normal tissue toxicity, including an approximate doubling of breast fibrosis (7) which increases with irradiated volume (8). Boost is traditionally delivered sequentially after whole-breast radiotherapy in 5-8 treatments (fractions) thereby increasing treatment burden for patients and health care systems.

IMPORT HIGH builds on results of previous UK breast radiotherapy trials (9, 10) and uses newer radiation 134 techniques (intensity-modulated-radiotherapy (IMRT) and image-guided-radiotherapy (IGRT)) to address the 135 challenges of boost radiotherapy. Using IMRT, dose-intensity can be modulated throughout the breast to 136 better reflect risk of relapse. Dose per fraction can be increased to the tumour bed and this is known as a 137 simultaneous integrated boost (SIB). The boost volume is minimised by targeting titanium clips (or gold 138 seeds) placed in the TB during surgery (11, 12). This enables escalation of radiation dose to the TB whilst 139 delivering a standard dose to nearby breast tissue and a slightly lower dose to peripheries of breast tissue 140 where risk of relapse is lowest. IMPORT HIGH is the largest randomised trial to date testing dose-escalated 141 SIB against standard sequential boost. Five-year efficacy and normal tissue toxicity results are reported. 142

143

144 **METHODS**

145 Study design

IMPORT HIGH is a multicentre randomised phase III non-inferiority trial that tested the safety and efficacy of 146 dose-escalated IMRT after BCS for early breast cancer in women with higher than average local relapse risk. 147 IMPORT HIGH was originally designed as a phase II trial with the primary endpoint of palpable induration 148 inside the boost volume. It was anticipated that these results would inform the design of a subsequent 149 practice-changing phase III trial evaluating ipsilateral breast tumour relapse (IBTR). However, additional 150 funding from Cancer Research UK was obtained via a competitive peer-reviewed process to increase the 151 sample size to allow robust statistical evaluation of IBTR. This amendment endorsed by the Independent 152 Data Monitoring Committee (IDMC) and the Trial Steering Committee, enabled an efficient and streamlined 153 evaluation of toxicity and cancer outcomes within one trial. 154

155

156

157 Participants

Women aged ≥18-years receiving BCS for invasive adenocarcinoma T1-3, pN0-pN3a, M0 at presentation, 158 with clear microscopic resection margins (minimum clear margin not specified) were eligible. Patients were 159 ineligible if they had a previous malignancy (except basal cell skin cancer and cervical intraepithelial 160 neoplasia or non-breast malignancy and ≥5 years disease-free), had undergone mastectomy, had ipsilateral 161 breast implant, or received concurrent chemo-radiotherapy. Eligibility for IMPORT HIGH and IMPORT LOW 162 (13) did not overlap. All patients in IMPORT HIGH were deemed suitable to receive a tumour bed boost, 163 whereas no boosts were given in IMPORT LOW. The study was approved by the Cambridgeshire Research 164 Ethics Committee 4 (08/H0305/13), sponsored by The Institute of Cancer Research and conducted in 165 accordance with the principles of Good Clinical Practice. All patients provided written informed consent. The 166 167 trial is registered as ISRCTN47437448.

168

169 Randomisation and masking

170 Women were randomly assigned (1:1:1) to receive (i) 40Gy in 15-fractions to whole-breast plus 16Gy in 8fractions sequential photon boost to the TB (control), or (ii) 36Gy in 15-fractions to low-dose-breast -volume 171 with 40Gv in 15-fractions to standard-dose-breast-volume and 48Gv in 15-fractions concomitant photon boost 172 to TB (Test group 1), or (iii) as for (ii) but 53Gy in 15-fractions concomitant photon boost to TB (Test group 173 2); Figure A1. In all groups, the dose to lymph node regions in patients requiring nodal radiotherapy was 174 40Gy in 15-fractions. To randomise a patient, centres telephoned The Institute of Cancer Research Clinical 175 Trials and Statistics Unit (ICR-CTSU; London, UK). Computer-generated random permuted blocks (mixed 176 size 6 and 9) were used to stratify patients by radiotherapy treatment centre. Treatment allocation was 177 unmasked for patients and clinicians. 178

179

180 Procedures

The TB was localised with titanium surgical clips or gold seeds to enable radiotherapy planning and aid IGRT 181 verification, IMPORT HIGH was recruiting when TB clip insertion was still being implemented into routine 182 practice. Participants were CT-imaged supine for radiotherapy planning. Most patients were scanned in free-183 breathing, with deep-inspiratory breath-hold techniques introduced only towards the end of the trial. A TB 184 clinical target volume (CTV_{boost}) was defined as clips plus surrounding architectural distortion. It was 185 recommended that the CTV_{boost} be ≤5% of the whole-breast planning target volume (PTV). The CTV_{boost} was 186 187 grown by 5mm to create the boost PTV (PTV_{boost}). For patients randomised to the test groups, the CTV_{boost} was expanded by 15mm to create a partial breast CTV (CTV_{PB}) which was edited to be within whole-breast 188 189 CTV (CTV_{WB}) including cropping 5mm from the skin. A 10mm margin was added to each of CTV_{PB} and CTV_{WB} to create PTV_{PB} and PTV_{WB} respectively. Either forward or inverse-planned IMRT was allowed (14). Where 190 191 nodal radiotherapy was recommended, a single anterior field matched to the superior aspect of the tangents

192 was used for most patients with moderately hypofractionated radiotherapy as per UK guidelines and more 193 recently international guidelines (15-16). Additional details are described in the radiotherapy planning pack, which was developed with the National Institute for Health Research and Care Radiotherapy Trials Quality 194 195 Assurance (NIHR-RTTQA) team. The protocol and radiotherapy planning pack are available online (https://www.icr.ac.uk/our-research/centres-and-collaborations/centres-at-the-icr/clinical-trials-and-statistics-196 unit/clinical-trials/import high). The trial quality assurance included facility questionnaires, contouring and 197 planning benchmark cases, process documents, dosimetry audits, prospective and retrospective case 198 199 reviews. All radiotherapy planning data were requested and stored electronically at the RTTQA repository.

After radiotherapy, patients were scheduled for annual follow-up to 10 years. Late adverse effects (AE) were 200 assessed independently by clinicians, patients and using photographs. Clinicians assessed AE annually for 201 patients. Centres could opt into patient-reported outcomes (PRO) and photographic substudies; all 202 all 203 patients at these centres were offered participation into both of the substudies. Photographs were taken at baseline (post-surgery and pre-radiotherapy), 3 and 5-years. PRO questionnaires were administered at 204 baseline (before randomisation), 6 months, 1, 3 and 5-years. PRO included the European Organisation for 205 Research and Treatment of Cancer (EORTC) QLQ-BR23 breast cancer module. Body Image Scale, and 206 207 protocol-specific questions relating to ipsilateral breast changes following treatment.

208

209 Outcomes

IBTR was defined as invasive carcinoma or ductal carcinoma in situ presenting anywhere in the ipsilateral breast parenchyma and/or overlying skin whether considered local relapse or new primary tumour. IBTR was localised as follows: (a) Breast parenchyma/skin within boost volume (all groups); (b) Breast parenchyma/skin within volume receiving 40+16Gy in 15-fractions (all groups); (c) Breast parenchyma/skin within volume receiving 36Gy in 15-fractions (test groups only); (d) Marginal relapse in skin or subcutaneous tissue/breast on border or just outside (within 2cm) of whole breast volume (all groups).

Secondary efficacy outcomes included location of local tumour relapse, time to first regional relapse (axilla, 216 supraclavicular fossa and internal mammary chain), distant relapse, disease-free and overall survival. 217 Secondary outcomes relating to late AE were assessed by patients, photographs and clinicians. Clinicians 218 219 assessed breast shrinkage, distortion, induration, breast oedema, breast tenderness on palpation, breast discomfort and telangiectasia using a 4-point ordinal scale ("not at all", "a little", "guite a bit" or "very much", 220 interpreted as none, mild, moderate or marked), comparing the ipsilateral versus contralateral breast where 221 relevant. Symptomatic rib fracture, symptomatic lung fibrosis, ischaemic heart disease and pneumonitis were 222 223 recorded. Results for PRO relating to breast and arm/shoulder symptoms (scored on a 4-point ordinal scale as for the clinical assessments) are reported in this manuscript; further analysis of PRO will be reported 224 225 separately. Digital photographs were scored on a 3-point ordinal scale representing none, mild or marked 226 change in breast appearance at 3 and 5-years compared with baseline by 3 observers (17). Observers were 227 blind to treatment allocation but not year of follow-up.

Acute toxicity was not recorded in the trial as the we have shown previously that acute normal tissue effects are mild even with boost using hypofractionated radiotherapy and that acute toxicity is not associated with development of late normal tissue events (18).

231

232 Statistical methods

This was a non-inferiority design. Assuming 5% IBTR cumulative incidence rate by 5-years for control group, 856 patients per group (2568 total) were required to exclude an IBTR rate of \geq 8% in either test group (\geq 3% increase) with 80% power and 1-sided α =0.025 (allowing for comparison of each test group versus control), assuming 7% unevaluable at 5 years. Sample size justification for original primary endpoint of palpable induration inside the boost volume is in the Appendix.

Survival analysis methods compared efficacy outcomes between each test group and the control group, with 238 239 time measured from randomisation and censoring at death or last follow-up for those who remained eventfree. Kaplan-Meier and cumulative hazard functions were plotted by treatment group and estimates of 5-year 240 cumulative incidence with 95% confidence intervals (CI) obtained. Treatment effects for each test group 241 versus control were summarised using hazard ratios (HR, with 95%CI) from Cox proportional hazards (PH) 242 regression models and pairwise logrank tests. Absolute differences (95%CI) in 5-year IBTR were estimated 243 244 by applying the HRs (and CI) to the control group 5-year event-free estimate. The principal assessment of non-inferiority for IBTR for each test group versus control was whether the upper limit of 2-sided 95%CI 245 (corresponding to 1-sided 97.5%CI) for the absolute difference in 5-year IBTR was <3%. Following 246 247 confidential review of the trial results, the IDMC proposed that a range of hypothetical scenarios be presented to the Trial Management Group (TMG) without disclosing observed event rates. The TMG discussions 248 249 including patient advocates agreed that absolute rather than relative risk was more pertinent. As specified in the protocol and statistical analysis plan, non-inferiority was also tested using the a priori critical HR of 1.63 250 251 derived from the expected 5-year IBTR rate in the control group and absolute difference of 3%: p<0.025 was deemed statistically significant for the non-inferiority test (probability of incorrectly accepting an inferior test 252 253 group). The proportional hazards assumption of the Cox regression model for each efficacy outcome was 254 tested and found to hold for all relapse and survival endpoints. An exploratory competing risks analysis was done for IBTR, with death from any cause as a competing event in a Fine-Gray competing risks regression 255 256 model.

A composite endpoint of any clinician-assessed AE in the breast was derived using the worst score for 257 258 distortion, shrinkage, induration, telangiectasia and oedema separately for each time point. Clinician and 259 patient assessments of late AE were dichotomised as none/mild versus moderate/marked and analysed as follows: (i) 5-year cross-sectional analyses compared prevalence between groups using risk ratios (RR) and 260risk differences, and Fisher's exact test. (ii) Survival analysis of time to first moderate/marked event, including 261 Kaplan-Meier estimates of cumulative incidence, and groups compared using HR from Cox PH regression 262 and the pairwise logrank test. Patients not experiencing an event were censored at last AE assessment (by 263 clinician or patient as appropriate) or death. For PRO the Cox model was adjusted for baseline scores. (iii) 264

Longitudinal analyses accounting for within-patient correlations between repeated measurements using generalised estimating equations (GEE) including all assessments compared treatment groups across the whole follow-up period using odds ratios (OR) and the Wald test; GEE models included a term representing years of follow-up. GEE models compared mild/marked change in photographic breast appearance between treatment groups. Due to multiple testing a significance level of 0.01 was used for the clinician and patient AE assessments, except for clinician-assessed breast induration that used p=0.05 as per the original trial design.

Dosimetric data were summarised for each treatment group using descriptive statistics, with no formal statistical testing. Two-sided 95%CI were calculated for all estimates. Analyses were by intention to treat (ITT). A sensitivity analysis of the primary outcome excluded patients with major treatment deviations. There were no planned formal subgroup analyses due to low numbers of IBTR events anticipated in subgroups. Analyses were based on a database snapshot taken on 11th January 2021 and used Stata version 16.1 (StataCorp).

278

279 Role of funding source

Cancer Research UK provided peer-reviewed approval but had no role in study design, collection, analysis,
 interpretation of data, or report writing. CEC had final responsibility to submit for publication; JSH and JMB
 had full access to study data.

283

284 **RESULTS**

285 Baseline characteristics and follow-up

From January 2009-September 2015, 2621 patients were recruited from 39 UK radiotherapy centres and 37 286 287 referral centres (Table A1); 4 patients withdrew consent for use of their data and were excluded from 288 analyses, leaving 2617. A total of 181 patients (6.9% of 2617) did not receive their allocated treatment, predominantly due to difficulties outlining the TB due to lack of surgical clips (Figure 1). The PRO sub-study 289 recruited 1070 participants: 1052 consented to photographic assessments. Demographic and clinical 290 291 characteristics were well balanced across treatment groups (Table 1). Five-year follow-up forms were available for 2335/2411 (96.8%) expected (i.e. not died or withdrawn). Median follow-up was 74.0 months 292 (IQR 73.4, 75.6). Patient ethnicity was 75.8% white, 1.3% black, 1.6% Asian or Indian, 0.5% mixed race, 293 0.3% other and 20.5% not reported. 294

Radiotherapy plan assessment forms were available in 77.5% of cases; all mandatory dosimetric constraints were met in 95.9%, 96.4%, and 95.2% of these in 40+16Gy, 48Gy and 53Gy groups respectively. Median CTV_{TB} volume was 12.8cm³ and median CTV_{TB}/PTV_{WB} ratio was 0.015; CTV_{TB} volume was \leq 5% of the PTV_{WB} in 95.6%. The number of patients treated with DIBH is not known, but this would have been a very small number. Further details on radiotherapy planning techniques and dosimetry are in Appendix Tables A2-7. 300

301 Ipsilateral breast tumour relapse

IBTR was recorded in 76 patients (40+16Gy: 20, 48Gy: 21, 53Gy: 35; Table 2). Estimated 5-year cumulative 302 incidence of IBTR was 1.9% (95%CI 1.2, 3.1) for 40+16Gy, 2.0% (1.2, 3.2) for 48Gy and 3.2% (2.2, 4.7) for 303 53Gy (Table 2, Figures 2a and 2b). IBTR 5-year event rates were lower than anticipated; upper confidence 304 limits for 5-year IBTR rate in all treatment groups were <5% (anticipated rate in control group). Estimated 305 absolute differences in IBTR versus 40+16Gy were 0.1% (-0.8, 1.7) for 48Gy and 1.4% (0.03, 3.8) for 53Gy, 306 indicating non-inferiority in absolute terms according to the pre-specified difference of 3% for 48Gy versus 307 control but not for 53Gy. Non-inferiority was tested in terms of relative treatment effects: HRs were 1.04 (0.56. 308 1.92) for 48Gy and 1.76 (1.02, 3.04) for 53Gy versus 40+16Gy (Table 2). As upper confidence limits were 309 greater than the protocol-specified critical HR of 1.63, non-inferiority could not be claimed in terms of relative 310 treatment effects (non-inferiority tests against critical HR>1.63: p=0.076 for 48Gy and p=0.61 for 53Gy versus 311 40+16Gv). Since the IBTR rate was lower than expected, non-inferiority tests were carried out against the 312 313 post-hoc critical HR>2.59 (obtained using the observed 1.9% control rate and assuming 3% absolute noninferiority above this), with p=0.002 for 48Gy and p=0.082 for 53Gy, confirming non-inferiority for 48Gy. 314

Most IBTR events were considered to be a relapse by treating clinicians (66/76, 86·8%) rather than a new primary (7/76, 9·2%); 3 events could not be differentiated (Table A8). Location of the local relapse/new primary reported showed that 34/76 ($44\cdot7\%$) were inside the tumour bed PTV, 12/76 ($15\cdot8\%$) were inside the partial breast PTV but outside the tumour bed PTV, and 12/76 ($15\cdot8\%$) were inside the whole breast PTV but outside the partial breast PTV (Table A8). Results of per protocol and competing risks analyses are in the Appendix.

321

322 Secondary efficacy endpoints

Regional relapses occurred in 53 (2·0%) patients, 9 of which were concurrent with IBTR (Table A8). No statistically significant differences were seen in locoregional relapse, distant relapse, any relapse, diseasefree and overall survival (Table 2, Figures A2a and 2b, A3a and 3b). Invasive contralateral breast cancer was reported for 34 (1·3%) patients, and non-breast second primary cancers for 63 (2·4%) (Table A8). A total of 206 (7·9%) patients died, 163 from breast cancer, 40 from other causes, and 3 from unknown cause with no evidence of disease relapse (Table A8).

329

330 Adverse effects: clinicians, patients, photographs

Clinical AE assessments were available at one or more years of follow-up for 2496/2617 (95·4%) patients. Prevalence of clinician-assessed moderate/marked effects were low across all groups (Figure A4a, Figure A5a-h). Five-year prevalence of moderate/marked breast induration was 6% (36/600) for 40+16Gy, 5·2% (34/653) for 48Gy and 8·9% (56/627) for 53Gy (Table A9). Comparisons between groups were broadly similar from 5-year cross-sectional, time to event and longitudinal analyses, with similar levels of moderate/marked AE for 48Gy versus 40+16Gy and increased risk of AE for 53Gy versus 48Gy (Tables 3, A9 and A10). Cumulative incidence of moderate/marked breast induration was similar for 48Gy and 40+16Gy (HR 0·90, 95%CI 0·71-1·14, p=0·40), and higher for 53Gy versus 40+16Gy (HR 1·31, 95%CI 1·05-1·63, p=0·015) (Table 3, Figure A4a). Except for breast oedema and discomfort that declined over time, there were significant increases in risk of AE with longer follow-up (Table A10).

At least one questionnaire was completed by 1063/1070 (99·3%) patients. Change in overall breast appearance was the item patients most frequently reported as moderate/marked (Figure A6a-I, Tables 4 and A11). Five-year patient-reported moderate/marked breast hardness/firmness was significantly lower for 48Gy versus 40+16Gy (RR 0·54, 95%CI 0·38-0·78, p=0·001) and higher after 53Gy versus 48Gy (RR 1·61, 95%CI 1·10-2·35, p=0·008) (Table A11). There were no statistically significant differences between treatment groups in time-to-event and longitudinal analyses of patient-reported moderate/marked breast hardness/firmness and other PROs relating to breast, arm and shoulder AE up to 5-years (Tables 4 and A12, Figure A4b).

Photographic assessments were available at 3 or 5-years for 698/918 (76.0%) patients with a baseline 348 349 photograph. At 3-years, mild or marked change in photographic breast appearance was observed in 35/218 (16·1%), 25/210 (11·9%) and 36/213 (16·9%) for 40+16Gy, 48Gy and 53Gy respectively. Five-year 350 prevalence of mild/marked changes increased in all treatment groups (40+16Gy: 36.8% (60/163), 48Gy: 351 24.4% (42/172) and 53Gy: 27.5% (49/178)). There were no statistically significant differences in mild/marked 352 change in photographic breast appearance between groups, but some indication of reduced risk for 48Gy 353 versus 40+16Gy (OR for mild/marked change at 3 and/or 5 years 0.61, 95%CI 0.41, 0.93; p=0.021) (Table 354 A13). 355

Severe late AEs were rare, with 11, 7, 6 and 6 confirmed reports of symptomatic rib fracture, symptomatic lung fibrosis, ischaemic heart disease and pneumonitis respectively (Table A14). A total of 103/2617 patients (3.9%) were referred to lymphoedema clinics (39/871, 4.3% for 40+16Gy, 36/874, 4.1% for 48Gy, and 28/872, 3.2% for 53Gy).

360

361 **DISCUSSION**

This trial demonstrated lower than anticipated IBTR incidence by 5-years across all treatment groups within 362 a population at higher risk of relapse. Observing lower than anticipated event rates adds complexity to 363 interpretation of non-inferiority trials given that the relative effect threshold is defined according to the original 364 absolute risk estimates. Therefore, the pre-defined critical HR translates to a smaller absolute difference 365 leading to dialogue around the importance of absolute versus relative treatment differences. In IMPORT 366 HIGH, the TMG, including patient advocates, discussed this specific dilemma whilst still blinded to the 367 observed results. It was agreed that the absolute 3% difference between groups and confirmation that event 368 369 rates were low (compared with anticipated 5% IBTR) were of importance. There was no evidence of a difference in efficacy endpoints between groups. Within the two SIB test groups there was no evidence of 370 benefit in escalating boost dose beyond current biologically equivalent standard of care doses. Prevalence 371 of moderate/marked late normal tissue adverse events was low in all groups for clinician-reported, patient-372

373 reported and photographic assessments, with no statistically significant differences in rates between trial 374 groups. In comparison with control, 48Gy was milder for clinician-reported oedema on time-to-event analysis, and for breast hardness/firmness on patient-reported cross-sectional analysis. There was also a suggestion 375 of decreased mild/marked adverse events on photographic assessment for 48Gy compared with control. In 376 contrast. 53Gv showed increased clinician-reported breast induration compared to control for both time-to-377 event and longitudinal analyses. 48Gy SIB delivered in 3-weeks demonstrated similar efficacy to sequential 378 boost delivered over 4.5 weeks, with similar/milder rates of AEs. A 53Gy SIB gave no additional benefit in 379 local cancer control but a higher risk of moderate/marked breast induration. 380

The slightly higher IBTR rate with 53Gy is difficult to explain. Within the context of a very low overall event 381 rate (lower than the anticipated 5% control group IBTR rate at 5-years), it is most likely to be a chance finding. 382 It cannot be explained by a higher relapse rate in the lower dose region as most relapses were within the 383 384 index guadrant. Distribution of higher risk pathological characteristics at diagnosis appear balanced across all groups (Table A15). The 48Gy group also had a reduced dose region and showed similar IBTR rates to 385 control. The EORTC "boost versus no boost" trial had a substudy randomising patient with microscopically 386 incomplete surgical margins to low boost dose (10Gy) or high boost dose (26Gy) both carried out in 2Gy daily 387 factions (19). The study failed to recruit its planned sample size of 660 patients and only 251 were recruited. 388 A significant difference in local control could not be demonstrated at 10 years, but the high boost dose 389 significantly increased the risk of fibrosis. Taken with the results of IMPORT HIGH, this could suggest that 390 there is a dose-response boost threshold for improvement in local control and increasing the boost dose 391 392 beyond an EQD2 of around 60Gy causes increased fibrosis with no benefit. It is possible other strategies are 393 required to overcome tumour radioresistance. We await the local control results of the Young Boost Trial (YBT) (20) that randomised patients ≤50-years to 16Gy (standard boost group) or 26Gy (high boost group) 394 following BCS. The IMPORT HIGH authors are evaluating molecular clonality and spatial mapping of index 395 tumours and local relapses to help understand relapse patterns. 396

397 Whilst direct comparisons of AEs within other breast radiotherapy trials cannot be made due to differences 398 in tr ial populations, protocols and assessments, there is a suggestion that AEs in IMPORT HIGH may be lower than observed in YBT (AEs have been reported and the primary local control endpoint is awaited (20). 399 Boost techniques in YBT included photons, electrons and interstitial brachytherapy and, although most 400patients received sequential boosts, some had SIB. Moderate/marked breast fibrosis as scored by clinicians 401at 4-years was 19% and 39% in the standard and high-boost groups respectively, with 27% and 45% 402 cumulative incidence. Important risk factors for poor cosmesis were photon rather than electron boost, higher 403 boost dose, large boost volume, poor cosmesis before radiotherapy, and adjuvant chemotherapy. The 404IMPORT HIGH team only used photon boosts and limited boost volumes based on a pre-trial dosimetry study 405 which showed that tumour bed coverage was often worse with electrons compared with photons. The TMG 406 were concerned that photon planning with more generous tumour bed coverage could produce larger 407 irradiated boost volumes and increased toxicity. Therefore, the CTV was limited to TB clips/ seroma with no 408 additional margin. The CTV-PTV margin was 5mm with IGRT determined by the GOLDSEED study (11). 409 This may account for the differences in fibrosis/induration rates seen between the two trials. 410

The YBT publication also suggested that SIB increased the risk of adverse normal tissue events. However, the authors state that a possible explanation was that the YBT SIB had a higher equivalent dose in 2Gy fractions (EQD2) compared with the sequential boosts: EQD2 68·2Gy versus 66Gy and 79·5Gy versus 76Gy, α/β of 3Gy. The slightly milder induration seen with 48Gy in IMPORT HIGH could be a result of an EQD2 of 60Gy to tumour bed using an α/β of 3Gy for normal tissue late effects compared, with 62Gy in the control.

A strength of IMPORT HIGH is use of photon boosts only to standardise boost volume across all trial groups. Therefore, the only variables were SIB, dose escalation in the 53Gy group and modest dose reduction distant from the index quadrant in both test groups. A second strength was the stringent radiotherapy quality assurance. An embedded mechanistic substudy determined the utility of clip-based image-guided boost IMRT (12). In addition, participation of 39 UK radiotherapy centres demonstrated the ability to implement image-guided SIB in multiple radiotherapy departments.

422 IMPORT HIGH is the largest randomised study of SIB, increasing precision of confidence limits for study 423 outcomes. The only previously published SIB study with a local control primary endpoint is the IMRT-MC2 trial, which randomised 502 patients to 50.4Gy in 1.8Gy daily fractions with a SIB to a total dose of 64.4Gy 424 delivered over 5.5 weeks compared with a control group with sequential boost delivered over 7 weeks (21). 425 Non-inferiority for local control was reported at 2-year median follow-up with no statistically significant 426 difference in cosmesis. The NRG RTOG 1005 randomised trial (22) was similar to IMPORT HIGH 48Gy 427 group, but had 2 dose levels (40Gy whole breast and 48Gy SIB). The study population had a higher median 428 age of 55 versus 49 years and included some patients with high grade DCIS. 48Gy SIB was non-inferior for 429 local relapse and toxicity and cosmetic outcome appeared similar. The DBCG Skagen trial 1 (NCT02384733) 430 (23) had a primary endpoint of arm lymphoedema 3 years after radiotherapy. Randomisation was between 431 50Gv/25 fractions and 40Gv/15 fractions. 5 fractions weekly and simultaneous integrated boosts were used. 432 At 3 years median follow up, there was no difference in arm lymphoedema, loco-regional or distant recurrence 433 434 or overall survival.

435

SIB is less burdensome for patients and their families, reducing travel costs and enabling return to work sooner. It is an efficient use of resource for health care providers whereby radiotherapy "slots" can be used for other patients. The same level of technology is required for SIB as a CT-planned sequential photon boost, but a single integrated radiotherapy plan is resource-saving. Most centres would recommend daily imageguidance with hypofractionated radiotherapy even without SIB, as there is less opportunity to correct ontreatment variations.

442

Limitations of IMPORT HIGH include the unmasked AE reporting by clinicians and patients that could lead to bias. It is not possible to mask treatment groups as they can determine this based on number of treatments received. However, previous UK breast radiotherapy trials with similar designs have all demonstrated that clinician and patient reported outcomes are sensitive and can differentiate between dose and volume differences between trial groups (9, 10, 13, 24). A further limitation is changing regional node irradiation during the lifetime of IMPORT HIGH. During the recruitment phase, most node positive breast cancer was treated with surgical axillary clearance. Most commonly supraclavicular fossa radiotherapy was used and the internal mammary chain was not treated. Several practice-changing trials have since reported resulting in increased use of axillary radiotherapy as an alternative to surgery and resurgence of internal mammary chain irradiation (25-28). Regional nodal irradiation using 40Gy would be challenging to integrate with the reduced dose to the peripheries of breast tissue and the effect of 36Gy on regional nodes is unknown. IMPORT HIGH results may not be completely generalisable to sequential boosts using different dose-fractionations, which may have different cosmetic outcomes and relapse rates when compared to 16Gy in 8F.

456

UK standard of care for boost radiotherapy is now either a 3-week 48Gy SIB (two dose levels) or 1-week of 457 26Gy whole-breast radiotherapy with a 1-week hypofractionated sequential boost (29). Choice of approach 458 459 depends on patient and radiotherapy centre planning preference: some departments favour SIB as target 460 coverage and organs at risk doses can be assessed in a single plan. The ultimate goal is 1-week SIB based 461 on results of FAST-Forward and IMPORT HIGH. This is a UK trial proposal under development and will also 462 test 1-week internal mammary chain irradiation. A 200-patient Belgian randomised trial is testing a 31Gy SIB in 5-fractions over 10-12 days with 28.5Gy to whole-breast (30). The group have reported favourable acute 463 toxicity (30) as expected given that acute side-effects are related to total dose (31). An Indian multicentre 464 randomised trial HYPORT-Adjuvant is currently recruiting and tests 32Gy SIB in 5-fractions over 1 week with 465 26Gy to whole breast and aims to recruit 2100 patients (32). 1-week SIB is especially attractive for low-466 middle-income countries, whereby many people would otherwise forego treatment due to travelling and 467 accommodation costs for longer radiotherapy courses. 468

469

470 Conclusions

IBTR rates are low in this higher-risk breast cancer group treated with small boosts, whether boost is delivered 471 sequentially or simultaneously with the upper limit of the 95%CI excluding the 5-year 5% rate originally 472 predicted for the control group. Non-inferiority for IBTR was achieved in absolute terms according to the pre-473 specified difference of 3% for 48Gy versus control but not for 53Gy. This highlights the challenges of 474 assessing non-inferiority when primary outcome events rates become very low. Rates of 5-year 475 moderate/marked AE are low and 48Gy SIB showed similar/reduced toxicity compared with control. SIB is a 476 477 safe treatment with reduced patient visits and further escalation of boost dose does not appear 478 advantageous.

479

480 Author contributions

481 CEC and JRY are the current and previous chief investigators respectively and AMK is the chief clinical 482 coordinator for the trial. JMB is the trials methodology lead within the Institute of Cancer Research-Clinical 483 Trials and Statistics Unit (ICR-CTSU) and provided oversight and guidance for trial management throughout 484 the trial. JRY, CEC, JMB, and JSH were responsible for the study design. CEC, AMK and JSH wrote the first 485 draft of the manuscript. JSH and CLG was responsible for statistical analyses and contributed to data interpretation. SL, IB, AMB, CC, EMD, ES, IS AND NIT are members of the IMPORT HIGH trial management 486 group (TMG), which contributed to study design, was responsible for oversight throughout the trial and 487 contributed to data interpretation and manuscript preparation. JCT, MAS and ME managed the study and 488 data collection at ICR-CTSU and contributed to the manuscript preparation. MLJ is a patient advocate 489 member of the TMG and provided guidance for study documentation and reports. PH was the lead for the 490 patient-reported outcomes substudy. YT and DJE were responsible for radiotherapy quality assurance. All 491 authors reviewed and approved the manuscript 492

493

494 **Declaration of interests**

JMB, EMD, ME, CLG, JSH, PH, MAS, JCT, YT report grants from Cancer Research UK during the conduct 495 of the study. SVL reports PhD funding from Cancer Research UK. JMB reports grants and non-financial 496 support from AstraZeneca, Clovis Oncology, Eli Lilley, Janssen-Cilag, Merck Sharpe and Dohme, Novartis 497 (previously GlaxoSmithKline), Pfizer, Puma Biotechnology and Roche outside the submitted work. CEC 498 reports grants from National Institute for Health Research Efficacy and Mechanism Evaluation, RADNET, 499 Lancet Breast Cancer Commission and Addenbrooke's Charitable Trust outside the submitted work. CEC 500 501 also reports membership of 5 external Independent Monitoring Committees and Chair of the Lancet Breast 502 Cancer Commission. AMK reports President of the European Society of Radiation Oncology. All other 503 authors declare no competing interests.

- 504
- 505

506 Data sharing

507 Deidentified individual participant data, together with a data dictionary defining each field in the set, will be made available to other researchers on request. Trial documentation including the protocol are available 508 online. The Institute of Cancer Research-Clinical Trials and Statistics Unit (ICR-CTSU) supports wider 509 510 dissemination of information from the research it conducts and increased cooperation between investigators. Trial data are obtained, managed, stored, shared, and archived according to ICR-CTSU standard operating 511 procedures to ensure the enduring quality, integrity, and utility of the data. Formal requests for data sharing 512 513 are considered in line with ICR-CTSU procedures, with due regard given to funder and sponsor guidelines. Requests are via a standard proforma describing the nature of the proposed research and extent of data 514 requirements. Data recipients are required to enter a formal data sharing agreement, which describes the 515 conditions for release and requirements for data transfer, storage, archiving, publication, and intellectual 516 property. Requests are reviewed by the trial management group in terms of scientific merit and ethical 517 considerations, including patients' consent. Data sharing is undertaken if proposed projects have a sound 518 519 scientific or patients' benefit rationale, as agreed by the trial management group and approved by the 520 independent data monitoring and steering committee, as required. Restrictions relating to patients' 521 confidentiality and consent will be limited by aggregating and anonymising identifiable patients' data. 522 Additionally, all indirect identifiers that could lead to deductive disclosures will be removed in line with ICR-523 CTSU data sharing guidelines.

524

525 Acknowledgments

This work uses data provided by patients and collected by the NHS as part of their care and support. We thank the patients who participated in this study and all investigators and research support staff, past and present, at participating centres (Appendix). Recognition goes to all trials unit staff at The Institute of Cancer Research Clinical Trials and Statistics Unit who contributed to the central coordination of the study, especially Ronald Kaggwa who died in January 2022. We thank the members of the trial oversight committees (Appendix) especially Maggie Wilcox who died in December 2021.

The IMPORT HIGH trial is funded by Cancer Research UK (C1491/A16831), with a programme grant from Cancer Research UK to support the work of ICR-CTSU (C1491/A25351). We acknowledge NHS funding to the NIHR Biomedical Research Centre at the Royal Marsden NHS Foundation Trust (London, UK) and The Institute of Cancer Research (London, UK). In addition, Professor Charlotte Coles is funded by the National Institute of Health and Social Care Research (NIHR) and supported by the NIHR Cambridge Biomedical Research Centre. The views expressed are those of the author and not necessarily those of the NIHR or the Department of Health and Social Care.

- 539 We are grateful to the NCRI Radiotherapy Trials Quality Assurance (RTTQA) group at Mount Vernon Hospital 540 for overseeing the radiotherapy planning and delivery throughout the study. The IMPORT Trialists' Group 541 consists of the Trial Management Group, Trial Steering Committee, Independent Data Monitoring Committee 542 and the principal and main co-investigators at the participating centres.
- 543 IMPORT HIGH is sponsored by The Institute of Cancer Research, London.
- 544
- 545

546 **REFERENCES**

 Faverly DR, Hendriks JH, Holland R. Breast carcinomas of limited extent: frequency, radiologicpathologic characteristics, and surgical margin requirements. Cancer. 2001;91(4):647-59.

549 2. Welch HG, Black WC. Using autopsy series to estimate the disease "reservoir" for ductal carcinoma 550 in situ of the breast: how much more breast cancer can we find? Ann Intern Med. 1997;127(11):1023-8.

Salvadori B, Marubini E, Miceli R, et al. Reoperation for locally recurrent breast cancer in patients
 previously treated with conservative surgery. Br J Surg. 1999;86(1):84-7.

Bartelink H, Maingon P, Poortmans P, et al. Whole-breast irradiation with or without a boost for
patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised
phase 3 trial. Lancet Oncol. 2015;16(1):47-56.

5. Romestaing P, Lehingue Y, Carrie C, et al. Role of a 10-Gy boost in the conservative treatment of 57 early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol. 1997;15(3):963-8.

Vrieling C, van Werkhoven E, Maingon P, et al. Prognostic Factors for Local Control in Breast 558 6. Cancer After Long-term Follow-up in the EORTC Boost vs No Boost Trial: A Randomized Clinical Trial. 559 560 JAMA Oncol. 2017;3(1):42-8. Collette S, Collette L, Budiharto T, et al. Predictors of the risk of fibrosis at 10 years after breast 561 7. conserving therapy for early breast cancer: a study based on the EORTC Trial 22881-10882 'boost versus no 562 563 boost'. Eur J Cancer. 2008;44(17):2587-99. 564 Borger JH, Kemperman H, Smitt HS, et al. Dose and volume effects on fibrosis after breast 8. 565 conservation therapy. Int J Radiat Oncol Biol Phys. 1994;30(5):1073-81. Group ST, Bentzen SM, Agrawal RK, et al. The UK Standardisation of Breast Radiotherapy 566 9. (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. 567 568 Lancet. 2008;371(9618):1098-107. 569 Group ST, Bentzen SM, Agrawal RK, et al. The UK Standardisation of Breast Radiotherapy 10. 570 (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. 571 Lancet Oncol. 2008;9(4):331-41. 572 Coles CE, Harris EJ, Donovan EM, et al. Evaluation of implanted gold seeds for breast radiotherapy 11. 573 planning and on treatment verification: a feasibility study on behalf of the IMPORT trialists. Radiother 574 Oncol. 2011;100(2):276-81. Harris EJ, Mukesh M, Jena R, et al. A multicentre observational study evaluating image-guided 575 12. 576 radiotherapy for more accurate partial-breast intensity-modulated radiotherapy: comparison with standard 577 imaging technique. Efficacy and Mechanism Evaluation. Southampton (UK)2014. 578 13. Coles CE, Griffin CL, Kirby AM. Partial breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multi-centre, randomised 579 controlled, phase 3, non-inferiority trial. Lancet 2017 Sep9; 390(10099):1048-1060. 580 581 Donovan EM, Ciurlionis L, Fairfoul J, et al. Planning with intensity-modulated radiotherapy and 14. 582 tomotherapy to modulate dose across breast to reflect recurrence risk (IMPORT High trial). Int J Radiat 583 Oncol Biol Phys. 2011;79(4):1064-72. 584 15 NICE clinical guideline 80 Early and locally advanced breast cancer : diagnosis and treatment. National Institute for Health and Clinical Excellence (NICE); February 2009. 585 586 Meattini I, Becherini C, Boersma L et al. European Society for Radiotherapy and Oncology 16 587 Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncology 2022 Jan 588 589 23(1):e21-e31. 590 Haviland JS, Ashton A, Broad B, et al. Evaluation of a method for grading late photographic change 17. in breast appearance after radiotherapy for early breast cancer. Clin Oncol (R Coll Radiol). 2008;20(7):497-591 592 501. Barnett GC, Wilkinson JS, Moody AM et al. The Cambridge Breast Intensity-modulated 593 18. 594 Radiotherapy Trial: patient- and treatment-related factors that influence late toxicity. Clin Oncol (R Coll Radiol). 2011 Dec;23(10):662-73. doi: 10.1016/j.clon.2011.04.011. Epub 2011 Jun 8. PMID: 21646002. 595 596 19. Poortmans PM, Collette L, Horiot JC, et al. Impact of the boost dose of 10Gy versus 26Gy in patients with early stage breast cancer after a microscopically incomplete lumpectomy: 10-year results of the 597 598 randomised EORTC boost trial. Radiother Oncol. 2009 Jan;90(1):80-5. doi: 10.1016/j.radonc.2008.07.011. 599 Epub 2008 Aug 15. PMID: 18707785. Brouwers P, van Werkhoven E, Bartelink H, et al. Predictors for poor cosmetic outcome in patients 20. 600 with early stage breast cancer treated with breast conserving therapy: Results of the Young boost trial. 601 602 Radiother Oncol. 2018;128(3):434-41. Horner-Rieber J, Forster T, Hommertgen A, et al. Intensity Modulated Radiation Therapy (IMRT) 603 21. With Simultaneously Integrated Boost Shortens Treatment Time and Is Noninferior to Conventional 604 605 Radiation Therapy Followed by Sequential Boost in Adjuvant Breast Cancer Treatment: Results of a Large Randomized Phase III Trial (IMRT-MC2 Trial). Int J Radiat Oncol Biol Phys. 2021;109(5):1311-24. 606 Vicini F, Winter K, Freedman GM at el. NRG RTOG 1005: A Phase III Trial of Hypo Fractionated 607 22. Whole Breast Irradiation with Concurrent Boost vs. Conventional Whole Breast Irradiation Plus Sequential 608 609 Boost Following Lumpectomy for High Risk Early-Stage Breast Cancer. IJROGP 2022 1 Nov Vol 114 issue 610 3 Supplement e1 16

- B. Offersen, J. Alsner, H.M. Nielsen, et al. OC-0102 DBCG phase III randomized trial of hypo- vs
 standard fractionated RT in 2879 pN+ breast cancer pts. Radiotherapy and Oncology 2022, Volume 170,
 S76-77
- Murray Brunt A, Haviland JS, Wheatley DA, et al. Hypofractionated breast radiotherapy for 1 week
 versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre,
 non-inferiority, randomised, phase 3 trial. Lancet. 2020;395(10237):1613-26.
- Donker M, van Tienhoven G, Straver ME, et al. Radiotherapy or surgery of the axilla after a positive
 sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label,
 phase 3 non-inferiority trial. Lancet Oncol. 2014;15(12):1303-10.
- Whelan TJ, Olivotto IA, Parulekar WR, et al. Regional Nodal Irradiation in Early-Stage Breast
 Cancer. N Engl J Med. 2015;373(4):307-16.
- Poortmans PM, Collette S, Kirkove C, et al. Internal Mammary and Medial Supraclavicular
 Irradiation in Breast Cancer. N Engl J Med. 2015;373(4):317-27.
- 28. Thorsen LB, Offersen BV, Dano H, et al. DBCG-IMN: A Population-Based Cohort Study on the
 Effect of Internal Mammary Node Irradiation in Early Node-Positive Breast Cancer. J Clin Oncol.
 2016;34(4):314-20.
- 29. Lewis P, Brunt AM, Coles C, et al. Moving Forward Fast with FAST-Forward. Clin Oncol (R Coll
 Radiol). 2021;33(7):427-9.
- 30. Van Hulle H, Vakaet V, Monten C, et al. Acute toxicity and health-related quality of life after
 accelerated whole breast irradiation in 5 fractions with simultaneous integrated boost. Breast. 2021;55:10511.
- Brunt AM, Wheatley D, Yarnold J, et al. Acute skin toxicity associated with a 1-week schedule of
 whole breast radiotherapy compared with a standard 3-week regimen delivered in the UK FAST-Forward
 Trial. Radiother Oncol. 2016;120(1):114-8.
- 635 32. Chatterjee S, Chakraborty S, Group HAA. Hypofractionated radiation therapy comparing a standard
 636 radiotherapy schedule (over 3 weeks) with a novel 1-week schedule in adjuvant breast cancer: an open-label
 637 randomized controlled study (HYPORT-Adjuvant)-study protocol for a multicentre, randomized phase III
 638 trial. Trials. 2020;21(1):819.
- 639
- 640
- 641 **Figure legends**
- 642 Figure 1: IMPORT HIGH trial profile (CONSORT diagram)
- Figure 2: Ipsilateral breast tumour relapse (IBTR) by treatment group: (a) Kaplan-Meier plot, (b) Cumulative risk plot
- 645
- 646 Appendix:
- 647 Figure A1: IMPORT HIGH trial schema
- Figure A2: Disease-free survival by treatment group: (a) Kaplan-Meier plot, (b) Cumulative risk plot
- Figure A3: Overall survival by treatment group: (a) Kaplan-Meier plot, (b) Cumulative risk plot
- Figure A4: Breast induration (moderate / marked) by treatment group: (a) Clinician-assessed breast
- 651 induration (in index quadrant), (b) Patient-assessed breast hardness / firmness

- Figure A5: Clinician assessments of late normal tissue effects up to 8 years, by treatment group: (a) Any
- breast adverse effect, (b) Breast distortion, (c) Breast shrinkage, (d) Breast induration (index quadrant), (e)
- Telangiectasia, (f) Breast oedema, (g) Breast tenderness on palpation, (h) Breast discomfort
- Figure A6: Patient assessments of late normal tissue effects up to 5 years, by treatment group: (a) Change in overall breast appearance, (b) Breast smaller, (c) Breast hardness / firmness, (d) Change in skin appearance on affected breast, (e) Shoulder stiffness, (f) Breast pain, (g) Breast swollen, (h) Breast oversensitive, (i) Skin problems on breast, (j) Arm / shoulder pain, (k) Arm / hand swollen, (l) Difficulty raising arm or moving it sideways
- 660
- 661 662

Figure 1: IMPORT HIGH trial profile

* 40+16Gy: No CT information for 3rd field as patient simulated, department standard treatment given; 48Gy: Breakdown of kv imaging devices on 2 machines therefore no appropriate verification, standard treatment given; 53Gy: 1 x Departmental planning problem, unable to fulfil trial criteria, standard treatment given; 1 x bolus required.

Figure 2a: Ipsilateral breast tumour relapse (IBTR)-free survival by treatment group

Figure 2b: Cumulative risk of ipsilateral breast tumour relapse (IBTR) by treatment group

Table 1: Baseline demographic, clinical and treatment characteristics in the IMPORT High trial

Characteristic	40+16Gy N=871 (%)	48Gy N=874 (%)	53Gy N=872 (%)	Total N=2617 (%)
Age (years) Median (IQR)	49·4 (45·2-56·4)	48.9 (44.6-55.2)	49·2 (43·5-57·1)	49·2 (44·4-56·1)
Side of primary	400 (40)	400 (40)		4007 (50)
Len	429 (49)	423 (48)	445 (51)	1297 (50)
Linknown	439 (30) 3 (<1)	450(51)	420 (49)	5(<1)
Location of primary	3((1)			3((1)
tumour bed				
Central	174 (20)	177 (20)	163 (19)	514 (20)
Upper outer	395 (45)	425 (49)	406 (47)	1226 (47)
Upper inner	147 (17)	124 (14)	149 (17)	420 (16)
Lower outer	88 (10)	97 (11)	103 (12)	288 (11)
Lower inner	62 (7)	48 (5)	45 (5)	155 (6)
Dethological turnour size	5 (<1)	3 (<1)	6 (<1)	14 (<1)
(cm)	2.0 (1.5-2.8)	2.0 (1.5-2.7)	2.0 (1.5-2.7)	2.0 (1.5-2.7)
	n í	1	1	Λ ,
	2	1	1	4
	83 (10)	71 (8)	71 (8)	225 (9)
2	340 (39)	310 (35)	329 (38)	979 (37)
3	445 (51)	492 (56)	470 (54)	1407 (54)
Unknown	3 (<1)	1 (<1)	2 (<1)	6 (<1)
Re-excision				
Yes	185 (21)	185 (21)	179 (20)	549 (21)
No	683 (78)	688 (79)	692 (79)	2063 (79)
	3 (<1)	1 (<1)	1 (<1)	5 (<1)
Axillary surgery	852 (08)	959 (09)	954 (08)	2564 (08)
No	15 (2)	15 (2)	17 (2)	2304 (90) 47 (2)
Unknown	4 (<1)	1 (<1)	1 (<1)	6 (<1)
Pathological node status				
Positive	260 (30)	268 (31)	251 (29)	779 (30)
Negative	608 (70)	605 (69)	620 (71)	1833 (70)
Unknown	3 (<1)	1 (<1)	1 (<1)	5 (<1)
Histological type	774 (00)	770 (00)	770 (00)	2240 (00)
Mixed	1 / 4 (89) 30 (3)	112 (88) 28 (3)	112 (00) 20 (3)	∠318 (89) 87 (3)
Other	50 (5) 66 (8)	20 (3) 71 (8)	29 (3) 70 (8)	07 (3) 207 (8)
Unknown	1 (<1)	3 (<1)	1 (<1)	5 (<1)
Lymphovascular				
invasion				
Yes	126 (14)	116 (13)	124 (14)	366 (14)
No	307 (35)	307 (35)	306 (35)	920 (35)
Uncertain	19 (2)	25 (3)	10 (1)	54 (2)
INOT REPORTED	419 (48)	426 (49)	432 (50)	1277 (49)
Ert Status Positive	683 (78)	657 (75)	652 (75)	1002 (76)
Poor	188 (22)	216 (25)	219 (25)	1992 (10) 623 (24)
Unknown	0	1 (<1)	1 (<1)	2 (<1)
PR status	`			- ('')
Positive	304 (35)	289 (33)	289 (33)	882 (34)
Poor	195 (22)	214 (24)	207 (24)	616 (24)

Characteristic	40+16Gy N=871 (%)	48Gy N=874 (%)	53Gy N=872 (%)	Total N=2617 (%)
Unknown	4 (<1)	12 (1)	5 (<1)	21 (<1)
Not done	368 (42)	359 (41)	371 (43)	1098 (42)
HER2 status				
Positive	157 (18)	139 (16)	165 (19)	461 (18)
Negative	710 (81)	731 (84)	705 (81)	2146 (82)
Unknown	4 (<1)	4 (<1)	2 (<1)	10 (<1)
ER and HER2 status				
ER + / HER2 +	121 (14)	104 (12)	111 (13)	336 (13)
ER + / HER2 -	558 (64)	550 (63)	540 (62)	1648 (63)
ER - / HER2 +	36 (4)	35 (4)	54 (6)	125 (5)
ER - / HER2 -	152 (17)	181 (21)	165 (19)	498 (19)
	4 (<1)	4 (<1)	2 (<1)	10 (<1)
Adjuvant therapy				
Chemotherapy	564/869 (65)	574/873 (66)	578/872 (66)	1716/2614 (66)
Unknown	2/869 (<1)	1/873 (<1)	0	3/2614 (<1)
	2,000 (1)		•	0,2011(1)
Adjuvant therapy received: HER2-positive patients				
Chemotherapy & trastuzumab	88/157 (56)	74/139 (53)	102/165 (62)	264/461 (57)
Trastuzumab, no chemotherapy	6/157 (4)	1/139 (<1)	5/165 (3)	12/461 (3)
Chemotherapy, no trastuzumab	42/157 (27)	48/139 (35)	40/165 (24)	130/461 (28)
No chemotherapy, no	15/157 (10)	15/139 (11)	15/165 (9)	45/461 (10)
Linknown	6/157 (1)	1/130 (<1)	3/165 (2)	10/461 (2)
Shkhown	0/13/ (4)	1/139 (<1)	5/105 (2)	10/401 (2)
Adjuvant therapy received: ER-positive patients				
Endocrine therapy	665/683 (97)	640/657 (97)	636/652 (98)	1941/1992 (97)
Unknown	2 (<1)	0	0	2 (<1)
Radiotherapy to lymph				
nodes*				
Yes	93/869 (11)	90/871 (10)	87/871 (10)	270/2611 (10)
SCF	85	87	77	249
Axilla	/	3	10	20
Unknown	1	U	0	1
No Unknown	775/869 (89) 0/869	778/871 (89) 3/871 (<1)	781/871 (90) 2/871 (<1)	2334/2611 (89) 5/2611 (<1)

* Denominator is 2611 as 6 patients received no radiotherapy (details in Figure 1)

•	5 5	0 1		2
Efficacy endpoint	Cumulative no. of events / total (%)	KM estimate (95%Cl) of cumulative incidence by 5 years, %	Hazard ratio ¹ (95% Cl); p-value ²	Estimated absolute difference vs 40+16Gy at 5 years ³ (95%Cl), %
Ipsilateral breast				
tumour (local) relapse⁴ 40+16Gy	20/871 (2·3)	1.9 (1.2, 3.1)	1	-
48Gy	21/874 (2·4)	2.0 (1.2, 3.2)	1.04 (0.56, 1.92); 0.91	0·1 (-0·8, 1·7)
53Gy	35/872 (4 0)	3.2 (2.2, 4.7)	1 76 (1 01, 3 04); 0 041	1.4 (0.03, 3.8)
Local-regional relapse⁵				
40+16Gy	32/871 (3.7)	3.0 (2.0, 4.4)	1	-
48Gy	32/874 (3·7)	3·1 (2·1, 4·5)	0·99 (0·60, 1·61); 0·96	-0·04 (-1·2, 1·8)
53Gy	48/872 (5·5)	4.7 (3.4, 6.3)	1·50 (0·96, 2·35); 0·072	1.5 (-0.1, 3.9)
Distant relapse				
40+16Gy	66/871 (7·6)	6·6 (5·1, 8·5)	1	-
48Gy	67/874 (7·7)	6·5 (5·1, 8·4)	1·00 (0·71, 1·41); 0·99	0.02 (-1.8, 2.6)
53Gy	74/872 (8.5)	7.8 (6.2, 9.8)	1·12 (0·80, 1·55); 0·52	0.7 (-1.3, 3.5)
Any relapse (local, regional, distant)				
40+16Gy	84/871 (9·6)	8·5 (6·8, 10·6)	1	-
48Gy	81/874 (9·3)	7.6 (6.0, 9.6)	0·95 (0·70, 1·29); 0·74	-0·4 (-2·5, 2·3)
53Gy	103/872 (11.8)	10.4 (8.6, 12.7)	1·23 (0·92, 1·64); 0·16	1.8 (-0.6, 5.0)
Any breast cancer- related event ⁶				
40+16Gy	94/871 (10·8)	9·2 (7·4, 11·4)	1	-
48Gy	94/874 (10·8)	8·5 (6·8, 10·6)	0·99 (0·74, 1·31); 0·92	-0·1 (-2·3, 2·7)
53Gy	117/872 (13·4)	11.9 (9.9, 14.3)	1·25 (0·95, 1·64); 0·10	2.2 (-0.4, 5.5)
All-cause mortality				
40+16Gy	71/871 (8·1)	6·1 (4·7, 8·0)	1	-
48Gy	59/874 (6·7)	5.0 (3.7, 6.7)	0.82 (0.58, 1.16); 0.27	-1·1 (-2·5, 0·9)
53Gy	76/872 (8.7)	6.7 (5.2, 8.6)	1.06 (0.77, 1.47); 0.71	0.4 (-1.4, 2.8)

Table 2: Relapse and mortality by treatment group: results of time to event analyses

KM = Kaplan-Meier, 95%CI = 95% confidence interval; IBTR = ipsilateral breast tumour relapse

¹ Hazard ratio >1 favours 40+16Gy;

² Log-rank test (2-sided), for each test group compared with 40+16Gy (control);

³ Estimated absolute difference at 5 years for each test group versus 40+16Gy obtained from hazard ratio and KM event-free estimate in 40+16Gy group;

⁴ Ipsilateral breast tumour relapse (IBTR) includes local relapse and ipsilateral new primary;

⁵ Locoregional relapse defined as IBTR or regional relapse (axilla, supraclavicular fossa, other);

⁶ Breast cancer-related events: local, regional or distant relapse, breast cancer death, contralateral breast cancer (disease-free survival)

Table 3: Clinician-assessed late adverse effects by treatment group for 2496 patients with at least one annual clinical assessment: results of time to event analyses

Adverse effect	Moderate/ Marked events / total ² (%)	KM estimate (95%CI) of cumulative incidence (%) of moderate/marked events by 3 years ³	KM estimate (95%CI) of cumulative incidence (%) of moderate/marked events by 5 years ³	Comparison with 40+16Gy Hazard ratio (95%Cl); p-value ⁴	Comparison between 53Gy & 48Gy Hazard ratio (95%CI); p-value ^{4,5}
Any AE in the breast ¹					
40+16Gy	283/817 (34·6)	23.5 (20.7, 26.7)	33·1 (29·8, 36·7)	1	-
48Gy	271/836 (32·4)	20.8 (18.2, 23.8)	29.9 (26.8, 33.3)	0·90 (0·76, 1·06); 0·21	1
53Gy	302/834 (36·2)	25.8 (23.0, 29.0)	34.5 (31.2, 38.0)	1.06 (0.90, 1.24); 0.50	1.18 (1.00, 1.39); 0.026
Breast distortion					
40+16Gy	126/814 (15·5)	86 (6.8, 10.8)	13·8 (11·5, 16·6)	1	-
48Gy	108/834 (12·9)	8.4 (6.7, 10.5)	12·2 (10·1, 14·8)	0·82 (0·63, 1·06); 0·13	1
53Gy	140/833 (16·8)	10·3 (8·3, 12·6)	15·7 (13·3, 18·5)	1·11 (0·87, 1·41); 0·39	1·36 (1·05, 1·74); 0·008
Breast shrinkage					
40+16Gy	145/813 (17·8)	9.4 (7.5, 11.6)	15·7 (13·2, 18·6)	1	-
48Gy	143/834 (17·1)	8·9 (7·1, 11·0)	15·2 (12·8, 18·0)	0·93 (0·74, 1·17); 0·56	1
53Gy	142/832 (17·1)	9.5 (7.7, 11.7)	15·7 (13·3, 18·6)	0.95 (0.76, 1.20); 0.70	1.02 (0.81, 1.29); 0.42
Breast induration (index quadrant)					
40+16Gy	143/814 (17·6)	11.5 (9.5, 14.0)	16·6 (14·1, 19·5)	1	-
48Gy	134/834 (16·1)	10.6 (8.6, 12.9)	14·3 (12·0, 16·9)	0·90 (0·71, 1·14); 0·40	1
53Gy	183/832 (22.0)	15·5 (13·1, 18·2)	20.0 (17.3, 23.0)	1·31 (1·05, 1·63); 0·015	1·45 (1·16, 1·81); <0·001
Telangiectasia					
40+16Gy	17/815 (2·1)	1.2 (0.6, 2.2)	1·9 (1·1, 3·2)	1	-
48Gy	14/835 (1·7)	0.6 (0.3, 1.5)	1.0 (0.5, 2.0)	0.80 (0.40, 1.63); 0.56	1
53Gy	14/834 (1.7)	0.8 (0.3, 1.7)	1.6 (0.9, 2.9)	0.82 (0.41, 1.67); 0.56	1.02 (0.49, 2.14); 0.48
Breast oedema					
40+16Gy	70/814 (8·6)	7·8 (6·1, 9·9)	8.6 (6.8, 10.8)	1	-

Adverse effect	Moderate/ Marked events / total² (%)	KM estimate (95%CI) of cumulative incidence (%) of moderate/marked events by 3 years ³	KM estimate (95%CI) of cumulative incidence (%) of moderate/marked events by 5 years ³	Comparison with 40+16Gy Hazard ratio (95%Cl); p-value ⁴	Comparison between 53Gy & 48Gy Hazard ratio (95%CI); p-value ^{4,5}
48Gy	44/836 (5·3)	4.6 (3.4, 6.3)	5·2 (3·9, 7·0)	0.59 (0.41, 0.87); 0.006	1
53Gy	54/834 (6·5)	5·3 (3·9, 7·1)	5·7 (4·3, 7·6)	0·74 (0·52, 1·05); 0·091	1.24 (0.83, 1.85); 0.14
Breast tenderness on palpation					
40+16Gy	112/804 (13·9)	9·4 (7·5, 11·7)	13·6 (11·3, 16·3)	1	-
48Gy	111/821 (13·5)	8·3 (6·6, 10·4)	11·9 (9·8, 14·5)	0·96 (0·73, 1·24); 0·74	1
53Gy	142/813 (17.5)	10.5 (8.6, 12.9)	15·0 (12·6, 17·8)	1·26 (0·98, 1·62); 0·066	1·32 (1·03, 1·69); 0·014
Breast discomfort					
40+16Gy	112/796 (14·1)	9.7 (7.8, 12.0)	13·6 (11·3, 16·3)	1	-
48Gy	114/811 (14·1)	8·6 (6·8, 10·8)	13·1 (10·9, 15·8)	0·98 (0·76, 1·28); 0·91	1
53Gy	153/804 (19·0)	12·4 (10·3, 15·0)	17·0 (14·5, 19·9)	1·39 (1·09, 1·77); 0·008	1.41 (1.10, 1.79); 0.002

KM = Kaplan-Meier, 95%CI = 95% confidence interval;

¹ Any AE in the breast = distortion, shrinkage, induration, telangiectasia, oedema; ² AE data available for 2496 patients (40+16Gy: 820, 48Gy: 837, 53Gy: 839), denominators may vary due to missing clinician assessments for some events; ³ Rate estimated at 3 (or 5) years and 3 months to allow for visits occurring up to 3 months after the due date; ⁴ p-value for pairwise log-rank test; ⁵ 1-sided p-value

Table 4: Patient-assessed late adverse effects by treatment group for 1063 patients with at least one completed questionnaire: results of time to event analyses

Adverse effect	Moderate/ marked events over follow- up / total ¹ (%)	KM estimate (95%CI) of cumulative incidence (%) of moderate/ marked events by 3 years	KM estimate (95%CI) of cumulative incidence (%) of moderate/ marked events by 5 years	Comparison with 40+16Gy Hazard ratio ^{2,3} (95%CI); p-value ⁴	Comparison between 53Gy & 48Gy Hazard ratio ^{2,3} (95%Cl); p-value ^{5,6}
Protocol-specific items	1	1	1		
Breast appearance changed					
40+16Gy	187/348 (53·7)	46.8 (41.6, 52.4)	52.8 (47.4, 58.4)	1	-
48Gy	161/324 (49·7)	42.6 (37.3, 48.3)	48.0 (42.4, 53.9)	0·98 (0·78, 1·22); 0·26	1
53Gy	174/343 (50·7)	44·3 (39·1, 49·9)	49.9 (44.5, 55.7)	0·91 (0·73, 1·12); 0·42	0.92 (0.73, 1.15); 0.624
Breast smaller					
40+16Gy	136/348 (39·1)	31.7 (26.9, 37.0)	38·4 (33·1, 44·1)	1	-
48Gy	126/324 (38·9)	28.8 (24.0, 34.2)	39.6 (34.0, 45.8)	1·11 (0·86, 1·43); 0·72	1
53Gy	137/343 (39·9)	30.9 (26.2, 36.2)	38.1 (32.9, 43.8)	1.03 (0.80, 1.32); 0.83	0.92 (0.72, 1.19); 0.674
Breast harder/firmer					
40+16Gy	165/348 (47·4)	42.7 (37.5, 48.2)	49.5 (44.0, 55.3)	1	-
48Gy	139/324 (42·9)	37.6 (32.5, 43.2)	44·1 (38·5, 50·0)	0·85 (0·67, 1·07); 0·26	1
53Gy	162/343 (47·2)	39.6 (34.6, 45.1)	48.1 (42.6, 53.8)	0.97 (0.77, 1.22); 0.77	1·15 (0·91, 1·47); 0·197
Skin appearance changed					
40+16Gy	104/348 (29·9)	27.9 (23.4, 33.0)	29.1 (24.5, 34.4)	1	-
48Gy	84/323 (26.0)	22·4 (18·2, 27·5)	24.0 (19.5, 29.1)	0.85 (0.62, 1.15); 0.27	1
53Gy	92/343 (26·8)	21.1 (17.1, 26.0)	26.7 (22.1, 32.0)	0.89 (0.66, 1.19); 0.27	1.02 (0.74, 1.41); 0.491
Shoulder stiffness					
40+16Gy	72/348 (20·7)	16·5 (12·9, 21·0)	21.3 (17.1, 26.4)	1	-
48Gy	84/324 (25·9)	19·9 (15·9, 24·8)	25.5 (20.9, 31.0)	1·40 (1·01, 1·95); 0·079	1
53Gy	76/343 (22·2)	16·3 (12·7, 20·8)	20.9 (16.7, 25.9)	1.10 (0.79, 1.53); 0.66	0.78 (0.57, 1.08); 0.915

EORTC QLQ-BR23 items

Adverse effect	Moderate/ marked events over follow- up / total ¹ (%)	KM estimate (95%CI) of cumulative incidence (%) of moderate/ marked events by 3 years	KM estimate (95%CI) of cumulative incidence (%) of moderate/ marked events by 5 years	Comparison with 40+16Gy Hazard ratio ^{2,3} (95%CI); p-value ⁴	Comparison between 53Gy & 48Gy Hazard ratio ^{2,3} (95%CI); p-value ^{5,6}
Breast pain					
40+16Gy	113/348 (32·5)	30.8 (26.2, 36.1)	33.4 (28.5, 38.9)	1	-
48Gy	100/324 (30·9)	29.1 (24.4, 34.5)	31.7 (26.8, 37.3)	1.02 (0.76, 1.35); 0.74	1
53Gy	113/343 (32·9)	28.1 (23.6, 33.2)	32.4 (27.6, 37.8)	1.05 (0.80, 1.38); 0.98	1.03 (0.78, 1.37); 0.36
Breast swollen					
40+16Gy	59/348 (16·9)	15·5 (12·0, 19·9)	16·7 (13·1, 21·2)	1	-
48Gy	50/324 (15·4)	15.6 (12.0, 20.2)	16.0 (12.4, 20.6)	0.88 (0.59, 1.31); 0.64	1
53Gy	42/343 (12.2)	10.7 (7.8, 14.6)	12·0 (8·9, 16·2)	0.74 (0.49, 1.12); 0.093	0.83 (0.54, 1.28); 0.89
Breast oversensitive					
40+16Gy	87/348 (25.0)	23.0 (18.9, 27.9)	25.8 (21.4, 31.0)	1	-
48Gy	90/324 (27·8)	24.1 (19.7, 29.2)	29.1 (24.2, 34.7)	1.11 (0.82, 1.50); 0.40	1
53Gy	97/343 (28·3)	23.4 (19.2, 28.3)	28.3 (23.6, 33.6)	1.16 (0.86, 1.57); 0.38	1.02 (0.76, 1.38); 0.50
Skin problems on breast					
40+16Gy	58/348 (16·7)	14·2 (10·9, 18·4)	16·8 (13·1, 21·3)	1	-
48Gy	46/324 (14·2)	12.8 (9.6, 17.1)	14·4 (10·9, 18·9)	0.85 (0.57, 1.29); 0.42	1
53Gy	40/343 (11·7)	10.6 (7.7, 14.4)	12·4 (9·3, 16·6)	0.78 (0.51, 1.18); 0.063	0.89 (0.57, 1.40); 0.85
Arm / shoulder pain					
40+16Gy	133/348 (38·2)	31.1 (26.5, 36.3)	37.3 (32.2, 43.0)	1	-
48Gy	118/324 (36·4)	28.9 (24.2, 34.3)	34.6 (29.5, 40.4)	0.97 (0.75, 1.26); 0.65	1
53Gy	113/343 (32·9)	26.5 (22.1, 31.7)	32.3 (27.4, 37.9)	0.87 (0.67, 1.13); 0.17	0.90 (0.69, 1.18); 0.81
Arm / hand swollen					
40+16Gy	48/348 (13·8)	11.1 (8.2, 15.0)	13·9 (10·5, 18·3)	1	-
48Gy	41/323 (12·7)	10.0 (7.1, 13.9)	13·2 (9·7, 17·8)	0.89 (0.57, 1.38); 0.75	1
53Gy	48/343 (14·0)	10.2 (7.3, 14.0)	14·6 (11·1, 19·1)	1.00 (0.66, 1.50); 0.95	1.12 (0.72, 1.73); 0.35
Difficulty raising arm					
40+16Gy	68/348 (19·5)	16.0 (12.5, 20.4)	18.9 (15.0, 23.7)	1	-

Adverse effect	Moderate/ marked events over follow- up / total ¹ (%)	KM estimate (95%CI) of cumulative incidence (%) of moderate/ marked events by 3 years	KM estimate (95%Cl) of cumulative incidence (%) of moderate/ marked events by 5 years	Comparison with 40+16Gy Hazard ratio ^{2,3} (95%CI); p-value ⁴	Comparison between 53Gy & 48Gy Hazard ratio ^{2,3} (95%Cl); p-value ^{5,6}
48Gy	61/324 (18·8)	13·5 (10·1, 17·8)	17·7 (13·7, 22·6)	1.05 (0.73, 1.50); 0.95	1
53Gy	56/343 (16·3)	12·1 (9·0, 16·1)	14·9 (11·3, 19·4)	0·84 (0·58, 1·21); 0·31	0.80 (0.55, 1.17); 0.82

KM = Kaplan-Meier, 95%CI = 95% confidence interval; ¹ Follow-up questionnaires available for 1015 patients (40+16Gy: 348, 48Gy: 324, 53Gy: 343), denominators may vary due to missing assessments for some endpoints; ² Adjusted for baseline assessment of adverse effect; ³ HR>1 favours 40+16Gy; ⁴ 2-sided p-value for logrank test; ⁵ HR>1 favours 48Gy; ⁶ 1-sided p-value for logrank test

APPENDIX

IMPORT HIGH recruitment by centre

Table A1: IMPORT HIGH recruitment by centre

Centre	Date opened	Principal Investigator(s)*	Other recruiting consultants	Accrual	RT centre total
Addenbrooke's (RT)	23/07/2009	Prof C Coles	Dr L Hughes-Davies, Dr C Wilson	191	
QEH, King's Lynn	23/12/2010	Dr M Daly		31	1
Bedford	04/05/2011	Dr S Aslam	Dr S Smith	43	333
West Suffolk	14/09/2011	Dr C Woodward	Dr M Moody	68	1
Hinchingbrooke	10/01/2012	Dr S Russell		0	1
RMH, Sutton (RT)	05/03/2009	Dr A Kirby	Dr I Locke, Dr N Somaiah, Dr D Tait	165	
St Georges. Tooting	27/10/2009	Dr A Kirby		3	206
Crovdon University Hospital	30/09/2010	Miss C Pogson	Mr S Ebbs. Dr N Somaiah	38	1
Inswich (BT)	23/01/2009	Dr F Sherwin	Dr. B. Venkitaraman	219	219
Clatterbridge (RT)	04/06/2009	Dr R Sripidam	Dr K Hayat, <i>Dr I Syndikus</i> , Dr N Thorp	92	
Warrington/Halton	04/06/2009	Dr S Tolan	Dr I Syndikus		
Boyal Liverpool	04/06/2009	Dr N Thorn	Dr S Tolan	17	222
St Helen's (Whiston)	04/06/2009	Dr R Srinadam		54	
Aintree	30/06/2010	Dr P Rohson		49	1
Southport General	16/09/2011	Dr K Havat		10	1
Christie (BT)	10/01/2014	Dr Lloncaster		18	
Macclesfield	20/05/2014	Dr J Barraclough		5	1
North Manchester Conoral	17/01/2014	Dr Lloncastor		1	-
Tamosido, Ashton Under Lyno	24/04/2014	Dr C Plaka	Dr.I. Bhatt	2	20
Stopping Hill Stockport	18/02/2014	Dr & Chittalia		0	30
Leighten Hernital Crowe	18/03/2014	Dr S Hignott	Dr. P. Purt	2	1
Poval Albert Edward Wigan	01/07/2014	Dr N Payman		1	1
Powel Stoke (PT)	22/01/2014	Dr N Dayillall	Drof AM Brunt	1 00	00
	22/01/2010			90	90
St James's Institute of Oncology, Leeds (RT)	07/02/2012	Dr S Kumar		42	50
Bradford	22/02/2012			1/	59
	07/02/2012	Dr S Kumar			
Guy's and St Thomas' (RT)	11/05/2011	Prof E Sawyer	Dr L Brazil, Dr S Harris, Prof A Tutt	27	27
Cheltenham General (RT)	03/11/2010	Dr P Jenkins	Dr K Benstead, Dr J Bowen, Dr R Counsell, Dr S Elyan	201	
Worcester Royal	04/11/2010	Dr R Counsell	Dr J Bowen	55	311
Hereford County	04/11/2010	Dr D Nelmes	Dr S Guglani	50	
Royal Gloucester	03/11/2010	Dr P Jenkins		5	
Norfolk and Norwich (RT)	02/07/2010	Dr D Geropantas	Dr A Bulman, Dr A Harnett	84	84
James Paget	02/07/2010	Dr S Down	Dr A Harnett		04
Bristol Haematology and Oncology Centre (RT)	18/07/2011	Dr C Comins	Dr A Bahl, Dr M Tomlinson	44	62
Weston General	20/12/2011	Dr T Wells	Dr M Tomlinson	19	05
Royal Free (RT)	28/06/2010	Dr S Needleman	Dr K Pigott	52	52
University College London (RT)	01/08/2011	Dr M MacCormack	Dr G Blackman, Dr A Cassoni, Dr M Gaze, Dr J Tobias	137	137
Charing Cross (RT)	20/02/2012	Dr S Cleator	Dr C Lowdell	10	
St Mary's Hospital, Paddington	20/02/2012	Dr S Cleator		1 19	~~
Ealing Hospital	11/02/2013	Dr O Hatcher	Dr C Lewanski	4	2/
West Middlesex University Hospital	20/08/2012	Dr P Riddle		4	1
Derriford Hospital, Plymouth (RT)	13/09/2011	Dr U Panwar	Dr S Dubey, Dr S Kelly (RIP)	38	38
Weston Park, Sheffield (RT)	21/03/2011	Dr O Din	Dr K Dunn, Dr M Hatton, Dr C Lee, Dr O Prakash Purohit	160	160
Queen's, Romford (RT)	18/09/2014	Dr M Quigley		7	7
Southampton General (RT)	03/01/2012	Dr S Raj	Dr C Crowley	14	1
Royal Hampshire County	05/01/2012	Dr S Raj	í í	18	32
James Cook, Middlesbrough (RT)	23/09/2011	Dr E Thompson	Dr E Aynsley, Dr J Hardman, Dr N Storey	28	28
Mount Vernon (BT)	07/10/2011	Dr C Westbury	Dr M Ah-See	18	18
Northampton General Hospital (RT)	17/07/2012	Dr R Agarwal	Prof H Eldeeb, Dr C Macmillan	42	47
Royal Surrey County (RT)	01/11/2011	Dr R Laing	Dr A Franklin, Dr A Neal,	67	67
Deterborough (PT)	20/00/2014	Dr.C. lophastt		20	20
reterborougn (KI)	30/08/2011	Di C Jephcolt	DI S Heece	29	29

Centre	Date opened	Principal Investigator(s)*	Other recruiting consultants	Accrual	RT centre total	
Beatson WoS Cancer Centre (RT)	16/03/2012	Dr A Alhasso		27		
Royal Alexandra, Paisley	16/03/2012	Dr A Alhasso		57	41	
Wishaw General Hospital	14/01/2015	Dr M Rizwanullah		4	41	
Crosshouse Hospital	20/01/2016	Dr G Lumsden				
Lincoln County (RT)	21/02/2012	Dr A Chaudhuri	Dr E Murray, Dr V Sivoglo, Dr T Sreenivasan	59		
Pilgrim Hospital, Boston	21/02/2012	Dr A Chaudhuri	Dr E Murray, Dr A Papkostidi, Dr V Sivoglo	5	65	
Grantham and District	21/02/2012	Dr A Chaudhuri		1		
Royal Preston (Rosemere Centre) (RT)	10/05/2012	Dr M Hogg		5		
The Royal Blackburn	10/05/2012	Dr M Hogg	Wiebke Appel	6	46	
Burnley General	10/05/2012	Dr M Hogg	Wiebke Appel	35	1	
Royal Cornwall (RT)	27/03/2015	Dr D Wheatley		3	3	
Queen Alexandra, Portsmouth (RT)	30/06/2014	Dr A Suovuori	Dr K Bradley, Dr JD Dubois, Dr G Khoury	62	62	
Churchill Hospital, Oxford (RT)	04/09/2012	Dr B Lavery	Dr S Oliveros	42	42	
Nottingham University Hospital (RT)	30/06/2014	Dr S Hosni	Dr P Lawton	3	3	
Torbay Hospital (RT)	23/11/2012	Dr P Bliss	Dr A Goodman	31	31	
Velindre Cancer Centre (RT)	08/10/2014	Dr H Passant	Dr A Borley	8	8	
Belfast City Hospital (RT)	06/03/2015	Dr G Hanna		0	0	
Royal Devon and Exeter (RT)	09/09/2014	Dr J Forrest	Dr D Hwang	5	5	
University Hospital of Coventry (RT)	03/10/2014	Dr S Lupton		3		
George Eliot Hospital, Nuneaton	03/10/2014	Dr S Lupton		3	47	
Alexandra Hospital, Redditch	03/10/2014	Dr C Irwin	Dr D Hrouda	0	1/	
Warwick Hospital	03/10/2014	Dr N Walji		11		
Queen Elizabeth, Birmingham (RT)	27/08/2014	Dr M S Anwar	Dr A Stevens	3	3	
Royal Shrewsbury (RT)	29/08/2014	Dr L Pettit	Dr S Khanduri	6	6	
Freeman's Hospital, Newcastle (RT)	06/02/2015	Dr H Turnbull	Dr D Lee	4	4	
Leicester Royal Infirmary (RT)	06/03/2015	Dr K Sampson	Dr L Aznar-Garcia <i>, Dr I Bioangiu ,</i> Dr K Kancherla	4	4	
			TOTAL	2621	2621	

Bold indicates radiotherapy centres * Past PI(s) in italics

IMPORT Trial Management Group

Current membership		
Abdulla Alhasso	Clare Griffin*	Elinor Sawyer
Wail Al Sarakbi	Susan Griffin	Mark Sculpher
Gillian Barnett	Emma Harris	Navita Somaiah
Judith Bliss*	Jo Haviland*	Mark Sydenham*
Murray Brunt	Penny Hopwood	Isabel Syndikus
Charlie Chan	Hayley James	Yatman Tsang
Hannah Chantler	Monica Jefford	Andrew Tutt
Charlotte Coles	Anna Kirby	Nicola Twyman
Ellen Donovan	Cliona Kirwan	Karen Venables
David Eaton	Sara Lightowlers	Duncan Wheatley
Ian Ellis	Andrew Poynter	Gordon Wishart
Philip Evans	Elena Provenzano	John Yarnold
Past members		
Rajiv Agrawal	John Le Vay (deceased)	Judith Robinson
Sarah Barber	Anne McIntyre	Liba Stones*
Peter Bliss	Helen Mayles	Georges Sumo*
Laura Ciurlionis	Daniel Megias	Jenny Titley*
John Dewar	Wing Nip*	Alastair Thompson
Stephen Ebbs	Adeola Obamumoye*	Maggie Wilcox (deceased)
Marie Emson*	Judith Mills*	Anna Winship
Adrian Harnett	Jane Prince*	John Winstanley
Ronald Kaggwa* (deceased)	Christine Rawlings	Rada Zotova

* ICR-CTSU staff

Radiotherapy Quality Assurance team: Laura Ciurlionis, David Eaton, Daniel Megias, Elizabeth Miles, Yatman Tsang, Rada Zotova and Karen Venables.

Independent Trial Steering Committee members: Professor M Mason (Chair), Dr D Gilbert, Dr V Cosgrove, Professor P Poortmans, Professor D Sebag-Montefiore, (past members Dr J Barrett, Professor S Bentzen) **Independent Data Monitoring Committee members:** Dr H Lucraft (Chair), Professor M Sydes, Professor J Staffurth, (past members Dr M Sharpe (deceased), Professor N Burnet)

Results of supplementary analyses of IBTR

Results for the per protocol sensitivity analysis of the primary endpoint (IBTR) were very similar to the ITT analysis. Excluding the 181 patients with major treatment deviations, the number of primary events were 18 for 40+16Gy, 19 for 48Gy and 32 for 53Gy, with estimated 5-year cumulative incidence of IBTR 1.8% (95%CI 1.1, 3.0), 2.0% (1.2, 3.3) and 3.1% (2.1, 4.6) respectively. HRs versus 40+16Gy were 1.05 (0,55, 2.00) for 48Gy and 1.79 (1.01, 3.20) for 53Gy, with 5-year absolute differences 0.1% (-0.8, 1.8) and 1.4% (0.01, 3.8) respectively. Results from a competing risks analysis of IBTR with death from any cause as a competing event were almost identical to those from the primary ITT analysis (HRs from competing risks model: 1.05 (95%CI 0.57, 1.93) for 48Gy versus 40+16Gy; 1.76 (1.01, 3.04) for 53Gy versus 40+16Gy).

Statistical considerations for original primary endpoint of reduction in palpable induration inside the boost volume

The original trial design evaluated reduction in palpable induration inside the boost volume for test group 1 (48Gy delivered to boost) versus test group 2 (53Gy) requiring a total of 840 patients to detect a 7% reduction at 3-years in 48Gy compared with 53Gy (assuming 20% in 53Gy, 80% power, 1-sided α =0.05, 5% loss to follow-up). The original trial design was not powered for AE comparisons between each test group and control, although the final sample size *does* have sufficient power for comparisons of the clinical assessments of late AE. The target sample size for PRO and photographic assessments remained 840 when the trial was expanded.

CONTROL

dose escalation

TEST GROUP 1

48Gy/15Fr concomitant

dose escalation

53Gy/15Fr concomitant dose escalation

* Any breast cancer-related event includes local, regional or distant relapse, breast cancer death, contralateral breast cancer

Figure A4a: Cumulative risk of clinician-assessed moderate / marked breast induration (in index quadrant) by treatment group

Figure A4b: Cumulative risk of patient-assessed moderate / marked breast hardness / firmness by treatment group

Figure A5: Clinician assessments of late normal tissue effects up to 8 years, by treatment group (a) Any breast AE*

*Any AE in breast includes distortion, shrinkage, induration, telangiectasia, oedema

(b) Breast distortion

(d) Breast induration (index quadrant)

(f) Breast oedema

(h) Breast discomfort

Figure A6: Patient assessments of late normal tissue effects up to 5 years, by treatment group

(c) Breast hardness / firmness

(d) Change in skin appearance on affected breast

(e) Shoulder stiffness

(f) Breast pain

(h) Breast oversensitive

(i) Skin problems on breast

(j) Arm / shoulder pain

(l) Difficulty raising arm or moving it sideways

Table A2: Summary of planning techniques in the IMPORT HIGH centres

	Planning Technique (total number)						
	Forward	Forward Inverse Forward/Inverse					
Control	176	223	196				
Test Group 1	161	307	159				
Test Group 2	176	315	139				
Total	513	848	494				

Tomotherapy, a form of inverse IMRT, was used by one centre during the early stages of the trial as this was the available method of IMRT. Of note, this was a hybrid approach of linac-based whole breast radiotherapy and tomotherapy boost so that the low-dose irradiated volumes were limited. We do not have the data to identify numbers of these patients, but they would have been small

Treatment group	Volume	Target	Mandatory/ Optimal	Percentage of plans achieving target	
		V36Gy > 90%	Mandatory	100	
Treatment group 40+16Gy 48Gy 53Gy	PTVwb - PTVtb	Median dose 34-37Gy	Optimal	97.5	
		V56Gy <5%	Mandatory	99.7	
40+16Gy		V53.2Gy >95%	Mandatory	98.1	
Treatment group 40+16Gy 48Gy 53Gy	PTVtb	Median dose 55.5-56.5Gy	Mandatory	97.0	
		V60Gy <5%	Mandatory	99.8	
		Global maximum dose <61.6Gy	Mandatory	100	
		V32.4Gy >90%	Mandatory	99.8	
	PTVwb - PTVpb	Median dose 34-37Gy	Median dose 34-37Gy Optimal		
		V40Gy <5%	Mandatory	97.4	
		V36Gy>90%	Mandatory	99.1	
486	PTVpb - PTVtb	Median dose 40-44Gy	Optimal	98.8	
48Gy		V45.6Gy > 95%	Mandatory	98.2	
	DTV/d	Median dose 47.5-48.5Gy	Mandatory	98.5	
	ΡΙντο	V51.4Gy <3%	Mandatory	99.8	
		Global maximum dose <52.8Gy	Mandatory	99.5	
		V32.4Gy >90%	Mandatory	99.7	
	PTVwb - PTVpb	Median dose 34-37Gy	Optimal	97.8	
		V40Gy <5%	Mandatory	Percentage of plans achieving target 100 97.5 99.7 98.1 97.0 99.8 100 99.8 97.5 99.8 97.5 99.8 97.5 99.8 97.5 97.4 99.1 98.8 98.2 98.5 99.8 99.5 99.7 99.8 99.5 99.7 99.8 99.5 99.7 99.8 99.5 99.7 99.8 99.5 99.7 99.8 99.7 99.8 99.7 99.7 99.8 99.7 99.8 99.7 99.8 99.1 99.8 99.1 99.8 99.1	
		V36Gy>90%	Mandatory	99.8	
53Gy	PTVpb - PTVtb	Median dose 40-44Gy	Optimal	94.3	
		V50.4Gy>95%	Mandatory	96.0	
	PTVtb	Median dose 52.5-53.5Gy	Mandatory	96.6	
		V56.7 <3%	Mandatory	99.8	

Table A3: Summary of dose targets for each treat	it group and percentage of plans meeting e	each target
--	--	-------------

Treatment group	Volume	Target	Mandatory/ Optimal	Percentage of plans achieving target	
		Global maximum dose <57Gy	Mandatory	100	

Organ at risk	Constraint	Mandatory/ Optimal	Treatment group	Percentage of plans achieving constraint
			40+16Gy	97.7
	V18Gy <15%	Mandatory	48Gy	98.5
			53Gy	97.4
			40+16Gy	70.0
Ipsilateral lung	V18Gy <10%	Optimal	48Gy	66.7
			53Gy	66.0
		ConstraintMandatory/ OptimalTreatment18Gy <15%	40+16Gy	77.0
	Mean dose <6Gy	Optimal	48Gy	74.2
			53Gy	64.0
			40+16Gy	100
	V2.5Gy <15%	Mandatory	48Gy	98.8
			53Gy	99.7
Contralateral lung			40+16Gy	92.0
	V2.5Gy <3%	Optimal	48Gy	88.5
			53Gy	67.1
			40+16Gy	99.1
	Mean dose <1Gy	Optimal	48Gy	95.8
			53Gy	92.5
			40+16Gy	100
	V13Gy <10%	Mandatory	48Gy	99.1
			53Gy	99.4
			40+16Gy	70.2
Heart (left sided tumour)	V13Gy <2%	Optimal	48Gy	69.8
			53Gy	68.7
			40+16Gy	76.9
	Mean dose <3Gy	Optimal	48Gy	69.5
		Analysis Analysis Analysis % Mandatory 40+16Gy 97.7 % Mandatory 48Gy 98.5 53Gy 97.4 % Optimal 40+16Gy 70.0 % Optimal 40+16Gy 70.0 Gy Optimal 40+16Gy 77.0 40+16Gy 77.0 53Gy 66.0 % Mandatory 40+16Gy 77.0 % Mandatory 48Gy 98.8 53Gy 99.7 40+16Gy 99.1 % Mandatory 48Gy 98.8 53Gy 67.1 99.1 6 Optimal 48Gy 99.1 53Gy 99.1 53Gy 92.5 53Gy 99.1 53Gy 99.1 6 Optimal 48Gy 99.1 53Gy 99.1 53Gy 99.4 6 Optimal 48Gy 99.8 53Gy 68.7	56.3	
			40+16Gy	97.4
	V5Gy <6%	Optimal	48Gy	98.3
			53Gy	88.3
Heart (right sided tumour)			40+16Gy	88.5
	Mean dose <1.7Gy	Optimal	48Gy	79.9
			53Gy	73.8
			40+16Gy	99.5
	Mean dose <1.5Gy	Mandatory	48Gy	99.3
Control ()			53Gy	99.4
Contralateral breast			40+16Gy	60.7
	Mean dose <0.5Gy	Optimal	48Gy	52.6
			53Gy	43.3

Table A4: Summary of organ at risk (OAR) constraints and percentage of plans meeting each

Table A5: Summary of means of mean heart doses for left and right sided tumours in each treatment group

Laterality of tumour		Left		Right			
Treatment group	40+16Gy	48Gy	53Gy	40+16Gy	48Gy	53Gy	
Median mean heart dose	2.21	2.50	2.80	0.90	1.10	1.40	

Mean of mean heart doses	2.39	2.68	2.93	0.99	1.25	1.38	
IQR of mean heart doses	1.7 - 2.9	1.8 - 3.1	1.9 - 3.7	0.6 - 1.3	0.8 - 1.6	1.0 - 1.7	

IQR = interquartile range

Table A6: Summary of means of mean ipsilateral and contralateral lung doses in each treatment group

Laterality of lung		Ipsilateral		Contralateral			
Treatment group	40+16Gy	48Gy	53Gy	53Gy 40+16Gy 48Gy		53Gy	
Median mean lung dose	5.20	5.30	5.60	0.34	0.46	0.52	
Mean of mean lung doses	5.24	5.41	5.74	5.74 0.38		0.58	
IQR of mean lung doses	4.2 - 6.2	4.4 - 6.1	4.7 - 6.6	0.2 - 0.5	0.3 - 0.6	0.4 - 0.7	

IQR = interquartile range

Table A7: Summary of target volumes in each treatment group

Treatment group	40+16Gy	48Gy	53Gy
Median CTVtb volume (cm ³)	12.65	12.50	13.50
Mean CTVtb volume (cm ³)	19.86	17.58	18.45
IQR of CTVtb volumes	6.61 - 23.61	7.44 - 20.99	7.28 - 22.58
Median CTVtb/PTVwb ratio	0.015	0.015	0.015
Mean CTVtb/PTVwb ratio	0.022	0.019	0.020
IQR of CTVtb/PTVwb ratios	0.009 - 0.027	0.009 - 0.025	0.009 - 0.026
Percentage with CTVtb/PTVwb ratio > 0.05	5.8	3.3	4.2

IQR = interquartile range

Table A8: Relapses, second primary cancers and deaths by treatment group

Evont	40+16Gy	48Gy	53Gy	Total
Event	N=871	N=874	N=872	N=2617
Local relapse and ipsilateral new primary (primary endpoint) ¹	20	21	35	76
Local relapse only	16	16	25	57
Ipsilateral breast new primary	2	0	5	7
Cannot differentiate	0	2	1	3
Local and regional	2	3	4	9
Type of relapse / new primary				
Invasive	16	14	30	60
DCIS only	1	3	3	7
Unknown	3	4	2	9
Position of relapse / new primary				
Inside tumour bed PTV	10	14	10	34
Inside partial breast PTV but outside tumour bed PTV	0	4	8	12
Inside whole PTV but outside partial breast PTV	5	2	7	12
Outside whole breast PTV ²	0	0	1	1
Unknown	5	1	9	15
Regional relapse ^{1,3}	18	16	19	53
Axilla	13	8	15	36
SCF	4	9	6	19
Other	6	2	5	13
Distant relapse	66	67	74	207
Site of distant relapse ³				
Bone	31	40	33	104
Lung	24	27	28	79
Liver	26	20	35	71
Pleura	6	5	3	14
Brain	14	11	16	41
Distant nodes	7	9	12	28
Other	10	11	13	34
Contralateral breast new primary	11	14	18	43
Invasive	8	12	14	34
DCIS	1	2	4	7
Unknown	2	0	0	2
Non-breast new primary cancer	19	21	23	63
Gynaecological	3	2	7	12
Gastrointestinal	6	8	5	19
Lung	1	4	4	9
Urinary	2	2	1	5
Other ⁴	7	5	6	18
Death	71	59	76	206
Breast cancer	53	49	61	163
Cardiac	0	0	2	2
Second cancer (non-breast cancer)	9	8	7	24
Other ⁵	8	1	5	14
Unknown ⁶	1	1	1	3
Factoria da servicia da sete				
FOF Dreast cancer deatns:				

Event	40+16Gy N=871	48Gy N=874	53Gy N=872	Total N=2617
Uncontrolled local disease only at time of death	2	3	3	8
Uncontrolled distant disease only at time of death	42	34	41	117
Uncontrolled local and distant disease at time of death	9	11	16	36
Unknown	0	1	1	2

NB: Patients reporting events of more than one type are included in each relevant row

¹ Includes 9 patients with concurrent local and regional relapse (2 x 40+16Gy, 3 x 48Gy, 4 x 53Gy).

 2 For the one patient with IBTR reported as outside whole-breast PTV, this was reported as "lower, outer, lateral chest wall, some in breast tissue and tumour in chest wall muscle too. Out of quadrant, outside RT field".

³ More than one site of regional or distant relapse possible; patients with >1 site listed in each relevant row.

⁴ Other non-breast second primary sites: 40Gy: myeloma; renal; hilar cholangiocarcinoma; peritoneal (x2); basal cell carcinoma; neuroendocrine. 48Gy: pancreas; renal; Hodgkin's disease; myeloma; chronic myeloid leukemia. 53Gy: melanoma (x2); thyroid; squaumous cell carcinoma; basal cell carcinoma; peritoneal.

⁵Other causes of death: 40Gy: pneumonia (x2); urinary tract infection; renal stones and pneumonia; ruptured aortic aneurysm; COVID-19; lower respiratory tract infection; head injury after horse accident; advanced dementia, breast cancer and hip fracture. 48Gy: chronic obstructive pulmonary disease. 53Gy: chest infection, sepsis and liver failure; pneumonia (x3); chronic obstructive pulmonary disease.

⁶ Unknown cause of death: 48Gy patient had second new primary (pancreatic cancer) 10 months before death.

⁷ Unknown for one patient due to missing information on the case report forms and one patient died two days after completing radiotherapy

				Moderate/Ma	rked vs. None/	Mild						
	10.160	40.0		48Gy vs. 40+1	.6Gy		53Gy vs. 40+	16Gy		53Gy vs. 48G	y	
Adverse effect	40+16Gy N=627 (%)	48Gy N=674 (%)	53Gy N=646 (%)	Risk ratio (95%CI)	Risk difference (95%CI), %	p-value ¹	Risk ratio (95%CI)	Risk difference (95%CI), %	p- value ¹	Risk ratio (95%CI)	Risk difference (95%CI), %	p-value
Any AE in breast ³ None Mild Moderate Marked	260 (43) 241 (40) 93 (15) 12 (2)	321 (49) 249 (38) 78 (12) 8 (1)	261 (41) 258 (41) 90 (14) 23 (4)	0·76 (0·58, 0·98)	-4·2 (-8·2, -0·2)	0.041	1.03 (0.81, 1.31)	0·5 (-3·7, 4·8)	0.82	1·36 (1·05, 1·76)	4·8 (0·8, 8·7)	0.011
Breast distortion None Mild Moderate Marked	409 (68) 149 (25) 38 (6) 5 (1)	473 (73) 147 (23) 28 (4) 3 (<1)	419 (67) 154 (25) 41 (6) 11 (2)	0.66 (0.42, 1.04)	-2·4 (-5·0, 0·2)	0.092	1.16 (0.79, 1.71)	1·2 (-1·8, 4·1)	0.46	1.75 (1.13, 2.69)	3.6 (0.8, 6.3)	0.007
Breast shrinkage None Mild Moderate Marked	371 (62) 166 (28) 58 (10) 5 (<1)	433 (66) 171 (26) 44 (7) 4 (1)	411 (66) 157 (25) 49 (8) 9 (1)	0·70 (0·49, 1·00)	-3·1 (-6·3, 0·03)	0.028	0.88 (0.63, 1.24)	-1·2 (-4·6, 2·1)	0.20	1·26 (0·87, 1·81)	1·9 (-1·1, 4·9)	0.13
Breast induration (index quadrant) None Mild Moderate Marked	420 (70) 144 (24) 31 (5) 5 (1)	482 (74) 137 (21) 33 (5) 1 (<1)	405 (65) 166 (26) 48 (8) 8 (1)	0.87 (0.55, 1.37)	-0.8 (-3.3, 1.8)	0.62	$ \begin{array}{r} 1.49 \\ (0.99, 2.23) \end{array} $	2·9 (0, 5·9)	0.065	1·71 (1·14, 2·59)	3·7 (0·9, 6·5)	0.006
Telangiectasia None Mild Moderate Marked	559 (93) 39 (6) 6 (1) 0	620 (95) 35 (5) 0	584 (93) 36 (6) 4 (<1) 3 (<1)	N/A	-1·0 (-1·8, -0·2)	0.012	$ \begin{array}{c} 1 \cdot 12 \\ (0 \cdot 38, 3 \cdot 32) \end{array} $	0·1 (-1·0, 1·3)	>0.99	N/A	1·1 (0·3, 1·9)	0.007
Breast oedema None Mild Moderate Marked	545 (90) 45 (7) 11 (2) 1 (<1)	619 (95) 27 (4) 5 (1) 1 (<1)	591 (94) 28 (4) 6 (1) 1 (<1)	0·46 (0·17, 1·22)	-1·1 (-2·4, 0·3)	0.12	$\begin{array}{c} 0.56\\ (0.22, 1.41) \end{array}$	-0·9 (-2·3, 0·5)	0.22	$ \begin{array}{c} 1 \cdot 21 \\ (0 \cdot 41, 3 \cdot 60) \end{array} $	0·2 (-0·9, 1·3)	0.47
Breast tenderness on palpation None Mild Moderate Marked	467 (77) 115 (19) 25 (4) 3 (<1)	507 (77) 118 (18) 24 (4) 5 (1)	447 (71) 143 (23) 29 (5) 6 (1)	0·97 (0·58, 1·60)	-0·1 (-2·4, 2·1)	0.89	1·22 (0·75, 1·98)	1.0 (-1.4, 3.5)	0.44	1·26 0·78, 2·04)	1·2 (-1·2, 3·6)	0.50
Breast discomfort None	359 (69)	397 (71)	348 (66)	0.93 (0.53, 1.62)	-0.3 (-2.8, 2.1)	0.88	1·11 (0·65, 1·89)	0.5 (-2.1, 3.1)	0.78	1·19 (0·70, 2·04)	0.8 (-1.7, 3.3)	0.31

Table A9: Cross-sectional analysis of clinician-assessed late adverse effects at 5 years according to treatment group for 1947 patients with 5-year AE assessments

					Moderate/Marked vs. None/Mild							
	40+160-	49.0	52 C	48Gy vs. 40+16Gy		53Gy vs. 40+16Gy			53Gy vs. 48Gy			
Adverse effect	40+10Gy N=627 (%)	48Gy N=674 (%)	53Gy N=646 (%)	Risk ratio (95%CI)	Risk difference (95%CI), %	p-value ¹	Risk ratio (95%CI)	Risk difference (95%CI), %	p- value ¹	Risk ratio (95%CI)	Risk difference (95%CI), %	p-value
Mild Moderate Marked	139 (27) 19 (4) 5 (<1)	140 (25) 20 (4) 4 (<1)	155 (29) 24 (4) 3 (1)									

Denominators vary due to missing grades for AE assessments; N/A = not available; ¹ p-value for Fisher's exact test; ² 1-sided p-value; ³ Any AE in breast includes distortion, shrinkage, induration (index quadrant), telangiectasia, oedema

Adverse effect	No. moderate/marked events / total no. of assessments over follow- up (%)	Comparison with 40+16Gy Odds ratio ² (95%CI); p- value ³	Comparison between 53Gy & 48Gy Odds ratio ² (95%CI); p-value ^{3,4}	Odds ratio for years of follow-up (95%CI); p-value ³
Any AE in the breast ¹				1.06 (1.04, 1.08); <0.001
40+16Gy	666/4330 (15.4)	1	-	
48Gy	565/4467 (12.6)	0.81 (0.67, 0.99); 0.042	1	
53Gy	724/4393 (16.5)	1.10 (0.91, 1.33); 0.31	1.35 (1.11, 1.64); 0.001	
Breast distortion				1.06 (1.03, 1.10); <0.001
40+16Gy	246/4302 (5.7)	1	-	
48Gy	197/4427 (4.4)	0.74 (0.54, 1.01); 0.056	1	
53Gy	287/4355 (6.6)	1.11 (0.84, 1.47); 0.48	1.48 (1.09, 2.01); 0.005	
Breast shrinkage				1.16 (1.13, 1.19); <0.001
40+16Gy	345/4295 (8.0)	1	-	
48Gy	270/4430 (6.1)	0.80 (0.61, 1.05); 0.11	1	
53Gy	318/4354 (7.3)	0.90 (0.69, 1.17); 0.45	1.13 (0.87, 1.48); 0.18	
Breast induration (index quadrant)				1.03 (1.00, 1.06); 0.023
40+16Gy	245/4294 (5.7)	1	-	
48Gy	250/4428 (5.6)	0.94 (0.71, 1.24); 0.67	1	
53Gy	381/4355 (8.7)	1.52 (1.18, 1.96); 0.001	1.62 (1.24, 2.11); <0.001	
Telangiectasia				1.17 (1.07, 1.29);
40+16Gy	30/4307 (0.7)	1	-	< 0.001
48Gy	16/4441 (0.4)	0.47 (0.18, 1.22); 0.129	1	
53Gy	33/4366 (0.8)	1.02 (0.47, 2.20); 0.95	2.20 (0.87, 5.55); 0.048	
Breast oedema				0.73 (0.68, 0.78);
40+16Gy	126/4304 (2.9)	1	-	< 0.001
48Gy	67/4438 (1.5)	0.58 (0.38, 0.88); 0.010	1	
53Gy	79/4359 (1.8)	0.60 (0.39, 0.90); 0.015	1.08 (0.70, 1.68); 0.36	
Breast tenderness on palpation				0.97 (0.94, 1.01); 0.12
40+16Gy	185/3965 (4.7)	1	-	
48Gy	193/4133 (4.7)	0.95 (0.69, 1.29); 0.74	1	
53Gy	237/4011 (5.9)	1.22 (0.90, 1.64); 0.20	1.29 (0.95, 1.74); 0.050	
Breast discomfort				0.95 (0.92, 0.99); 0.008
40+16Gy	183/3399 (5.4)	1	-	
48Gy	183/3601 (5.1)	0.92 (0.68, 1.25); 0.60	1	
53Gy	255/3473 (7.3)	1.40 (1.06, 1.86); 0.018	1.52 (1.14, 2.02); 0.002	

۲able A10: Longitudinal analysis of clinician-assessed late adverse effects including all annual follow-u	ıp
assessments for 2496 patients with at least one annual clinical assessment	

¹ Any AE in breast includes distortion, shrinkage, induration, telangiectasia, oedema; ² OR estimated from GEE model including all follow-up data, and represents relative odds of moderate/marked AE (versus none/mild) for each pairwise comparison of treatment groups across all follow-up assessments; ³ p-value from Wald test; ⁴ 1-sided p-value

Table A11: Cross-sectional analysis of patient-assessed adverse effects at 5	5 years according to treatment group for	708 patients with 5-year qu	iestionnaire data
available			

	40+16Gy	48Gy	53Gy	Moderate/Marked vs. None/Mild								
	N=235 (%)	N=231 (%)	N=242 (%)	48Gy vs. 40+1	6Gy		53Gy vs. 40+	16Gy		53Gy vs. 48G	y	
				Risk ratio (95%CI)	Risk difference (95%CI), %	p- value ¹	Risk ratio (95%CI)	Risk difference (95%CI), %	p- value ¹	Risk ratio (95%CI)	Risk difference (95%CI), %	p-value
Protocol-specific item	8											
Breast appearance changed None Mild Moderate	37 (16) 107 (46) 51 (22)	45 (19) 113 (49) 54 (23) 20 (0)	45 (19) 111 (47) 51 (21) 20 (12)	0·85 (0·66, 1·09)	-5·8 (-14·4, 2·9)	0.21	0·91 (0·71, 1·16)	-3·5 (-12·2, 5·2)	0.44	1.07 (0.83, 1.39)	2·3 (-6·2, 10·8)	0.34
Breast smaller	36 (16)	20 (9)	30 (13)	0.82	-5.9	0.19	0.90	-3.4	0.49	1.09	2.5	0.31
None Mild Moderate Marked	64 (28) 89 (38) 42 (18) 36 (16)	79 (34) 87 (38) 46 (20) 18 (8)	75 (32) 90 (38) 45 (19) 27 (11)	(0.63, 1.08)	(-14.3, 2.5)		(0.69, 1.17)	(-11.8, 5.1)		(0.82, 1.45)	(-5.7, 10.8)	
Breast				0.54	-12.8	0.001	0.87	-3.5	0.40	1.61	9.2	0.008
harder/firmer None Mild Moderate Marked	88 (38) 79 (34) 39 (17) 26 (11)	113 (49) 82 (36) 22 (10) 13 (6)	105 (44) 74 (31) 41 (17) 17 (7)	(0.38, 0.78)	(-20·2, -5·4)		(0.64, 1.18)	(-11.5, 4.4)		(1.10, 2.35)	(2.1, 16.4)	
Skin appearance changed None	106 (45)	126 (54)	129 (54)	0·73 (0·43, 1·24)	-3·4 (-9·0, 2·2)	0.30	0.88 (0.54, 1.45)	-1·5 (-7·3, 4·3)	0.67	$ \begin{array}{c} 1 \cdot 21 \\ (0 \cdot 70, 2 \cdot 09) \end{array} $	1·9 (-3·5, 7·3)	0.30
Mild Moderate Marked	98 (42) 22 (9) 7 (3)	85 (37) 16 (7) 5 (2)	82 (35) 17 (7) 9 (4)									
Shoulder stiffness None Mild Moderate Marked	141 (60) 75 (32) 12 (5) 7 (3)	149 (65) 55 (24) 19 (8) 7 (3)	156 (65) 60 (25) 19 (8) 6 (2)	$1 \cdot 40$ (0.80, 2.45)	3·2 (-2·2, 8·6)	0.22	1·28 (0·73, 2·27)	2·3 (-2·9, 7·5)	0.43	0·92 (0·55, 1·54)	-0·9 (-6·5, 4·7)	0.43
EORTC QLQ-BR23	7 (3)	7 (3)	0(2)									
Breast pain None Mild Moderate Marked	102 (43) 104 (44) 21 (9) 8 (3)	118 (51) 80 (35) 26 (11) 7 (3)	95 (39) 117 (48) 20 (8) 9 (4)	1·16 (0·73, 1·84)	1·9 (-4·2, 8·1)	0.59	0·97 (0·60, 1·58)	-0·3 (-6·2, 5·6)	0.52	0·84 (0·53, 1·34)	-2·2 (-8·3, 3·8)	0.28
Breast swollen None Mild	195 (84) 29 (12)	201 (88) 24 (10)	204 (85) 27 (11)	0·45 (0·14, 1·45)	-2·1 (-5·1, 0·9)	0.26	$ \begin{array}{c} 1.07 \\ (0.44, 2.60) \end{array} $	0·3 (-3·2, 3·8)	>0.99	2·38 (0·76, 7·47)	2·4 (-0·6, 5·4)	0.10

	40+16Gy	48Gy	53Gy	Moderate/Marked vs. None/Mild								
	N=235 (%)	N=231 (%)	N=242 (%)	48Gy vs. 40+16Gy			53Gy vs. 40+	16Gy		53Gy vs. 48G	Ъу.	
				Risk ratio (95%CI)	Risk difference (95%CI), %	p- value ¹	Risk ratio (95%CI)	Risk difference (95%CI), %	p- value ¹	Risk ratio (95%CI)	Risk difference (95%CI), %	p-value
Moderate	4 (2)	4 (2)	7 (3)									
Marked	5 (2)	0	3 (1)									
Breast oversensitive				0.79	-2.1	0.51	1.01	0.9	>0.99	1.28	2.2	0.25
None	145 (62)	148 (64)	137 (57)	(0.44, 1.42)	(-7.2, 3.1)		(0.59, 1.74)	$(-5\cdot 3, 5\cdot 5)$		(0.71, 2.29)	(-3.0, 7.3)	
Mild	65 (28)	65 (28)	80 (33)									
Moderate	16 (7)	13 (6)	18 (7)									
Marked	7 (3)	5 (2)	6 (2)									
Skin problems on breast None	180 (77)	185 (80)	195 (81)	0.64 (0.25, 1.63)	-1.7 (-5.2, 1.8)	0.47	0·97 (0·43, 2·20)	-0·1 (-4·0, 3·7)	>0.99	1.51 (0.60, 3.83)	1·5 (-1·9, 5·0)	0.26
Mild	130(77)	30(17)	34(14)									
Madarata	+3(10)	59(17)	3+(1+)									
Morked	5(3)	0(3)	$\frac{3(1)}{8(2)}$									
Arm/shoulder nain	5 (2)	1 (<1)	8(3)	1.00	1.6	0.72	1.08	1.2	0.72	0.08	0.2	0.52
None	122 (52)	111 (48)	125 (52)	(0.74, 1.62)	(5.3 8.5)	0.17	(0.73, 1.50)	(5.5, 8.2)	0.72	$(0.67 \ 1.44)$	$(7.3 \ 6.7)$	0.32
Mild	72(32)	77(22)	125(52) 71(20)	(0 /4, 1 02)	(-5 5, 8 5)		(0.75, 1.59)	(-5 5, 8 2)		$(0\ 07, 1\ 44)$	(-7 3, 0 7)	
Moderate	73(31) 31(13)	$\frac{77(33)}{34(15)}$	71(30) 31(13)									
Marked	9(4)	9(4)	13(13)									
Arm/hand swallon	9 (4)	9 (4)	15(5)	0.70	2.0	0.43	0.01	0.6	0.85	1.30	1.4	0.32
None	187 (80)	185 (80)	203 (84)	$(0.33 \ 1.48)$	(6.3, 2.2)	0 43	(0.46, 1.81)	(5.0, 3.8)	0.85	$(0.61 \ 2.77)$	(2.7, 5.5)	0 52
Mild	32(14)	34(15)	203 (84)	(0 55, 1 48)	(-0 3, 2 2)		(0.40, 1.01)	(-5 0, 5 8)		$(0\ 01, 2\ 77)$	(-2 7, 5 5)	
Moderate	$\frac{32(14)}{8(3)}$	10(4)	$\frac{23(5)}{11(5)}$									
Marked	8(3)	10(4) 1(<1)	4(2)									
Difficulty raising	0(5)	1 (1)	+ (2)	1.14	1.0	0.72	0.91	-0.6	0.85	0.80	-1:6	0.31
arm				(0.60, 2.19)	(-3.7 5.7)	0 12	$(0.46 \ 1.81)$	(-5.0, 3.8)	0.05	$(0.41 \ 1.55)$	(-6.2, 3.0)	0.51
None	176 (75)	165 (71)	177 (73)	(0 00, 2 1))	(37,37)		(0.10, 1.01)	(30,50)		(0 11, 1 55)	(02,50)	
Mild	43 (18)	48 (21)	49 (20)									
Moderate	11 (5)	12 (5)	13 (5)									
Marked	5 (2)	6 (3)	2 (<1)									

Denominators may vary due to missing items on the questionnaire; percentages are calculated out of totals with data available for each item; ¹ p-value for Fisher's exact test; ² 1-sided p-value

Table A12: Longitudinal analysis of moderate/marked patient-assessed adverse effects from baseline to 5 years for 1063 patients with at least one completed questionnaire*

Adverse effect	No. <u>patients</u> reporting moderate / marked event at baseline / total (%)	No. moderate/marked <u>events</u> / total no. of assessments over 6-60 months follow-up ¹ (%)	Comparison with 40+16Gy Odds ratio ² (95%CI); p-value ³	Comparison between 53Gy & 48Gy Odds ratio (95%CI); p-value ^{3.4}	Odds ratio for years of follow- up (95%CI); p-value ³
Protocol-specific items					1.04 (1.01, 1.07), 0.012
40+16Gv	95/336 (28.3)	394/1175 (33.5)	1	_	1.04 (1.01, 1.07); 0.012
48Gy	68/309 (22.0)	314/1097 (28.6)	0.78 (0.61, 0.99): 0.046	_	
53Gv	98/330 (29.7)	364/1153 (31.6)	0.95 (0.75, 1.19): 0.64	1 21 (0 95, 1 54): 0 063	
Breast smaller	<i>y</i> (<i>i</i>) <i>y</i> (<i>i</i>	50 11 11 55 (51.0)	0.55 (0.75, 1.15), 0.01	1.21 (0.55, 1.51), 0.005	1 16 (1 12 1 19): <0.001
40+16Gy	65/335 (19.4)	295/1175 (25.1)	1	-	1.10 (1.12, 1.17), 0.001
48Gv	36/309 (11.6)	229/1095 (20.9)	0.77 (0.58, 1.01); 0.063	-	
53Gy	58/328 (17.7)	282/1152 (24.5)	0.94 (0.72, 1.23); 0.66	1.23 (0.93, 1.61); 0.073	
Breast harder/firmer					1.01 (0.98, 1.05); 0.430
40+16Gy	49/336 (14.6)	331/1176 (28.1)	1	-	
48Gy	43/308 (14.0)	240/1095 (21.9)	0.79 (0.62, 1.01); 0.063	-	
53Gy	50/329 (15.2)	300/1150 (26.1)	0.95 (0.75, 1.21); 0.69	1.20 (0.94, 1.54); 0.074	
Skin appearance changed					0.95 (0.91, 1.00); 0.035
40+16Gy	44/335 (13.1)	185/1178 (15.7)	1	-	
48Gy	30/309 (9.7)	131/1098 (11.9)	0.74 (0.55, 1.00); 0.047	-	
53Gy	38/328 (11.6)	137/1153 (11.9)	0.76 (0.57, 1.02); 0.064	1.03 (0.76, 1.40); 0.425	
Shoulder stiffness					1.05 (1.01, 1.11); 0.027
40+16Gy	25/346 (7.2)	108/1176 (9.2)	1	-	
48Gy	17/323 (5.3)	128/1097 (11.7)	1.18 (0.84, 1.65); 0.33	-	
53Gy	25/343 (7.3)	113/1159 (9.7)	1.07 (0.76, 1.50); 0.69	0.90 (0.65, 1.25); 0.728	
EORTC QLQ-BR23					
Breast pain					0.96 (0.92, 0.99); 0.026
40+16Gy	44/345 (12.7)	207/1176 (17.6)	1	-	

Adverse effect	No. <u>patients</u> reporting moderate / marked event at baseline / total (%)	No. moderate/marked <u>events</u> / total no. of assessments over 6-60 months follow-up ¹ (%)	Comparison with 40+16Gy Odds ratio ² (95%CI); p-value ³	Comparison between 53Gy & 48Gy Odds ratio (95%CI); p-value ^{3.4}	Odds ratio for years of follow- up (95%CI); p-value ³
48Gy	32/322 (9.9)	189/1099 (17.2)	0.91 (0.69, 1.22); 0.54	-	
53Gy	38/342 (11.1)	194/1162 (16.7)	0.94 (0.71, 1.25); 0.68	1.03 (0.77, 1.38); 0.41	
Breast swollen					0.79 (0.74, 0.85); <0.001
40+16Gy	28/346 (8.1)	88/1171 (7.5)	1	-	
48Gy	25/324 (7.7)	64/1092 (5.9)	0.85 (0.59, 1.23); 0.39	-	
53Gy	24/342 (7.0)	68/1157 (5.9)	0.79 (0.55, 1.13); 0.20	0.91 (0.62, 1.34); 0.68	
Breast oversensitive					0.92 (0.88, 0.97); <0.001
40+16Gy	40/345 (11.6)	143/1175 (12.2)	1	-	
48Gy	36/323 (11.1)	137/1096 (12.5)	1.03 (0.76, 1.39); 0.84	-	
53Gy	42/343 (12.2)	145/1161 (12.5)	1.05 (0.78, 1.41); 0.73	1.02 (0.76, 1.37); 0.44	
Skin problems on breast					0.94 (0.88, 1.00); 0.067
40+16Gy	14/346 (4.0)	89/1177 (7.6)	1	-	
48Gy	15/324 (4.6)	62/1098 (5.6)	0.82 (0.54, 1.24); 0.35	-	
53Gy	11/343 (3.2)	65/1161 (5.6)	0.73 (0.48, 1.11); 0.15	0.89 (0.57, 1.40); 0.69	
Arm / shoulder pain					1.00 (0.96, 1.03); 0.93
40+16Gy	72/346 (20.8)	214/1179 (18.1)	1	-	
48Gy	49/324 (15.1)	205/1100 (18.6)	0.95 (0.73, 1.23); 0.70	-	
53Gy	68/343 (19.8)	201/1159 (17.3)	0.95 (0.74, 1.23); 0.70	1.00 (0.77, 1.30); 0.50	
Arm / hand swollen					1.05 (0.99, 1.11); 0.11
40+16Gy	18/346 (5.2)	77/1179 (6.5)	1	-	
48Gy	11/324 (3.4)	61/1098 (5.6)	0.76 (0.49, 1.18); 0.22	-	
53Gy	22/343 (6.4)	76/1160 (6.5)	1.03 (0.69, 1.54); 0.88	1.36 (0.88, 2.10); 0.084	
Difficulty raising arm					0.99 (0.94, 1.05); 0.85
40+16Gy	22/346 (6.4)	95/1176 (8.1)	1	-	
48Gy	18/322 (5.6)	87/1098 (7.9)	0.96 (0.67, 1.37); 0.83	-	

Adverse effect	No. <u>patients</u> reporting moderate / marked event at baseline / total (%)	No. moderate/marked <u>events</u> / total no. of assessments over 6-60 months follow-up ¹ (%)	Comparison with 40+16Gy Odds ratio ² (95%CI); p-value ³	Comparison between 53Gy & 48Gy Odds ratio (95%CI); p-value ^{3,4}	Odds ratio for years of follow- up (95%CI); p-value ³
53Gy	23/343 (6.7)	80/1162 (6.9)	0.88 (0.61, 1.26); 0.48	0.91 (0.63, 1.32); 0.69	

* Number of patients with ≥ 1 completed questionnaire by treatment group: 362 (40+16Gy), 343 (48Gy), 358 (53Gy)

¹% represents number of events out of number of assessments (& not out of number of patients), with >1 event possible per patient over follow-up; ² OR estimated from logistic GEE model including all questionnaires (baseline to 5 years), and represents relative odds of moderate/marked AE (versus none/mild) for each pairwise comparison of treatment groups across all questionnaires; ³ p-value from Wald test; ⁴ 1-sided p-value

		3	years			5	years		Odds ratio for mild	Comparison between
Treatment group	N	None (%)	Mild (%)	Marked (%)	N	None (%)	Mild (%)	Marked (%)	/ marked change vs 40+16Gy (95%CI); p-value ¹	53Gy & 48Gy; Odds ratio (95%CI); p-value ^{1,2}
40+16Gy	218	183 (83·9)	25 (11·5)	10 (4·6)	163	103 (63·2)	51 (31·3)	9 (5.5)	1	-
48Gy	210	185 (88·1)	23 (10·9)	2 (1·0)	172	130 (75·6)	35 (20·3)	7 (4.1)	0·61 (0·41-0·93); 0·021	1
53Gy	213	177 (83·1)	32 (15·0)	4 (1·9)	178	129 (72·5)	41 (23·0)	8 (4.5)	0·80 (0·54-1·18); 0·26	1·29 (0·85-1·96); 0·12

Table A13: Change in photographic breast appearance at 3 and 5 years by treatment group: results of longitudinal analysis for 698 patients with photographic assessments

¹ p-value from Wald test; ² 1-sided p-value for comparison of 53Gy vs 48Gy; OR = odds ratio (estimated from GEE model including 3 and 5-year data); 95%CI=95% confidence interval

Table A14: Incidence of severe late adverse effects, by treatment group

	40+16Gy	48Gy	53Gy
	N	N	N
Symptomatic rib fracture			
Reported ¹	11	10	15
Confirmed ² (Ipsilateral side)	2 (1)	2 (2)	7 (6)
Symptomatic lung fibrosis			
Reported ³	2	3	12
Confirmed ² (Ipsilateral side)	1 (0)	2 (1)	4 (3)
Ischaemic heart disease			
Reported ⁴	5	3	4
Confirmed ² (Left-sided)	4 (4)	1 (0)	1 (1)
Pneumonitis			
Reported ⁵	19	18	19
Confirmed ²	1	4	1

¹ Reported cases of symptomatic rib fracture include 14 not radiotherapy-related (8 trauma, 3 osteopenia, 3 reason not given but rib fracture clinically-diagnosed only and stated to be not due to radiotherapy)

² After imaging and further investigations; excluding cases not radiotherapy-related

³ Reported cases of symptomatic lung fibrosis include 5 not radiotherapy-related (1 chronic changes, 1 interstitial lung disease, 3 reason not given but lung fibrosis clinically-diagnosed only and stated to be not due to radiotherapy)

⁴ Reported cases of ischaemic heart disease include 3 patients with pre-existing heart disease at randomisation and 2 other cases not due to radiotherapy

⁵ Reported cases of pneumonitis (persistent cough) include 38 stated to be not radiotherapy-related

Table A15 - risk stratification of ipsilateral breast tumou	r relapse according to the pathological characteristics at
diagnosis – overall & by trial group	

Risk stratification	Clinical characteristics	Pts with IBTR N (%)	Total pts within trial population
Very low risk	G1/2, ER+, HER2-, node-	10 (<1)	695
Higher risk (including	G1/2, ER+, HER2+, node-	3 (4)	75
one or more of the	G1/2, ER-, HER2-, node+	0	10
following: G3, ER-,	G1/2, ER+, HER2-, node-	1 (4)	27
HER+, node+)	G1/2, ER+, HER2-, node+	6 (2)	330
	G1/2, ER+, HER2+, node+	1 (3)	36
	G1/2, ER-, HER2+, node+	0	8
	G1/2, ER-, HER2+, node-	1 (5)	19
	G3, ER+, HER2-, node-	8 (2)	423
	G3, ER+, HER2+, node-	3 (2)	156
	G3, ER-, HER2-, node-	19 (5)	357
	G3, ER+, HER2-, node+	9 (5)	197
	G3, ER+, HER2+, node+	0	68
	G3, ER-, HER2-, node+	8 (8)	103
	G3, ER-, HER2+, node-	3 (4)	72
	G3, ER-, HER2+, node+	4 (15)	26

Risk stratification	Clinical characteristics	Pts with IBTR / total within treatment group		
		population		
		N (%)		
		40Gy	48Gy	53Gy
Very low risk	G1/2, ER+, HER2-, node-	2/243 (1)	3/233 (1)	5/219 (2)
Higher risk (including	G1/2, ER+, HER2+, node-	0/23	1/20 (5)	2/32 (6)
one or more of the following: G3, ER-,	G1/2, ER-, HER2-, node+	0/3	0/4	0/3
	G1/2, ER+, HER2-, node-	0/10	1/5 (20)	0/12
HER+, node+)	G1/2, ER+, HER2-, node+	2/117 (3)	2/105 (2)	1/108 (1)
	G1/2, ER+, HER2+, node+	0/14	0/7	1/15 (7)
	G1/2, ER-, HER2+, node+	0/4	0/3	0/1
	G1/2, ER-, HER2+, node-	0/6	0/4	1/9 (11)
	G3, ER+, HER2-, node-	3/130 (2)	3/148 (2)	2/145 (1)
	G3, ER+, HER2+, node-	2/63 (3)	0/46	1/47 (2)
	G3, ER-, HER2-, node-	5/109 (5)	3/127 (2)	11/121 (9)
	G3, ER+, HER2-, node+	1/66 (2)	3/64 (5)	5/67 (8)
	G3, ER+, HER2+, node+	0/20	0/31	0/17
	G3, ER-, HER2-, node+	2/29 (7)	4/45 (9)	2/29 (7)
	G3, ER-, HER2+, node-	1/19 (5)	1/20 (5)	1/33 (3)
	G3, ER-, HER2+, node+	1/7 (14)	0/8	3/11 (27)

IMPORT HIGH Protocol and radiotherapy planning pack

The protocol and radiotherapy planning pack are available online (<u>https://www.icr.ac.uk/our-research/centres-and-collaborations/centres-at-the-icr/clinical-trials-and-statistics-unit/clinical-trials/import_high</u>).