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Abstract 

For the majority of patients, advanced soft-tissue sarcoma (STS) is fatal, with an overall 

survival of 14-19 months. Systemic chemotherapy has remained the cornerstone of 

advanced STS control for more than 30 years and prognosis has seen little change in 

the past decade, highlighting the urgent need for novel treatment modalities. In order to 

improve clinical efficacy of targeted therapies, identification of response and resistance 

mechanisms and candidate biomarkers of response are vital. However, a major obstacle 

in the study of STS drug response mechanisms is the lack of models that closely 

represent patient tumours. This obstacle restricts our ability to develop effective 

treatment strategies for advanced sarcoma that can be translated into clinical benefit. 

This project seeks to address this issue by first establishing a patient-derived model 

pipeline, starting with STS patient tumour biopsies, and using this to develop a panel of 

patient-derived xenografts (PDXs) as well as 2D and 3D in vitro PDX-derived cell 

cultures, with a particular focus on the leiomyosarcoma (LMS) subtype. These models 

have been characterised via proteomic profiling, by measuring growth kinetics and, in 

the case of in vitro cultures, tumourigenicity by in vivo injection. These models were used 

in cell-based and in vivo assays to assess the degree of sensitivity to standard of care 

chemotherapies such as doxorubicin, gemcitabine or docetaxel as well as a panel of 

small molecule inhibitors targeting key oncogenic signalling pathways. This analysis was 

followed by functional assessment of candidate drug response mechanisms. Through 

these means, I reported the mechanisms of response to standard of care therapeutics 

and targeted therapies such as PI3K/mTOR and PARP inhibitors while highlighting 

predictive biomarkers of response including phosphatase and tensin homolog (PTEN) 

deletion. Additionally, the impact of chemo-resistance on subsequent response to 

targeted therapies was investigated to inform future drug treatment regimens. 
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RNAseq RNA sequencing 

ROCK Rho-associated protein kinase 
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S6RP Ribosomal protein S6 
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SCF Stem cell factor 

SCS Spindle cell sarcoma 

SD Stable disease 
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SOX2 SRY-Box Transcription Factor 2 

SP100 Speckled 100 kDa protein 
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ssDNA single stranded DNA 

STAT-3 Signal transducer and activator of transcription 3 

STAT5 Signal transducer and activator of transcription 5 

STR Short tandem repeat 

STS Soft-tissue sarcoma 

STUMP Uterine smooth muscle tumours of unknown malignant 
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SYNM Synemin 

TAM Tumour associated macrophage 
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TCGA The Cancer Genome Atlas  

TERT Telomerase reverse transcriptase 

TGF-β1 Transforming growth factor beta-1 

TIL Tumour infiltrating lymphocyte 

TKI Tyrosine kinase inhibitor 

TMB Tumour mutation burden 

TP53 Tumour protein 53  
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UV Ultraviolet  

VEGF Vascular endothelial growth factor  

VEGFR Vascular endothelial growth factor receptor  

VIPR2 Vasoactive Intestinal Peptide Receptor 2 
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WDLPS Well-differentiated liposarcoma  

WES Whole exome sequencing 

WGS Whole genome sequencing 
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Chapter 1 - Introduction 
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1.1 Sarcoma biology 

Sarcomas are a group of rare and heterogenous mesenchymal malignancies, 

accounting for approximately 1% of adult cancers (Figure 1.1) and 10% of paediatric 

cancers (age 0-14) (Stiller et al. 2013). There are now over 150 recognised histological 

subtypes, each with their own distinct clinical presentation, molecular characteristics and 

prognosis (WHO classification of tumor editorial board 2020). 
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Figure 1.1. Incidence of sarcoma compared to other cancer types. Number of reported female and male 

cancer diagnosis in the UK in 2017 for sarcoma, liver, stomach and ovary cancer, cancers of unknown 

primary origin, oesophageal cancer, uterine cancer, leukaemia, bladder cancer, pancreatic cancer, 

intercranial && CNS tumours, head and neck cancer, kidney cancer, non-Hodgkin lymphoma, melanoma, 

cancers of other sites, bowel, lung, prostate and breast cancer (Cancer Research UK 2017c; 2017a; 2017b) 

 

Sarcomas are cancers which all arise from cells derived from the embryonic 

mesenchyme. During the early stages of embryogenesis, pluripotent stem cells 

differentiate into three primordial germ layers: the ectoderm, the endoderm and the 

mesoderm. This makes up connective and soft-tissue which originate from the embryonic 

mesoderm. The ectoderm gives rise to the skin and nervous system, the endoderm gives 

rise to epithelial cells lining the digestive track and organs such as the lung and pancreas 

while the mesoderm and part of the neuroectoderm transiently form the mesenchyme. 
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The mesenchyme is composed of loosely organised mesenchymal cells surrounded with 

abundant extracellular matrix (ECM). Mesenchymal cells are noted for their ability to 

migrate throughout epithelial layers during embryogenesis and while the mesenchyme 

is a transient component of the developing embryo, mesenchymal stem cells are present 

in adults in tissues such as bone marrow and adipose tissue. Mesenchymal stem cells 

are multipotent and differentiate into tissues such as bone, cartilage, muscle, adipose 

tissue, stroma and blood vessels (Schoenwolf et al. 2020). Malignant cells of 

mesenchymal origin (sarcomas) can therefore arise in any of these tissues which are 

spread throughout the body, meaning they can occur in any anatomical location. Due to 

the wide range of tissue and anatomical location of origin, sarcomas are highly 

heterogeneous in histology and clinical presentation which makes treatment extremely 

challenging.  

Mesenchymal stem cells differentiate into cell lineages such as osteocytes, 

chondrocytes, myoblasts, adipocytes, fibroblasts and endothelial cells in order to form 

the respective tissue types and so sarcomas are often categorised based on cell of origin 

such as osteosarcoma (osteocyte), chondrosarcoma (chondrocyte), leiomyosarcoma 

(myocyte), liposarcoma (adipocyte) fibrosarcoma (fibroblast)  angiosarcoma 

(endothelial) (Hoang et al. 2018) (Figure 1.2). Much knowledge of these lineage defined 

sarcoma subtypes stems from the similarity of molecular markers observed via 

immunohistochemical (IHC) staining as well as the transformation of respective normal 

cell types in vitro and in vivo via genetic modification to phenocopy tumours (Taylor et 

al. 2011). However, the specific cell of origin remains unknown for a significant number 

of histologically defined subtypes. Broadly, sarcomas can also be classified as bone and 

cartilage sarcomas or soft-tissue sarcomas, the latter arising from soft-tissues such as 

muscle, fat and connective tissue, although even this fundamental categorisation is not 

sufficient to include all subtypes such as Ewing’s sarcoma which is comprised of both 

soft-tissue and bone or cartilage. 
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Figure 1.2 Mesenchymal stem cell differentiation patterns and associated sarcomas. Created using 

BioRender. 

 

1.1.1 Soft-tissue sarcomas 

Soft-tissue sarcomas (STS) make up the majority of sarcoma diagnoses, approximately 

85% (Cancer Research UK 2017c; 2017a) and are comprised of over 80 histological 

subtypes (WHO classification of tumor editorial board 2020). Histological STS subtypes 

are distinct malignancies each presenting with different clinical characteristics, 

prognoses, histology and genetics (WHO classification of tumor editorial board 2020), 

The most common STS subtypes are leiomyosarcoma (LMS), undifferentiated 

pleomorphic sarcoma (UPS), well-differentiated liposarcoma (WDLPS), de-differentiated 

liposarcoma (DDLPS), and gastrointestinal stromal tumour (GIST), which make up 13%, 

12%, 6%, 6% and 8% of all STS diagnosis respectively (Figure 1.3) (Gamboa, Gronchi, 

and Cardona 2020; J. Y. Blay et al. 2019). Additionally, approximately 20% of STS have 

been assigned as ultra-rare STS, with an incidence of ≤1 per 1,000,000 and are 

comprised of 56 different subtypes (Stacchiotti et al. 2021). General STS incidence rates 

increase with age, although some subtypes are more commonly seen in certain age 

groups. For example, approximately half of paediatric STS are rhabdomyosarcoma 

(RMS), of which embryonal RMS is almost exclusively seen in this age group, while 

geriatric STS are most commonly liposarcoma (LPS), LMS and UPS (WHO classification 

of tumor editorial board 2020). 
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Figure 1.3. Distribution of STS subtypes in adult patients.  Data from: (Gamboa, Gronchi, and Cardona 

2020). 

 

STS can arise almost anywhere in the body while presenting vastly different clinical 

characteristics, histologies and molecular profiles between and even within subtypes 

(Gamboa, Gronchi, and Cardona 2020). STSs are most commonly located in the lower 

extremities (35%) but can also occur in the trunk (13%), upper extremities (9%), 

retroperitoneum (7%),  gastrointestinal tract (7%), head and neck (5%), uterus (4%) and 

other sites (20%) (J. Y. Blay et al. 2019; Brennan et al. 2014). 

While rarely observed, benign soft-tissue tumours can contain areas of malignant 

transformation, causing serious complications. For example, leiomyomas (benign 

tumours of smooth muscle lineage) can occasionally contain distinct malignant areas 

and surgical resection of these uterine leiomyomas via morcellation can lead to 

dissemination of malignant disease following tissue disruption (George et al. 2014). Due 

to the far poorer prognosis of sarcoma in comparison to benign soft-tissue tumours, 

accurate initial diagnosis of disease is vital in order for patients to receive the appropriate 

treatment and/or monitoring for progression (Pedra Nobre et al. 2021). 

 

1.1.2 Aetiological factors of STS 

The aetiology of STS is largely unknown and the majority of subtypes are believed to 

arise spontaneously, with no clear cause. However, for a small proportion of STS 

subtypes (10%) a causative factor has been clearly documented, including hereditary 
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mutations, exposure to radiation and viral infection (American Cancer Society 2018; 

WHO classification of tumor editorial board 2020).  

Hereditable cancer pre-disposition syndromes such as Li-Fraumeni syndrome (LFS) can 

increase the risk of developing a range of STS subtypes anywhere in the body (Farid 

and Ngeow 2016; Ognjanovic et al. 2012). LFS is an autosomal dominant syndrome 

caused by germline mutations in tumour protein 53 (TP53) gene, which encodes the 

transcription factor P53 (Ognjanovic et al. 2012). P53 plays an important role in control 

of cell growth particularly in response to DNA damage, by regulating the expression of 

several genes involved in DNA repair, cell cycle arrest, senescence and apoptosis and 

therefore, P53 is classed as a tumour suppressor (Kruiswijk, Labuschagne, and Vousden 

2015). Germline mutations affecting this protein can lead to aberrant transcription, 

causing deregulation of cell growth control and tumourigenesis, therefore people with 

LFS have a significantly increased lifetime risk of developing cancer and approximately 

11.6-17.8% of patients with LFS develop STS (Bougeard et al. 2015). Consistent with 

the general age distribution of sarcoma subtypes, LFS patients who develop RMS are 

almost exclusively age <20 while LFS STS patients with LPS and LMS are almost all age 

>20. Interestingly, p53 null mutations in particular, including frameshifts, nonsense and 

splice site mutations are enriched in the leiomyosarcoma subtype and p53 mutations 

outside of the DNA binding domain are associated with a significantly increased risk of 

developing LMS (Ognjanovic et al. 2012).  

Neurofibromatosis type 1 (NF-1) is another heritable syndrome which pre-disposes 

patients to STS and is also autosomal dominant. NF-1 is caused by mutations in the 

tumour suppressor gene Neurofibromin 1 (NF1) which encodes neurofibromin 1, a 

protein involved in the negative regulation of cell growth and survival signalling cascades 

such as the mitogen-activated protein kinase (MAPK) pathway (Gutmann et al. 2017; 

Emmerich et al. 2015). Inactivating mutations in NF1 leads to aberrant MAPK pathway 

activation, increasing cell growth, proliferation and survival (Gottfried, Viskochil, and 

Couldwell 2010). NF1 expression is particularly elevated in the peripheral nerve sheath 

and therefore, patients with NF-1 often develop multiple benign peripheral nerve sheath 

tumours (neurofibromas) which do not metastasise but can cause damage to 

surrounding nerves (Ryu et al. 2019; Farid et al. 2014). Additionally, approximately 5-

13% of NF-1 patients develop STS in the form of a malignant peripheral nerve sheath 

tumour (MPNST) and around 5-7% of NF-1 patients develop STS as a GIST (Farid et al. 

2014; Corless, Barnett, and Heinrich 2011; Nishida et al. 2016). 
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People with hereditary mutant Retinoblastoma gene 1 (RB1) have a 13.1% cumulative 

risk of developing STS including LMS, as secondary malignancies which mirrors RB1 

loss seen frequently in sporadic LMS tumours (Venkatraman et al. 2003). Thus, germline 

RB1 alterations are another potential predisposing factor to STS development. RB1 is a 

tumour suppressor gene encoding retinoblastoma tumour suppressor protein (Rb) which 

plays a pivotal role in the negative regulation of cell cycle progression, repressing the 

expression of genes required for G1 to S cell cycle phase progression and is also 

involved in DNA repair (P. H. Huang et al. 2016). Loss of Rb function can lead to cell 

cycle deregulation and malignant transformation (Giacinti and Giordano 2006). 

In 2016, Ballinger et al. assessed the monogenic and polygenic determinants of sarcoma 

in patients across a range of subtypes and ages. The study concluded that around half 

of sarcoma patients harbour an excess of pathogenic germline alterations in both known 

and novel STS associated genes, suggesting the proportion of STS caused by inherited 

pre-disposing mutations might actually be far higher than previously documented 

(Ballinger et al. 2016). This result could potentially lead to improved risk stratification via 

familial genetic testing and screening, although further population-based studies will be 

necessary to conclude the extent of which these different genetic variants can increase 

the risk of STS development and establish a causative link  (Ballinger et al. 2016; 

Benjamin and Futreal 2016) .  

Approximately 2.5-5% of all sarcomas are associated with radiation exposure and most 

commonly these are secondary cancers, following radiotherapy treatment for breast 

cancer, lymphoma and cervical carcinoma (Brady, Gaynor, and Brennan 1992; Mito et 

al. 2019). Higher doses of radiation received is associated with a higher incidence of 

developing secondary cancers, however the incidence of radiation associated STS 

following radiotherapy is still rare, occurring in less than 1% of patients receiving 

radiotherapy (Mito et al. 2019; Berrington De Gonzalez et al. 2013). In terms of 

histological subtype, radiation associated STS most frequently occur as UPS or 

angiosarcoma and demonstrate more aggressive clinical behaviours and worse survival 

outcomes when compared to spontaneous STS of the same subtype (Cha et al. 2004; 

Brady, Gaynor, and Brennan 1992; Bjerkehagen et al. 2009).  

Finally, STS can also arise due to viral infection. Kaposi sarcoma is the most well 

documented viral-associated STS and it is caused by the infection of an  

immunocompromised host with human herpesvirus 8 (HHV8), leading to cutaneous 

lesions which are highly aggressive (Cesarman et al. 2019; Mancuso et al. 2008). HHV8 

has been shown to transform human endothelial cells by the expression of proteins that 
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can bind to Rb and P53 tumour suppressors, thus regulating cell proliferation and 

apoptosis (S. C. Verma and Robertson 2003). Additionally, smooth muscle neoplasms 

including leiomyomas and LMS can be caused by the infection of an 

immunocompromised host with Epstein-Barr virus (EBV) (Moore Dalal et al. 2008; 

Jenson et al. 2009) The precise mechanism by which EBV can cause smooth muscle 

neoplastic transformation is not fully understood although activation of mammalian target 

of rapamycin (mTOR)/Akt pathway as well as the increase expression of v-myc has been 

recorded  (Jonigk et al. 2012; Ong et al. 2009; Q. Shen et al. 2011). It is important to 

identify if STS are associated with viral infection as these malignancies often require 

different treatment strategies compared to non-viral associated STS, often focussing on 

re-establishing a functional immune system within the patient in addition to the use of 

anti-retroviral therapy (Schneider and Dittmer 2017; Magg et al. 2018).  

 

1.1.3 Genetic classification of STS 

Historically, the classification and subsequent treatment of STS relied on gross 

morphology, histological characteristics and IHC staining for biomarkers of suspected 

tissue of origin (Hajdu 1981). However, it has since become clear that some subtypes 

harbour pathognomonic gene alterations or are more likely to present with certain gene 

mutations (Kawai et al. 1998; Galili et al. 1993). Genetic classification of STS refines the 

diagnostic process and gives an insight into the process of oncogenesis, helping to 

define distinct clinical subtypes which would have previously been grouped together 

based on histological appearance (Gounder et al. 2022). This is reflected in the most 

recent World Health Organisation (WHO) classification which puts a greater emphasis 

on the molecular characteristics of certain STS subtypes (Kallen and Hornick 2021). 

In addition to the diverse histology of STS, these tumours are also genetically diverse. 

STS subtypes can be broadly categorised as genetically simple or those with complex 

karyotypes. Genetically simple STS tumours including subtypes such as alveolar 

rhabdomyosarcoma (ARMS), synovial sarcoma (SS) and GIST. These often display a 

low tumour-mutation burden (TMB) and near diploid karyotypes with only a few, recurring 

genetic alterations which drive tumourigenesis such as point mutations (e.g. KIT or 

platelet-derived growth factor receptor (PDGFR) mutations in GIST) or fusion genes (e.g. 

SSX18:SSX1/2/4 in SS) (Taylor et al. 2011; Gounder et al. 2022). Sarcomas with 

complex karyotypes including LMS, UPS and LPS excluding myxoid types, harbour 

rearranged genomes due to gene copy number alterations, translocations and ploidy 

(Abeshouse et al. 2017; Nacev et al. 2022). These subtypes often harbour alterations in 
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various tumour suppressor genes which leads to genomic instability. However some 

subtypes fall in between the binary classification of STS genomes, such as DDLPS which 

is driven by a recurrent murine double minute 2 (MDM2) amplification but also displays 

a complex karyotype consistent with genomic instability (Figure 1.4) (Nacev et al. 2022; 

Gounder et al. 2022) . 

 

 

Figure 1.4 Spectrum of genetic characteristics and complexity in STS. Examples of subtypes falling 

under each genetic category. Genetically “simple” STS typically display pathognomonic gene translocations 

with low mutational burden and normal diploid karyotype. “Relatively simple” STS display recurrent 

oncogenic driver mutations with increased mutational burden occasionally with background genomic 

instability. “Complex” STS are characterised by rearranged karyotypes and caused by genomic instability 

which lack recurrent or consistent genetic alterations. (Abeshouse et al. 2017; WHO classification of tumor 

editorial board 2020). DDLPS; Dedifferentiated liposarcoma, GIST; Gastrointestinal stromal tumour, UPS; 

Undifferentiated liposarcoma. 

 

1.2 Clinical and biological characteristics of LMS 

This thesis will focus primarily on one of the subtypes of STS, LMS. Therefore the 

following sections will provide an overview of the current status of LMS research in the 

context of other STS subtypes and cancer types. 

 

1.2.1 Presentation, diagnosis and prognosis of LMS 

 LMS is one of the most common STS subtypes, occurring more frequently in middle-

aged or older adults and with a slight female predominance (Kasper et al. 2021). LMS is 
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believed to form from smooth muscle or their pre-cursor cells and can therefore arise 

almost anywhere in the body but most frequently in the retroperitoneum, extremities or 

uterus. The disease is often divided into extra-uterine LMS (arising in the 

retroperitoneum, walls of blood vessels, gastrointestinal tract, extremities or 

subcutaneously) or uterine LMS as the two groups have distinct clinicopathological 

characteristics (Kasper et al. 2021; Bathan et al. 2013).  

LMS is a particularly aggressive malignancy with distant metastases occurring in 

approximately half of all patients despite initial local control with resection and systemic 

therapy (Penel et al. 2009). Following surgical resection, the main pattern of control 

failure for LMS of the extremity, abdomen or trunk is distant metastatic recurrence, 

occurring in 93% of patients, with lower rates of recurrence at local sites (30%) compared 

to other STS subtypes such as liposarcoma where 50% of recurrences occur at local 

sites (Ikoma et al. 2017; Penel et al. 2011; Gladdy et al. 2013). Upon LMS dissemination, 

median survival is approximately 12 months (Gladdy et al. 2013) 

Prognosis is based on both tumour staging and anatomical location as the ten year 

metastatic rate of LMS ranges from 31% in extremities, 58% in abdomen to 53-71% in 

the uterus (Gladdy et al. 2013; Mbatani, Olawaiye, and Prat 2018). Outcomes vary 

substantially between non-uterine and uterine LMS patients, although at the point of 

diagnosis, uterine LMS tumours are often larger with higher incidences of metastases 

and therefore it is unclear whether the molecular differences in uterine and non-uterine 

LMS can affect aggressiveness (Lamm et al. 2014). Additionally, outcomes can also vary 

widely within uterine or non-uterine LMS groups and prognosis based only on anatomical 

location is inaccurate, requiring further histological grading to improve accuracy of 

prognoses (Kasper et al. 2021). 

As with other STS subtypes, the major clinicopathological factors which affect LMS 

patient outcomes are histological grade, tumour size and depth (Serrano and George 

2013). In Europe, LMS tumours are histologically graded according to the three-tiered 

Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) grading system 

which considers tumour differentiation, extent of necrosis and mitotic counts (Guillou et 

al. 2016). However, this staging does not apply to gynaecological tumours. Uterine LMS 

tumours are not graded due to the limited evidence that tumour grade correlates with 

patient outcome and therefore, the International Federation of Gynaecology and 

Obstetrics (FIGO) staging system used for uterine LMS diagnosis does not account for 

tumour grade (Roberts, Aynardi, and Chu 2018).  
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1.2.2 Genetics of LMS 

In contrast to genetically simple sarcomas, some STS subtypes with complex karyotypes 

can arise from benign pre-cursor tumours which increase in genomic complexity to 

progress into metastatic sarcoma such as the progression from atypical lipoma to 

WDLPS to DDLPS (Horvai et al. 2009; Rosai et al. 1996). However, despite the genomic 

complexity of LMS, there is no evidence that leiomyomas (the benign counterpart of 

LMS) undergo transformation to form malignant tumours, therefore LMS is still 

considered to arise de novo (Serrano and George 2013). 

While frequent mutations in tumour suppressor genes can be observed in STS subtypes 

with complex karyotypes including TP53, phosphatase and tensin homolog (PTEN) and 

RB1, genetic classification plays a less significant role in diagnosis compared to that of 

STS subtypes with recurrent driver mutations and instead, diagnosis is based on 

ancillary histopathological analysis. (Abeshouse et al. 2017; Nacev et al. 2022; Gounder 

et al. 2022; Chudasama et al. 2018) . However, genomic sequencing can occasionally 

aid in diagnosis of STSs with complex karyotypes by distinguishing between benign and 

malignant tumours with the same cell of origin. For example, benign leiomyomas and 

LMS of the uterus display very similar histologies, often leading to the diagnosis of 

uterine smooth muscle tumours of unknown malignant potential (STUMPs) (Croce et al. 

2015). Genomic hybridisation array analysis of these tumours or even of circulating 

tumour DNA has been able to distinguish between leiomyomas and LMS tumours by 

assigning a genomic rearrangement score, showing that STUMPS with high 

rearrangement scores have clinical characteristics of LMS tumours while STUMPs with 

low scores had favourable outcomes consistent with benign leiomyomas (Croce et al. 

2015; Przybyl et al. 2018).  

Recurrent somatic mutations identified in LMS tumours includes TP53 (49%), RB1 

(27%), and Alpha-thalassemia/intellectual disability syndrome, X-linked (ATRX) (24%) 

while mutations in other genes were less common such as PTEN (4%) (Chudasama et 

al. 2018). Of the three recurrent mutant genes, TP53 mutations were clustered in the 

DNA-binding domain and the tetramerization domain meanwhile mutations in RB1 and 

ATRX were seen across the gene (Chudasama et al. 2018). Karyotyping of LMS samples 

have shown no recurrent aberrations at the chromosomal level while DNA copy number 

alteration (CNA) analysis demonstrates a complex genetic landscape with the extent of 

cytogenetic changes and copy number gains showing an association with tumour 

evolution and worse survival (Cuppens et al. 2018; Raish et al. 2012). Further genomic 
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studies of LMS have shown that genetic losses are often detected in certain 

chromosomal regions such as 10q11-21.2 encoding PTEN, 13q14.3-q21.1 encoding 

RB1 and 17P13 which encodes TP53 (Chudasama et al. 2018; Nacev et al. 2022; 

Cuppens et al. 2018). Together, inactivating genetic aberrations including mutations and 

gene deletions in TP53 and RB1 are almost universally seen in LMS tumours (92% and 

94% respectively) while 57% of LMS tumours display inactivating aberrations in PTEN 

(Chudasama et al. 2018). Other studies have showed that aberrations in the RB1-cyclin 

D1 pathway including RB1, Cyclin D1 (CCND1), Cyclin D3 (CCND3) and Cyclin 

Dependent Kinase Inhibitor 2A (CDKN2A) are seen in approximately 90% of LMS 

tumours and is associated with a worse prognosis (Dei Tos et al. 1996; Jilong Yang et 

al. 2009; Anderson et al. 2021). While far less common than PTEN alterations, gain of 

function aberrations in phosphatidylinositol-3 kinase (PI3K) can also be observed in a 

small subset of LMS tumours (2% of uterine and non-LMS tumours) (Nacev et al. 2022).  

Deregulation in DNA damage response (DDR), especially homologous recombination 

(HR) repair, and DNA damage tolerance pathways leads to high genomic instability and 

thus promotes cancer progression (Bouwman and Jonkers 2012). Germline 

heterozygous mutations in breast cancer gene 1/2 (BRCA1/2) genes, for example, confer 

a significantly increased risk of developing breast, ovarian, prostate and other cancers 

by pre-disposing the individual to bi-allelic loss of BRCA1/2 function via loss of 

heterozygosity (Rebbeck et al. 2018). Analysis of a pan-cancer cohort showed that 

uterine LMS frequently had HR deficiency including alterations in BRCA1/2, the majority 

of which was due to somatic homozygous deletion (Jonsson et al. 2019). In a cohort of 

80 uterine LMS patients, 5% displayed a homozygous deletion of BRCA2 while another 

LMS cohort of 49 uterine or non-uterine tumours identified gene deletions in multiple 

components of the HR pathway, including PTEN, BRCA2, Ataxia telangiectasia mutated 

(ATM), Checkpoint kinase 1 (CHEK1), X-Ray Repair Cross Complementing 3 (XRCC3), 

Checkpoint kinase 2 (CHEK2), BRCA1 and RAD51 Recombinase (RAD51) with a 

prevalence of 57%, 53%, 22%, 22%, 18%, 12%, 10% and 10% respectively (Chudasama 

et al. 2018; Hensley et al. 2020). BRCA1/2 deletions were identified in 50% of the uterine 

cohort, 10% and 40% being homozygous or hemizygous BRCA1/2 deletions respectively 

(Chudasama et al. 2018).  

Genomic scarring, a particular pattern of mutations occurring when double strand breaks 

(DSBs) cannot be repaired via HR, was detected in most LMS tumours, suggesting 

impaired HR activity (Chudasama et al. 2018). Furthermore 214 STS patient samples 

from the Cancer Genome Atlas were assigned a HR deficiency score, taking into account 

loss of heterozygosity, telomeric allelic imbalance and large-scale state transitions, and 
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showed that patients with a low HR deficiency score had a significantly better prognosis 

compared to patients with a high HR deficiency score (H. Li et al. 2020). HR deficiency, 

as defined by the HR deficiency score was also detected in a panel of STS cell lines, 

including the uterine LMS model SK-LMS-1 (H. Li et al. 2020). In a larger study including 

121 uterine LMS patients, 30 (25%) patients displayed DDR alterations which was 

lowered to 14% in a non-uterine LMS cohort of 90 patients suggesting that uterine LMS 

tumour might be particularly susceptible to therapeutic targeting of the DDR pathway 

(Rosenbaum et al. 2019). Meanwhile Nacev et al. showed that 24% of 165 uterine LMS 

tumour samples and 10% of 125 non-uterine LMS tumours display DDR gene alterations 

(Nacev et al. 2022). LMS patients with alterations in DDR associated genes, were found 

to have a worse prognosis compared to LMS patients without these DDR gene 

alterations and non-BRCA gene alterations in particular showed a significant negative 

correlation with OS (Rosenbaum et al. 2020). 

 

1.2.3 Oncogenic pathways in LMS 

Due to the range of oncogenes and tumour suppressor genes which are altered in LMS 

tumours, this subtype often shows several oncogenic signalling pathways including 

aberrant activation of receptor tyrosine kinase (RTK) cascades, aberrant PI3K-Akt-

mTOR signalling and defective DNA repair pathways (Nacev et al. 2022) 

 

1.2.3.1 Receptor tyrosine kinases 

RTKs are cell surface receptors with intrinsic kinase activity and are crucial for a range 

of cellular processes such as proliferation, survival, motility, differentiation and 

metabolism (Blume-Jensen and Hunter 2001; Du and Lovly 2018). There are currently 

58 known RTKs in the human genome all sharing a common protein domain organisation 

which is composed of an extracellular domain facilitating ligand binding, a 

transmembrane domain, an intracellular tyrosine kinase domain and a C-terminal tail (G. 

Manning et al. 2002). RTKs are activated upon ligand binding to their extracellular 

domain, often leading to receptor dimerisation (P. Liu et al. 2007). Prototypical RTKs 

include epidermal growth factor receptor (EGFR), vascular endothelial growth factor 

receptor (VEGFR), PDGFR, fibroblast growth factor receptor (FGFR), insulin growth 

factor receptor (IGFR) and c-KIT, which bind to their associated ligands; epidermal 

growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-derived growth 
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factor (PDGF), fibroblast growth factor (FGF), insulin growth factor (IGF) and stem cell 

factor (SCF). 

RTKs are activated upon ligand binding to their extracellular domain, leading to receptor 

dimerisation, although some RTKs exist as pre-formed dimers such as insulin-like growth 

factor 1 receptor (IGF1R) (P. Liu et al. 2007). Ligand-mediated dimerisation causes a 

conformational change in the intracellular kinase domain, resulting in auto-

phosphorylation at various tyrosine residues along the C-terminal tail, which in turn 

recruits downstream signalling components such as phosphatidylinositol-3-kinase 

(PI3K), Src or docking proteins such as growth factor receptor-bound protein 2 (GRB2), 

all of which bind via Src homology 2 (SH2) or phosphotyrosine binding (PTB) domains 

to specific phosphorylated tyrosine residues. Subsequent phosphorylation of these 

components initiates crucial cell signalling pathways including MAPK, PI3K/Akt and Src 

(Lemmon and Schlessinger 2010).  

Given the range of growth, survival and angiogenic pathways RTKs are able to initiate, 

it is unsurprising that deregulated RTKs can lead to cancer initiation and progression. In 

the context of sarcomas, previous reports have shown that cancer cell lines and tumours 

of various subtypes display overexpression and aberrant activation of RTKs and 

intracellular tyrosine kinases such as PDGFR, IGF1R and Src (J.-L. Yang et al. 2017; Y. 

Bai et al. 2012; S. S. Yoon et al. 2006). In LMS in particular, patient tissues and cell lines 

have shown strong expression of VEGFR1/2 as well as PDGFR-β (Gaumann et al. 2014; 

Cuppens, Annibali, et al. 2017). Cuppens et al. conducted IHC staining of a cohort of 

153 uterine LMS tissue samples and demonstrated that 89% and 86% of uterine LMS 

tumours show expression of PDGFR-α. FGFR1 was seen to be amplified in case study 

of a patient with metastatic LMS meanwhile IGF1R was highly expressed in a subgroup 

of LMS, making up 49% of the LMS samples assessed, and IFG1R expression correlated 

with worse disease-specific survival suggesting that IGFR signalling is an recurring 

oncogenic pathway in a subset of LMS (Hemming et al. 2020; Chudasama et al. 2017). 

 

1.2.3.2 PI3K-AKT-mTOR pathway  

Many sarcomas display aberrant signalling network activation which converge on the 

PI3K-Akt-mTOR pathway (Y. Bai et al. 2012). Specifically, loss of PTEN expression is 

commonly observed in LMS tumours which can potentiate this pathway (Figure 1.5). 

The Cancer Genome Atlas (TCGA) study found PTEN gene mutations in 5% of LMS 

samples, deep PTEN gene deletions (therefore potentially homozygous) in 13% of LMS 

samples and a further 68% of LMS samples showed shallow PTEN gene deletions 
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(therefore potentially heterozygous) (Abeshouse et al. 2017). Additionally, in a small 

cohort of 17 LMS tumours, PTEN loss was associated with a poorer prognosis for LMS 

patients (J. Hu et al. 2005).  

 

 

Figure 1.5. Activated PI3K/Akt/mTOR signalling pathway. Ligand induced RTK dimerization activates 

PI3K to convert PIP2 to PIP3 which accumulates in the absence of PTEN. PDK1 and Akt are recruited to 

PIP3, allowing for phosphorylation of Akt via PDK1 as well as mTORC2. Akt activation results in enhanced 

protein synthesis, translation, cell proliferation, cell survival and metabolic regulation. Figure was created 

using BioRender. elF-4E; eukaryotic initiation factor 4E, FOXO;fork head box O, GSK3; glycogen synthetase 

3, mTORC1/2; mammalian target of rapamycin complex 1/2, phosphoinositide-dependent protein kinase1; 

PDK1, phosphatidylinositol 4,5-biphosphate; PIP2, phosphatidylinositol 3,4,5-triphosphate; PIP3, 

Phosphoinositide 3-kinase; PI3K, Phosphatase and TENsin homolog; PTEN, p70 ribosomal S6 Kinase; 

p70S6K, Receptor Tyrosine Kinase; RTK.  

 

 

Downstream of RTK activation by ligand binding, PI3K is recruited and subsequently 

activated by either direct or indirect binding to intracellular RTK domains, although PI3K 
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can also be activated via G protein-coupled receptors  (Rascio et al. 2021; Law, White, 

and Hunzicker-Dunn 2016). PI3K is a lipid kinase which converts phosphatidylinositol 

4,5-biphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3) on the 

intracellular membrane surface (Figure 1.5) (Vanhaesebroeck, Stephens, and Hawkins 

2012; Jing Yang et al. 2019). PIP3 recruits the serine/threonine kinase Akt to the cell 

membrane in addition to phosphoinositide-dependent protein kinase1 (PDK1) where Akt 

is phosphorylated and activated by both PDK1 at Thr308 as well as mammalian target 

of rapamycin complex 2 (mTORC2) at Ser473 (Vanhaesebroeck, Stephens, and 

Hawkins 2012). Once activated, Akt is released from the cell membrane and is able to 

phosphorylate and subsequently activate or inhibit over 150 targets including mTOR, 

members of the fork head box O (FOXO) family of transcription factors as well as 

glycogen synthetase 3 (GSK3), driving cellular processes such as proliferation, cell 

survival and regulation of metabolism (B. D. Manning and Toker 2017; Rascio et al. 

2021). Activated mTOR, specifically mammalian target of rapamycin complex 1 

(mTORC1) in turn phosphorylates eukaryotic initiation factor 4E (elF-4E) binding protein 

1 (4EBP1) and p70 ribosomal S6 kinase 1 (p70S6K1) (D. E. Martin and Hall 2005).  

4EBP1 is a translational repressor acting by binding and inhibiting the messenger 

ribonucleic acid (mRNA) cap binding protein elF-4E. Upon activation mTOR signalling, 

hyperphosphorylation of 4EBP1 causes its dissociation from elF-4E and elF-4E is then 

free to bind to the scaffold protein Eukaryotic translation initiation factor 4G (elF-4G), the 

adenosine triphosphate (ATP)-dependent RNA helicase Eukaryotic translation initiation 

factor 4A (elF-4A) as well as Eukaryotic translation initiation factor 4B (elF-4B) which 

initiates the translation of 5’ cap mRNAs and ultimately leading to increased expression 

of several proteins associated with oncogenesis such as C-Myc, VEGF, cyclin D1 and 

hypoxia-inducible factor 1α (HIF-1α) (Song, Salmena, and Pandolfi 2012; Mamane et al. 

2004) . Phosphorylation of p70S6K at Thr389 by mTORC1 leads to the subsequent 

phosphorylation of downstream targets involved in mRNA translation such as ribosomal 

protein S6, elF-4B and eukaryotic elongation factor 2 kinase (eEF2K) (Ferrari et al. 1991; 

Redpath, Foulstone, and Proud 1996).  

PTEN can function as both a protein and lipid phosphatase and acts as a negative 

regulator of the PI3K-Akt-mTOR pathway, converting PIP3 into PIP2 by 

dephosphorylation, and therefore preventing Akt activation. The loss of PTEN activity via 

gene mutations or deletions causes the excessive accumulation of PIP3 (Rascio et al. 

2021). PTEN is therefore considered as a tumour suppressor gene (Song, Salmena, and 

Pandolfi 2012). Homozygous deletion of PTEN has been shown in smooth-muscle 

specific knockout mouse models to cause Akt upregulation and constitutive mTOR 
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activity, which was necessary for smooth muscle tumour formation, although 

suppression of P53 was additionally necessary for malignant progression. Treatment 

with the mTORC1 inhibitor rapamycin additionally decreased Akt activation and slowed 

tumour growth in these murine models (Hernando et al. 2007).  

 

1.2.3.3 DNA repair pathways 

Defects in the homologous recombination (HR) DNA repair pathway have been observed 

in several cancer types including breast, ovarian, colon and pancreatic cancer but also 

in certain sarcoma subtypes including LMS (Byrum, Vindigni, and Mosammaparast 

2019; Yaeger et al. 2018; Raphael et al. 2017; Brenner et al. 2012). BRCAness is a term 

used to describe HR deficient cancer cells caused by mutations in BRCA1/2 genes 

although this term has been expanded to include cancer cells which show HR deficiency 

that mimics BRCA1/2 mutants. Maintaining genomic stability is essential to prevent 

accumulation of mutations and chromosomal aberrations. DNA damage can occur either 

exogenously via chemical mutagenesis, and ultraviolet (UV) and ionising radiation, or 

endogenously through reactive oxygen species (Chatterjee and Walker 2017). Different 

types of DNA damage have varying levels of associated cytotoxicity, with DSB being the 

most cytotoxic (Balmus et al. 2019). In order to repair DSBs, two main DNA repair 

pathways are employed by mammalian cells, HR repair and non-homologous end joining 

(NHEJ). HR utilises an undamaged complementary DNA strand as a template in order 

to faithfully repair the break without introducing errors and is therefore only observed in 

S and G2 cell cycle phases where replicated DNA is present (Mao et al. 2008; Brandsma 

and Gent 2012). Phosphorylated H2A histone family member X (H2AX), termed γ-H2AX, 

rapidly appears after exposure to DSB forming DNA damage and functions to 

accumulate DDR signalling and repair proteins at sites of DSBs (Paull et al. 2000). γ-

H2AX is therefore widely used as a sensitive, robust marker of DSBs. 

HR begins with the MRN-complex, composed of meiotic recombination 11 homolog 1 

(MRE11), RAD50 Double Strand Break Repair Protein (Rad50) and Nijmegen breakage 

syndrome protein 1 (Nbs1), sensing DSBs and recruiting ATM kinase to phosphorylate 

histone H2AX (Rogakou et al. 1998). DSB ends are resected by the MRN-complex, 

CtBP-interacting protein (CtIP) and other exonucleases to generate 3’ single stranded 

DNA (ssDNA) overhangs (Sartori et al. 2007). Replication protein A (RPA) binds to the 

ssDNA overhangs to remove secondary structures and prevent nucleotide loss. RPA is 

then displaced by Rad51, mediated by breast cancer and ovarian cancer susceptibility 

1/2 (BRCA1/2), which forms a helical nucleoprotein filament on the ssDNA (Jensen, 
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Carreira, and Kowalczykowski 2010) in order to locate a homologous sequence on a 

sister chromatid and catalyse strand invasion. DNA synthesis is then initiated from the 3’ 

end of the invading strand to extend the region of homology and the DNA crossovers, 

termed Holliday junctions, are resolved by cleavage and subsequent ligation to produce 

two repaired DNA molecules (Xue et al. 2013). A strong link has been established 

between BRCA1/2 proteins and HR function in mammalian cells with loss of function 

mutations causing impaired HR activity (Xia et al. 2001; Moynahan et al. 1999).  

NHEJ is an alternative DSB repair pathway which does not require a sister chromatid 

template and can therefore occur at any stage of the cell cycle (Mao et al. 2008). NHEJ 

begins with the ring-shaped heterodimer Ku70/80 recognising and binding to DSBs in a 

sequence independent manner  (Fell and Schild-Poulter 2015). Ku70/80 acts as a 

scaffold to recruit NHEJ specific repair proteins to DSB ends including DNA-dependent 

protein kinase catalytic subunit (DNA-PKcs) which forms the active DNA-PK complex. If 

the DSB ends cannot be directly ligated due to overhanging ends, they are resected or 

filled in with a variety of enzyme complexes including artemis, polynucleotide 3’ 

phosphatase (PNKP) and DNA polymerases (Davis, Chen, and Chen 2014). Finally, 

DSB ends are ligated with DNA ligase IV.  As DSB do not often have blunt ends and 

must first undergo end processing without a template strand, NHEJ is considered an 

error-prone form of DNA repair which can introduce short deletions or insertions, 

depending on the mechanism of end processing or even translocations if there are 

multiple DSBs across the genome and incorrect chromosomes are joined (Waters et al. 

2014; Rothkamm et al. 2001). 

 

1.2.4 Molecular and histological subclassification of LMS  

Several histological variants exist for LMS and can be divided into spindle, myxoid and 

epithelioid histotypes, although occasionally a mix of these histotypes can be observed 

in the same tumour (Thway 2009; Oliva 2015). Well-differentiated LMS tumours 

commonly show spindle type histological characteristics analogous to smooth muscle 

and are composed of elongated spindle cells arranged in intersecting fascicular bundles 

with eosinophilic cytoplasm and variable numbers of pleomorphic cells (Demicco et al. 

2015). Myxoid LMS tissue contain scant cytoplasm and nuclei of oval, spindle or stellate 

morphology and are often hypocellular, while epithelioid LMS tissues are often 

hypercellular, arranged in nests or sheets with eosinophilic cytoplasm and prominent 

cytologic atypia  (Oliva 2015). Biomarkers of smooth muscle differentiation are used to 

aid in the diagnosis of LMS as most tumours show expression of α-smooth muscle actin 
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(α-SMA), desmin and caldesmon, of which α-SMA is most commonly observed from IHC 

staining across LMS tumours (Demicco et al. 2015). In a cohort of 202 non-uterine and 

181 uterine LMS samples, 91%, 74% and 78% of tissues displayed α-SMA, desmin and 

caldesmon expression respectively (Demicco et al. 2015). However, there are no 

biomarkers exclusive to smooth muscle and expression of these markers can be 

observed in other tissues, meaning that IHC staining for smooth muscle markers should 

be interpreted with caution (Serrano and George 2013).  

In addition to well-differentiated tumours, LMS can also present as moderately or poorly 

differentiated, display decreasing levels of smooth muscle characteristics (Oliva 2015). 

Some extremely poorly differentiated tumours are occasionally misdiagnosed as UPS, 

having lost common smooth muscle markers such as α-SMA, desmin and H-caldesmon 

(Demicco et al. 2015; Oliva 2015). Additionally, a significantly higher proportion of 

recurrent or metastatic LMS tumours are moderately or poorly differentiated compared 

to primary LMS tumours which show higher proportions of well-differentiated tissue 

(Demicco et al. 2015). 

Based on histology, uterine LMS tumours are difficult to distinguish from benign 

myometrial leiomyomas and the criteria for differential diagnoses are controversial, such 

as number of acceptable mitoses before a tumour is considered malignant and degree 

of cellular atypia (C. Zhang et al. 2021; Sanada et al. 2022; Zheng et al. 2020). Due to 

the difficulty in distinguishing malignancy, non-uterine smooth muscle tumours are 

generally considered to be malignant with any amount of mitotic activity as benign 

leiomyomas very rarely occur extra-uterine (Kostov et al. 2021; D’Angelo and Prat 2010; 

Demicco et al. 2015). Some reports outline mitotic activity criteria for malignancy which 

is different depending on histotypes, set as at least ten, four or two mitoses per ten high-

power fields for spindle, epithelioid and myxoid variants respectively (D’Angelo and Prat 

2010; Demicco et al. 2015; Oliva 2015). 

While histological and genetic classification of STS subtypes has remained the standard 

means of diagnosis for decades, it has become increasingly apparent that individual 

subtypes can have molecular subgroups with distinct clinical outcomes that conventional 

histological approaches might fail to detect (Beck et al. 2009; Merry et al. 2021; R. Shen 

et al. 2021; Chadha and Huang 2022; Milighetti et al. 2021; Chudasama et al. 2018; Guo 

et al. 2015). The successful identification and stratification of subgroups has led to an 

improved understanding of underlying biology and tailored therapeutic approach in 

multiple cancer types (Shai et al. 2003; Lapointe et al. 2004; Sørlie et al. 2001; Marisa 

et al. 2013; Asleh et al. 2022). A combination of genetic, transcriptomic and proteomic 
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profiling is therefore necessary to improve the stratification of patient subgroups within 

LMS, thus identifying subgroup specific therapies while increasing our understanding of 

the underlying disease biology. 

Utilising gene expression microarrays, three distinct transcriptomic subgroups were 

identified from a cohort of 51 LMS tumours and these subgroups contained patterns of 

copy number alterations (Beck et al. 2009). The first subgroup, termed ‘muscle-enriched 

LMS’ was shown to have elevated expression of genes involved in muscle differentiation 

and function such as caldesmon gene (CALD1) and actin gamma smooth muscle 2 

(ACTG2). The majority of tumours in this group showed a loss of 16q24, containing 

Fanconi anemia complementation group A (FANCA) gene, which is involved in DNA 

repair, and loss of 1p36, containing PR/SET domain 16 (PRDM16), the loss of which 

causes muscle differentiation (Benitez et al. 2018; Seale et al. 2008). The second group 

presented by Beck et al. had elevated or differential expression of genes relating to 

protein metabolism and regulation of cell proliferation while the third group were enriched 

for the elevated or differential expression of genes associated with extracellular proteins, 

wound response components, and protein synthesis (Beck et al. 2009). No significant 

difference in tumour grade was found between each subgroup and group 1 and 2 were 

found to have a higher percentage of non-uterine cases, making up 91 and 75% of each 

group respectively while group 3 showed an even distribution of uterine and non-uterine 

cases (Beck et al. 2009). 

In a separate transcriptomic study of 37 LMS patient tumours, three subgroups were 

again identified (Chudasama et al. 2018). Gene ontology analysis revealed subgroup 1 

to be enriched in biological functions such as platelet degranulation, complement 

activation and metabolism. Subgroup 2 was characterised by an enrichment in muscle 

function and development processes while subgroup 3 showed a low expression of 

genes which separated groups 1 and 2 but with slightly higher expression of genes 

associated with myofibril assembly, muscle filament action and cell-cell signalling. 

Subgroup 3 comprised of 70% of the sample cohort while groups 1 and 2 made up 14% 

and 16% of the sample cohort and uterine LMS tumours were not enriched or absent in 

any particular subgroup. The authors noted that subgroups 2 and 3 corresponded to the 

previously reported subgroups II and I from Beck and co-workers respectively 

(Chudasama et al. 2018). Analysis of 130 transcriptomes in a third study also revealed 

three distinct subgroups, where further genomic analysis showed these subgroups 

represent early evolutionary branches of LMS which arise from distinct lineages of 

smooth muscle such as vascular, digestive and gynaecological smooth muscle. The 

authors classed these subgroups as subtype 1 (dedifferentiated), 2a (abdominal), 2b 
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(abdominal or extremity) which together comprised the majority of samples in the cohort, 

and 3 (gynaecological) (Anderson et al. 2021).  

Recently the gene expression profiles of LMS tumours in addition to other sarcoma 

subtypes, non-mesenchymal neoplasms and normal myogenic tissue were all 

compared. This analysis showed, once again, that there were three distinct LMS 

subgroups, this time classed as conventional LMS (cLMS) which was enriched in muscle 

associated processes, inflammatory LMS (iLMS) which was enriched in immune markers 

and uterogenic LMS (uLMS) which was enriched in a uterine-like gene expression 

program. By stratifying these subgroups a worse disease specific survival was 

associated with iLMS (Hemming et al. 2020). Despite the recurrent identification of three 

transcriptomic subgroups, the prognostic association of similar subgroups is not 

consistent between studies and after adjusting for clinicopathological variables, 

subgroups were not independent prognosticators of outcome (Hemming et al. 2020; 

Anderson et al. 2021; Beck et al. 2009). Therefore the clinical value of transcriptomic 

classification remains to be determined. 

The use of proteomic profiling in LMS has so far been mainly limited to the analysis of 

cell lines relating to chemotherapy resistance mechanisms or identification of 

mesenchymal to epithelial markers in patient tumours (May et al. 2014; S. T. Lin et al. 

2012; Jilong Yang et al. 2010), with only one study using proteomic profiling to identify 

LMS subgroups (Kirik et al. 2014). This study revealed at least two proteomic subgroups 

within a cohort of 31 LMS samples and subsequent pathway analysis revealed differing 

biological processes between these subgroups including cytoskeleton remodelling, 

apoptosis and telomere maintenance. However, the proteomes of LMS tumours were 

shown to poorly correlate with expression profiles, suggesting a complex interplay 

between gene copy number, and protein abundance (Kirik et al. 2014). This highlights 

the importance of proteomic analysis of subtypes characterised by copy number gains, 

such as LMS in order to accurately quantify protein, and therefore therapeutic target 

abundance.  

 

1.3 Standard of care treatment pathways for LMS 

Surgical resection with or without neo-adjuvant or adjuvant chemotherapy and/or 

radiotherapy remains the mainstay of treatment for local disease. Unfortunately, 

progression to advanced disease including local or distant recurrence is common, 

occurring in 10-30% and 30-40% of STS patients respectively (Frezza, Stacchiotti, and 
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Gronchi 2017; Rosa et al. 2016). For the majority of patients, advanced STS is fatal, with 

average survival of 14-17 months (Judson et al. 2014; Ryan et al. 2016).  

 

1.3.1 Localised disease 

The gold standard of LMS treatment for localised disease, which denotes primary 

tumours located at the site of origin, is surgical resection which for some less common 

STS subtypes is the only therapy which has been recorded as curative (Linch et al. 2014; 

Casali et al. 2018). The rationale behind neoadjuvant or adjuvant therapy is to reduce 

the size of tumours before surgical excision and/or prevent the likelihood of recurrence 

from residual disease after surgical excision (Kostov et al. 2021). Neoadjuvant 

radiotherapy is becoming standard of care for localised extremity LMS following several 

reports showing that radiotherapy can improve overall survival for patients undergoing 

surgery (Gennaro et al. 2021; Gingrich et al. 2017). For example, Gingrich et al showed 

that 90% of patients who had received neoadjuvant radiotherapy were able to achieve 

resection margins without residual disease (R0) while this was reduced to 75% and 80% 

in the adjuvant radiotherapy and no radiotherapy treatment arm upon disease resection, 

giving an odds ratio of 1.8 for R0 margins following neoadjuvant radiotherapy (Gingrich 

et al. 2017).  

There are however, multiple conflicting results from clinical trials assessing the benefit 

of adjuvant chemotherapy following surgical excision, with or without radiotherapy to 

prevent recurrence. A meta-analysis of 18 trials including 1953 STS patients in total with 

localised resectable tumours showed that adjuvant chemotherapy led to a small but 

statistically significant decrease in both local and distant recurrence with an odds ratio of 

0.73 and 0.69 respectively. Doxorubicin based adjuvant chemotherapy reduced overall 

recurrence with an odds ratio of 0.69 while combination doxorubicin and ifosfamide 

reduced overall recurrence with an odds ratio of 0.61. For overall survival, doxorubicin 

based adjuvant chemotherapy resulted in a non-significant decrease in mortality 

although doxorubicin and ifosfamide combination showed a decrease in mortality that 

was significant (Pervaiz et al. 2008). This benefit was not observed, however, in a pooled 

analysis of two trials from the European Organisation for Research and Treatment of 

Cancer (EORTC). From a total of 819 patients randomised to adjuvant or non-adjuvant 

therapeutic arms, adjuvant chemotherapy was not associated with improved outcomes 

in any STS subtype (A. Le Cesne et al. 2008).  

A later EORTC trial randomised 351 intermediate to high grade STS patients without 

metastasis to receive adjuvant chemotherapy following excision but no benefit in overall 
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survival or relapse-free survival  was observed compared to the control cohort (Woll et 

al. 2012). Due to these conflicting reports, adjuvant chemotherapy is not routinely 

recommended. The potential benefit of neoadjuvant chemotherapy is still under 

assessment although current studies also show limited benefit (A. Gronchi et al. 2021; 

Pasquali et al. 2022). Results from a randomised phase 3 trial showed that neoadjuvant 

chemotherapy did not lead to any complete response and only improved overall survival 

or disease free survival in patients treated with standard chemotherapy such as 

anthracyclines and ifosfamide, and not histology driven chemotherapy, showing a 

disease free survival odds ratio of 0.47 ( (Alessandro Gronchi et al. 2020)  

Treatment of advanced or metastatic, unresectable STS consists of monotherapy or a 

combination of systemic cytotoxic agents such as doxorubicin, ifosfamide, trabectedin, 

gemcitabine, docetaxel and eribulin. Systemic chemotherapy has remained the 

cornerstone of advanced STS control for more than 30 years and despite the emerging 

use of molecular-guided therapies such as tyrosine kinase inhibitors (TKIs) for select 

subtypes, prognosis has seen little change in the past decade, highlighting the urgent 

need for novel treatment modalities (Kasper et al. 2014). 

 

1.3.2 First line chemotherapies 

For advanced LMS patients, first line chemotherapy treatment is used primarily for 

disease control and palliative care but rarely with curative intent (Linch et al. 2014). 

Patients with higher grade tumours are more likely to response to chemotherapy, with a 

65% relative improvement in response for each increase in tumour grade (Sleijfer et al. 

2010; Savina et al. 2017). The anthracycline antibiotic doxorubicin is the most commonly 

used first-line therapy for advanced LMS as well as other STS subtypes and is one of 

the first agents seen to produce meaningful responses in patients with advanced 

disease. Response rates of 12-30% can be observed in metastatic LMS patients 

receiving doxorubicin based regimens and in addition to sarcoma, doxorubicin is also 

used for treatment of carcinomas (Judson et al. 2014; Tap et al. 2020; D’Ambrosio et al. 

2020).  

The mechanism of action for anthracycline based chemotherapies are not fully 

understood although there are two widely accepted hypotheses. The first is that 

anthracyclines such as doxorubicin can intercalate into DNA in rapidly dividing cells, 

leading to the disruption of DNA repair mediated by inhibiting the action of topoisomerase 

II. Topoisomerase II is an important component in DNA replication and acts by 
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generating transient double strand breaks (DSBs) to prevent DNA supercoiling, caused 

by strand separation (Nitiss 2009). By preventing the action of topoisomerase II, 

supercoiled DNA rapidly stalls DNA replication and also can lead to the formation of 

abnormal DNA structures (Pommier et al. 2010). The second widely accepted 

mechanisms of anthracycline action is via the generation of free radicals which can 

cause DNA damage, resulting in cell death (S. Y. Kim et al. 2006). Another potential 

mechanism is the enhancement of nucleosome turnover around promoters, caused by 

the intercalation of anthracyclines to DNA. Nucleosome turnover is defined by the 

successive alterations of histone proteins, and if occurring around promotor regions can 

effect gene transcription (F. Yang, Kemp, and Henikoff 2013).  

While displaying potent dose dependant anti-tumour activity, the use of high dose 

doxorubicin is limited by its toxicity to non-malignant cells, particularly to cardiomyocytes, 

leading to short and long-term cardiotoxicity (Volkova and Russell 2012). This could 

possibly be due to the generation of free radical reactive oxygen species, a mechanism 

of action not limited to rapidly dividing cells (S. Zhang et al. 2012). Doxorubicin in addition 

to other anthracyclines, was also shown to induce apoptosis in cardiomyocytes via the 

upregulation of death receptors (L. Zhao and Zhang 2017).  

The cardiotoxicity of anthracyclines has been recognised since the 1970s, where it was 

shown that cardiac risk increased with cumulative doxorubicin dose and therefore a 

maximum cumulative lifetime dose of 400-450 mg/m2 for doxorubicin was recommended 

(von Hoff et al. 1979). However, the dosage of anthracycline based regimens used to 

treat advanced STS patients is often higher than patients with other malignancies and 

therefore the maximum lifetime dose is especially limiting for STS treatment (Loi et al. 

2013). The co-administration of dexrazoxane, a cardio protectant, has since been shown 

to allow for a cumulative doxorubicin dose of 600 mg/m2, with a low rate of cardiotoxicity 

and no reduction of efficacy. Dexrazoxane is believed to act as a cardio protectant by 

the chelation of iron thus reducing the formation of reactive oxygen species in 

myocardiocytes (R. L. Jones 2014). 

Given that anthracycline based chemotherapy treatment is cemented as the backbone 

of advanced LMS management, many trials have sought to improve first line response 

rates or progression free survival (PFS) by combining doxorubicin with other 

chemotherapeutic agents which have shown some degree of activity as monotherapies 

(Table 1.1) (A. Gronchi et al. 2021).  

The DNA alkylating agent, ifosfamide is another standard of care chemotherapy for STS, 

showing single agent, dose dependent, response rates of 5-25% (Tascilar et al. 2007; 
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Lorigan et al. 2007). Ifosfamide is a pro-drug which requires hepatic metabolism to 

generate the active cytotoxic agent. Once in its active form, ifosfamide can alkylate DNA 

to form DNA-DNA crosslinks, leading to inhibition of DNA replication and cell death. 

(Fleming 1997; J. Zhang, Tian, and Zhou 2008). However, ifosfamide dose is also limited 

by toxicity, most commonly neurotoxicity and leukotoxicity, and in a retrospective 

analysis it was shown that ifosfamide had limited activity in LMS patients and also when 

combined with doxorubicin showed no significant difference in overall survival compared 

to doxorubicin first-line treatment alone (Table 1.1) (Sleijfer et al. 2010; Judson et al. 

2014). Further data from a meta-analysis of STS patients from European organisation 

for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma group (EORTC-

STBSG) showed that LMS patients are less responsive to first-line treatment regimens 

containing ifosfamide, showing response rates of 19.5% and 25.6% for doxorubicin with 

ifosfamide or doxorubicin alone respectively. Additionally, the study showed that LMS 

patients receiving doxorubicin with ifosfamide had shorter overall survival compared to 

doxorubicin monotherapy (D’Ambrosio et al. 2020). Thus, ifosfamide is only routinely 

administered in combination therapy in select subtypes where a clear improvement in 

response was noted such as in SS. 

While another alkylating agent, dacarbazine, has not been assessed as a first-line 

monotherapy agent in LMS, the agent has shown some activity as a first line treatment 

when combined with doxorubicin in advanced LMS patients, showing an improved 

response rate of 30.9% compared to  doxorubicin and ifosfamide (19.5%) and 

doxorubicin monotherapy (25.6%) (Table 1.1) (D’Ambrosio et al. 2020). Dacarbazine is 

therefore recommended for multi-agent first line treatment for LMS patients specifically 

where ifosfamide shows limited activity as a first line therapy, either alone or in 

combination or (A. Gronchi et al. 2021). 

Gemcitabine is another chemotherapy which has been assessed as a first-line treatment 

for advanced LMS and other STS subtypes, although initial results from a phase 2 trial 

showed minimal activity as a monotherapy (Table 1.1) (Von Burton et al. 2006). 

Gemcitabine is an analogue of the nucleoside deoxycytidine and is metabolised upon 

entry into cells via phosphorylation into the active triphosphate form. Gemcitabine 

triphosphate is incorporated into DNA instead of deoxycytidine which prevents DNA 

polymerases from elongating DNA strands (Plunkett, Huang, and Gandhi 1995). The 

gemcitabine triphosphate is locked onto the terminated DNA strand and is resistant to 

base excision repair, termed masked strand termination, therefore leading to cell death 

(Plunkett, Huang, and Gandhi 1995). The clinical efficacy of gemcitabine is dependent 



46 
 

on the accumulation of gemcitabine triphosphate in plasma which is achieved via 

intravenous infusion of a fixed dose per minute (Dileo et al. 2007).  

The combination of gemcitabine with the taxane, docetaxel was suggested as a possible 

beneficial regimen due to the synergistic mechanisms of action (Merimsky et al. 2000; 

S. R. Patel et al. 2001). Docetaxel stabilises tubulin which leads to an inhibition of mitotic 

cell processes in addition to inducing the phosphorylation of B-cell lymphoma 2 (BCL-2) 

which promotes apoptosis (Pienta 2001). By terminating DNA synthesis with 

gemcitabine and upregulating apoptosis with docetaxel, an increase in response was 

hypothesised. In a phase 2 trial of first-line gemcitabine and docetaxel treatment, 

objective responses were observed in 35.8% of patients (Table 1.1) (Hensley, Blessing, 

Mannel, et al. 2008). Out of all evaluable patients, 4.8%% achieved a complete response 

while 31% achieved a partial response (PR) and 26.2% achieved stable disease (SD), 

demonstrating that gemcitabine and docetaxel combination can lead to high response 

rates and complete responses in uterine LMS patients as an initial chemotherapy 

regimen (Hensley, Blessing, Mannel, et al. 2008). However, more recently a phase 3 trial 

compared single agent doxorubicin treatment to combined gemcitabine and docetaxel in 

locally advanced or metastatic STS as a first line treatment and found that gemcitabine 

and docetaxel offered no improvement in OS or PFS compared to doxorubicin in any of 

the subtypes included such as LMS and additionally lead to higher toxicity in patients 

(Seddon et al. 2017). Therefore, gemcitabine and docetaxel treatment is not 

recommended in the first line setting for advanced STS but instead is recommended for 

LMS patients, particularly uterine LMS, who have progressed on first line treatment which 

will be discussed further in the following section. 

Trabectedin is a marine-derived anticancer alkaloid and has also demonstrated clinical 

benefit in LMS as a first-line therapy, although almost all of these trials assess the first-

line efficacy of trabectedin as a combinatorial therapy and not as a monotherapy  (A. 

Gronchi et al. 2021; Patricia Pautier et al. 2022; 2015). The mechanism of action for 

trabectedin is complex, affecting both tumour cells and the tumour microenvironment It 

can bind to the minor groove of DNA and interferes with DNA binding proteins including 

transcription factors and DNA repair components. By inhibiting DNA repair, cells are 

unable to progress through G2 phase of the cell cycle, eventually triggering p53- 

independent apoptosis (D’Incalci and Galmarini 2010). Due to the interference with DNA 

repair, an increased sensitivity is noted for tumours which are deficient in certain DNA 

repair mechanisms due to synthetic lethal interactions (Monk et al. 2016). In addition, by 

interfering with trans-activated transcription, trabectedin modulates the expression of 

cytokines and chemokines produced by tumour cells and tumour-associated 
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macrophages, inhibiting immunosuppression and potentiating an anti-tumour immune 

microenvironment (Belgiovine et al. 2021). Trabectedin also displaces oncogenic 

transcription factors from promotor targets, ameliorating oncogenic signalling particularly 

from oncogenic fusion genes in subtypes such as Ewing’s sarcoma (Harlow et al. 2019). 

Combined first-line treatment of advanced LMS with trabectedin and doxorubicin (Table 

1.1), showed an increase in response rate (38 vs 13%), median progression free survival 

(mPFS) (12.2 vs 6.2 months) and overall survival (30.5 vs 24.1 months) in the 

combination and doxorubicin monotherapy arms respectively, with an enhanced but 

manageable toxicity profile (P. Pautier, Italiano, et al. 2021; Patricia Pautier et al. 2022). 

The prolonged disease control in some LMS patients receiving trabectedin could 

potentially be explained by the effect on DNA repair mechanisms, whereby DNA damage 

repair signatures have been shown to predict responses of STS patients to trabectedin 

(Moura et al. 2021). 
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Authors 
Type of 

study 
N Subtypes Treatment 

Response 

rate 

mPFS 

(months) 

mOS 

(months) 

(Patricia 

Pautier et al. 

2022) 

Randomised 

phase 3 
150 

LMS 

 

Doxorubicin & 

trabectedin vs 

doxorubicin 

Uterine 36% 

vs 15%; 

non-uterine 

37% vs 

12% 

6.2 vs 12.2 Not available 

(P. Pautier, 

Floquet, et al. 

2021) 

Non-

randomised 

phase 2 

108 LMS 

Trabectedin & 

doxorubicin 6 

cycles 

Uterine 

59.6%; non-

uterine 

55.8% 

Uterine 8.2; 

non-uterine 

12.9 

Uterine 20.2; 

non-uterine 

34.5 

(D’Ambrosio 

et al. 2020) 
Retrospective 303 LMS 

Doxorubicin & 

dacarbazine vs. do

xorubicin & 

ifosfamide vs. doxo

rubicin 

30.9% vs 

25.6 % vs 

19.5% 

9.4 vs. 6.8 vs. 

5.4 

35.4 vs. 21.4 v

s. 29.3 

(Seddon et al. 

2017) 

Randomized, 

phase 3 
257 

STS (46% 

LMS) 

Gemcitabine & 

docetaxel vs. doxo

rubicin 

20% vs 

19% 

23.7 vs. 23.3 

weeks 

67.3 vs. 76.3 

weeks 

(Judson et al. 

2014) 

Randomized, 

phase 3 
455 

STS (25% 

LMS) 

Doxorubicin & 

ifosfamide vs. doxo

rubicin 

26% vs 

14% 
7.4 vs. 4.6 14.3 vs. 12.8 

(Sleijfer et al. 

2010) 
Retrospective 1337 

STS (42% 

LMS) 

Ifosfamide & other 

vs doxorubicin 

20.4% vs 

24.7% 
4.4 vs 3.5 12.4  vs 12.0 

(Hensley, 

Blessing, 

Mannel, et al. 

2008) 

Phase 2 42 uLMS 
Gemcitabine & 

docetaxel 
35.8% 4.4 16 

(Lorigan et al. 

2007) 

Randomised 

phase 3 
326 

STS (30% 

LMS) 

Ifosfamide 

(3*3g/m2) vs 

Ifosfamide (9g/m2) 

vs doxorubicin 

5.5% vs 

8.4% vs 

11.8% 

2.16 vs 3.0 vs 

2.52 

10.92 vs 

10.92 vs 12.0 

(Von Burton 

et al. 2006) 
Phase 2 48 

STS (21% 

LMS) 
Gemcitabine 4% 2.0 6.0 

Table 1.1. Examples of clinical trials assessing systemic chemotherapies as a first line treatment for 

advanced LMS. LMS; leiomyosarcoma, mPFS; median progression-free survival, mOS; median overall 

survival. 
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1.3.3 Second line chemotherapies and beyond 

Unfortunately many patients will fail to respond, develop secondary resistance or 

demonstrate treatment related toxicity to first line chemotherapy agents at which point 

patients will receive a different therapy as a second line treatment. Beyond the first-line 

setting, evidence for systemic chemotherapy response is less robust with several agents 

tested in phase 2 trial but fewer phase 3 trials reported (Sharma et al. 2013; A. Gronchi 

et al. 2021). 

Gemcitabine is used in advanced or metastatic LMS as a second line chemotherapy with 

only modest activity when used alone (Table 1.2) (S. R. Patel et al. 2001). Gemcitabine 

displays a response rate ranging from 3.23%-18% in sarcomas across subtypes 

(Merimsky et al. 2000). However, an improved overall response rate was observed in 

metastatic STS patients including LMS patients who received gemcitabine and docetaxel 

(16%) compared to gemcitabine alone (8%) (Maki et al. 2007). Additionally, mPFS was 

6.2 months and 3 months for combination or monotherapy treatment respectively and 

median overall survival (mOS) was also increased from 11.5 months in the monotherapy 

arm to 17.9 months in the combination arm, showing this regimen can lead to improved 

outcomes. However, combined gemcitabine and docetaxel did show an increase in 

toxicity (Maki et al. 2007).  

In a retrospective study of bone or soft-tissue sarcoma patients treated with a 

combination of gemcitabine and docetaxel a response rate of 43% was reported. 

Responding subtypes included LMS, angiosarcoma, malignant fibrous histiocytomas, 

MPNST, osteosarcoma and Ewing’s sarcoma (Leu et al. 2004). This study additionally 

showed in vitro that sequential treatment with gemcitabine followed by docetaxel 

produced synergy while simultaneous treatment led to antagonism in cancer cell lines 

(Leu et al. 2004). Therefore, gemcitabine infusion followed by docetaxel is the standard 

method of administering this combination in STS. In a phase 2 trial assessing the activity 

of gemcitabine and docetaxel in unresectable LMS patients either following progression 

on doxorubicin or as a first line treatment, an impressive response rate of 53% was 

reported, or 50% when only considering patients who had received prior doxorubicin 

(Table 1.2) (Hensley et al. 2002). Since this study, further phase 2 trials in the context of 

second line treatment have shown responses ranging from 21-27% in uterine or non-

uterine LMS patients (Table 1.2) (Hensley, Blessing, DeGeest, et al. 2008; Patricia 

Pautier et al. 2012).  

For advanced LMS, the alkylating agent trabectedin has recently shown promising 

results for patients who have progressed on doxorubicin or unsuited for anthracycline 
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treatment (Demetri et al. 2016). Initially in several phase 2 trials, trabectedin showed low 

response rates (8-11.1%) as a monotherapy for advanced chemo refractory STS, 

although these studies noted a lack of cumulative toxicity (Table 1.2) (Yovine et al. 2004; 

A. Le Cesne et al. 2005; Garcia-Carbonero et al. 2004). A phase 3 trial showed that 

trabectedin treatment lead to a 45% reduction in the risk of disease progression or death 

compared to dacarbazine for heavily pre-treated, advanced LMS or LPS with a response 

rate of 34% and 12% in trabectedin or dacarbazine treated patients respectively (Demetri 

et al. 2016). Based on these studies trabectedin is recommended as an option for LMS 

patients who have progressed on previous doxorubicin treatment (A. Gronchi et al. 

2021). 

Eribulin is another chemotherapeutic agent which has recently been suggested as an 

option for advanced LMS patients following failure on first line treatment regimens (Table 

1.2) (Jean Yves Blay et al. 2019; Phillips et al. 2022). Eribulin is a non-taxane microtubule 

inhibitor which leads to mitotic arrest but has also showed other anti-tumour mechanisms 

of action including the suppression of transforming growth factor beta 1 (TGF-β1) which 

is a growth factor that promotes cell proliferation and metastasis (Ueda et al. 2016; Smith 

et al. 2010). Additionally eribulin can induce smooth muscle differentiation markers within 

LMS tumours (Kawano et al. 2016). A phase 2 trial of advanced STS patients who had 

previously received up to two single drugs for advanced disease showed a response rate 

of 5% in the LMS cohort although 32% of LMS patients demonstrated stable disease at 

12 weeks after starting eribulin treatment (Schöffski et al. 2011). A later study focussed 

on LMS patients who had received at least 2 prior lines of chemotherapy treatment, 

assessing the outcomes of eribulin or dacarbazine treatment (Jean Yves Blay et al. 

2019). This phase 3 trial reported similar response rates between eribulin and 

dacarbazine arms (5% vs 7% respectively) and also a similar mPFS (2.2 vs 2.6 months) 

and mOS (12.7 vs 13 months respectively) with manageable toxicity profiles, therefore 

both are used as second line or further treatment options (Jean Yves Blay et al. 2019; 

Axel Le Cesne, Martín-Broto, and Grignani 2022). 

 

 

 

 



51 
 

Authors 
Type of 

study 
N Subtypes Treatment 

Response 

rate 

mPFS 

(months) 

mOS 

(months) 

(Jean Yves 

Blay et al. 

2019) 

Randomised 

phase 3 
309 LMS 

Eribulin vs 

dacarbazine 
5% vs 7% 2.2 vs 2.6 12.7 vs 13.0 

(Demetri et al. 

2016) 

Randomized, 

phase 3 
518 

LPS and LMS 

(73% LMS) 

Trabectedin vs. da

carbazine 
9.9% vs 6.9% 4.2 vs. 1.5 

12.4 vs. 12.

9 

(Patricia 

Pautier et al. 

2012) 

Randomised 

phase 2 
90 LMS 

Gemcitabine vs 

Gemcitabine & 

docetaxel 

Uterine 19% 

vs 24%; non-

uterine 14% 

vs 5% 

Uterine, 5.5 

vs 4.7; non-

uterine, 6.3 

vs 3.8 

Uterine, 20 

vs 23; non-

uterine, 15 

vs 13 

(Schöffski et 

al. 2011) 

Nonramdomis

ed phase 2 
128 

STS (31% 

LMS) 
Eribulin 

5% (LMS 

specific) 

Not 

available 

Not 

available 

(Hensley, 

Blessing, 

DeGeest, et 

al. 2008) 

Phase 2 51 Uterine LMS 
Gemcitabine & 

docetaxel 
27.1% 6.7 14.7 

(Maki et al. 

2007) 

Randomised 

phase 2 
122 

STS (31% 

LMS) 

Gemcitabine & 

docetaxel vs 

Gemcitabine 

16% vs 8% 6.2 vs 3.0 17.9 vs 11.5 

(A. Le Cesne 

et al. 2005) 

Nonrandomis

ed phase 2 
104 

STS (41% 

LMS) 
Trabectedin 8.1% 3.5 9.2 

(Garcia-

Carbonero et 

al. 2004) 

Phase 2 36 
STS (36% 

LMS) 
Trabectedin 8% 1.7 12.1 

(Yovine et al. 

2004) 

Nonrandomis

ed Phase 2 
54 

STS (48% 

LMS) 
Trabectedin 11.1% 1.9 12.8 

(Hensley et al. 

2002) 
Phase 2 34 LMS 

Gemcitabine & 

docetaxel 
53% 5.6 17.9 

(Köstler et al. 

2001) 
Phase 2 27 

STS (22% 

LMS) 
Docetaxel 15% 2.4 7.7 

(S. R. Patel et 

al. 2001) 
Phase 2 

56 

 

STS (48% 

LMS) 
Gemcitabine 18% 3 13.9 

Table 1.2. Examples of clinical trials assessing systemic chemotherapies as a second or further line 

of treatment for advanced LMS. LMS; leiomyosarcoma, LPS; liposarcoma, mPFS; median progression-

free survival, mOS; median overall survival, STS; soft-tissue sarcoma. 
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1.3.4 Chemotherapy resistance mechanisms in LMS 

The major issues facing systemic chemotherapies as a treatment option is the 

accumulation of toxicity which leads to regimen discontinuation, and the development of 

multi-drug resistance. Multi-drug resistance poses a significant challenge to subsequent 

treatment, progressively lowering the response rates seen in patients receiving second 

line or further treatment regimens (Comandone et al. 2017). Mechanisms associated 

with chemotherapy resistance in other cancer types includes enhanced drug efflux, DNA 

repair, downregulation of apoptosis, ECM alterations, and angiogenesis (Tegze et al. 

2012; Lovitt, Shelper, and Avery 2018; Gallego et al. 2022; Garcia-Ortega et al. 2022; 

Vaidyanathan et al. 2016). However, many of the mechanistic studies on LMS samples 

have so far mostly focused on drug efflux, DNA repair pathway alterations and anti-

apoptotic mechanisms of chemotherapy resistance (De Graaff et al. 2016; Honoki et al. 

2010; S. T. Lin et al. 2012; Martin-Broto et al. 2021) (Figure 1.6). 

 

Figure 1.6. Overview of chemotherapy resistance mechanisms implicated in LMS. BAK; BCL2 

Antagonist/Killer 1, BAX; Bcl-2-associated X protein, Bcl-2; B-cell lymphoma 2, Bcl-w; B-cell lymphoma 2 

like protein 2, Bcl-2; B-cell lymphoma-extra large, MRP-1; multi-drug resistance protein-1. Created using 

BioRender.  

In several cancer types, multi-drug resistance to chemotherapies has been shown to be 

promoted by the activation of ATP binding cassette (ABC) family of efflux transporters 

(Muriithi et al. 2020). The cellular function of ABC-transporters is to transport metabolites, 

toxics as well as essential molecules in and outside of the cell but can also actively 
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remove cytotoxic agents from the cell, resulting in reduced intracellular accumulation and 

thus, reduced anti-tumour activity (Rees, Johnson, and Lewinson 2009). The multi-drug 

resistance protein 1 (MDR1) or P-glycoprotein has been shown to actively remove 

doxorubicin from sarcoma cells, and an association between the degree of 

chemoresistance, expression of MRP1, and reduction of intracellular drug accumulation 

has been well documented in several subtypes including LMS (Figure 1.6) (Martin-Broto 

et al. 2021). In the LMS cell line SK-UT-1, doxorubicin treatment was found to cause an 

upregulation of the ABC transporter MRP-1 while co-treatent with the Breakpoint cluster 

region/Abelson (BCR/ABL) kinase inhibitor nilotinib reduced doxorubicin induced MRP-

1 upregulation and also inhibited the efflux function MRP-1, leading to increase 

intracellular accumulation of doxorubicin (Villar et al. 2012). This effect was not seen in 

imatinib which is an inhibitor of BCR/ABL, c-KIT and PDGFRα but with less potency 

towards BCR/ABL compared to nilotinib, suggesting that BCR/ABL mediates an 

upregulation and enhanced activity of ABC transporters to induce doxorubicin resistance 

(Villar et al. 2012). P53 loss of function has also been shown to increase the expression 

of MRP-1, mediating chemotherapy resistance, whereby LMS cells transfected with wild 

type TP53 reduced MRP-1 expression and led to an increased intracellular accumulation 

of doxorubicin (Zhan et al. 2001).  

As doxorubicin exerts its anti-tumour effects via DNA damage, the alteration of DNA 

damage response and repair pathways is one of the main mechanisms implicated in 

chemotherapy resistance (Figure 1.6) (Boichuk et al. 2020; Gallego et al. 2022). For 

instance, osteosarcoma acquired doxorubicin resistant cells generated in vitro showed 

reduced DNA damage following doxorubicin exposure compared to parental cells 

(Gallego et al. 2022). Additionally Akt has been suggested as a potential mediator of 

enhanced DNA repair in doxorubicin resistant LMS cells based on the observation that 

Akt inhibition is able to re-sensitise cells to doxorubicin induced DNA damage, leading 

to enhanced apoptosis (Boichuk et al. 2020).  

Downstream of induced DNA damage, upregulation of anti-apoptotic proteins such as 

Bcl-2 and parallel downregulation of pro-apoptotic proteins including Bcl-2-associated X 

protein (BAX) and BCL2 Antagonist/Killer 1 (BAK) is also associated with doxorubicin 

resistance (Figure 1.6) (Van oosterwijk et al. 2012). Anti-apoptotic proteins Bcl-2, B-cell 

lymphoma-extra large (Bcl-xL) and Bcl-2-like protein 2 (Bcl-w) bind to pro-apoptotic 

proteins BAX and BAK which prevents activity however, upon apoptotic signalling, anti-

apoptosis proteins release BAX and BAK which are then able to oligomerize and form 

pores in the mitochondrial outer membrane, one of the main stages of mitochondria-

mediated cell death (Kale, Osterlund, and Andrews 2017). De Graaf et al. reported that 
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77%, 84% and 42% of LMS tumours show a high expression of anti-apoptotic proteins 

Bcl-2, Bcl-xL and Bcl-w respectively and combination with Bcl-2 family inhibitor ABT-737, 

sensitised LMS cells to doxorubicin treatment (De Graaff et al. 2016). Proteomic analysis 

also demonstrated the upregulation of anti-apoptotic protein Bcl-w in acquired 

doxorubicin resistant LMS cell lines (S. T. Lin et al. 2012). Mechanistic investigation of 

chemoresistance in LMS cells showed that when LMS cells were transfected with 

maternal embryonic leucine zipper kinase (MELK) overexpression constructs, an 

upregulation of Bcl-2 via the activation of the Janus kinase 2 (JAK-2)/ Signal transducer 

and activator of transcription 3 (STAT-3) pathway was observed causing resistance to 

doxorubicin while the opposite was observed upon MELK suppression (Zhiwei Zhang et 

al. 2020). Furthermore high MELK expression in LMS patient tumours also correlated 

with poor survival outcomes (Zhiwei Zhang et al. 2020). Additionally, a recent study 

showed that primary STS cells including LMS with P53 mutations, a key regulator of 

apoptosis, demonstrate doxorubicin resistance via reduced apoptotic signalling (Figure 

1.6) (Kirilin et al. 2022). 

Clearly several chemoresistance mechanisms are active in LMS cells, however many of 

the studies investigating the molecular alterations of chemo-resistant LMS are largely 

confined to in vitro studies using commercial cell lines which may not fully encapsulate 

the variety of chemo resistant mechanisms employed by in vivo tumours (S. T. Lin et al. 

2012; May et al. 2014). Therefore further work to investigate chemotherapy resistance 

mechanisms in patient-derived models is necessary. 

 

1.4 Molecular targeted therapy for advanced LMS 

To improve on the treatment options available for advanced LMS patients who have 

progressed on standard of care chemotherapy treatment, molecular targeted therapies 

are gaining increased interest in LMS. This is in part due to the recent large scale 

sequencing studies which have shown recurrent gene alterations and subsequently 

common oncogenic pathways which are active in LMS (Nacev et al. 2022; Gounder et 

al. 2022). Additionally, several therapies targeting the tumour microenvironment such as 

anti-angiogenics are under clinical assessment or have even been approved for LMS 

and other STS subtypes. Currently, pazopanib is the first and only targeted therapy 

approved for the treatment for multiple non-GIST soft-tissue sarcoma (STS) subtypes, 

(van der Graaf et al. 2012). Its use is limited to advanced or metastatic STS patients, 

excluding liposarcoma, who have progressed after receiving two or more lines of 

chemotherapy.  
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1.4.1 Tyrosine kinase inhibitors 

Due to their elevated expression in LMS tissue, both RTKs and intracellular tyrosine 

kinases have therefore become attractive targets for anti-cancer therapies, such as small 

molecule tyrosine kinase inhibitors, which bind the kinase domain (either reversibly or 

irreversibly) within the ATP pocket or monoclonal antibodies which bind to receptors and 

prevent ligand-receptor interactions (Jiao et al. 2018; Gaumann et al. 2014; Cuppens, 

Annibali, et al. 2017). The majority of TKIs assessed so far in STS subtypes includes 

multi-target TKIs such as pazopanib and anlotinib which target can target both 

angiogenesis and also proliferation via the inhibition of RTKs such as VEGFR and 

PDGFR (van der Graaf et al. 2012; Wilhelm et al. 2011; Patwardhan et al. 2016; Xie et 

al. 2018). Most of these TKIs were first identified through biochemical screens for 

VEGFR2 inhibitors and later shown to potently inhibit the activation of VEGF mediated 

VEGFR2 activation, leading to a decrease in endothelial cell proliferation and tube 

formation (Wilhelm et al. 2011; Xie et al. 2018; Hu-Lowe et al. 2008).. In pre-clinical 

assessment, the multi-target TKI pazopanib showed anti-proliferative effects in STS cell 

lines and patient-derived models of LMS, rhabdoid tumours, SS and clear cell sarcoma 

which was frequently mediated by a reduction in PDGFR and Akt phosphorylation 

although some models also showed a reduction of MAPK pathway activation as well 

(Fleuren et al. 2017; Hosaka et al. 2012; Outani et al. 2014; Wong et al. 2016; Teicher 

et al. 2015). Additionally TKIs that targeted intracellular tyrosine kinases such as the Src 

inhibitor dasatinib also demonstrated anti-tumour activity in LMS cell lines as well as 

other subtypes (Teicher et al. 2015). However, further pre-clinical investigation into the 

mechanisms of LMS response to dasatinib has not been conducted. 

Based on the encouraging pre-clinical observations that LMS and other STS models 

were sensitive to multi-target anti-angiogenic therapies, pazopanib underwent clinical 

assessment in a range of STS subtypes including LMS and eventually gained Food and 

Drug Administration (FDA) approval owing to the results of a randomised, double-blind, 

phase 3 clinical trial (PALETTE) (van der Graaf et al. 2012). This trial showed that 

pazopanib treated advanced STS patients who had previously received at least one line 

of anthracycline treatment prior to trial enrolment had significantly improved progression-

free survival compared to a placebo-control group (4.6 vs 1.6 months respectively) with 

a hazard ratio of 0.31 (p<0.0001) (van der Graaf et al. 2012). However, the study noted 

no significant difference in mOS between the two arms (12.5 vs 10.7 months) with a 

hazard ratio of 0.86 (p=0.25). Upon approval it was observed that a subset of patients 
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did not respond to pazopanib or rapidly developed resistance after an initial response, 

and, on top of the lack of predictive clinicopathological factors for clinical response, 

eventually led to the removal of funding for pazopanib by the Cancer Drug Fund in 2015 

(Amdahl et al. 2014).   

This result highlights the continued difficulty in translating pre-clinical findings 

surrounding TKIs into meaningful, consistent clinical benefit in LMS and other STS 

subtypes. A similar outcome was seen in the first-in-class monoclonal antibody 

olaratumab which is highly specific to PDGFRα and inhibits PDGF mediated activation 

and downstream signalling once bound. LMS cell lines and xenograft models shown to 

express PDGFRα demonstrated a 35-67% reduction in tumour growth during olaratumab 

treatment, compared to a control antibody, indicating that this antibody may show clinical 

responses in LMS patients (Loizos et al. 2005). Indeed, an early phase 1b/2 clinical trial 

showed promising results when combined with doxorubicin in anthracycline naïve 

advanced STS patients, 38% of which were LMS patients (Tap et al. 2016). The 

combination of olaratumab and doxorubicin vastly improved mOS to 26.5 months 

compared to 6.6 months for doxorubicin treatment alone and this improvement was not 

dependent on subtype, although no significant difference in mPFS was seen (6.6 and 

4.1 months respectively, p=0.615) (Tap et al. 2016). However, a later phase 3 trial with 

509 STS patients, of which 46% were LMS, failed to reproduce the previous findings, 

showing no significant difference in mOS in patients treated with combined olaratumab 

and doxorubicin compared to patients treated with doxorubicin alone which in the LMS 

specific cohort was reported as 21.6 months and 21.9 months respectively (p=0.76) and 

additionally mPFS was slightly lower in the combined treatment arm compared to 

doxorubicin monotherapy particularly in the LMS cohort (4.3 months and 6.9 months 

respectively) (Tap et al. 2020).  

Another multi-target anti-antiogenic TKI, anlotinib is currently a promising TKI candidate 

for advanced LMS and other STS based on phase 2 trial data which recruited patients 

with metastatic or advanced chemo refractory disease (Chi et al. 2018). The study 

showed anti-tumour activity with a mPFS of 5.6 months and an mOS of 12 months 

although in the LMS cohort mPFS and mOS was reported as 11 months and 15 months 

respectively with a 12 week PFS rate of 75% in LMS (Chi et al. 2018). A phase 3 trial is 

now ongoing, assessing anlotinib treatment in metastatic or advanced LMS, SS and 

alveolar soft part sarcoma (ASPS) and will be compared to dacarbazine treatment  

(NCT03016819). However pre-clinical studies assessing the mechanistic basis of 

anlotinib activity directly on LMS cells is lacking and so far only one study has aimed to 

identify direct anti-tumour mechanisms which was conducted on SS cells, showing 
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reduced cell proliferation which is mediated by the targeting of GINS complex subunit 1 

(GINS1) which is a major component of DNA replication (Tang et al. 2019).  

One of the major recurring issues for TKI therapy in LMS and other STS subtypes is the 

lack of well-defined predictive biomarkers of response in addition to the poor 

understanding of underlying biology of response and resistance (Wilding et al. 2019). To 

address these issues, translational work utilising panels of patient-derived models will be 

vital in order to fully capture heterogeneity of response as well taking into account 

potential variable responses due to prior multi-line treatment regimens.  

 

1.4.2 PI3K/AKT/mTOR inhibitors 

The PI3K/Akt/mTOR pathway is another key therapeutic target for LMS treatment due to 

the aberrant activity caused by frequent PTEN alterations  (Chudasama et al. 2018; 

Nacev et al. 2022; Gounder et al. 2022; Cuppens, Annibali, et al. 2017). To target this 

pathway a range of PI3K inhibitors have been developed which are either pan-PI3K 

inhibitors or isoform-specific inhibitors. PI3K can be divided into three subclasses based 

on the subunit isoforms and substrate specificities (Thorpe, Yuzugullu, and Zhao 2015). 

Class I PI3Ks are stimulated by RTK and G protein-coupled receptors, and  consist of a 

p110 catalytic subunit which can include p110α, p110β, p110δ or p110γ. Class II PI3Ks 

are not fully understood but only contain catalytic subunits while the single class III PI3K, 

vacuolar protein sorting 34 (VPS34) is involved in intracellular trafficking and autophagy 

(Vanhaesebroeck et al. 2010). In contrast to class II and class III, mutations in class I 

PI3Ks are commonly associated with cancer and while p110α and p110β isoforms are 

ubiquitously expressed, p110δ and p110γ expression is mainly observed in leukocytes 

(Okkenhaug and Vanhaesebroeck 2003). Therefore, p110δ mutations in particular is 

associated with haematological malignancies (Cornillet-Lefebvre et al. 2005).  

Pan PI3K inhibitors target all four of the class I PI3K isoforms (α, β, δ, γ) and compete 

with ATP for the binding pocket in the catalytic subunits. However pan-PI3K inhibitors 

are associated with several adverse events and thus far only one pan-PI3K inhibitor, 

copanlisib, is approved by the FDA for use in non-Hodgkin lymphoma or chronic 

lymphocytic leukaemia (Mishra et al. 2021; Janku 2017; Dreyling et al. 2020). In contrast 

isoform specific PI3K inhibitors reduce off target effects at the expense of narrow patient 

selection and currently three small molecule isoform specific PI3K inhibitors are 

approved by the FDA: alpelisib (α-specific) which approved for breast cancer and 

idelalisib (δ-specific) and duvelisib (δ/γ -specific) which are approved for non-Hodgkin 
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lymphoma or chronic lymphocytic leukaemia (André et al. 2019; Q. Yang et al. 2015; K. 

Patel, Danilov, and Pagel 2019).  

In LMS, a pan PI3K inhibitor ZSTK474 has shown efficacy in a non-uterine and uterine 

cell line, displaying reduced viability and a reduction in Akt activation, while ZSTK474  

reduced LMS cell xenograft tumour growth comparable to that observed in doxorubicin 

treated xenografts (Namatame et al. 2018). Additionally a xenograft generated from the 

acquired doxorubicin resistant uterine-LMS cell line MES-SA/Dx5 showed a greater 

reduction in tumour growth compared to doxorubicin treatment, highlighting that this type 

of targeted therapy may show benefit in chemo refractory LMS patients (Namatame et 

al. 2018). Meanwhile a PI3Kα/δ selective inhibitor pictilisib also demonstrated anti-

tumour activity in PDX LMS models by reducing tumour growth, although PDX tumour 

tissue demonstrated a similar intensity of staining for phosphorylated Ribosomal protein 

S6 (S6RP), a downstream marker of mTOR signalling, suggesting that mTOR signalling 

is still active in PI3K inhibitor treated LMS tumours (Fourneaux et al. 2017). Clinical trials 

assessing PI3K inhibitors in LMS are extremely limited due to the rarity of PI3K mutations 

in this disease, despite showing aberrant of the PI3K pathway via PTEN loss (Cuppens, 

Annibali, et al. 2017). One phase 2 trial included sarcoma patients when assessing the 

pan PI3K inhibitor buparlisib, although the subtypes of the sarcoma patients were not 

mentioned and only 1 out of 14 sarcoma patients showed clinical benefit from buparlisib 

treatment (Piha-Paul et al. 2019).  

Given the downstream location of mTOR in the PI3K/Akt pathway, the inhibition of mTOR 

was considered an attractive therapeutic option for tumours which show an upregulation 

of this pathway and could potentially avoid side-effects caused by inhibition of upstream 

kinases (Chan 2004). Rapamycin is an allosteric, irreversible and highly specific inhibitor 

of mTOR, although rapamycin is limited by its poor solubility and pharmacokinetics  

which lead to the development of rapamycin analogues such as everolimus, temsirolimus 

and ridaforolimus (Chung et al. 1992; Kuo et al. 1992; Price et al. 1992; Jing Li, Kim, and 

Blenis 2014). In a panel of sarcoma cell lines, LMS cells were particularly sensitive to 

mTOR inhibition by everolimus and showed significantly higher sensitivity to mTOR 

inhibition compared to PI3K inhibition (Namatame et al. 2018). Additionally, everolimus 

has also showed anti-tumour activity in LMS PDX models by reducing tumour growth 

and showing a 30% reduction in staining intensity for phosphorylated S6RP downstream 

of mTOR (Fourneaux et al. 2017). 
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A small trial of LMS patients treated with temsirolimus reported stable disease or 

response in three of six patients although IHC status of PTEN or S6RP expression was 

not predictive of response (Italiano et al. 2011). Later a phase 2 clinical trial utilising the 

mTOR inhibitor temsirolimus combined with doxorubicin showed promising responses in 

relapsed or refractory sarcoma including LMS patients, reporting that 53% of patients 

achieved stable disease or better for 60 days after starting treatment (Trucco et al. 2018). 

The authors additionally showed that activated Akt detected in tissue biopsies 4 weeks 

after beginning treatment were a negative predictor of response (Trucco et al. 2018). 

However, despite clinical evidence of response in LMS, other clinical trials utilising first 

generation mTOR inhibitors were less successful than predicted (Demetri et al. 2013; 

Okuno et al. 2011). For example, Demetri et al reported in a phase 3 trial of metastatic 

sarcoma patients including LMS that treatment with the mTOR inhibitor ridaforolimus 

lead to only a modest increase in mPFS and mOS compared to placebo (17.7 and 90.6 

weeks vs 14.6 and 85.3 weeks respectively) and a high toxicity profile was noted 

(Demetri et al. 2013). Meanwhile phase 2 study of gemcitabine and sirolimus in 

previously treated advanced STS patients, including LMS, showed no responses and 

dose limiting toxicity (Martin-Liberal et al. 2017). 

The disappointing results of mTOR inhibitors in the clinic could be explained by the 

negative feedback loops inherent to the PI3K-Akt-mTOR pathway (Sathe et al. 2018). 

For example, one function of p70S6K following activation by mTORC1 is to cause the 

degradation of RTK substrates such as insulin receptor substrate (IRS) which leads to 

downregulated PI3K signalling and cessation of mTORC1 activation (Wan et al. 2006). 

When inhibited by rapamycin or analogues, IRS is no longer degraded by p70S6K, 

eventually leading to the upregulation of IRS mediated PI3K-Akt-mTOR pathway 

activation (Carracedo et al. 2008; Fourneaux et al. 2017; O’Reilly et al. 2006). P70S6K 

also inhibits mTORC2 by phosphorylation of the Rictor component, reducing the 

activation of Akt and serves as another negative feedback loop which is blocked by 

rapamycin (Laplante and Sabatini 2012).   

Dual PI3K and mTOR inhibitors such as dactolisib (BEZ-235/NVP-BEZ235) were 

generated to overcome this PI3K-dependant feedback loop and have shown promising 

results in vitro both as a monotherapy or in combination with doxorubicin treatment, 

(Babichev et al. 2016). Fourneaux et al. demonstrated an elevated sensitivity to BEZ235 

compared to mTOR or PI3K inhibition alone in three patient derived LMS cell lines and 

xenografts (Fourneaux et al. 2017). The authors established these models from tumours 

which displayed a loss of PTEN expression and strong p-S6RPS240/244 staining, indicating 

aberrant activation of the PI3K/Akt/mTOR pathway (Fourneaux et al. 2017).  However,  



60 
 

extracellular signal-regulated kinase (ERK) upregulation was still observed in LMS cells 

treated with the dual PI3K and mTOR inhibitor BEZ235, which was reduced upon the 

addition of a mitogen-activated protein kinase kinases (MEK) inhibitor and lead to a 

potent reduction on in vivo growth, suggesting an additional PI3K independent negative 

feedback loop might contribute to dual PI3K/mTOR inhibitor resistance via enhanced 

MAPK pathway activation (Fourneaux et al. 2016; H. K. Kim et al. 2016; Cuppens, 

Annibali, et al. 2017). Thus, while dual PI3K/mTOR inhibition is an attractive candidate 

therapy for LMS patients displaying PTEN loss, further research is necessary confirm 

the mechanisms of response to dual PI3K/mTOR inhibitors and whether negative 

feedback loops are broadly seen across patient samples.  

A pre-clinical study generated several PI3K/mTOR inhibitor resistant LMS cell and 

xenograft models in order to investigate potential mechanisms of acquired resistance 

(Fourneaux et al. 2019). The authors found an upregulation of cancer stem cell 

associated markers SRY-box transcription tactor 2 (SOX2) and aldehyde 

dehydrogenase 1 (ALDH1) and, consistent with this observation, resistant LMS cells 

were better able to form spheroids in non-adherent culture, showing elevated self-

renewal (Fourneaux et al. 2019). Additionally an enhancer of zeste homolog 2 (EZH2) 

inhibitor was able to re-sensitise LMS cells and xenografts to dual PI3K/mTOR inhibition 

by reducing ALDH1 expression, indicating that this drug combination could potentially 

delay the acquisition of resistance in LMS patients. BEZ235 has yet to be tested in the 

clinic for efficacy in LMS patients although based on promising pre-clinical results, 

warrants investigation as a second line or further treatment regimen.  

Akt inhibitors are another class of drug which could be used to target LMS tumours with 

aberrant activation of the PI3K/Akt/mTOR pathway although there are fewer studies 

which have assessed AKT inhibitor response in LMS compared to PI3K and/or mTOR 

inhibitors. However, a pre-clinical study has demonstrated sensitivity of LMS cells to the 

Akt inhibitor MK-2206, showing that this can synergise with doxorubicin treatment and 

increase apoptosis compared to each monotherapy (Boichuk et al. 2020). Meanwhile, 

LMS cells with an acquired resistance to the cytotoxic chemotherapy eribulin showed 

sensitivity to combined MK-2206 and eribulin treatment (Hayasaka et al. 2019). Clinical 

studies of Akt inhibitors are limited, although a phase 1 pharmacokinetic study of MK-

2206 did show stable disease in one out of three LMS patients included in the study, 

therefore further pre-clinical and clinical evaluation of Akt inhibition in LMS is warranted 

(Doi et al. 2015).  
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1.4.3 Synthetic lethality and PARP inhibitors 

Deficiency in HR pathway or BRCAness  is known to confer sensitivity to DNA-double 

strand break inducing drugs, including platinum based derivatives and poly (Adenosine 

diphosphate (ADP)-ribose) polymerase (PARP) inhibitors which have become standard 

of care therapies for BRCA1/2 mutant breast and ovarian cancers (Helleday 2011). The 

PARP family is comprised of 17 proteins involved in several aspects of the DDR including 

the detection of DNA damage and recruitment of repair components. Of these enzymes, 

PARP1 appears to play the most significant role in the DDR pathway. PARP1 is a major 

component of the base excision repair (BER) pathway which corrects small base lesions 

caused by oxidation, deamination or alkylation and is vital for the single strand DNA 

break (SSB) repair pathway (Fisher et al. 2007). In addition, both PARP1/2 have been 

shown to stabilise replication forks at BER intermediates and PARP1 further participates 

in nucleotide excision repair, NHEJ and HR (Ronson et al. 2018). PARP enzymes rapidly 

detects and binds to DNA damage, catalysing the polymerisation of poly ADP-

ribosylation (PAR) from (nicotinamide adenine dinucleotide) NAD+ molecules. PARP1 is 

further activated by auto-PARylated which enables the PARylation of both histones and 

chromatin associated proteins. PARylation of these components results in the 

recruitment of DNA repair proteins including X-ray repair cross-complementing protein 1 

(XRCC1) which repairs the single strand breaks (Brem and Hall 2005). 

PARP inhibitors are able to compete with NAD+ at the catalytic site of PARP and when  

PARP is inhibited, SSBs are unable to be repaired, leading to replication fork collapse, 

developing into a DSB. PARP inhibitors have been shown to inhibit SSB repair in all 

phases of the cell cycle (Figure 1.7) (Godon et al. 2008).  PARP inhibitors are, therefore, 

an example of synthetic lethality which is a concept where two individual mutations or 

aberrations are able to exist individually but are lethal when combined (Lord and 

Ashworth 2017). In this instance, normal HR proficient cells are able to repair the DSBs 

induced by PARP inhibition with relatively few errors, avoiding apoptosis and genetic 

alterations. HR deficient tumour cells on the other hand must repair DSBs via other repair 

pathways such as NHEJ which introduce mutations and genomic rearrangements, 

leading to cell death (Bryant et al. 2005; Farmer et al. 2005). In the clinical setting, 

remarkable tumour-specific responses are seen in BRCA1/2 mutant cancers. Several 

PARP inhibitors have now been approved for use in BRCA1/2 breast, ovarian, prostate 

and pancreatic cancers at varying stages of treatment (Geenen et al. 2018; Lord and 

Ashworth 2017). Olaparib was the first PARP inhibitor approved by the FDA in as a 

treatment for advanced BRCA1/2 mutated ovarian cancers (Kaufman et al. 2015) and 
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has now also been approved for treatment of BRCA1/2 mutated human epidermal growth 

factor receptor 2 (HER2)-negative breast cancer and advanced pancreatic cancer 

maintenance therapy (Robson et al. 2019; Golan et al. 2019). PARP inhibitors have also 

shown activity beyond BRCA1/2 mutant tumours, in cancers which show HR deficiency 

or mutations in DDR associated genes. Olaparib has further been approved for the 

treatment of recurrent ovarian cancer regardless of BRCA1/2 mutation status and 

recently for the treatment of HR deficient prostate cancer (Pujade-Lauraine et al. 2017; 

de Bono et al. 2020).  
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Figure 1.7. Mechanism of PARP inhibition compared to normal PARP function. PARP inhbitors prevent 

the action of BER and cause PARP trapping, converting SSBs into DDBs. HR proficient cells repair DSBs 

and survive PARP inhibition while HR deficient cells undergo cell death due to unrepaired DSBs and 

accumulation of genomic instability. Figure was created using BioRender. BER; Base Excision Repair, DSB; 

Double Strand Break, HR; Homologous Recombination, PARP; Poly (ADP-Ribose) Polymerase, PARPi; 

Poly (ADP-Ribose) Polymerase Inhibitor, SSB; Single Strand Break.  

 

Other PARP inhibitors which have been approved for treatment in various cancer types 

includes niraparib, rucaparib and talazoparib. Talazoparib is another PARP inhibitor 
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approved for the treatment of BRCA1/2 mutant advanced HER2 negative breast cancer 

(Litton et al. 2018). Niraparib is approved for the treatment of recurrent ovarian cancer 

and primary peritoneal carcinomas that are HR deficient or showed a response to 

previous chemotherapy treatment and rucaparib is approved as a treatment for BRCA1/2 

mutant advanced ovarian carcinoma, BRCA1/2 mutant metastatic prostate cancer and 

as a maintenance therapy for recurrent ovarian or primary peritoneal cancers (González-

Martín et al. 2019; Oza et al. 2017; R. L. Coleman et al. 2017; Abida et al. 2019). 

Additionally, another PARP inhibitor, veliparib, is currently under assessment in clinical 

trials either as a monotherapy or combined with radiotherapy and chemotherapy 

(Kummar et al. 2009; Baxter et al. 2020). 

1.4.3.1  Mechanisms of PARP inhibitors 

The specific mechanism of action for the anti-tumour activity of PARP inhibitors is still 

not fully understood as PARP1 -/- mice are viable, do not develop tumours and are fertile, 

suggesting that PARP inhibitor-induced cell death is highly tumour-specific (Conde et al. 

2001). There are currently several proposed mechanisms of action. One such 

mechanism is the inhibition of SSB repair activity of PARP, leading to replication fork 

collapse and accumulation of DNA lesions. This was tested in cell lines where PARP 

inhibitors induced γ-H2AX and Rad51 foci, markers of DSB and HR respectively, 

although a reduction in cell viability was only observed in BRCA2 knockdown cells 

(Bryant et al. 2005). However, contradicting the SSB repair inhibition theory, PARP 

inhibitor treatment does not lead to an increase in SSBs and PARP1 knockdown alone 

was not sufficient to induce γ-H2AX foci, representing DNA damage (Gottipati et al. 

2010). Additionally, the cytotoxic capability of olaparib was elevated in wild-type PARP1 

cells, with higher γ-H2AX foci, compared to PARP1 knockout cells, where olaparib had 

little effect on cell viability or γ-H2AX foci count (Murai et al. 2012). Therefore, the anti-

tumour activity of PARP inhibitors might be mediated via alternative mechanisms. 

Another proposed, and more widely accepted, mechanism of action of PARP inhibitors 

is PARP trapping. The activity of PARP has been shown to be necessary for the MRE-

11 mediated restart of stalled replication forks which can be cause by SSBs (Bryant et 

al. 2009). Such stalled replication forks collapse if not restarted and repaired via HR, 

leading to a DSB (Figure 1.7) (Liao et al. 2018). Additionally, tumours displaying 

defective fork stabilisation showed a sensitivity to PARP inhibitors similar to HR defective 

tumours (Liao et al. 2018). However, the higher cytotoxicity of PARP inhibitors compared 

to PARP knockout can be explained by the potential of these inhibitors to trap PARP on 

DNA complexes. When inhibited, PARP1 is unable to undergo auto-parylation in order 

to eventually dissociate from DNA complexes, which is necessary or the completion of 
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DNA repair  and inhibitor binding to the NAD+ site allosterically enhances the affinity of 

the N-terminal zinc finder domain to DNA (Satoh and Lindahl 1992), showing an increase 

in stabilised, cytotoxic PARP1/2-DNA complexes (Murai et al. 2012). Replication forks 

collapse upon encountering PARP1/2 DNA complexes which are repaired by HR in 

normal cells and cannot be repaired by NHEJ. Repair of these collapsed forks does not 

occur in HR deficient tumour cells, leading to cytotoxic DSB accumulation (Zhu et al. 

2018). 

Different clinically approved PARP inhibitors can have varying PARP trapping 

capabilities which may explain the difference in potency of each drug. The size of each 

PARP inhibitor molecule correlates with PARP trapping ability, with larger molecules 

such as talazoparib showing greater levels of PARP1/2-DNA trapped complexes, due to 

the greater allosteric effect on the N-terminal DNA binding zinc finger domain (Murai, 

Huang, et al. 2014). Talazoparib is also the most potent of the clinically approved PARP 

inhibitors when tested on cell lines, showing sub-micromolar anti-tumour activity 

compared to rucaparib which induces cytotoxicity at micromolar concentrations, 

suggesting that the PARP trapping ability of this class of drug correlates with potency of 

anti-tumour action (Hopkins et al. 2019). However, the correlation of PARP trapping 

ability and potency does not translate into in vivo studies, nor clinical practice where 

talazoparib treatment resulted in 50% and 42% response rate in BRCA mutant breast 

and ovarian cancer respectively, while a 65% response rate was observed in BRCA 

mutant or recurrent ovarian cancer patients treated with veliparib, a PARP inhibitor with 

the least PARP trapping ability (Hopkins et al. 2019; Steffensen, Adimi, and Jakobsen 

2017). Talazoparib does however show a higher toxicity towards normal cells and 

therefore has a lower maximum tolerated dose (Bruin et al. 2022) 

PARP inhibitors are also hypothesised to assert anti-tumour effects via the upregulation 

of NHEJ in tumour cells with HR deficiency. It was shown that PARP inhibitor treatment 

increased the phosphorylation of DNA-PK substrates which are major components of the 

NHEJ pathway, stimulating NHEJ activity specifically in HR deficient cells. Inhibition of 

DNA-PK activity reversed the genomic instability of these cells caused by PARP inhibitor 

treatment and additionally, chemical or genetic perturbation of NHEJ pathway was able 

to reduce the sensitivity of BRCA1/2 or ATM deficient cell lines to PARP inhibitors (A. G. 

Patel, Sarkaria, and Kaufmann 2011). PARP1 directly interacts with Ku70/80 to inhibit 

NHEJ and both PARP1 and Ku80 compete for the binding of DNA DSB ends (M. Wang 

et al. 2006). Therefore, PARP1 inhibition can lead to overactivation of NHEJ in response 

to DNA damage, generating chromosomal breaks and radial chromosome structures due 

to joining of incorrect chromosomes (Bunting et al. 2010). However, conflicting with this 
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hypothesis, combination treatment with a DNA-PK inhibitor, AZD7648, and olaparib did 

not reduce the anti-tumour effect of PARP inhibition but instead showed synergistic 

effects in ATM knockout non-small cell lung cancer (NSCLC) cells and xenografts, 

increasing genomic instability (Fok et al. 2019) . Thus, NHEJ activation does not fully 

explain the action of PARP inhibitors for all tumour cells. It is possible that the mechanism 

of action of PARP inhibitors leading to cell cytotoxicity depends on the genetic 

background of the tumour cell and which DDR associated genes are altered.  

 

1.4.3.2  Pre-clinical assessment of PARP inhibitors in STS 

Pre-clinical reports have demonstrated that some LMS cells are sensitive to PARP 

inhibition, although these studies have been limited to a few LMS cell lines which does 

not capture the full range of genetic heterogeneity in this subtype. Within a panel of STS 

cell lines, sensitivity to the PARP inhibitor niraparib was observed in the fibrosarcoma 

cell line HT-1080 and a uterine LMS cell line SK-LMS-1 which demonstrated HR 

deficiency but does not harbour BRCA1/2 mutations, suggesting that sensitivity in STS 

is not limited to BRCA1/2 mutants (H. Li et al. 2020). Additionally, temozolomide, a DNA 

alkylating chemotherapeutic agent, was also shown to synergise the most with PARP 

inhibitor treatment in HT-1080 and SK-LMS-1 when used in combination in comparison 

to PARP inhibition combined with doxorubicin, isosfamide or dacarbazine (H. Li et al. 

2020). In a separate study the BRCA2 mutant uterine LMS cell lines SK-UT-1 and SK-

UT-1b were shown to be sensitive to the PARP inhibitor olaparib in a clonogenic assay, 

an effect which was amplified by pre-treatment with cisplatin (Chudasama et al. 2018). 

Combination of rucaparib at micromolar concentrations with the alkylating agent 

trabectedin at picomolar concentrations showed synergy in LPS cell lines, resulting in 

accumulation in G2/M cell cycle phase with enhanced γ-H2AX formation and apoptosis 

particularly in the DDLPS cell line IB 115 compared to either monotherapy, though this 

effect was not seen in LMS cell lines (Laroche et al. 2017). Additionally, DDLPS IB 115 

xenografts also showed a synergistic action of rucaparib and trabectedin combinatorial 

treatment (Laroche et al. 2017).  

The relationship between PTEN alterations and PARP inhibitor sensitivity was explored 

in a panel of human tumour cell lines, showing that PTEN loss without BRCA1/2 

alterations causes HR deficiency, represented by the reduction of Rad51 foci in irradiated 

cells compared to PTEN WT controls (Mendes-Pereira et al. 2009). PTEN reduction also 

correlated with hypersensitivity of cell lines to PARP inhibitor treatment both in vitro and 

in vivo xenografts although the cell line panel tested did not include STS (Mendes-
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Pereira et al. 2009). However, due to the common detection of PTEN alterations across 

STS subtypes, particularly in LMS it is possible PARP inhibitor treatment may benefit 

PTEN mutant LMS tumours in addition to BRCA1/2 mutants.  

 

1.4.3.3  Clinical data of PARP inhibitors in LMS 

Thus far, there have only been a handful of STS clinical trials investigating PARP inhibitor 

therapies. However, these have shown promising initial results in the context of 

advanced disease following failure of first-line chemotherapy treatment, particularly in 

uterine LMS, where current options show little benefit (Asano et al. 2022). 

A case series of four uterine LMS patients harbouring BRCA2 loss of function mutations 

were assessed for response to PARP inhibitor treatment. These patients had received 

at least four lines of treatment prior to initiation of PARP inhibitor treatment which led to 

SD for at least 12 months in three patients and PR in one patient (Seligson et al. 2019). 

In another case series, five high-grade uterine LMS patients, three harbouring biallelic 

BRCA2 inactivation and two harbouring a somatic or germline truncating BRCA2 

mutations accompanied with loss of heterozygosity were treated with the PARP inhibitors 

in various clinical trials or off label. All five patients demonstrated a response with 

radiographic regression, with duration of treatment ranging from six to 28 months. 

Additionally, one patient demonstrated a complete response and remained on treatment 

at the time of the time of the report (Hensley et al. 2020). Furthermore, a case report 

identified a somatic BRCA2 mutation in a patient with advanced metastatic uterine LMS, 

previously treated with gemcitabine and docetaxel as a first-line therapy. Treatment with 

olaparib demonstrated a complete response, remaining disease free for two years at the 

point of the report, highlighting that BRCA mutation status informed PARP inhibitor 

treatment can lead to durable responses in uterine LMS patients despite progression on 

previous chemotherapy regimens (Shammas et al. 2022). 

Preliminary results from a phase Ib trial utilising olaparib and concomitant radiotherapy 

in locally advance or unresectable STS showed that this treatment regimen was well 

tolerated with 3/22 unconfirmed PR (14%) and 12/22 SD (55%) outcomes reported, 

although the subtype information of these patients was not given (Sargos et al. 2022). 

Another phase Ib study instead assessed the combination of Olaparib and trabectedin in 

patients with advanced LMS (30%) but also other STS and bone sarcoma subtypes, 

showing a response rate of 14% with manageable toxicity (Grignani et al. 2018). The 

authors also investigated biomarkers of response and found that high PARP1 expression 

of tumours correlated with improved outcomes (Grignani et al. 2018).    A phase 2 study 
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treated advanced uterine LMS patient with olaparib and temozolomide, observing an 

objective response rate of 27% (6/22) which met the prespecified primary efficacy 

endpoint (Ingham et al. 2021). Additionally, the mPFS and duration of response (DOR) 

was 6.9 and 12 months respectively, showing durable responses. Haematological 

toxicity was common, with grade 3/4 neutropenia and thrombocytopenia seen in 77% 

and 32% of patients respectively, although this was managed with dose modification 

(Ingham et al. 2021). Currently correlative analysis is underway to identify markers of HR 

deficiency which could underlie durable responses, including Rad51 foci scoring and 

Schlafen Family Member 11 (SLFN11) expression analysis, which is a predictive 

biomarker of DDR targeting therapy response in small cell lung cancer, prostate and 

ovarian cancers (N. Coleman et al. 2020; Nogales et al. 2015; Conteduca et al. 2020) 

(NCT03880019).  

Multiple other trials utilising PARP inhibitors in are ongoing or recruiting based on these 

encouraging pre-clinical and initial clinical findings, including a phase 2/3 trial which has 

recently been approved to assess the efficacy of olaparib and temozolomide combination 

treatment in unresectable or advanced uterine LMS following progression on 

chemotherapy. This trial will compare the efficacy of this combination to standard of care 

second-line therapies for LMS including pazopanib and trabectedin (NCT05432791). 

Additionally a phase 2 trial has also recently been approved to assess niraparib 

monotherapy in advanced or metastatic LMS (NCT05174455) which, if shown to be 

efficacious, will be a much needed addition to the first-line treatment regimen of LMS 

and may provide an alternative to first line treatments which show a high degree of 

toxicity such as doxorubicin (L. Zhao and Zhang 2017) 

  



69 
 

1.5 Preclinical models for sarcoma research 

The advancement of molecular profiling techniques has revealed distinct molecular 

subsets of STS tumours within individual histological subtypes that may benefit from 

targeted therapies. However, the standard of care treatment remains cytotoxic therapies 

and has seen few novel treatment options approved in the past decade despite the 

limitations of cytotoxicity and modest response rates (Grünewald et al. 2020). 

Investigation into novel treatment strategies is urgently needed to improve STS patient 

outcomes, although due to the rarity of such cancers, recruitment for innovative clinical 

trials is challenging and often underpowered, potentially not encapsulating the wide 

molecular  heterogeneity of subtypes such as LMS which is particularly important when 

considering targeted therapies (Yuan, Li, and Yu 2021). Pre-clinical modelling is 

therefore vital for the assessment of novel treatment options in rarer cancers in order to 

guide clinical trial design.  Several different types of pre-clinical models are routinely 

used in cancer research, including LMS, such as patient derived xenografts (PDXs), 

patient-derived in vitro monolayer cultures and organoids and immortalised cell lines. 

Each of these pre-clinical models have their own advantages and disadvantages. 

 

Pre-clinical model Advantages Disadvantages 

In vitro cultures 

Low cost 
Not always biologically 

relevant 

Ease of handling 
Induced changes in gene 

expression 

Highly reproducible Sub clonal selection pressure 

Amenable for high throughput 
screening 

Low establishment rate 

Short experiment timescales  

In vivo xenografts 

Mimics tumour growth kinetics High cost 

Mimics pharmacokinetics of human 
tumours 

Labour intensive 

Retains tumour heterogeneity and 
histology 

Long experiment timescales 

Higher establishment rate 
Not amenable for high 
throughput screening 

Can model tumour microenvironment 
Variable tumour sizes and 

growth 

Table 1.3. Summary of advantages and disadvantages of in vitro and in vivo xenograft models for 

pre-clinical modelling.  
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1.5.1 Current cell lines in STS research 

In comparison to other cancer types there is a severe lack of STS cell lines readily 

available for research. In a review of the status of human sarcoma cell lines, 819 WHO 

classified cell lines classed under connective and soft-tissue neoplasms were identified 

in the Cellosaurus database and spanned 45 subtypes (Bairoch 2018). Given that the 

current WHO classification lists over 150 distinct histopathological subtypes, the number 

of subtypes represented in pre-clinical research is therefore lacking. In addition, multiple 

cell lines are only available for 36 histopathological subtypes and are most commonly 

established from Ewing’s sarcoma, (156 cell lines), osteosarcoma (148 cell lines) and 

UPS (43 cell lines) (Hattori, Oyama, and Kondo 2019). 

Furthermore, among the 819 cell lines identified in the 2019 review only 139 were 

available from public cell banks. In public cell banks there are only seven cell lines 

representing LMS (SK-UT-1, SK-UT-1b, SK-LMS-1, TYLMS-1, SKN, RKN, HS5.T) which 

does not fully capture the intra-subtype and intra-tumour heterogeneity observed in these 

cancers (Hattori, Oyama, and Kondo 2019). For example, the widely used LMS cell lines 

SK-UT-1 and SK-UT-1b were both established in 1972 from a patient with grade III 

uterine LMS  and show stark differences in morphology, tumour suppressor aberrations 

and in vivo histology (Fogh, Fogh, and Orfeo 1977; Ganiatsas et al. 2001; T. R. Chen 

1988). Only using the limited publicly available models for pre-clinical drug assessment 

might therefore fail to represent subsets of patients who might respond to certain 

molecular guided therapies or conversely miss tumour populations which might be more 

resistant to such therapies.  

1.5.2 Established cell lines versus primary in vitro models 

Established 2D cell cultures remain the most common in vitro model for cancer 

therapeutic drug screening and pre-clinical research due to low costs, ease of use and 

reproducibility. However, forcing cancer cells to grow in 2D for an extended period of 

time induces cytoskeletal rearrangement and leads to altered gene expression whilst 

exerting a clonal selection pressure (Kenny et al. 2007). These phenotypic differences 

can alter therapeutic response and often results in a poor correlation between cell lines 

and in vivo tumours (Cree, Glaysher, and Harvey 2010). Furthermore, most commercially 

available cell lines have undergone spontaneous genetic alterations to enable indefinite 

culture and have acquired genetic changes over years of continuous culture, thereby 

posing questions as to the relevance of these cells in accurate modelling of disease. For 

example, transcriptomic analysis of LMS cell lines frequently used in pre-clinical 

research, such as SK-UT-1 and SK-UT-1b has shown that these no longer resemble 
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expression profiles from LMS tumours, both in terms of global transcriptome or LMS 

specific transcriptional programs (Hemming et al. 2020). 

To address these issues, primary cell line cultures can be generated which more closely 

resemble the genomic and phenotypic profiles of parent tumours from which they were 

derived and can capture disease heterogeneity (Salawu et al. 2016). An analysis of 

chondrosarcoma patient derived cells grown over 30 passages in vitro showed that these 

lower passage cell lines acquired some initial mutations upon in vitro growth but retained 

the most relevant mutations present in respective patient tumours (Rey et al. 2019). 

Although, it is important to note that even primary patient-derived cells grown in 2D will 

induce phenotypic and genetic changes in long-term cultures (Kato et al. 2008) and 

therefore, low passage in vitro cultures should be primarily used in order to maintain 

clinical relevance. However, the establishment of sarcoma primary culture panels is 

challenging due the rarity of this disease and additionally several studies have reported 

widely varying success rates. 

The difficulty in generating sarcoma cell lines from tumour samples was described in 

1985 whereby cell expansion from direct monolayer cultures was only successful in one 

out of eight samples (12.5%) (Bruland, Fodstad, and Pihl 1985). By plating these 

samples instead as single cell suspensions, allowing for aggregation, spheroids were 

established in eight out of 17 samples (47%) which then were able to grow long term in 

monolayer format, also retaining tumourigenicity shown by the formation of tumours in 

vivo (Bruland, Fodstad, and Pihl 1985). 

Low passage (<10 passages) STS cell lines were established from mechanical and 

enzymatically dissociated surgical resections in a 2002 study, of which two were derived 

from primary tumour resections and nine were derived from metastatic resections (M. Hu 

et al. 2002). It was shown that six out of 11 cultures readily formed tumours in vivo, all of 

which were derived from metastatic samples and a further five formed spontaneous lung 

metastases, indicating the maintenance of metastatic potential (M. Hu et al. 2002).  

Another study reported the establishment and characterisation of seven self-

immortalised STS cell lines directly from patient resections with a range of subtypes such 

as LMS, UPS, DDLPS and myxofibrosarcoma (Salawu et al. 2016). Resections included 

metastases, recurrent tumours and tumours which had received neoadjuvant 

radiotherapy or chemotherapy. In total 47 resections were mechanically dissociated and 

cultured on plastic as monolayers. Out of 47, 14 failed to grow, giving an initial success 

rate of 70.2%. Of the established primary cultures, ten showed early onset senescence, 

nine with senescence around passage five and seven cultures showed senescence 
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around passage 10. The remaining seven cultures continued to expand and produce 

long-term immortalised cultures, able to proliferate for over 60 passages or at least three 

years in culture. It is possible that around passages five and ten, in vitro cell cultures 

experience a senescent selection pressure whereby only some tumour cells are able to 

overcome this crisis period and continue to divide. Interestingly, five of the seven long 

term cell cultures were established from grade III tumours and two from grade II tumours, 

suggesting that primary cultures might select for higher grade aggressive tumour types. 

However, long term cultures were established from both cases where tumours were 

treated neoadjuvant chemotherapy where a reduction in tumour quality was expected 

(Salawu et al. 2016). Furthermore, two morphologically distinct clones were established 

from the same LMS and myxofibrosarcoma resection samples via differential attachment 

under the same growth conditions, demonstrating the cellular heterogeneity of such 

tumours and how in this case selection of certain clones can occur due to handling i.e., 

attachment times and stochastic presence of different clones in the cultured flask, rather 

than selection based on cell fitness. Viability of clones should therefore be closely 

monitored during the establishment of cultures in order to retain all viable cell types. 

While primary LMS cells maintained a high similarity of copy number variations 

compared to the patient sample, one high passage (over passage 40) line began to show 

a loss of heterozygosity in STR profiling loci and some changes in copy number 

variations were noted in the established cell cultures compared to the tumour of origin 

(Salawu et al. 2016). Due to the high genomic instability of tumours such as LMS is it 

expected that continuous culture will introduce genetic drift therefore genomic 

comparison over time in patient-derived models is necessary to confirm disease 

relevance (Seligson et al. 2022; Anderson et al. 2021; Chudasama et al. 2018). 

Recently, a biobank of primary RMS cells was established from PDX models, showing 

preserved phenotypic and molecular characteristics when compared to the respective 

PDX model and patient biopsies. Some focal differences were observed in DNA copy 

number between certain PDXs and respective cell cultures which was more prominent 

in clones expanded in Dulbecco's Modified Eagle Medium (DMEM) media. All somatic 

mutations from the PDX models were represented in each PDX cell culture covering the 

mutational spectrum observed in RMS. Additionally, similar or slight variations in 

methylation profiles were found between the PDXs and cell cultures whereas RMS 

commercially available cell lines showed far higher DNA methylation levels at multiple 

sites compared to the primary cultures (Manzella et al. 2020). 
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1.5.3 Modelling sarcoma in 3D 

While primary monolayer cultures can recapitulate STS genetics and aspects of tumour 

phenotype, they are not suited to model microenvironmental cues including cell-cell and 

ECM interactions. 3D cultures such as spheroids or organoids, are therefore an attractive 

model for cancer research as they have been previously shown to closely mimic in vivo 

gene expression, growth kinetics, nutrient gradients and ECM production for a variety of 

cancer types (Table 1.4) (Nunes et al. 2019). However, compared to monolayer culture, 

3D cultures are more laborious to generate, maintain and analyse, and on top of this 

spheroid or organoid sizes can vary within and between assays, reducing reproducibility 

(Table 1.4) (Adjei and Blanka 2015). 

 

Culture format Advantages Disadvantages 

2D 

Cost effective Reduced cell-cell interactions 

Ease of handling Reduced cell-ECM interactions 

Highly reproducible Induces altered gene expression 

Standardised assays High clonal selection pressure 

3D 

Can model cell-cell interactions High cost 

Can model cell-ECM interactions Difficult to establish and maintain 

Mimics gene expression profile of 
tumours 

Size variability reduces reproducibility 

Mimics nutrient gradients and 
hypoxia 

Endpoint assays vary depending on 
culture technique 

Mimics drug penetration gradients  

Lower clonal selection pressure  

Table 1.4. Overview of advantages and disadvantages of 2D and 3D in vitro culture format for cancer 

research. ECM; extracellular matrix.  

 

Spheroids can be formed via the culture of cells in suspension using a non-adherent 

surface, leading to spontaneous aggregation where cell-cell or cell-ECM interactions 

predominate instead of cell-surface adherence (Kunz-Schughart, Kreutz, and Knuechel 

1998). In 2009, three commercially available human sarcoma cell lines representing 

osteosarcoma (MG63), Ewing’s sarcoma (HTB116) and fibrosarcoma (HT1080) were 

shown to readily form spheroids in suspension culture and had an elevated expression 

of stem cell associated genes such as Nanog, octamer-binding transcription factor 3/4 

(OCT3/4) and SOX2 compared to monolayer culture. When exposed to doxorubicin or 

cisplatin, spheroid cultured lines displayed a higher cell viability than monolayer cells (H. 
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Fujii et al. 2009). Another study analysed the effect of 3D culture of the fibrosarcoma line 

HT1080, SW872 (fibrosarcoma cell line) and RD (RMS cell line), showing that the 

expression of ECM genes was significantly upregulated compared to the respective 

monolayer cultures while a PDX derived cell line, HOSS1 (osteosarcoma cell line), also 

displayed an increased expression of gap junctions. The 3D cultured cell lines showed 

an increased chemo resistant phenotype, with lower early apoptosis events detected in 

doxorubicin, gemcitabine and docetaxel treated 3D cells compared to monolayer. This 

chemoresistance was hypothesised to be due to the increase in gap junction expression 

in addition to the mechanical barrier produced by upregulated ECM production (C. Bai 

et al. 2015).  

The phenotypic changes induced by direct establishment of 2D primary cultures from 

tissue samples can be lessened with the use of primary 3D cultures (Imamura et al. 

2015). Salerno and co-workers generated a panel of primary STS and bone sarcoma 

spheroids from biopsy samples via mechanical and enzymatic digestion followed by non-

adherent, basic fibroblast growth factor (bFGF) and EGF supplemented culture. 

Mechanical dissociation of spheroids was used in order to expand cultures. Using this 

method, primary spheroid cultures were established in only five out of 49 biopsy samples 

(10.2%). This low success rate compared to other studies establishing sarcoma primary 

cultures could potentially be due to the deliberate lack of serum in culture media and also 

because biopsy rather than resection samples were used as a source of primary cells 

(Salerno et al. 2013). Cell viability, density and overall tissue quality can vary quite 

drastically from core needle biopsies (Ferry-Galow et al. 2018), although a subtype 

specific success rate of 50% (1 out of 2) was noted for Ewing’s sarcoma and RMS 

compared to osteosarcoma, chondrosarcoma, LPS and unclassified sarcoma (9, 11, 6, 

and 0% respectively), suggesting that tumour subtype might also be a major factor in the 

success rate of spheroid establishment (Salerno et al. 2013). Monolayer cultures were 

also established in parallel to spheroids from the Ewing’s sarcoma and RMS biopsy 

samples and it was shown that stem cell markers including OCT3/4, Nanog and SOX2 

were elevated in spheroids compared to the respective monolayer cultures. The 

established spheroid cultures also maintained tumourigenicity in vivo, producing tumours 

with a histology comparable to the patient sample and matching subtype specific 

biomarker expression. Furthermore, the sarcoma spheroids increased in cell number 

and size during hypoxic induction, a condition frequently observed in the sarcoma 

microenvironment (Salerno et al. 2013). However RMS PDX cells, when cultured in 3D, 

showed no significant differences in drug response profiles when compared to 2D 

monolayer cultures, suggesting that in some models, format of culture does not impact 
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drug responses and the impact of 3D vs 2D culture on drug action might depend on 

subtype and tumour grade (Manzella et al. 2020). 

In the body, tumours are surrounded by a complex microenvironment including the ECM, 

which has been shown in several cancer types including sarcoma to have profound 

effects on tumour growth, invasion and metastasis (Pickup, Mouw, and Weaver 2014). 

In order to model this in vitro and mimic tissue architecture, 3D cultures can be 

suspended in synthetic hydrogels containing common ECM components such as 

collagen, laminin and fibronectin or alternatively cultures can be suspended in naturally 

produced hydrogels such as matrigel which is produced by murine Engelbreth-Holm-

Swarm (EHS) sarcoma tumours (Duval et al. 2017; Kleinman and Martin 2005). Matrigel 

can support cell survival and growth of cancer cells while preventing differentiation, 

although the composition of matrigel and therefore the mechanistic effect on cell cultures 

is poorly defined (Hughes, Postovit, and Lajoie 2010). While the ECM components of 

several cancer types have been well studied, allowing for the creation of cancer specific 

hydrogels with a defined, reproducible composition, in STS the ECM is poorly 

characterised and therefore the majority of hydrogel-based 3D sarcoma cultures rely on 

the use of matrigel and other biologically produced hydrogels (LeSavage et al. 2022). 

Adult organoid cultures can be generated by the suspension of dissociated tissue in a 

hydrogel, surrounded by organ specific media that promotes stem cell self-renewal, 

allowing organoid cultures to be expanded and maintained almost indefinitely whilst 

reproducing complex in vivo tissue architecture due to the maintenance of cancer stem 

cell populations (Sachs et al. 2018). Cancer organoids can be defined as ‘3D self-

organised assemblies of neoplastic cells derived from patient-specific tissue samples 

that mimic key histopathological, genetic and phenotypic features of the parent tumour’ 

although a standardised definition has yet to be established (LeSavage et al. 2022). 

Patient-derived cancer organoids have become widely used pre-clinical models for 

carcinoma cancer types such as breast, colorectal, pancreatic, ovarian and lung cancer, 

as they have shown to be able to recapitulate the tumour architecture, sub clonal 

populations and niche-specific paracrine and autocrine signalling factors (Drost and 

Clevers 2018; LeSavage et al. 2022).  

The success rate of organoid establishment for epithelial malignancies is often reported 

at around 60-80% (Tiriac et al. 2018; Kopper et al. 2019; Neal et al. 2018; Schütte et al. 

2017; Sachs et al. 2018). This improves vastly from the establishment rate of 

conventional epithelial cancer cell lines (~ 20-30%), suggesting less strain is placed on 
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the dissociated tumour cells in an organoid format and the selection pressure for certain 

subclones is not as high (Kodack et al. 2017). 

Molecular profiling of patient derived colorectal cancer organoids and PDXs (established 

both with a ~60% success rate) involving whole genome sequencing (WGS), whole 

exome sequencing (WES) and RNA sequencing (RNAseq) revealed a high similarity 

between patient-matched PDXs and organoid cultures, and furthermore showed a high 

concordance of drug response, indicating that organoid models are able to reflect in vivo 

drug response phenotypes but with the addition of high-throughput drug screening 

capabilities (Schütte et al. 2017). A similar study was also conducted on a panel of breast 

cancer organoids, where a success rate of >80% was reported from primary or 

metastatic tissues. This organoid panel recapitulated the molecular heterogeneity 

observed in the clinic and also showed consistent drug response profiles compared to in 

vivo xenografts as well as patient response (Sachs et al. 2018). 

Organoid cultures can also be used for the in vivo growth of adult multi-cellular normal 

tissue with maintained histology in order to assess, in parallel, the effects that certain 

therapies might have on tumour cells vs surrounding non-transformed tissue, thus 

predicting potential toxicity of novel therapies (Driehuis, Kretzschmar, and Clevers 

2020).  

Patient-derived organoid culture represents an attractive model for drug screening and 

to elucidate mechanisms of therapy response in STS due to the potential to capture the 

extreme inter and intra-tumour heterogeneity. However, progress in this field has lagged 

quite substantially behind carcinoma organoid modelling and studies utilising STS 

patient-derived, hydrogel-based, organoid cultures in sarcoma research have only 

recently been reported (Meister et al. 2022; Gaebler et al. 2019; Al Shihabi et al. 2022; 

Loskutov et al. 2021). The translation of epithelial cancer organoid protocols and 

techniques to sarcoma has faced several challenges. Firstly, the cell of origin for 

carcinomas are often clearly defined, meaning that the culture media requirements can 

be shared or at least based on the requirements for the growth of respective epithelial 

cell types and stem cell niche, which have been well documented (M. Fujii and Sato 

2020; Sato et al. 2009). For example, the majority of epithelial normal and cancer 

organoids are cultured with R-spondin which supports epithelial stem cell homeostasis 

and self-renewal by potentiating the wingless-related integration site (Wnt) pathway 

(Clevers 2016). In the context of sarcomas, the cell of origin is often not clear and, where 

known, the factors essential for connective or soft-tissue specific tissue niches are poorly 

defined. Secondly the tissue availability of sarcoma is considerably lower than that of 
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carcinomas due to disease rarity. On top of this, protocols for the collection, processing 

and banking of sarcoma tissue is not standardised and often only available for direct 

culture from sarcoma specialist centres, limiting the amount of research institutes which 

are able to work with fresh sarcoma samples.  

Despite these limitations, Meister and co-workers have recently established and 

characterised a panel of rhabdomyosarcoma organoid models (one of the first patient-

derived organoid panels described for sarcomas) reporting a success rate of 41%. These 

models were established from biopsy samples from both alveolar and embryonal 

rhabdomyosarcoma subgroups as well as different molecular subgroups with a range of 

fusions  and fusion negative tumours (Meister et al. 2022). Organoid establishment was 

achieved through the culture of mechanically dissociated biopsies in Basement 

Membrane Extract (BME) hydrogels surrounded with media supplemented with growth 

factors including EGF, bFGF and IGF as well as the Rho associated protein kinase 

(ROCK) inhibitor Y-27632 and TFG-β inhibitor A83-01. Success rate of establishment 

was found to be higher in the more aggressive fusion positive rhabdomyosarcoma 

samples compared to fusion negative tumours (83 and 16% respectively) and 

additionally relapsed tumours showed a higher rate of establishment compared to 

primary tumours (61 and 30% respectively), suggesting that future panels of patient-

derived sarcoma organoids might be enriched for particularly aggressive subtypes and 

advanced disease (Meister et al. 2022). The rhabdomyosarcoma organoids 

recapitulated the histology of the patient tumours as well as IHC markers while 

maintaining the molecular and genetic characteristics of the patient tumours, observed 

through copy number variation analysis and RNAseq. In addition, through single cell 

RNAseq, the authors showed that rhabdomyosarcoma organoids retain intra-tumoural 

genetic and molecular heterogeneity, with several subclones displaying differing 

expression of rhabdomyosarcoma classical biomarkers. Furthermore, genetic stability 

for up to six months of continuous culture was reported and drug screening revealed a 

similar distribution of response phenotypes as observed in the clinic (Meister et al. 2022). 

 

1.5.4 Patient-derived models for adaptive personalised medicine 

Generating novel patient-derived pre-clinical models of STS not only expands the 

currently limited arsenal of STS cell lines available for fundamental and translational 

research but can be a powerful tool for personalised medicine.  In vitro analysis of tumour 

cells response provides an insight into how the patient will respond to certain therapies 

and treatment can be adjusted accordingly (Kodack et al. 2017). 
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For STS patients, personalised medicine is especially important in order to move away 

from the ‘one size fits all’ paradigm of treatment regimens due to the heterogeneity of 

these malignancies. The generation of primary cell cultures for high-throughput drug 

response analysis was shown to be feasible from resected tumours directly from 

rhabdomyosarcoma patients, allowing for the comparison of drug response profiles in 

the same patient from different metastases at different timepoints (Manzella et al. 2020). 

The main technical issue, however, facing the development of precision medicine into 

clinical practice is the timescale from receiving tissue to establishing models amenable 

for drug response profiling and limited size or low quality tissue samples. The generation 

of rhabdomyosarcoma patient-derived organoids from patient biopsies was reported to 

take 27-42 days and were eligible for drug screening as early as 27 days after acquiring 

tumour samples, although the median time from sample acquisition to drug screening 

was 81 days, showing that fast assessment of patient-specific drug responses is feasible 

but the timescale from receiving tissue to generating response data can vary from patient 

to patient (Meister et al. 2022). In another study, success rate of culturing patient-derived 

SS monolayer cells in vitro directly from biopsies was noted as 58%, where several 

healthy, mesenchymal tissue-derived cells were also cultured in parallel (Brodin et al. 

2019). These patient-derived models demonstrated drug sensitivities or resistances 

which correlated with the patient response to such therapies and highlighted drug 

sensitivities specific to tumour cells with minimal impact on the cell cultures derived from 

normal non-tumour tissue (Brodin et al. 2019). This study shows that culture 

establishment and drug response profiling is possible from STS biopsy tissue instead of 

resection tissue which is especially beneficial for precision medicine as it would 

potentially allow for the generation of a patient matched model from an early biopsy, 

although the successful growth of each model was dependant on the size and quality of 

the biopsy (e.g. cell density and viability). Additionally, proliferating cultures were 

established within a timescale of 2 days to 18 weeks (Brodin et al. 2019). Optimising the 

establishment of patient-derived models for fast, high-throughput drug screening could 

lead to informed primary treatment regimens based off in vitro data and/or informed 

adjuvant therapy upon surgical resection. 

 

1.5.5 Patient-derived xenografts in LMS research 

Currently, the gold-standard method for accurate pre-clinical modelling of solid cancers 

is patient-derived xenografts (PDXs), whereby patient tumour tissue is transplanted into 

immunocompromised mice, usually subcutaneously. The benefit of PDX use is the 
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heterogeneity that can be observed between models, with each representing an 

individual patient. Additionally PDX tumours retain the histology, biomarker expression, 

morphology and growth kinetics of the patient tumour and allows for the study of 

pharmacodynamics of drug treatment (Risbridger, Lawrence, and Taylor 2020). PDX 

modelling of cancer is limited by long establishment and growth times, cost, difficulty in 

handling and often less than optimal reproducibility especially in regard to low passage 

PDXs. (Risbridger, Lawrence, and Taylor 2020) 

Recently, Hemming and co-workers established a panel of 17 subcutaneous 

leiomyosarcoma PDX models from surgical resection tissue, noting a success rate of 

35% for engraftment and propagation for at least three passages. The study reported a 

higher success rate in high grade tumour samples compared to low or intermediate grade 

samples (42 and 22% respectively) and a higher percentage of the established PDXs 

were from uterine LMS patients (65%). Where possible engraftments that previously 

failed to propagate were repeated with successive resection tissue but also failed to 

establish PDX models, reducing the likelihood that failure of establishment was due to 

handling and suggesting that some LMS tumours are not compatible with PDX 

establishment due to poor tissue quality. Additionally, engraftment of tumours that were 

exposed to pre-operative radiotherapy were not successful which could potentially be 

explained by radiotherapy induced necrosis, leading to non-viable tumour tissue. Early 

(passage 0) and later (up to passage 17) in vivo passages retained the histology of the 

parent tumours including aspects such as cytomorphology, cellularity and abundance of 

mitotic bodies as well as LMS biomarker staining such as α-SMA or desmin in addition 

to maintenance of genome wide copy number alterations (Hemming et al. 2022). 

The panel of LMS PDX models displayed a range of alterations in tumour suppressor 

genes frequently observed in LMS tumours such as TP53, RB1 and PTEN. Via 

transcriptomic analysis, the panel of LMS PDX models were shown to retain the 

transcriptional programme of the parental tumour and even represent the three molecular 

classifications of LMS tumours, cLMS, iLMS and uLMS previously identified (Hemming 

et al. 2020). cLMS clustered PDX models had high expression of synemin (SYNM) and 

adipogenesis Regulatory Factor (ADIRF), while iLMS associated or uLMS PDX models 

were enriched for PDGFRA and Decorin (DCN) or estrogen receptor 1 (ESR1) and 

chordin like 2 (CHRDL2) respectively.  While elevated expression of IGF1R is observed 

in a subset of cLMS tumours, treatment of a LMS PDXs with high IGF1R expression with 

the IGF1R inhibitors, linsitinib or berzosertib, failed to perturb tumour growth, highlighting 

the importance of functional assessment of therapeutic activity following pre-clinical 

target identification (Hemming et al. 2020; 2022). In order to test anti-tumour activity for 



80 
 

a range of therapies, LMS PDX models have been utilised in ex vivo drug screening, with 

one study able to test 35 compounds in order to ultimately identify transcriptional Cyclin-

Dependent Kinases (CDK) inhibitors as therapeutically active and comparable to 

doxorubicin activity (Hemming et al. 2022). 

A recent ongoing study aimed to generate a panel of STS PDX models (XenoSarc) and 

has so far reported a subcutaneous PDX establishment rate of 32% in total, spanning a 

total of 33 subtypes, in addition to undifferentiated sarcomas ‘not otherwise specified’. 

Tissue was acquired from surgical excisions as well as biopsies, with surgical tissue 

showing a slightly higher but not statistically significant rate of PDX establishment (34% 

compared to 22%). Metastatic samples showed a higher rate of establishment compared 

to non-metastatic samples (40% vs 27%) but was not found to be significant and 

histological subtype had no impact on rate of establishment, although LMS tumours 

showed a success rate of 41%. Patients whose tumour was successfully established as 

a PDX had a significantly shorter OS compared to those whose tumour did not engraft 

successfully, showing a median OS of 77 months compared to 259 months. The study 

found that the established PDX models retained histological, copy number and gene 

expression features of the corresponding tumour samples and was maintained over 

repeat passages (up to passage 35) (Cornillie et al. 2019). 

 

 

1.6 Hypothesis and aims 

The mechanisms of drug response in STS remains poorly understood and the lack of 

models which closely represent patient tumours restricts our ability to develop effective 

treatment strategies for advanced sarcoma that can be translated into clinical benefit. 

The hypothesis of this project is that patient tumours respond to chemotherapy or 

molecular targeted therapy via different mechanisms to that observed in established cell 

lines, and patient-derived models can more accurately model tumour responses. This 

hypothesis will be addressed via three main aims:  

 

Aim 1: Derive and characterise novel LMS models. Establish a patient-derived model 

pipeline which I seek to implement in order to generate and characterise a panel of LMS 

PDXs and PDX-derived in vitro 2D and 3D cultures. 
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 Aim 2: Define chemosensitivity in LMS models and signalling alterations 

associated with chemoresistance. Assess the sensitivity of PDX-derived LMS cells to 

standard of care chemotherapies and investigate cell-intrinsic signalling alterations 

associated with chemoresistance. 

 

Aim 3: Identify candidate molecular targeted therapies for LMS. Conduct small 

molecule drug screening on LMS models to identify shared and patient-specific signalling 

pathway dependencies. 

 

By achieving these aims, I seek to address the gap in the current knowledge of 

chemotherapy or targeted therapy response in LMS and add to the current limited 

arsenal of STS patient-derived models which will inform future clinical trials utilising novel 

candidate therapies.  
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Chapter 2 - Methods
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2.1 In vivo techniques  

2.1.1 Tissue collection and PDX establishment  

Xenografts were generated from percutaneous needle biopsies from patients at the 

Royal Marsden Hospital. Biopsies were placed in Dulbecco’s modified Eagle medium 

(DMEM) with 10 µM Y-27632 (LC Laboratories) immediately after collection prior to PDX 

establishment (within 24 hours). If immediate implantation was not possible, biopsies 

were frozen in DMEM with 10% dimethyl sulfoxide (DMSO) (Sigma Aldrich), 10% foetal 

bovine serum (FBS) (Gibco) and 10 µM Y-27632. PDX models were established by 

subcutaneous implantation of biopsy tissue into the flank of NOD scid gamma (NSG) 

immunocompromised mice. J000104314, TM01244, TM00199 and TM00219 PDX were 

purchased from Jackson Laboratory and passaged to NSG mice at the ICR to continue 

growth. Xenograft models were passaged, sacrificed and tumour samples harvested by 

Dr Amanda Swain and Dr Jian Ning. Tumour growth was monitored twice weekly with 

calipers and tumour volume was calculated with the following formula: ((width2 x length) 

/ 2). Xenograft tumours were grown no larger than 1000 mm3 and once harvested, tumour 

tissue was stored via snap freezing and slow freezing in DMEM with 10% DMSO (Sigma 

Aldrich), 10% FBS (Gibco) and 10 µM Y-27632. Where possible, tumours were also fixed 

in 10% formalin (Sigma Aldrich) and embedded in paraffin to generate formalin fixed 

paraffin embedded (FFPE) blocks.  

 

2.1.2 PDX tissue dissociation 

To dissociate single cells, tumour tissues were minced and digested in dissociation 

media (DMEM/Ham’s F12 1:1 + 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES), 0.5 mg/mL collagenase (Sigma Aldrich), 0.1 mg/mL DNase I (Sigma 

Aldrich), 10 ng/mL epidermal growth factor (EGF) (Peprotech), 0.1x insulin-transferrin-

selenium A (Gibco), 10 µg/mL hydrocortisone (Sigma Aldrich), 10 μM Y-27632, 0.1 

mg/mL hyaluronidase (Sigma Aldrich), 5% FBS, and 0.5% penicillin/streptomycin) at 37 

ºC for 2 hours on a rotor at 100 rpm. The dissociated tissue was centrifuged at 1400 rpm 

for 5 minutes and then washed in phosphate buffered saline (PBS) supplemented with 

10 μM Y-27632. Red blood cells (RBCs) were lysed with RBC lysis buffer (Invitrogen) for 

1 minute, after which remaining cells were washed with PBS supplemented with 10 μM 

Y-27632, centrifuged at 1400 rpm for 5 minutes and incubated in 0.05% trypsin-

ethylenediamine tetraacetic acid (EDTA) (Gibco) with 10 μM Y-27632 at 37 ºC for 8 
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minutes. Cells were then incubated in a 1:1 mix of DNAse solution (1 mg/mL DNase I 

and 10 μM Y-27632 in PBS) and Y-media (DMEM:Ham’s F12 1:1 + 15 mM HEPES, 1% 

L-glutamine, 5 μg/mL insulin (Sigma Aldrich), 0.4 μg/mL hydrocortisone, 10 ng/mL EGF, 

250 ng/mL amphotericin (ThermoFisher Scientific), 9.62 ng/mL cholera toxin (Sigma 

Aldrich), 5 μM Y-27632, 10% FBS, and 0.5% penicillin/streptomycin). Cell suspensions 

were pelleted by centrifuging at 1400 rpm for 5 minutes then washed in PBS with 10 μM 

Y-27632 followed by resuspension in Y-media. Cells were then passed through a 70 µm 

strainer, counted and either cryopreserved in 10%  DMSO in FBS and 10 µM Y-27632 

or mouse cell depleted. 

Mouse cell depletion was achieved by suspending cell pellets in 1x magnetic-activated 

cell sorting (MACS) buffer, diluted in PBS from a stock solution (20x MACS buffer; 5 g 

bovine serum albumin (BSA) (Sigma Aldrich), 4 mL 0.5 M EDTA (Sigma Aldrich) in 50 

mL PBS), supplemented with 10 μM Y-27632. Mouse cells were labelled in MACS buffer 

by adding magnetic microbead conjugated antibodies via a Mouse Cell Depletion Kit 

(Miltenyi Biotec 130-104-694) according to manufacturer’s instructions. The cell solution 

was incubated on ice for 15 minutes after which the solution was passed through a  

Quadro MACS magnet LS column (Miltenyi Biotec). The column was washed twice with 

1x MACS buffer and the column was then discarded. The resulting flow through 

contained human enriched cells and were pelleted then resuspended in Y-media for cell 

counting and subsequent cell culture. 

 

2.2 Histology 

2.2.1 FFPE embedding and H&E stains 

PDX tissues were fixed in 10% neutral buffered formalin (Sigma Aldrich) for 24 hours 

before storing in PBS at 4 °C for no longer than one week. To fix organoid cultures, 

Cultrex harvesting solution (R & D Systems) was first added to matrigel domes and 

plates were incubated at 4 °C for 1 hour. Released organoids were collected, spun at 

300 xg for 5 minutes then washed with PBS. Pelleted organoids were resuspended in 

10% formalin for 60 minutes at room temperature before formalin was removed and 

organoids were washed three times. Fixed organoids were then suspended in molten 

X12 HistoGel specimen processing gel (Thermo Fisher Scientific) and heated at 65 °C 

for 5 minutes. Organoid-histogel suspensions were then incubated on ice for 10 minutes 

and once set, was layered with PBS and stored at 4 °C for no longer than one week. 
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Fixed PDX tissues or histogel embedded organoids were embedded in paraffin by the 

ICR histopathology core facility to generate FFPE blocks.  

Hematoxylin and eosin (H&E) stains were generated by slicing 4 µm sections from FFPE 

blocks onto charged slides. Sections were stained with haematoxylin and eosin followed 

by mounting with coverslips by the ICR hisopathology core facility. H&E slides were 

digitally scanned using Hamamatsu Nanozoomer-XR slide scanner and digital scans 

were analysed via Hamamatsu Nanozoomer software. 

 

2.2.2 IHC staining 

Unstained FFPE sections of 4 µm thickness were cut via a microtome onto charged 

slides. Slides were heated at 60 °C for 15 minutes and then left to cool briefly at room 

temperature before placing in xylene (Sigma Aldrich) twice each for 10 minutes. The 

slides were then placed into decreasing concentrations of ethanol (Sigma Aldrich); 

100%, 96% and 80% each for 5 minutes and were then placed in water for 5 minutes. 

Antigen retrieval was conducted by boiling slides in 1x sodium citrate buffer with 0.05% 

Tween 20 (Sigma Aldrich) for 5 minutes followed by cooling at room temperature. Tissue 

sections were placed in 1x tris-buffered saline (TBS) for 5 minutes, then twice in 1x TBS 

with 0.025% Tween 20 (TBST) for 5 minutes at room temperature. Using a hydrophobic 

marker, a barrier was drawn around tissues allowing for the addition of blocking buffer: 

3% BSA (Sigma Aldrich) in TBST to tissue samples. Samples were left in blocking buffer 

for 90 minutes before primary antibody was added diluted in blocking buffer and left at 4 

°C overnight in a humidified chamber. Primary and secondary antibody used are 

described in Table 2.1. Primary antibody concentration was chosen after titrating 1:50, 

1:100, 1:500 concentrations. IHC staining for Ki-67, carbonic anhydrase IX and cleaved 

caspase 3 were conducted by the ICR histopathology core facility along with positive 

control tissues for each antibody, where concentration parameters were already 

established.  

Antibody   Dilution   Supplier   

Primary antibodies 

Anti-Actin, α-Smooth Muscle 

antibody 1A4 (Mouse) 

 1:100 Sigma Aldrich (#A5228)   

Secondary antibodies 

Anti-Mouse HRP linked antibody 1:100 SignalChem (#G32-62G-1000) 

Table 2.1 Table of antibodies used for IHC staining. HRP; horseradish-perosidase.  
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Primary antibodies were removed from the tissue sections and slides were then washed 

in TBS, and twice in TBST for 5 minutes each. DAKO Peroxidase blocking solution 

(Agilent) was added to each slide and incubated for 60 minutes at room temperature 

before slides were washed in TBS, and twice in TBST for 5 minutes each. Horseradish 

peroxidase (HRP)-conjugated secondary antibodies were then added to tissue sections 

diluted 1:100 in blocking buffer and slides were incubated at room temperature for 60 

minutes in a humidified chamber. Secondary antibodies were then removed from slides 

before washing in TBS, and twice in TBS. Dako 3,3′-Diaminobenzidine (DAB) substrate 

chromogen system (Agilent) stain was applied to tissue sections for a length of time 

optimised from the staining of positive tissue controls. Slides were then counterstained 

with haematoxylin solution (Abcam) for 20 seconds before washing under running water 

and dehydrating with 3 minutes in water followed by 3 minutes each in 80%, 96% and 

100% ethanol. Dehydrated slides were then placed in xylene for 5 minutes before 

mounting with Pertex mounting medium (Pioneer Research Chemicals LTD) and 

covering with glass coverslips. Slides were left to dry for 24 hours before digital imaging 

using Hamamatsu Nanozoomer-XR slide scanner. Digital scans were analysed via 

Hamamatsu Nanozoomer software.  

 

 

2.3 In vitro culture 

2.3.1 Primary monolayer culture 

The ICR-SS-1 cell model was generated from the PDX model obtained from the Jackson 

Laboratory, J000104314, which was established from a synovial sarcoma patient. All 

other primary monolayer cell cultures were derived from PDX models generated in this 

study. 

Primary cell monolayer cultures were seeded with a range of conditions to optimise 

conditions for establishment. Mouse cell depleted PDX-dissociated cells were seeded 

into matrigel coated or non-coated tissue culture flasks at a density of 30,000 viable cells 

per cm2 in either Y-media or Y-media supplemented with 10 ng/ml PDGFαβ (PeproTech) 

and 20 ng/ml bFGF (PeproTech). All cells were cultured in 95% air:5% CO2 at 37 °C in 

humidified incubators. Matrigel coated flasks were generated by adding 2.5% Growth 

Factor Reduced Matrigel (Corning) in cold DMEM/Ham’s F12 1:1 to flasks which were 
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then incubated at 37 ºC for 1 hour before excess Matrigel solution was removed. Coated 

flasks were then used immediately for cell culture.  

After 4-5 days from cell seeding, cultures were visually inspected for cell adhesion using 

Evos m5000 microscope and an equal volume of Y-media to the seeding volume was 

added. Hereafter, twice a week half of the culture media was removed and replaced with 

fresh Y-media (with or without PDGF and bFGF). Viability of non-adhered cells in the 

removed media was assessed via staining with 0.4% trypan blue (ThermoFisher 

Scientific) and if cell viability exceeded 20%, removed media was centrifuged at 300 xg 

for 5 minutes, resuspended in fresh Y-media (with or without PDGF an bFGF) and added 

back into the culture flasks. Once cell cultures reached approximately 80% confluence, 

cells were trypsinised using TrypLE™ Express Enzyme (1X), phenol red (Gibco) until 

detachment and subcultured at a 1:2 ratio. During passaging, removed media was saved 

and added back to the subcultures at a 1:1 ratio with fresh media. This protocol was 

repeated until cells had been subcultured 10 times at which cells were considered to be 

established cell lines. From this point onwards, media was replaced by full fresh media 

twice a week. Primary cells were tested for mycoplasma with Mycoalert™ Mycoplasma 

Detection Kit (Lonza).  following manufacturer’s instructions.  

 

2.3.2 Cell line maintenance and acquired resistant sublines 

HS-SY-II (from RIKEN BioResource Centre, Kyoto, Japan), SYO-1 (obtained from Dr 

Chris Lord, Institute of Cancer Research, London, UK), MRC-5 (obtained from Dr Janet 

Shipley, Institute of Cancer Research, London, UK), NIH-3T3 (obtained from Dr Matilda 

Katan, University College London, London, UK) and PC9 (obtained from Dr Matilda 

Katan, University College London, London, UK) cells were cultured in DMEM 

supplemented with 1× penicillin/streptomycin and 10% FBS. SK-UT-1 and SK-UT-1b 

cells (obtained from Dr Priya Chudasama, German Cancer Research Centre, 

Heidelberg, Germany) were cultured in MEM (Gibco) supplemented with 1× 

penicillin/streptomycin and 10% FBS. Sheff-LMS-01 W1 and Sheff-LMS-01 WS 

(obtained from Dr Karen Sisley, University of Sheffield, Sheffield, UK) were cultured in 

RPMI-1640 supplemented with 1x penicillin/streptomycin and 10% FBS. ICR-SS-1, ICR-

LMS-1, ICR-LMS-4 and ICR-LMS-6 and SARC-393 cells were cultured in Y-media and 

SARC-323 cells were cultured on matrigel coated flasks in Y-media supplemented with 

10 ng/ml PDGF and 20 ng/ml bFGF. Cells were grown at 95% air:5% CO2 at 37 °C. 

Medium was replenished twice weekly and cells were cryopreserved in 10% DMSO in 
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FBS. STR profiling was conducted on all cell lines used and were compared to the 

CLASTR Cellosaurus STR database to confirm cell identity.  

Doxorubicin (Sigma Aldrich) was used to derive acquired resistance in SK-UT-1, SK-UT-

1b and ICR-LMS-1 cell lines. Cells were cultured in media initially at the inhibitory 

constant (IC50) value which was determined from colony formation or cell viability 

assays. Doxorubicin concentration was doubled once cell growth exceeded cell death, 

from 10 nM to 20 nM, 40 nM and finally resistant cells were maintained with 80 nM 

doxorubicin, replacing media and drug twice a week. Resistance was confirmed via cell 

viability assays. 

 

2.3.3 Spheroid and organoid cultures 

Spheroids were grown by seeding cells in 96 well ultra-low attachment U-bottom plates 

(Corning) at indicated densities in 100 µl of Y-media then spinning at 1000 rpm for 10 

minutes. Plates were incubated for 3 days, after which 100 µl of Y-media was added and 

100 µl replaced every 3-4 days thereafter. Spheroids were imaged and measured using 

EVOS m5000 microscope (Thermo Fisher Scientific). 

TM1244, TM219 and TM199 organoid cultures were generated from TM01244, 

TM00199 and TM00219 PDX models respectively which were purchased from the 

Jackson Laboratory. All other organoids were generated from PDX-models established 

in this study. For organoid cultures, cells pellets were taken directly after PDX tissue 

dissociation and suspended in Growth Factor Reduced Matrigel on ice. Single 40 µl 

droplets of the Matrigel-cell suspension were seeded onto 24 well plates and allowed to 

polymerise, inverted, at 37 ºC for 15-20 minutes. Once polymerised, droplets were 

surrounded with 500 µl of Y-media (with or without PDGF and bFGF) or lung organoid 

media (Table 2.2) and incubated at 37 ºC, replacing organoid media twice a week. 

Organoid cultures were imaged using EVOS m5000 microscope. Organoid cultures were 

cultured for 4 weeks initially and then subcultured 1:2-1:4 every 2 weeks by enzymatic 

and mechanical dissociation. To passage organoids, media was removed from Matrigel 

domes and PBS was added to wash. Matrigel domes were then dislodged from plates 

using a policeman cell scraper, collected and centrifuged at 300 xg for 5 minutes. PBS 

was removed and Matrigel-organoid pellets were resuspended in TrypLE™ Express 

Enzyme (1X), phenol red before incubating at 37 ºC for 10-20 minutes. Suspensions 

were visually inspected for dissociation of organoids as well as digestion of Matrigel and 

remaining cell clumps were dislodged via pipetting. Trypsin was inactivated by the 

addition of Y-media, followed by centrifuging at 300 xg for 5 minutes. Cell pellets were 
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resuspended in ice-cold Matrigel and Matrigel-cell suspensions were then seeded as 

domes onto 24 well plates to polymerise again.  

 

Media component Supplier Final concentration 

R-Spondin 1 Peprotech 500 ng/ml 

FGF 7 Peprotech 25 ng/ml 

FGF 10 Peprotech 100 ng/ml 

Noggin Peprotech 100 ng/ml 

A83-01 Tocris 500 nM 

Y-27632 LC laboratories 5 µM 

SB202190 Sigma 500 nM 

B27 supplement Gibco 1x 

N-Acetylcysteine Sigma 1.25 mM 

Nicotinamide Sigma 5 mM 

GlutaMax 100x Invitrogen 1x 

Hepes Invitrogen 10 mM 

Penicillin / 

Streptomycin 
ICR 1x 

Amphoceterin B 
ThermoFisher 

Scientific 
250ng/ml 

Advanced DMEM/F12 
ThermoFisher 

Scientific 
1x 

Table 2.2. NSCLC organoid media components. Media components with supplier and concentration. 

DMEM; Dulbecco’s modified Eagle medium FGF; fibroblast growth factor. 

 

2.4 Molecular biology 

2.4.1 SS18::SSX1 fusion PCR 

ICR-SS-1 and HS-SY-II cells were seeded into 6 well plates at a density of 350,000 

cells/well and incubated for 24 hours prior to RNA extraction. RNA was extracted from 

J000104314 PDX tissue, ICR-SS-1 and HS-SY-II cells using RNeasy mini and 

QIAshredder kits (Qiagen) following manufacturers instructions. DNA was degraded by 

RQ1 DNAse solution (Promega) before complementary DNA (cDNA) was synthesised 

using Superscript III kit (Invitrogen). HS-SY-II was used as a positive control for the 

SS18:SSX1 fusion (Sonobe et al. 1992). Polymerase chain reaction (PCR) mixtures 

were made with GoTaq DNA polymerase (Promega) containing either the common SS18 

forward primer (Sigma Aldrich) or one of SSX1, SSX2 or SSX4 reverse primers (Sigma 

Aldrich). β-actin (ACTB) primers were used as a positive control of cDNA synthesis. 

Primer sequences are provided in Table 2.3. .  
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PCR amplicon Forward Primer Reverse Primer 

SS18::SSX1 5′-AGACCAACACAGCCTGGACCAC-3′ 5′-ACACTCCCTTCGAATCATTTTCG-3′ 

SS18::SSX2 5′-AGACCAACACAGCCTGGACCAC-3′ 5′-GCACTTCCTCCGAATCATTTC-3′ 

SS18::SSX4 5′-AGACCAACACAGCCTGGACCAC-3′ 5′-GCACTTCCTTCAAACCATTTTCT-3′ 

ACTB 
5′-

GACAGGATGCAGAAGGAGATCAC-3′ 
5′-TGATCCACATCTGCTGGAAGGT-3′ 

Table 2.3. Primer sequences for amplification of SS18::SSX1, SS18::SSX2 or SS18::SSX4 

translocations as well as β-actin (ACTB). Forward and reverse primers from 5’ to 3’. 

 

Thermocycler conditions for the amplification of SS18::SSX or ACTB are described in 

Table 2.4-Table 2.5. PCR products were loaded onto 2% agarose (Invitrogen) gel 

stained with SYBR safe DNA gel stain (Invitrogen) or ethidium bromide (Sigma Aldrich) 

and digitally imaged using G-Box Chemi-XX6 (Syngene). PCR products of the predicted 

amplicon size of 108 bp were considered positive for the gene fusion. 

 

SS18::SSX 

PCR Step Time Temperature Comments 

Denaturation 7 min 95 °C   

Touchdown  

Amplification 
45 s 94 °C 10 cycles, reducing annealing 

temperature by 1 each cycle, from 66 

to 57 
  45 s 66 °C 

  1 min 30 s 72 °C 

Amplification 45 s 94 °C 

30 cycles   45 s 56 °C 

  1 min 30 s 72 °C 

Final Extension 5 min 72 °C   

Table 2.4. Thermocycler conditions for SS18:SSX1/2/4 amplification. Conditions listed for denaturation, 

touchdown amplification, amplification and final extension.  
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ATCB 

PCR Step Time Temperature Comments 

Denaturation 2 min 95 °C   

Amplification 15 s 95 °C 

40 cycles   15 s 60 °C 

  1 min  72 °C 

Final Extension 5 min 72 °C  

Table 2.5. Thermocycler conditions for ACTB amplification. Conditions listed for denaturation, 

touchdown amplification, amplification and final extension of β-actin (ACTB). 

 

2.4.2 Human vs mouse PCR 

DNA was extracted from ICR-SS-1, NIH-3T3, SK-UT-1, ICR-LMS-1, ICR-LMS-3, ICR-

LMS-4, ICR-LMS-5, ICR-LMS-6, SARC-323 and SARC-393 using DNease blood and 

tissue kit (Qiagen) following manufacturer’s instructions. NIH-3T3 was used as a mouse 

positive control and SK-UT-1 was used as a human positive control. PCR mixtures were 

made with GoTaq DNA polymerase (Promega) containing a human or mouse specific 

Prostaglandin E receptor 2 (PTGER2) forward primer (Sigma Aldrich) with a common 

reverse PTGER2 primer (Sigma Aldrich). Primer sequences are described in Table 2.6. 

 

PCR Amplicon Forward Primer Reverse Primer 

Human PTGER2 5′-GCTGCTTCTCATTGTCTCGG-3′ 5′-GCCAGGAGAATGAGGTGGTC-3′ 

Mouse PTGER2 5′-CCTGCTGCTTATCGTGGCTG-3′ 5′-GCCAGGAGAATGAGGTGGTC-3′ 

Table 2.6. Primer sequences for amplification of human and murine PTGER2. Forward and reverse 

primers from 5’ to 3’. PTGER2; Prostaglandin E Receptor 2. 

 

Thermocycler conditions used for both human and mouse PTGER2 amplification are 

described in Table 2.7. PCR products were loaded onto 1.5% agarose (Invitrogen) gel 

stained with SYBR safe DNA gel stain (Invitrogen) and digitally imaged using G-Box 

Chemi-XX6 (Syngene). PCR products of the predicted amplicon size of 189 bp were 

considered positive for human or mouse DNA depending on the primers used.  
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PTGER2 

PCR Step Time Temperature Comments 

Denaturation 5 min 98 °C   

Amplification 5 s 98 °C 

40 cycles   5 s 60 °C 

  20 s 72 °C 

Final Extension 1 min 72 °C   

Table 2.7. Thermocycler conditions for PTGER2 amplification. Conditions listed for denaturation, 

touchdown amplification, amplification and final extension of  Prostaglandin E Receptor 2 (PTGER2). 

 

2.4.3 Short tandem repeat profiling 

DNA was extracted from frozen PDX tissue or cell cultures using DNeasy blood and 

tissue kits (Qiagen), following the manufacturer’s instruction. Human Cell Line 

Authentication via short tandem repeat profiling was undertaken using the Eurofins 

Genomics cell cine authentication service. Percentage matches were calculated 

between PDX and cell cultures using the following equation: percentage match = number 

shared alleles/total number of alleles in the questioned profile. STR profiles of cell 

cultures were also used to calculate percentage matches to a database of cell line STR 

profiles via the CLASTR Cellosaurus STR similarity search tool (Robin, Capes-Davis, 

and Bairoch 2020).  

 

2.5 Cell viability assay 

For a 72 hour assay, cells were seeded in 96 well plates either at 2000 cells/well (SK-

UT-1, SK-UT-1 doxoR, SK-UT-1b, SK-UT-1b doxoR, SYO-1, HS-SY-II, ICR-LMS-1, ICR-

LMS-1 doxoR, ICR-LMS-4, ICR-LMS-6, SARC-323 and SARC-393) or 3000 cells/well 

(ICR-SS-1) for 24 hours prior to drug addition at indicated concentrations in triplicate. 

For cell viability assays, cells were seeded and drug were added in their respective 

growth media, described in section 2.3.2. After incubation for 72 hours cell viability was 

determined using CellTitre-Glo (Promega) following manufacturer’s instructions and data 

was generated with Victor X5 plate reader (PerkinElmer) or Spark plate reader (Tecan). 

Dose response curves were fitted with Graphpad-Prism software using four-parameter 

variable slope linear regression and IC50 values calculated based on the generated 
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response curve. Alternatively, for a 6 day treatment assay cells were seeded in 96 well 

plates at 1000 cells/well and incubated for 24 hours prior to drug treatment. Cells were 

then incubated for 72 hours after which media with respective drugs were replaced and 

incubated for a further 72 hours before cell viability assessment as above.  

For 3D Matrigel embedded cell viability assays, cells were dissociated from Matrigel 

droplets and passed through a 70 µm filter before resuspending in Matrigel and seeding 

at a density of 1000 cells per 10 ul Matrigel droplets per well. Plates were inverted and 

incubated at 37 °C for 20 minutes to allow Matrigel to solidify. Once solidified, Y-media 

was added on top of Matrigel domes and cells were cultured for 7 days before culture 

media was removed and Y-media with doxorubicin doses were added. After incubating 

for another 72 hours, cell viability was assessed as above.  

 

2.6 Small-molecule inhibitor screen 

For a 72 hours screen, cells were seeded in 96 well plates either at 2000 cells/well (SK-

UT-1, SK-UT-1 doxoR, SK-UT-1b, SK-UT-1b doxoR, SYO-1, HS-SY-II, ICR-LMS-1, ICR-

LMS-1 doxoR, ICR-LMS-4, ICR-LMS-6, SARC-323 and SARC-393) or 3000 cells/well 

(ICR-SS-1) for 24 hours prior to drug addition at 0.5 µM. Components of the small 

molecule inhibitor screen are listed in Table 2.8. After incubation for 72 hours cell viability 

was determined using CellTitre-Glo (Promega) following manufacturer’s instructions and 

data was generated with Victor X5 plate reader (PerkinElmer) or Spark plate reader 

(Tecan). Alternatively for a 6 day drug screen, cells were seeded in 96 well plates at a 

density of 1000 cells/well for 24 hours prior to drug addition at 0.5 µM. After incubation 

for 72 hours, media was removed and fresh media with small molecule inhibitors at 0.5 

µM were added prior to incubation for another 72 hours. Cell viability was then assessed 

as above. Data was clustered using Perseus software (version 1.6.13) (Tyanova et al. 

2016) with two-way Euclidean distance hierarchical clustering.  
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Inhibitor Primary Target Supplier 
Lenvatinib Broad Spectrum: RTKs LC Labs 
Sunitinib Broad Spectrum: RTKs LC Labs 

Pazopanib Broad Spectrum; RTKs LC Labs 
Ponatinib Broad spectrum; RTKs LC Labs 

Regorafenib Broad Spectrum: RTKs LC Labs 
Bosutinib Src, Abl LC Labs 
Dasatinib Abl, Src, c-Kit LC Labs 

Saracatinib Src Selleck Chemicals 
Ceritinib ALK LC Labs 
Crizotinib c-Met, ALK LC Labs 

NVP-TAE684 ALK Selleck Chemicals 
AZD9291 EGFR Selleck Chemicals 
EAI045 EGFR Selleck Chemicals 

Erlotinib EGFR LC Labs 
Gefitinib EGFR LC Labs 
Lapatinib EGFR, ErbB2 Selleck Chemicals 
Neratinib HER2, EGFR LC Labs 
BGJ398 FGFR1/2/3 Selleck Chemicals 

Linsitinib IGF1R LC Labs 
NVP-AEW541 IGF1R, InsR Selleck Chemicals 

Imatinib v-Abl, c-Kit, PDGFRα LC Labs 
Cediranib VEGFR LC Labs 
Foretinib HGFR, VEGFR LC Labs 
Sorafenib Raf-1, B-Raf, VEGFR2 LC Labs 

Vandetanib VEGFR2 LC Labs 
BI-2536 Plk1 Selleck Chemicals 
BX-795 PDK1 Sigma Aldrich 
BEZ235 PI3K, mTOR LC Labs 

Rapamycin mTOR LC Labs 
Binimetinib MEK1/2 LC Labs 
Trametinib MEK1/2 LC Labs 
Dabrafenib BRAFV600 Selleck Chemicals 
SB203580 p38 MAPK LC Labs 
SP600125 JNK LC Labs 

NVP-AUY922 HSP90 LC Labs 
AZD5363 Akt1/2/3 Selleck Chemicals 
MK2206 Akt1/2/3 Selleck Chemicals 

Momelotinib JAK1/2 Selleck Chemicals 
Niclosamide STAT3 Selleck Chemicals 

SH-4-54 STAT Selleck Chemicals 
Cilengitide Trifluoroacetate Integrin Selleck Chemicals 

Navitoclax Bcl-xL, Bcl-2, Bcl-w Selleck Chemicals 
Galunisertib TGFβ-R1 Selleck Chemicals 
Entrectinib TrkA/B/C, ROS1, ALK Selleck Chemicals 
GW441756 TrkA Selleck Chemicals 
BMS345541 IKK-1/2 Selleck Chemicals 

GSK126 EZH2 Methyltransferase Selleck Chemicals 
XAV-939 Tankyrase-1/2 Selleck Chemicals 
PF562271 FAK Selleck Chemicals 
TAE226 FAK Selleck Chemicals 
Alisertib Aurora A Selleck Chemicals 

JQ1 BET Bromodomain Selleck Chemicals 
LY2603618 Chk1 Selleck Chemicals 
MK-8776 Chk1 Selleck Chemicals 

Palbociclib CDK4/6 LC Labs 
Silmitasertib CK2 Selleck Chemicals 
Rucaparib PARP LC Labs 

Talazoparib PARP Selleck Chemicals 
Table 2.8. Small molecule inhibitor screen components. List of small molecule inhibitors, targets and 

suppliers. ADP; Adenosine diphosphate, ALK; Anaplastic lymphoma kinase, Bcl-2/x; B-cell lymphoma 
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2/extra large protein; Bcl-w; Bcl-2-like protein 2, Bcr; Breakpoint cluster region protein, BET; Bromo- and 

extra-terminal domain, CDK4/6; Cyclin-dependent kinase 4/6; Chk1; Checkpoint kinase 1, CK2; Casein 

kinase 2, EGFR; Epidermal growth factor, EZH2; Enhancer of zeste homolog 2, FAK; Focal adhesion kinase, 

FGFR(1/2/3); Fibroblast growth factor receptor (1/2/3), HER2; Human epidermal growth factor receptor 2, 

HGFR; Hepatocyte growth factor receptor, Hsp90; Heat shock protein 90, IGF1R; Insulin-like growth factor 

1 receptor, IKK(1/2); IκB kinase (1/2), InsR; Insulin receptor, JAK(1/2); Janus kinase (1/2), JNK(1/2/3); c-Jun 

N-terminal kinase (1/2/3), MAPK; Mitogen-activated protein kinase, MEK; Mitogen-activated protein kinase 

kinase, mTOR; Mechanistic target of rapamycin, N-terminal; Amino-terminal, NTRK(1/2/3); Neurotrophic 

tyrosine kinase receptor (1/2/3) PARP; Poly (ADP-ribose) polymerase, PDPK1; Phosphoinositide-dependent 

protein kinase 1, PI3K; Phosphoinositide 3-kinase, PLK1; Polo-like kinase 1, (B/C)-Raf; Rapidly accelerated 

fibrosarcoma, RTK; Receptor tyrosine kinase, STAT(3); Signal transducer and activator of transcription (3), 

TGFβR1; Transforming growth factor β receptor 1. 

 

2.7 Proliferation assay 

Cells were seeded into 8 black-walled 96 well plates (Greiner Bio-One) at a density of 

1000 cells/well. After 24 hours, one plate (day 1) was fixed by replacing the media with 

10% neutral-buffered formalin solution (Sigma Aldrich) and incubating at room 

temperature for 15 minutes. Fixed cells were washed three times with PBS and then 

stored at 4 °C in PBS. This protocol was repeated on consecutive plates at day 3, 4, 7, 

8, 10, 11 and 14. Media was replaced on plates twice a week. Fixed cells were stained 

with Hoescht 33342 (R&D Systems) for 10 minutes at 37 °C and were then washed three 

times with PBS. Stained cells were counted using Celigo Imaging Cell Cytometer 

(Nexcelcom BioScience). Cell count fold change was fitted to a Malthusian exponential 

growth curve to calculate doubling time using GraphPad Prism software (GraphPad). 

 

2.8 Colony formation assay 

Cells were seeded into 6 well plates at a density of 1000 cells/well (SK-UT-1), 2000 

cells/well (SK-UT-1b) or 10,000 cells/well (ICR-LMS-1 and ICR-LMS-4). After 24 hours 

cells were treated with compounds at the indicated concentrations for 10 days (SK-UT-

1 and SK-UT-1b) or 14 days (ICR-LMS-1 and ICR-LMS-4). Media with compounds were 

replaced twice a week and after 10 or 14 days, cells were fixed with Carnoy’s solution 

(1:3 acetic acid:methanol) for 5 minutes. Fixed cells were stained with 1% crystal violet 

solution for 5 minutes before washing under running water. Plates were imaged using G-

Box Chemi-XX6 (Syngene). Colony density was quantified using ImageJ software 

(National Institutes of Health).  
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2.9 Immunoblotting 

To prepare lysates, indicated cells were seeded in 6-well plates at a density to reach 

~80% confluence after 24 hours. Drugs were added to the cells at defined timepoints or 

left untreated. 24 hours after seeding, cells were lysed in radioimmunoprecipitation assay 

(RIPA) lysis buffer (50 mM Tris.Cl pH 7.6, 150 mM NaCl, 1% IGEPAL CA-630 (NP-40) 

(Sigma Aldrich), 0.1% sodium dodecyl sulfate (SDS) (Sigma Aldrich), and 0.5% sodium 

deoxycholate (Sigma Aldrich)), supplemented with HaltTM protease and phosphatase 

inhibitors and EDTA #78442 (ThermoFisher Scientific) on ice. Lysates were then 

centrifuged at 15000 xg for 10 minutes at 4 ºC to remove cell debris. Protein 

concentration was determined using Pierce™ Bicinchoninic acid (BCA) Protein Assay 

Kit (ThermoFisher Scientific) following manufacturer’s instructions. Lysate samples were 

loaded onto NuPage Novel 4-12% Bis-Tris gels (Invitrogen), followed by dry transfer to 

iBlot polyvinylidene fluoride (PVDF) membranes (Invitrogen) following using the iBlot 

transfer system. Membranes were blocked for 1 hour with 5% dried skimmed milk 

(Marvel) for pan-protein blots or 5% BSA (Sigma Aldrich) for phosphoprotein blots in 1x 

tris-buffered saline (TBS) with 0.1% Tween 20 (TBST) (Sigma Aldrich). Primary 

antibodies were added to membranes diluted in respective blocking buffers and left at 4 

°C overnight under constant agitation. Primary antibodies were then removed and 

membranes were washed three times for 10 minutes each with TBST. Secondary 

horseradish peroxidase-conjugated antibodies diluted in 5% dried skimmed milk in TBST 

were then added to membranes and incubated for 1 hour in the dark at room temperature 

while under constant agitation. Antibodies were removed and the membranes were 

washed again three times for 10 minutes each with TBST. Primary and secondary 

antibodies used are described in (Table 2.9). Parameters for antibody concentrations 

were already established in the research team. Membranes were treated with 

SuperSignal West Pico PLUS chemiluminescence substrate (Thermo Fisher Scientific) 

for 5 minutes and then were imaged using G-Box Chemi-XX6 (Syngene).  
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Antibody Dilution Supplier 

Primary antibodies 

Anti-pSTAT3 (Y705) D3A7 (Rabbit) 1:1000 Cell Signalling Technology 
(#9145) 

Anti-STAT3α D1A5 (Rabbit) 1:1000 Cell Signalling Technology 
(#8768) 

Anti-phospho-Src family (Y416) 
(Rabbit) 1:1000 Cell Signalling Technology 

(#2101) 

Anti-Src (Rabbit) 1:1000 Cell Signalling Technology 
(#2108) 

Anti-phospho-Akt (S473) 193H12 
(Rabbit) 1:1000 

Cell Signalling Technology 
(#4058) 

Anti-Akt (pan) C67E7 (Rabbit) 1:1000 Cell Signalling Technology 
(#4691) 

Anti-phospho-p44/42 MAPK 
(ERK1/2) (T202/Y204) D13.14.4E 

(Rabbit) 
1:1000 Cell Signalling Technology 

(#4370) 

Anti-p44/42 MAPK (ERK1/2) 137F5 
(Rabbit) 1:1000 

Cell Signalling Technology 
(#4695) 

Anti-PTEN 138G6 (Rabbit) 1:1000 Cell Signalling Technology 
(#9559) 

Anti-phospho-p70 S6 Kinase (T389) 
(Rabbit) 1:250 Cell Signalling Technology 

(#9205) 

Anti-p70 S6 Kinase (Rabbit) 1:1000 Cell Signalling Technology 
(#9202) 

Anti-Actin, α-Smooth Muscle 
antibody 1A4 (Mouse) 

1:1000 Sigma Aldrich (#A5228) 

Anti-α-tubulin (Mouse) 1:5000 Sigma Aldrich (#T5168) 

Secondary antibodies 

Anti-Rabbit HRP-linked antibody 
Total protein 1:5000 Cell Signalling Technology 

(#7074) 
Phosphoprotein 1:2000 

Anti-Mouse HRP-linked antibody 1:5000 SignalChem (#G32-62G-1000) 

Table 2.9. Primary and secondary antibodies used for immunoblotting. List of antibodies with dilution 

used and supplier. ERK1/2; extracellular signal-regulated kinase 1/2, HRP; horseradish peroxidase, MAPK; 

mitogen-activated protein kinase, PTEN; phosphatase and tensin homolog, p70S6K; P70 ribosomal protein 

S6 kinase, STAT3; Signal transducers and activators of transcription 3. 

 

2.10 Mass spectrometry proteomics 

2.10.1 FFPE protein extraction 

First, a H&E stain was generated for each FFPE block and slides were marked up by 

clinical fellows in the lab. Blocks with <75% tumour content were macrodisected. 20 µm 

tissue sections were cut from FFPE blocks and sections were deparaffinised by washing 

three times in xylene. Samples were rehydrated by washing in decreasing ethanol 

concentration gradients (100%, 96%, 70%) and left to air-dry. Dried samples were then 

homogenised in lysis buffer (0.1M Tris-HCL pH 8.8, 0.5% (w/v) sodium deoxycholate, 
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0.35% (w/v) sodium lauryl sulphate) (Sigma Aldrich) using a LabGen700 homogeniser 

(ColeParmer) with three 30 second pulses, followed sonicating on ice for 10 minutes and 

heading at 95 °C for 1 hour in order to reverse formalin crosslinks. Lysis was conducted 

by shaking at 750 rpm at 80 °C for 2 hours. Samples were then centrifuged at 14,000 

rpm at 4 °C and the supernatants were collected. Protein concentration was measured 

by BCA assay (Pierce). Detergent removal was conducted by filter-aided sample 

preparation (FASP) with multiple washes with 8 M urea in Amicon-Ultra 4 (Merk) 

centrifugal flter units. Samples were transferred to Amicon-Ultra 0.5 (Merk) filters and 

reduced with 10 mM dithiothreitol and alkylated with 55 mM iodoacetamide. Samples 

were then washed with 100nM ammonium bicarbonate and were then digested with 

trypsin (Promega) (1 µg per 100 µg starting material) overnight at 37 °C. Samples were 

centriguged three times with 100mM ammonium bicarbonate and desalted in C18 

SepPak columns (Waters) and then dried in a SpeedVac (Thermo Fischer Scientific). 

 

2.10.2 Cell lysate protein extraction 

ICR-SS-1, HS-SY-II, SYO-1, SARC-369, ICR-LMS-1, ICR-LMS-1 doxoR, SARC-323, 

ICR-LMS-3, SARC-401, ICR-LMS-4, SARC-409, ICR-LMS-6, SARC-393, SK-UT-1, SK-

UT-1 doxoR, SK-UT-1b, SK-UT-1b doxoR, Sheffield LMS-01 WS and Sheffield LMS-01 

W1 were seeded into T25 or T75 culture flasks and incubated for 72 hours to reach 80% 

confluence. Cells were lysed with 8 M urea (Sigma Aldrich) on ice. Protein quantification 

was conducted using Pierce BCA assay kit (Thermo Fisher Scientific) following 

manufacturer’s instructions. For each sample 40 µg of total protein was treated with 10 

mM of dithiothreitol and incubated at 56 °C for 40 minutes. Samples were treated with 

55 mM idoacetamide and incubated at 25 °C for 30 min in the dark. After diluting to a 

final concentration of 2M urea and 0.1 ammonium bicarbonate, samples were treated 

with 0.4 g trypsin and incubated at 37 °C overnight. The digest was acidified to a pH of 

<4 with trifluoroacetic acid, desalted using Sep-Pak C18 Plus cartridge. Peptide 

estimation was undertaken using Pierce BCA assay kit with digested BSA as the 

standard curve. Samples were then dried in a SpeedVac.  

 

2.10.3 SWATH mass spectrometry 

Dried samples prepared in section 2.10.1 and 2.10.2 were later resuspended in buffer A 

(2% acetonitrile (Thermo Fisher Scientific) and 0.1% formic acid (Thermo Fisher 

Scientific)) supplemented with iRT peptides (Biognosys AG) and were then analysed in 
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an Agilent 1260 HPLC system coupled to a TripleTOF 5600+ mass spectrometer with 

NanoSource III (SCIEX). Sequential window acquisition of all theoretical mass spectra 

(SWATH) mass spectrometry data was acquired using a total of 2 µg of peptide per 

sample which was loaded onto a trap column packed with ReproSil Pur C18 AQ (120 Å, 

3 µM) beads. A linear gradient of 2-40% of buffer B (98% acetonitrile and 0.1% formic 

acid) over 90 minutes and a flow rate of 250nl/minute was used. MS1 scans were 

acquired with a mass range of m/z 100-1500 (50 ms accumulation time) in positive ion 

mode. Per elution peak, 8 points were used to calculate the isolation windows for 58 

precursor isolation windows, each with a fixed mass range of m/z 380-110 with a 1 Da 

overlap. MS2 scans were acquired with a mass range of m/z 100-1500 (50 ms 

accumulation time). 

All SWATH data were analysed against a publicly available pan-human library using DIA-

NN (version 1.8) (Demichev et al. 2020; Rosenberger et al. 2014). Raw data was 

processed using “robust LC (high precision)” mode with enabled “RT-dependent” cross-

run normalisation. Mass accuracy of MS1, MS2 as well as scan window radius were all 

set to an average value for comparability. The spectral library was refined using the 

dataset with 1% FDR in order to generate an in-silico library, which was used to 

reanalyse the data. The subsequent report was filtered at a q-value of 0.01 for both 

precursor and proteins 

Quantified protein data was log2 transformed, proteins with <70% values in analysed 

dataset were removed and missing values were imputed using default settings. Data was 

median normalised using Perseus software (version 1.6.13) (Tyanova et al. 2016). The 

processed dataset was visualised using two-way unsupervised clustering based on 

Pearson’s correlation coefficient. Log2 transformed, normalised datasets from patient 

tissues versus PDX models, PDX models versus PDX-derived cell cultures, PDX-derived 

cell cultures versus LMS cell lines and parental vs doxoR cells were analysed by 

significant analysis of microarrays (SAM) using the samR package (Tusher, Tibshirani, 

and Chu 2001). The resulting dataset was processed by samR using a delta score 

threshold of 0.77 to reach 1% FDR. Positively and negatively regulated proteins were 

then subjected to over-representation analysis using the online tool g:Profiler using 

Benjamini–Hochberg FDR method with 0.1 FDR threshold and Hallmark gene set 

databases were downloaded from MSigDB (Raudvere et al. 2019; Liberzon et al. 2015). 
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Chapter 3 - Establishment of a panel of 

LMS PDX models 
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3.1 Introduction 

The most common patient-derived model used in pre-clinical studies is the mouse 

xenograft due to their ability to mimic patient tumours in terms of histology as well as 

genetics and are often used to verify that candidate therapies are active in vivo before 

clinical assessment (Koga and Ochiai 2019; Risbridger, Lawrence, and Taylor 2020; 

Abdolahi et al. 2022). Additionally, patient-derived xenografts (PDX) models are able to 

recapitulate both inter-tumoural and intra-tumoural heterogeneity, thus establishing a 

well characterised panel of PDX models is a vital part of pre-clinical modelling of any 

solid cancer type in order to accurately capture the diversity of the disease (Sun et al. 

2021). Due to the extreme rarity and heterogeneity of STS, recruiting enough patients 

for large-scale, subtype-specific clinical trials is challenging, placing further importance 

on robust pre-clinical models in order to more accurately identify potential drug 

candidates. 

Unfortunately, there is a lack of PDX models derived from STS due to the rarity of the 

disease, restricting the diversity of models which can be utilised for drug testing, and 

research into mechanisms of drug response or resistance. The Jackson laboratory, a 

repository of commercially available PDX models lists only 44 STS PDX models in total 

spanning 14 subtypes and including sarcomas not otherwise specified. Only 3 non-

uterine and one uterine LMS PDX models are listed,, which cannot fully capture the wide 

variety of anatomical location, histological variant, and molecular heterogeneity of the 

disease, highlighting the necessity to generate and characterise further LMS PDX 

models (The Jackson Laboratory 2022). 

While several studies have recently reported the successful establishment of LMS PDX 

models, the majority of these have done so via inoculation of surgical resection tissue 

samples and it remains to be seen if LMS biopsy samples, which often have lower 

amount or quality of tissue can generate PDX models with the same efficiency (Cornillie 

et al. 2019; Hemming et al. 2022; Zhiying Zhang et al. 2019; Schoffski et al. 2019; Choi 

et al. 2021). The benefits of using biopsy samples for a patient derived model pipeline is 

that biopsy samples are routinely collected from patients, while not all patients undergo 

surgical excision (A. Gronchi et al. 2021). Thus, biopsy samples are more frequently 

available and additionally biopsies can be taken at multiple timepoints from a patient, for 

example during a clinical trial before and after treatment and this can be done far more 

frequently than surgical excision. Therefore, generating patient derived models from 

biopsies has the potential to create multiple different patient matched models each 
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representing a patient’s cancer at a different stages of progression or therapy treatment 

(Guillen et al. 2022) 

To that end, this chapter describes the generation of 18 PDX models including 13 LMS 

models from patient biopsy samples in order to expand the current repertoire of clinically 

relevant pre-clinical models for STS. Once generated these models were characterised 

by histological, short tandem repeat (STR) and proteomic analysis, comparing these to 

1. the parental tumours of origin to confirm these models retain their clinical relevance 

and 2. between initial and subsequent passages to elucidate the degree of which these 

models can maintain tumour phenotype over time and to check if clonal selection or 

genetic drift is occurring in these models.  

 

3.2 Patient cohort and tumour engraftment 

Two clinical trial studies had given me a unique opportunity to develop new STS PDX 

models from paired pre- and post/on-treatment biopsy tissue. GEMMK is a phase I/II 

study, observing the safety, tolerability and preliminary response of gemcitabine and 

pembrolizumab combination treatment for advanced LMS or UPS (NCT03123276). 

APPLE is a phase I trial combining avelumab and radiotherapy on metastatic STS 

patients (NCT03602833). In order to establish and characterise PDX models from the 

patient biopsy samples, a pipeline was created and implemented on these GEMMK and 

APPLE biopsy samples, a schematic of which is presented in Figure 3.1.  
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Figure 3.1. PDX establishment pipeline. Pre- and post-treatment biopsies from the GEMMK or APPLE 

clinical trial were engrafted into P0 immunocompromised mice which were subsequently passaged to P1 

and P2 mice in order to establish the PDX model. Growth rates were measured to assess model stability 

with green and red representing different tumour growth rates and FFPE, snap frozen and cryopreserved 

tissue was stored for each tumour passage. Figure was created using BioRender. FFPE; formalin fixed 

paraffin embedded, P0; passage 0, P1; passage 1, P2; passage 2.  

 

Over the course of three years, 43 biopsy samples in total were collected at baseline 

timepoints from both trials and at post-cycle 3 from GEMMK or post-radiotherapy (RT) 

from APPLE spanning 6 subtypes (Table 3.1).  From GEMMK, 18 biopsies were taken 

at baseline and 12 were post- or on-treatment biopsies while for APPLE 7 biopsies were 

taken at baseline and 5 were taken post-treatment. The majority of biopsy samples were 

LMS in subtype (24/43) followed by UPS (12/43), ASPS (2/43), epithelioid sarcoma (ES) 

(2/43) clear cell sarcoma (CCS) (1/43), spindle cell sarcoma (SCS) (1/43) and non-

tumour (1/43) (Table 3.1Table 3.2). Additionally, 30 of these biopsies were patient 

matched, making 15 pairs of pre- or post-treatment samples. Upon collection, each 

biopsy tissue was engrafted subcutaneously into immunocompromised mice 

immediately or was viably frozen if immediate engraftment was not possible. One biopsy 

was engrafted but subsequent histopathological analysis of the biopsy tissue revealed 

that no tumour was detectable in the sample and therefore 42 tumour-containing biopsy 

samples were engrafted in total.  
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Characteristic Samples (n) % of total 

Total 42  

Sex 

Female 30 71% 

Male 12 29% 

Age 

<60 32 76% 

≥60 10 24% 

   

Trial 

GEMMK 30 71% 

APPLE 12 29% 

Subtypes 

LMS 24 57% 

UPS 12 29% 

ES 2 5% 

ASPS 2 5% 

CCS 1 2% 

SCS 1 2% 

Anatomical location  

Peritoneum 4 10% 

Gluteus 1 2% 

Occipital node 1 2% 

Neck 1 2% 

Lung 16 38% 

Pelvis 2 5% 

Abdominal wall 2 5% 

Retroperitoneum 2 5% 

Chest wall 1 2% 

Leg 2 5% 

Uterus 1 2% 

Liver 4 10% 

Axilla 1 2% 

Arm 4 10% 

Treatment history 

Treatment naive 13 31% 

Treated 29 69% 

Trial timepoint 

Pre-treatment 24 57% 

Post/on-treatment 18 43% 

 

Table 3.1. Patient biopsy demographics. Overview of patient specimen characteristics used in this study 

including sex, age, subtype, anatomical location of biopsy, treatment history and trial timepoint. ASPS; 

Alveolar Soft Part Sarcoma, CCS; Clear Cell Sarcoma, ES; Epithelioid Sarcoma, LMS; Leiomyosarcoma, 

ns; not significant, SCS; Spindle Cell Sarcoma, UPS; Undifferentiated Pleomorphic Sarcoma. 
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PDX 
engraft ID 

Timepoint Diagnosis 
Site of 

biopsy/resection 

Biopsy 
Grade 

Primary site if 
known 

Treatment history Trial 

SARC-298 Baseline biopsy 
uLMS 

Peritoneum N/A 
Uterus 

None prior to biopsy 

GEMMK 

SARC-314 Post-cycle 3 biopsy Peritoneum G3 First-line GEMMK 

SARC-323 Baseline biopsy LMS Left gluteus G3 Breast 
Epirubicin+Cyclophosphamide in the adjuvant setting after surgery to the primary 

tumour; no treatment from diagnosis of metastatic disease to trial entry 

SARC-322 Baseline biopsy 
LMS 

Left occipital node N/A 
IVC 

Dox-Ifosfamide started; due to renal impairment Dox single agent from  cycle 3 to 6 

SARC-356 Post-cycle 3 biopsy Neck N/A Second-line GEMMK 

SARC-355 Post-cycle 3 biopsy UPS Left lung N/A Heart 
Caelyx + Ifosfamide in the adjuvant setting in; no treatment from diagnosis of metastatic 

disease to trial entry; on first-line GEMMK at the time of biopsy 

SARC-369 Baseline biopsy 
uLMS 

Pelvic G3 
Uterus 

Doxorubicin (3 cycles) 

SARC-383 Post-cycle 3 biopsy Pelvic N/A Second-line GEMMK 

SARC-376 Baseline biopsy 
uLMS 

Abdominal wall G2 
Uterus 

Doxorubicin (3 cycles) 

SARC-384 Post-cycle 3 biopsy Abdominal wall G2 Second-line GEMMK 

SARC-385 Baseline biopsy UPS Right lung N/A Hamstring Doxorubicin-Ifosfamide (2 cycles) followed by single agent Doxorubicin (2 cycles)  

SARC-389 Baseline biopsy 
LMS 

RP G2 
RP 

Doxorubicin (2 cycles) 

SARC-400 Post-cycle 3 biopsy RP N/A Second-line GEMMK 

SARC-387 Baseline biopsy UPS Left anterior chest wall G3 Posterior chest wall Liposomal doxorucibin (5 cycles) 

SARC-395 Baseline biopsy 
UPS 

Upper leg G3 
Thigh 

Liposomal doxorucibin (3 cycles) 

SARC-418 Post-cycle 3 biopsy Upper leg G3 Second-line GEMMK 

SARC-397 Baseline biopsy uLMS Uterus G3 Uterus No prior treatments 

SARC-396 Baseline biopsy 
LMS 

Liver N/A 
RP 

No prior treatments 

SARC-411 Post-cycle 3 biopsy Left axilla G1 First-line GEMMK 

SARC-401 Baseline biopsy uLMS Liver G3 Uterus No prior treatments 

SARC-403 Biopsy - no tumour  Liver    

SARC-404 Baseline biopsy LMS Liver N/A Not clear Doxorubicin first-line 

SARC-406 Baseline biopsy 
UPS 

Lung N/A 
Lower leg 

No prior treatments 

SARC-420 Post-cycle 3 biopsy Lung N/A First-line GEMMK 

SARC-407 Baseline biopsy 
LMS 

Peritoneum N/A 
Stomach 

No prior treatments 

SARC-409 Post-cycle 3 biopsy Peritoneum N/A First-line GEMMK 

SARC-414 Baseline biopsy 
LMS 

Right forearm N/A 
IVC 

No prior treatments 

SARC-416 Post-cycle 3 biopsy Right forearm N/A First-line GEMMK 

SARC-417 Baseline biopsy LMS Liver N/A IVC Cyclophosphamide 

SARC-419 Baseline biopsy 
UPS 

Right arm G3 
Forearm 

No prior treatments 

SARC-426 Post-cycle 3 biopsy Right arm G3 First-line GEMMK 
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SARC-258 Week 7 biopsy UPS Lung G3 Lower lip No prior treatments 

APPLE 

SARC-280 Baseline biopsy CCS Lung N/A Right knee Pazopanib, gemcitabine-docetaxel 

SARC-289 Baseline biopsy 
UPS 

Lung N/A 
Right shoulder 

Treatment naïve 

SARC-304 Post-RT biopsy Lung N/A Post-RT 

SARC-340 Baseline biopsy 
ES 

Lung G2 
Left foot 

Treatment naïve 

SARC-359 Post-RT biopsy Lung G1 Post-RT 

SARC-393 Post-RT biopsy uLMS Lung N/A Uterus Post-RT 

SARC-391 Baseline biopsy 
uLMS 

Lung N/A 
Uterus 

Treatment naïve 

SARC-402 Post-RT biopsy Lung N/A Post-RT 

SARC-405 Baseline biopsy 
ASPS 

Lung N/A 
Left thigh 

Cediranib 

SARC-421 Post-RT biopsy Lung N/A Post-RT 

SARC-431 Baseline biopsy SCS Lung G3 Left thigh Treatment naïve 

 

Table 3.2. Biopsy tissue and clinical information. All biopsy tissues which were engrafted to attempt PDX establishment from GEMMK or APPLE clinical trials including 

background information on  trial timepoint, diagnosis, biopsy site, biopsy grade, primary tumour site if known, prior treatment history and trial enrolment.  ASPS; Alveolar Soft 

Part Sarcoma, CCS; Clear Cell Sarcoma, ES; Epithelioid Sarcoma, G1; Grade 1, G2; Grade 2, G3; Grade 3, LMS; Leiomyosarcoma, N/A; Not Available, RP; Retroperitoneum, 

RT; Radiotherapy, IVC; Inferior Vena Cava, SCS; Spindle Cell Sarcoma, uLMS; uterine Leiomyosarcoma, UPS; Undifferentiated Pleomorphic Sarcoma. 
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3.3 PDX model establishment 

From specimens from these two trials, PDX tumour growth was observed in 18 out of 42 

engrafted biopsies, giving a biopsy take rate of 43% (Table 3.3). Biopsy take rates were 

calculated based on the number of biopsies which began to show exponential growth, 

thus biopsy samples which demonstrated initial tumour growth in mice followed by 

regression or showed inconsistent growth patterns were not considered to have taken. 

Out of 18 successfully engrafted biopsies 13 were from LMS patients, 4 were from UPS 

patients and 1 was from a SCS patient giving a subtype specific establishment rate of 

54%, 33% and 100% for LMS, UPS and SCS biopsies respectively (Table 3.3). As the 

lung is a common site of metastasis, a large proportion of biopsies (37%) were taken 

from the lung although only 25% of these biopsies demonstrated successful engraftment. 

Meanwhile both biopsies taken from retroperitoneal tumours were successfully 

engrafted. When taking into account treatment history a successful engraftment rate of 

38% was observed from biopsies of treatment naïve patients while 45% of biopsies taken 

from previously treated patients showed growth in vivo. When considering trial timepoint 

at which biopsy was obtained, 50% of baseline biopsies and 33% of post- or on-treatment 

biopsies were successfully engrafted. However, Chi-squared and Fisher’s exact testing 

of these variables showed that sex, age, subtype, anatomical location, treatment history 

as well as trial timepoint had no statistically significant impact on biopsy engraftment 

success rate (Table 3.3). To assess whether these PDX models are suitable for 

biobanking, tissue from each model was cryopreserved for later thawing and engrafting. 

All 18 models demonstrated the ability to continue in vivo growth from cryopreserved 

tissue and therefore can be considered as a biobank of viable PDX tumours.  
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Characteristic Samples (n) Engraftment rate P-value (significance) 

Total 42 43% (18)  

Sex 

Female 30 47% (14) 
0.5059 (ns) 

Male 12 33% (4) 

Age 

<60 32 41% (13) 
0.7201 (ns) 

≥60 10 50% (5) 

Subtype 

LMS 24 54% (13) 

0.2374 (ns) 

UPS 12 33% (4) 

ES 2 0% 

ASPS 2 0% 

CCS 1 0% 

SCS 1 100% (1) 

Anatomical location of biopsy 

Peritoneum 4 50% (2) 

0.4955 (ns) 

Gluteus 1 100% (1) 

Occipital node 1 100% (1) 

Neck 1 100% (1) 

Lung 16 25% (4) 

Pelvis 2 50% (1) 

Abdominal wall 2 50% (1) 

Retroperitoneum 2 100% (2) 

Chest wall 1 100% (1) 

Leg 2 50% (1) 

Uterus 1 0% (0) 

Liver 4 25% (1) 

Axilla 1 0% (0) 

Arm 4 50% (2) 

Treatment history 

Treatment naive 13 38% (5) 
0.7482 (ns) 

Treated 29 45% (13) 

Trial timepoint 

Pre-treatment 24 50% (12) 
0.3530 (ns) 

Post/on-treatment 18 33% (6) 

 

Table 3.3. Tumour biopsy engraftment success rate. Number of biopsy samples which were successfully 

engrafted (i.e. demonstrated at least initial in vivo growth) considering sex, age, subtype, anatomical location 

of biopsy, treatment history and trial timepoint. p-values were calculated using Chi-squared or Fisher's exact 

test where P-value < 0.05 indicates significance. ASPS; Alveolar Soft Part Sarcoma, CCS; Clear Cell 

Sarcoma, ES; Epithelioid Sarcoma, LMS; Leiomyosarcoma, ns; not significant, SCS; Spindle Cell Sarcoma, 

UPS; Undifferentiated Pleomorphic Sarcoma. 
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Due to the large window of time for patient enrolment as well as variability of PDX tumour 

lag phase and growth rates, not all PDX models were able to be passaged twice at the 

time of this report, however failure of a PDX tumour to continue growing after passaging 

into the next generation was only observed in two of the models, indicating that once 

biopsy engraftment is successful these PDX models maintain tumour growth (Figure 

3.2). Out of 18 PDX models, 12 had to be passaged via inoculation of dissociated cells 

from PDX tissue at least once instead of direct passage of tumour pieces due to 

measures put in place by the Biological Services Unit in order to minimise risk of C.Bovis 

infection which was detected in several mice in the unit (Figure 3.2). C.Bovis does not 

infect human cells and therefore dissociated cell inoculation was used to continue the 

growth of the patient-derived tumour cells while removing potentially contaminated 

stroma. Of the 12 inoculated PDX lines 10 were able to re-establish tumours after 

inoculation with cells while only two models showed no tumour growth after inoculation 

of PDX cells. One of these was from a passage 0 (P0) PDX tumour and the other was 

from a passage 1 (P1) PDX tumour but both were LMS models (SARC-376 and SARC-

389 respectively). Taking both tumour passage and cell inoculation into account 94% 

(17/18) of PDXs were successfully passaged from P0 to P1 and 92% of PDX models 

passaged from P1 to passage 2 (P2) continued to grow (12/13). Therefore, in total 12 

PDX models were grown to P2 and can be considered fully established, giving a full 

establishment rate from the total number of biopsies at 29% (12/42). Fully established 

PDX models included seven LMS PDX models (two of which are uterine LMS), four UPS 

models and one SCS model (Table 3.4).  

14 of the successfully engrafted STS models were from patients within the GEMMK trial, 

and four derived from the APPLE trial (Table 3.4). Five patient matched pre- and post-

treatment biopsy pairs were successfully engrafted: SARC-322 & SARC-356, SARC-389 

& SARC-400, SARC-407 & SARC-409, SARC-414 and SARC-416 and SARC-289 & 

SARC-304. Of the successfully engrafted biopsies, 12 were from baseline biopsies while 

the remaining 6 were from post-cycle 3 or post-RT biopsies (SARC-356, SARC-400, 

SARC-409, SARC-416, SARC-304 and SARC-393). Only one PDX model was 

generated from a post-treatment biopsy where the corresponding baseline biopsy did not 

establish a tumour (SARC-393).  
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Figure 3.2. Overview of PDX engraftment rates for each passage. 42 tumour containing biopsies were 

engrafted in total of which a total of 18 were considered successful (i.e. showed in vivo growth). Tumours 

were passaged once to P1 either by direct engraftment or by dissociated cell inoculation. P1 tumours were 

then passaged again to P2 either by direct engraftment or by dissociated cell inoculation. x/n indicates the 

number n of PDX lines which were passaged via each method and the number x which successfully grew 

after passaging. 12 PDXs which continued to grow at P2 were considered fully established. Figure was 

created using BioRender. PDX; Patient-Derived Xenografts, P0; Passage 0, P1; Passage 1, P2; Passage 

2.  

 

The growth of these PDX models were monitored closely in order to determine growth 

kinetics and these tumour measurements were fitted to an exponential growth equation 

in order to determine the variation of doubling time both between passages of the same 

model and between different models (Table 3.4) (Figure 3.3-Figure 3.4). Figure 3.3 

shows the growth curves of PDX models which were passaged only via serial tumour 

engraftment. For instance, SARC-369 displayed a mean tumour doubling time of 

approximately 18 days upon initial engraftment (P0) which was also consistent with P2 

tumour growth rates, although P1 SARC-369 tumours displayed a higher doubling time 

(Figure 3.3). Other established PDX lines which were passaged only via engraftment 

(SARC-409, SARC-414, SARC-416 and SARC-431) showed similar doubling times 

across passages or decreasing doubling times with each successive passage indicating 

stabilisation of growth kinetics and adaption to in vivo growth (Figure 3.3).  
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PDX engraft ID Timepoint Subtype Site of biopsy/resection Biopsy grade 
Primary site if 

known 
Treatment history 

Passage 
limit 

Tumour 
doubling time 

(days) 

GEMMK 

SARC-323 Baseline biopsy LMS Left gluteus G3 Breast 
Epirubicin+Cyclophosphamide in the adjuvant setting after 

surgery to the primary tumour; no treatment from diagnosis of 
metastatic disease to trial entry 

>P2 23.00 

SARC-322 Baseline biopsy 
LMS 

Left occipital node N/A 
IVC 

Dox-Ifosfamide started; due to renal impairment Dox single agent 
from  cycle 3 to 6 

>P2 18.07 

SARC-356 Post-cycle 3 biopsy Neck N/A Second-line GEMMK >P1  

SARC-369 Baseline biopsy uLMS Pelvic G3 Uterus Doxorubicin (3 cycles) >P3 17.80 

SARC-376 Baseline biopsy uLMS Abdominal wall G2 Uterus Doxorubicin (3 cycles) P1  

SARC-389 Baseline biopsy 
LMS 

RP G2 
RP 

Doxorubicin (2 cycles) P0  

SARC-400 Post-cycle 3 biopsy RP N/A Second-line GEMMK >P1  

SARC-387 Baseline biopsy UPS Left anterior chest wall G3 Posterior chest wall Liposomal doxorucibin (5 cycles) >P2 6.55 

SARC-395 Baseline biopsy UPS Upper leg G3 Thigh Liposomal doxorucibin (3 cycles) >P2 30.10 

SARC-401 Baseline biopsy uLMS Liver G3 Uterus No prior treatments >P2 9.85 

SARC-407 Baseline biopsy 
LMS 

Peritoneum N/A 
Stomach 

No prior treatments >P1  

SARC-409 Post-cycle 3 biopsy Peritoneum N/A First-line GEMMK >P2 33.49 

SARC-414 Baseline biopsy 
LMS 

Right forearm N/A 
IVC 

No prior treatments >P2 17.50 

SARC-416 Post-cycle 3 biopsy Right forearm N/A First-line GEMMK >P2 17.18 

APPLE 

SARC-289 Baseline biopsy 
UPS 

Lung N/A 
Right shoulder 

Treatment naïve >P2 16.18 

SARC-304 Post-RT biopsy Lung N/A Post-RT >P2 13.22 

SARC-393 Post-RT biopsy uLMS Lung N/A Uterus Post-RT >P1  

SARC-431 Baseline biopsy SCS Lung G3 Left thigh Treatment naïve >P2 9.02 

 

Table 3.4. Overview of successfully engrafted biopsies. All PDX models which were successfully engrafted (i.e. demonstrated initial growth in vivo) with respective biopsy 

information including trial timepoint , subtype, anatomical location, tumour grade at biopsy, primary site, treatment history. The highest reached PDX passage number and mean 

doubling times of P2 models are included. G2; Grade 2, G3; Grade 3, LMS; Leiomyosarcoma, N/A; Not Available, P0; Passage 0, P1; Passage 1, P2; Passage 2, RP; 

Retroperitoneum, RT; Radiotherapy, IVC; Inferior Vena Cava, SCS; Spindle Cell Sarcoma, uLMS; uterine Leiomyosarcoma, UPS; Undifferentiated Pleomorphic Sarcoma
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Figure 3.3. Growth curves and doubling times of established PDXs passaged via serial tumour 

engraftment only. Tumour growth of PDXs throughout P0-P2 passages via tissue engraftment. The first 

day after which a tumour was consistently detected was recorded as day 1. Growth measurements were 

fitted to a Malthusian growth curve equation to give doubling times. Error bars represent standard deviation. 

LMS; Leiomyosarcoma, P0; Passage 0, P1; Passage 1, P2; Passage 2, SCS; Spindle Cell Sarcoma.  
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Figure 3.4. Growth curves and doubling times of established PDXs passaged via cell inoculation. 

Tumour growth of PDXs throughout P0-P2 passages which were passaged at least once via cell inoculation.. 

Red arrows indicate passaging via cell inoculation instead of tissue engraftment. The first day after which a 

tumour was consistently detected was recorded as day 1. Growth measurements were fitted to a Malthusian 

growth curve equation to give doubling times. Error bars represent standard deviation. LMS; 

Leiomyosarcoma, P0; Passage 0, P1; Passage 1, P2; Passage 2, UPS; Undifferentiated Pleomorphic 

Sarcoma.  

 

The growth curves of established PDX models which were passaged at least once via 

dissociated cell inoculation are presented in Figure 3.4. SARC-401, SARC-387 and 

SARC-304 PDX models demonstrated a lower mean doubling time with lower variability 

at P2 passages compared to the respective P0 tumours indicating stabilisation of growth 

and adaption to in vivo growth despite undergoing injection of dissociated tissue for 

passaging. This data suggests that inoculation with dissociated PDX tissue can be used 

to continue the growth of certain PDX lines and is a feasible method of passaging these 

models where direct engraftment of tissue is not possible. However, SARC-395 showed 

an increase in doubling time upon successive passaging while SARC-289 and SARC-

323 demonstrated a variable doubling time at P2, suggesting these models might require 

further passaging of select tumours to stabilise growth rates. 

The panel of established PDXs demonstrated a range of growth rates upon reaching 

passage 2, with doubling time ranging from 6.5 to 33.5 days (Table 3.4). Additionally, 

patient matched models SARC-414 & SARC-416 and SARC-289 & SARC-304 showed 

similar growth kinetics (17.8 vs 17.5 days and 16.2 vs 13.2 days respectively) (Table 

3.4). Therefore this panel of PDX model represents a range of tumour growth kinetics 

and also suggests that PDX growth is patient specific.  The subtype of PDX models had 

no significant impact on tumour growth rate (p=0.4892), nor did anatomical location of 

biopsy sample (p=0.1372), trial timepoint (p=0.4412) or prior treatment status 

(p=0.1803).  
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3.4 PDX tumours retain histology of patient tumours 

In order to examine the histology of each PDX model upon successful engraftment, P0 

tumour samples were fixed, embedded in paraffin and stained with haematoxylin and 

eosin (H&E). PDX H&E slides were then compared with archival patient tissue where 

possible to assess whether the PDX models recapitulated patient histology including 

whether PDXs can capture intra-tumoral heterogeneity frequently observed in histology 

specimens from LMS patients. The uterine LMS models SARC-369 and SARC-401 

displayed similar histological features consistent with uterine LMS including spindle 

shaped cells with hyperchromatic, polymorphic nuclei, some areas of eosinophilic 

cytoplasm, and some areas of fascicular bundles which were consistent with tumour 

samples from the corresponding patients (Figure 3.5A & B). The uterine LMS PDX 

model SARC-376 showed smaller, dense spindle cells arranged in fascicular bundles 

with hyperchromatic but relatively uniform nuclei (Figure 3.5C). Meanwhile the uterine 

LMS PDX model SARC-393 displayed a morphology consistent with de-differentiated 

LMS with less dense spindle cells, loosely arranged in fascicles, with polymorphic nuclei 

and the presence of occasional hyperchromatic nuclei and giant cells (Figure 3.5D).  

Two patient matched PDX pairs SARC-322 & SARC-356 and SARC-414 & SARC-416 

were engrafted from patients with LMS originating in the inferior vena cava (IVC) and all 

showed a similar well-differentiated histology, with spindle cells arranged in prominent 

fascicular structures and relatively uniform nuclei (Figure 3.5E & F). The other matched 

PDX pair SARC-407 and SARC-409 were engrafted from a patient with LMS originating 

in the stomach and displayed smaller cells with uniform nuclei, consistent with the 

histology of the patient tumour (Figure 3.5G). SARC-323 and SARC-323 PDX models 

were engrafted from two patients with LMS originating in the breast and stomach 

respectively, and each displayed a de-differentiated histology, with polymorphic nuclei, 

giant cells and loose fascicular bundles (Figure 3.5H & I). All of the LMS PDX models 

showed a histology which were consistent with the LMS subtype and to the 

corresponding patient tumour tissue, while patient matched models recapitulated patient 

specific histological features.  
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Figure 3.5. Histology of engrafted LMS PDX models from pre or post-treatment biopsies with 

respective patient tumour tissue. H&E stains of tissue slices from engrafted PDX models derived from 

post or pre-treatment biopsies compared to respective patient archival tissue. (A) SARC-322 and SARC-

356. (B) SARC- 369. (C) SARC-393. (D) SARC-389. (E) SARC-401. (F) SARC-407 and SARC-409. (G) 

SARC-414 and SARC-416. (H) SARC-323. (I) SARC-376. Scale bar = 100 µm. Magnification 40x. PDX; 

patient-derived xenograft. 

 

Histological features of the non-LMS models were also assessed for similarities to patient 

tumour tissues. The UPS PDX model SARC-387 displayed small round cells with 

hyperchromatic nuclei meanwhile SARC-395 showed a histology more consistent with 

UPS including extreme nuclear polymorphism and the presence of giant cells which 

matched the respective patient tumours (Figure 3.6A & B). The patient matched UPS 

PDX models SARC-289 and SARC-304 showed a matching histology which also 

corresponded to the patient tissue, with dense cells and polymorphic nuclei (Figure 

3.6C). SARC-431 was engrafted from a biopsy of a SCS patient and displayed highly 

compact spindle cells, with uniform nuclei arranged in prominent fascicular structures 

(Figure 3.6D).  
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Figure 3.6. Histology of engrafted non-LMS PDX models from pre or post-treatment biopsies with 

respective patient tumour tissue. H&E stains of tissue slices from engrafted PDX models derived from 

post or pre-treatment biopsies compared to respective patient archival tissue. (A) SARC-387. (B) SARC-

395. (C) SARC-289 and SARC-304. (D) SARC-431. Scale bar = 100 µm. Magnification 40x. PDX; patient-

derived xenograft 

 

H&E images from an initial P0 PDX tumour and successive P1 and P2 passages were 

compared for models where all of these stains were available, in order to identify any 

changes in histology which might occur upon continuous growth after passaging in vivo. 

Additionally it was important to check if passaging via dissociated cell inoculation had 

altered tumour histology in any way and if these models still represented the patient 

tumours. Assessing SARC-369, SARC-414 and SARC-431, each successive passage 

clearly retains the histological characteristics of the original P0 PDX tumour such as 

cellularity, spindle cell morphology, fascicular structures, while each model retains its 

distinct histological appearance. (Figure 3.7A-C). P0 tumours from SARC-323 and 

SARC-289 PDX models were dissociated and inoculated into mice in order to passage 

as a substitute for direct tissue passage. However, the inoculated tumour showed almost 
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identical histological features compared to the P0 tumour, each retaining the 

heterogeneous cell morphology found in the P0 tumour (Figure 3.7D & E). Additionally, 

successive passage to P2 via tissue engraftment was also able to maintain the 

histological features of the P0 tumours, indicating that passaging PDX tissue via 

dissociated cell inoculation does not alter patient-specific histology.   

 

Figure 3.7 Histology of PDX models across successive in vivo passages. H&E stains of tissue slices 

from initial engrafted PDX models (P0) and successive passages (P1 and P2). (A) SARC-369. (B) SARC-

414. (C) SARC-431. (D) SARC-323. (E) SARC-289. Red arrows indicate passaging via dissociated cell 

inoculation. 40x magnification.   
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3.5 Proteomic profiling of LMS PDX models 

Next, to molecularly characterise the successfully engrafted LMS PDX models, tumour 

samples were subject to SWATH-mass spectrometry by two PhD students in our lab: 

Yuen Bun Tam and Madhumeeta Chadha. Mass spectrometry data was used to assess 

the differences between archival patient tumours and corresponding PDX models 

established from pre- or post-treatment biopsies. Additionally, these proteomic profiles 

were also compared to a historical proteomic dataset of STS patients including DDLPS, 

LMS, UPS and SS which was previously generated in the lab in order to observe if the 

PDX models retain their proteomic signatures associated with sarcoma histological 

subtypes (Milighetti et al. 2021). After hierarchical clustering of proteomic profiles, the 

LMS PDX models clustered together as one distinct group and clustered separately from 

all patient specimens, although the PDX models were clustered next to the LMS patient 

specimens versus other histological subtypes, indicating that these PDX models have 

distinct proteomes from patient tumours but most closely resemble the LMS subtype 

(Figure 3.8) 

 

 

Figure 3.8. Proteomic analysis of LMS PDX models compared to DDLPS, LMS, UPS and SS tissue. 

Heatmap showing hierarchical clustering of proteomic profiles of LMS PDX models in addition to profiles of 
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DDLPS (dedifferentiated liposarcoma), LMS (leiomyosarcoma), UPS (undifferentiated pleomorphic 

sarcoma) and SS (synovial sarcoma) tumour tissue. Profiles were clustered via two-way unsupervised 

clustering based on Pearson’s correlation co-efficient. Mass spectrometry data was acquired and processed 

via DIA-NN by Yuen Bun Tam, Madhumeeta Chadha and Martina Milighetti. DIA-NN output data was further 

processed by myself to generate a heatmap of normalised proteomic profiles. 

 

In order to assess the extent of which the engrafted LMS PDX models retain their LMS 

subtype identity, the abundance of smooth muscle associated proteins such as 

caldesmon, desmin, vinculin and vimentin were compared to LMS patient tumour 

specimens. These four markers were identified in every patient tissue and each LMS 

PDX model and for each of these markers, there was no significant difference in 

abundance between patient tissue and PDX tumours, showing that these models retain 

smooth muscle identity indicative of LMS (Figure 3.9A). Next, to further assess the 

biological differences between patient tumours and the engrafted PDX models, a SAM 

analysis was conducted to identify the proteins which show a significant difference in 

abundance between these two groups. Analysis of hallmark gene sets enriched in PDX 

models or patient tissue via g:Profiler over-representation analysis found that PDX 

tumours have elevated levels of proteins associated with E2F targets, G2M checkpoint 

and mTORC1 signalling (Figure 3.9B). Patient tissue instead showed elevated proteins 

especially associated with xenobiotic metabolism, the reactive oxygen species pathway, 

peroxisomes, adipogenesis and the complement pathway (Figure 3.9B) 
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Figure 3.9. Proteomic comparison of LMS patient tumour and PDX model FFPE tissue. Log2 intensity 

values of smooth muscle associated proteins (A) caldesmon, (B) desmin, (C) vinculin and (D) vimentin in 

patient or PDX FFPE tissues. (E) Over-representation analysis plot showing hallmark pathways upregulated 

in PDX tissue (red) and in patient tissue (blue) after mutual comparison. Mass spectrometry data was 

acquired and processed via DIA-NN by Yuen Bun Tam, Madhumeeta Chadha. DIA-NN output data was 

further processed by myself to assess log2 protein abundance. SAM and enrichment analysis was 

conducted by myself. 
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3.6 Discussion 

Chapter 3 Describes the successful engraftment of 18 biopsy samples from advanced 

metastatic STS patients as part of the GEMMK and APPLE clinical trials. Of these 18 

successfully engrafted biopsies, 12 resulted in fully established PDX models, with 

maintained growth over at least two passages at the time of this report. Some PDX 

models have not yet been passaged twice and are therefore not included as part of the 

established PDX number reported, but do show continuous growth. Accounting for this, 

an establishment rate of 32% for all subtypes included in this study or 35% for LMS 

specifically was reported which is very similar to previous studies which have generated 

PDX models from patient resection tissue (Hemming et al. 2022; Cornillie et al. 2019). 

Therefore , the data presented in this chapter demonstrates that biopsy tissue 

engraftment is a viable and equally effective method for STS PDX generation compared 

to surgical tissue engraftment, expanding on the amount of source material which can 

be used for PDX pipelines. Additionally, two pairs of patient matched PDXs were fully 

established in this study from pre- and post-/on treatment biopsies demonstrating that 

the generation of patient matched STS models at multiple timepoints is also feasible. 

Previous studies have reported lower establishment rates of PDX models from treated 

patients compared to treatment naïve patients however the results in this chapter show 

no significant correlation between treatment history and PDX establishment rate 

(Cornillie et al. 2019; Hajdu et al. 1981).  

Several studies have used PDX models of STS for pre-clinical drug testing and also as 

patient-specific avatars to inform treatment which has led to direct clinical benefit in an 

LMS patient (Stebbing et al. 2014; Schoffski et al. 2019). However, by demonstrating 

that STS PDX generation from biopsy samples is feasible with comparative rates of 

establishment to surgical tissue and no significant impact of treatment on take rates, this 

study encourages future work to generate patient matched PDX models at various 

clinical stages of treatment pathway. These models would allow for analysis of changing 

drug response phenotypes and molecular characteristic of tumours at each of these 

disease timepoints Although, a caveat to this is that patient response data is not yet 

available for the biopsy tissues presented in this chapter. Therefore, PDXs generated 

from pre- or on-treatment biopsies may enrich for tumours showing poor response to 

treatment.  

As PDX models are more likely to be established from patients with higher grade tumours 

or from patients who develop metastases, PDX panels are often enriched for models of 

more aggressive tumours (Cornillie et al. 2019; Stebbing et al. 2014; Hemming et al. 
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2022). Many of these studies report subcutaneous PDX generation, which might explain 

why aggressive tumours are more easily able to adjust to this heterotopic environment 

compared to lower grade tumours. Future work on this chapter could therefore consider 

PDX generation via orthotopic implantation in order to potentially allow for the growth of 

less aggressive tumour models. Orthotopic LMS PDXs could also be utilised to model 

mechanisms of metastatic transformation or local invasion (Zhiying Zhang et al. 2019). 

The panel of PDX models shown in this chapter reveals a range of growth rates with 

tumour doubling times ranging from approximately 6 to 33 days, or 10 to 33 days for LMS 

models in particular, which is comparable to growth rates of previously reported PDX 

LMS models established from patient resections (Cornillie et al. 2019; Hemming et al. 

2022; Cuppens, Depreeuw, et al. 2017). Additionally, several of these PDX models with 

variable growth rates were established from grade 3 biopsies, while patient matched 

PDXs demonstrated similar doubling times, suggesting these PDX models represent 

patient to patient growth kinetics, not necessarily dependent on tumour grade. A wide 

variation of PDX growth rates between different models is important when conducting 

pre-clinical assessment of drug response in cancers which can demonstrate varying 

tumour growth characteristics such as LMS, due to the differential targeting of fast or 

slow cycling cancer cells with certain anti-cancer agents (Anderson et al. 2021; Bathan 

et al. 2013; Abdolahi et al. 2022; Brownhill, Cohen, and Burchill 2014; Bonetti et al. 1996).  

Unfortunately, further passaging beyond P2 was not possible at the time of this report 

although future work should assess the growth and histology of higher passages as 

shown in other PDX LMS models in order to determine feasibility for in vivo drug 

treatment experiments which require many PDX tumours with exact growth rates 

(Cornillie et al. 2019). Histological characterisation of the engrafted PDX models showed 

that these models clearly retain patient-specific histological identity while representing 

different extent of smooth muscle differentiation ranging from PDXs with well 

differentiated histology to LMS PDXs with poorly differentiated and de-differentiated 

histology. This range of histology is commonly seen in LMS tumours and therefore 

demonstrates that the panel of engrafted PDX models captures the histological variation 

of LMS (Demicco et al. 2015; E. Chen, O’Connell, and Fletcher 2011).  

One drawback of this study was that some PDX models had to be passaged via 

dissociated cell inoculation instead of tumour passage which was predicted to cause 

some loss of intra-tumoural heterogeneity via clone selection ex vivo. However, upon 

inoculation, some of the PDX models were able to show similar growth rates to prior 

passages which suggests that these particular models have stabilised, robust growth 
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rates. Additionally, inoculated PDX models demonstrated an almost identical histology 

to the initial PDXs which was also retained upon a successive tumour passage, showing 

that inoculation of dissociated PDX tissue does not alter the histology of PDX tissues 

and can still lead to fully established PDX models which represent patient tumours. 

However, future work for this chapter should investigate any possible loss of intra-

tumoural heterogeneity in terms of biomarker expression and also investigate any 

genetic drift or changes in proteomic profiles which may have occurred. One caveat for 

the characterisation of the PDX models presented in this chapter is that the patient 

tumours were archival samples and not taken at the same timepoint when the biopsy for 

PDX establishment was taken. This may explain the stark histological difference between 

SARC-431 and the respective patient tissue sample. Therefore, to more accurately 

compare patient tumour to PDX model in the future, the biopsy samples at the same 

timepoints will also undergo molecular profiling and histological assessment.  

Proteomic analysis of the LMS PDX models compared to a previously generated dataset 

showed that PDX models have a distinct proteome compared to STS patient samples 

including LMS patient specimens, although, LMS PDX models are most similar to LMS 

patient specimens and not other STS subtypes, indicating that the PDX models have not 

undergone substantial changes in subtype identity. When comparing LMS PDX models 

and the patient tumours from which they were derived from, a high fidelity of biomarker 

expression was seen. Caldesmon and desmin are diagnostic LMS markers, however 

there is no one LMS specific marker, therefore diagnosis usually consists of IHC staining 

for several markers which are known to be enriched in smooth muscle (Demicco et al. 

2015; Oliva 2015; K. Watanabe et al. 2000). Vimentin is a marker of mesenchymal tissue 

while vinculin has also demonstrated expression in LMS in previous profiling studies 

(Tian et al. 2013; Kirik et al. 2014). Based on the similarity of these markers and histology 

shown in this chapter, the PDXs derived from LMS patients can be considered as models 

of the LMS subtype. However, LMS PDX models did show elevated levels of proteins 

associated with E2F targets which are mainly involved in DNA replication as well as 

proteins associated with G2M checkpoint (Oshi et al. 2020; H. Wang et al. 2020). 

Together this indicates that PDX models are undergoing enhanced proliferation 

compared to patient tissue. In contrast, patient LMS tissue was enriched in proteins 

associated with metabolic hallmarks including reactive oxygen species, fatty acid 

metabolism and oxidative phosphorylation which is consistent with previous reports 

showing that xenograft models can display differing metabolomic profiles compared to 

patient tissue (Z. Chen et al. 2021; Forrester et al. 2018; Jun et al. 2018). Additionally, 

patient tissue showed an enrichment for proteins associated with the complement 
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pathway and interleukin-2 (IL2)- Signal transducer and activator of transcription 5 

(STAT5) signalling which are immune based pathways, therefore the loss of these 

pathways is consistent with the use of immunodeficient mouse models for PDX growth 

(D. M. Jones, Read, and Oestreich 2020; M. K. Verma et al. 2017). 

In summary, this chapter describes the successful engraftment and establishment of a 

panel of LMS PDX models from pre- and post-treatment biopsy tissue which showed 

high histological and proteomic fidelity to patient tissues, also encapsulating patient to 

patient histological variability within the LMS subtype. WES is currently being conducted 

in order to assess if genome wide copy number alterations are maintained in the PDX 

models compared to the patient tumours and if these PDX models undergo genetic drift 

after successive passaging. Whole exome sequencing will also be conducted to reveal 

the distribution of frequently altered genes in LMS, such as PTEN, TP53 and RB1, 

showing whether these can be maintained in PDX models and what, if any mutations are 

consistently lost or gained in PDX LMS models compared to patient tissue.  
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Chapter 4 - Establishment and 

characterisation of PDX-derived LMS 

in vitro cultures 
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4.1 Introduction 

The assessment of candidate targets via high-throughput drug screening or large-scale 

functional genetic screens is often the first stage of cancer drug discovery, followed by 

phenotypic and biochemical assessment of drug response before validation in vivo, 

leading into clinical trials (Honkala et al. 2021). Commercially available, immortalised 

cancer cell lines are widely used pre-clinical models to identify candidate targets due to 

the low cost, ease of procurement and handling, as well as high reproducibility (Capes-

Davis et al. 2010; Kaur and Dufour 2012). However, the long-term growth of cell lines in 

vitro induces altered gene expression while selecting for sub clonal populations, 

therefore leading to altered therapeutic responses with a poor correlation to molecular 

phenotypes of patient tumours (Cree, Glaysher, and Harvey 2010; Rey et al. 2019). 

Additionally, most commercially available cell lines have undergone spontaneous or 

engineered genetic alterations to enable indefinite culture and further genetic drift can 

occur over years of continuous culture, therefore such cell cultures might not be an 

accurate representation of the disease they originally derived from (Kaur and Dufour 

2012). For LMS, as with the majority of STS subtypes, there are few commercially 

available cell lines and due to the inter-patient heterogeneity within subtypes such as 

LMS, leads to the underrepresentation of patient-to-patient variability (Hattori, Oyama, 

and Kondo 2019). Therefore, there is an urgent need to establish more STS pre-clinical 

models which can represent a range of patient tumour characteristics.  

Several studies have reported the successful establishment of primary cell lines directly 

from STS patient resection tissue which maintains the cellular and molecular 

heterogeneity of the patient tumour (M. Hu et al. 2002; Salawu et al. 2016). However, 

the generation of cultures from biopsy tissue is challenging due to small sample size. 

Therefore, the initial generation of PDX models from biopsy samples allows for tissue 

expansion prior to culture of PDX-derived cells. In contrast to immortalised cell lines, 

PDX-derived cell cultures are more clinically relevant models. Such models have been 

shown to recapitulate the cellular and molecular heterogeneity of the patient tumour and 

subsequent PDX (Manzella et al. 2020). Establishing PDX-derived cultures creates 

patient-specific models often accompanied by clinical information each of which should 

be considered when observing and comparing molecular profiles (Brodin et al. 2019).  

In order to establish primary cell cultures, assessing the optimal growth conditions is 

important so as not to influence the results of in vitro assays. A panel of 

rhabdomyosarcoma PDX models were dissociated and cultured in a variety of different 

conditions including differing media with or without growth factors such as EGF or bFGF 
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which have previously been shown to allow for tumour stem cell cultures which closely 

mirror the phenotype of primary tumours (J. Lee et al. 2006). Interestingly, subgroups of 

RMS cultures were identified to have their own optimal culture condition, assessed by 

proliferation, viability and degree of differentiation. Growth factor addition induced an 

increase or decrease in proliferation depending on the cell model culture, and a higher 

proportion of contaminating mouse cell expansion was observed in DMEM supported 

cultures, highlighting the importance of cell culture media optimisation for the cell type of 

interest. Furthermore, for difficult to culture PDX cells, the use of DMEM/F12 medium 

containing the ROCK inhibitor Y-27632 was sufficient to allow for proliferation and 

establishment of primary cell lines (Manzella et al. 2020). 

ROCK inhibitors such as Y-27632 have been shown previously to aid in the plating 

efficiency of induced pluripotent and embryonic stem cells, maintaining stem cell markers 

compared to culture without ROCK inhibitors. Y-27632 supplemented media also 

decreased apoptosis during cell passaging via the reduction of anoikis (detachment 

induced apoptosis) (Vernardis et al. 2017; Kiichi Watanabe et al. 2007). Y-27632 has 

since been used to establish and expand primary cultures for several cancer types such 

as glioblastoma and colorectal cancer while maintaining cell populations expressing 

cancer stem cell markers (Tilson et al. 2015; Miyoshi et al. 2018). Additionally, ROCK 

inhibitor treatment with fibroblast feeder cells is used frequently for conditional 

reprogramming of epithelial cells, inducing indefinite proliferation in vitro of both tumour 

and normal epithelial cells. Importantly, this conditional reprogramming does not induce 

immortalisation via transformation as normal cells expanded by this method retain a 

normal karyotype (X. Liu et al. 2012). 

In this chapter, a PDX-derived cell culture pipeline was initially optimised and then 

implemented using LMS PDX tumour tissue described in chapter 3 in order to expand 

the number of clinically relevant, novel, LMS pre-clinical models. Three long-term PDX-

derived LMS cultures were established as well as 2 short-term cultures. These cultures 

were phenotypically characterised and molecular profiles were compared to the patient 

tumour and subsequent PDX of origin.  
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4.2 Optimising a PDX derived in vitro culture pipeline 

from a synovial sarcoma model 

In order to generate primary STS cell lines I began with optimising a pipeline for the 

culture of PDX-derived cells to show a proof-of-principle. This was done using a synovial 

sarcoma PDX model J000104314 which was acquired from The Jackson Laboratory 

(http://tumor.informatics.jax.org/mtbwi/pdxDetails.do?modelID=J000104314). PDX 

growth in NGS mice was assessed after an initial passage from the mouse received from 

The Jackson Laboratory and showed a doubling time of 14.06 days, as fitted to an 

exponential growth equation (Figure 4.1A). This PDX showed a histology consistent with 

monophasic synovial sarcoma, presenting with hypercellular fascicular of spindle cells 

with little stroma and monotonous nuclei (Figure 4.1B). Once tumours reached 

1000mm3 in size, they were harvested and dissociated by mincing followed by incubation 

in collagenase containing media. Dissociated cells were mouse cell depleted and then 

cultured as monolayer cells in Y-media, which contains the ROCK inhibitor Y-27632 or 

DMEM based media. Y-media was included due to the successful establishment of other 

PDX-derived cell cultures which have been reported at the ICR using this media. Upon 

initiation of primary culture, DMEM cultured cells showed adherence and initially 

proliferated but entered senescence soon after (data not shown) while Y-media allowed 

the outgrowth of proliferative cells. Therefore, Y-media based cultures were pursued 

further. Dissociated J000104314 cells proliferated in 2D culture with a spindle cell 

morphology for at least 18 passages over 4 months (Figure 4.1C) and could also 

aggregate to form spheroids after 3 days in low attachment wells (Figure 4.1D). Once 

cultures were passaged over 10 times, these monolayer cells were named ICR-SS-1. To 

begin characterisation, I evaluated the growth rate of ICR-SS-S over 14 days which 

showed an exponential growth pattern and a doubling time of 92 hours (Figure 4.1E) 
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Figure 4.1 Synovial sarcoma PDX and established PDX-derived cell line. (A) Tumour growth of 

J000104314 PDX model. N=5. (B) H&E stain of J000104314 PDX tumour. Scale bar = 50 µm. 20x 

magnification. (C) Phase contrast image of ICR-SS-1 cells in monolayer culture. Scale bar = 200 µm. (D) 

Brightfield image of ICR-SS-1 spheroid. Scale bar = 200 µm. (E) Cell count of ICR-SS-1 cells over a period 

of 14 days. N=3.  

 

Almost all synovial sarcomas harbour the pathognomonic translocation t(X;18)(p11;q11) 

which causes the fusion of SS18 on chromosome 18 to either SSX1, SSX2 or SSX4 on 

chromosome X (Jungbluth et al. 2001). The PDX J000104314 was reported to harbour 

the specific translocation SS18:SSX1, therefore PCR was used to confirm the presence 

of this specific translocation in PDX tissue and subsequent PDX derived cell line. To do 

this a common forward primer within the SS18 gene and reverse primers within the 

SSX1, SSX2 and SSX4 genes were used to amplify cDNA from the PDX tumour, ICR-

SS-1 and also HS-SY-II which acts as a positive control of the SS18:SSX1 translocation. 

Actin was also amplified to confirm if cDNA synthesis occurred correctly. If a 

translocation is present between SS18 and SSX1, SSX2 or SSX4, a PCR transcript of 

108bp will be produced. Following gel electrophoresis, a band of 108bp can be seen 

from HS-SY-II template cDNA reaction containing SS18 and SSX1 primers (Figure 4.2A) 
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as well as the PCR reactions containing ICR-SS-1 or J000104314 tumour cDNA. No 

bands were observed in the PCR reactions where SS18 and SSX2 or SSX4 primers 

were used for any of the cDNA samples confirming that the ICR-SS-1 retains the 

characteristic synovial sarcoma translocation found in the PDX tumour. 

Early contamination of the primary cultures with fast growing fibroblasts was observed 

upon culturing J000104314 cells which were removed via differential trypsinisation and 

repeated EDTA washes. Mouse fibroblast contamination has been frequently noted in 

studies culturing primary cells from PDX models (Manzella et al. 2020; Domenici et al. 

2021). However, differentiating between these fibroblasts and the synovial sarcoma cells 

was challenging due to the mesenchymal, spindle-like morphology of both cell types. To 

confirm that the ICR-SS-1 PDX-derived cell line did not contain any contaminating mouse 

fibroblasts, a PCR protocol was used to amplify the PTGER2 gene with human or mouse 

specific primers (Alcoser et al. 2011). The human LMS cell line SK-UT-1 was used as a 

positive control for human DNA and a negative control of mouse DNA and vice versa for 

the murine line NIH-3T3. Gel electrophoresis of the PCR products shows a clear band 

from ICR-SS-1 DNA with human primers but no band when murine specific primers are 

used instead, indicating this established cell line does not contain murine fibroblast 

contamination (Figure 4.2B).  

 

Figure 4.2. Validation of ICR-SS-1 gene fusion and human origin. (A) PCR analysis of SS18::SSX1, 

SSX2 or SSX4 gene fusions in ICR-SS-1 and respective PDX tissue from J000104314. HS-SY-II is a positive 

control of SS18::SSX1 fusion. (B) PCR analysis of human and murine PTGER2 in ICR-SS-1 compared to 

murine positive control NIH-3T3 and human positive control SK-UT-1.  
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Next, short-tandem repeat (STR) profiling was conducted in order to compare with the 

tissue of origin and rule out contamination with other human cell lines while checking 

genetic similarity. Indeed, DNA extracted from J000104314 and ICR-SS-1 have an 

identical STR profile, confirming that ICR-SS-1 is a biological derivative of J000104314 

and has not undergone substantial genetic drift (Table 4.1) 

Locus J000104314 ICR-SS-1 

D8S1179 13, 13 13, 13 

D21S11 29, 31.2 29, 31.2 

D7S820 7, 8 7, 8 

CSF1PO 10, 12 10, 12 

D3S1358 17, 17 17, 17 

TH01 6, 9.3 6, 9.3 

D13S317 12, 14 12, 14 

D16S539 9, 12 9, 12 

D2S1338 20, 23 20, 23 

D19S433 13, 15 13, 15 

vWA 16, 16 16, 16 

TPOX 8, 9 8, 9 

D18S51 12, 15 12, 15 

AMEL X, Y X, Y 

D5S818 11, 13 11, 13 

FGA 24, 24 24, 24 

% Similarity 100% 

 

Table 4.1. STR profiling of J000104314 PDX tumour and PDX-derived ICR-SS-1 culture. STR loci of 

J000104314 PDX tumour and ICR-SS-1 cell culture. STR; Short Tandem Repeat. 

 

We have previously conducted proteomic profiling of FFPE tumour specimens from a 

cohort of STS patients (n=36) consisting of four histological subtypes, including synovial 

sarcoma, LMS, UPS and DDLPS which revealed that different STS subtypes can have 

distinct proteomic profiles (Milighetti et al. 2021). In order to assess if ICR-SS-1 can 

recapitulate the molecular profile of human synovial sarcoma tissues, the PDX-derived 

cell line as well as SYO-1 and HS-SY-II was subjected to proteomic analysis via 

sequential window of acquisition of all theoretical fragment ion spectra (SWATH) mass 

spectrometry by a post-doctoral fellow in the lab, Lukas Krasny. These profiles were 
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integrated with the cohort of 36 patients across 4,336 proteins and subjected to 

hierarchical clustering, revealing that the synovial sarcoma cell lines, including ICR-SS-

1, clustered closely with synovial sarcoma patient tissue but were separate from LMS, 

UPS and DDLPS patient tissue. This result suggests that ICR-SS-1 can faithfully 

capitulate the molecular features of synovial sarcoma found in patient samples and is 

distinct from other STS subtypes (Figure 4.3). 

 

 

 

Figure 4.3. Proteomic profiles of ICR-SS-1, synovial cell lines and STS tumours. Heatmap showing 

hierarchical clustering of proteomic data from synovial sarcoma cell lines, patient tissue from DDLPS 

(dedifferentiated liposarcoma), UPS (undifferentiated pleomorphic sarcoma), LMS (Leiomyosarcoma) and 

SS (synovial sarcoma) subtypes. Clustering was achieved by two-way unsupervised clustering based on 

Pearson’s correlation coefficient. Mass spectrometry data was acquired and processed via DIA-NN by Lukas 

Krasny and Martina Milighetti. DIA-NN output data was further processed by myself to generate a heatmap 

of normalised proteomic profiles.A 

Some differences were observed in the proteomic profiles of the synovial sarcoma cells 

and patient samples (Figure 4.3). To identify the proteins which show a significant 

difference between the synovial sarcoma cell lines and patient tissue SAM analysis was 

conducted followed by over-representation analysis via g:Profiler. This analysis revealed 

that protein translation, biosynthesis and metabolism processes were significantly 

enriched in synovial sarcoma patient tissue compared to the cell lines which included 

”cytoplasmic translation”, ”peptide biosynthetic”, ”peptide metabolic” and ”amide 
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biosynthesis” labelled ontologies (Figure 4.4A). Meanwhile, biological processes 

enriched in cell lines included lipoprotein particle clearance and RNA splicing.  

To understand the differences between the PDX-derived cell line ICR-SS-1 and the 

commercially available synovial cell lines SYO-1 and HS-SY-II, a SAM analysis was 

performed to identify the proteins showing a significant difference between the two. Over-

representation analysis was then used to show that ICR-SS-1 cells were enriched for 

proteins involved in mesenchymal to epithelial transition, while the commercially 

available synovial lines were enriched in proteins associated with E2F targets, 

demonstrating that ICR-SS-1 and synovial sarcoma cell lines have distinct biological 

processes (Figure 4.4B).  

 

 

Figure 4.4. Proteomic comparison of ICR-SS-1, synovial sarcoma cell lines, and patient samples. (A) 

Over-representation analysis plot of specific biological processes which show upregulation in synovial 
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sarcoma patient tumours (red) or cell lines (blue) following a mutual comparison. (B) Over-representation 

analysis plot of hallmark pathways which show upregulation in ICR-SS-1 (red) and those upregulated in 

synovial sarcoma cell lines SYO-1 and HS-SY-II (blue). FDR; False Discovery Rate, SS; Synovial sarcoma. 

Mass spectrometry data was acquired and processed via DIA-NN by Lukas Krasny and Martina Milighetti. 

DIA-NN output data was further processed by myself to assess log2 protein abundance. SAM and 

enrichment analysis was conducted by myself. 

 

Following proteomic characterisation of ICR-SS-1, I sought to assess the response of 

this cell line to the anthracycline doxorubicin, which is a first line standard of care 

chemotherapy for the vast majority of STS, including synovial sarcoma. ICR-SS-1 was 

significantly more resistant to doxorubicin (ICR-SS-1 IC50=613 ±299nM) compared to 

SYO-1 and HS-SY-II (SYO-1 IC50 = 13 ± 1nM, HS-SY-II IC50 = 31 ±14) (p<0.01) (Figure 

4.5A). Response to pazopanib was also assessed in these cell models as this is the only 

approved tyrosine kinase inhibitor (TKI) approved for use in synovial sarcoma patients 

following progression on first line chemotherapy. All three tested cell lines were resistant 

to this therapy, showing an IC50 value > 5µM (Figure 4.5B). In order to identify 

therapeutic vulnerabilities ICR-SS-1, SYO-1 and HS-SY-II were all exposed to a small 

molecule inhibitor screen consisting of 58 small molecules, designed in house to target 

a range of oncogenic signalling pathways (methods section). Overall, ICR-SS-1 shows 

a distinct drug response profile compared to SYO-1 and HS-SY-II and is more resistant 

to the majority of the small molecule inhibitors tested (Figure 4.5C). Assessment of 

shared vulnerabilities from the drug screen identified three compounds: the dual PI3K 

and mTOR inhibitor NVP-BEZ235, the polo-like kinase 1 (PLK1) inhibitor BI 2536 and 

the Bromo- and extra-terminal domain (BET) bromodomain inhibitor JQ1 (Figure 4.5D), 

suggesting that targeting these pathways might lead to a therapeutic benefit in synovial 

sarcoma.  
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Figure 4.5. Drug response phenotypes of ICR-SS-1 compared to SYO-1 and HS-SY-II. (A) Dose 

response curves of ICR-SS-1, SYO-1 and HS-SY-II cells treated with increasing doses of doxorubicin. N=3. 

(B) Dose response curves ICR-SS-1, SYO-1 and HS-SY-II cells treated with increasing doses of pazopanib. 

N=3. (C) Cell viability heatmap of ICR-SS-1, SYO-1 and HS-SY-II cells treated with a targeted panel of 58 

small molecule inhibitors at a concentration of 500 nM or 50 nM for NVP-AUY922. N=3. (D) Venn diagram 

of shared and distinct targeted inhibitor sensitivities when a cut-off of 65% is applied to ICR-SS-1, SYO-1 

and HS-SY-II cells.  

4.3 Establishing PDX derived LMS in vitro cultures 

Following the successful implementation of a primary cell culture pipeline from a synovial 

sarcoma PDX model, I then sought to implement this workflow with the novel LMS PDX 

models generated in Chapter 3 in order to establish and characterise a panel of LMS 

PDX-derived cell lines which will be used for assessing drug targets, biochemical 

analysis of response and resistance mechanisms (Figure 4.6). 
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Figure 4.6. PDX-derived in vitro culture pipeline overview. PDX tumours were dissociated and mouse 

cells depleted to enrich for human cells. Dissociated cells were cultured in monolayer or hydrogel embedded 

conditions and were also cryopreserved. Following growth in vitro, subcultures from P+1 to P+9 were 

considered primary cultures and cells continuing to grow over P+10 were considered established PDX-

derived cell lines. These lines were used for morphological, histological and growth rate characterisation as 

well as human cell authentication and were inoculated into immunocompromised mice to test tumorigenicity. 

Proteomic and STR profiling was conducted on PDX tissue, respective primary cultures and established cell 

lines. PCR; Polymerase Chain Reaction, PDX; Patient-Derived Xenograft, P+1; Passage 1, P+9; Passage 

9, P+10; Passage 10, STR; Short Tandem Repeat.  

 

Cell culture was attempted from a total of 12 dissociated LMS PDX lines after mouse cell 

depletion via magnetic bead separation and, where necessary, mouse cell depletion of 

cultures was repeated to ensure the absence of contaminating mouse stromal cells 

(Figure 4.7). To identify the optimal culture conditions supporting cell proliferation, 

dissociated cells were cultured initially in several different conditions including Matrigel 

coated flasks or non-coated flasks, in Y-media, with or without the addition of PDGF and 

bFGF. Matrigel coating has been shown to support the growth of primary cell cultures for 

several cancer types (Kleinman and Martin 2005) while PDGF and bFGF growth factors 

can stimulate the growth of fibroblasts and mesenchymal derived cells in vivo (Ng et al. 

2008), thus both were chosen as conditions to assess in addition to monolayer culture 

without coating and with base Y-media. 3D matrigel embedded organoid-like cultures 

were also attempted with dissociated cells (Figure 4.6-Figure 4.7). Following 

dissociation of PDX tissue, cells were either used fresh for culture or viably frozen and 
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thawed at a later date for establishing cultures (Figure 4.6). Cultures which 

demonstrated outgrowth of cells which continued upon subculture were considered as 

proliferative primary cells. Some PDX tissue showed proliferative colonies in multiple 

conditions although some conditions lead to faster growth or showed cell outgrowth 

earlier (Figure 4.7). A total of 5 LMS PDX models were able to grow in vitro as monolayer 

cultures and one LMS PDX model was also able to expand in 3D matrigel embedded 

organoid-like condition and are listed in Table 4.2. 

 

 

Model 

2D 
3D 

   

Uncoated Coated    

Y 
Y & 
GF 

Y 
Y & 
GF 

Y 
Y & 
GF 

   

SARC-322       
 

In vitro 
proliferation 

 

SARC-323       
 

 

SARC-356       
 No in vitro 

proliferation 
 

SARC-369       
 Mouse cell 

contaminants 
 

SARC-376       
   

SARC-389       
   

SARC-393       
   

SARC-400       
   

SARC-401       
   

SARC-409       
   

SARC-414       
   

SARC-416       
   

 

Figure 4.7. In vitro growth condition screen of primary PDX-derived LMS cells. Outcomes of primary 

culture with dissociated LMS PDX tumours, indicating proliferation, no proliferation or proliferation that was 

later revealed to be mouse cell contaminants. Light green indicates cell cultures which underwent 

proliferation but were slower growing or took longer before outgrowth was observed compared to cultures in 

dark green. Cells were cultured in 2D with or without Matrigel coating. Matrigel coated, uncoated and Matrigel 

embedded (3D) conditions were attempted in Y-media or Y-media supplemented with PDGF and bFGF. GF; 

Growth factors (PDGF and bFGF), Y; Y-media. Grey denotes conditions which were not assessed. 
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In vitro culture information Respective PDX information 

Tissue 
ID 

PDX 
tumour 
passage 

Culture 
condition 

Maximum 
in vitro 
passage 
reached 

Cell line ID 

Cell line 
doubling 

time 
(days) 

Timepoint 
Biopsy 
grade 

Subtype 
Site of 

biopsy/resection 

Primary 
site if 

known 
Treatment history Trial 

SARC-323 

P0 
 
 

2D, Y-media 
with PDGF & 

bFGF 
Coated 

P+8   
Baseline 
biopsy 

G3 LMS Left gluteus Breast 

Epirubicin+Cyclophosphamide in the 
adjuvant setting after surgery to the 
primary tumour; no treatment from 

diagnosis of metastatic disease to trial 
entry 

GEMMK 

SARC-369 
P0 

 

2D, Y-media 
Uncoated 

≥ P+35 ICR-LMS-1 4.4 days 

Baseline 
biopsy 

G3 uLMS Pelvic Uterus Doxorubicin (3 cycles) 
Matrigel 

embedded, 
Y-media 

≥ P+6 ICR-LMS-3  

SARC-400 P0 

2D, Y-media 
with PDGF & 

bFGF 
Uncoated 

P+5   

Post-cycle 3 
biopsy 

N/A LMS RP RP 
Doxorubicin (2 cycles). Second-line 

GEMMK (Gemcitabine & 
pembrolizumab) 

Matrigel 
embedded, 

Y-media with 
PDGF & bFGF 

P+7 ICR-LMS-5  

SARC-401 P0 
2D, Y-media 

Uncoated 
≥ P+38 ICR-LMS-4 3.2 days 

Baseline 
biopsy 

G3 uLMS Liver Uterus No prior treatments 

SARC-409 P0 
2D, Y-media 

Uncoated 
≥ P+16 ICR-LMS-6 4.2 days 

Post-cycle 3 
biopsy 

N/A LMS Peritoneum Stomach No prior treatments. First-line GEMMK 
(Gemcitabine & pembrolizumab) 

SARC-393 P1 
2D, Y-media 

Uncoated 
≥ P+10   

Post-RT 
biopsy 

N/A uLMS Lung Uterus Post-RT APPLE 

Table 4.2. Primary and established PDX-derived LMS cell cultures. Overview of PDX-derived culture characteristics including PDX model information, culture condition used 

and maximum passage reached. Once monolayer cultures reached P+10 they were considered established cell lines and given a cell line ID. Matrigel embedded cultures were 

given cell line IDs at P+5. Otherwise primary cell cultures were labelled with the PDX ID from which they were derived. bFGF; Basic Fibroblast Growth Factor, G2; Grade 2, G3; 

Grade 3, LMS; Leiomyosarcoma, N/A; Not Available, PDGF; Platelet-Derived Growth Factor, PDX; Patient-Derived Xenograft, RP; Retroperitoneum, RT; Radiotherapy, uLMS; 

uterine Leiomyosarcoma. 



141 
 

 

Figure 4.8. Schematic of PDX-derived cell culture models. PDXs which gave rise to short-term primary 

cultures or long-term established cell models showing timescales to reach highest in vitro passage. P0; in 

vivo passage 0, P1; in vivo passage 1, P+X; in vitro passage X.  

 

4.3.1 ICR-LMS-1 

ICR-LMS-1 was established from a P0 tumour of the uterine LMS PDX model SARC-

369 (Table 4.2). Dissociated, mouse cell depleted cells from this PDX were cultured for 

a period of five weeks under Y-media test conditions as well as DMEM based media. 

Adherence of the majority of cells occurred after 5 days and proliferative colonies were 

observed in non-coated flasks with Y-media without the addition of PDGF and bFGF 

after approximately 30 days (Figure 4.9A). Initial primary cultures of SARC-369 showed 

morphological heterogeneity, with proliferative spindle cells which arranged in fascicles 

in (Figure 4.9A bottom) addition to senescent, enlarged cells (Figure 4.9A top left) 

which were observed throughout the first 10 passages. Other tightly clustered colonies 

were observed which did not show a spindle cell morphology (Figure 4.9A top right). 

Proliferative cells were eventually observed under other tested monolayer conditions 

tested although growth was notably slower and cell viability assays showed DMEM 

cultured SARC-369 cells had lower viability compared to Y-media cultured cells (data not 

shown). Thus, SARC-369 cells were maintained and expanded in Y-media on non-

coated flasks, cryopreserving at regular intervals. 
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SARC-369 cells were passaged 10 times in continuous culture for a period of 

approximately 16 weeks, at which point these cells were labelled ICR-LMS-1 (Figure 

4.8). For use in subsequent assays, only cells beyond this population were labelled as 

ICR-LMS-1 for reproducibility. ICR-LMS-1 continued to proliferate for at least 9 months 

in culture, maintaining elongated spindle cell morphology of the primary cultures (Figure 

4.9B) and have reached at least 35 passages (P+35). ICR-LMS-1 cells were able to 

proliferate in an exponential growth pattern, showing a doubling time of 4.4 days (Figure 

4.9C). Additionally after viably freezing ICR-LMS-1 cells were still able to proliferate upon 

thawing. 

 

 

Figure 4.9. Morphology and growth rate of ICR-LMS-1 cell line. (A) Phase contrast images of SARC-369 

primary cell culture with 4 fields of view at in vitro passage 0 (P+0) after 30 days in culture, scale bar = 300 
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µm. (B) Phase contrast images of ICR-LMS-1 established cell line with 4 points of view at in vitro passage 

18 (P+18), scale bar = 300 µm. (C) Cell count fold change of ICR-LMS-1 cells at in vitro passage 15 (P+15) 

over 14 days normalised to day 1, n=3, fold change measurements were fitted to a Malthusian exponential 

growth curve equation via GraphPad Prism. Red arrows denote areas of interest. 

 

4.3.2 ICR-LMS-4 

ICR-LMS-4 was established from a P0 tumour of the uterine LMS PDX model SARC-

401 (Table 4.2). Dissociated, mouse cell depleted cells from this PDX were cultured for 

a period of five weeks in Y-media monolayer test conditions. After five days, the majority 

of cells adhered to the flasks in all conditions. Proliferative colonies were seen after 

approximately 23 days in non-coated conditions without PDGF and bFGF and showed 

morphological heterogeneity in terms of cell shape and also cell size (Figure 4.10A). 

The majority of cells demonstrated spindle cell morphology and were loosely clustered 

(Figure 4.10A top right, bottom left). However, there were also some tightly clustered 

colonies arranged in fascicular bundles (Figure 4.10A top left) as well as enlarged cells 

with elongated lamellipodia (Figure 4.10A bottom right) which were observed in culture 

throughout passages 1 to 8. Proliferative colonies were also noted in cultures with PDGF 

and bFGF at the same timepoint and demonstrated matching morphology to cultures 

without PDGF and bFGF. Cultures on Matrigel coated flasks eventually showed 

proliferative colonies at a later timepoint. Non-coated monolayer SARC-401 cells in Y-

media without PDGF and bFGF were therefore chosen for further expansion.  

Once over passage 10, after approximately 17 weeks in culture, cells were termed ICR-

LMS-4 and continued to proliferate for another 22 weeks at least, reaching up to passage 

38 with a total culture time of at least 8 months (Figure 4.8). During expansion as 

established cells no reduction in growth rate was observed. ICR-LMS-4 cells showed a 

more homogenous morphology compared to SARC-401 primary cultures although two 

distinct morphologies could still be observed; elongated spindle cells (Figure 4.10B top 

right & bottom) and rounded cells with visible nuclei (Figure 4.10B top left & bottom). 

ICR-LMS-4 showed exponential growth with a doubling time of 3.2 days (Figure 4.10C). 

Additionally, ICR-LMS-4 cells could be cryopreserved and thawed to continue growth in 

vitro.  
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Figure 4.10. Morphology and growth rate of ICR-LMS-4 cell line. (A) Phase contrast images of SARC-

401 primary cell culture with 4 fields of view at in vitro passage 0 (P+0), scale bar = 300 µm. (B) Phase 

contrast images of ICR-LMS-4 established cell line with 4 points of view at in vitro passage 16 (P+16), scale 

bar = 300 µm. (C) Cell count fold change of ICR-LMS-4 cells at P+16 over 14 days normalised to day 1, n=3, 

fold change measurements were fitted to a Malthusian exponential growth curve equation via GraphPad 

Prism. Red arrows denote areas of interest. 

 

4.3.3 ICR-LMS-6 

ICR-LMS-6 cells were established from a P0 tumour of the LMS PDX model SARC-409 

(Table 4.2). Mouse cell depleted cells from SARC-409 were cultured in monolayer test 

conditions for a period of five weeks and similar to other lines, cells showed adherence 

after 5 days in all conditions. After 4 weeks in culture, proliferative colonies were 
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observed in cultures grown on non-coated flasks in Y-media without PDGF and bFGF, 

showing a heterogenous morphology with some rounded, slightly spindle shaped cells 

(Figure 4.11A top left), some tightly packed, elongated spindle cells (Figure 4.11A 

bottom left), other loose elongated spindle cells (Figure 4.11A top right) and enlarged 

cells with elongated lamellipodia and stress fibres (Figure 4.11A bottom right). 

Proliferation at a similar timepoint was also observed in SARC-409 cultures grown in Y-

media with PDGF and bFGF and also demonstrated matching morphologies while 

Matrigel coated cultures only later produced proliferative but slower growing colonies. 

For this reason, cells growing on non-coated flasks in Y-media without PDGF and bFGF 

were chosen for further expansion.  

After approximately 13 weeks, SARC-409 cells were passaged 10 times at which these 

cells were labelled as ICR-LMS-6 and continued to proliferate for a further 4 weeks 

reaching at least passage 16 with a total culture time of approximately 5 months (Figure 

4.8). Once generated ICR-LMS-6 cells showed no reduction in growth rate upon 

successive passaging. ICR-LMS-6 cells showed less morphological heterogeneity 

compared to primary SARC-409 cells, with the majority of cells showing a spindle cell, 

slightly elongated morphology which do not cluster into colonies (Figure 4.11B). ICR-

LMS-6 showed exponential growth with a doubling time of 4.2 days and could be 

cryopreserved and thawed to continue cultures (Figure 4.11C).  
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Figure 4.11. Morphology and growth rate of ICR-LMS-6 cell line. (A) Phase contrast images of SARC-

409 primary cell culture with 4 fields of view at in vitro passage 0 (P+0), scale bar = 300 µm. (B) Phase 

contrast images of ICR-LMS-6 established cell line with 4 points of view at in vitro passage 13 (P+13), scale 

bar = 300 µm. (C) Cell count fold change of ICR-LMS-6 cells at P+13 over 14 days normalised to day 1, n=3, 

fold change measurements were fitted to a Malthusian exponential growth curve equation via GraphPad 

Prism. Red arrows denote areas of interest. 

 

4.3.4 3D matrigel embedded cultures ICR-LMS-3 and ICR-LMS-5 

In addition to monolayer cultures, dissociated mouse cell depleted cells from the uterine 

LMS PDX model SARC-369 were also cultured in a hydrogel embedded format in order 

to establish a 3D, patient-matched model to ICR-LMS-1 (Table 4.2). 3D cancer organoid 

models usually utilise hydrogel scaffolds such as Matrigel with a media supplemented 
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with growth factors specific to resident adult stem cells (LeSavage et al. 2022). Recently, 

a report outlined the specific media components which supported the growth of lung 

adenocarcinoma organoids in Matrigel domes (Sachs et al. 2019). To first assess 

whether the process of PDX tissue dissociation and mouse cell depletion will still yield 

viable organoid cultures, I implemented this protocol with three NSCLC PDX models 

TM1244, TM199 and TM219 acquired from the Jackson Laboratory 

(http://tumor.informatics.jax.org/mtbwi/pdxDetails.do?modelID=TM01244) 

(http://tumor.informatics.jax.org/mtbwi/pdxDetails.do?modelID=TM00199) 

(http://tumor.informatics.jax.org/mtbwi/pdxDetails.do?modelID=TM00219). Organoid 

cultures were successfully established from all three PDX models after 21 days (Figure 

4.12), highlighting that PDX tissue is still a viable source of tissue to generate 3D 

organoids.  
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Figure 4.12. PDX-derived NSCLC organoid culture morphology. Brightfield images of dissociated 

NSCLC cells from PDX models cultured in matrigel and surrounded with NSCLC media. Images were taken 

at day 1 and at day 21. Scale bars = 400 µm 

 

Little is known about the stem cell niches from which sarcomas arise, although due to 

the fact that STS including LMS often metastasise to the lungs it was hypothesised that 

similar culture conditions may support the growth of LMS organoids representing 

advanced disease. Therefore dissociated mouse cell depleted SARC-369 cells were 

cultured in matrigel domes surrounded by either the NSCLC organoid media or Y-media 

(Figure 4.13). After 21 days, expanding spheres were observed in cultures containing 
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Y-media but no growth was observed in cultures containing NSCLC organoid media 

(Figure 4.13), which were maintained for a further 30 days before discarding due to lack 

of growth. Cells were also cultured in matrigel domes surrounded with PDGF and bFGF 

supplemented Y-media, although no difference time until growth or growth rate was 

observed (data not shown).  

 

 

Figure 4.13. SARC-369 hydrogel embedded culture optimisation. Dissociated cells from SARC-369 PDX 

tumour were seeded into Matrigel and surrounded by lung organoid media or Y-media. Brightfield images 

were taken at day 1 and at day 21. Scale bar = 400 µm.  

 

SARC-369 cells began to grow in undiluted Matrigel droplets in loose spheres which 

were mechanically and enzymatically dissociated after 1 month and then again every 

two weeks in order to expand cultures or for routine passaging. Spheroids were 

cryopreserved at low passages (P0-5). After 5 passages 3D SARC-369 cultures were 

termed ICR-LMS-3 which still formed spherical structures (Figure 4.14A). To assess the 

extent of which the organoid-like cultures can recapitulate the histology of the PDX 

tumour of origin, sections were stained with haematoxylin and eosin (H&E). Similar to 
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the PDX tumour, ICR-LMS-3 shows pleomorphic, hyperpigmented nuclei with some 

areas of scant cytoplasm particularly in the centre of the spheroid and other areas of 

multinucleated cells (Figure 4.14B). ICR-LMS-3 spheroids do not have well defined 

edges and instead show cellular blebbing at the boarders of the spheroid.  

 

Figure 4.14. ICR-LMS-3 morphology and histology. (A) Brightfield images of ICR-LMS-3 established 

Matrigel embedded 3D culture 2 weeks after seeding. Scale bar = 750 µm. (B) H&E staining of ICR-LMS-3 

and SARC-369 PDX tumour from which ICR-LMS-3 was derived. Scale bar = 100 µm. (C) IHC staining of 

ICR-LMS-3 for a-SMA, Ki-67, CC3 and CAIX. Scale bar = 100 µm. α-SMA, Alpha Smooth Muscle Actin, 

CAIX; Carbonic Anhydrase IX, CC3; Cleaved Caspase 3, PDX; Patient-Derived Xenograft.  

 

A prominent feature of spheroid cultures is the ability to mimic spatial compartments and 

nutrient gradients. In order to observe the spatial characteristics of ICR-LMS-3, IHC 

staining was conducted for biomarkers of smooth muscle (α-SMA) to confirm these cells 
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retain LMS smooth muscle lineage, as well biomarkers of proliferation (Ki-67), apoptosis 

(cleaved caspase 3 (CC3)) and hypoxia (Carbonic anhydrase IX (CAIX)). While not 

homogenously expressed, α-SMA expression can be seen throughout the spheroids, 

without localisation (Figure 4.14C). Ki-67 can also be observed throughout the organoid, 

highlighting the proliferative capacity of ICR-LMS-3, although strong Ki-67 staining is not 

observed in the centre of the spheroids. Low expression of CC3 is seen and largely 

localised to the centre of the spheroid, whilst the spheroid shows a high expression of 

the hypoxic marker CAIX, which is only lessened at the outer edge of the spheroid. 

Therefore, ICR-LMS-3 spheroids have a steep hypoxic gradient but with proliferative 

cells throughout, mimicking the hypoxic environment characteristic of tumour tissue in 

vivo. ICR-LMS-3 could therefore be used to assess the impact of hypoxia on drug 

response and biochemical processes which might contribute to LMS progression.  

In addition to ICR-LMS-3, dissociated cells from a non-uterine LMS PDX model, SARC-

400 were cultured in matrigel domes, establishing expanding spheroid structures when 

cultured with PDGF and bFGF, with well-defined edges which were termed ICR-LMS-5 

upon undergoing subculture every two weeks for at least 5 passages (Table 4.2) (Figure 

4.15A). Examination of sections stained with H&E shows that ICR-LMS-5 spheroids have 

well defined edges with dense cellular areas and monotonous nuclei (Figure 4.15B). 

Additionally, some lumens within the spheroids can be observed suggesting some 

degree of self-organisation (Figure 4.15B). 
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Figure 4.15. ICR-LMS-5 morphology and histology. (A) Brightfield images of ICR-LMS-5 Matrigel 

embedded 3D cultures. Scale bar = 750 µm. (B) H&E stain of ICR-LMS-5 cultures. Scale bar = 100 µm.  

 

4.3.5 ICR-LMS-1 and ICR-LMS-3 form tumours in mice 

An important factor to consider when using any cell line is whether the model is able to 

form tumours in vivo and if such tumours recapitulate the disease from which the cell line 

was derived from. To explore this, and to test whether the tumourigenic capacity of cell 

lines might be affected by culture format, PDX matched cell lines ICR-LMS-1 (2D) and 

ICR-LMS-3 (3D) were dissociated into single cell suspensions, suspended in Matrigel 

and the same number of cells were injected into mice. Tumours were observed as early 

as 25 days after injection with ICR-LMS-3 cells and showed a similar growth rate to the 

PDX of origin SARC-369 while tumours were only observed in ICR-LMS-1 injected 

xenografts 71 days after inoculation (Figure 4.16A). Once established however, ICR-

LMS-1 xenografts showed a similar growth rate to ICR-LMS-3 xenografts and SARC-

369 PDX.  

Once tumours reached approximately 1000mm3 in size, they were harvested and 

sections of the tumours were stained with H&E to assess histological similarities or 
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discrepancies to the PDX of origin (SARC-369P0). Compared to SARC-369, ICR-LMS-

3 xenografts showed a similar histology with dense cellular areas and pleomorphic, 

occasionally hyperpigmented nuclei (Figure 4.16B). ICR-LMS-1 xenografts showed two 

distinct histological regions, the first containing hypercellular regions, interspersed with 

spindle cells with enlarged nuclei (Figure 4.16C top)and the second containing spindle 

cells with elongated nuclei, arranged in fascicle structures (Figure 4.16C bottom). ICR-

LMS-3 was able to establish in vivo tumours quickly compared to ICR-LMS-1, which also 

matched SARC-369 histology suggesting that 3D cultures are better able to adapt to in 

vivo growth and maintains tissue architecture. While ICR-LMS-1 are able to establish 

tumours which is consistent with LMS based on histology, this xenograft does show a 

distinct region of histology, suggesting that a clone might have been selectively enriched 

during 2D culture.   
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Figure 4.16. In vivo tumourigenicity of ICR-LMS-1 and ICR-LMS-3 cell lines. (A) Tumour volume of 

SARC-369, ICR-LMS-1 or ICR-LMS-3 xenografts. Day 1 denotes the first day that SARC-369 presented 

with growing tumour or the day of ICR-LMS-1/ICR-LMS-3 inoculation. (B) H&E stains of both SARC-369 

original PDX and ICR-LMS-3 xenograft. Scale bar = 100 µm. 20x magnification. (C) H&E stains of ICR-LMS-

1 xenograft representing two points of view of the same tumour sample. Scale bar = 100 µm. 20x 

magnification. 

 

4.3.6 Short-term primary cultures 

Upon culturing dissociated, mouse depleted cells from the non-uterine LMS PDX model 

SARC-323 in 2D, SARC-323 cells adhered but did not proliferate, even when maintaining 

cultures for 2 months. However, if SARC-323 cells were plated on Matrigel coated flasks 

and with Y-media supplemented with PDGF and bFGF, cells adhered and underwent 

proliferation which was observed after 2 weeks in culture.  SARC-323 cells showed an 
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elongated spindle cell morphology (Figure 4.17A) and were continually cultured for a 

further 6 weeks during which no significant change in morphology occurred until the 

onset of senescence after 8 passages (Figure 4.8) (Table 4.2). Additionally, in vitro 2D 

cultures were successfully established from the uterine LMS PDX model SARC-393, 

showing proliferative cells on non-coated flasks without the addition of PDGF or bFGF 

after 3 weeks in culture (Figure 4.17B). SARC-393 showed an irregular morphology 

made up of large cells with spindle projections (Figure 4.17B). SARC-393 continued to 

grow for at least 4 months in culture but has not yet been passaged more than 10 times 

and therefore has been designated as a primary short term culture for this thesis (Figure 

4.8) (Table 4.2). Unfortunately, while SARC-322, SARC-356, SARC-376, SARC-414 

and SARC-416 dissociated cells all adhered to plastic following culture in monolayer 

conditions, they did not proliferate and were eventually discarded due to eventual cell 

detachment. 
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Figure 4.17. Morphology of SARC-323 and SARC-393 primary cultures. (A) Phase contrast images of 4 

points of view for SARC-323 cells at P+0. Scale bar = 300 µm. (B) Phase contrast images of 4 points of view 

for SARC-393 cells at P+0. Scale bar = 300 µm. Red arrows denote areas of interest. 

 



157 
 

4.4 Verification of PDX-derived LMS cells 

Upon the establishment of a panel of PDX-derived LMS cells, both long term and short 

term lines were tested for the presence of contaminating murine fibroblasts which might 

eventually overgrow the tumour cell population and are especially difficult to identify in 

3D conditions. In order to detect mouse DNA, a PCR reaction was performed with 

primers specific to human or murine PTGER2. DNA was collected from SK-UT-1 cells 

as a positive control for human DNA and negative control for murine DNA and vice versa 

for NIH-3T3 cells. Following PCR amplification, the PCR products were separated via 

electrophoresis. The presence of a clear band in human PTGER2 amplifying conditions 

for ICR-LMS-1, SARC-323 cell culture, ICR-LMS-3, ICR-LMS-4, ICR-LMS-6 and SARC-

393 cell culture, with no band under murine PTGER2 amplifying conditions indicates that 

these cultures do not contain murine cells and are human in origin (Figure 4.18A). 

Meanwhile, the LMS PDX-derived 3D culture ICR-LMS-5 showed a clear band when 

murine PTGER2 was amplified and no band when human specific primers were used 

indicating that this line is murine in origin and not composed of human tumour cells 

(Figure 4.18A). Therefore ICR-LMS-5 was discarded and was not characterised further 

or used for subsequent assays. 

 

 

Figure 4.18. Identification of mouse contaminants in PDX-derived LMS cultures and a-SMA 

expression. (A) PCR amplification of human or murine PTGER2 with DNA isolated from ICR-LMS-1, SARC-

323 cell culture, ICR-LMS-3, ICR-LMS-4, ICR-LMS-5, ICR-LMS-6, SARC-393 cell culture, SK-UT-1 and NIH-

3T3 cells. A band of 189bp indicates amplification of target. (B) Immunoblot of ICR-LMS1, SARC-323, ICR-
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LMS-4, ICR-LMS-6, SARC-393, SK-UT-1, MRC-5 and PC-9 against α-SMA. α-SMA; Alpha Smooth Muscle 

Actin, PTGER2; Prostaglandin E Receptor 2 

 

Next, in order to determine to what extent the 2D LMS cell cultures express smooth 

muscle specific markers, western blotting was performed for α-SMA on lysates from ICR-

LMS-1, SARC-323, ICR-LMS-4, ICR-LMS-6 and SARC-393. Here PC9, a NSCLC 

immortalised line, was used as a negative control while the LMS cell line SK-UT-1 and 

fibroblast cell line MRC-5 were used as positive controls of α-SMA expression, although 

only moderate expression of α-SMA has been reported in MRC-5. ICR-LMS-1 had the 

highest intensity of α-SMA in comparison to other samples tested and SARC-323 and 

ICR-LMS-4 also showed a noticeable band for α-SMA, indicating that these cell cultures 

retain smooth-muscle identity (Figure 4.18B). ICR-LMS-6 and SARC-323 however only 

showed a weak band at higher exposures indicating these cultures do not express α-

SMA to the same extent. 

Further characterisation of the established LMS PDX-derived cell cultures was achieved 

via STR and proteomic profiling. To start with, STR analysis was conducted in order to 

check the similarity between the PDX tissue of origin and the respective cell culture and 

rule out the possibility of other human cell line contamination. ICR-LMS-1 and ICR-LMS-

3 maintained identical loci compared to the PDX tissue of origin, SARC-369, as did ICR-

LMS-6 and SARC-393 cell culture compared to their respective PDX models of origin 

(Table 4.3). Therefore, these cultures are comprised of cells from the PDX tissue and 

have not undergone any substantial genetic drift which might show a change in STR loci. 

However, SARC-323 cell culture as well as ICR-LMS-4 were not identical to the STR loci 

of their respective PDX of origin. ICR-LMS-4 shows a loss of heterozygosity at two loci 

while SARC-323 shows a gain of heterozygosity at four loci, although the percentage of 

similarity between the PDX and cell line profiles is over 80% (87.5 and 93.75% 

respectively for SARC-323 and ICR-LMS-4 cultures) and therefore can be considered 

as biological derivatives (Capes-Davis et al. 2013). STR profiles from all LMS PDX-

derived cell cultures were compared to a database of cell lines via the CLASTR 

Cellosaurus STR similarity search tool and showed no matches exceeding 76% (Robin, 

Capes-Davis, and Bairoch 2020). All cell line database matches above 70% have not 

been used in the laboratory and are therefore unlikely to be contaminants.  
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 SARC-369P0 
PDX 

ICR-LMS-1 ICR-LMS-3 
SARC-323P0 

PDX 
SARC-323  cell 

culture 
SARC-401P0 

PDX 
ICR-LMS-4 

SARC-409P0 
PDX 

ICR-LMS-6 
SARC-393P1 

PDX 
SARC-393 cell 

culture 

D8S1179 12,13 12,13 12,13 12,14 12,14 11,12 11,12 10,10 10,10 13,15 13,15 

D21S11 32.2,33.2 32.2,33.2 32.2,33.2 28,29 28,29 27,29 27,29 28,31.2 28,31.2 29,30 29,30 

D7S820 9,10 9,10 9,10 13,13 10,13 10,11 10,11 8,8 8,8 11,11 11,11 

CSF1PO 12,12 12,12 12,12 10,11 10,11 10,11 10,11 10,12 10,12 11,11 11,11 

D3S1358 15,16 15,16 15,16 15,18 15,18 15,15 15,15 15,17 15,17 14,19 14,19 

TH01 9.3,9.3 9.3,9.3 9.3,9.3 9,9 7,9 7,9.3 9.3,9.3 9,9 9,9 9.3,9.3 9.3,9.3 

D13S317 11,11 11,11 11,11 12,13 12,13 10,12 10,12 11,11 11,11 11,11 11,11 

D16S539 11,11 11,11 11,11 11,12 11,12 11,13 11,13 12,12 12,12 14,14 14,14 

D2S1338 20,20 20,20 20,20 21,21 21,23 17,17 17,17 16,16 16,16 18,18 18,18 

D19S433 13,13 13,13 13,13 14,14 14,14 15,15 15,15 13,13 13,13 13,15 13,15 

vWA 18,18 18,18 18,18 16,16 16,16 15,19 15,19 17,17 17,17 17,17 17,17 

TPOX 11,11 11,11 11,11 8,8 8,8 9,9 9,9 8,8 8,8 8,8 8,8 

D18S51 13,15 13,15 13,15 16,19 16,19 14,16 14,14 13,15 13,15 14,14 14,14 

AMEL X,X X,X X,X X,X X,X X,X X,X X,X X,X X,X X,X 

D5S818 12,12 12,12 12,12 9,11 9,11 12,13 12,13 12,13 12,13 11,11 11,11 

FGA 18,18 18,18 18,18 22,22 20,22 22,22 22,22 18,18 18,18 25,25 25,25 

% Similarity 100% 87.5% 93.75 100% 100% 

 

Table 4.3. STR profiling of PDX tumours and PDX-derived in vitro cultures. STR loci of PDX tumours and respective PDX-derived short or long term in vitro cultures 

including SARC-369 PDX, ICR-LMS-1, ICR-LMS-3, SARC-323 PDX and cell culture, SARC-401 PDX, ICR-LMS-4, SARC-409 PDX, ICR-LMS-6, SARC-393 PDX and cell 

culture.  Loci in red indicate discrepancies between PDX tissue and respective cell culture.  PDX; Patient-Derived Xenograft, STR; Short Tandem Repeat. 
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To assess if PDX-derived LMS primary cultures grown in vitro (below passage 10, P <10) 

or established PDX-derived LMS cells (beyond passage 10, P ≥ 10) retain the LMS 

identity of the PDX models, proteomic profiling by two PhD students in our lab: Yuen Bun 

Tam and Madhumeeta Chadha, was conducted on all LMS cell cultures which were 

generated in this chapter. PDX-derived LMS cells were not assessed beyond passage 

20. Proteomic profiling was also conducted on the immortalised LMS cell lines SK-UT-1, 

SK-UT-1b, and the patient-derived cell lines Shef-LMS 01 W1 and Shef-LMS 01 WS 

(Salawu et al. 2016) to assess the similarities and differences between LMS cell lines 

and the patient-derived models in this chapter. First, proteins associated with expression 

in smooth muscle tissue including caldesmin, desmin, vinculin and vimentin were present 

in all PDX tissue, PDX-derived cell lines as well as SK-UT-1 and SK-UT-1b cells but 

desmin was not detected in the patient-derived Shef-LMS 01 W1 and Shef-LMS 01 WS 

cell lines. When compared, no significant difference was observed in caldesmon, 

desmin, vinculin or vimentin abundance (Figure 4.19A-D). SK-UT-1 and SK-UT-1b cells 

specifically displayed a slightly lower abundance of caldesmon compared to all other 

samples and was lower than Shef-LMS 01 W1 and Shef-LMS 01 WS (Figure 4.19A). 

Additionally, while not significant, the abundance of desmin was slightly higher in PDX 

tissue compared to PDX-derived cells as well as SK-UT-1 and SK-UT-1b cells (Figure 

4.19B). Together these results indicate that the LMS PDX-derived cell lines established 

in this chapter retain the LMS subtype characteristics of PDX models tissue and are also 

comparable to established LMS cell lines. 

Next, to identify the biological differences between PDX tissue and PDX-derived cell 

cultures and also the differences between PDX-derived cell cultures and LMS cell lines, 

a SAM analysis was conducted to identify proteins which have a significant enrichment 

in either group. These significant proteins were then analysed via g:Profiler over-

representation analysis and showed that proteins associated with mTORC1 signalling 

and mitotic spindle were enriched in LMS PDX-derived cells compared to LMS PDX 

models, however no specific hallmarks were found to be significantly enriched in PDX 

tissue compared to the derived in vitro cells (Figure 4.19E). Proteins associated with 

mTORC1, epithelial to mesenchymal transition, hypoxia and metabolic pathways such 

as glycolysis and oxidative phosphorylation were enriched in PDX derived cells 

compared to LMS cell lines, meanwhile no genes were found to be significantly elevated 

in LMS cell lines (Figure 4.19F). Together these results demonstrate that there are 

distinct biological pathways operating in PDX-derived LMS cultures established in this 

chapter versus  LMS cell lines including the patient derived lines Shef-LMS 01 W1 and 

Shef-LMS 01 WS. 
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Figure 4.19. Proteomic comparison of LMS PDX model tissue, PDX-derived cells and LMS cell lines. 

Log2 intensity values of smooth muscle associated proteins (A) caldesmon, (B) desmin, (C) vinculin and (D) 

vimentin in PDX FFPE tissue, PDX-derived cells below passage 10, PDX-derived cells beyond passage 10 

and LMS cell lines invluding SK-UT-1, SK-UT-1b, Shef-LMS01 W1 and Shef-LMS-1 Ws. (E) Over-

representation analysis plot showing hallmark pathways upregulated in PDX-derived cells compared to PDX 

tissue after mutual comparison. (F) Over-representation analysis plot showing hallmark pathways 

upregulated in LMS PDX-derived cells compared to LMS cell lines SK-UT-1, SK-UT-1b, Shef-LMS 01 W1 

and Shef-LMS-1 Ws after mutual comparison. Cell lysate samples were prepared for mass spectrometry 

analysis by myself. Mass spectrometry data was acquired and processed via DIA-NN by Yuen Bun Tam, 

Madhumeeta Chadha. DIA-NN output data was further processed by myself to assess log2 protein 

abundance. SAM and enrichment analysis was conducted by myself. 
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4.5 Discussion 

In this chapter, a PDX-derived in vitro pipeline was optimised using a synovial sarcoma 

PDX model which was then applied to a total of 12 LMS PDX tumours from different 

models. These LMS PDX tumours were dissociated and cultured as monolayers in vitro 

with a success rate of initial, short-term culture (<10 passages) of 42% (5 of 12 PDX 

samples). Of these short-term cultures, 4 out of 5 were able to continue proliferating to 

or past 10 passages without the onset of senescence giving a long term culture 

establishment rate of 33% (4 out of 12 PDX samples). These success rates improve 

upon previously reported studies in generating sarcoma and other cancer lines directly 

in monolayer from tissue resections which demonstrated success rates of 6-15% and is 

comparable to the success rate of long term LMS cultures reported by Salawu and co-

workers (Bruland, Fodstad, and Pihl 1985; Giard et al. 1973; Salawu et al. 2016). Cell 

line establishment rates are often higher when derived from metastatic tumours in 

comparison to primary tumours so this may partially explain the lower rates reported in 

previous studies when culturing directly as monolayers compared to this study which 

used samples representing metastatic disease (Bruland, Fodstad, and Pihl 1985; Giard 

et al. 1973). The in vitro establishment rates in this study are lower than reported in a 

recent study which demonstrated a 58% culture rate from a range of translocation 

associated sarcomas, although the reported rate represents the number of proliferating 

primary cultures after initial seeding and therefore does not reflect the rate of long-term 

culture establishment (Brodin et al. 2019). 

Within this study, information regarding tumour grade of biopsies was not available for 

all samples. However it is noted that out of five generated LMS in vitro cultures, three of 

these were derived from PDXs of grade 3 tumour biopsies and the grade of the other 

two models is not available. While the amount of confirmed grade 2 and grade 1 patient 

biopsies used in this study was lower than the number of confirmed grade 3 biopsies, it 

is possible that in vitro cultures enrich for samples which represent aggressive disease. 

Salawu and colleagues previously reported that of seven STS cell lines, five were 

established from grade 3 tumours and two were established from grade 2 tumours 

(Salawu et al. 2016). Tumour grading of the remaining biopsy samples presented in this 

study should be done in order to support analysis of the effect of tumour grade on in vitro 

establishment rate. 

ICR-LMS-1 and ICR-LMS-4 represent uterine LMS cell line models which were derived 

from PDXs of baseline trial biopsies, both of which were grade 3 tumours. Additionally 

the patient specimen from which ICR-LMS-4 was ultimately derived from was treatment 
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naïve while the patient specimen which ultimately gave rise to ICR-LMS-1 had 

undergone three cycles of doxorubicin treatment prior to biopsy. Therefore these models 

represent tumours different stages of LMS treatment pathways. Meanwhile, ICR-LMS-6 

was ultimately derived from a non-uterine stomach originating LMS patient after three 

cycles of gemcitabine and pembrolizumab treatment during the GEMMK trial although 

the patient had received no other treatment prior to trial enrolment. Therefore the three 

long term LMS cell lines in this study represent two anatomical subgroups of LMS 

(gynaecological and digestive) which were previously shown via transcriptomic profiling 

to also cluster into separate molecular subgroups, therefore it would be particularly 

important to assess differences in these two groups regarding drug response (Anderson 

et al. 2021). Unfortunately, no PDXs which were derived from vascular LMS patients 

were able to proliferate in culture (SARC-322, SARC-356, SARC-414 and SARC-416) 

which suggests that these LMS cells may require distinct culture conditions to allow for 

expansion.  

The cell lines described in this study have a doubling time of 3.2 to 4.4 days which is 

markedly slower than a previous study of STS cell lines established from patient tissue 

which reported a doubling time of 27.44 and 44.62 hours for LMS cell lines and 27.44-

63.97 hours across all cell lines described (Salawu et al. 2016). The reason behind this 

slow proliferation may be due to cell extrinsic factors such as culture media, growth 

factors composition and culture format or could be due to cell intrinsic factors such as 

maintenance of slowly proliferating subclones. Cancer cell lines have significantly 

enhanced proliferation rates compared to primary cells or tumour doubling times due to 

increased nutrient availability and selection for fast growing subclones (Kaur and Dufour 

2012; Nakamura et al. 2011; Rööser, Pettersson, and Alvegård 1987). Therefore, the 

slower growth rates of the PDX-derived LMS cells presented in this study may represent 

more clinically relevant models of tumour growth kinetics. This would additionally impact 

phenotypic responses to chemotherapy agents as these preferentially kill actively 

proliferating cells, which may explain the enhanced sensitivity of the synovial sarcoma 

cells lines SYO-1 and HS-SY-II to doxorubicin compared to the PDX-derived synovial 

sarcoma line ICR-SS-1. It remains to be seen if prolonged culture of the established 

PDX-derived lines will shorten doubling time by clonal selection although passages no 

higher than 20 were deliberately used for experimental assays in order to minimise this 

possibility.  

Following the results of this study, the impact of several different culture media 

components and growth factors on proteomic profiles should be explored to determine 

whether certain conditions are better able to maintain tumour characteristics rather than 
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relying on effect on cell proliferation rate alone to inform culture conditions. The detection 

of smooth muscle markers in PDX-derived primary LMS culture condition screens could 

be employed here similar to a recent study which assessed differentiation status of PDX-

derived RMS primary cells which was a consideration in choosing appropriate cell culture 

conditions (Manzella et al. 2020).  

To determine growth conditions in organoid-like matrigel embedded cultures, a NSCLC 

organoid media was utilised in parallel to Y-media on dissociated SARC-369 cells and 

showed spheroid growth only in Y-media cultures. The observation that NSCLC specific 

organoid media did not permit for spheroid growth is consistent with the current 

consensus that epithelial cancer organoid conditions are distinct from mesenchymal cell 

niches, thus leading to difficulty in translating organoid technology to sarcoma modelling 

(Colella et al. 2018; LeSavage et al. 2022; Gaebler et al. 2019; Meister et al. 2022). The 

long-term 3D LMS model presented in this chapter ICR-LMS-3 demonstrated a similar 

histology to the PDX of origin, consistent with studies establishing organoid cultures from 

PDX models in other cancer (L. Huang et al. 2020; Pham et al. 2021; Guillen et al. 2022). 

Additionally, ICR-LMS-3 showed spatial arrangement of biological process, such as 

strong hypoxic activation of CAIX within spheroids and an outer layer of slight hypoxia, 

with an inner core lacking proliferative cells. This result demonstrates that ICR-LMS-3 

can model nutrient gradients and hypoxic conditions which are often observed in solid 

tumours (Cairns, Harris, and Mak 2011). 

Both the patient and PDX matched cell cultures ICR-LMS-1 and ICR-LMS-4 

demonstrated tumourigenicity in vivo, both establishing tumours when injected as cell 

suspensions. Interestingly the 3D model ICR-LMS-3 was able to establish tumours faster 

than ICR-LMS-1 suggesting that the 3D model is better able to adapt to in vivo growth 

compared to monolayer cells. ICR-LMS-3 xenografts displayed a similar histology to the 

PDX of origin which is commonly reported in studies utilising organoid derived xenografts 

(Jian et al. 2020; Calandrini et al. 2021). However ICR-LMS-1 cell xenografts showed 

some areas of distinct histology not observed in the original PDX or the ICR-LMS-3 

xenograft, which suggests that in vitro culture may induce phenotypic changes or select 

for the outgrowth of a cell population which is not predominant in vivo.   

Determining the outgrowth of cells in 3D culture was difficult due to the inability to 

distinguish between murine fibroblasts and human cells as well as live and dead cells 

(other than observing proliferation). Some cultures showed spindle cells invading 

through the Matrigel and forming sheets but did not grow as cellular aggregates and thus 

were not continued for study. Potentially to improve on the establishment rate reported 
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in this study, early 3D cultures showing outgrowth of cells with no structure could be 

removed from Matrigel and cultured as monolayers in a similar system to Bruland and 

colleagues which greatly improved establishment rates compared to direct monolayer 

culture (Bruland, Fodstad, and Pihl 1985). Additionally, these cultures should be tested 

for the presence of murine cells as the 3D conditions used in this study were shown to 

support murine spheroid growth. Following PCR based identification of human or murine 

DNA, ICR-LMS-5 was shown to be heavily contaminated with mouse cells. In fact, no 

human DNA could be detected in this PCR assay, highlighting the importance of this test 

to prevent the erroneous labelling of such cultures as PDX-derived LMS cells. 

Through the process of cell line establishment, cultures can become contaminated with 

stromal cells such as fibroblasts which might eventually become the dominant population 

in the cell line. Additionally, cultures can be cross contaminated with frequently used cell 

lines, other primary cells or even directly mislabelled and if not detected early, can lead 

to highly misleading potentially erroneous results (Alston-Roberts et al. 2010). For 

example, HeLa cells, one of the most widely used human cervical cancer cell line has 

previously been detected in over 116 individual cell lines (J. Lin et al. 2019; Gartler 1968). 

To avoid this issue, STR profiling is recommended in order to authenticate cell lines by 

comparison to a STR profile database or by the comparison to a reference sample of 

origin such as patient tissue (Souren et al. 2022; Almeida, Cole, and Plant 2016). In a 

study of 2,279 STR profiles from cell lines, calculating the percentage match (the number 

of shared alleles divided by the total number of alleles in the STR profile for the sample 

in question) was able to distinguish related samples at ≥80% and unrelated samples at 

<50% STR profile matches, while a small overlap of related and unrelated samples was 

noted at STR matches between 50-79%, concluding that STR profiles which are ≥80% 

matching can be considered as related (Capes-Davis et al. 2013). All short and long-

term cell lines in this study showed a STR profile match of >80% compared to each PDX 

tissue of origin, bar ICR-LMS-5, which was not tested. Limitations of comparing STR 

profiles for cell line authentication has limitations in that even primary short-term cultures 

can display some genetic drift or selection for genetically distinct subclones, which can 

be especially prevalent in cancer types characterised by high genomic instability.  

In this study two PDX-derived cell lines displayed slightly different STR profiles to the 

PDX-tissue. LMS tumours display a high loss of heterozygosity, comparable to ovarian 

and breast cancers which can be associated with homologous recombination DNA repair 

(Seligson et al. 2022). ICR-LMS-4 shows a loss of heterozygosity at two loci which could 

be explained by the genetic instability of the disease. In contrast, the short-term culture 

SARC-323 shows a gain of heterozygosity at four loci. This could also be explained 
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because of inherent genetic instability but also raises the possibility that this culture is 

composed of non-transformed patient-cells which could also be present in the PDX 

tumour. It is also difficult to say whether the genetic changes occurring in the cell lines 

are a consequence of in vitro culture or whether this would also be observed in the patient 

as sequencing of patient tumours at differing timepoint has not yet been conducted. 

Detection of cancer biomarkers is an important step of characterisation for novel cell 

lines in order to assess disease relevance and similarity to the tumour of origin. Well 

differentiated LMS tumours display smooth-muscle differentiation, therefore common 

biomarkers for the detection of smooth-muscle tumours includes α-SMA, desmin and H-

caldesmon and combined are relatively specific for LMS tumours. However, poorly 

differentiated LMS tumours are more difficult to classify and the expression of these 

myogenic markers may have been lost (Demicco et al. 2015). Of the 5 LMS PDX-derived 

cell lines established, three showed expression of a-SMA which is the most commonly 

observed smooth muscle marker in LMS (Demicco et al. 2015). However ICR-LMS-6 

and SARC-393 cell culture displayed a lower expression of a-SMA than the other models 

and even SK-UT-1, which has been previously reported to have lost myogenic markers 

(Hemming et al. 2020). Interestingly ICR-LMS-6 displays a similar morphology in culture 

to ICR-LMS-1 which had the highest expression of a-SMA, showing elongated spindle 

cells growing in fascicles structures, characteristic of smooth muscle cells. Therefore, 

the expression of other smooth muscle cell markers was further assessed via proteomic 

profiles in these two cell lines in particular. 

The differences in smooth muscle associated proteins in PDX-models, PDX-derived cells 

lines, both early and later passages, and LMS cell lines showed no significant difference 

in protein abundance. Caldesmon, desmin, vinculin and vimentin which are proteins 

associated with smooth muscle were detected in all PDX-derived LMS models and 

respective PDX tissue indicating that these cultures retain the smooth muscle 

characteristics of LMS seen in the PDX models and can therefore be considered as LMS 

cell cultures (Demicco et al. 2015). SK-UT-1 and SK-UT-1b cells did display a slight loss 

of desmin abundance which is consistent with the loss of myogenic markers shown in 

these cells shown in a previous study (Hemming et al. 2020). Analysis of differing 

biological pathways active in PDX tumours, PDX-derived cells and LMS cell lines showed 

upregulated mTORC1 signalling. mTORC1 is a sensor of nutrient availability and a major 

component of mechanisms of amino acid, glucose, reactive oxygen species detection, 

leading to increased cell survival and proliferation in response to these signals (Tan and 

Miyamoto 2016). This suggests that mTORC1 activation is a consequence of improved 

nutrient availability of cells grown in vitro compared to in vivo. Upregulated mTORC1 
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signalling is also seen in PDX-derived cells compared to LMS cell lines also indicating 

higher nutrient availability. PDX-cell lines showed an enrichment of proteins associated 

with metabolic pathways such as glycolysis and oxidative phosphorylation which was a 

similar observation made in chapter 3 when comparing patient tissue to PDX tumour 

tissue. This result suggests that PDX-derived cell lines are still able to demonstrate an 

enhanced metabolic state associated with patient tissue compared to LMS cell lines, 

which is consistent with a previous study specifically analysing metabolic differences in 

primary low passage cells and longer term cell lines via proteomics (Pan et al. 2009). 

In summary, chapter 4 describes the optimisation of a patient-derived model pipeline 

from PDX tissue which was used to establish a panel of robust PDX-derived LMS cell 

cultures which can be grown longer term to show differing growth rates and a range of 

distinct cell morphologies. These models were further characterised via STR profiling 

and proteomics showing that these models recapitulate associated PDX genetics, LMS 

associated markers and biological hallmarks with high fidelity. PDX-derived LMS cultures 

also showed several enriched hallmark pathways which were not seen in LMS cell lines 

suggesting that PDX-derived cells may be better able to capture biological processes of 

LMS as seen in patient tumours. 
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Chapter 5 - Investigating 

chemotherapeutic response in LMS 

patient derived models 
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5.1 Introduction 

Cytotoxic chemotherapeutic drugs such as anthracyclines and alkylating agents have 

remained the cornerstone of advanced STS treatment for decades due to the significant 

reduction of tumour burden observed in responding patients (Bramwell, Anderson, and 

Charette 2000; Linch et al. 2014). However, response rates to commonly used 

chemotherapies are low in first line advanced STS patients, recorded at 12-24% (Judson 

et al. 2014; Tap et al. 2020; D’Ambrosio et al. 2020). Additionally, the degree of sensitivity 

to such agents varies depending on STS subtype and histological variant. For example, 

well-differentiated liposarcomas demonstrate general chemoresistance while the myxoid 

variant is particularly sensitive to anthracyclines and trabectedin, while LMS displays 

varying levels of chemosensitivity between patients (Kasper et al. 2021; Scurr 2011). 

Therefore, assessment of chemotherapy responses in patient-derived models provides 

an opportunity to identify biomarkers predictive of chemotherapy response. The 

acquisition of multi-drug resistance remains a major problem in STS treatment, requiring 

higher doses to maintain efficacy which can lead to serious toxicity (R. L. Jones 2014). 

For this reason ultimately the majority of STS patients will fail on chemotherapeutic 

regiments, shown by a short progression free survival ranging from 2-8 months 

(Verschoor et al. 2020; Tap et al. 2016; D’Ambrosio et al. 2020; Judson et al. 2014).  

Modelling the response of STS to certain chemotherapies is challenging due to the lack 

of cell lines and patient-derived models available, but additionally, commercially 

available cell lines can display exceedingly high sensitivity to cytotoxic agents due to 

enhanced proliferation compared to the disease of origin (Kato et al. 2008; Mitra, Mishra, 

and Li 2013; Pan et al. 2009). Doxorubicin, as with many other widely used 

chemotherapeutic agents show enhanced cytotoxic activity against actively dividing cells 

due to the stalling of DNA replication (J. Zhao 2016). Furthermore, when assessing 

targeted therapy efficacy in pre-clinical models, the impact of prior chemotherapy 

treatment and resistance should be assessed, due to the fact that targeted therapy is 

currently only recommended as a second line or later regimen (Gamboa, Gronchi, and 

Cardona 2020).  

One of the most well reported mechanisms of multi-drug resistance in STS and other 

cancer types is the upregulation of ABC transporter proteins such as P-glycoprotein (P-

gp) which actively transports toxic molecules out of the cell (Abolhoda et al. 1999; 

Longley and Johnston 2005; Coley et al. 2000; Plaat et al. 2000). However, additional 

mechanisms of doxorubicin induced drug resistance have since been reported including 

the activation of the MAPK or JAK/STAT3 pathway, upregulation of anti-apoptotic BCL-
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2 family proteins as well as alterations in DNA damage response and repair pathways 

(Christowitz et al. 2019; Zhiwei Zhang et al. 2020; De Graaff et al. 2016; Longley and 

Johnston 2005; Das, Jain, and Mallick 2021). Similar alterations in drug efflux, anti-

apoptotic, and DNA damage response and repair pathways were additionally noted via 

proteomic analysis of matched sensitive and resistant uterine sarcoma cell lines (S. T. 

Lin et al. 2012). Despite these reports, few studies have observed the specific molecular 

and drug response profile changes which occur following chemotherapy exposure and 

resistance in patient-derived STS samples with direct comparison between sensitive and 

resistant primary cells. Such studies could give valuable insights into potential 

combinatorial therapies to prolong progression free survival in first line advanced STS 

and to suggest subsequent therapies which chemo-refractory tumours might still respond 

to.  

This chapter will assess the response of the PDX-derived LMS cell cultures established 

in chapter 4 to standard of care chemotherapies for advanced STS, correlating these 

responses with patient treatment history. Additionally, acquired doxorubicin resistant in 

vitro LMS models were generated and used to identify the molecular mechanisms of 

doxorubicin resistance via proteomic profiling and small molecule inhibitor screening. 

This experimental work was conducted while continuing with the generation and 

characterisation of further LMS PDX and PDX-derived cell models in chapter 3 & 4 in 

addition to assessment of targeted therapy responses described later in chapter 6 

(Figure 5.1). 

 

Figure 5.1. Timeframe of experimental approaches described in chapters 3-6.   
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5.2 LMS PDX-derived cells display varying sensitivity to 

chemotherapy 

Initially I sought to characterise the chemotherapy response profiles of the five 2D PDX-

derived LMS cell lines by exposing them to increasing doses of standard of care 

chemotherapies often used in the first line treatment of advanced LMS, including 

doxorubicin, gemcitabine and docetaxel. Each model was treated with doses ranging 

from 5nM to 50uM for a period of 72 hours after which cell viability was assessed. The 

dose response profiles generated show varying sensitivity and resistance to the three 

tested chemotherapies across each of the models (Figure 5.2A-E). ICR-LMS-1 is the 

most sensitive of the five models, particularly to doxorubicin and gemcitabine (Figure 

5.2A), while ICR-LMS-6 demonstrates the most chemo resistant phenotype with neither 

doxorubicin, gemcitabine or docetaxel able to reduce viability beyond 50% at the highest 

tested dose of 50 µM (Figure 5.2C). Bar ICR-LMS-1 cells treated with doxorubicin, 

almost all of the chemotherapies tested show a dose response curve which plateaus 

before reaching 0% viability, suggesting the presence of viable cells able to withstand 

high concentrations of chemotherapy treatment.  

Comparing the IC50 values of doxorubicin in each cell line shows a significantly variable 

response rate ranging from ICR-LMS-1 as the most sensitive to doxorubicin 

(IC50=248nM) to the most doxorubicin resistant model, ICR-LMS-6 (IC50 > 50µM) 

(Table 5.1) (Figure 5.2F&G). Gemcitabine demonstrates a potent effect on ICR-LMS-1 

cell viability (IC50 = 23.2nM) although shows an IC50 value of >20 µM in the remaining 

culture models (Figure 5.2G). In contrast a resistant dose response phenotype to 

docetaxel was observed in all models with IC50 values higher 50µM (Figure 5.2G). 



   
 

172 
 

 

Figure 5.2. Standard of care chemotherapy response profiles of PDX-derived LMS cultures. (A-E) 

Dose response curves showing cell viability of ICR-LMS-1, ICR-LMS-4, ICR-LMS-6, SARC-323 cell culture 

and SARC-393 cell culture after 72 hours of doxorubicin, gemcitabine or docetaxel treatment at doses 

ranging from 5 nM to 50 µM. Viability measurements were fitted to non-linear variable slope four parameter 

curve. Error bars represent standard deviation. N=3. (F) Mean doxorubicin half-maximal inhibitory 

concentration (IC50) values for ICR-LMS-1, ICR-LMS-4, ICR-LMS-6, SARC-323 and SARC-393 cells based 

on fitted dose response curves. Error bars indicate standard deviation. Significance values were calculated 

via one-way ANOVA with multiple comparisons. ns; not significant (p> 0.05), *; P < 0.05, **; P ≤ 0.01, ***; P 

≤ 0.001, ****;  P ≤ 0.0001). (G) Mean doxorubicin, gemcitabine and docetaxel IC50 values for ICR-LMS-1, 

ICR-LMS-4, ICR-LMS-6, SARC-323 and SARC-393 cell based on fitted dose response curves. 
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Cell line 
ID 

Subtype Timepoint 
Biopsy 
grade 

Site of 
biopsy/resection 

Primary 
site if 

known 
Treatment history 

Doxorubicin 
IC50 value 

(µM) 

ICR-LMS-1 

uLMS Baseline biopsy G3 Pelvic Uterus Doxorubicin (3 cycles) 

0.248 

ICR-LMS-3 

0.426 

ICR-LMS-4 uLMS Baseline biopsy G3 Liver Uterus No prior treatments 

2.43 

ICR-LMS-6 LMS 
Post-cycle 3 

biopsy 
N/A Peritoneum Stomach No prior treatments. First-line GEMMK 

(Gemcitabine & pembrolizumab) 

>50 

SARC-323 LMS Baseline biopsy G3 Left gluteus Breast 

Epirubicin+Cyclophosphamide in the adjuvant 
setting after surgery to the primary tumour; no 
treatment from diagnosis of metastatic disease 

to trial entry 

0.411 

SARC-393 uLMS Post-RT biopsy N/A Lung Uterus Post-RT 

1.26 

Table 5.1. Treatment history of patients from which PDX cell lines were derived and doxorubicin IC50 values. Information of cell lines used for chemosensitivity testing 

including subtype, timepoint of biopsy used to establish PDX model, biopsy grade, site of biopsy, primary site of disease, treatment history and doxorubicin half-maximal inhibitory 

concentration (IC50) values. G3; Grade 3, LMS; Leiomyosarcoma, uLMS; uterine Leiomyosarcoma,  N/A; Not Available, RT; RadioTherapy. 
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I next sought to assess the sensitivity of ICR-LMS-3, the PDX-matched 3D model 

corresponding to ICR-LMS-1 to doxorubicin in order to check for any differences in 

response which could be attributed to 3D culture. A cell viability assay was performed 

with ICR-LMS-3 in 3D, matrigel embedded conditions. Cells were dissociated from 

spheroids and passed through a filter before seeding to minimise the presence of cell 

clusters at the beginning of the assay which might affect the results. Cells were cultured 

for 7 days before doxorubicin doses were added in order to allow spheroids to form 

before doxorubicin treatment (Figure 5.3A). After 72 hours of doxorubicin treatment cell 

viability was assessed. Despite the differences in culture format, both for the assay itself 

and for expansion from PDX tissue, ICR-LMS-3 shows a similar dose response profile 

to doxorubicin, with a clear reduction in cell viability noted at 500 nm (Figure 5.3B). 

However, the dose response curve of ICR-LMS3 is slightly shifted to the right, indicating 

a slight loss of sensitivity. IC50 values were also elevated in ICR-LMS-3, increasing from 

0.248 µM to 0.426 µM but were not found to be significantly different (Figure 5.3C). 

 

 

Figure 5.3. Doxorubicin dose response assay with ICR-LMS-3 spheroids. (A) Schematic of 3D dose 

response assay. Cells were cultured for 7 days before doxorubicin treatment for 3 days and cell viability 

analysis. Error bars represent standard deviation (B) Dose response curve of ICR-LMS-1 in monolayer and 
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ICR-LMS-3 cells in 3D treated with doxorubicin concentrations ranging from 5 nM to 50 µM. Viability 

measurements were fitted to non-linear variable slope four parameter curve.  N=3. Error bars indicate 

standard deviation. (C) Mean doxorubicin half-maximal inhibitory concentration (IC50) values for ICR-LMS-

1 and ICR-LMS-3 cells based on fitted dose response curves. Error bars indicate standard deviation. ns; not 

significant (p> 0.05). 

 

To further explore the differing sensitivity of ICR-LMS-1 and ICR-LMS-4 to doxorubicin, 

low density colony formation assays were conducted first with a wide range of 

concentrations (from 100nM to 5uM) and then at low doses (5nM to 500nM) to observe 

the colony forming capacity of these PDX-derived cultures under doxorubicin treatment. 

After 2 weeks of treatment, qualitative analysis shows no visible ICR-LMS-1 colonies at 

a concentration of 50nMm while colonies can still be observed in ICR-LMS-4 cultures 

treated with 500nM doxorubicin (Figure 5.4A). Quantitative analysis of confluence 

shows that ICR-LMS-1 colony density is reduced by 60% at the lowest dose tested (5nM) 

compared to vehicle control and at this lowest dose ICR-LMS-4 showed a significantly 

higher density of colonies. ICR-LMS-4 continued to show a significant higher colony 

density at 10, 50 and 100nM of doxorubicin compared to ICR-LMS-1 (Figure 5.4B).  
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Figure 5.4. Colony formation assay of ICR-LMS-1 and ICR-LMS-4 with doxorubicin treatment. (A) 

Images of crystal violet stained wells after 2 weeks of ICR-LMS-1 or ICR-LMS-4 treatment with doxorubicin 

at 5 nM, 10 nM, 50 nM, 100 nM and 500 nM or DMSO vehicle control. (B) Mean % confluence of ICR-LMS-

1 and 4 cells from colony formation images normalised to Dimethylsulfoxide (DMSO) vehicle control. Error 

bars indicate standard deviation. Significance is shown following a multiple unpaired t-test at each 

concentration. ns; not significant, *; P < 0.05, **; P ≤ 0.01, ***; P ≤ 0.001, ****;  P ≤ 0.0001. 

5.3 Establishing acquired doxorubicin resistant LMS 

models 

Following the observation that the panel of LMS PDX-derived cultures show a range of 

chemosensitivities, I sought to generate an acquired doxorubicin resistant model in order 

to study the molecular changes causing drug resistance between the matched sensitive 

and resistant cells. To achieve this, ICR-LMS-1 was selected for dose escalation as this 

was the PDX-derived cell line which demonstrated the highest sensitivity to doxorubicin. 

Dose escalation is a method to generate acquired resistant cell lines in vitro by gradually 

exposing cells to increasing doses of the compound (McDermott et al. 2014). Over a 

period of 6 months ICR-LMS-1 was exposed to doxorubicin increasing in a stepwise 
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manner (Figure 5.5). A starting dose of 10 nM was chosen as the previous colony 

formation assay showed this was the highest dose where adherent colonies could still 

be detected (Figure 5.4).  Flasks were visually inspected and dose was doubled once 

cells displayed a similar growth pattern to parental cells for at least two passages. 

Eventually cells were able to proliferate continuously whilst treated with 80nM 

doxorubicin. At this point the cells were termed ‘ICR-LMS-1 doxoR’ and all subsequent 

assays with this cell line only used passages beyond this point for reproducibility (Figure 

5.5). This dose escalation method was also conducted on SK-UT-1 and SK-UT-1b to 

generate SK-UT-1 doxoR and SK-UT-1b doxoR cell lines which also continuously 

proliferate in media containing 80nM doxorubicin. Alternative methods to generate 

resistant cells were attempted, including pulsed IC50 and IC90 value doses to mimic the 

transient high dose observed from intravenous administration of doxorubicin, however 

no outgrowth of resistant colonies was observed under these conditions after 1 month, 

at which point cultures were discarded due to lack of adherent cells. 

 

 

Figure 5.5. Schematic of doxorubicin dose escalation to generate doxorubicin resistant cells. 

Parental ICR-LMS-1, SK-UT-1 or SK-UT-1b were grown under stepwise increases in doxorubicin 

concentrations. Doses were doubled when cells displayed a similar growth pattern to parental cells for at 

least two passages and cell lines were termed doxorubicin resistant (doxoR) when this occurred during 

treatment with 80 nM doxorubicin. Figure created using BioRender 
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Due to the long period of continuous culture required to establish ICR-LMS-1, SK-UT-1 

and SK-UT-1 doxoR cell lines, STR analysis was performed on both the parental and 

doxoR cells in order to check for 1) contamination of culture with other cell lines and 2) 

percentage similarity of the STR profiles between parental and doxoR samples. STR 

profiles of SK-UT-1 doxoR, SK-UT-1b doxoR and ICR-LMS-1 doxoR were compared to 

a database of cell lines via the CLASTR Cellosaurus STR similarity search tool. SK-UT-

1 doxoR and SK-UT-1b doxoR showed highest matches to SK-UT-1 and SK-UT-1b 

database profiles respectively while other cell lines showing over 70% similarity to each 

doxoR lines included SK-UT-1b and SK-UT-1 respectively (each for the other respective 

variant) and cell lines which have not been grown in the laboratory, meaning that 

contamination with other cell lines is unlikely. ICR-LMS-1 doxoR showed no cell line 

matches above 73.68% on the CLASTR Cellosaurus database and any cell lines 

showing a match higher than 70% have not been used in the laboratory, making 

contamination of the patient derived doxoR line unlikely.  

STR profiles were also compared between parental and doxoR cells, each showing over 

90% similarity and therefore can be considered as biologically related with high certainty. 

However, none of the paired parental and doxoR cell lines displayed an identical STR 

profile, with SK-UT-1 and SK-UT-1b in particular showing multiple alleles for certain loci 

which are lost in the respective doxoR cell line, suggesting that slight changes in the 

genome have occurred during the process of generating doxorubicin resistant cells 

(Table 5.2). 
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 SK-UT-1 SK-UT-1 doxoR SK-UT-1b SK-UT-1b doxoR ICR-LMS-1 ICR-LMS-1 doxoR 

D8S1179 13,15,16 13,15 14,15,16 14,15,16 12,13 13,13 

D21S11 29,30,31.2,32.2,33.2 29,32.2 29,30,32.2,33.2 29,32.2 32.2,33.2 32.2,33.2 

D7S820 9,10,11 9,10 9,10 9,10 9,10 9,10 

CSF1PO 10,11 10,11 10,11,12 10,11 12,12 12,12 

D3S1358 15,16 15,16 15,16 15,16 15,16 15,16 

TH01 7,7 7,7 7,7 7,7 9.3,9.3 9.3,9.3 

D13S317 13,14 13,13 10,13 10,12,13 11,11 11,11 

D16S539 13,14,15 13,14 12,13,14,15 12,13,14,15 11,11 11,11 

D2S1338 19,21 19,21 18,19,20,21,22 18,22 20,20 20,20 

D19S433 12,13 12,13 13,13 13,13 13,13 13,13 

vWA 14,15,16,17 15,16,17 16,17 16,17 18,18 18,18 

TPOX 8,8 8,8 8,8 8,8 11,11 11,11 

D18S51 11,15,16 11,16 11,16,17 11,17 13,15 13,15 

Amel X,X X,X X,X X,X X,X X,X 

D5S818 10,11 10,11 10,11,12,13 10,12 12,12 12,12 

FGA 22,23,24 22,24 22,23,24 22,23 18,18 18,19 

% Similarity 96.96% 97.22% 93.75% 

 

Table 5.2. STR profiling of parental and doxorubicin resistant in vitro cultures. STR loci of ICR-LMS-1, SK-UT-1 and SK-UT-1b cell lines and respective doxorubicin 

resistant (doxoR) cells. Loci in red indicate discrepancies between parental and doxoR cells. STR; Short Tandem Repeat. 
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Both the parental and respective doxoR cell lines were cultured for 2 weeks either in the 

presence or absence of doxorubicin to observe changes in cell morphology and growth 

patterns. When cultured with doxorubicin at a concentration of 80 nM parental ICR-LMS-

1, SK-UT-1 and SK-UT-1b cells all showed a clear reduction in cell number and 

proliferative colonies could not be observed compared to the untreated parental cells 

(Figure 5.6A). Any remaining parental cells treated with doxorubicin displayed a 

senescent morphology such as enlarged cell size and lack of proliferation (Figure 5.6A). 

However, when doxoR cell cultures were treated with doxorubicin no difference in 

morphology or confluence could be observed compared to untreated doxoR cells (Figure 

5.6B). Morphological differences between the parental and the respective doxoR 

cultures when grown without doxorubicin were minor (Figure 5.6A, B). 
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Figure 5.6. Morphology of ICR-LMS-1, SK-UT-1 and SK-UT-1b parental or doxoR cells treated with 

doxorubicin. (A) Phase contrast images of ICR-LMS-1, SK-UT-1 and SK-UT-1b cells when treated for 2 

weeks with 80 nM doxorubicin or Dimethylsulfoxide (DMSO) vehicle control. Scale bar = 300 µm. (B) Phase 

contrast images of ICR-LMS-1 doxoR, SK-UT-1b doxoR and SK-UT-1b doxoR when treated for 1 week with 

80 nM doxorubicin or DMSO vehicle control. Scale bar = 300 µm. 

In order to confirm doxorubicin resistance in doxoR cell lines, a cell viability assay was 

conducted by treating cell lines for 72 hours with doxorubicin ranging from 5nM to 50 µM. 

ICR-LMS-1 doxoR, SK-UT-1 doxoR and SK-UT-1b doxoR each showed a dose 

response profile indicating reduced sensitivity to doxorubicin compared to the respective 
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parental line (Figure 5.7A, C, E). IC50 values were significantly higher in the doxoR cell 

lines, increasing by 6.65, 6.2 and 5.6 fold for ICR-LMS-1 doxoR, SK-UT-1 doxoR and 

SK-UT-1b doxoR respectively compared to their parental lines (Figure 5.7B, D, F), 

indicating that these lines have indeed acquired doxorubicin resistance.  

 

 

Figure 5.7. Doxorubicin dose response curves in parental and doxorubicin resistant cells. (A, C, E) 

Percentage cell viability of ICR-LMS-1, SK-UT-1 and SK-UT-1b parental or doxoR cells when treated with 

doxorubicin concentrations from 5 nM to 50 µM. Viability measurements were fitted to non-linear variable 

slope four parameter curve. N=3. Error bars indicate standard deviation. (B, D, F) Mean doxorubicin half-

maximal inhibitory concentration (IC50) values for ICR-LMS-1, SK-UT-1 and SK-UT-1b parental or doxoR 

cells based on fitted dose response curves. Error bars indicate standard deviation. ns; not significant (P > 

0.05). *; P < 0.05, **; P ≤ 0.01, ***; P ≤ 0.001. 

Next, the extent of which doxoR ICR-LMS-1 cells can maintain their resistance to 

doxorubicin in the absence of drug was assessed by culturing the cell line without 

doxorubicin and conducting a dose response cell viability assay every two weeks. 
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Morphologically, after 2 week of drug withdrawal ICR-LMS-1 doxoR showed a similar 

morphology to parental ICR-LMS-1 cells, proliferating as spindle cells which was also 

observed in doxoR cells grown without doxorubicin for 8 weeks (Figure 5.8A). ICR-LMS-

1 doxoR cells grown without drug for 4 weeks or longer showed similar doxorubicin dose 

response profiles to ICR-LMS-1 doxoR cells which were grown without doxorubicin only 

for 2 weeks. Although, a very slight shift in the response curve towards lower 

concentrations at week 6 and 8 could be observed but all timepoints displayed markedly 

resistant dose response curve compared to the ICR-LMS-1 parental line (Figure 5.8B). 

Additionally IC50 values were significantly higher in doxoR cells at all timepoints 

compared to the parental line with a small but significant decrease in IC50 value between 

4 and 6 weeks and no significant change in IC50 values between week 6 and week 8 

without drug (Figure 5.8C). Taken together this data indicates that a doxorubicin 

resistant phenotype is persistent in ICR-LMS-1 doxoR cells despite prolonged drug 

withdrawal.  

 

Figure 5.8. Doxorubicin drug withdrawal in ICR-LMS-1 doxoR cells. (A) Phase contrast images of ICR-

LMS-1, ICR-LMS-1 doxoR cells grown in 80 nM doxorubicin or ICR-LMS-1 doxoR cells grown without 

doxorubicin for 8 weeks. Scale bar = 300 µm. (B) Cell viability assay of parental ICR-LMS-1 cells and ICR-



   
 

184 
 

LMS-1 doxoR cells growth without doxorubicin for 2, 4, 6 and 8 weeks in response to doxorubicin treatment 

at concentrations of 5 nm to 50 µM for 72 hours. Viability measurements were fitted to a non-linear variable 

slope four parameter curve. N=3. N=1 for ICR-LMS-1 doxoR 2 week timepoint. Error bars indicate standard 

deviation. (C) Mean doxorubicin half-maximal inhibitory concentration (IC50) values for ICR-LMS-1 parental 

cells or ICR-LMS-1 doxoR cells grown without drug for 2, 4, 6 and 8 weeks based on fitted dose response 

curves. Error bars indicate standard deviation. ns; not significant (p> 0.05). *; p < 0.05, **; p ≤ 0.01, ***; p ≤ 

0.001, ****; p ≤ 0.0001. 

 

5.4 Proteomic and drug response profiling of acquired 

doxorubicin resistant LMS cells 

To determine if doxorubicin resistance is achieved via shared biological changes in 

different models, parental ICR-LMS-1, SK-UT-1 and SK-UT-1b cells as well as the 

respective doxorubicin resistant cell lines were subjected to SWATH-mass spectrometry 

by two PhD students in our lab: Yuen Bun Tam and Madhumeeta Chadha. Mass 

spectrometry profiles were median normalised and subsequent proteomic profiles were 

subjected to heirarchical clustering. ICR-LMS-1 parental and doxorubicin resistant cells 

clustered together and were separate from all SK-UT-1 and SK-UT-1b samples.  

Meanwhile, proteomic profiles of parental SK-UT-1 and SK-UT-1b cells clustered 

together while the doxorubicin resistant SK-UT-1 doxoR and SK-UT-1b doxoR cells also 

clustered together but separately from the parental lines (Figure 5.9A). This result 

suggests that there are shared proteomic changes which occurs in these immortalised 

cell lines upon doxorubicin resistance but these are distinct from proteomic changes 

associated with doxorubicin resistance in ICR-LMS-1 (Figure 5.9A). Next, SAM analysis 

was conducted on the grouped proteomic profiles of parental versus doxorubicin 

resistant cells. However, SAM analysis found no significantly upregulated or 

downregulated proteins between these two groups, indicating that the proteomic 

alterations associated with doxorubicin resistance do not overlap when considering all 

three LMS cell models (Figure 5.9B). 
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Figure 5.9. Proteomic analysis of parental and doxorubicin resistant ICR-LMS-1, SK-UT-1 and SK-

UT-1b cells. (A) Heatmap showing hierarchical clustering of proteomic profiles of parental and doxorubicin 

resistant ICR-LMS-1, SK-UT-1 and SK-UT-1b cells via two-way unsupervised clustering based on Pearson’s 

correlation coefficient. (B) Significant analysis of microarrays (SAM) plot of proteins showing that there were 

no significant proteins between parental and doxorubicin resistant cells. Cell lysate samples were prepared 

by myself for mass spectrometry. Mass spectrometry data was acquired and processed via DIA-NN by Yuen 

Bun Tam and Madhumeeta. DIA-NN output data was further processed by myself to generate a heatmap of 

normalised proteomic profiles. 

 

To investigate any changes in the molecular pathways which might have occurred upon 

acquisition of resistance to doxorubicin, ICR-LMS-1 doxoR, SK-UT-1 doxoR and SK-UT-

1b doxoR in addition to their respective parental lines were subjected to treatment with 

an panel of 58 small molecule inhibitors which was designed to target a range of key 

oncogenic signalling pathways (see methods). Heirarchical clustering of response 

profiles showed that each doxoR cell line clustered with their respective parental cell line, 

demonstrating that overall the doxoR lines have similar drug response profiles to their 

respective parental cells and drug response profiles do not cluster together based on 

parental and doxorubicin resistant groups (Figure 5.10). No compounds show a 

significant difference in viability between the parental and doxoR line for all three models. 

However SK-UT-1 and SK-UT-1b parental and doxoR cells showed a significant 
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difference in viability when treated with the polo-like kinase 1 (PLK-1) inhibitor BI 2536, 

with the reduction in cell viability significantly lessened in doxorubicin resistant cells 

(Figure 5.10) (Table 5.3). The lack of shared sensitivity changes in each parental and 

doxoR pair indicates that salvage therapies may need to be individualised to specific 

patients which have developed doxorubicin resistance and there isn’t a particular drug 

which can be used for all doxorubicin resistant patients. However, not many compounds 

were less efficacious in doxoR cells, suggesting that doxorubicin resistance may not lead 

to substantial cross resistance to targeted molecular therapies.  

ICR-LMS-1 doxoR cells showed an increased sensitivity to six inhibitors compared to 

parental ICR-LMS-1: the multi-target TKI ponatinib, the HER2 inhibitor neratinib, the Bcl-

2 inhibitor navitoclax, the PARP inhibitor talazoparib, the dual PI3K/mTOR inhibitor NVP-

BEZ235 and the Akt inhibitor MK-2206 indicating that doxorubicin resistant ICR-LMS-1 

cells have an elevated dependency on these factors for growth and/or survival compared 

to parental cells and have gained a collateral sensitivity towards inhibitors of these 

factors (Figure 5.10) (Table 5.3). 
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Figure 5.10. 3-day targeted drug screen of parental and doxorubicin resistant cells. Cell viability 

heatmap of SK-UT-1, SK-UT-1 doxoR, SK-UT-1b, SK-UT-1b doxoR, ICR-LMS-1, ICR-LMS-1 doxoR cells 

treated with a targeted panel of 58 small molecule inhibitors at a concentration of 500 nM (or 50 nM for NVP-

AUY922) for 72 hours. N=3. Profiles underwent hierarchical clustering showing Euclidean distance. 
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SK-UT-1 vs SK-UT-1 doxoR 

Compound P value Mean of parental Mean of doxoR Difference Target 

BI 2536 0.000136 8.337 42.07 -33.73 Plk1 

 BEZ235 0.006672 35.21 58.82 -23.61 PI3K, mTOR 

MK-8776 0.014253 94.7 73.43 21.27 Chk1 

Niclosamide 0.037644 63.71 81.68 -17.97 STAT3 

SK-UT-1b vs SK-UT-1b doxoR 

Compound P value Mean of parental Mean of doxoR Difference Target 

BI 2536 0.013604 24.02 58.8 -34.77 Plk1 

 BGJ398 0.037662 46.05 75.23 -29.18 FGFR1/2/3 

ICR-LMS-1 vs ICR-LMS-1 doxoR 

Compound P value Mean of parental Mean of doxoR Difference Target 

Ponatinib 0.000001 103.9 73.73 30.19 Broad spectrum; RTKs 

 Neratinib 0.001271 105.6 86.08 19.57 HER2, EGFR 

Navitoclax 0.004527 62 44.83 17.18 Bcl-xL, Bcl-2, Bcl-w 

 Talazoparib 0.009186 97.85 82.11 15.74 PARP 

BEZ235 0.010682 63.34 47.93 15.41 PI3K, mTOR 

MK2206 0.025165 96.44 82.96 13.49 Akt1/2/3 

 

Table 5.3. Compounds showing a significant difference in viability between parental and doxorubicin 

resistant cells in a short term drug screen. Only compounds which produced a significantly different 

response in parental vs doxoR cells treated for 72 hours and lowered viability to <90% in either are listed. 

Significance analysis was performed via two way ANOVA with multiple comparisons. Mean of parental and 

doxoR cell viability is listed with differences and drug target. Bcl-w; B-cell lymphoma, Bcl-xl; B-cell 

lymphoma-extra large, Bcl-2; B-cell lymphoma 2, Chk1; checkpoint kinase 1, EGF; Epidermal growth factor 

receptor, FAK; Focal adhesion kinase, FGFR1/2/3; Fibroblast growth factor receptor 1/2/3, HER2; human 

epidermal growth factor receptor 2, mTOR; mammalian target of rapamycin, PARP; poly-ADP ribose 

polymerase, PI3K; phosphatidylinositol-3 kinase, Plk1; polo like kinase 1, STAT3; Signal transducers and 

activators of transcription 3. 

As ICR-LMS-1 cells proliferate at a slower rate to SK-UT-1 and SK-UT-1b (doubling time 

of ICR-LMS-1 = 4.4 days compared to 1.1 and 1.3 days for SK-UT-1 and 1b, the drug 

screen was modified to extend treatment time to 6 days. A longer treatment time was 

used in order to highlight drugs which cause a cytostatic response and therefore might 

not have shown significant reduction in viability after 72 hours due to inherent slow cell 

growth. Cell viability after 6 days of drug treatment revealed more compounds which had 

a significantly different response in ICR-LMS-1 doxoR cells compared to parental cells 

(Figure 5.11) (Table 5.4).  

Similar to the shorter treatment, doxorubicin resistance in ICR-LMS-1 cells induced 

further sensitivity to ponatinib and navitoclax following 6 days of treatment, however the 

longer treatment also highlighted several other small molecule inhibitors which 

doxorubicin resistant cells displayed an increased sensitivity towards compared to 

parental ICR-LMS-1 cells,  particularly the anaplastic lymphoma kinase (ALK) inhibitor 
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NVP-TAE684, the focal adhesion kinase (FAK)/IGF-1R inhibitor TAE226, the Src 

inhibitor Dasatinib, and the mTOR inhibitor Rapamycin (Figure 5.11) (Table 5.4).  

The PLK-1 inhibitor, BI 2536 is the only inhibitor which the doxoR line show a  

significantly lower sensitivity towards, which was also seen in both SK-UT-1 and SK-UT-

1b doxoR cells in the shorter drug screen (Table 5.3) (Table 5.4). 

 

 

Figure 5.11. 6-day targeted drug screen of ICR-LMS-1 and ICR-LMS-1 doxoR cells. Cell viability 

heatmap of ICR-LMS-1, ICR-LMS-1 doxoR cells treated with a targeted panel of 58 small molecule inhibitors 

at a concentration of 500 nM or 50 nM for NVP-AUY922 for 6 days. N=3. Profiles were mapped with 

Euclidean hierarchical row clustering.  



   
 

190 
 

 

 

 

ICR-LMS-1 vs ICR-LMS-1 doxoR (6 day treatment) 

Compound P value Mean of parental Mean of doxoR Difference Target 

NVP-TAE684 <0.000001 127.2 82.68 44.54 ALK  

NVP-TAE226 0.000171 100.8 70.2 30.64 FAK  

Dasatinib 0.001922 87.17 62.05 25.12 Abl, Src, c-Kit  

Rapamycin 0.008376 85.35 64.09 21.27 mTOR  

Navitoclax 0.009988 63.52 42.75 20.77 Bcl-xL, Bcl-2, Bcl-w  

Ponatinib 0.010423 102.8 82.15 20.65 Broad spectrum; RTKs  

PF562271 0.013444 97.15 77.23 19.91 FAK  

Entrectinib  0.015809 106.8 87.36 19.44 TrkA/B/C, ROS1, ALK  

LY2603618 0.035998 91.81 74.96 16.85 Chk1  

BI 2536 0.048814 64.27 80.09 -15.82 Plk1  

 

Table 5.4. Compounds showing a significant difference in viability between ICR-LMS-1 and ICR-LMS-

1 doxoR cells in a long term drug screen. Only compounds which produced a significantly different 

response in ICR-LMS-1 vs ICR-LMS-1 doxoR cells treated for 1 week and lowered viability to <90% in either 

are listed. Significance analysis was performed via two way ANOVA with multiple comparisons. Mean of 

parental and doxoR cell viability is listed with differences and drug target. ALK; anaplastic lymphoma kinase, 

Bcl-w; B-cell lymphoma, Bcl-xl; B-cell lymphoma-extra large, Bcl-2; B-cell lymphoma 2, Chk1; checkpoint 

kinase 1, FAK; Focal adhesion kinase, mTOR; mammalian target of rapamycin, Plk1; polo like kinase 1, 

ROS1; c-ros oncogene 1, RTK; receptor tyrosine kinase, Src; steroid receptor co-activator, TrkA/B/C; 

Tropomyosin-related kinase A/B/C.  
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5.5 Discussion  

In this chapter, the response profiles of five PDX-derived LMS cell cultures to standard 

of care chemotherapies was analysed and the data showed a range of 

chemosensitivities. Similar variations in doxorubicin sensitivity have also been reported 

in patient-derived soft-tissue sarcoma cultures (Kirilin et al. 2022). However, assessing 

the clinical relevance of in vitro drug concentrations is particularly challenging due to 

widely varying and unique pharmacokinetic profiles of different anti-cancer agents 

(Liston and Davis 2017). Based off a recent meta-analysis of maximum plasma 

concentrations from common anti-cancer agents, the IC50 concentration of doxorubicin 

in ICR-LMS-1 cells presented in this chapter was within a clinically relevant range (Liston 

and Davis 2017). One out of the five established PDX-derived LMS models can therefore 

be considered as doxorubicin sensitive while the rest are chemo resistant, making these 

good models to further explore markers and mechanisms of both innate and acquired 

chemoresistance. Future characterisation could include the assessment of PDX 

chemosensitivity in order to verify if the in vitro cultures retain the response profiles of 

the corresponding in vivo tumours. Interestingly, the doxorubicin sensitive model ICR-

LMS-1 was derived from a PDX model established from a patient who had received three 

cycles of doxorubicin treatment prior to biopsy, while the chemo resistant model ICR-

LMS-4 was ultimately derived from a treatment naïve patient. Therefore ICR-LMS-4 can 

be considered as having innate chemoresistance. Unfortunately, patient outcomes are 

not available so it is not possible to firmly conclude that the patient from which ICR-LMS-

1 was derived from maintained response to doxorubicin or whether treatment was 

stopped due to toxicity concerns.   

In chapter 4 the PDX-derived 3D LMS line ICR-LMS-3 demonstrated a high level of 

hypoxia and an inner core of non-proliferative cells. However, in this chapter ICR-LMS-

3 showed a similar doxorubicin dose response profile to the corresponding 2D line ICR-

LMS-1, indicating that the effect of doxorubicin on cell viability is not significantly 

impacted by 3D culture factors such as hypoxia, cell-cell interactions and drug 

penetration. Several studies have demonstrated that sarcoma spheroid cultures, have a 

reduced sensitivity to chemotherapeutic agents although these studies are so far limited 

to bone sarcomas such as chondrosarcoma, osteosarcoma and Ewing’s sarcoma 

(Voissiere et al. 2017; Munoz-Garcia et al. 2021; Perut et al. 2018). The same is also 

observed in other cancer types (Gong et al. 2015; Filipiak-Duliban et al. 2022; Mellor and 

Callaghan 2011; Gobbo et al. 2022). 
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A study on chondrosarcoma cell lines grown in alginate scaffolds showed that two of 

three tested cell lines showed elevated doxorubicin resistance in 3D compared to 

monolayer cultures however one cell line instead showed elevated sensitivity to 

doxorubicin in 3D compared to monolayer, suggesting that 3D sarcoma cultures to not 

always lead to reduced chemotherapy response (Palubeckaitė et al. 2020). Additionally, 

scaffold-free chondrosarcoma spheroids showed different sensitivity to doxorubicin 

when response assays were conducted on 7 day or 14 day old spheroids, which had 

markedly different sizes and doxorubicin penetration, highlighting that spheroid size can 

greatly impacts drug response outcomes (Voissiere et al. 2017). Thus, further 

characterisation of ICR-LMS-3 should include the assessment of doxorubicin response 

at different stages of spheroid formation. In osteosarcoma, Ewing’s sarcoma and 

fibrosarcoma spheroids this reduced doxorubicin sensitivity has also been attributed to 

the increased presence of cancer stem cells which confer a drug resistant phenotype 

(Bassi et al. 2020; Ozturk et al. 2020; H. Fujii et al. 2009; Honoki 2010; Honoki et al. 

2010). However, studies assessing the effect of cancer stem cells on chemosensitivity 

in LMS 3D models are lacking, therefore future work for this chapter could include 

assessment of stem cell markers in ICR-LMS-3 compared to ICR-LMS-1. 

Acquired doxorubicin resistant cells were generated in this chapter by utilising a long 

term dose escalation method which has been frequently used for studying acquired 

resistance in a variety of cancer types and therapies (McDermott et al. 2014). While 

pulsed, high dose doxorubicin treatment would best mimic the intravenous treatment 

cycle regimen in patients, in my hands, this selection strategy did not permit for outgrowth 

of resistant ICR-LMS-1 cells which could be attributed to the even exposure of monolayer 

cultures to cytotoxic agents compared to in vivo tumours with drug penetration gradients 

(Primeau et al. 2005; Grantab, Sivananthan, and Tannock 2006; Huxham et al. 2004; 

Kyle et al. 2007). In a 2012 study, Tegze and co-workers generated a panel of 

doxorubicin and paclitaxel resistant cell lines from two parental breast cancer cell lines 

(Tegze et al. 2012). The authors separated each cell line into 29 subcultures were all 

treated in parallel via constant dose escalation to generate distinct resistant lines 

originating from the same parental cell line in order to identify recurrent mechanisms of 

chemoresistance. The study went on to show few recurrent mechanisms of resistance in 

models originating from the same parental line, and additionally differing levels of cross-

resistance were also observed in the resistant lines originating from the same parental 

line (Tegze et al. 2012). On top of investigating the mechanistic basis of the collateral 

sensitivities identified in this chapter, future work could also generate parallel doxorubicin 

resistant cultures both in monolayer and in 3D in order to assess the variability of 
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doxorubicin resistance mechanisms in STS and also highlight recurrent mechanisms of 

resistance which could be targeted. Alternatively resistance could be achieved in vivo in 

order to take into account tumour microenvironment based resistance mechanisms 

(Mañas et al. 2022).  

Drug withdrawal studies have been conducted in other cancer types such as melanoma 

to show that chemotherapy treatment can lead to drug tolerant persister cells with 

transient alterations in metabolic pathways (Karki et al. 2022). The results from this 

chapter demonstrate that acquired doxorubicin resistant ICR-LMS-1 cells retain 

resistance even after withdrawal of doxorubicin treatment. A slight decrease in resistance 

was noted at 6 and 8 weeks after drug withdrawal compared to 4 weeks although 

differences in IC50 values were still significantly higher than the parental cells. This 

suggests that ICR-LMS-1 cells have acquired persistent doxorubicin resistance which is 

not transient and therefore can be considered as an in vitro model of chemo refractory 

LMS.  

Clustering of proteomic profiles derived from SK-UT-1 and SK-UT-1b doxoR cells 

demonstrates that the resistant lines cluster together while the parental cells also both 

cluster together, suggesting that similar molecular changes have occurred in these two 

resistant models, although further work is needed to identify mechanisms of resistance 

in these two doxoR models. After assessing the signalling pathway dependencies in all 

three doxoR models via small molecule inhibitor perturbation, the only observable cross-

resistance, whereby resistance to one compound also induces resistance to another 

compound, was to the PLK-1 inhibitor BI2536. PLK-1 plays an important role in cell cycle 

progression as a key regulator of multiple G2-M stages including checkpoint regulation, 

spindle assembly, centrosome maturation, chromatid separation and cytokinesis (Z. Liu, 

Sun, and Wang 2017; Schmucker and Sumara 2014; Jeong et al. 2018). Inhibitors of 

PLK-1 have been shown to cause mitotic arrest and subsequent apoptosis in MPNST, 

synovial sarcoma and LMS cell lines including SK-UT-1 and SK-UT-1b (Nair and 

Schwartz 2015).  

Importantly, other than BI 2536, doxorubicin resistant cells showed no other shared 

significant loss of sensitivity to the tested inhibitors. In contrast, the remaining differences 

in viability between the parental and doxoR ICR-LMS-1 cells instead showed an increase 

in sensitivity to certain inhibitors. This result suggests that molecular targeted therapies 

which demonstrate anti-tumour efficacy in LMS may continue to be effective despite the 

acquisition of chemoresistance. For advanced LMS almost all patients will undergo first 

or even multiple lines of chemotherapy as a standard of care treatment (A. Gronchi et al. 
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2021). Therefore, this drug screening data suggests that novel therapies are still effective 

in a chemo refractory setting and could be candidate therapies to be used in the salvage 

setting following failure of doxorubicin.  

Acquired doxorubicin resistant ICR-LMS-1 cells did display several collateral sensitivities 

compared to the parental line which were not seen in SK-UT-1 and SK-UT-1b 

doxorubicin resistant cells, such as inhibitors of FAK, Src, mTOR, Bcl, and CHK1. Two 

inhibitors of FAK, NVP-TAE226 and PF562271 separately lead to an enhanced response 

in doxorubicin resistant cells suggesting that FAK activity is important for growth or 

survival of chemotherapy resistant cells. FAK is a cytoplasmic tyrosine kinase, activated 

by growth factors or integrins, which is upregulated in many cancer types (Moritake et 

al. 2019; Y. Bai et al. 2012). Upregulation of FAK signalling promotes tumour progression 

and metastasis via kinase dependent interactions with downstream targets including Src 

as and PI3K/Akt pathway components as well as kinase independent interactions with 

p53 and MDM2 (Sulzmaier, Jean, and Schlaepfer 2014). In Ewing’s sarcoma cells FAK 

inhibitors have previously been shown to synergise with chemotherapies including 

doxorubicin although the mechanisms behind this synergy has not been explored 

(Moritake et al. 2019). However, the role of FAK on doxorubicin sensitivity in LMS cells 

is less well studied although increased FAK expression and phosphorylation has been 

demonstrated in endometrial adenocarcinoma patients with PTEN mutations, which 

correlated to worse outcomes (Thanapprapasr et al. 2015). Additionally, FAK inhibition 

in orthotopic xenograft models of endometrial adenocarcinoma synergized with 

chemotherapy treatment (paclitaxel and topotecan) (Thanapprapasr et al. 2015).  

In this chapter it was shown that ICR-LMS-1 doxorubicin resistant cells are significantly 

more sensitive to navitoclax, an inhibitor of antiapoptotic proteins, BCL-XL, BCL-2 and 

BCL-w. This is consistent with a previous report demonstrating that doxorubicin resistant 

chondrosarcoma cell lines or primary cells were sensitised to BCL-2 inhibition and 

navitoclax also sensitises LMS cells to doxorubicin although the relationship between 

doxorubicin acquired resistance and BCL-2 addiction has not been explored in LMS (De 

Graaff et al. 2016; Van oosterwijk et al. 2012).  

Based on the results in this chapter future work should focus on establishing the 

mechanistic basis behind sensitivity and resistance in each of the three paired parental 

and acquired doxoR models. Additionally future directions for this chapter could include 

investigation into the mechanisms behind the observed collateral sensitivities. 
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Chapter 6  - Evaluating molecular 

targeted therapeutic response in LMS 

patient derived models 
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6.1 Introduction 

The treatment of advanced STS with chemotherapeutic agents is almost always with 

palliative intent and disease progression is often seen following several treatment 

regimens, at which point treatment options are extremely limited (Kasper et al. 2021; 

Verschoor et al. 2020). Additionally, cytotoxic chemotherapies such as doxorubicin are 

not suitable for maintenance therapy even in responding patients due to the toxicity 

associated with high cumulative doses (Volkova and Russell 2012). Therefore, novel 

treatment options are urgently needed for advanced STS patients which might prolong 

survival beyond that achieved with current therapeutic regimens. 

Targetable candidate pathways in STS varies depending on subtype. For example, 

advancements in the molecular characterisation of GIST has led to the identification of 

distinct subgroups with recurrent oncogenic mutations and subsequently the approval of 

several targeted therapies including the c-KIT and PDGFRα inhibitor imatinib (Szucs et 

al. 2017). In advanced or metastatic GIST, imatinib shows an impressive 80% disease 

control rate and a mPFS of approximately 20 months (Verweij et al. 2004; Blanke et al. 

2008). However, STS subtypes with complex karyotypes such as LMS often display 

many mutations contributing to pathogenesis, making the identification of targeted 

therapies challenging (Asano et al. 2022; Chudasama et al. 2018). Currently, only one 

molecular targeted therapy, the multi-target TKI pazopanib, is approved for use in STS 

such as LMS, although clinicopathological biomarkers of pazopanib response are not 

fully understood (A. T. J. Lee, Jones, and Huang 2019).  

An increasing proportion of pre-clinical studies are focusing on the use of patient-derived 

in vitro cultures in order to highlight candidate therapies for in vivo assessment and 

subsequent clinical assessment. Compared to commercial cell lines, patient-derived 

cultures are able to recapitulate several aspects of the tumour of origin including 

molecular characteristics, histology (if 3D modelling), sub clonal heterogeneity and drug 

response phenotypes, making them better suited for pre-clinical studies (Kodack et al. 

2017; Cree, Glaysher, and Harvey 2010; Imamura et al. 2015; Salawu et al. 2016). 

Several reports have conducted large scale drug screening on patient-derived STS 

models, mainly focusing on genetically simple STS subtypes such as RMS, synovial 

sarcoma and alveolar soft-part sarcoma (ASPS), identifying the Src inhibitor dasatinib 

as well as Akt inhibitors as candidate targeted therapies for these subtypes (Brodin et al. 

2019; Manzella et al. 2020). One of these studies further utilised high throughput drug 

screening approaches to identify subsets of RMS patients with distinct drug response 

profiles which were compared with molecular profiles (translocation positive and 
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negative) (Manzella et al. 2020). However, large scale patient-derived cell screening 

studies focusing on LMS are limited (Babichev et al. 2016; Noguchi et al. 2020; Edris et 

al. 2012). 

Molecular profiling studies of both uterine and non-uterine LMS tumours have identified 

a high frequency (54-57%), with a predominance in uterine LMS, of homologous repair 

deficiency (HRD) signatures including somatic loss of function or deletions in DNA 

damage repair associated genes (PTEN, BRCA2, ATM, CHEK1, XRCC3, CHEK2, 

BRCA1, RAD51) and genomic scarring suggesting that targeting the DNA damage 

response pathway might be a promising therapeutic strategy (H. Li et al. 2020). Indeed, 

uterine LMS cell lines demonstrate reduced HR capacity and sensitivity to PARP 

inhibitors as well as inhibitors of DDR components shown via HR reporter assays or 

quantification of Rad51 foci as a marker of HR (Chudasama et al. 2018; Anderson et al. 

2021; H. Li et al. 2020). However, the specific mechanism by which PARP inhibitors exert 

an anti-tumour effect is currently unknown and is based on inferences of PARP inhibitor 

mechanism of action observed in other cancer types (Helleday 2011; Godon et al. 2008). 

Additionally, due to the fact that many chemotherapeutic agents are genotoxic, prior 

treatment and possible resistance of LMS tumours to chemotherapies may alter the DDR 

pathway and thus might effect the sensitivity of LMS tumours to DDR targeted therapies 

such as PARP inhibitors which has not been fully explored.  

In order to highlight novel targeted therapies active in the LMS subtype, this chapter 

utilises the PDX-derived LMS cell lines previously established and characterise in 

chapter 4. LMS lines were subjected to small molecule inhibitor drug screening to 

identify shared and patient specific molecular dependencies in LMS. Response 

phenotypes and were further investigated in two uterine LMS cell lines, ICR-LMS-1 and 

ICR-LMS-4, which, based on the results from chapter 5 represent a chemo-sensitive 

and resistant model respectively and building on these results, mechanisms of response 

to PI3K/mTOR inhibitors were assessed.  

 

6.2 PDX-derived LMS cultures display both shared and 

distinct drug sensitivities 

Each of the PDX-derived LMS cell cultures from chapter 4 both established and primary, 

as well as the commercially available LMS cell lines SK-UT-1 and SK-UT-1b were 

exposed to a targeted panel of 58 small molecule inhibitors designed to target a range 
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of key oncogenic pathways (see methods). Initially, cells were exposed for 72 hours 

before cell viability was assessed. Here, the BET bromodomain inhibitor JQ1 and heat 

shock protein 90 (HSP90) inhibitor NVP-AUY-922 were considered as a positive control 

of reduced viability, as these compounds show broad anti-tumour activity (Jiang et al. 

2020; Menezes et al. 2012). Hierarchical clustering of the resulting response profiles 

demonstrates that the commercially available uterine LMS cell line SK-UT-1b clusters 

separately to all other models, indicating that this model has distinct molecular 

dependencies from other LMS models (Figure 6.1A). The drug response profile of SK-

UT-1 was more similar to the five PDX-derived LMS models compared to SK-UT-1b 

although distinct clustering is still observed. Out of the PDX-derived models, SARC-323 

clustered separately, showing a reduction of cell viability in response to more small 

molecule inhibitors in general, while ICR-LMS-6 and ICR-LMS-4 were clustered together 

as pairs, as was SARC-393 and ICR-LMS-1 (Figure 6.1A & B). When observing the 

clustering of drugs used in this screen, The STAT3 inhibitor niclosamide and the dual 

PI3K inhibitor BEZ235 clustered together with the HSP90 inhibitor NVP-AUY-922, each 

causing a reduction in viability in all LMS cultures, suggesting that the targets of these 

inhibitors are necessary for survival or proliferation of LMS cells.  JQ1 also reduced the 

viability of all LMS cultures but to a lesser extent (Figure 6.1A). However no compounds 

were able to reduce the viability of all PDX-derived LMS models below a cut-off of 70% 

(Figure 6.1B). 
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Figure 6.1. 3-day targeted drug screen of PDX-derived and immortalised LMS cells. (A) Cell viability 

heatmap of SK-UT-1b, SK-UT-1, SARC-323, ICR-LMS-6, ICR-LMS-4, SARC-393 and ICR-LMS-1 cells 

treated with a targeted panel of 58 small molecule inhibitors at a concentration of 500 nM or 50 nM for NVP-

AUY922 for 72 hours. Viability is normalised to DMSO controls N=3. Profiles were mapped with two-way 

hierarchical clustering with Euclidean distance. (B) Heatmap of compounds causing <70% viability in SK-

UT-1b, SK-UT-1, SARC-323, ICR-LMS-6, ICR-LMS-4, SARC-393 and ICR-LMS-1 cells from drug screening.  

 

Due to the slow growth rates of the established PDX-derived cells included in this study, 

ranging from 3.2 to 4.4 days, four of the LMS cultures (ICR-LMS-1, 4, 6 and SARC-393) 

were exposed to the same concentration of drug screen for 6 days before cell viability 

was assessed. When the drug response profiles were compared, the uterine LMS model 

ICR-LMS-1 clustered separately to the remaining three models while the other two 

uterine LMS models ICR-LMS-4 and SARC-393 are clustered together, suggesting these 

models share similar pathway dependencies (Figure 6.2A). A cut-off of 70% was applied 

to the cell viability dataset to highlight the inhibitors which displayed a robust reduction 

of viability. BEZ235, niclosamide, NVP-AUY-922 and JQ1 were able to reduce viability 

of all four tested cell cultures to below 70% and also clustered together in dose response 
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profiles, suggesting the targets of these inhibitors are necessary for cell growth or 

survival of LMS cells and could be candidate targets for molecular therapy in LMS 

(Figure 6.2A, B, C).  

 

 

Figure 6.2. 6-day targeted drug screen of PDX-derived LMS cells. (A) Cell viability heatmap of ICR-LMS-

6, SARC-393, ICR-LMS-4 and ICR-LMS-1 cells treated with a targeted panel of 58 small molecule inhibitors 

at a concentration of 500 nM or 50 nM for NVP-AUY922 for 6 days. Viability is normalised to DMSO controls 

N=3. Profiles were mapped with Euclidean hierarchical clustering. (B) Heatmap of compounds causing <70% 

viability in ICR-LMS-6, SARC-393, ICR-LMS-4 and ICR-LMS-1 cells from drug screening. (C) Venn diagram 

of shared and unique drug sensitivities able to reduce cell viability to below 70% based on screening data. 

Including BEZ235, BI 2536, dasatinib, JQ1, navitoclax, neratinib, niclosamide, NVP-AUY922 and rapamycin. 

 

The non-uterine LMS PDX-derived line ICR-LMS-6 showed the most resistant drug 

response profile whereby only BEZ235, JQ1, niclosamide and NVP-AUY-922 were able 

to reduce viability beyond 70% (Figure 6.2B & C). In contrast, the uterine LMS culture 

SARC-393 displayed the highest number of drug sensitivities. In addition to the four 

inhibitors which reduced viability in all LMS cultures, SARC-393 also displayed sensitivity 
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towards the Src inhibitor dasatinib, the PLK-1 inhibitor BI2536, the HER2 inhibitor 

neratinib and the mTOR inhibitor rapamycin. On top of the four shared sensitivities, ICR-

LMS-1 cells also demonstrated sensitivity to BI2536 and ICR-LMS-4 also showed 

sensitivity to neratinib and rapamycin (Figure 6.2B & C). ICR-LMS-1 cells displayed a 

unique sensitivity towards treatment with the BCL-2 inhibitor navitoclax which was not 

observed in ICR-LMS-4, ICR-LMS-6 or SARC-393 (Figure 6.2B & C). Taken together, 

this data shows that LMS cells can display both shared and distinct sensitivities to certain 

molecular targeted therapies and highlights that LMS cells are broadly sensitive towards 

BEZ-235 as well as niclosamide.  

 

6.3 Targeting PI3K/mTOR pathway 

Based on the observation that PDX-derived LMS cultures are sensitive to dual 

PI3K/mTOR inhibition or mTOR inhibition alone, I sought to determine the PTEN 

expression status of these models via western blot. SK-UT-1 and the NSCLC cell line 

PC-9 were used as controls of PTEN loss as both show low expression of this protein 

(Broad Institute 2021). The non-transformed fibroblast cell line MRC-5 was used as a 

positive control of PTEN expression (L. Liu et al. 2019). All PDX-derived cultures tested 

showed a reduction in PTEN levels compared to MRC-5, with no PTEN band observed 

in the three uterine LMS models ICR-LMS-1, 4 and SARC-393 models while non-uterine 

LMS cultures SARC-323 and ICR-LMS-6 both display weak PTEN expression (Figure 

6.3). 

 

 

Figure 6.3. PTEN loss in PDX-derived LMS cells. Immunoblot of ICR-LMS-1, SARC-323, ICR-LMS-4, 

ICR-LMS-6, SARC-393, SK-UT-1, MRC-5 and PC9 against PTEN and tubulin as a loading control. PTEN; 

phosphatase and tensin homolog. MRC-5 is a positive control of PTEN expression.  
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The two established uterine LMS PDX-derived cells lines ICR-LMS-1 and ICR-LMS-4 

were selected for further analysis of response to PI3K/mTOR pathway inhibition. As the 

Akt inhibitors included in the small molecule drug screen (AZD-5356 and MK2206) 

showed no impact or only a modest reduction on cell viability (Figure 6.2A) specific 

inhibition of Akt was not investigated further. Initially, to verify the results of the drug 

screen, dose response curves and colony formation assays were conducted for ICR-

LMS-1 and ICR-LMS-4 treated with the PI3K/mTOR inhibitor BEZ235, the PI3Kα inhibitor 

alpelisib or the mTOR inhibitor rapamycin. All three compounds caused a dose 

dependent reduction in ICR-LMS-1 and ICR-LMS-4 cell viability, although both cell lines 

showed a higher sensitivity to BEZ235 and rapamycin compared to alpelisib (Figure 

6.4A & B). For ICR-LMS-1 alpelisib caused a dose dependent reduction of colonies 

although BEZ235 and rapamycin treatment caused a significantly larger reduction of 

colony formation, with no observable colonies present after 2 weeks of treatment at 

concentrations of 100 nM (Figure 6.4C & D). This result was also observed in ICR-LMS-

4 cells where BEZ235 and rapamycin had a significantly enhanced effect on colony 

formation compared to alpelisib treatment (Figure 6.4E & F). Together these results 

suggest that mTOR inhibition has a greater effect on LMS cell viability compared to PI3K 

inhibition. 
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Figure 6.4. Response of ICR-LMS-1 and ICR-LMS-4 cells to PI3K and/or mTOR inhibition. (A, B) Cell 

viability dose response curve of ICR-LMS-1 or ICR-LMS-4 cells treated with BEZ235, alpelisib or rapamycin 

for 72 hours at concentrations ranging from 5 nM to 50 µM. N=2. Viability measurements were fitted to non-

linear variable slope four parameter curve. Error bars indicate standard deviation. (C, E) Images of crystal 

violet stained wells after 2 weeks of ICR-LMS-1 or ICR-LMS-4 treatment with BEZ235, alpelisib or rapamycin 

at 100 nM, 500 nM, 1 µM, 2 µM and 5 µM or Dimethylsulfoxide (DMSO) vehicle control. (D, F) Mean % 

confluence of ICR-LMS-1 or ICR-LMS-4 cells from colony formation images normalised to DMSO vehicle 

control. Error bars indicate standard deviation. Significance is shown following a two-way ANOVA with 

multiple comparisons at each concentration. **; p ≤ 0.01, ***; P ≤ 0.001, ****;  P ≤ 0.0001.  

 

 

In order to assess the effects of PI3K and/or mTOR inhibitors on cell signalling pathways 

in LMS, immunoblotting was conducted in ICR-LMS-1 and ICR-LMS-4 cells treated with 

a range of BEZ235, alpelisib or rapamycin concentrations for 6 hours. Upon BEZ235 

treatment, a potent reduction of Akt Ser473 phosphorylation was observed in both ICR-
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LMS-1 and 4 cells (Figure 6.5). With BEZ235 treatment, a reduction of Thr 389 

phosphorylated p70S6K was only seen in ICR-LMS-4 cells, although for ICR-LMS-1 

cells, BEZ235 treatment abolished the upper P-p70S6K band. BEZ235 also caused a 

reduction in STAT3 Tyr705 phosphorylation in both cell lines particularly at 5 µM while 

no effect on Src or ERK1/2 phosphorylation or total protein was observed (Figure 6.5). 

Alpelisib cause only a minor reduction in phosphorylated Akt at 5 µM in both cell lines 

while rapamycin abolished the upper P-p70S6K band at 500 nM in both cell lines (Figure 

6.5). Alpelisib or rapamycin showed no effect on pan or phosphorylated STAT3, Src or 

Erk at any concentration after treatment for 6 hours. Therefore BEZ235 displays a 

combined effect on Akt and p70S6K phosphorylation, and especially a more potent effect 

on Akt, compared to alpelisib or rapamycin which may explain the reduced effect of 

alpelisib and rapamycin on cell viability and colony formation inhibition compared to 

BEZ235. Furthermore, modulation of STAT3 signalling may also be a mechanism of 

BEZ235 action in addition to PI3K/mTOR inhibition and could contribute to enhanced 

potency.  
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Figure 6.5. Immunoblot of ICR-LMS-1 and ICR-LMS-4 cells in response to BEZ235, alpelisib or 

rapamycin treatment. Immunoblot of ICR-LMS-1 or ICR-LMS-4 cells after 6 hours of treatment with 500 

nM, 1 µM or 5 µM of BEZ235, alpelisib or rapamycin. ERK1/2; extracellular signal-regulated kinase, p70S6K; 

p70 ribosomal S6 kinase, Signal transducer and activator of transcription 3. 

 

6.4 Targeting BRCAness 

Following the small molecule drug screening of PDX-derived LMS cells, the PARP 

inhibitor talazoparib but not rucaparib was observed to cause a slight decrease in cell 

viability after 6 days and therefore PARP inhibition in PDX-derived LMS cells was further 

investigated (Figure 6.2A).  

Within the previously shown drug screen, talazoparib only shows an impact on PDX-

derived LMS cells after 6 days and had no effect on viability after 72 hours (Figure 6.2A). 

Therefore, colony formation assays were conducted with ICR-LMS-1 and ICR-LMS-4 

cells alongside SK-UT-1 and SK-UT-1b cells which have previously been shown to be 

sensitive to PARP inhibition in this assay format (Chudasama et al. 2018). The cells were 
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exposed to three PARP inhibitors: talazoparib, olaparib and rucaparib which resulted in 

varying degrees of clonogenic growth inhibition. Talazoparib potently reduced the 

formation of colonies at 100 nM for ICR-LMS-1 and ICR-LMS-4 cells in addition to SK-

UT-1 and SK-UT-1b colonies, although the presence of remaining colonies could be 

observed in ICR-LMS-4 even at 5 µM talazoparib (Figure 6.6A). When quantified, the 

only significant difference between cell lines at each talazoparib concentration was 

between SK-UT-1 and SK-UT-1b, showing that ICR-LMS-1 and ICR-LMS-4 cells have 

similar responses to talazoparib treatment compared to the immortalized LMS cell lines 

(Figure 6.6B). Olaparib and rucaparib reduced the formation of colonies in all four cell 

lines in a dose dependent manner though were considerably less potent compared to 

talazoparib (Figure 6.6C & E). ICR-LMS-1 showed a significantly lower colony density 

at olaparib concentrations of 100 nM, 500 nM and 1 µM compared to SK-UT-1 and SK-

UT-1b while ICR-LMS-4 showed a significantly higher colony density compared to all 

other lines at 5 µM (Figure 6.6D). ICR-LMS-4 also demonstrated significantly higher 

density compared to other cell lines at 5 µM rucaparib (Figure 6.6E & F). Taken together, 

these results suggest that both ICR-LMS-1 and ICR-LMS-4 are sensitive to PARP 

inhibition although extent of response varies considerably with the specific compound 

used and ICR-LMS-4 cells are less sensitive to olaparib and rucaparib treatment 

compared to ICR-LMS-1. 
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Figure 6.6. PARP inhibitor response in established and PDX-derived cells. (A, C, E) Images of crystal 

violet stained wells of ICR-LMS-1, ICR-LMS-4, SK-UT-1 or SK-UT-1b cells treated with talazoparib, olaparib 

or rucaparib at a concentration of 100 nM, 500 nM, 1 µM, 2 µM and 5 µM or Dimethylsulfoxide (DMSO) 

vehicle control for 2 weeks. (B, D, F) Mean % confluence of ICR-LMS-1, ICR-LMS-4, SK-UT-1 or SK-UT-1b 

cells from colony formation images normalised to DMSO vehicle control when treated with talazoparib, 

olaparib or rucaparib. N=3. Error bars indicate standard deviation. Significance is shown following a two-way 

ANOVA with multiple comparisons at each concentration. *; p < 0.05 **; p ≤ 0.01, ***; p ≤ 0.001, ****;  p ≤ 

0.0001.  
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In order to determine if prior doxorubicin treatment may affect the sensitivity of LMS cells 

to PARP inhibition, ICR-LMS-1 doxoR cells previously established and characterised in 

chapter 4 were exposed to talazoparib, olaparib or rapamycin at a range of 

concentrations for 6 days at which point cell viability was assessed. ICR-LMS-1 and ICR-

LMS-1 doxoR cells both displayed similar PARP inhibitor dose response curves, with all 

three inhibitors able to reduce ICR-LMS-1 doxoR viability in a dose dependent manner 

(Figure 6.7A, C & E). Talazoparib and rucaparib IC50 values showed no significant 

difference between parental and doxoR ICR-LMS-1 cells although olaparib did show a 

significantly higher IC50 value in ICR-LMS-1 doxoR cells (Figure 6.7B, D & F). This 

result indicates that acquired doxorubicin resistant ICR-LMS-1 cells are still sensitive to 

PARP inhibition, although slight loss of response to olaparib can be observed. 
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Figure 6.7. Cell viability of doxorubicin resistant cells in response to PARP inhibition. (A, C, E) 

Percentage cell viability of ICR-LMS-1 parental or doxoR cells when treated with talazoparib, Olaparib or 

rucaparib concentrations from 5 nM to 50 µM for 6 days. Viability measurements were fitted to non-linear 

variable slope four parameter curve. N=3. Error bars indicate standard deviation. (B, D, F) Mean talazoparib, 

Olaparib or rucaparib half-maximal inhibitory concentration (IC50) values for ICR-LMS-1 parental or doxoR 

cells based on fitted dose response curves. Error bars indicate standard deviation. ns; not significant (P> 

0.05). *; p < 0.05. 
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6.5 Discussion 

In this chapter, candidate signalling pathway dependencies were assessed in the PDX-

derived LMS cultures established in chapter 4 via small molecule inhibitor screening. 

Similar to other patient-derived model screening studies in subtypes such as RMS, 

variable responses to different inhibitors were observed in different models, while the 

presence of shared molecular dependencies was clear. After initial assessment of 

inhibitor response after 72 hours, a longer treatment time was able to better identify 

compounds which have anti-proliferative effects. Previous studies demonstrated that the 

doubling time of in vitro models is an important consideration when conducting oncogenic 

drug screening and to address this variability, the authors implemented an equation to 

calculate the effect of each drug on cell viability, taking into account individual growth 

rates (Hafner et al. 2016; Gupta et al. 2020). Implementing such an equation on the small 

molecule screening dataset presented in this study would further aid in identifying 

pathway dependencies of LMS cells.  

An important result presented in this chapter was that none of the PDX-derived LMS 

models displayed a response to the multi-target TKI pazopanib, which is currently the 

only molecular targeted therapy approved for use in LMS patients. Indeed, none of the 

anti-angiogenic multi-TKI inhibitors included in the small molecule inhibitor screen were 

able to reduce the viability of any of the five PDX-derived LMS cell cultures. Pazopanib, 

along with other multi-TKI anti-angiogenic compounds have been shown to exert anti-

tumour effects via two mechanisms of action: first by directly inhibiting proliferation of 

tumour cells and second by inhibiting angiogenesis (Podar et al. 2006; Gril, Palmieri, 

Qian, Smart, et al. 2011; Gril, Palmieri, Qian, Anwar, et al. 2011; Gril et al. 2013). 

Therefore, it can be deduced from this study that the viability of patient derived LMS cells 

is not directly affected by pazopanib treatment and should be further assessed in 

corresponding PDX models generated in chapter 3 to confirm whether pazopanib can 

lead to in vivo responses via angiogenesis inhibition.  

Longer term treatment of ICR-LMS-1, ICR-LMS-4, ICR-LMS-6 and SARC-393 cell 

cultures empirically identified a shared sensitivity to niclosamide. Niclosamide is an FDA 

approved anthelminthic drug which exerts its effects via uncoupling oxidative 

phosphorylation and inhibiting glucose uptake and anaerobic metabolism, although it 

also known to modulate various signalling pathways including Wnt/β-catenin, 

Neurogenic locus notch homolog protein (Notch), mTOR, STAT3 and Nuclear factor κB 

(NF-kB) (A. Ibrahim et al. 2020; Sekulovski et al. 2021; Ahn et al. 2017; C. Wang et al. 

2018). A number of pre-clinical studies have shown niclosamide also exerts anti-tumour 
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activity in multiple cancer types via varying mechanisms. For example in renal cancer 

cells, niclosamide reduced cell proliferation, cell migration and induce apoptosis by 

causing reduced expression of E2 promoter binding factor 1 (E2F1) and c-Myc while 

reducing PTEN expression leading to reduced PI3K signalling (Yu et al. 2018). Disruption 

of Wnt/β signalling has been demonstrated in oral squamous cell carcinoma, ovarian 

carcinoma and colon cancer cells, leading to cell cycle arrest, apoptosis and altered 

invasive potential (Ahn et al. 2017; L. H. Wang et al. 2018; King et al. 2015). Furthermore, 

niclosamide has demonstrated synergy with doxorubicin sequential or concurrent 

treatment in breast cancer cells by inhibiting Wnt signalling (Lohiya and Katti 2021). 

However other studies have shown that niclosamide inhibited proliferation and apoptosis 

in oesophageal squamous cell carcinoma or hepatocellular carcinoma cells via the 

inhibition of STAT3 signalling (C. Wang et al. 2018; M. C. Lee et al. 2020). The 

assessment of niclosamide in sarcoma is currently limited to bone sarcomas such as 

osteosarcoma where one study reported that niclosamide suppressed osteosarcoma cell 

migration and invasion via reducing the expression transforming growth factor β (TGF-

β) and another showed the effects of niclosamide on osteosarcoma cell migration via 

Wnt/Zinc finger protein SNAI1 (SNAIL) axis modulation (Yeh et al. 2022; Yi et al. 2021). 

Further mechanistic investigation into the specific effects of niclosamide on LMS cells is 

warranted based off the findings in this chapter in order to suggest predictive biomarkers 

of response.  

The repurposing of niclosamide as an anti-cancer drug demonstrated limited clinical 

success in prostate cancer due to low oral bioavailability and absorption rate, meaning 

that at standard dosing, plasma concentrations were not able to reach therapeutic ranges 

identified from prior in vitro studies (Schweizer et al. 2018). However, in metastatic 

colorectal cancers, initial results from a phase II trial has shown that similar doses of 

niclosamide can result in stable disease with a peak plasma concentration (Cmax) 

concentration corresponding to approximately 1.8 µM (Burock et al. 2018). In this chapter 

all PDX-LMS cells tested showed a reduction in viability at 500 nM niclosamide, 

indicating that LMS cells respond to this drug at clinically relevant concentrations.   

This chapter also assessed the therapeutic potential of targeting the PI3K/Akt/mTOR 

pathway in PDX-derived LMS models. Aberrations in PTEN causing loss of expression 

is common in LMS, reported to be present in 41% of non-primary LMS tumours (Schaefer 

et al. 2021). The results within this chapter demonstrate that three of five LMS PDX-

derived cell models have a loss of PTEN expression. The remaining two models, SARC-

323 and ICR-LMS-6 (both of which were the only non-uterine LMS cells tested) showed 

a reduction of PTEN expression compared to normal fibroblasts but to a lesser extent. 
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This does conflict with previous results showing that a larger proportion of non-uterine 

LMS tumours have a complete loss of PTEN compared to uterine LMS tumours although 

this discrepancy could be attributed to the small sample size of preclinical models tested 

in this chapter (Schaefer et al. 2021). Whole exome sequencing profiling of the larger 

panel of LMS PDX models established in chapter 3 will reveal if full PTEN loss is 

consistently not observed in the non-uterine LMS models. All five PDX-derived LMS 

models were sensitive to the dual PI3K and mTOR inhibitor BEZ235, therefore PTEN 

expression does not necessarily correlate with BEZ235 sensitivity. Further analysis of 

response in ICR-LMS-1 and ICR-LMS-4 revealed that the dual PI3K/mTOR inhibitor 

BEZ235 inhibited colony formation and reduced viability at lower doses compared to the 

PI3K inhibitor alpelisib. This is consistent with other reports which show dual PI3K/mTOR 

inhibition via BEZ235 has potent anti-tumour activity in LMS cells, and is superior to 

individual PI3K or mTOR inhibition alone (Fourneaux et al. 2016; Serra et al. 2008). 

Fourneaux and co-workers demonstrated that treatment of three patient derived LMS 

cell lines with BEZ235 showed an increase in Erk activation after 3 days due to the 

inhibition of an mTORC2 mediated negative feedback loop (Fourneaux et al. 2016). The 

results in this chapter shows that following BEZ235 treatment for 6 hours, no effect on 

Erk signalling was observed in either ICR-LMS-1 or ICR-LMS-4 cells, indicating that 

feedback mechanisms are not activated in these models at this short timepoint. Long 

term treatment would be necessary further test if mTORC2 feedback loops are also 

active in the LMS models presented in this study or are only activated in a portion of LMS 

models reported in literature, suggesting that perhaps feedback mechanisms might be 

patient specific.  

Inspecting the signalling pathways effected by PI3K and mTOR inhibitors shortly after 

treatment initiation revealed that BEZ235 and rapamycin reduced the phosphorylation of 

p70S6K, a downstream target of mTOR while BEZ235 also potently inhibited Akt 

phosphorylation at Ser473 which is an important phosphorylation site for activation 

downstream of PI3K. However, alpelisib demonstrated minimal effects on Akt, only 

slightly reducing activation at the highest dose tested. In previous studies, biochemical 

analysis demonstrated that alpelisib and BEZ235 have similar IC50 values towards 

PI3Kα isoform while BEZ235 can also inhibit PI3Kδ and γ isoforms at a similar 

concentration. Therefore, in ICR-LMS-1 and ICR-LMS-4 cells, inhibition of PI3Kα, δ and 

γ isoforms might be necessary to ameliorate Akt activation and reduce cell viability. 

Another observation following BEZ235 treatment was the reduction of STAT3Tyr705 

phosphorylation and therefore activation in ICR-LMS-1 cells and to a lesser extent in 

ICR-LMS-4. However, a previous study reported that BEZ235 treatment at the same 
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concentration and timepoint to that presented in this chapter instead prompts STAT3Tyr705 

phosphorylation in PTEN deficient breast cancer, renal cell carcinoma and melanoma 

cells as part of a negative feedback loop, which suggests that the mechanistic response 

of LMS cells to dual PI3K/mTOR inhibition may be distinct from that of other cancer types 

with PTEN deficiency (J. Wang et al. 2021). In this chapter, STAT3 inhibition is observed 

in response to BEZ235 which demonstrated activity in LMS cells, meanwhile LMS cells 

were also sensitive to niclosamide which has been previously shown to target STAT3 

(C. Wang et al. 2018; M. C. Lee et al. 2020). STAT3 is an interferon gene known to be 

part of the interferon responsive DNA damage resistant signature and combined with the 

knowledge that LMS tumours often display high genomic instability, a model can be 

hypothesised that targeting STAT3 interferon signalling causes LMS cells to become 

sensitised to DNA damage, leading to reduced viability (Weichselbaum et al. 2008). Thus 

further investigation into mechanisms behind STAT3 pathway inhibition in these LMS 

cell models and possible cross-talk between DDR is warranted.   

Clonogenic assays confirm that ICR-LMS-1 and ICR-LMS-4 are sensitive to PARP 

inhibition, most notably by talazoparib and is consistent with emerging reports that 

uterine LMS cell lines are sensitive to such inhibitors (Anderson et al. 2021; Chudasama 

et al. 2018; Vornicova et al. 2022). Talazoparib, olaparib and rucaparib have been 

previously shown to have similar potencies towards the catalytic inhibition of PARP, 

although talazoparib has an increased PARP trapping potency of approximately 100 fold 

compared to olaparib and rucaparib (Murai, Huang, et al. 2014). Therefore, the enhanced 

response of ICR-LMS-1 or ICR-LMS-4 cells to talazoparib indicates that PARP trapping 

might be the main pathway driving response as opposed to catalytic inhibition of PARP. 

Specific trapping versus inhibition studies should be therefore be conducted to confirm 

this finding (Hopkins et al. 2019). While the non-uterine LMS models SARC-323 and 

ICR-LMS-6 were not tested further for PARPi response, drug screening data suggests 

ICR-LMS-6 is also sensitive to talazoparib, highlighting that therapeutic targeting of the 

DDR pathway is not limited to uterine LMS. ICR-LMS-6 was found to be the most chemo 

resistant model in chapter 5 and also shows resistance to multiple targeted agents, thus 

could be considered as a model of multi-drug resistance. Interestingly, despite this multi-

drug resistant phenotype, ICR-LMS-6 still demonstrated sensitivity to talazoparib based 

of drug screening data, which suggests that PARP inhibition may be a candidate therapy 

for patients with multi-drug resistant phenotypes. Despite the lower efficacy of olaparib 

and rucaparib on cell viability compared to talazoparib, all three inhibitors were able to 

reduce clonogenic growth and viability of LMS cells at concentrations comparable to the 

recorded Cmax plasma concentration of breast and ovarian cancer patients receiving on 
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label PARP inhibitor therapy (Bruin et al. 2022). Additionally, IC50 values are similar to 

that recorded in immortalised LMS cell lines (Laroche et al. 2017; Anderson et al. 2021; 

Pignochino et al. 2017). Together this data shows that PARP inhibitors are active in PDX-

derived LMS cells at clinically relevant doses. 

Doxorubicin and most other chemotherapies approved for use in sarcoma mainly act by 

interacting with DNA (Pommier et al., 2010). Therefore, it was hypothesised that 

tolerance to doxorubicin may also induce cross-resistance to small molecules targeting 

the DNA damage response and repair pathways such as PARP inhibitors. However, 

PARP inhibitors were still able to reduce viability of doxorubicin acquired resistant PDX-

derived LMS cells, demonstrating similar dose response profiles. This result indicates 

that targeting PARP could be a viable treatment option for advanced LMS patients even 

after progression on prior doxorubicin treatment and thus, as a second line therapy would 

be a much needed addition to the currently limited treatment options. Doxorubicin 

resistant ICR-LMS-1 cells did show a significantly higher IC50 value for Olaparib and 

rucaparib IC50 value was also slightly higher in the resistant model. However talazoparib 

showed little difference in IC50 value towards doxorubicin resistance cells. As the PARP 

trapping ability of talazoparib is higher than that of olaparib and rucaparib, this result 

suggests that the effects of PARP trapping is unaffected by doxorubicin resistance (Murai 

et al. 2012). 

Anderson et al. recently demonstrated that SK-UT-1 and SK-UT-1b had defective HR 

and also defective NHEJ specifically in SK-UT-1b by using a functional HR/NHEJ 

reporter assay (Anderson et al. 2021). In order to assess mechanism behind the 

apparent PARP inhibitor sensitivity in the PDX-derived LMS cell lines generated in this 

thesis, work is currently underway to determine first, the ability of ICR-LMS-1 and ICR-

LMS-4 to undergo homologous repair following DNA damage via ionising radiation (IR) 

and second, the impact of PARP inhibition on DNA double strand break formation and 

repair mechanisms. For this, RPE-1 P53Δ and RPE-1 P53Δ BRCA1-/- isogenic cell lines 

will be used as positive and negative controls of HR capacity respectively. Following IR 

or PARP inhibitor treatment, cells will be scored as γ-H2AX and Rad51 positive or 

negative which are functional readouts of DNA double strand breaks and sites of HR 

respectively and will also be co-stained for geminin (Cruz et al. 2018). Geminin 

accumulates in the nucleus during S-G2 phases of the cell cycle and can be used as a 

marker to restrict the analysis of γ-H2AX and Rad51 foci to cells in the correct phase of 

the cell cycle for HR activity, reducing the likelihood of falsely reporting HR deficient cells 

(Cruz et al. 2018). Geminin staining is particularly important to account for slowly 

proliferating cells where a lower percentage of cells will actively be in S-G2 phase. 
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Additionally the effect of dual PI3K/mTOR inhibition on HR activity in these cell lines will 

be assessed as previous studies have shown that PI3K/mTOR inhibition can induce a 

transient HRD phenotype (Chang et al. 2014; De et al. 2014; Philip et al. 2017). 

Other future work for this chapter could involve testing PARP inhibitors in the respective 

PDX models to verify the sensitivity observed in vitro and to also test other PDX models 

which were not able to grow in vitro and have therefore not yet been assessed for PARP 

inhibitor sensitivity. Due to the prevalence of PARP inhibitor acquired resistance in  

cancer types where this therapy is standard of care such as ovarian and breast cancer, 

potential mechanisms of PARP inhibitor acquired resistance in LMS should be 

investigated (K. K. Lin et al. 2019; Vidula et al. 2020). To achieve this, dose escalation 

to generate acquired resistant models is already underway. It would be interesting to 

evaluate if LMS cells are able to acquire stable or transient resistance to PARP inhibitors 

as a recent study reported that ovarian cancer cell lines exposed to escalating doses of 

olaparib did not cause PARP inhibitor resistance or cross-resistance to other 

chemotherapies (Fedier et al. 2022). Meanwhile in ovarian and breast cancer patients, 

certain mutations causing a BRCAness phenotype may be more likely to lead to PARP 

inhibitor resistance than others (Pettitt et al. 2020). Therefore future work assessing 

resistance mechanisms should check for a correlation with certain mutations in DDR 

components in order to potentially stratify LMS patients who are most suited to long term 

maintenance PARP inhibitor therapy.  
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Chapter 7 - Discussion 



   
 

217 
 

7.1 Future directions for pre-clinical modelling of LMS 

7.1.1 Orthotopic xenografts 

While the LMS PDX models presented in this thesis show high fidelity to patient tumours 

in terms of histology and proteomic profiles, subcutaneous models are limited in that they 

cannot fully mimic native tumour microenvironment and tumour invasion. Therefore, 

future in vivo models of LMS can be further improved by generating patient derived 

orthotopic xenografts (PDOX), where patient tumours are engrafted into 

immunocompromised mice in an anatomical location corresponding to the patient tumour 

site. PDOX are able to more accurately model patient tumours responses compared to 

subcutaneous PDX models and can also mimic patterns of invasion and metastasis 

(Russell et al. 2017). PDOX models of LMS have been established in a limited number 

of studies. One such study generated a LMS PDOX model 1.5 months after receiving 

the tumour resection sample via initial subcutaneous implantation followed by passaging 

into femoral murine muscle (Zhiying Zhang et al. 2019). The author noted that the LMS 

PDOX model showed a response to combined gemcitabine and docetaxel which was 

significantly more effective than doxorubicin (Zhiying Zhang et al. 2019). Additionally, 

this model was susceptible to trabectedin and temozolomide treatment while pazopanib 

and olaratumab showed no significant response (Zhiying Zhang et al. 2019). One of the 

main drawbacks of orthotopic models is the difficulty in non-invasive monitoring of tumour 

growth over time due to the often deep anatomical locations of engrafted tumours (Imle, 

Kommoss, and Banito 2021). However, another study generated a gastric LMS PDOX 

by initially implanting patient tissue subcutaneously into a mouse expressing the 

fluorophore red-fluorescent protein (RFP) to label the tumour stroma. The PDX tumour 

was then implanted orthotopically into the gastric wall of a non-transgenic mouse so that 

the impact of drug treatment on tumour invasion could be easily analysed over time via 

non-invasive fluorescent imaging (Kawaguchi et al. 2017).  

As with most STS subtypes, LMS tumours metastasise most frequently to the lungs 

although the reason behind this is poorly understood and for this reason potential 

therapies which could specifically prevent metastatic spread in STS have yet to be 

investigated in detail (Gladdy et al. 2013; Gamboa, Gronchi, and Cardona 2020). In order 

to study site specific metastases, orthotopic implantation could be utilised with the PDX 

LMS models generated in chapter 3 to identify the ability of these models to invade local 

tissue and metastasise. If spontaneous metastasis isn’t observed following orthotopic 

PDX growth, then injection of the tumourigenic PDX-derived LMS cell cultures ICR-LMS-
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1 or  ICR-LMS-3 derived in chapter 4 into murine tail veins could mimic metastatic 

spread. These metastatic models could then be used to assess if certain therapies can 

prevent the outgrowth of metastases similar to a previous study which used the 

fibrosarcoma cell line HT1080 (Miwa et al. 2014).  

 

7.1.2 Genetically engineered mouse models (GEMMs) 

Another method to model cancer in vivo is to use genetically engineered mouse models 

(GEMMs). These models can be either germline or somatic mutants and can also be 

inducible, which means they can potentially be used to investigate mechanisms of early 

tumourigenesis (Rao et al. 2014; Halaoui et al. 2017). Somatic GEMM generation has 

seen considerable advancements in the past decade due the widespread availability of 

targeted gene editing technologies such as Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR) which improves on traditional cre-recombinase based 

GEMM establishment for ease and time of establishment (Dodd et al. 2015; J. Huang et 

al. 2017; Annunziato et al. 2016).  The unique benefit of these models is that they can 

mimic invasive and metastatic behaviour of human tumours and are do not have to 

overcome ex vivo growth conditions (Imle, Kommoss, and Banito 2021). However the 

disadvantages of GEMM models is that cannot always capture the genetic complexity of 

human tumours and establishment relies on known driver mutations in order to cause 

transformation (Imle, Kommoss, and Banito 2021). Several reports have used GEMM 

models in other cancer types such as pancreatic and breast cancer to demonstrate 

mechanisms of tumour invasion and metastasis while identifying candidate drug targets 

to prevent this progression (Gopinathan et al. 2015; Annunziato et al. 2016; Ross et al. 

2020). 

Additionally, GEMMs are immunocompetent and therefore can model the immune 

microenvironment throughout different stages of cancer such as tumourigenesis, local 

invasion and metastasis (Nguyen and Spranger 2020). Because of the intact tumour 

microenvironment, these models are useful for assessing response to immunotherapies. 

Gutierrez and co-workers have recently derived GEMM models of UPS and RMS, 

comparing the immune landscape of each to syngeneic models, whereby GEMM 

tumours are cultured in vitro and then injected into immunocompetent mice of the same 

strain (W. R. Gutierrez et al. 2021). The study found that in both UPS and RMS models, 

tumours were infiltrated with a similar percentage of immune cells, with an especially 

high proportion of macroohages, although RMS models had higher proportion of CD8+ 

infiltrating T-cells while UPS had a higher proportion of CD4+ infiltrating T-cells which is 



   
 

219 
 

consistent with IHC immunoprofiling studies on human tumours (Dancsok et al. 2020; 

2019; W. R. Gutierrez et al. 2021). Additionally, the authors demonstrated that the 

respective syngeneic models showed differing immune landscapes to the original 

GEMMs, making syngeneic models less robust for immuno-oncology studies (W. R. 

Gutierrez et al. 2021). 

GEMM models of STS consist mainly of translocation associated sarcomas due to the 

well characterised pathognomonic gene fusions required for transformation while GEMM 

models representing sarcoma subtypes with complex karyotypes are difficult to generate 

due to the lack of well-defined defined driver mutations (Abeshouse et al. 2017; Imle, 

Kommoss, and Banito 2021).. However, GEMM establishment could be achieved by 

perturbing genes which show recurrent aberrations in large scale LMS sequencing 

studies such as TP53, RB1, ATRX and PTEN (Hensley et al. 2020). Recently, LMS 

GEMM models were generated via PTEN mutation and KRAS activation specifically in 

uterine smooth muscle cells which produced tumours with a histology consistent with 

uterine LMS and were utilised in a transposon genetic screen for candidate genes which 

contribute to metastasis (Kodama et al. 2021). This demonstrates that GEMM modelling 

of LMS tumours is feasible, therefore these could be utilised in future studies to assess 

candidate therapies to prevent metastasis. However the generation of GEMM models for 

other STS subtypes faces another challenge in that the cell of origin must be well 

characterised so that location specific promotors can be used to express the oncogenic 

genes of interest (W. R. Gutierrez et al. 2021).  

 

7.1.3 Zebrafish models in STS research 

In addition to mouse models, zebrafish are another common model organism used in 

pre-clinical cancer research. Zebrafish have several advantages over mouse models, 

such as lower cost, easier handling, shorter time to model establishment both for 

transgenic models and xenografts as well as transparency of zebrafish embryos, 

allowing for optical assessment of tumours in high-throughput time-lapse experiments 

(Kendall et al. 2018; Casey and Stewart 2020). Additionally, the conservation of multiple 

signalling pathways implicated in many cancer types as well as overall genetic 

conservation of human genes has highlighted zebrafish as excellent cancer models 

(Howe et al. 2013). Furthermore, zebrafish demonstrate a high penetrance of sarcoma 

development seen in studies producing transgenic STS subtypes such as RMS and LPS, 

which also demonstrated remarkably similar molecular and histological characteristics 
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compared to the respective human disease (A. Gutierrez et al. 2011; Kendall et al. 2018; 

Ignatius et al. 2012). 

Zebrafish xenografts can also be established via cell inoculation, providing a means for 

high-throughput in vivo drug response profiling of patient-derived cells. (Yan et al. 2019; 

De Vita et al. 2021; Rebelo de Almeida et al. 2020; Siebert et al. 2023). For example, 

Yan and co-workers reported the establishment of two RMS zebrafish xenografts using 

patient-derived cell lines which showed distinct histology. Within these models the 

authors demonstrated intra-tumoural subpopulation of cells including migratory cells, 

proliferative cells and bystander cells that could each be visualised live at single cell 

resolution, going on to show sensitivity of RMS xenografts to combined olaparib and 

temozolomide treatment (Yan et al. 2019). The use of zebrafish xenografts for drug 

response assessment in LMS has yet to be described but is a promising avenue for 

future modelling of this disease.  

 

7.1.4 Modelling the tumour microenvironment in vitro 

One main drawback of my work is that I was not able to conduct high throughput culture 

condition screens in order to assess the effect of different media components and growth 

factors on cell growth and viability, although it was found that one non-uterine LMS cell 

culture in chapter 4 required the addition of bFGF and PDGF for in vitro growth. In a 

recent study, Manzella et al. conducted screening of a panel of RMS primary PDX-

derived cells with basal media, flask coating, media supplements and growth factor 

addition, analysing the impact of each on cell viability, extent of differentiation and growth 

rate (Manzella et al. 2020). The study reported that culture condition screening was able 

to identify subsets of RMS PDX-derived cells which required similar conditions for 

optimal growth (Manzella et al. 2020). Optimising culture conditions based on growth 

rates alone should be done with caution, as these conditions may not necessarily 

represent the tumour microenvironment from which the cells were derived. Perhaps in 

addition to screening, molecular profiling such as proteomics of each candidate condition 

should be conducted in order to also take into account the condition that causes the cell 

cultures to most closely resemble patient or PDX tumours. Additionally, due to the variety 

of cellular processes known to be modulated by hypoxia such as cell proliferation, 

survival, migration and metastasis, the degree of hypoxia should be optimised for 3D 

Matrigel embedded models in order to mimic respective in vivo tissue (Cairns, Harris, 

and Mak 2011). The effects of a hypoxic microenvironment on cell signalling and drug 

response could then be further explored in order to highlight therapies which may be able 
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to selectively target hypoxic tumour cells or to suggest possible combination treatment 

with anti-angiogenics.  

As organoid culture protocols are adapted and applied to sarcoma research, the potential 

to model different aspects of the sarcoma microenvironment is expanding. In addition to 

the histological recapitulation of tumours in vivo, cancer organoid cultures can also 

include stromal cells such as cancer associated fibroblasts (CAF) which have been 

shown to contribute to therapy response in liver and pancreatic cancer organoids (Schuth 

et al. 2022; J. Liu et al. 2021). Studies of CAF-sarcoma cell interaction are extremely 

limited due to the original suggestion that sarcomas solely consisted of a single 

compartment of malignant cells (Tomlinson et al. 1999). On top of this both CAF and 

sarcoma cells are mesenchymal in origin, sharing similar morphologies and 

mesenchymal markers which makes the identification of these distinct groups difficult 

(Vokurka et al. 2022). Some studies have assessed the co-culture of CAFs with sarcoma 

cells but these mainly utilise separate culture inserts to assess migration or addition of 

pre-established sarcoma spheroids onto stromal cell monolayers (H. Yoon et al. 2021; 

D’Agostino et al. 2021). Additionally, sarcoma cells and CAFs were not always isolated 

from the same tumour sample (H. Yoon et al. 2021; D’Agostino et al. 2021). Furthermore, 

the assessment of LMS cell-CAF interaction has not yet been documented. Future 

directions of sarcoma modelling in vitro could involve the dissociation of patient samples 

and direct expansion of both stromal and malignant cells as mixed multi-cell type 

organoid cultures as achieved in other cancer types (Schuth et al. 2022; J. Liu et al. 

2021; Ebbing et al. 2019). Modelling sarcomas in 3D mixed with stromal cells will reveal 

the crosstalk between malignant cells and microenvironment and potentially highlight 

candidate signalling pathways which could be targeted to prevent stromal mediated 

tumour progression and invasion.  

In several epithelial tumours, studies have combined cancer organoids with immune cells 

such as tumour infiltrating lymphocytes (TIL) and tumour associated macrophages 

(TAMS) to further model the tumour microenvironment (Jenkins et al. 2018; Zumwalde 

et al. 2016; Neal et al. 2018). Neal and co-workers derived over 100 cancer organoids 

which retained both native CAF and TIL populations, showing that TILs populations also 

retained the T-cell receptor repertoire observed in the tumour sample, indicating that the 

immune landscape can be accurately modelled in patient-derived organoid cultures 

(Neal et al. 2018).  

Due to initial PDX establishment in immune compromised mice in chapter 3, human 

infiltrating immune cells in the patient sample will no longer be present or viable in the 
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PDX tumour once dissociated. However current work is ongoing to isolate peripheral 

blood mononuclear cells (PBMCs) from patients with a matched PDX model or PDX-

derived cell line. This will allow us to set up short term co-cultures to assess the 

immunomodulatory impact of certain therapies and also as a way of testing 

immunotherapies such as immune checkpoint inhibitors (ICI) in 3D cultures via T-cell 

cytotoxicity assays, similar to a previous study which utilised this approach on NSCLC 

patient tumours (Dijkstra et al. 2018). 

 

7.1.5 Modelling tumour extracellular matrix  

Another future direction for sarcoma organoid modelling is the use of more defined, 

disease relevant hydrogel scaffolds which can recapitulate native ECM composition. The 

role of the ECM in sarcoma is not well understood, although mounting evidence suggests 

that ECM-sarcoma cell interactions have significant effects on tumour growth, invasion 

and metastasis (Pankova et al. 2021). For example, collagen III expression can be seen 

in both LMS and benign leiomyoma tumours, collagen IV is less weakly expressed in 

LMS tumours and laminin is expressed in benign leiomyomas but only a subset of LMS 

tumours (D’Ardenne, Kirkpatrick, and Sykes 1984; Ogawa et al. 1986). Additionally, 

fibronectin expression is variable across STS subtypes but appears to correlate with 

cellular differentiation, where high expression is observed in areas of mesenchymal 

morphology while low expression is seen in areas of epithelioid morphology (Benassi et 

al. 1998). Interaction of collagen VI and the proteoglycan neuron-glial antigen 2 (NG2) 

was shown to contribute to cell adhesion in the LMS cell line SK-UT-1, where NG2 

silencing reduced migration through collagen I and matrigel scaffolds when collagen VI 

was added but had no effect on migration through scaffolds without collagen VI 

(Cattaruzza et al. 2013). In a fibrosarcoma cell line, NG2-collagen VI interaction was 

shown to activate a range of intracellular signalling pathways involved in cell survival and 

migration which converged on PI3K (Cattaruzza et al. 2013). Therefore, PI3K represents 

a candidate target for preventing tumour cell invasion in collagen VI & NG2 enriched STS 

tumours.  

Similar studies should now be conducted in patient-derived LMS models to identify 

recurrent ECM interactions in LMS cells which contribute to invasion. Emphasis should 

be placed on deep molecular characterisation of ECM composition, for example via 

proteomic analysis, in order to identify candidate ECM components which correlate with 

patient outcomes for functional investigation. Another emerging technology which will 

support the study of sarcoma ECM is the generation of tumour-derived hydrogels, which 
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is achieved via tissue decellularisation followed by ECM scaffold digestion to form a 

solution that can polymerise under certain conditions (Romero-López et al. 2017). These 

patient-derived hydrogels could be used in conjunction with patient-derived organoid 

cultures such as ICR-LMS-3 generated in chapter 4 in order to further mimic the tumour 

microenvironment and highlight certain drugs which can modulate STS growth and 

migration in native ECM (Jia et al. 2022). Additionally, tumour ECM could be included as 

a condition for in vitro condition screening to assess if using native ECM coating can 

enhance monolayer culture establishment rates.  

 

7.1.6 Ex-vivo tumour cultures 

The tissue architecture maintained in PDX models and high throughput capabilities of in 

vitro culture can be combined with the use of ex vivo tissue cultures, whereby tissue is 

cultured for a short time (usually no longer than 1-7 days) in vitro with several compounds 

in order to assess the impact of drugs on tissue architecture, necrosis and proliferation 

(S. Z. Martin et al. 2019). This technique maintains both tissue architecture and 

microenvironment, is far quicker than PDX drug treatment experiments and can 

simultaneously assess the effects of different compounds on the same tumour sample 

(Gavert et al. 2022; S. Z. Martin et al. 2019). Ex vivo culture has recently been improved 

with the use of vibratome sectioning to precisely and cleanly cut tumours, minimising 

slice size variation and disruption of tissue architecture (Kenerson et al. 2021; 2020). 

However, one downside of this technique is that the high variability of tissue quality 

between different patients in addition to variable tissue quality in the same sample due 

to areas of necrosis can often lead to highly variable results (S. Z. Martin et al. 2019).  

A recent study reported successful 5 day ex vivo slice culture of 104 out of 108 (96.3%) 

resection or biopsy tissue from patients with a range of cancer types, including LMS, 

showing this technique is feasible for LMS tissue and going on to demonstrate that 

colorectal cancer ex vivo models can predict PDX model treatment response (Gavert et 

al. 2022). A unique application of ex vivo culture systems is the ability to simultaneously 

test tissue from various areas of tumour samples as well as healthy tissue in order to 

assess the extent of tumour specificity as well as intra-tumoural heterogeneity of drug 

response which would be invaluable in LMS research where both inter-tumoural and 

inter-tumoural molecular heterogeneity is commonly observed (Anderson et al. 2021). 

One of the limitations of these slice cultures is that tumour tissue will be evenly exposed 

to media and any drug or cell therapy added which is not representative of in vivo tumour 
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concentration gradients. Furthermore, current techniques using these slice cultures can 

only maintain viable tissue for one week or less, and therefore slice cultures are not 

suitable for long term proliferation assays (Kenerson et al. 2021; S. Z. Martin et al. 2019). 

However, slice cultures of LMS patient or PDX tissue could be a complementary assay 

to quickly assess candidate therapies and molecular responses before full in vivo 

assessment. 

7.2 Future directions for chemotherapies and molecular 

targeted therapies in advanced LMS 

7.2.1 Exploiting defective DNA repair pathways 

As detailed in the introductory chapter 1, LMS tumours frequently harbour alterations in 

the HR associated genes and several clinical trials are now exploring the potential use 

of PARP inhibitors for advanced STS treatment based on pre-clinical evidence that LMS 

cell lines respond to such therapy (Pignochino et al. 2017). While BRCA1/2 mutations 

are well established as biomarkers of PARP inhibitor response, it is clear that alterations 

in other HR associated genes consistently lead to PARP inhibitor responses in the 

absence of BRCA1/2 mutations in other cancer types (Hodgson et al. 2018; Gruber et 

al. 2022). However, outside of BRCA1/2 deletions or loss of function, alterations in other 

HR components are less well-defined as patient selection criteria. Expanding patient 

selection for PARP inhibitor treatment could potentially benefit LMS patients, where a 

range of HR associated gene alterations are often observed (Chudasama et al. 2018; 

Hensley et al. 2020).  

Although PARP inhibitors have achieved clinical success as monotherapies in other 

cancer types, combination of PARP inhibitors with chemotherapeutic agents in these 

cancer types has been met with limited clinical success, due to dose limiting 

haematologic toxicity (Plummer et al. 2013; 2008; Khan et al. 2011; Bendell et al. 2015). 

Despite the potential risk of toxicity, the assessment of combinatorial therapies to 

produce synergy in LMS is underway. One of the earliest studies reporting PARP 

inhibitor sensitivity in LMS cells in vitro showed that olaparib synergised with trabectedin 

treatment, even re-sensitising a chemo resistant LMS cell line to trabectedin (Pignochino 

et al. 2017). The authors went on to show that the degree of synergism was determined 

by PARP1 expression, with overexpression or silencing of PARP1 causing increased 

and decreased synergy respectively (Pignochino et al. 2017; 2021). However, another 

study reported that trabectedin only caused additive or even antagonistic effects when 
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instead combined with the PARP inhibitor rucaparib in different LMS cell lines suggesting 

either that the synergy of trabectedin and PARP inhibition is restricted to certain LMS 

models or that synergy is dependent on the specific PARP inhibitor used (Laroche et al. 

2017). The TOMAS phase Ib trial combining trabectedin and olaparib in advanced bone 

and STS patients (30% of which were LMS patients) reported a partial response in only 

12 of 50 patients, giving a response rate of 14%, although the subtype information of 

responding patients was not reported. Therefore future trials are awaited to confirm if this 

combination demonstrates efficacy specifically in LMS patients. 

Several studies have demonstrated synergism between PARP inhibitors and the 

alkylating agent temozolomide in LMS cell lines. For example, it has been shown that 

temozolomide and niraparib produce synergistic effects in LMS cell lines, although the 

extent of synergistic effect varied depending on specific PARP inhibitor used as well as 

the cell line (H. Li et al. 2020; Vornicova et al. 2022). Temozolomide treatment causes 

alkylation of DNA which can be repaired via PARP1, thus an increased amount of PARP1 

will be bound to DNA. If treated with a PARP inhibitor with high trapping ability, this will 

lead to an increase in DNA-PARP complexes compared to that if treated with PARP 

inhibitors alone (Murai, Zhang, et al. 2014). Combined PARP inhibition and 

temozolomide can also decrease the expression of the anti-apoptotic protein MCL-1 as 

well as enhance the activation of proapoptotic proteins BAX and BAK when compared 

to either monotherapy (Engert et al. 2015). Preliminary results from a phase II trial has 

demonstrated promising results, with a response rate of 23% at six months after 

treatment initiation for uterine LMS patients who have previously progressed on 

chemotherapy (Ingham et al. 2021). These results have led to a phase II/III clinical 

assessment of temozolomide with the PARP inhibitor olaparib in chemo refractory 

advanced uterine LMS patients (NCT05432791). Tumour tissue from these trials will 

undergo correlative analysis of BRCAness through whole exome sequencing of HR 

associated genes as well as Rad51 foci formation analysis as a functional marker of HR. 

Based on prior in vitro analysis of LMS response to PARP inhibition a correlation 

between PARP inhibitor response and HR deficiency is predicted (Anderson et al. 2021; 

Chudasama et al. 2018).   

PARP inhibitors have also been combined with gemcitabine in other cancer types 

following reports that gemcitabine treatment increased DNA replication stress and stalled 

replication forks in cancer cells (Karnitz et al. 2005; Jacob et al. 2007; Hastak, Alli, and 

Ford 2010). However, dose limiting toxicity with this combination has been reported in 

pancreatic cancer patients (Bendell et al. 2015) . Nonetheless, due to the current clinical 

use of gemcitabine in LMS treatment pathways, combination with PARP inhibitors 
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represents a potentially beneficial novel combination for LMS patients and should be 

investigated in pre-clinical models (A. Gronchi et al. 2021).  

A hypoxic microenvironment has been previously shown to contribute to impaired HR in 

breast cancer while leaving the NHEJ unaffected (Bindra et al. 2005). This impaired HR 

was further confirmed to be mediated via E2F dependent transcriptional repression of 

both BRCA1 and RAD51 which was induced by hypoxia, therefore, the use of anti-

angiogenesis compounds including VEGF inhibitors was suggested as a possible 

method to potentiate a response to PARP inhibition (Bindra et al. 2005). On top of 

hypoxia induction, inhibition of VEGFR-3 or PDGFR has also reported to directly cause 

the downregulation of BRCA1/2 and Rad51 via E2F transcription factors in breast and 

ovarian cancer cells, causing PARP inhibitor sensitivity independent of hypoxia induction 

(Kaplan et al. 2019; Lim et al. 2014). As an already clinically approved VEGFR inhibitor 

for LMS, pazopanib should be tested in vitro to observe if this drug can modulate HR 

activity in LMS cells and lead to synergistic effects. If observed, this might be a possible 

method of inducing a BRCAness phenotype despite the absence of mutations in DDR 

associated genes, potentially expanding the number of patients gaining clinical benefit 

from pazopanib-PARP inhibitor treatment. 

Going forward, further pre-clinical assessment of the impact of different DDR associated 

gene alterations on PARP inhibitor sensitivity should be conducted in LMS patient 

derived models, perhaps by first establishing a panel of HR deficient LMS models with 

differing gene alterations. Identifications of mutations predictive of response would allow 

for patient stratification in clinical trials and strengthen the argument for molecular 

profiling of LMS tumours upon disease diagnosis in order to guide treatment regimens. 

 

One major issue facing PARP inhibitor treatment in other cancer types in the acquisition 

of resistance as with many targeted therapies (Dias et al. 2021). Multiple resistance 

mechanisms have been identified in cancers for which PARP inhibitor treatment has 

been approved, the most common being reversion mutations in BRCA1/2, leading to 

restoration of BRCA1/2 function and formation of Rad51 foci in response to DNA damage 

(Ter Brugge et al. 2016; Sakai et al. 2008). Here it has been suggested that patients with 

pathogenic BRCA1/2 deletions causing frameshift mutations may be more likely to revert 

to wild type BRCA1/2 compared to those harbouring missense mutations (Pettitt et al. 

2020). Given that LMS tumours demonstrate a higher prevalence of BRCA1/2 

deleterious mutations compared to point mutations it is possible that reversion mutations 

may be a frequent mechanism of resistance to PARP inhibitors in LMS patients 
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(Chudasama et al. 2018; Hensley et al. 2020). Another known mechanism of resistance 

via HR restoration includes suppression of NHEJ, which can be mediated by the loss of 

p53-binding protein 1 (53BP1), a key molecule for the initiation of NHEJ and antagonistic 

to HR components (Bunting et al. 2010; Bouwman et al. 2010). Resistance to PARP 

inhibition can also occur via the stabilisation of stalled replication forks, which is mediated 

by modulation of several components involved in DNA remodelling such as 

Chromodomain helicase DNA-binding protein 4 (CHD4), Snf2 family proteins, 

components of the MRE nuclease complex as well as SLFN11, a protein involved in 

replication stress response (Guillemette et al. 2015; Taglialatela et al. 2017; Chaudhuri 

et al. 2016; Murai et al. 2016). Additionally, mutations in both the catalytic site of PARP 

and domains necessary for PARP-DNA trapping can cause loss of PARP inhibitor 

efficacy as shown in high density CRISPR-cas9 screening of PARP point mutations 

(Pettitt et al. 2018). 

Alternatively, increased drug efflux via the upregulation of ABC transporter P-gp, can 

also lead to PARP inhibitor resistance (Jaspers et al. 2015). However, some PARP 

inhibitions such as veliparib and niraparib are poor substrates of P-gp and therefore may 

be more effective in patients who demonstrate P-gp mediated multi-drug resistance 

(Vaidyanathan et al. 2016). This may be particularly interesting to investigate in LMS 

models of patients who have progressed on prior doxorubicin treatment and demonstrate 

P-gp mediated multidrug resistance. Future work following the results in this thesis 

involves the generation of acquired PARP inhibitor resistant patient-derived cells, which 

is currently underway, or PDX models via in vivo dose escalation or even generating 

patient matched pre-and post-PARP inhibitor treatment models in order to identify 

candidate PARP inhibitor resistance mechanisms active in LMS and possible strategies 

to avoid or overcome the acquisition of resistance. 

Beyond PARP inhibition, several LMS cell lines including the immortalised uterine LMS 

lines SK-UT-1 and SK-UT-1b have demonstrated sensitivity in vitro to inhibitors of other 

DDR components including CHK1, WEE1 or Ataxia telangiectasia and Rad3-related 

protein (ATR), consistent with recurrent mutations in DDR associated genes observed in 

LMS tumours (Anderson et al. 2021; Chudasama et al. 2018; Rosenbaum et al. 2019; 

Cuppens et al. 2018). Additionally, in vitro and in vivo pre-clinical work has shown that 

CDK4/6 inhibitors are able to further sensitise Rb-positive LMS cells to WEE1 inhibition 

(Francis et al. 2017). Studies have also assessed the efficacy of DDR inhibitors in 

combination with genotoxic chemotherapies in order to potentiate responses. For 

example ATR inhibition sensitises TP53 mutant LMS cells to gemcitabine, causing 

increase accumulation of DNA damage while preventing checkpoint activation seen 
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under gemcitabine monotherapy (Audrey Laroche-Clary et al. 2020). Based on these 

encouraging results, a phase II is underway to assess the safety and efficacy of the ATR 

inhibitor berzosertib with gemcitabine in patients with advanced LMS (NCT04807816). 

Meanwhile the combination of CHK1 inhibition with gemcitabine is also under clinical 

assessment following pre-clinical evidence of synergy in LMS cells and xenografts 

caused by the prevention of checkpoint activation and raised accumulation of DNA 

damage, although antagonistic effects were also observed in some cell lines (A. Laroche-

Clary et al. 2018). A phase I study of the CHK1 inhibitor  GDC-0575 with gemcitabine 

reported two STS patients with TP53 mutations who had exceptional, long lasting 

responses, although dose limiting toxicities were also observed (A. Laroche-Clary et al. 

2018; Italiano et al. 2018). A clear correlation of CHK1 inhibition-gemcitabine synergy 

with TP53 mutation status has not yet been drawn due to small cohort sizes included in 

this study, therefore further in vitro assessment on the effects of P53 action on this 

combination is needed in LMS (Italiano et al. 2018). 

 

 

7.2.2 Improving clinical application of PI3K-Akt-mTOR pathway 

inhibition in LMS 

LMS tumours often show upregulation of the PI3K/Akt/mTOR pathway via PTEN 

alterations (Schaefer et al. 2021; Hensley et al. 2020; Cuppens, Annibali, et al. 2017; 

Cuppens et al. 2018). In 2017, the dual PI3K/mTOR inhibitor BEZ235 demonstrated anti-

tumour activity in LMS PDX models which correlated with increased presence of protein 

S6 (p-S6) phosphorylated at serine 240. This phosphorylation site on p-S6 is a target of 

p70S6K downstream of mTOR activation, therefore suggesting that only tumours which 

demonstrate upregulated PI3K/mTOR activity would response to this treatment 

(Cuppens, Annibali, et al. 2017). Additionally a higher proportion of metastatic LMS 

patient tumours showed positive IHC staining for p-S6 phosphorylated at serine 240, with 

these patients showing shorter PFS compared to patient tumours which were negative 

for phosphorylated p-S6. This indicates that PI3K/mTOR inhibition might be particularly 

applicable for the treatment of aggressive metastatic lesions (Cuppens, Annibali, et al. 

2017).  

Future directions for the targeting of PI3K-Akt-mTOR pathway in LMS tumours will need 

to bear in mind clinical toxicity which has been observed in other cancer types (Massard 

et al. 2017; Wise-Draper et al. 2017; Salazar et al. 2018). Results from this study in 
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chapter 6 demonstrates that, in vitro, dual PI3K/mTOR inhibition starts to reduce cell 

viability at sub micromolar concentrations. Therefore, a possible way to avoid reduce 

clinical toxicity is by utilising low dose PI3K/mTOR inhibitors combined with other anti-

cancer therapies in order to potentiate tumour specific responses. For example, in a 

fibrosarcoma cell line the mTOR inhibitor ridaforolimus synergised with the CDK4/6 

inhibitor palbociclib (X. Wang et al. 2019). Meanwhile, one study previously showed that 

treatment with doxorubicin and BEZ235 lead to synergistic effects in vitro and a greater 

reduction of in vivo tumour growth compared to each monotherapy (Babichev et al. 

2016). However the authors also reported via immunohistochemical staining that 

markers of proliferation or apoptosis were not statistically different between combination 

and monotherapy treated xenografts. Other evidence in leukaemia cells suggests that 

inhibiting the PI3K/Akt pathway can overcome multi-drug resistance by inducing cell 

cycle arrest, while downregulating anti-apoptotic protein B-cell lymphoma 2 (BCL-2) and 

upregulating pro-apoptotic protein Bcl-2-associated X protein (BAX) (Jie Li et al. 2021). 

Both a combination of low dose PI3K inhibition with other targeted therapies and with 

chemotherapies should be explored in LMS pre-clinical models. This would highlight 

candidate regimens to inform future clinical trials surrounding PI3K inhibition. 

Additionally, a recent study demonstrated that the Akt inhibitor MK-2206 can sensitise 

LMS cells and other STS models to doxorubicin specifically by targeting HR, leading to 

reduced Rad51 foci and enhanced DNA damage accumulation compared to doxorubicin 

treatment alone (Boichuk et al. 2020). Despite the modest response of PDX-derived LMS 

models to the MK-2206 shown in chapter 6, the combination of Akt inhibition and 

doxorubicin treatment could be further investigated in these models and it would be 

interesting to assess what impact HR deficiency status has on Akt inhibitor-doxorubicin 

synergy. 

PI3K signalling has been implicated in DDR mechanisms including DNA damage 

detection as well as BRCA1/2 expression maintenance whereby inhibition of PI3K leads 

to HR deficiency as well as enhanced cell death via reduction of p53 binding protein 1 

(53BP1) localisation (Y. H. Ibrahim et al. 2012; Juvekar et al. 2012). Additionally, mTOR 

inhibition can also potentiate the anti-tumour effects of PARP inhibition via the 

modulation of the histone methyltransferase SUV39H1, which plays a role in the DSB 

repair pathway (Mo et al. 2016). It was even demonstrated  that combined PI3K/mTOR-

PARP inhibition was still able to inhibit proliferation and upregulate apoptosis of BRCA1/2 

wild type breast cancer cells (De et al. 2014). Although PTEN alterations were observed 

in these cells which was hypothesised to contribute to this combinatorial sensitivity (De 

et al. 2014). The combination of PI3K/mTOR inhibitors with PARP inhibitors has yet to 
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be explored in LMS but some evidence suggests that endometrial cancer cells with 

PTEN deficiency are particularly sensitive to PARP-PI3K inhibition, therefore uterine 

LMS patients which often display PTEN alterations may also benefit from this 

combination (Bian et al. 2018). 

 

7.2.3 Emerging therapeutic targets in LMS 

In order to proliferate indefinitely, cancer cells must continually elongate their telomeres 

which have been shortened after each successive division. The majority of cancer types 

utilise telomerase by telomerase reverse transcriptase (TERT) reactivation to achieve 

this, however some cancers utilise a telomerase independent, HR based mechanism of 

telomere maintenance, termed alternative lengthening of telomeres (ALT) (Barthel et al. 

2017; Bryan et al. 1997; Dilley and Greenberg 2015). Interestingly, a study from 2015 

showed that 59% of LMS tumours displayed ALT phenotypes by assessing telomere 

content and TERT mutation status (Liau et al. 2015). Furthermore, this study went on to 

show that ALT activation in LMS correlated with aggressive histological features and 

worse overall survival (Liau et al. 2015). A further study in 2018 even reported that 78% 

of LMS tumours are ALT positive by assessing markers of ALT such as C-circles, which 

are a unique DNA structures present during ALT mechanisms (Liau et al. 2015; 

Chudasama et al. 2018). Consistent with these findings, alterations in several genes 

involved in telomere maintenance have been detected including ATRX, RB 

Transcriptional Corepressor Like 2 (RBL2) and Speckled 100 kDa protein (SP100), of 

which RBL2 and SP100 deletions showed the strongest correlation with ALT activation 

(Chudasama et al. 2018). This mechanism of telomere maintenance is associated with 

high levels of DNA damage at telomeres and can lead to cell death if excessive, therefore 

inducing hyperactive ALT could potentially induce cell death selectively in ALT positive 

cells. This can be achieved by the stabilisation of G-quadruplex structures throughout 

telomeres undergoing ALT, which has recently shown to inhibit osteosarcoma cells in 

vitro by enhancing ALT and inducing DNA damage. The potential anti-tumour effect of 

G-quadruplex stabilisation should be tested in LMS models in order to assess efficacy in 

ALT positive and negative LMS.  

Cuppens and co-workers have demonstrated that vasoactive intestinal peptide receptor 

2 (VIPR2) was consistently affected in almost all LMS tumours tested (96%) with 

downregulated expression observed in 75% of tumours and deletions occurring in 37.5% 

of tumours (Cuppens et al. 2018). VIPR2 plays an important role in negative regulation 

of smooth muscle cell proliferation and therefore could potentially be a novel tumour 
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suppressor gene which is altered specifically in LMS tumours (Hilaire et al. 2010). 

Indeed, patients with low VIPR2 expression demonstrated worse clinical outcomes and 

additionally, treatment of SK-UT-1 LMS cells with a VIPR2 agonist lead to significantly 

reduced proliferation (Cuppens et al. 2018). Thus VIPR2 may represent a novel tumour 

suppressor gene which is specifically lost in LMS cells and can also be therapeutically 

targeted. Agonists of VIPR2 could therefore be tested for anti-tumour efficacy in the LMS 

PDX-derived models generated in this thesis, especially in ICR-LMS-1 which shows a 

high expression of smooth muscle marker a-SMA.  

 

 

7.3 Concluding remarks and future project directions 

The prognosis of advanced LMS is poor and has remained largely unchanged in the past 

decade due to the lack of novel therapies able to outperform standard of care 

chemotherapy treatment. Treatment options for LMS patients who have progressed on 

chemotherapy regimens remains extremely limited and only one molecular targeted 

therapy, the multi-TKI inhibitor pazopanib, is currently approved for use in an advanced 

setting, highlighting the urgent need identify candidate drug targets to improve survival 

outcomes. However, one major challenge preventing such studies is the lack of well 

characterised pre-clinical models which can accurately recapitulate tumour biology and 

drug response phenotypes. Unfortunately, for this reason many candidate therapies 

shown to be efficacious in LMS cell lines are not translated into clinical efficacy. The 

need for improved patient-derived models of LMS is exacerbated by first: the inter-

tumoural heterogeneity of disease, leading to variable clinical responses, and second: 

the rarity of the disease, meaning that clinical trials are difficult to set up, which increases 

the reliance on pre-clinical outcomes to accurately inform clinical studies.  

By optimising and implementing a patient-derived model pipeline on STS biopsy 

samples, this work showed that biopsy samples are an effective starting material for the 

generation of patient-matched pre-clinical models, faithfully recapitulating patient tumour 

histology and proteomic profiles. PDX-derived cell cultures were also established that 

recapitulated characteristics of PDX and patient tumours and are therefore better models 

to use for pre-clinical studies of tumour drug response compared to conventional, 

immortalised cell lines. PDX-derived cell cultures and immortalised cell lines additionally 

showed distinct molecular changes associated with doxorubicin acquired resistance.  
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Utilising PDX-derived LMS cell cultures for targeted small molecule inhibitor screens, this 

work described a number of candidate pathways which can be therapeutically targeted 

in most, or a subset of advanced LMS tumours. The screen identified a shared sensitivity 

to dual PI3K/mTOR inhibition, as well as a sensitivity niclosamide treatment, an inhibitor 

of Wnt/β-catenin, mTOR, STAT3, NF-kB and Notch signalling pathways. This is the first 

study showing that LMS cells respond to niclosamide treatment in vitro, also 

demonstrating that this response occurs at concentrations well below the clinically 

relevant doses observed in other cancer types (Burock et al. 2018; Schweizer et al. 

2018). Future work should assess the signalling pathways specifically effected by 

niclosamide treatment in all PDX-derived LMS cells derived in this study.  

Another candidate drug identified from screening PDX-derived LMS cells was the PARP 

inhibitor talazoparib. Further investigation into the effect of prior DNA damaging 

chemotherapeutic agents on PARP inhibitor response is warranted although this work 

has shown both chemo-sensitive and chemo-resistant LMS cells display PARP inhibitor 

sensitivity. However several outstanding questions remain, first: to what extent do 

specific DDR defects in LMS cause PARP inhibitor sensitivity and can these be used as 

predictive biomarkers of response? Second: can LMS cells acquired resistance to PARP 

inhibition and if so, are these mechanisms specific to certain DDR mutants and third: can 

PARP inhibitors be combined with other molecular targeted therapies or chemotherapies 

to potentiate LMS tumour responses? These questions can be addressed by utilising the 

models derived in this study.  
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