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Abstract 

Purpose: mRNA degradation is an important regulatory step for controlling gene expression and 

cell functions. Genetic abnormalities involved in mRNA degradation genes have been found to 

be associated with cancer risk. Therefore, we systematically investigated the roles of genetic 

variants in the general mRNA degradation pathway in lung cancer risk. 

Experimental design:  We performed meta-analyses by using summary data from six lung 

cancer genome-wide association studies (GWASs) from the Transdisciplinary Research in 

Cancer of the Lung and additional two GWASs from Harvard University and deCODE in the 

International Lung Cancer Consortium. Expression quantitative trait loci analysis (eQTL) was 

used for in silico functional validation of the identified significant susceptibility loci. 

Results: This pathway-based analysis included 6,816 single nucleotide polymorphisms (SNP) in 

68 genes in 14,463 lung cancer cases and 44,188 controls. In the single-locus analysis, we found 

that 20 SNPs were associated with lung cancer risk with a false discovery rate threshold of 

<0.05. Among the 11 newly identified SNPs in CNOT6, which were in high linkage 

disequilibrium, the rs2453176 with a RegulomDB score “1f” was chosen as the tagSNP for 

further analysis. We found that the rs2453176 T allele was significantly associated with lung 

cancer risk (odds ratio=1.11, 95% confidence interval=1.04-1.18) in the eight GWASs. In the 

eQTL analysis, we found that levels of CNOT6 mRNA expression were significantly correlated 

with the rs2453176 T allele, which provided additional biological basis for the observed positive 

association. 

Conclusion: The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung 

cancer risk. 

Introduction 
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Lung cancer is one of the most frequently diagnosed cancers with about 1.8 million new lung 

cancer cases reported in 2012 worldwide, accounting for about 13% of total cancer diagnoses 

[1]. In the United States, 224,390 new lung cancer cases are estimated to occur in 2016 [2]. In 

addition to other factors, such as occupational and environmental carcinogens, cigarette smoking 

is the major risk factor for lung cancer [3,4], but not all smokers develop lung cancer, which 

suggests that genetic predisposition play an essential role in the lung carcinogenesis [5]. 

In recent years, some genome-wide association studies (GWASs) of lung cancer have been 

conducted, and a number of genetic variants, i.e., single nucleotide polymorphisms (SNPs), have 

been found to be associated with lung cancer risk. For example, the significant susceptibility loci 

associated with lung cancer risk include 5p15.3 (rs401681, rs4975616 and rs402710 in 

CLPTM1L and rs2736100 in TERT) [6-11], 6p21.3 (rs3117582 in BAG6 or APOM and 

rs2395185 in HLA-DRB5 or HLA-DRB9) [6,8,9,11], 6q22.1 (rs9387478 in RAP1BP3 or 

DCBLD1) [11] and 15q25.1 (rs8034191 in HYKK and rs1051730 in CHRNA3) [6,8,9,12-15]. 

Among these SNPs, rs1051730, rs3117582 and rs2736100 were found to be specifically 

associated with risk of lung adenocarcinoma (AD) [9], whereas rs12296850 (mapped to 12q23.1) 

in SLC17A8 or NR1H4 was found to be a susceptibility locus for risk of squamous cell 

carcinoma (SC) [16]. Interestingly, the vast majority of the SNPs identified by GWASs are in 

introns or intergenic regions, and their functional evidence is limited.  In the present study, we 

employed the pathway-based strategy that dramatically decreases the number of SNPs to be 

analyzed and thus significantly reduced multiple testing with the aim to identify possible lung 

cancer risk-associated functional SNPs that may have not been revealed by previous lung cancer 

GWASs.  
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The degradation of mRNA is an important regulatory step for controlling gene expression and 

cell functions [17]. The general cytoplasmic mRNA decay pathway usually begins with the 

deadenylation, which removes the poly(A) tail Ccr4-Not complex [18], followed by degradation 

of mRNA proceeding in two directions of 5’-3’ or 3’-5’. The 5’-3’ mRNA degradation initiates 

with decapping N7-methylguanosine (m7G) cap mainly by DCP1/DCP2 proteins and 

subsequently degraded by the exoribonuclease Xrn1, while the 3’-5’ mRNA degradation is 

mainly catalyzed by 10-12 subunit exosome [19,20].  

Some studies suggest that genetic abnormalities of genes involved in the general mRNA 

degradation pathway may be associated with lung cancer. For example, various genetic variants 

in LSM2-LSM8, which encode cofactors for mRNA decapping, were recently found in lung 

cancer cell lines [21]. Therefore, we hypothesize that genetic variants of the general mRNA 

degradation pathway are associated with lung cancer risk. To test the hypothesis, we conducted 

the comprehensive meta-analysis of the eight published lung cancer GWASs from the ILCCO 

(International Lung Cancer Consortium)-TRICL (Transdisciplinary Research in Cancer of the 

Lung) consortia, focusing on the SNPs of the genes in the general mRNA degradation pathway. 

 

Materials and Methods  

Study populations  

The first part of the study populations came from the TRICL consortium, which included 12,160 

lung cancer cases and 16,838 controls (all Europeans) of six previously published GWASs from: 

the MD Anderson Cancer Center (MDACC), the Institute of Cancer Research (ICR), the 

National Cancer Institute (NCI), the International Agency for Research on Cancer (IARC), 

Toronto study from Samuel Lunenfeld Research Institute study (Toronto), and the German Lung 
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Cancer Study (GLC) [22]. The second part of the study populations included GWASs of 

European ancestry from Harvard Lung Cancer Study (984 cases and 970 controls) [23] and 

Icelandic Lung Cancer Study (deCODE) (1,319 cases and 26,380 controls) [15] of the ILCCO. 

Written informed consents were achieved for all participants, and the present study was approved 

by each institutional review board of the participating institutions.  

GWAS genotyping and imputation  

Genotyping in the eight GWASs was performed by Illumina HumanHap 317, 317+240S, 

370Duo, 550, 610 or 1M arrays. The imputation was conducted by IMPUTE2 v2.1.1 or MaCH 

v1.0 software using the reference panel from the 1000 Genomes Project (phase I integrated 

release 3, March 2012). Standard quality control on samples was performed on all scans in the 

analysis, excluding any participants with low call rate (< 90%), extremely high or low 

heterozygosity (P < 1.0×10−4), non-European (with the HapMap phase II CEU, JPT/CHB and 

YRI populations as a reference) and imputed SNPs with an information score < 0.40 in 

IMPUTE2 or r2 < 0.30 in MaCH. 

Gene and SNP selection  

We first identified genes in the general mRNA degradation pathway from the Molecular 

Signatures Database [24] and the literature [18]. Overall, 75 genes located on autosomal 

chromosomes were selected, of which seven genes were pseudogenes or duplicates or withdrawn 

from updated NCBI. As a result, we then extracted genotype data of 68 genes (detailed in Table 

1), including 2-kb of the flanking regions of each gene, from the GWAS datasets that also 

included those SNPs generated by imputation. The final meta-analysis contained 6,816 SNPs and 

covariates provided by the TRICL consortium in the summary data with the following standards: 
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genotyping rate ≥ 90%, minor allele frequency ≥ 1%, and Hardy Weinberg Equilibrium exact 

P value ≥ 10-5. The overall workflow is shown in Figure 1.  

In silico functional validation  

Two in silico tools, SNPinfo (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm) [25], 

RegulomeDB (http://regulomedb.org/) [26], were used to predict potential functions. Expression 

quantitative trait loci (eQTL) analysis was performed by using the expression data of 

lymphoblastoid cell lines from 373 Europeans available in the 1000 Genomes Project 

(http://www.1000genomes.org/category/frequently-asked-questions/gene-expression) [27] and 

The Cancer Genome Atlas (TCGA) ( https://tcga-data.nci.nih.gov/tcga/) [28]. In this TCGA 

dataset, 107 subjects had adjacent normal lung cancer samples used for the different expression 

testing, which were matched by 105 adjacent normal cancer tissue samples from the same 

individuals with the genotype data. 

Statistical analysis  

Logistic regression model was used to calculate the odds ratios (ORs) and their 95% confidence 

intervals (CIs) in an additive genetic model with PLINK (v1.06) software. A meta-analysis with 

the inverse variance method was employed on the 6,816 SNPs with Stata software (v12, State 

College, Texas, US). Cochran's Q statistic was applied to test for heterogeneity and the I2 

statistic for the proportion of the total variation in the meta-analysis [29]. The fixed-effects 

model was used when there was no heterogeneity among GWASs (Q-test P > 0.100 and I2 < 

50%); otherwise, the random-effects model was used. Multiple testing correction was conducted 

with false discovery rate (FDR) with a threshold < 0.050 [30]. A linear regression model was 

also performed to evaluate the correlation between SNPs and mRNA expression levels of the 

corresponding genes. A paired t-test was used to compare the mRNA expression levels of genes 

http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm
http://regulomedb.org/
http://www.1000genomes.org/category/frequently-asked-questions/gene-expression
https://tcga-data.nci.nih.gov/tcga/
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in the lung cancer and normal adjacent tissue from the TCGA database. LocusZoom 

(http://locuszoom.sph.umich.edu/locuszoom/) was applied to construct regional association plots 

using Europeans from the 1000 Genomes Project as the reference (phase I integrated release 3, 

March 2012) [31]. Haploview v4.2 was used to generate the Manhattan plot and LD plots [32]. 

All analyses were conducted with SAS (version 9.4; SAS Institute, Cary, NC, USA) except for 

those specified otherwise. 

 

Results  

Associations of the SNPs with lung cancer risk  

We first performed a meta-analysis in the TRICL database consisted of six previously published 

GWAS datasets with 12,160 cases and 16,838 controls. The basic information of these six 

studies is presented in Supplemental Table S1. A total of 6,816 SNPs in the pathway were 

extracted, of which 466 SNPs were associated with lung cancer risk at P < 0.05 in the additive 

model and 20 SNPs on LSM2, SKIV2L and CNOT6 remained significantly associated with lung 

cancer risk with FDR < 0.05 after multiple testing corrections (Figure 2A and Table 2). Among 

these SNPs, we excluded those of LSM2 and SKIV2L, because they were mapped to and in high 

LD with previously GWAS-reported locus at 6p21.33 [6,8]. As a result, 11 SNPs of CNOT6 

located at 5q35.3 were left for further analysis. In the LD analysis, these 11 SNPs shared 

moderate to high LD (r2 ≥ 0.60, Figure 2B and 2C). We finally chose rs2453176 as the tag 

SNP, because it was significantly associated with lung cancer risk (OR = 1.13, 95% CI = 1.06-

1.19, P = 4.33×10-5) (Table 2) and potentially functional according to function prediction and its 

imputation quality was the best among the 11 SNPs (Table 3). We used the forest plot to 

illustrate the association between rs2453176 and lung cancer risk in the six GWASs (Figure 3), 
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and the rs2453176 T allele was associated with an increased lung cancer risk in five GWASs, 

except for the GLC GWAS.  

We expanded our analysis to include additional two independent lung cancer GWASs 

(Supplemental Table S1). The deCODE GWAS validated our result of the CNOT6 rs2453176 

tag SNP (OR = 1.14, 95% CI = 1.01-1.28, P = 0.032), while the GWAS from Harvard University 

displayed the same trend as the GLC GWAS (OR = 0.85, 95% CI = 0.68-1.05, P = 0.133) 

(Figure 3 and Table 4).  

As we combined the above results from the eight GWASs, the functional CNOT6 rs2453176 tag 

SNP was found to be significantly associated with an increased risk of lung cancer (OR = 1.11, 

95% CI = 1.04-1.18, P = 0.001) after the FDR correction (Figure 3 and Table 4). 

Stratified analyses by lung cancer histology 

Since lung cancer has different histological types that could have distinct biological behaviors, 

we performed AD and SC subgroup analysis and found that the rs2453176 T allele was 

associated with a borderlinely increased risk in AD (OR = 1.13, 95% CI = 1.00-1.27, P = 0.050, 

Table 4), but it was significantly associated with SC risk (OR = 1.12, 95% CI = 1.03-1.22, P = 

0.006, Table 4). Because smoking is a major risk factor for lung cancer, we further stratified the 

data into smokers and non-smokers and found that that the rs2453176 T allele was associated 

with a significantly increased risk in smokers (OR = 1.09, 95% CI = 1.02-1.17, P = 0.011, Table 

5), while the allele was not statistically significant in non-smokers (OR = 1.10, 95% CI = 0.89-

1.36, P = 0.363, Table 5). Homogeneity tests suggested that there was no heterogeneity between 

strata either in subgroups of histologic types or smoking status (Table 4 and Table 5, all P > 

0.05). 
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Functional validation by eQTL analysis  

Because the CNOT6 rs2453176 SNP was predicted with a score of "1f", suggesting the most 

confident functional annotation by regulomeDB [26], we further explored the underlying 

molecular mechanism by performing the eQTL analysis. With mRNA expression data of 

lymphoblastoid cell lines from 373 Europeans available from the 1000 Genomes Project, We 

found that expected mRNA expression levels of CNOT6 were significantly decreased with an 

increased number of the rs2453176 T allele in both the additive (P = 0.008) (Figure 4A) and 

dominant (P = 0.007) (Figure 4B) models but not the recessive model (Figure 4C).  However, 

only 105 subjects had both DNA and RNA samples tested in this dataset. We also used the 105 

normal adjacent tissue samples in the TCGA to further explore the correlation between the 

rs2453176 genotypes and their corresponding mRNA expression levels, but we did not observe a 

statistical significance (P > 0.05) (Supplemental Figure S1A-S1C).  We also compared the 

mRNA expression level of CNOT6 in the 107 paired samples and did not find a statistically 

significant difference (P > 0.05) (Supplemental Figure S1D). 

 

Discussion 

In the present study, we found that a novel potentially functional susceptibility locus rs2453176 

C>T of CNOT6 in the general mRNA degradation pathway was associated with an increased 

lung cancer risk in 14,463 cases and 44,188 controls. This association was further supported by a 

significant correlation between a decreased mRNA expression level and an increasing number of 

the A allele in the eQTL analysis.  
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Gene expression disorder is one of cancer hallmarks, and instability of mRNA may result in 

altered transcript/protein levels of oncogenes and tumor repressor genes [33]. The degradation of 

mRNA is a key step in controlling the expression of genes related to cell proliferation. For 

example, the CCR4-Not complex consists of highly conserved exoribonucleases and adaptor 

proteins that hydrolyze and shorten the poly(A) tail, which starts the initial and the rate-limiting 

step of mRNA degradation [18,34-36]. Located at 5q35.3, CNOT6 encodes a protein that has a 

3'-5' RNase activity and acts as a catalytic subunit of the CCR4-Not deadenylation complex [37].  

Although it remains unclear how the catalytic subunit works during the deadenylation process, 

some studies reported that its expression level was associated with carcinogenesis or prognosis. 

For example, one study of lung cancer found that the CNOT6 overexpression in lung SC 

predicted a significantly less metastasis [33]. Another study of acute leukemia discovered that 

CNOT6 had a significantly lower expression in patients than in controls [38]. These two studies 

suggest that high expression levels of CNOT6 may promote the degradation of mRNA of some 

oncogenes and the suppression of cell proliferation in carcinogenesis. 

In the present study, we identified that the CNOT6 rs2453176 T allele was associated with an 

increased risk of lung cancer, which was supported by the association of CNOT6 rs2453176 T 

allele with a decreased mRNA expression level in lymphoblastoid cell lines from 373 Europeans. 

This finding is consistent with the role of CNOT6 in lung cancer prognosis as previously 

described [33]. The ENCODE project data from University of California Santa Cruz show that 

the CNOT6 rs2453176 locus is located at the DNase I hypersensitive region (Supplemental 

Figure S2). Usually such an area has a loose chromatin structure and renders it a region with a 

high affinity for transcription factors (TFs). As a result, some TFs, including MAFK and MAFF, 

bond to this region in many cell types (Supplemental Figure S2). For example, MAFK and 
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MAFF were found to form heterodimers with a series of TFs and suppressed gene transcriptions 

[39,40]. Based on these, we speculate that the rs2453176 T allele may have a relatively high 

affinity with MAFK or MAFF and thus leads to the decreased mRNA expression of CNOT6. It is 

likely that a reduced quantity of CNOT6 may not be optimal in the mRNA degradation of some 

aberrant genes, which may in turn increases lung cancer risk, but these speculations need to be 

further investigated. 

In the stratification analysis, rs2453176 was associated with lung cancer risk in both AD and SC 

subtypes, but it was significantly associated with cancer risk in the smokers but not in the non-

smokers. Genetic susceptibility to smoking-related lung cancer risk may determine smoking 

behavior and tobacco metabolism [41]. Indeed, we found that the rs2453176 T allele was 

associated with a higher risk of lung cancer in smokers than in non-smokers. One study reported 

that smoking would enhance the activity of the GATA family [42], and another study reported 

that nicotine would increase the expression of EP300 and promote the lung cancer growth [43]. 

From the Supplemental Figure S2, GATA1, GATA2 and EP300 are the TFs that bind to the 

rs2453176 locus, possibly explaining why carriers of the rs2453176 T allele may have an 

increased risk of lung cancer in smokers than non-smokers.  

There are some limitations in the present study. First, we employed the Molecular Signatures 

Database [24] to define the general mRNA degradation pathway to be investigated, but we may 

have missed some newly discovered genes in the pathway. However, we searched the literatures 

and added genes as many as possible. Second, due to the data limitation, we had no access to 

family history and others factors that may have an impact on lung cancer risk. Third, we used the 

eQTL analyses from lymphoblastoid cell lines and normal adjacent tissue in TCGA database to 

validate the risk association. Although the results from the cell lines support our identified 
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association, they may only reflect the baseline or genetically determined expression levels 

without exposure to smoking. The gene expressions in the normal adjacent lung tissues may be 

in some degree different from the normal lung tissue and did not support the association. 

Overall, the present study of eight published GWASs identified a novel CNOT6 rs2453176 SNP 

in the general mRNA degradation pathway to be significantly associated with lung cancer risk in 

European populations, and the risk was more evident in smokers than in non-smokers. Although 

we used the publically available gene expression database from blood to confirm the biological 

significance of the variant, further functional evaluations in normal lung tissue are warranted to 

validate our findings. 

 

Conflict of interest:  

The authors disclose no potential conflicts of interest. 

 

References  

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer 

statistics, 2012. CA: a cancer journal for clinicians 2015;65(2):87-108. 

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for 

clinicians 2016;66(1):7-30. 

3. Field RW, Withers BL. Occupational and environmental causes of lung cancer. Clinics in 

chest medicine 2012;33(4):681-703. 

4. Schottenfeld D, Fraumeni JF. Cancer epidemiology and prevention. Oxford ; New York: 

Oxford University Press; 2006. xviii, 1392 p. p. 



18 
 

5. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers--a different disease. Nature 

reviews Cancer 2007;7(10):778-790. 

6. Wang Y, Broderick P, Webb E et al. Common 5p15.33 and 6p21.33 variants influence 

lung cancer risk. Nature genetics 2008;40(12):1407-1409. 

7. McKay JD, Hung RJ, Gaborieau V et al. Lung cancer susceptibility locus at 5p15.33. 

Nature genetics 2008;40(12):1404-1406. 

8. Broderick P, Wang Y, Vijayakrishnan J et al. Deciphering the impact of common genetic 

variation on lung cancer risk: a genome-wide association study. Cancer research 

2009;69(16):6633-6641. 

9. Landi MT, Chatterjee N, Yu K et al. A genome-wide association study of lung cancer 

identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. 

American journal of human genetics 2009;85(5):679-691. 

10. Hu Z, Wu C, Shi Y et al. A genome-wide association study identifies two new lung 

cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nature genetics 

2011;43(8):792-796. 

11. Lan Q, Hsiung CA, Matsuo K et al. Genome-wide association analysis identifies new 

lung cancer susceptibility loci in never-smoking women in Asia. Nature genetics 

2012;44(12):1330-1335. 

12. Amos CI, Wu X, Broderick P et al. Genome-wide association scan of tag SNPs identifies 

a susceptibility locus for lung cancer at 15q25.1. Nature genetics 2008;40(5):616-622. 

13. Liu P, Vikis HG, Wang D et al. Familial aggregation of common sequence variants on 

15q24-25.1 in lung cancer. Journal of the National Cancer Institute 2008;100(18):1326-

1330. 



19 
 

14. Hung RJ, McKay JD, Gaborieau V et al. A susceptibility locus for lung cancer maps to 

nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008;452(7187):633-

637. 

15. Thorgeirsson TE, Geller F, Sulem P et al. A variant associated with nicotine dependence, 

lung cancer and peripheral arterial disease. Nature 2008;452(7187):638-642. 

16. Dong J, Jin G, Wu C et al. Genome-wide association study identifies a novel 

susceptibility locus at 12q23.1 for lung squamous cell carcinoma in han chinese. PLoS 

genetics 2013;9(1):e1003190. 

17. Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct 

Mol Biol 2004;11(2):121-127. 

18. Balagopal V, Fluch L, Nissan T. Ways and means of eukaryotic mRNA decay. 

Biochimica et biophysica acta 2012;1819(6):593-603. 

19. Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of 

cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2014;11(9):1122-

1136. 

20. Houseley J, Tollervey D. The many pathways of RNA degradation. Cell 

2009;136(4):763-776. 

21. Young JH, Peyton M, Kim HS et al. Computational Discovery of Pathway-Level Genetic 

Vulnerabilities in Non-Small-Cell Lung Cancer. Bioinformatics 2016. 

22. Wang Y, McKay JD, Rafnar T et al. Rare variants of large effect in BRCA2 and CHEK2 

affect risk of lung cancer. Nature genetics 2014;46(7):736-741. 



20 
 

23. Su L, Zhou W, Asomaning K et al. Genotypes and haplotypes of matrix 

metalloproteinase 1, 3 and 12 genes and the risk of lung cancer. Carcinogenesis 

2006;27(5):1024-1029. 

24. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The 

Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell systems 

2015;1(6):417-425. 

25. Xu ZL, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into 

functional SNP selection for genetic association studies. Nucleic Acids Res 

2009;37:W600-W605. 

26. Boyle AP, Hong EL, Hariharan M et al. Annotation of functional variation in personal 

genomes using RegulomeDB. Genome research 2012;22(9):1790-1797. 

27. Lappalainen T, Sammeth M, Friedlander MR et al. Transcriptome and genome 

sequencing uncovers functional variation in humans. Nature 2013;501(7468):506-511. 

28. Rodgers K, Network CGAR. Comprehensive molecular profiling of lung 

adenocarcinoma (vol 511, pg 543, 2014). Nature 2014;514(7521). 

29. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-

analyses. BMJ 2003;327(7414):557-560. 

30. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and 

Powerful Approach to Multiple Testing. J Roy Stat Soc B Met 1995;57(1):289-300. 

31. Pruim RJ, Welch RP, Sanna S et al. LocusZoom: regional visualization of genome-wide 

association scan results. Bioinformatics 2010;26(18):2336-2337. 

32. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and 

haplotype maps. Bioinformatics 2005;21(2):263-265. 



21 
 

33. Maragozidis P, Papanastasi E, Scutelnic D et al. Poly(A)-specific ribonuclease and 

Nocturnin in squamous cell lung cancer: prognostic value and impact on gene expression. 

Molecular cancer 2015;14(1):187. 

34. Collart MA, Panasenko OO. The Ccr4--not complex. Gene 2012;492(1):42-53. 

35. Goldstrohm AC, Wickens M. Multifunctional deadenylase complexes diversify mRNA 

control. Nat Rev Mol Cell Biol 2008;9(4):337-344. 

36. Wahle E, Winkler GS. RNA decay machines: deadenylation by the Ccr4-not and Pan2-

Pan3 complexes. Biochimica et biophysica acta 2013;1829(6-7):561-570. 

37. Mittal S, Aslam A, Doidge R, Medica R, Winkler GS. The Ccr4a (CNOT6) and Ccr4b 

(CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the 

prevention of cell death and senescence. Molecular biology of the cell 2011;22(6):748-

758. 

38. Maragozidis P, Karangeli M, Labrou M et al. Alterations of deadenylase expression in 

acute leukemias: evidence for poly(a)-specific ribonuclease as a potential biomarker. 

Acta haematologica 2012;128(1):39-46. 

39. Kannan MB, Solovieva V, Blank V. The small MAF transcription factors MAFF, MAFG 

and MAFK: current knowledge and perspectives. Biochimica et biophysica acta 

2012;1823(10):1841-1846. 

40. Katsuoka F, Yamamoto M. Small Maf proteins (MafF, MafG, MafK): History, structure 

and function. Gene 2016. 

41. Shields PG. Molecular epidemiology of smoking and lung cancer. Oncogene 

2002;21(45):6870-6876. 



22 
 

42. Zhao J, Harper R, Barchowsky A, Di YP. Identification of multiple MAPK-mediated 

transcription factors regulated by tobacco smoke in airway epithelial cells. American 

journal of physiology Lung cellular and molecular physiology 2007;293(2):L480-490. 

43. Dasgupta P, Rizwani W, Pillai S et al. ARRB1-mediated regulation of E2F target genes 

in nicotine-induced growth of lung tumors. Journal of the National Cancer Institute 

2011;103(4):317-333. 

 

 

  



23 
 

Figures and Tables 

Figure 1. Study workflow SNP: single nucleotide polymorphism; FDR: false discovery rate; 

TRICL: Transdisciplinary Research in Cancer of the Lung; GWAS: genome-wide association 

study; eQTL: expression quantitative trait loci. 

 

  



24 
 

Figure 2. Screening of SNPs in the general mRNA degradation pathway.  A, Manhattan Plot 

of genome-wide association results from the general mRNA degradation pathway in TRICL. The 

x-axis shows SNPs’ positions on each chromosome. The y-axis shows the association P values 

with lung cancer risk (as –log10 P values). The FDR threshold of 0.05 was shown by a 

horizontal blue line. The P value of 0.05 was shown by a horizontal red line. B, Regional 

association plot for SNP rs2453176 in 500 kb up- and downstream region. The left-hand y-axis 

shows P values of the SNPs, which are transformed as −log10 (P) against chromosomal base pair 

positions. The right-hand y-axis shows the recombination rate estimated from HapMap Data Rel 

22/phase II European population; C, The linkage disequilibrium plots of 11 SNPs in CNOT6. 

The value within each diamond represents the pairwise correlation between SNPs (measured as 

r2) defined by the upper left and the upper right sides of the diamond. 
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Figure 3. Forest plots for associations between CNOT6 rs2453176 and lung cancer risk for 

all participants (P = 0.0013). 
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Figure 4. The eQTL analysis of CNOT6 mRNA expression for rs2453176 with 

lymphoblastoid cell data of 373 Europeans from 1000 Genomes Project. A. additive model, 

P = 0.008; B. dominant model, P = 0.007; C. recessive model, P = 0.634. 
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Supplemental Figure S1 A-C. The eQTL analysis of CNOT6 mRNA expressions for 

rs2453176 in the 105 adjacent normal lung cancer tissue samples from the TCGA database.  

A. additive model, P = 0.491, B. dominant model, P = 0.990, C. recessive model, P = 0.667; D, 

The mRNA expression of  CNOT6 in the 107 paired lung cancer and normal adjacent tissue 

samples from the TCGA database (P = 0.237). 
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Supplementary Figure S2.  The ENCODE project data of rs2453176 from UCSC browser 

(NCBI137/hg19). 
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Table 1 The mRNA degradation pathway gene sets 

Dataset Name of pathway 
Gene 

number 
Gene name 

KEGG* KEGG_RNA_DEGRADATIONE 59 C1D, C1DP2**, C1DP3**, CNOT1, CNOT10, CNOT2, CNOT3, 

CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, DCP1A, DCP1B, DCP2, 

DCPS, DDX6, DIS3, EDC3, EDC4, ENO1, ENO2, ENO3, EXOSC1, 

EXOSC10, EXOSC2, EXOSC3, EXOSC4, EXOSC5, EXOSC6, EXOSC7, 

EXOSC8, EXOSC9, HSPA9, HSPD1, LSM1, LSM2, LSM3, LSM4, 

LSM5, LSM6, LSM7, MPHOSPH6, NAA38, PAPD7, PAPOLA, 

PAPOLB, PAPOLG, PARN, PATL1, PNPT1, RQCD1, SKIV2L, 

SKIV2L2, TTC37, WDR61, XRN1, XRN2, ZCCHC7. 

Reactome REACTOME_DEADENYLATION_DEPENDENT_MRNA_DECAY 48 C2orf29**, CNOT10, CNOT2, CNOT3, CNOT4, CNOT6, CNOT7, 

CNOT8, DCP1A, DCP1B, DCP2, DCPS, DDX6, DIS3, EDC3, EDC4, 

EIF4A1, EIF4A2, EIF4A3, EIF4B, EIF4E, EIF4G1, EXOSC1, 

EXOSC2, EXOSC3, EXOSC4, EXOSC5, EXOSC6, EXOSC7, EXOSC8, 

EXOSC9, LOC645139**, LOC645947**, LOC651789**, 

LOC652607**, LSM1, LSM2, LSM3, LSM4, LSM5, LSM6, PABPC1, 

PAIP1, PARN, PATL1, RQCD1, TNKS1BP1, XRN1. 

Reactome REACTOME_DEADENYLATION_OF_MRNA 22 C2orf29**, CNOT10, CNOT2, CNOT3, CNOT4, CNOT6, CNOT7, 

CNOT8, EIF4A1, EIF4A2, EIF4A3, EIF4B, EIF4E, EIF4G1, 

LOC645139**, LOC651789**, LOC652607**, PABPC1, PAIP1, 

PARN, RQCD1, TNKS1BP1. 

Reactome REACTOME_MRNA_DECAY_BY_3_TO_5_EXORIBONUCLEASE 11 DCPS, DIS3, EXOSC1, EXOSC2, EXOSC3, EXOSC4, EXOSC5, 

EXOSC6, EXOSC7, EXOSC8, EXOSC9, 

Reactome REACTOME_MRNA_DECAY_BY_5_TO_3_EXORIBONUCLEASE 15 DCP1A, DCP1B, DCP2, DDX6, EDC3, EDC4, LOC645947, LSM1, 

LSM2, LSM3, LSM4, LSM5, LSM6, PATL1, XRN1. 

PID* NO DATA 0  

GO* NO DATA 0  

BioCarta NO DATA 0  

Literature  2 PAN2, PAN3 

Total  68***  

*KEGG, Kyoto encyclopedia of genes and genomes; GO, gene ontology; PID, pathway interaction database; 

**Pseudo gene: C1DP2, C1DP3, LOC645139; same gene with different name: C2orf29; withdrawn by updated NCBI: LOC645947, LOC651789, LOC652607. 

***After removing the duplicate genes and those genes mentioned  in **; 

Search keyword: mRNA degradation; Search Filters: Collection, canonical pathways + GO gene sets; Organism, Homo sapiens; Contributor, all contributors. 
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Table 2 Associations between SNPs in the general mRNA degradation pathway and lung cancer risk with FDR < 0.050 in TRICL GWASs  

SNP Gene Chr. Position (hg19) Allelea EAF Qb I2 Effectc 

rs115834633 LSM2 6 31765984 G/A 0.11 0.200 30.79 ++++++ 

rs114312980 LSM2 6 31768799 A/C 0.11 0.230 26.77 ++++++ 

rs115801685 LSM2 6 31772093 C/A 0.11 0.220 27.36 ++++++ 

rs115489726 LSM2 6 31766660 C/T 0.11 0.240 25.69 ++++++ 

rs114637560 LSM2 6 31765864 T/A 0.15 0.260 22.42 +-++++ 

rs114984862 SKIV2L 6 31936668 C/T 0.27 0.290 18.64 ++++++ 

rs9800264 CNOT6 5 179940091 G/A 0.10 0.750 0.00 +++++- 

rs2387281 CNOT6 5 179988283 T/C 0.10 0.743 0.00 +++++- 

rs6877400 CNOT6 5 179996111 T/C 0.10 0.747 0.00 +++++- 

rs116188106 SKIV2L 6 31927342 G/A 0.27 0.298 17.82 ++++++ 

rs114011334 SKIV2L 6 31928799 C/T 0.27 0.297 17.92 ++++++ 

rs115002281 SKIV2L 6 31929014 C/A 0.27 0.297 17.95 ++++++ 

rs10052782 CNOT6 5 179975104 C/T 0.10 0.723 0.00 +++++- 

rs6422334 CNOT6 5 179982151 C/T 0.10 0.734 0.00 +++++- 

rs2453176 CNOT6 5 179975792 C/T 0.10 0.723 0.00 +++++- 

rs2387285 CNOT6 5 179982278 A/G 0.10 0.700 0.00 +++++- 

rs2447734 CNOT6 5 179968674 G/C 0.10 0.720 0.00 +++++- 

rs76820754 CNOT6 5 179936737 G/A 0.10 0.735 0.00 +++++- 

rs780126 CNOT6 5 179963034 C/T 0.13 0.758 0.00 +++++- 

rs812956 CNOT6 5 179953048 G/C 0.10 0.653 0.00 +++++- 

SNP: single nucleotide polymorphism; FDR: false discovery rate;  TRICL: Transdisciplinary Research in Cancer of the Lung; GWAS: genome-wide association study; Chr.: chromosome; EAF: effect allele frequency; OR: odds ratio; CI: confidence interval; 
aReference allele/effect allele; 

bFixed effect models were used when no heterogeneity was found between studies (Q-test P > 0.100 and I2 < 50.0%); otherwise, random effect models were used; 
c “+” means a positive association, and “-“ means a negative association. 

 

  



31 
 

Table 3 Linkage disequilibrium between the 11 SNPs of CNOT6 in European populations included in the 1000 Genomes Project and imputation quality 

scores 

SNP 
Position      

(hg19) 
D' r2 

Function prediction Imputation quality 

SNPinfoa Regulome DBb 
Info 

ICR 

Rsq 

MDACC 

Rsq 

IARC 

Info 

NCI 

Info 

Toronto 

Rsq 

GLC 

rs2453176 179975792   -- 1f 1.000 0.999 1.000 1.000 1.000 1.000 

rs780126 179963034 1.00 0.71 -- -- 0.874 0.751 0.703 0.859 0.857 0.784 

rs2387281 179988283 1.00 0.97 -- -- 0.998 0.972 0.969 0.996 0.990 0.967 

rs6877400 179996111 1.00 0.97 Splicing site 5 0.998 0.964 0.965 0.996 0.990 0.953 

rs2387285 179982278 1.00 0.97 -- 4 0.990 0.966 0.923 0.988 0.981 0.964 

rs812956 179953048 1.00 0.97 -- 6 0.991 0.961 0.962 0.988 0.978 0.976 

rs9800264 179940091 1.00 0.99 -- -- 0.999 0.970 0.977 0.998 0.993 1.000 

rs6422334 179982151 1.00 0.99 -- 5 0.999 0.982 0.976 0.997 0.994 0.979 

rs10052782 179975104 1.00 1.00 -- 6 1.000 0.998 1.000 1.000 1.000 1.000 

rs76820754 179936737 1.00 1.00 -- 6 1.000 0.970 0.971 0.999 0.998 0.999 

rs2447734 179968674 1.00 1.00 -- -- 1.000 0.994 0.999 0.999 0.997 0.999 

SNP: single nucleotide polymorphism; 

Imputation quality: Rsq: MaCH r-squared; Info: IMPUTE2 information score; 

ICR: the Institute of Cancer Research Genome-wide Association Study, UK; 

MDACC: the MD Anderson Cancer Center Genome-wide Association Study, US; 

IARC: the International Agency for Research on Cancer Genome-wide Association Study, France; 

NCI: the National Cancer Institute Genome-wide Association Study, US; 

Toronto: the Samuel Lunenfeld Research Institute Genome-wide Association Study, Toronto, Canada; 

GLC: German Lung Cancer Study, Germany; 
ahttps://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm; 
bhttp://regulomedb.org/. 
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Table 4 Associations between of CNOT6 rs2453176 (C >T) and lung cancer risk stratified by histologic types in all eight lung cancer GWASs from ILCCO-TRICL 

Study 
Overall AD SC P* 

Case Control OR (95% CI) P Case Control OR (95% CI) P Case Control OR (95% CI) P 

ICR 1952 5200 1.15 (1.02-1.28) 0.020 465 5200 1.38 (1.12-1.70) 0.002 611 5200 1.14 (0.95-1.38) 0.158 0.181 

MDACC 1150 1134 1.25 (1.03-1.52) 0.027 619 1134 1.06 (0.92-1.47) 0.206 306 1134 1.45 (1.08-1.94) 0.013 0.102 

IARC 2533 3791 1.14 (1.00-1.29) 0.053 517 2824 1.13 (0.90-1.42) 0.301 911 2968 1.18 (0.98-1.41) 0.081 0.771 

NCI 5713 5736 1.10 (1.01-1.21) 0.025 1841 5736 1.17 (1.03-1.33) 0.016 1447 5736 1.04 (0.91-1.20) 0.543 0.220 

Toronto 331 499 1.12 (0.76-1.63) 0.057 90 499 1.48 (0.83-2.64) 0.186 50 499 1.00 (0.44-2.25) 0.998 0.442 

GLC 481 478 0.93 (0.69-1.26) 0.064 186 478 1.25 (0.86-1.83) 0.240 97 478 0.90 (0.52-1.54) 0.695 0.330 

Discovery combined 12160 16838 1.13 (1.06-1.19) 4.33E-05 3818 15871 1.21 (1.11-1.32) 2.04E-05 3424 16015 1.13 (1.03-1.23) 0.009 0.268 

Harvard 984 970 0.85 (0.68-1.05) 0.133 597 970 0.79 (0.62-1.01) 0.130 216 970 1.08 (0.75-1.56) 0.678 0.164 

deCODE 1319 26380 1.14 (1.01-1.28) 0.032 547 26380 1.02 (0.85-1.21) 0.858 259 26380 1.11 (0.86-1.43) 0.436 0.592 

Replication combined 2303 27350 1.00 (0.75-1.32) 0.098 1144 27350 0.91 (0.71-1.16) 0.449 475 27350 1.10 (0.89-1.36) 0.381 0.252 

Overall 14463 44188 1.11 (1.04-1.18) 0.001 4862 43221 1.13 (1.00-1.27) 0.050 3897 43365 1.12 (1.03-1.22) 0.006 0.905 

GWAS: genome-wide association study; ILCCO: International Lung Cancer Consortium; TRICL: Transdisciplinary Research in Cancer of the Lung; AD, adenocarcinoma; SC, 

squamous cell carcinoma; OR: odds ratio; CI: confidence interval. 

*Homogeneity tests suggest that there is no heterogeneity between the subgroups of AD and SC in each GWAS and overall result (P > 0.05). 

ICR: the Institute of Cancer Research Genome-wide Association Study, UK; 

MDACC: the MD Anderson Cancer Center Genome-wide Association Study, US; 

IARC: the International Agency for Research on Cancer Genome-wide Association Study, France; 

NCI: the National Cancer Institute Genome-wide Association Study, US; 

Toronto: the Samuel Lunenfeld Research Institute Genome-wide Association Study, Toronto, Canada; 

GLC: German Lung Cancer Study, Germany; 

Harvard: Harvard Lung Cancer Study; 

DeCODE: Icelandic Lung Cancer Study. 
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Table 5 Associations between of CNOT6 rs2453176 (C >T) and lung cancer risk stratified by smoking status in six lung cancer 

GWASs from ILCCO-TRICL Consortia 

 

Study  
Smoker Non-smoker P* 

Case Control OR (95% CI) P Case Control OR (95% CI) P 

MDACC 1150 1134 1.25 (1.03-1.52) 0.027      

IARC 2367 2508 1.12 (0.97-1.29) 0.131 159 1253 1.40 (0.94-2.09) 0.096 0.303 

NCI 5342 4336 1.10 (1.00-1.22) 0.058 350 1379 0.99 (0.72-1.37) 0.972 0.540 

Toronto 236 272 1.14 (0.70-1.86) 0.606 95 217 1.13 (0.61-2.11) 0.702 0.983 

GLC 433 258 1.00 (0.67-1.49) 0.995 35 220 1.64 (0.71-3.82) 0.250 0.298 

Harvard 892 809 0.87 (0.70-1.09) 0.221 92 161 0.71 (0.38-1.33) 0.288 0.549 

Overall 10420 9317 1.09 (1.02-1.17) 0.011 731 3230 1.10 (0.89-1.36) 0.363 0.936 

GWAS: genome-wide association study; ILCCO: International Lung Cancer Consortium; TRICL: Transdisciplinary Research in 

Cancer of the Lung; OR: odds ratio; CI: confidence interval. 

MDACC: the MD Anderson Cancer Center Genome-wide Association Study, US; 

IARC: the International Agency for Research on Cancer Genome-wide Association Study, France; 

NCI: the National Cancer Institute Genome-wide Association Study, US; 

Toronto: the Samuel Lunenfeld Research Institute Genome-wide Association Study, Toronto, Canada; 

GLC: German Lung Cancer Study, Germany; 

Harvard: Harvard Lung Cancer Study; 

*Homogeneity tests suggest there is no heterogeneity between the subgroups of smoker and non-smoker in each GWAS and overall 

result (P > 0.05). 
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Supplemental Table S1 Summary of characteristics in the eight lung cancer genome-wide association studies of the ILCCO-TRICL 

Consortia 

Variable ICR1 MDACC2 IARC3 NCI4 Toronto5 GLC6 Harvard7 deCODE8 

Case 1952 1150 2533 5713 331 481 984 1319 

  AD 465 619 517 1841 90 186 597 547 

  SC 611 306 911 1447 50 97 216 259 

  Smoker  1150 2367 5342 236 433 892  

  Non-smoker   159 350 95 35 92  

Control 5200 1134 3791 5736 499 478 970 26380 

  Smoker  1134 2508 4336 272 258 809  

  Non-smoker   1253 1379 217 220 161  

ILCCO: International Lung Cancer Consortium;TRICL: Transdisciplinary Research in Cancer of the Lung; AD: adenocarcinoma, SC: 

squamous cell carcinoma; 
1 ICR: the Institute of Cancer Research Genome-wide Association Study, UK; 

2 MDACC: the MD Anderson Cancer Center Genome-wide Association Study, US; 

3 IARC: the International Agency for Research on Cancer Genome-wide Association Study, France; 
4 NCI: the National Cancer Institute Genome-wide Association Study, US; 
5 Toronto: the Samuel Lunenfeld Research Institute Genome-wide Association Study, Toronto, Canada; 
6 GLC: German Lung Cancer Study, Germany; 
7 Harvard: Harvard Lung Cancer Study, US; 
8 deCODE: Icelandic Lung Cancer Study, Iceland. 

 

 


