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SUMMARY
Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics,
currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource
of 1,635 open-access datasets from four donors (�30 tissues 3 �15 assays). The datasets are mapped to
matched, diploid genomeswith long-read phasing and structural variants, instantiating a catalog of >1million
allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than cor-
responding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele-
specific activity based only on local nucleotide-sequence context, highlighting the importance of transcrip-
tion-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing
genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables
models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, EN-
TEx provides rich data and generalizable models for more accurate personal functional genomics.
INTRODUCTION

The Human Genome Project assembled one representative

haploid sequence 20 years ago.1,2 Since then, many individual
Cell 186, 1493–1511, Ma
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genomes have been sequenced.3,4 Compared to the reference,

an individual’s personal genome typically contains �4.5 million

variants.5 The vast majority of these are in non-coding regions

and are most often present in the heterozygous state.6–8 A
rch 30, 2023 ª 2023 The Authors. Published by Elsevier Inc. 1493
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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goal of functional genomics is to assess the impact of these var-

iants on molecular endophenotypes (e.g., epigenetic activity,

RNA expression, or protein levels) and relate these to cell, tissue,

and organismal traits, including disease phenotypes.9–12

To this end, researchers have conducted many genome-wide

association studies (GWASs) and expression quantitative trait

loci (eQTLs) analyses associating genetic variants with pheno-

typic traits and changes in gene expression. In particular, the

Genotype-Tissue Expression (GTEx) Project has performed

RNA-sequencing (RNA-seq) experiments on >40 human tissues

from nearly 1,000 individuals, allowing for the identification of

>175,000 eQTLs.13–16 In complementary fashion, the Encyclo-

pedia of DNA Elements (ENCODE) Project was initiated to anno-

tate functional regions throughout the human genome.17–19

However, these studies have largely been carried out using the

generic reference genome, not directly using the variations

observed in an individual’s diploid sequence. By using a diploid

genome, heterozygous loci can distinguish sequences from

each of the two parental chromosomes (haplotypes) that give

rise to distinct molecular signals from each (e.g., RNA expression

or transcription factor [TF] binding). The imbalance of expression

or epigenetic activity between the haplotypes can be accurately

measured by taking the reference allele as a baseline, avoiding

biological and technical biases. If the imbalance is significant,

the heterozygous variant is termed allele specific (AS). AS vari-

ants have been identified in numerous previous studies and

are implicated in several diseases.18,20–30 Note that only some

AS variants are thought to be causal for the observed

changes.31,32 However, for these loci, the AS experiment pro-

vides an ideal way to assess variant impact in a consistent and

unbiased fashion.33,34
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Here, to better connect personal genomes and functional ge-

nomics, we created the EN-TEx resource. This comprises a uni-

formly processed dataset of �15 functional genomic assays,

consistently collected from four individuals for �30 tissues,

many of them relatively difficult to obtain (e.g. lung). Specifically,

it used two representative male and female individuals selected

from the GTEx project for which the full battery of ENCODE as-

says were applied. These assays are coupled with long-read

genome assemblies, containing comprehensive sets of struc-

tural variants (SVs). Compared to what was previously possible,

mapping reads from the assays directly to diploid genomes al-

lows for more precise quantification of differential expression

and regulatory-element activity and for directly visualizing the

impact on chromatin of single-nucleotide and structural variants

(SNVs and SVs, respectively). Moreover, the uniform nature of

the dataset makes possible more precise ascertainment of in-

ter-individual vs. inter-tissue differences, and the scale of the

resource enables the creation of the largest catalog of non-cod-

ing AS variants, an order of magnitude beyond what was avail-

able previously. We leveraged this catalog to build generalized

models of variant impact. In particular, we created a model

that predicts the AS imbalance resulting from a SNV just from

the extended sequence context around a site (i.e., within a

�250 bp window). It highlights the importance of �100 key TF

motifs we term AS sensitive. Finally, we can relate the EN-TEx

resource to external genome annotations—eQTLs and regulato-

ry elements already known for the human genome. We built

generalized models that transfer eQTLs from a source tissue to

a different target one, leveraging the fact that EN-TEx represents

a uniform collection of epigenetic data in hard-to-obtain tissues.

This is practically quite useful, given that it is typically much
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Figure 1. Uniform multi-tissue data collection, diploid mapping, and construction of the AS catalog
(A) Data matrix. The 13 core assays are indicated in bold; tissue colors from GTEx. (Details in Figure S1A.)

(B) The personal diploid genome of individual 3. The chromosomes are phasedwith known imprinting events (yellow), allowing thematernal (red) or paternal (blue)

origin of many of the phased blocks to be identified. A schematic diagram of a region in chr13 shows the differences between the personal diploid genome and the

reference genome, in particular, their different coordinate systems and sequences. (Details in Data S2G and STAR Methods ‘‘Personal genome’’ section.)

(C) The AS catalog. Key statistics are shown at each level of pooling and averaging. By aggregating across tissues, individuals, or assays, we were able to identify

a large number of AS SNVs and AS genomic elements, resulting in an AS catalog. "*" indicates the aggregation was done by pooling of reads, instead of the

default union method, which significantly increased detection power. Representative numbers in the "Ex. SNVs" row are initially based on a specific H3K27ac

experiment in the spleen of individual 1. The I/T/A row shows whether this choice is continued in subsequent columns or whether averaging or pooling is done

over "ALL" the individuals, tissues, or assays, respectively. "y" indicates AS SNVs fromDNase andWGBS in addition to the 12RNA/ChIP/ATAC assays. (Details in

Figures S3A–S3D and STAR Methods ‘‘AS catalog’’ section.)
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easier to measure eQTLs in blood than other tissues, such as the

heart, especially when using large cohorts of individuals. We also

show that data from the EN-TEx resource can ‘‘decorate’’ exist-

ing regulatory elements, identifying subsets that are much more

highly enriched with eQTL and GWAS SNVs than had been pre-

viously possible and illuminating broad relationships between

conservation, AS activity, and tissue specificity.

RESULTS

Uniform multi-tissue data collection and diploid
mapping
We sequenced and phased the genomes of four GTEx individ-

uals (identified as 1 through 4) using various complementary

sequencing technologies (i.e., short-read Illumina, linked-read

10x Genomics, and long-read PacBio and Oxford Nanopore;
STAR Methods ‘‘Data stack’’ section). After identifying SNVs,

small insertions and deletions (indels), and SVs, we phased the

haplotypes of the assembled genomes using linked-reads and

proximity ligation sequencing (Hi-C; Data S2).35 This step gener-

ated long sequence blocks of phased variants extending across

each chromosome, forming diploid personal genomes for each

of the four individuals (Figure 1). The paternal/maternal origins

of many of the phased blocks were determined by comparing

the AS expression levels with known imprinted loci (Figure 1B

and Data S2G and S2H; STAR Methods ‘‘Personal genome’’

section).

We identified �18,000 SVs in each of the four individuals

(>50 bp in length; Figure S1D and Data S15; STAR Methods

‘‘SVs’’ section). The SVs tended to be depleted in most func-

tional regions (e.g., genes and enhancers) and to have typical

allele-frequency spectra, consistent with previous findings.36,37
Cell 186, 1493–1511, March 30, 2023 1495
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In parallel, we carried out 1,635 experiments from�15 different

epigenome, transcriptome, and proteome assays on�30 tissues

obtained from each of four individuals (i.e., 13 core assays—

including chromatin immunoprecipitation sequencing [ChIP-

seq], assay for transposase-accessible chromatin sequencing

[ATAC-seq], DNase sequencing [DNase-seq], methylation arrays,

and short-readRNA-seq—andseveral additional ones—including

whole-genome bisulfite sequencing [WGBS], Hi-C, enhanced

cross-linking and immunoprecipitation assay [eCLIP], and labeled

proteomic mass spectrometry [MS]; Figures 1A and S1A; STAR

Methods ‘‘Data stack’’ section). This significantly expanded

upon theassaysavailable fromGTExusingENCODEtechnologies

(STAR Methods ‘‘Sample selection’’ section). The data, analysis,

andsoftware tools fromtheproject areallopenaccess,withevery-

thing being directly available from the EN-TEx portal (entex.

encodeproject.org; details in STAR Methods ‘‘Portal’’ section).

All datasets in the EN-TEx resource were processed using the

phased diploid and reference genomes, giving rise to three map-

pings and three corresponding signal tracks for each assay

(maternal and paternal haplotypes and the reference; Figure S1C

and Data S2–S4). Overall, we found �2.5%more reads mapped

to the personal genomes than the reference (for strict mapping

criteria; Figure S1C; STAR Methods ‘‘Reference comparison’’

section). This mapping had a measurable effect (>2-fold) on

the expression levels of >200 genes across all four individuals.

This change is a conservative estimate but still comparable in

magnitude to the number of differentially expressed genes often

found in comparing between healthy and disease states (Fig-

ure S2A and Data S5; STAR Methods ‘‘Reference comparison’’

section).38–41 A similar fraction of candidate cis-regulatory ele-

ments, cCREs, exhibited a significant change in activity levels

when using the personal compared to the reference genome

(specifically, comparing the H3K27ac level on ENCODE cCREs;

Figure S2B and Data S5).17

Because of its uniform data collection and processing, EN-TEx

providesan ideal platformtoconsistentlymeasure inter-individual,

inter-tissue, and inter-assayvariability (FigureS2CandDataS6). In

particular, wecan explore all the sources of variation toplace each

EN-TEx sample in a high-dimensional space. It is readily apparent,

as expected, that inter-individual variation is less than inter-tissue

variation (e.g., inH3K27ac), which is less than inter-assay variation

(e.g., comparing H3K27ac to H3K4me3). Finally, for the specific

situation of comparing between tissues, the EN-TEx resource al-

lowsus todetermine inter-tissuedifferenceswithgreater accuracy

than for equivalent data not matched across individuals (Details in

Figure S2D and Data S6N and S6O).

Large-scale determination of AS SNVs and construction
of the AS catalog
We investigated AS behavior on a large scale using EN-TEx. For

most assays, we performed these calculations uniformly using a

standardized pipeline that dealt with various technical issues,

such as the reference and ambiguous-mapping biases (Data S7

and STAR Methods ‘‘AS calling’’ section).18,19,22,42–45 Overall,

we ran the pipeline on �1,000 samples (31 tissues, 12 assays,

and four individuals). On average, we detected �800 AS events

at SNVs in each sample, representing �4% of the total number

of accessible SNVs (Figures 1C and S3A–S3D). (An accessible
1496 Cell 186, 1493–1511, March 30, 2023
SNV is a heterozygous SNV (hetSNV) with sequencing depth suf-

ficient to detectASbehavior.)Wewere also able to group together

the AS SNVs within a genomic element together to determine its

overall AS status; on average, we found �200 "AS elements" in

each sample.

We had to use a more specialized approach for some of the as-

says, in particular,WGBS,Hi-C, andMSproteomics. For instance,

forHi-C,weconstructedhaplotype-resolvedcontactmatricesand

then identified haplotype-specific AS interactions (Data S10C).

Overall, per sample, we found �0.5 million AS interactions out of

a total of�6.5million Hi-C interactions (Data S10D). We also iden-

tified AS peptides exhibiting significant imbalance, corresponding

to 696 unique genes (STAR Methods ‘‘AS calling’’ section).

After determining the AS SNVs in each sample, we combined

them across all tissues, individuals, and assays (Figures 1C and

S3C). We used two different combining strategies for the catalog:

(1) individually determiningAS imbalance (i.e., "calling") separately

oneach tissue (or assay) and then taking the unionof the calls or (2)

pooling the readsacross tissues (or assays) and then jointly calling.

We found, in fact, that pooling across tissues dramatically

increased our detection power (by �53), making it possible to

identify �27,000 AS SNVs for an assay in an individual (for RNA/

ChIP/ATAC-seq assays; Figures 1C and S3A–S3D; STAR

Methods ‘‘Aggregation’’ section). We then combined the AS

SNVs across assays and found�365,000 AS SNVs per individual

(now including WGBS and DNase). Finally, when we combined

these data across all four individuals, we reached a total of �1.3

million AS SNVs, which constitutes our AS catalog (with 516,000

SNVs coming from RNA/ChIP/ATAC assays; Figures 1C and

S3A–S3D).

The AS catalog has several key aspects. First of all, it is much

larger than previous collections of AS chromatin events (STAR

Methods ‘‘AS catalog’’ section).22,28,46 Moreover, we estimated

that the AS SNVs detected in the four EN-TEx individuals cover

76% of common AS SNVs in the European population, suggest-

ing that the catalog includes a majority of the AS events at

common SNV loci in Europeans (STAR Methods ‘‘AS catalog’’).

In addition to the common AS variants detected, some AS sites

correspond to rare SNVs: in total, we found that 63,000 of the 1.3

million AS variants were rare (STAR Methods ‘‘AS catalog’’). We

were also able to cross-reference these rare SNVs with known

pathogenic and deleterious variants, including 14 in ClinVar

(STAR Methods ‘‘AS catalog’’ section).47

Because of its size, we can leverage the catalog to determine

AS SNVs in an entirely new sample with increased sensitivity

(Data S12). In addition, using a related strategy, we can develop

alternate, "high-power" AS assignments from joint calling across

samples (Data S13). A final key aspect of the AS catalog is

that most variants are in non-coding regions of the genome

and are determined using non-RNA-based assays. In fact, only

�2.5% of the AS variants in the catalog are uniquely detected

by RNA-seq, and 95% are only detected by assays other than

RNA-seq (Data S8B and S8C).

Examples of coordinated AS activity, involving
SNVs and SVs
Using the catalog, we found several examples of coordinated

AS activity across different assays. First, we surveyed known

http://entex.encodeproject.org
http://entex.encodeproject.org
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Figure 2. Examples of coordinated AS activity involving SNVs and SVs

(A) Detecting coordinated AS activity across a chromosome. Signal tracks (bottom) show that for chrX in the tibial nerve of individual 3, hap1 generally has lower

expression levels, lower H3K27ac levels, and higher H3K27me3 levels than hap2. The top bar graphs show the expression and active promoter chromatin of

6 selected genes. (Details in Data S14.)

(B) AS events at a disease-associated locus: theDNAH11 gene. The lollipop diagrams show the degree of AS imbalance for various assays at heterozygous SNVs

in individual 1. Those that are GTEx eQTLs and GWAS loci are highlighted. (Details in STAR Methods ‘‘AS examples’’ section.)

(C) The chromosomal distribution of SVs on the diploid genome. Colors indicate the density of SVs. Genomic regions of chr7 and chr8 (in individual 3) are enlarged

to show the positions of detected SVs and the levels of H3K27ac and RNA expression obtained from transverse colon.

(D) The effect of a 2.6 kb deletion. The deletion in hap2 removed several H3K27ac peaks and reduced ZFAND2A expression in thyroid. (Details in Data S17C

and S17D.)

(E) The effect of a 98 bp deletion. The deletion in hap2 in individual 3 removed a H3K27ac peak in colon downstream of PSCA, potentially contributing to reduced

expression. The heights of the green bars indicate the allele frequencies of the deletion and the surrounding GTEx eQTL SNVs, indicating they are potentially in

linkage disequilibrium. (Details in Data S17G–S17H.)

(F) Overall effect of TEs on chromatin. The genomic regions neighboring the TE INSs show reduced chromatin accessibility more often than those of the non-TE

INSs. (Details in Data S18 and STAR Methods ‘‘SVs’’ section.)

See also Figure S4.
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imprinted loci, finding that AS activity is fairly consistent across

tissues (Data S9B and S2H). A good illustrative example is the

classic case of IGF2 and H19. As expected, in several tissues,

we observed that H19 is expressed only maternally and IGF2

only paternally, due to AS CTCF binding at the imprinting con-

trol region (Figure S4A).48 Moreover, haplotype-resolved Hi-C

showed that, on the maternal haplotype, a cCRE upstream of

H19 interacts with this gene but not with IGF2. In contrast, on

the paternal haplotype, the same cCRE only interacts with

IGF2, suggesting a potential mechanism for the locus.
A second illustrative example shows the coordinated activity

over chromosome X. On this chromosome in females, we

observed gene expression, active histone marks, POL2R and

CTCF binding all skewed toward one haplotype, with repressive

marks biased to the other (Figure 2A and Data S14). There are

notable exceptions, including genes in pseudoautosomal re-

gions and documented "escaper" genes (e.g., DHRSX and

KDM6A, respectively).49 The imbalance in the active chromatin

mirrors well what is observed in the RNA-seq. In addition,

haplotype-specific Hi-C manifested great differences in AS
Cell 186, 1493–1511, March 30, 2023 1497
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interactions on chromosome X at some loci (e.g., XACT; Data

S14G and STARMethods ‘‘AS examples’’ section). Interestingly,

across many tissues, we find a consistent skew in X chromo-

some imbalance, in line with recent findings that X inactivation

is completed prior to the specification of the germ layers (Data

S14A–S14F).50

A third example that demonstrates coordinated AS activity is

DNAH11, a gene associated with ciliary dyskinesia (OMIM

#611884; Figure 2B). We observed AS methylation in the pro-

moter regions on the opposite haplotype to the AS expression

and H3K4me3 and H3K27ac activity, consistent with transcrip-

tional downregulation.

For SVs, as opposed to SNVs, we found many specific exam-

ples of variants impacting chromatin and nearby gene expression

in an AS fashion. For instance, Figure 2D shows a well-supported

example: a heterozygous deletion, overlapping a known SV eQTL

and removing an activating region, and a matching decrease in

expression of a nearby gene (specifically, an H3K27ac peak

nearZFAND2A51). Figure 2E shows a similar example: a heterozy-

gous deletion removing an activating region nearPSCA. Here, the

deletion is not known to be associated with an eQTL but has a

similar allele frequency to nearby eQTL SNVs and thus might

represent the causal variant associated with them. On average,

we identified �300 potential SV eQTLs in each individual (STAR

Methods ‘‘SVs’’ section; Figure S4C and Data S17G–S17J

show additional examples and SV-eQTL associations; Datas

S17N and S17O show related examples for homozygous events;

Data S17M shows examples of whole-exon deletions).

Figure S4B shows an SV removing a likely repressive region

in an intron of PCCB (a H3K9me3 peak). Moreover, this SV is

adjacent to several GTEx splicing QTL (sQTL) sites, and long-

read RNA-seq indicates that both individuals have different

splice isoforms near the SV (Data S17K). Notably, the EN-TEx

resource enables direct comparison between SVs and their

impact on transcript structure, with both determined by long-

read sequencing.

Overall, we found that the SVs were distributed over the

diploid genome unevenly, with different associations with the

chromatin from different haplotypes, and that a significant frac-

tion of genes with AS expression were associated with nearby

SVs or indels (1.5% for SV deletions and 13.6% for small dele-

tions; Figures 2C–2E, Data S16, S17A, and S17B). Furthermore,

many of these expression changes were also coupled to chro-

matin changes, as expected.52 In particular, we assessed

whether chromatin significantly changes around heterozygous

SVs by calculating a "disruption score" (Figure 2F and Data

S18A). We found that transposable element (TE) insertions

(INSs) were associated with a reduction in nearby open chro-

matin (compared with non-TE ones). We observed similar results

when comparing the chromatin near SVs between EN-TEx indi-

viduals (both heterozygous and homozygous SVs; Data S18B–

S18D). These results agree with findings that cells repress active

chromatin to suppress TE expression.53–55

Application 1: Decorating ENCODE elements with EN-
TEx tissue and AS information
Up to this point, we have focused on the four EN-TEx individuals;

now we turn to leveraging the resource to create generalized
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knowledge beyond them, broadly applicable in many contexts.

We demonstrate three applications, focused on predictive

modeling of AS behavior and approaches to "decorating" exist-

ing genome annotations.

The ENCODE encyclopedia annotations were constructed us-

ing a disparate collection of cell lines and tissues; they are also

devoid of variant annotations. We can layer the results from

EN-TEx onto these annotations, consistently decorating them

and extending their utility. In particular, we can combine them

with the AS catalog, highlighting subsets exhibiting AS activity

(Data S19A and S19B). Next, for each EN-TEx tissue, we deter-

mined consistently whether each ENCODE element is active,

repressed, or bivalent (Figure 3A and Data S19C; STARMethods

‘‘Decoration process’’ section). Overall, 97% of the �1 million

cCREs in the ENCODE encyclopedia can be decorated, and

we validated our decorations using data from other studies

with tissue-matched Hi-C (Data S21).

Given our decoration strategy, we used a straightforward

approach tomeasure tissuespecificity,whichcanbeconsistently

applied to many different types of annotations (STAR Methods

‘‘Tissue specificity’’ section). Briefly, the tissue specificity of a

given annotation subset (e.g., gene-proximal cCREs) is the frac-

tion of elements active in only one tissue (Figure 3B and Data

S22; STAR Methods ‘‘Tissue specificity’’ section). As expected,

by thismeasure, only a small percentage of protein-coding genes

were tissue-specific (�8%byeitherRNA-seqorMS)56,57; in com-

parison, pseudogenes, long non-coding RNAs (lncRNAs), and

active regulatory elements exhibited higher tissue specificity

(Figures 3B and 3C). More notably, AS genes and regulatory ele-

ments were more tissue specific than the corresponding non-AS

ones (Figures 3B and S5B). Moreover, we observed that, unlike

many genomic elements that mostly fall into two distinct cate-

gories, tissue-specific or ubiquitously active (giving rise to the

characteristic "U-shaped’’ histogram in Figure 3D) AS elements

are only tissue specific for many different assays (an "L-shaped’’

histogram). (They are also depleted in "housekeeping behavior";

DataS22J andS23D–S23G). Finally, for the few elements that are

AS across all available tissues, we found the haplotype direction

of the AS imbalance to be consistent (23 AS cCREs and 20 AS

genes; Figure 3F, Data S22G–S22I, and STAR Methods ‘‘Tissue

specificity’’ section).58 This finding, plus the fact that we did not

observe many loci where the imbalance direction flipped across

tissues, supports our joint-calling and aggregation strategy for

identifying AS events (Figure 1C and Data S3A–S3D; STAR

Methods ‘‘Tissue specificity’’ ection).

We examined the relationship between tissue specificity and

conservation (Figures 3B and 3C). Notably, we found that, for

active annotations, those with higher tissue specificity had lower

purifying selection, and, for repressed annotations, we found the

opposite trend (Figure 3C). Consistent with previous studies, we

found that AS elements are under less purifying selection than

non-AS ones (Figure 3B and Data S23D–S23G).22,28,43,59

Conversely, we detected an increase in purifying selection for

loci that are AS inmore than one assay (e.g., methylation and his-

tone modifications), perhaps reflecting their greater functional

importance (Figure 3E). In summary, we found that loci demon-

strating more activity across tissues, haplotypes, or functional

assays showed increased conservation.
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Figure 3. Aspects of Application 1: Decorating ENCODE elements with EN-TEx tissue and AS information

(A) Workflow decorating cCREs with EN-TEx data. The workflow starts with the master list of 0.9 million cCREs from ENCODE, which have no tissue-specific

information. Representative numbers from spleen are shown along the flowchart. (Details in Figure S5.)

(B) Tissue specificity and conservation of annotations. The tissue specificity of an annotation category is the fraction of the cCREs observed in the category active

in only a single tissue. A smaller value indicates that the category members are more ubiquitous. Conservation score is determined by the fraction of rare variants

in the genomic regions of an annotation category. Stars indicate statistically significant differences. (Details in in Data S22 and STARMethods ‘‘Tissue specificity’’

section.)

(C) Correlation between tissue specificity and conservation for active and repressed cCREs. Repressed cCREs with methylation show increased significance.

(D) Comparing the tissue distribution of AS and non-AS proximal active cCREs. (Top) Non-AS categories show a "U-shaped" trend, whereas (bottom) AS

categories have an "L-shaped" one. Fraction of elements is described in the STAR Methods ‘‘Tissue specificity’’ section.

(E) AS events occurring in 1 or 2 assays and their relationship to purifying selection. AS events are for chromatin accessibility (Hi-C, DNAse-seq, and ATAC-seq),

histonemodification (H), andmethylation (M). The change in conservation between an AS category and the corresponding non-AS one is shown as the log ratio of

their conservation scores (from B). This ratio is negative for AS events in one assay and positive for AS events in two assays, suggesting that an AS SNV with

multiple events is more conserved.

(F) Consistency of AS imbalance across tissues. The heatmap shows the direction of the allelic imbalance across the most ubiquitous AS cCREs (in individual 3).

The imbalance direction is consistent across tissues; however, a few tissue-specific cCREs show directional flips. (Details in Data S22G.)
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Next, we analyzed the relationship between decorated reg-

ulatory elements and eQTL and GWAS SNVs. First, we found

that AS elements produced significantly better GWAS enrich-

ments for disease traits (compared to an appropriate baseline,

Figures 4A and 4B and Data S25A and S25B; STAR Methods

‘‘Decoration enrichments’’ section). In particular, we found

that the subsets of tissue-specific cCREs that were AS

showed substantially greater enrichment than those not AS.

For example, cCREs that exhibited AS activity in the coronary

artery had higher enrichment for cardiovascular-disease

GWAS SNVs as compared to non-AS ones.60–63 Also, for im-

mune-associated traits, we found that enriched AS cCREs

manifest better specificity for their biologically relevant tissue
compared to non-AS ones (Figure 4B, showing spleen, and

Data S25F).

Finally, we systematically estimated the enrichment of eQTL

and sQTL variants in cCREs active in thematched tissue type (Fig-

ure 4C and Data S24A). The enrichment was considerably stron-

ger thanprevious studies and showedgreatermagnitude for prox-

imal vs. distal cCREs, especially, as expected, for sQTLs (Data

S24C).64 As we did for GWAS SNVs, we compared eQTL/sQTL

enrichment inASelementswith non-AS ones, finding substantially

higher enrichment in AS subsets (Figure 4C). For distal active

cCREs, the AS subset showed stronger enrichment across all tis-

sues, with some tissues showing especially large increases (>23

change in enrichment, for cCREs containing CTCF binding sites).
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Figure 4. Aspects of Applications 1 and 2: Relating decorations and AS SNVs to GWAS and eQTLs

(A) Schematic showing the inter-relationship of AS activity, GWAS SNVs and eQTLs.

(B) Higher GWAS enrichment for AS elements compared to the corresponding non-AS ones. Top left shows one tissue and one trait, compared to the Roadmap

Project. Bottom left shows an extension to many traits for one tissue, and right shows many tissues for one trait. (Details in Data S25 and STAR Methods

‘‘decoration enrichments’’ section.)

(C) QTL enrichment for decorated cCREs. Colored dots show the enrichment for each tissue (GTEx colors, Figure 1A and Data S2I). Each bar shows the median

enrichment over all tissues for a given annotation subset. As a reference, median enrichment of Roadmap "Enh" and "TssA" annotations are shown as dashed

and dotted lines, respectively. The enrichments for the liver are highlighted. Robustness is estimated by resampling genetic variants, providing a range of en-

richments shown with whiskers (Details in Data S24 and STAR Methods ‘‘Decoration enrichments’’ section.)

(D) Compatibility between AS gene expression, AS binding in the upstream promoter, and eQTL effect. eQTL effect is measured by the beta coefficient, and for

AS, the imbalance ratio is plotted. (Details in Figures S5C and S5D; all correlations are statistically significant.)
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Application 2: Relating AS SNVs to GTEx eQTLs and
modeling eQTLs in hard-to-obtain tissues
Another analysis we did with GTEx eQTLs directly related them

to nearby AS activity. First, we analyzed the association of an

eQTL with the AS expression of its target gene: as expected, a

positive correlation is evident with eQTL effect size, providing

an additional confirmation for the eQTL (Figure 4D). Next, we

directly related eQTL effect with the AS imbalance in promoter

chromatin at the eQTL SNV (Figure 4D and Data S26A–S26C).

The association here is more direct and provides a way to help

prioritize putative causal variants among GTEx eQTLs, in line

with previous findings (Data S26B andS26C; also see Figure S6A

and Data S27A for a related, but alternate, approach).65 Finally,

to complete the "triad’’ of comparisons, we interrelated the AS

activities in both the promoter and the associated gene (Fig-

ure 4D). Here, we found quantitative agreement for the magni-

tude and direction of the AS imbalance over many different

epigenetic and proteomic assays (with an associated list of

strongly compatible gene-promoter pairs, STAR Methods
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‘‘Compatibility’’ section; Figure S5D). As expected, we observed

negative correlations for repressive marks and DNA methylation

and positive correlations for the many different active chro-

matin modifications (e.g., H3K27ac; Figure S5D and Data

S26A–S26C).

The above correlation between AS activity and eQTLs is an

example of how the EN-TEx resource can be integrated with

external annotation. This integration can go further: because

EN-TEx includes ChIP-seq data from hard-to-obtain tissues

(e.g., heart), which is comparatively more difficult to obtain

than RNA-seq data, we can use it to extend existing eQTL anno-

tations to additional tissues.

We start with the observation that eQTL SNVs have stronger

chromatin signals in the tissues in which they are active than in

the tissues in which they are not, suggesting that the chromatin

around a SNV may influence its chance of being an eQTL in a

particular tissue (Figure S6B and Data S27B). Then, by

combining the EN-TEx chromatin data and the GTEx eQTL cat-

alog, we developed a random-forest statistical model that
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Figure 5. Aspects of Application 2: Modeling eQTLs in hard-to-obtain tissues

(A) Schema of the transferQTL model. For a catalog of eQTLs active in a source tissue (donor), we transfer them to another tissue (target) by leveraging the

chromatin in the target and other features. (Details in Figure S6C.) For several representative target tissues, the balanced accuracy is shown for transferring

skin eQTLs.

(B) Performance of the model. The X axis indicates the tissues used as the donors (GTEx coloring), and the Y axis indicates the average performance (balanced

accuracy) across the target tissues. The whiskers indicate variation across targets (standard deviations). (Details in Data S28C and S28D.)

(C) Performance decomposition. For the confusion matrix resulting from applying the model to known GTEx eQTLs, we plotted the distribution of mean p values

on each subset.

(D) External validation. We validated our transferred eQTLs against four eQTLs catalogs other than GTEx: pancreas (PNCREAS), skeletal muscle (GASMED),

suprapubic skin (SKINNS), and lower-leg skin (SKINS). The Y axis corresponds to the sensitivity of the prediction (TP/(TP + FN)). (Details in the STAR Methods

‘‘transferQTL model’’ section.) FN, false negative.

(E) Large-scale application. We applied themodel to a set of�1.5 million eQTLs from blood (as donor). We were able to transfer a large proportion of these to EN-

TEx target tissues. The plot shows the five tissues with the largest fractions transferred. (Details in Data S28F and S28G.)

(F) Importance of the features in the model. We computed the correlation between 15 selected features and the model’s probability of classifying donor-tissue

eQTLs as eQTLs in the target tissue. The bar plot shows, for each feature, the strongest correlation observed across all 756 donor-target tissue pairs. (Details in

Data S29A.)

(G) Schematic showing how two simple rules help predict eQTLs in a target tissue. To summarize (F), we have found that two observations help define trans-

ferQTL. As an example, we show the results obtained when transferring eQTLs from testis (donor) to thyroid (target). (Details in STAR Methods ‘‘transferQTL

model’’ section and Data S29B.)
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transfers the activity of an eQTL from a given donor tissue to

another target tissue by considering the EN-TEx chromatin pro-

file in the target (e.g., from skin to tibial artery; Figures 5A and

S6C). Overall, when compared with known GTEx eQTLs, our

predictions are highly accurate, independent of which donor or

target tissues are employed (0.86 balanced accuracy; Figure 5B

and Data S28C and S28D). Our model tends to transfer stronger

GTEx eQTLs to the target (Figure 5C); conversely, it also iden-

tifies "likely" eQTLs, not quite reaching the "official" GTEx signif-
icance threshold (probably due to sample size) but still achieving

greater significance than those not transferred.

We further validated our model, trained onGTEx, against other

eQTL catalogs.66 In particular, it correctly identified >75% of the

eQTLs reported in catalogs for pancreas, skeletal muscle, and

skin (Figure 5D). Finally, to showcase the value of our approach

to enhance existing eQTL catalogs, we applied it to a set of 1.5

million blood eQTLs from a large-cohort study; we were able to

transfer up to 60% of these, enhancing the GTEx catalog with
Cell 186, 1493–1511, March 30, 2023 1501
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Figure 6. Aspects of Application 3: Highlighting "sensitive" TF motifs

(A) TFMotifs ranked by enrichment of AS SNVs. We calculated the enrichment of AS SNVs for each TF using 2-by-2 contingency tables, with representative ones

shown in the figure. For the representative TFs we also show amotif logo (and, for FOXO3, the location of the overlapping AS or non-AS SNVs). In the scatterplot,

the dots correspond to TF motifs, which are ranked by AS enrichment. Colors indicate different histone modifications. (Details in Data S30 and STAR Methods

‘‘Sensitive motifs’’ section.)

(B) TF motif ranking is correlated with conservation of the motif regions. (Details in STAR Methods ‘‘Sensitive motifs’’ section.)

(C) Schematic of a statistical model predicting AS promoter activity. The model predicts whether a promoter exhibits AS H3K27ac activity. Motifs of ranked TFs

(colored short lines) were used as features of the model in addition to AS expression ratio. Right-hand-side bar charts show feature weights and the overall

performance of the model, in comparison to Roadmap. Model performance is dominated by the motifs, with only marginal improvement from adding AS

expression imbalance. (Details in the STAR Methods ‘‘AS promoter’’ section.)

See also Figure S7.
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�500,000 new candidate eQTLs per tissue (Figure 5E and Data

S28F–S28G).67 Note the utility of this application: up to now,

large-cohort, high-power eQTL studies so far have been con-

ducted mostly on a few readily available tissues, such as blood

or skin67; the uniformly collected EN-TEx chromatin data allow

us to leverage these existing annotations to other, more diffi-

cult-to-secure tissues.

Finally, we evaluated the relative contribution of the different

genomic features to the model (Figure 5F and Data S29A). We

found that we could get most of the predictive accuracy from a

core model using four specific histone modifications

(H3K36me3, H3K27ac, H3K4me1, H3K27me3) and some non-

chromatin features (Figure S6E). Moreover, as expected, we

found that SNVs with observable chromatin activity, especially

H3K36me3, were more likely to be transferred. We observed

the opposite for SNVs associatedwith genes that are highly tissue

specific or have distant transcription-start sites (Figure 5F and
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Data S29A). Given this, we can summarize the main features of

our model in a simple heuristic: we can likely transfer an eQTL if

it has high chromatin activity in the target tissue or its associated

gene is not tissue specific; if neither of these conditions ismet, the

transfer is probably not possible (Figure 5G and Data S29B).

Application 3: Modeling AS activity from variant impact
on the nucleotide sequence, highlighting "sensitive" TF
motifs
In our final application, we model the likelihood of a heterozy-

gous variant to cause AS behavior. In particular, the ability of

an SNV to disrupt a TF-binding motif suggests a direct relation-

ship to the AS imbalance for a sequence-specific TF. Further-

more, given the importance of TFs in modulating open and

closed chromatin, there is also a relationship, though less direct,

to AS histone modifications. To study this, we cross-referenced

all the AS sites in the EN-TEx ChIP-seq data with the 660 known
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human TF motifs and then ranked the motifs based on enrich-

ment of AS SNVs (Figure 6A and STAR Methods ‘‘Sensitive mo-

tifs’’ section).68 Overall, we identified 195 TF motifs that were

significantly enriched in AS SNVs and selected further a "top

10000 subset (using a logical cutoff, which was robust to tissue

selection, Figure S7A and Data S30; STAR Methods ‘‘Sensitive

motifs’’ section).

These top-ranked motifs represented TF binding sites partic-

ularly "sensitive" to mutations and more likely to give rise to AS

behavior. They were enriched in C2H2 zinc-finger motifs (e.g.

FOXO3 and ZNF460; Figure 6A). In contrast, the bottom-ranked,

least-sensitive motifs were more likely to have a homeobox

domain (e.g., DLX5). FOXO3, in particular, represents well how

AS SNVs affect the zinc-finger motif: the AS SNVs occurred

mostly at a single distinct nucleotide positions known to modu-

late binding, while non-AS SNVs occurred more uniformly

(STAR Methods ‘‘Sensitive motifs’’ section).69 For many motifs,

the enrichment associatedwith activating and repressive histone

marks followed opposite trends (e.g., MYRF). Additionally, we

found that the enrichment in AS SNVs anti-correlates with the

conservation of the motif regions in the genome but is not corre-

lated at all with a motif’s sequence complexity (i.e., "PWM en-

tropy"; Figure 6B and Data S30A–S30I; STAR Methods ‘‘Sensi-

tive motifs’’ section). The finding that AS-sensitive sites are

less conserved dovetails with our earlier finding in Figure 3B

that AS elements tend to be less conserved.

We next investigated how variants affectingmotifs for AS-sen-

sitive TFs relate to their effect on the expression of the down-

stream gene. To do this, we built simple statistical models con-

necting the presence of TF motifs to the AS activities of a gene

and its associated promoter (specifically, in terms of AS expres-

sion and histone modification; Figure 6C and Data S31B–S31F).

Simple statistics revealed that the promoter-target-gene rela-

tionship for AS activity is more nuanced than one might expect

(Figure S7B and Data S31E); the complexity potentially results

from alternative distal regulation or redundancy of regulatory

sites. Nevertheless, we could construct successful models for

AS promoter activity (cross-validated areas under the receiver

operating curve characteristic [AUROCs] of 0.81 on the EN-

TEx individuals and 0.88 on external validation data; Figure 6C

and Data S31A; STAR Methods ‘‘AS promoter’’ section). Given

that RNA-seq data are much more readily available than ChIP-

seq data, the model can be applied in a practical context, e.g.,

to predict AS promoter activity throughout the 838-individual

GTEx cohort, using just RNA-seq data and genotypes (STAR

Methods ‘‘AS promoter’’ section).

Remarkably, successful models for AS promoter activity

needed few features. The most important ones were the number

of AS-sensitive TF motifs in the promoter (overlapping or nearby

to the central AS SNV), underscoring the importance of variants

impacting these motifs. Other relevant features, but of second-

ary importance, were the occurrence of any TF motif (sensitive

or not) distal to the SNV and the AS expression imbalance of

the downstream gene (Figure 6C and Data S31B). Interestingly,

features that one might have expected to be important—

including the overall expression level of the gene or the eQTL sta-

tus of the SNV in the promoter—were not informative (Data

S31D). Related to how the AS-promoter model highlighted the
importance of AS-sensitive motifs, we also found an over-repre-

sentation of TF motifs, particularly AS-sensitive ones, in the

decorated subsets of cCREs enriched with eQTLs, discussed

earlier (Figure 4C and Data S30J and S30K). This suggests AS-

sensitive motifs are key in driving the expression differences be-

tween alleles observed in eQTLs.

The impact of SNVs on AS-sensitive TFs implies that we may

be able to predict whether an SNV would be associated with AS

behavior by whether it overlaps such a motif. To investigate this,

we built a simple model to predict whether an SNV would be AS

for CTCF binding based on whether it overlapped with a CTCF

motif in regulatory regions (STARMethods ‘‘Transformer model’’

section); this "strawman"model had only slight predictive perfor-

mance (Figure 7B). We then surmised that we could achieve bet-

ter performance by including sequence context surrounding the

CTCF motif. To do this, we built progressively more complex

models, culminating in a deep-learning transformer model that

took into account the sequence in a 250-bp window around

the SNV (using DNABERT70; Figure 7A and STAR Methods

‘‘Transformer model’’ section). The transformer model achieved

surprisingly good performance (0.69 cross-validated AUROC

using EN-TEx samples, for predicting whether or not an acces-

sible SNV for CTCF binding in any tissue would be AS, purely

based on the sequence characteristics of the surrounding win-

dow; Figure 7B). We were also able to build similar models for

POLR2A and various histone marks (Figure S7 and Data

S32A). For H3K27ac, we validated our model, trained on EN-

TEx, on an external dataset (0.74 AUROC; Figure 7B and Data

S32B). Our transformer model predicts whether a SNV would

be AS in a tissue-independent fashion. We next tried to enhance

it in a tissue-specific fashion by including additional epigenetic

information; this only marginally improved themodel, underscor-

ing the overwhelming importance of sequence context in as-

sessing the impact of a variant (Figure 7C).

To better understand the sequence context that gives rise to AS

behavior, we explored one characteristic of transformer models:

they direct attention to specific sequence positions, often corre-

sponding to known motifs. An example is shown in Figure 7D;

one can see the attention paid to the CTCF motif at the center,

and many other locations with known motif clusters are also

flagged as important. The attention score from the model aver-

aged over many positions clearly shows that it is more focused

on the central SNV than other "control" models. This averaged

attention score is ideal for comparing to motif occurrence: as ex-

pected, we observed a central enrichment for CTCF, but we also

saw an enrichment for other TF motifs, such as SP1 (Figures 7E

and 7F and Data S32A, S32C, and S32F; also, see Figure S7D

and S7E and Data S32A, S32D, and S32E for analogous results

for additional ChIP-seq datasets). In this way, we can partially "re-

discover" the key motifs highlighted in Figure 6 by a completely

different route (Figure S7B).

DISCUSSION

The main contribution of EN-TEx is the creation of a readily

accessible resource of personal epigenomes and the corre-

sponding annotations, decorations, and models. We envision

the resource enabling additional analyses outside of the scope
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Figure 7. Aspects of Application 3: Deep-learning model predicting AS activity from nucleotide sequence

(For all sub-panels, details are in Figure S7, Data S32, and STAR Methods ‘‘Transformer model’’ section.)

(A) Schematic of the sequence-based predictive model. A transformer model was trained on the flanking regions (128 bp) of accessible SNVs to predict whether

or not they are AS. The attention score (magenta lines) reflects the weights the model attaches to different nucleotide positions in the input sequences.

(B) Average performance of models predicting AS activity. As a reference, the CTCF model was compared to simple logistic regression models with the only

information being (1) CTCF motifs overlapping the SNV or (2) CTCF motifs in a neighborhood around the SNV. For the H3K27ac model, the prediction was also

validated against external data from Roadmap.

(C) Performance of a tissue-specific model for CTCF. Adding epigenomic features only marginally improved the performance over just sequence features.

(D) Attention patterns learned by the model. Those in the flanking regions of a selected CTCF AS SNV (magenta) show strong consistency with motif enrichment

(gray). The central peak surrounding the SNV contains a CTCF motif, highlighted in red.

(E) Average attention pattern of sequence-based models for various assays.

(F) Motif enrichment surrounding the AS CTCF SNV agrees with the average attention pattern in (E).
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of discussion here. Vignettes of methylation data related to aging

or the cross-tissue epigenetics of genes associated with COVID-

19 provide hints of what is possible (Data S34).

A key aspect of EN-TEx is that it can be easily connected with

other human-genome annotation resources, potentially extend-

ing them. In particular, by training on the GTEx eQTL catalog, we

were able to build amodel that can transfer eQTLs from an easily

obtained tissue to ones harder to get. With this approach, we

leverage the fact that EN-TEx represents a uniform collection

of epigenetics data from hard-to-obtain tissues. We also show

that EN-TEx can decorate the ENCODE regulatory elements to

give a unified view of tissue specificity and conservation and

provide subsets of elements that are particularly enriched in

GWAS variants. We imagine that, in the future, EN-TEx could
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connect with and extend other genomic resources beyond

ENCODE and GTEx, such as the recently initiated IGVF project

(IGVF.org).

The second aspect of EN-TEx is that we can leverage the scale

of the AS catalog to develop models illuminating the biological

impact of variants. These models suggest that the local

sequence context around a variant is the dominating factor in

determining its impact, with certain TF motifs being particularly

sensitive to mutations. That said, it is not just the TF motif right

at the SNV position that is relevant, but the surrounding

sequence (within an�250 bp window). This suggests that deter-

mining whether a particular site is AS may have to do with other,

potentially interacting, TFs binding nearby. For instance, a

particular TF-binding site could be stabilized from mutational

http://IGVF.org
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impact (and AS behavior) by being one of the many DNA-binding

sites of a large hetero-oligomeric complex. Alternatively, redun-

dant binding sites for a single factor may act as "backup" against

the effects of one mutation71; the concept of "buffering" posits a

mechanism for this.26

A final contribution of EN-TEx is demonstrating how the

diploid genome is important for future human functional geno-

mics. In particular, we show that diploid genomes provide more

accurate quantification of differential expression and regulatory

activity, which is essential for disease studies.72 Furthermore,

the matching of individuals and tissues in EN-TEx allows a pre-

cise ascertainment of the relative contribution of inter-tissue

and inter-individual variation. We envision that in the near

future, with the decreased cost of sequencing, generating a

matched personal genome sequence as an accompaniment

to each functional genomics experiment will become the

norm. Thus, the EN-TEx personalized epigenomics approach

for analyzing the impact of genome variation will necessarily

become commonplace, potentially providing benefits for preci-

sion medicine.72

Limitations of the study
A key limitation of EN-TEx is that only four individuals were pro-

filed. Becasue of this, we are not statistically powered to

compare the activity of elements between individuals. That

said, the EN-TEx approach could be straightforwardly scaled

up to larger cohorts. An aspect of this scaling would be the

characterization of rare variants. Although the four individuals

were considered healthy, their genomes contain many rare var-

iants, including some potentially deleterious ones. These are

not normally accessible to traditional QTL studies, which are

mostly targeted to common variants. In contrast, our AS anal-

ysis and models can provide information on rare variants,

and, in this regard, the EN-TEx resource is particularly informa-

tive to precision medicine. Moreover, if the approach piloted by

EN-TEx were scaled up to more individuals in the future, it

would provide a commensurate amount of information on addi-

tional new rare variants. This situation contrasts with common

variants, where increasing the cohort size would provide dimin-

ishing amounts of additional information (STAR Methods ‘‘AS

catalog’’ section).

A second limitation of EN-TEx is that because of the many

functional assays and tissues used, it was not feasible to do

technical replicates for each experiment; only a few tissues

and assay combinations were replicated (see STAR Methods

‘‘Sample selection’’ section). The absence of replicates limits

the utility of the differential expression and comparison of

element activity between the personal genome and the refer-

ence. This limitation could be addressed in the future by more

replicated experiments.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Sample selection: Details of the EN-TEx samples and

their relationship with ENCODE and GTEx (related to

‘‘uniform multi-tissue data collection & diploid map-

ping’’ in the main text, Figures 1A and S1A)

B Personal genome: Construction of the personal

genome (related to ‘‘uniform multi-tissue data collec-

tion & diploid mapping’’ in the main text, Figures 1B,

S1B, and S1C)

B Data stack: Functional genomics data in the EN-TEx

resource (related to ‘‘uniform multi-tissue data collec-

tion & diploid mapping’’ in the main text, Figures 1A

and S1A)

B Reference comparison: Comparing between personal

and reference genomes (related to ‘‘uniform multi-tis-

sue data collection & diploid mapping’’ in the main

text and Figure S2)

B Variation analysis: Analysis of the variation in element

activity (related to ‘‘uniform multi-tissue data collec-

tion & diploid mapping’’ in the main text and

Figures S2C and S2D)

B AS calling: Determining Individual AS Events (related to

‘‘large-scale determination of AS SNVs & construction

of the AS catalog’’ in the main text and Figure S3A)

B AS elements (related to ‘‘large-scale determination of

AS SNVs and construction of the AS catalog’’ in the

main text and Figures S3A and S3B)

B Aggregation: Aggregating Individual AS Events Across

Tissues and Assays (related to ‘‘large-scale determina-

tion of ASSNVs & construction of the AS catalog’’ in the

main text, Figures 1C, S3C, and S3D)

B AS catalog (related to ‘‘large-scale determination of AS

SNVs and construction of the AS catalog’’ in the main

text, Figures 1C, S3B, and S3D–S3F)

B AS examples: Illustrating the Coordination of AS Activ-

ity Across Assays (related to ‘‘examples of coordinated

AS activity, involving SNVs & SVs’’ in themain text, Fig-

ures 2 and S4)

B SVs: Illustrating the Impact of SVs (related to ‘‘exam-

ples of coordinated AS activity, involving SNVs &

SVs’’ in the main text, Figures 2D–2F, S4B, and S4C)

B Decoration process: Layering EN-TEx Information on

ENCODE cCREs (related to ‘‘application 1: decorating

ENCODE elements with EN-TEx tissue & AS informa-

tion’’ in the main text, Figures 3A and S5A)

B Tissue specificity (related to ‘‘Application 1: Decorating

ENCODE elements with EN-TEx tissue and AS infor-

mation’’ in the main text, Figures 3B–3D and S5B)

B Decoration enrichments: Relating encyclopedia deco-

rations to QTLs and GWAS loci (related to ‘‘application

1: decorating ENCODE elements with EN-TEx tissue &

AS information’’ in the main text and Figures 4B

and 4C)

B Compatibility: Analysis of the Compatibility Between

Assays (related to ‘‘application 2: relating AS SNVs to
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Resource
GTEx eQTLs & modeling eQTLs in hard-to-obtain tis-

sues’’ in the main text, Figures 4A, 4D, S5C, and S5D)

B transferQTL model: Extending eQTL Annotation of

Hard-to-obtain Tissues (related to ‘‘Application 2:

relating AS SNVs to GTEx eQTLs & modeling eQTLs

in hard-to-obtain tissues’’ in the main text, Figures 5

and S6)

B Sensitive motifs: The Relationship Between AS SNPs

and TF Motifs (related to ‘‘application 3: modeling AS

activity from variant impact on the nucleotide

sequence, highlighting "sensitive" TF motifs’’ in the

main text, Figures 6A, 6B, and S7A)

B AS promoter: Prediction of Promoter AS Activity with a

Random Forest Model (related to ‘‘application 3:

modeling AS activity from variant impact on the nucle-

otide sequence, highlighting "sensitive" TF motifs’’ in

the main text, Figures 6C and S7B)

B Transformer model: Prediction of AS Effect with a

BERT Model (related to ‘‘application 3: modeling AS

activity from variant impact on the nucleotide

sequence, highlighting "sensitive" TF motifs’’ in the

main text, Figures 7 and S7C–S7E)

B Portal: A central location for accessing EN-TEx data,

analyses, and visualization tools

B Buffering hypothesis: Providing Evidence Connecting

AS Elements and Housekeeping Genes (related to

the ‘‘discussion’’ in the main text)

d QUANTIFICATION AND STATISTICAL ANALYSIS

d ADDITIONAL RESOURCES
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2023.02.018.
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Biological samples

Tissues from 4 individuals from ENCODE project This paper https://www.encodeproject.org/entex-matrix/?type=

Experiment&status=released&internal_tags=ENTEx

HG002 Human Pangenome

Reference Consortium

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

AshkenazimTrio/HG002_NA24385_son

Critical commercial assays

Express Kit V2 PacBio N/A

SQK-LSK110 Kit Oxford Nanopore N/A

TruSeq DNA PCR-Free Library Preparation Kit Illumina N/A

Deposited data

Spectra, results, and supporting files, including

the personal proteome database

This paper PRIDE: PXD022787

imprinted_genes_in_ENTEx_ASE.tsv This paper http://entex.encodeproject.org/data/imprinted_genes_

in_ENTEx_ASE.tsv

phased_block.tar.gz This paper http://entex.encodeproject.org/data/phased_block.tar.gz

fithic2_out.tar.gz This paper http://entex.encodeproject.org/data/fithic2_out.tar.gz

TopDomTADcalls.tar.gz This paper http://entex.encodeproject.org/data/TopDomTADcalls.

tar.gz

Supp_data_proteomics.xlsx This paper http://entex.encodeproject.org/data/Supp_data_

proteomics.xlsx

table.DE.genes.tsv This paper http://entex.encodeproject.org/data/table.DE.genes.tsv

table.DE.genes.techReps.liver.tsv This paper http://entex.encodeproject.org/data/table.DE.genes.

techReps.liver.tsv

table.DE.genes.GM12878.tsv This paper http://entex.encodeproject.org/data/table.DE.genes.

GM12878.tsv

differentially_marked_H3K27ac_cCREs.txt This paper http://entex.encodeproject.org/data/differentially_

marked_H3K27ac_cCREs.txt

Similarity_of_functional_genomic_activities_of_

cCREs.xlsx

This paper http://entex.encodeproject.org/data/Similarity_of_

functional_genomic_activities_of_cCREs.xlsx

normalized_proteomics_RNA-seq.dat This paper http://entex.encodeproject.org/data/normalized_

proteomics_RNA-seq.dat

sample_signal_track.tar.gz This paper http://entex.encodeproject.org/data/sample_signal_

track.tar.gz

AlleleSeq2_workflow_examples.tar.gz This paper http://entex.encodeproject.org/data/AlleleSeq2_

workflow_examples.tar.gz

hetSNVs_default_AS.tsv This paper http://entex.encodeproject.org/data/hetSNVs_default_
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hetSNVs_default_AS_DNase.tsv This paper http://entex.encodeproject.org/data/hetSNVs_

default_AS_DNase.tsv

ENTEx.TissueStacked.phased.final.txt This paper http://entex.encodeproject.org/data/ENTEx.Tissue

Stacked.phased.final.txt

hic_files.tar.gz This paper http://entex.encodeproject.org/data/hic_files.tar.gz

genes_default_AS.tsv This paper http://entex.encodeproject.org/data/genes_default_AS.tsv
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hetSNVs_pooled_AS_DNase.tsv This paper http://entex.gersteinlab.org/data/hetSNVs_pooled_AS_

DNase.tsv

ENTEx.TissueAggregated.final.txt This paper http://entex.encodeproject.org/data/ENTEx.Tissue

Aggregated.final.txt

pgenome_NA12878.tar.gz This paper http://entex.encodeproject.org/data/pgenome_

NA12878.tar.gz

pgenome_STL-002.tar.gz This paper http://entex.encodeproject.org/data/pgenome_

STL-002.tar.gz

pgenome_STL-003.tar.gz This paper http://entex.encodeproject.org/data/pgenome_

STL-003.tar.gz

hetSNVs_high-confidence_AS.tsv This paper http://entex.encodeproject.org/data/hetSNVs_high-

confidence_AS.tsv

hetSNVs_high-power_AS.tsv This paper http://entex.encodeproject.org/data/hetSNVs_high-

power_AS.tsv

Supp_Data_SVs_associated_with_eQTL.xlsx This paper http://entex.encodeproject.org/data/Supp_Data_SVs_

associated_with_eQTL.xlsx

cCRE_histoneSignals_qnorm.tar.gz This paper http://entex.encodeproject.org/data/cCRE_histone

Signals_qnorm.tar.gz

cCRE_decoration.matrix This paper http://entex.encodeproject.org/data/cCRE_

decoration.matrix

active.combined_set.txt.zip This paper http://entex.encodeproject.org/data/active.combined_

set.txt.zip

bivalent.combined_set.txt.zip This paper http://entex.encodeproject.org/data/bivalent.combined_

set.txt.zip

repressed.combined_set.txt.zip This paper http://entex.encodeproject.org/data/repressed.

combined_set.txt.zip

Repressive_cCRE_DNAmethy_repressiveHM.zip This paper http://entex.encodeproject.org/data/Repressive_cCRE_

DNAmethy_repressiveHM.zip

Repressive_cCRE_DNAmethy_repressiveHM_

summary.csv

This paper http://entex.encodeproject.org/data/Repressive_cCRE_

DNAmethy_repressiveHM_summary.csv

cCRE_DNAme_subset.tsv.zip This paper http://entex.encodeproject.org/data/cCRE_DNAme_

subset.tsv.zip

stringent.regions.MF.hg38.bed This paper http://entex.encodeproject.org/data/stringent.regions.

MF.hg38.bed

ENTEx_fully_repressed_regions_independent_

of_cCREs.bed

This paper http://entex.encodeproject.org/data/ENTEx_fully_

repressed_regions_independent_of_cCREs.bed

Tissue_Specificity.zip This paper http://entex.encodeproject.org/data/Tissue_Specificity.zip

QTL_enrichment.zip This paper http://entex.encodeproject.org/data/QTL_enrichment.zip

GWAS_enrichment.zip This paper http://entex.encodeproject.org/data/GWAS_enrichment.zip

Supp_Data_Compatibility.xlsx This paper http://entex.encodeproject.org/data/Supp_Data_

Compatibility.xlsx

AS_ratios_and_eQTL_effect.tsv This paper http://entex.encodeproject.org/data/AS_ratios_and_

eQTL_effect.tsv

R6_RData.objects This paper http://entex.encodeproject.org/data/R6_RData.objects.html

R6_RData.4hm.objects This paper http://entex.encodeproject.org/data/R6_RData.4hm.

objects.html

perTissue.likely.eQTLs.tsv This paper http://entex.encodeproject.org/data/perTissue.likely.

eQTLs.tsv

predictions.blood.eQTLs.tar.gz This paper http://entex.encodeproject.org/data/predictions.blood.

eQTLs.tar.gz

motif_ranking.tsv This paper http://entex.encodeproject.org/data/motif_ranking.tsv

SNPs_motif_cCRE.txt.gz This paper http://entex.encodeproject.org/data/SNPs_motif_
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ASB-predictions-on-GTEx-cohort.tsv This paper http://entex.encodeproject.org/data/ASB-predictions-

on-GTEx-cohort.tsv

ENTEx.Explorer.cCRE.Combined.zip This paper http://entex.encodeproject.org/data/ENTEx.Explorer.

cCRE.Combined.zip

ENTEx.Explorer.Expression.Combined.zip This paper http://entex.encodeproject.org/data/ENTEx.Explorer.

Expression.Combined.zip

ENTEx.Proteomics.cCRE.Combined.zip This paper http://entex.encodeproject.org/data/ENTEx.

Proteomics.cCRE.Combined.zip

Software and algorithms

AlleleSeq2 This paper https://github.com/gersteinlab/AlleleSeq2

transferQTL This paper https://github.com/gersteinlab/transferQTL

Chromosome Painter This paper https://github.com/gersteinlab/Chromosome

PaintingTool

EN-TEx Data Explorer This paper https://github.com/gersteinlab/shiny-dim-reduction

Transformer model This paper https://github.com/gersteinlab/entexBERT

CrossStitch https://github.com/

schatzlab/crossstitch

https://github.com/schatzlab/crossstitch

Long Ranger (ver. 2.1.2) 10X Genomics https://support.10xgenomics.com/genome-exome/

software/pipelines/latest/what-is-long-rang

HapCUT2 (ver. 1.1) Edge et al.35 https://github.com/vibansal/HapCUT2

Sniffles (ver. 1.0.11) Sedlazeck et al.80 https://github.com/fritzsedlazeck/Sniffles

pbsv (ver. 2.2.1) PacBio https://github.com/PacificBiosciences/pbsv

SURVIVOR (ver. 1.0.6) Jeffares et al.81 https://github.com/fritzsedlazeck/SURVIVOR

Iris (ver. 1.0) Kirsche et al.130 https://github.com/mkirsche/Iris

NanoSV Cretu Stancu et al.79 https://github.com/mroosmalen/nanosv

vcf2diploid Rozowsky et al.45 https://github.com/abyzovlab/vcf2diploid

ngmlr Sedlazeck et al.80 https://github.com/philres/ngmlr

Genomestudio (v2011.1) Illumina https://support.illumina.com/downloads/

genomestudio_software_20111.html

Juicer Durand et al.91 https://github.com/aidenlab/juicer

BWA-MEM Li and Durbin92 https://github.com/lh3/bwa

FitHiC2 (ver. 2.0.7) Kaul et al.93 https://github.com/ay-lab/fithic

Knight-Ruiz matrix-balancing algorithm Knight and Ruiz95 https://doi.org/10.1093/imanum/drs019

TopDom (ver. 0.9.0) Shin et al.96 https://github.com/jasminezhoulab/TopDom

GFFRead Pertea and Pertea99 https://github.com/gpertea/gffread

DecoyPYrat Wright et al.104 https://github.com/wtsi-proteomics/DecoyPYrat

ProteomeDiscoverer (ver. 2.4) Thermo Fisher Scientific https://www.thermofisher.com/us/en/home/

industrial/mass-spectrometry/liquid-

chromatography-mass-spectrometry-lc-ms/

lc-ms-software/multi-omics-data-analysis/

proteome-discoverer-software.html

Mascot (ver. 2.4) Matrix Science http://www.matrixscience.com/mascot_

support_v2_4.html

Percolator Spivak et al.101 https://github.com/percolator/percolator

OpenMS Weisser et al.102 https://www.openms.de

STAR (ver. 2.7) Dobin et al.113 https://github.com/alexdobin/STAR

DESeq2 Love et al.106 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

Metascape Zhou et al.108 https://metascape.org

Joint and Individual Variance Explained (JIVE) Hellton and Thoresen
109

https://cran.r-project.org/web/packages/r.jive/

index.html

Cutadapt Martin114 https://cutadapt.readthedocs.io/en/stable
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Picard http://broadinstitute.

github.io/picard/

http://broadinstitute.github.io/picard

SAMtools Danecek et al.115 https://github.com/samtools/samtools

BEDTools Quinlan and Hall116 https://bedtools.readthedocs.io/en/latest

Integrative Genomics Viewer (IGV) Robinson et al.118 https://software.broadinstitute.org/software/igv

DAVID Huang da et al.120,

121

https://david.ncifcrf.gov

ANNOVAR Wang et al.122 https://annovar.openbioinformatics.org/en/latest

RepeatMasker (ver. 4.0.7) http://www.

repeatmasker.org

https://www.repeatmasker.org

Umap and Bismap mappability Karimzadeh et al.
132

https://bismap.hoffmanlab.org

BERT Devlin et al.164 https://huggingface.co/docs/transformers/model_doc/bert

DNABERT Ji et al.70 https://github.com/jerryji1993/DNABERT

dna2vec Ng165 https://github.com/pnpnpn/dna2vec
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mark Gerstein (mark@

gersteinlab.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data contained in the EN-TEx resource are fully open-consented and accessible without registration as of the date of pub-

lication. Raw sequencing data as well as other standard functional genomics data have been deposited at a special page on the

ENCODE data center, linked from the EN-TEx portal. Accession numbers are listed in the key resources table or in the supple-

mentary data. Additional ancillary files are available directly on the EN-TEx portal: http://entex.encodeproject.org. The portal is

organized into three organized sections: (1) data files, (2) interactive visualization tools, and (3) source code. For more details,

see ‘‘Portal’’ section of the STAR Methods.

d All original code has been deposited at Github and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Sections within the STAR Methods are referenced from the main text using the abbreviated section headings. We also indicate the

relevant main text sections and figures that each of these STAR Methods sections are related to.

Sample selection: Details of the EN-TEx samples and their relationship with ENCODE and GTEx (related to ‘‘uniform
multi-tissue data collection & diploid mapping’’ in the main text, Figures 1A and S1A)
The EN-TEx project (ENCODE assays applied to GTEx samples) has an intricate relationship with both the ENCODE and GTEx pro-

jects. Originally, the four individuals for the EN-TEx project were drawn from the main GTEx cohort. Twomales and two females were

chosen with a representative age distribution (ENCODE accession numbers: ENCDO845WKR, 37-year-old male; ENCDO451RUA,

54-year-old male; ENCDO793LXB, 53-year-old female; and ENCDO271OUW, 51-year-old female; the corresponding GTEx acces-

sion numbers are GTEX-1JKYN, GTEX-1K2DA, GTEX-1LGRB, and GTEX-1LVAN). The other key criterion was that these individuals’

data would be fully open access. This separates them from the consent criteria used for the GTEx cohort. This is non-trivial to obtain

and requires a reconsenting process.

The EN-TEx tissues were chosen based on donor availability. The goal was to collect all, or as many as possible, of the exact same

tissues collected for the GTEx protocol.16 Note that the project specifically targeted organ transplant donors on ventilators, which
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excluded the collection of brain tissues, but increased the quality of the non-brain tissues due to much shorter collection and

ischemic times. As described in,73 not all tissues could be collected from all donors, since some were donated for tissue or organ

transplant prior to the collection of tissues for research.

A full battery of ENCODE assays were applied to the tissue specimens from each of these four donors. The assays were mostly

derived from ENCODE 3 and followed these standards to be consistent with the other ENCODE 3 datasets. However, a few

follow-on datasets have been added to the collection, particularly related to histone marks and long-read RNA-seq, that follow

ENCODE 4 rather than ENCODE 3 standards. Based on sample availability, a few tissues were done with technical replicates but

most were not. None of the EN-TEx datasets have been described in a publication, including the ENCODE 3 publication in 2020.17

As the EN-TEx individuals were drawn from the main GTEx cohort, they were included in the GTEx publication. In that publication,

the tissues were subjected to the standard GTEx assays, including short-read DNA sequencing of the blood and short-read RNA-seq

(polyA) also of the blood and a number of other tissues. These standard GTEx assays have data that are under different consent from

the ENCODE data. For EN-TEx, in concert with the GTEx project, an Institutional Review Board-approved consent form was written

and given to the next-of-kin of each donor. The consent form allows for unrestricted access to data collected as part of the EN-TEx

project, including unrestricted use of the primary data and metadata collected from each donor. It was made clear that although no

identification of the donor or family constituted part of these data, it is within the realm of possibility that individual identification could

be made. Specific details of the consent document are contained here: https://www.genome.gov/Pages/Research/ENCODE/

GTEx_Consent_ENCODE_addendum_10-9-14.pdf. The GTEx consent requires users to undergo a dbGaP registration process to

access the associated GTEx data. The GTEx data for these individuals is separately available on the GTEx website (https://

gtexportal.org/home/).

For the EN-TEx individuals, there are a wealth of interesting technical comparisons possible between the standards of the GTEx

and ENCODE projects, and also between two different versions of short-read DNA sequencing. However, the bulk of the assays and

the focus of this paper are on the non-published data derived from the ENCODE assays, which includes the long-read DNA

sequencing and all the chromatin and epigenetics assays, which are not part of the standard GTEx assays. As part of the standard

GTEx cohort, these individuals fit perfectly into the expression quantitative trait loci (eQTL) calculations done by GTEx and allow us to

match the eQTLs to the EN-TEx AS catalog. Because we have ENCODE assays for all the individuals, we can also perfectly match the

ENCODE regulatory elements, particularly the cCREs. However, the decoration applied to the EN-TEx individuals goes beyond the

cCRE annotation described in ENCODE 3, which only included active elements as opposed to repressed or bivalent ones.

The raw data for the ENCODE part of the EN-TEx are housed in the ENCODE data center; the GTEx part is on the GTEx portal. All of

this is indicated on the EN-TEx portal. In addition, the EN-TEx portal has a large amount of supplementary analysis and software, all

freely available, that are associated with this publication. The EN-TEx assays and analyses were funded by the National Human

Genome Research Institute (NHGRI) using ENCODE funds. The relationship of each of the participants in the EN-TEx project to

GTEx and ENCODE is described in Document S2 (see Data S36 and S37).

Finally, the Epigenome Roadmap Project data derive from a large set of epigenetic assays consistently applied to many tissues.

This project was eventually rolled into the ENCODE project, but did not have consistent standards across projects. Thus, EN-TEx is

much like the Epigenome Roadmap Project, but with all the assays being performed consistently with ENCODE. It also includes spe-

cific individuals with their personal genome sequence, allowing the impact of variants and inter-individual differences to be precisely

ascertained.

Personal genome: Construction of the personal genome (related to ‘‘uniform multi-tissue data collection & diploid
mapping’’ in the main text, Figures 1B, S1B, and S1C)
Sequencing of the personal genome

Datas S2A–S2F summarizes the technologies used to sequence the whole genomes of the four individuals.

To prepare samples for PacBio sequencing, genomic DNA was isolated as previously described74,75 and evaluated for purity and

quantity using UV-Vis (Nanodrop 1000, Thermo Fisher) and fluorometric (Qubit, Thermo Fisher) assays. DNA sizing was checked on

the Femto Pulse (Agilent). Samples all exhibited a mode size above 50 kbp (most above 100 kbp) and were considered good can-

didates for PacBio sequencing. DNA was sheared using Megarupter (Diaganode) to a mode size of �15 kbp. The sheared material

was subjected to SMRTbell library preparation. Fractions were checked via fluorometric quantitation (Qubit) and pulse-field sizing

(FEMTO Pulse). For sequencing, isolated gDNA was SMRTbell library prepared using the Express Kit V2 (PacBio) and subjected

to size selection on a Blue Pippin instrument (Sage Science) with a 40 kbp size cutoff. Libraries were loaded on a Sequel II using

v2.0 binding and v2.0 sequencing kits, no pre-extension, and 24-h movie times.

For nanopore sequencing, samples were sheared to approximately 60 kbp and size selected by SRE XL (Circulomics). Fragmented

DNA was prepared for sequencing with the SQK-LSK110 kit (Oxford Nanopore) following the manufacturer’s instructions. Prepared

libraries were sequenced on a PromethION 24 with PROM0002 flow cell for 72 h. One nuclease flush and reload was performed at

24 h. Live high accuracy base calling was used.

We generated and analyzed Illumina whole-genome sequencing (WGS) data for each of the four human genome samples. WGS

libraries were prepared using the TruSeq DNA PCR-Free Library Preparation Kit (Illumina) in accordance with the manufacturer’s in-

structions. Briefly, 1 mg of DNA was sheared using a Covaris LE220 sonicator (adaptive focused acoustics). DNA fragments under-

went bead-based size selection andwere subsequently end-repaired, adenylated, and ligated to Illumina sequencing adapters. Final
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libraries were evaluated using fluorescent-based assays, including qPCR with the Universal KAPA Library Quantification Kit and

Fragment Analyzer (Advanced Analytics) or BioAnalyzer (Agilent 2100). Libraries were sequenced on an Illumina NovaSeq 6000

sequencer using 2 x 150 bp cycles to a minimum depth of 30X.

Variant calling and genome assembly

Personal genomes were assembled from a combination of long-range Hi-C reads, 10x Genomics linked reads, and long reads

(PacBio reads and Oxford Nanopore reads were base called with Guppy v4) using the reference-guided assembler CrossStitch

(Data S2B).76 This pipeline has been used in several other studies of human and non-human genomes with as many as 100 different

genomes at once76–78 for comprehensive single-nucleotide variant (SNV), insertion and deletion (indel), and structural variant (SV)

calling. Notably, previous studies have shown that it is possible to accurately identify and phase SVs with variants identified from

10x linked reads and Hi-C data using the approach in CrossStitch to near chromosome-level resolution.79

Specifically, the following preprocessing steps were performed.

1. Align all reads (Hi-C, 10X, PacBio) to the human reference (GRCh38).

2. Call small variants from the linked reads with Long Ranger (ver. 2.1.2).

3. Phase small variants with HapCUT2 (ver. 1.1)35 using HiC and 10X data.

4. Call large SVs with Sniffles (ver. 1.0.11)80 using default parameters in samples sequenced with PacBio and using –min_

homo_af 0.93 in samples sequenced with Oxford Nanopore. Additionally, in samples sequenced with PacBio, call SVs

with pbsv (ver. 2.2.1) and merge the call sets with SURVIVOR (ver. 1.0.6),81 discarding SVs that were only identified by pbsv.

5. Filter SVs with low read support (fewer than 10 reads in samples 2 and 3, fewer than 3 reads in sample 1, and fewer than 4

reads in sample 4). Additionally, in samples 2 and 3, filter SVs labeled by Sniffles with the IMPRECISE INFO flag.

Then, the CrossStitch software (commit 53f64af) performed the following steps to obtain a personal genome:

6. Refine SVs with Iris (ver. 1.0).78

7. Phase long reads using the phased small variants with which they overlap using an analogous approach to the NanoSV

algorithm.79

8. Phase large SVs based on the phasing of the reads supporting them (Data S2C).

9. Integrate (‘‘splice’’) the phased variants into two copies of each human chromosome to produce personal diploid chromo-

some sequences using vcf2diploid (ver. 1.0).45

10. Assign one sequence of each chromosome to pseudo-haplotype 1 and the other to pseudo-haplotype 2.

Note that each chromosome was phased independently from the other chromosomes, so that pseudo-haplotype 1 of one chro-

mosomemay correspond to pseudo-haplotype 2 of another chromosome. Unfortunately, the available data are insufficient to distin-

guish such cases or assemble full haplotypes genome wide. However, we were able to assign parental origin of the haplotypes for

which the AS expression of known imprinted genes was determined (see more in section ‘‘assigning parental origin by im-

printed genes’’).

In all four samples, the use of 10x andHi-C data resulted in chromosome-arm-length phase blocks for all autosomes (Figure 1B and

Data S2E). Specifically, the N50 of the phase blocks were 133.65 Mb, 133.68 Mb, 134.99 Mb, and 135.00 Mb for the four individuals,

respectively. In addition, in both samples for which long reads were used, more than 90% of the large indels were able to be confi-

dently phased with CrossStitch. For all four individuals, variant call format (VCF) files containing the SNVs and indels are accessible

from the ENCODE portal82 (see Data S2D for accession numbers).

We adopted the reference-guided approach over alternative de novo assembly-based approaches because it gavemore accurate

and comprehensive results for the genome data available. For example, for individual 2 we also applied the leading PacBio-based de

novo assembly algorithm FALCON-unzip83 to assemble the genome de novo, but this resulted in a contig N50 of only 7.0Mbp. Align-

ing the FALCON-unzip contigs to GRCh38 using MUMmer84/Assemblytics85 identified <13,000 SVs compared with >18,000 for our

reference-guided approach, with thousands of variants, especially heterozygous variants, unresolved. De novo assembly of the 10X

Genomics linked reads or Illumina paired-end reads was even more limited, with contig N50 values of only 72 kbp and 13 kbp using

the 10X Genomics Supernovo86 and Illumina Megahit87 assemblers, respectively. The 10x Genomics de novo assembly was partic-

ularly problematic for SV identification, as we observed an enrichment for �200 bp INSs not observed with other sequencing tech-

nologies. In communication with 10X Genomics, we found these to be false positives derived from their assembly algorithm.77 How-

ever, we and others found the SNV and indel calls to be highly accurate, especially within repetitive elements that could not be

mapped using standard short-read paired-end sequencing.

Refining novel insertion sequences with Iris

Iris is an established method for refining the breakpoints and sequences of INS variants.78 This tool has been used in several con-

texts.76,77 Each of the calls, when taken directly from the variant caller, consists of an INS sequence obtained from the alignment of a

single representative read, and Iris improves upon this sequence by integrating all of the reads that support the variant’s presence.

The tool gathers the sequences of all of the reads listed in the RNAMES INFO field output by Sniffles, extracts the original INS

sequence with the surrounding context from the reference genome, and uses the gathered reads to polish this sequence with racon

(ver. 1.4.0).88 Then, this polished sequence is aligned back to the referencewithminimap2 (ver. 2.17),89 and a refined INS sequence is
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obtained. If no INS is found from this alignment, which has a similar length to that of the original variant call, Iris falls back on the orig-

inal sequence to ensure it does not mask variants in more difficult-to-map regions.

We benchmarked the performance of Iris using data fromHG002, a sample sequenced as part of theGenome in a Bottle release. In

this individual, we called SVs separately using Oxford Nanopore (ONT) data and PacBio Circular Consensus Sequencing (CCS) data,

both sequenced to�50x coverage using the ngmlr aligner80 and the Sniffles variant caller. Because of the high accuracy of the CCS

reads, we used the INS sequences obtained from these calls as a proxy for the ground truth to evaluate the accuracy of the ONT calls.

We compared the CCS and ONT call sets before and after refining the ONT calls with Iris. In each comparison, we evaluated all of the

variant calls in the CCS dataset, which had an ONT variant call within 10 kbp in both the refined and unrefined call sets. Among these

14,001 variants, we measured the average sequence similarity between the CCS call and the ONT call, with the similarity of two

strings S and T measured as [1 - edit_distance(S, T)]/max[length(S), length(T)]. Using the unrefined calls, the average similarity

was 0.854, while the refined calls gave an average similarity of 0.94, demonstrating the ability of Iris to obtain more accurate INS

breakpoints and sequences. Data S2F shows the distribution of sequence similarities before and after refinement.

Assigning parental origin by imprinted genes

The list of known human imprinted genes was downloaded from the Imprinted Gene Database (geneimprint.com). In total, 216 genes

with known parental origin of the expressed allele were used in this analysis. For known imprinted genes that showed AS expression

(ASE) in tissues fromeach individual, the haplotype-specific read counts were combined from these tissues and the potential parental

origin of the haplotype blocks was determined based on the direction of the imbalance (haplotype 1 or haplotype 2) and the known

expressed allele of the imprinted gene (maternal or paternal allele) (Data S2H). Results were included in the following ancillary files:

File: imprinted_genes_in_ENTEx_ASE.tsv: All known imprinted genes for which AS expression was detected, genome-wide, in the

EN-TEx samples.

File: phased_block.tar.gz: Parental origin of each phased block in the four individuals.

The parental origin results of individual 3 are shown in Figure 1B and are available in the file phased_block_ind3.txt within phased_

block.tar.gz, where each line is a phased block. The first three columns are genomic coordinates of the phased block. The fourth and

fifth columns are the parental origins of haplotype 1 and haplotype 2, respectively. ‘NoInfo’ indicates that there are no imprinted

genes in that phased block. ‘Contradict’ indicates that there is at least one AS gene-imprinted gene pair that has a different imbalance

direction compared to the other AS gene-imprinted gene pairs, and thus contradictory conclusions are reached for the same phased

block. A similar approach can be used for the other EN-TEx individuals (Data S2G). Overall, 97.3% of base pairs in the EN-TEx in-

dividuals were assigned to a phased block (on average across the four donors). This corresponds to 98.5% of all heterozygous var-

iants.Wewere able to determine the parental origin of 45.3%, 43.2%, 36.1%, and 45.3%of the bases in phased blocks for individuals

1–4, respectively.

Data stack: Functional genomics data in the EN-TEx resource (related to ‘‘uniform multi-tissue data collection &
diploid mapping’’ in the main text, Figures 1A and S1A)
In total, EN-TEx includes more than 25 different biochemical assays performed on multiple (30+) tissues from four individuals

(Figures 1A and S1A). The tissues and legend for Figure 1A are detailed in Data S2I. In Figure 1A, we indicate the ‘‘core assays’’

in bold, corresponding to the assays that were performed in EN-TEx across almost all individuals and tissues; these assays include

the histone modifications H3K27me3, H3K9me3, H3K36me3, H3K4me1, H3K4me3, and H3K27ac, POL2 and CTCF ChIP-seq,

methylation arrays, ATAC-seq, DNase-seq, RAMPAGE, and total RNA-seq. Experiments from GTEx on the four EN-TEx individuals

are indicated with asterisks (polyA RNA-seq and whole-blood datasets). Note that EN-TEx encompasses 1,635 total experiments,

which includes control experiments and replicates (both of which are not explicitly shown in the data matrix in Figure 1). If we remove

replicates and controls, the number of experiments is 1,275.

RNA sequencing

Multiple RNA-seq experiments were performed in ENCODE Phase III on the 30 + tissue samples sourced from GTEx and included in

EN-TEx, including: 1) long RNA-seq, i.e., RNAwith a length greater than 200 nt, and total RNA-seq, 2) small RNA-seq, i.e., RNAwith a

length less than 200 nt, and 3) micro-RNA-seq, i.e., RNAwith a length less than 30 nt. More information about each RNA-seq protocol

and data processing pipeline can be found at the ENCODE portal:

1) https://www.encodeproject.org/data-standards/rna-seq/long-rnas/, 2) https://www.encodeproject.org/data-standards/rna-

seq/small-rnas/, and 3) https://www.encodeproject.org/microrna/microrna-seq/. RNA-seq data quality was calculated using the

number of aligned reads and replicate concordance (as described in the ENCODE pipelines linked above).

RAMPAGE

RNA annotation andmapping of promoters for analysis of gene expression (RAMPAGE) is a biochemical assay that captures 50-com-

plete cDNA to identify and quantify transcriptional start sites (TSSs) and characterize transcripts. The assay is described in detail at

the ENCODE portal: https://www.encodeproject.org/data-standards/rampage/. The ENCODE RAMPAGE data processing pipeline

was developed for RAMPAGE libraries containing cDNA sequences longer than 200 nt. The pipeline takes cDNA sequences as input

(in FASTQ format) and outputs alignments normalized for both positive and negative strands of the genome. Reproducible peaks

between replicates were identified using the irreproducible discovery rate (IDR). The quality of the RAMPAGE data was determined

using the read depth and replicate concordance with respect to peaks in the data.
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eCLIP

Enhanced crosslinking and immunoprecipitation (eCLIP) is a biochemical assay that identifies RNA-binding protein (RBP) occupancy

sites across the transcriptome. The eCLIP experimental protocol is available at the ENCODE portal: https://www.encodeproject.

org/documents/842f7424-5396-424a-a1a3-3f18707c3222/@@download/attachment/eCLIP_SOP_v1.P_110915.pdf. Additional

assay details are available at https://www.encodeproject.org/eclip/. All eCLIP antibodies were required to undergo primary and

secondary characterizations. RBP antibody standards are available at the ENCODE portal: https://www.encodeproject.org/

documents/fb70e2e7-8a2d-425b-b2a0-9c39fa296816/@@download/attachment/ENCODE_Approved_Nov_2016_RBP_Antibody_

Characterization_Guidelines.pdf. The quality of the eCLIP data was determined using the number of unique RNA fragments, IDR, and

fraction of reads in peaks (FRiP).

Histone ChIP-seq

Histone ChIP-seq is a biochemical assay that observes interactions between histone proteins and DNA. This assay selects for a spe-

cific histone protein variant or post-translational modification using immunoprecipitation followed by DNA sequencing. The histone

ChIP-seq experimental protocol is available at the ENCODE portal: https://www.encodeproject.org/documents/be2a0f12-

af38-430c8f2d-57953baab5f5/@@download/attachment/Epigenomics_Alternative_Mag_Bead_ChIP_Protocol_v1.1_exp.pdf.

Additional assay details are available at https://www.encodeproject.org/chip-seq/histone/. All commercial histone antibodies were

validated by at least two independent experiments. Histone mark antibody standards are available at the ENCODE portal: https://

www.encodeproject.org/documents/4bb40778-387a-47c4-ab24-cebe64ead5ae/@@download/attachment/ENCODE_Approved_

Oct_2016_Histone_and_Chromatin_associated_Proteins_Antibody_Characterization_Guidelines.pdf. The quality of the histone

ChIP-seq data was determined using the read depth, number of uniquely mapping reads over the total number of reads (i.e., non-

redundant fraction, NRF), and two PCR bottlenecking coefficients (PBC1 and PBC2).

Transcription factor (TF) ChIP-seq

ChIP-seq captures DNA and DNA-binding protein (e.g., CTCF, EP300, and Pol II) interactions through immunoprecipitation, pull-

down, and DNA sequencing. All ChIP-seq protocols involved in the generation of data included in EN-TEx are available

at the ENCODE portal: 1) https://www.encodeproject.org/documents/20ebf60b-4009-4a57-a540-8fd93407eccc/@@download/

attachment/Epigenomics_CR_ChIP_Protocol_v1.0.pdf, 2) https://www.encodeproject.org/documents/6ecd8240-a351-479b-9de6-

f09ca3702ac3/@@download/attachment/ChIP-seq_Protocol_v011014.pdf, 3) https://www.encodeproject.org/documents/a59e54bc-

ec64-4401-8cf6-b60161e1eae9/@@download/attachment/EN-TEx%20ChIP-seq%20Protocol%20-%20Myers%20Lab.pdf, and 4)

https://www.encodeproject.org/documents/f2aa60f2-90a6-4e4b-863a-c6831be371a2/@@download/attachment/ChIP-Seq%20

Biorupter%20Pico%20TruSeq%20protocol%20for%20Syapse-c5bdc444fe0511e69d6a06346f39f379.pdf. Additional ChIP-seq

protocol details are available at https://www.encodeproject.org/chip-seq/transcription_factor/. The quality of the ChIP-seq data

was determined using the read depth, NRF, two PCR bottlenecking coefficients (PBC1 and PBC2), replicate concordance (i.e.,

IDR), and FRiP.

ATAC-seq

ATAC-seq identifies accessible regions of DNA by inserting primers into open chromatin regions via transposase, followed by DNA

sequencing. The ATAC-seq experimental protocol is available at the ENCODE portal: https://www.encodeproject.org/documents/

404ab3a6-4766-45ca-af80-878a344f07b6/@@download/attachment/ATAC-Seq%20protocol.pdf. Additional details about the

ATAC-seq protocol can be found at https://www.encodeproject.org/atac-seq/. The quality of the ATAC-seq data was determined

using the number of non-duplicate, non-mitochondrial aligned reads, IDR, NRF, two PCR bottlenecking coefficients (PBC1 and

PBC2), number of resulting peaks in the data, DNA fragment length distribution, FRiP, and TSS enrichment.

DNase-seq

DNase-seq is a biochemical method that identifies open regions of chromatin. These regions are identified by performing enzyme

digests using endonuclease DNase I, which inserts itself into open regions, followed by DNA sequencing. The DNase-seq experi-

mental protocols are available at the ENCODE portal: https://www.encodeproject.org/documents/c6ceebb6-9a7a-4277-b7be-

4a3c1ce1cfc6/@@download/attachment/08112010_nuclei_isolation_human__tissue_V6_3.pdf. Additional protocol information

can be found at https://www.encodeproject.org/data-standards/dnase-seq/. The quality of the DNase-seq data was determined us-

ing the number of uniquely mapped reads, fraction of mitochondrial reads, and signal portion of tags score.

WGBS

WGBS was used to identify DNA methylation. WGBS converts unmethylated cytosine (C) into uracil (U), leaving methylated C un-

changed. DNA sequencing followed by read alignment to a genome results in CpG island, CHG, and CHH methylation levels being

observed. The WGBS experimental protocol is available at the ENCODE portal: https://www.encodeproject.org/documents/

9d9cbba0-5ebe-482b-9fa3-d93a968a7045/@@download/attachment/WGBS_V4_protocol.pdf. Additional WGBS assay details

are available at https://www.encodeproject.org/data-standards/wgbs/. The quality of the WGBS data was determined from the

genomic read coverage, C-to-T conversion rate, and correlation of CpG methylation levels between replicates.

DNAme array

DNAmethylation profiling by array assay (DNAme) measures CpG island methylation. Similar to WGBS, DNA is treated with bisulfite

converting unmethylated C to U. After library amplification and purification, DNA fragments are hybridized to a microarray (Illumina

Infinium Methylation EPIC BeadChip) that probes for both methylated and unmethylated states. DNA methylation is then quantified
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by comparing the signal between the two DNA microarray probes. Illumina Genomestudio (v2011.1) was used to calculate the frac-

tion of methylated reads at each CpG site from the raw microarray output.

Hi-C

High-quality Hi-C data were generated from the four EN-TEx donors using samples collected from the gastrocnemius medialis and

transverse colon tissues. The in situ Hi-C protocol used to produce Hi-C libraries was described previously by Rao et al. (2014).90 A

detailed protocol document is provided with each dataset at the ENCODE website: https://www.encodeproject.org/documents/

e1ef20c9-7539-40bc-bdbf-a4deab7f72c7/. Approximately 20mg of tissue was used for each Hi-C experiment, and theMboI restric-

tion enzyme was used for restriction digests. All sequencing was performed on an Illumina 4,000 platform. The data was processed

twice, separately utilizing a reference genome or personal genomes constructed for each individual’s tissue.

Hi-C interaction matrices were generated using the Juicer pipeline,91 an open-source tool for analyzing large Hi-C libraries. We

utilized BWA-MEM92 to align individual reads to the hg38 reference genome, which was obtained from the ENCODE portal. For

each paired-end read, the two individual sequences were first separately aligned to the reference genome before being paired

based on their read names. Chimeric reads and PCR duplicates were removed prior to the creation of an interaction matrix for

each tissue of each individual (Data S3A). Data S3B provides information on the number of reads and number of contacts per sample

utilized to create the matrices. Significant intrachromosomal Hi-C interactions were identified with FitHiC2 (ver. 2.0.7).93,94

Preprocessing of EN-TEx Hi-C interaction matrices followed the author’s instructions in the FitHiC2 GitHub repository’s README.

Matrices were binned at a resolution of 50 kb and bin biases were generated using the author’s provided software (HiCKRy.py —

with percentOfSparseToRemove set to 0.1). See Data S3E for the number of all vs. significant interactions for each sample.

Determination of the A and B compartments was done using the Juicer pipeline91 at a 1 MB resolution. In detail, the observed/ex-

pected interaction matrices were normalized using the Knight-Ruiz matrix-balancing algorithm.95 A correlation matrix from these

interaction matrices was calculated, with the first eigenvector of the matrix corresponding to A/B compartments. The positive values

of the vector indicate genomic regions belonging to the A compartment, while negative values correspond to the B compartment

(Datas S3C and S3D).

Topologically associating domains (TADs) were identified using TopDom (ver. 0.9.0)96 from the two tissues of all four donors with a

window_size parameter of 3. Before running TopDom, EN-TEx Hi-C libraries were binned at a resolution of 100 kb and normalized

using the Knight-Ruiz matrix-balancing algorithm95 implemented by Juicer.91 TopDom’s window_size parameter was optimized for

the known enrichment of CTCF motif directionality at TAD boundaries90 and visual consistency/fit with Hi-C interaction matrices.

CTCF directionality was identified using paired EN-TEx ChIP-seq peak (narrowPeak format) files and the ‘CTCF_known1’ motif as

described by Cameron et al. (2020).97 TAD boundary similarity was calculated by overlapping TAD annotations between individ-

uals/tissues with a buffer of three bins when considering two boundaries to be the same.

The FitHiC2 output and TAD annotations can be found within the ancillary files.

File: fithic2_out.tar.gz: Hi-C genomic data processed by Fit-Hi-C software.

File: TopDomTADcalls.tar.gz: TADs of the genome identified by TopDom software.

Proteomics

For 10 mg tissue, 200 mL lysis buffer [50 mM Tris-HCl pH8.5, 50 mM NaCl, 8 M urea, 4% SDS, and Halt protease inhibitor (Thermo)]

was added. After the tissue was homogenized by a pestle/mortar, a Dounce homogenizer, or similar device, the sample was heated

at 95�C for 10 min, followed by probe sonication until the viscosity was reduced. The sample was then centrifuged at 13,000 rpm for

15 min, and supernatant was collected. RNA was first extracted from samples (see RNA-seq).

Protein concentration was measured by the Pierce 660 nm Protein Assay (Thermo). For each sample, 100 mg proteins were taken,

and volumes were equalized by 100 mM TEAB to 100 mL, reduced by 20 mM TCEP (Sigma), and then alkylated by 40 mM iodoace-

tamide (Sigma). Proteins were purified by 20% trichloroacetic acid (TCA) precipitation. A total of 100 mM TEAB was added to the

sample, followed by digestion with trypsin (MS grade, Thermo) at 37�C for 18 h. The peptides were labeled by TMT10plex as per

the manufacturer’s instruction, and the labeled samples were pooled and SpeedVac dried. Samples of 300 mg peptides were frac-

tionated on a U3000 HPLC system (Thermo Fisher) using an XBridge BEH C18 column (2.1 mm id x 15 cm, 130 Å, 3.5 mm,Waters) at

pH 10, at 200 mL/min on a 30 min linear gradient from 5–35% acetonitrile/NH4OH. The fractions were collected every 30 s into a

96-well plate, which were concatenated to 35 fractions and dried.

The peptides were resuspended in 0.5% formic acid (FA) and 50% was injected for liquid chromatography with tandem MS anal-

ysis on an Orbitrap Fusion Tribrid mass spectrometer coupled with a U3000 RSLCnano UHPLC system (Thermo Fisher). The pep-

tides were loaded onto a PepMap C18 trap (100 mm i.d. x 20 mm, 100 Å, 5 mm) for 10 min at 10 mL/min with 0.1% FA/H2O, and then

separated on a PepMapC18 column (75 mm i.d. x 500mm, 100 Å, 2 mm) at 300 nL/min and a linear gradient of 4–33.6%ACN/0.1%FA

in 90min/cycle at 120min, or 4–32%ACN/0.1%FA in 150min or 180min with a cycle time of 180min or 210min for each fraction. For

data acquisition, we used the SPS10-MS3 method with the top speed set at 3 s per cycle time. The full MS scans (m/z 380–1,500)

were acquired at a 120,000 resolution at m/z 200, and the automatic gain control (AGC) was set at 400,000 with a 50 ms maximum

injection time. The most abundant multiply charged ions (z = 2–6, above 5,000 counts) were subjected to MS/MS fragmentation by

collision-induced dissociation (35% CE) and detected in an ion trap for peptide identification. The isolation window by quadrupole

was set atm/z 1.0, and the AGC at 10,000 with a 35 ms maximum injection time. The dynamic exclusion window was set at ±7 ppm

with a duration of 60 s. Following each MS2, the 10-notch MS3 was performed on the top 10 most abundant fragments isolated by

synchronous precursor selection. The precursors were fragmented by higher-energy collisional dissociation at 60% CE, and then
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detected in the Orbitrap atm/z 110–400 at a 50,000 resolution for peptide quantification. The AGCwas set at 50,000 with amaximum

injection time of 86 ms.

GENCODE v2798 annotation was lifted over fromGRCh38 to each EN-TEx donor’s personal genome, to generate eight sets of gen-

eral feature format annotations. GFFRead utility99 was used to extract the nucleic acid sequence for all protein-coding transcripts. An

in-house Python script was then applied to translate each protein-coding transcript into its amino acid sequence. All protein se-

quences from the eight genomes were combined with the GENCODE v27 reference, redundant sequences were removed, and

each unique protein sequence was given a unique accession ID that included the genomes that contain the protein. The final

database contained 128,063 unique protein sequences, 82,136 (64%) from the GENCODE reference and 45,927 (36%) unique to

the EN-TEx donors. A total of 6,344 protein sequences from GENCODE (8% of the reference proteome) were not matched to any

of the alleles in the four individuals. Decoy protein sequences were generated using the DecoyPYrat tool.100

The proteomics results are summarized in this ancillary file.

File: Supp_data_proteomics.xlsx: Proteomics result summary including peptide annotation.

Spectra were processed using ProteomeDiscoverer (ver. 2.4) (Thermo Fisher Scientific) and searched against the personal prote-

ome database using bothMascot (ver. 2.4) (Matrix Science) and SequestHTwith target-decoy scoring evaluated using Percolator.101

The precursor tolerance was set at 30 ppm and the fragment tolerance was set at 0.5 Da; spectra were matched with fully tryptic

peptides with amaximum of twomissed cleavages. Fixedmodifications included carbamidomethyl [C] and TMT6plex [N-Term]. Var-

iable modifications included TMT6plex [K], oxidation [M], carbamyl [K], methyl [DE], deamidation [NQ], and acetyl [N-term]. The car-

bamyl andmethyl modifications were included due to their high incidence after samples were exposed to high concentrations of urea

during the RNA extraction process. Peptide results were initially filtered to a 1% false discovery rate (FDR; 0.01 q-value). The reporter

ion quantifier node included a TMT-11-plex quantification method with an integration window tolerance of 15 ppm and integration

method based on the most confident centroid peak at the MS3 level. Protein quantification was performed using unique peptides

only, with protein groups considered for peptide uniqueness. Peptides were quantified and normalized using tandem mass tags

(TMTs) for isobaric labeling. Peptide results from ProteomeDiscoverer were remapped to the protein database and marked as refer-

ence, genome, or AS. Gene-level quantification of proteins was conducted by summing normalized unambiguous peptide TMT

intensities.

At a 1% FDR, we report 256,512 peptide-to-spectrum matches and 117,934 distinct peptide sequences (0.01 q-value at the pep-

tide level), of which 45,276were quantified using TMT isobaric labels. Personal peptideswere further filtered to unambiguouslymatch

one gene and have a posterior error probability below 0.699. These peptides did not map to the reference genome, only matching

personal protein sequences. The 4,489 peptides identified were not present in all eight genomes across the four donors, 830 of these

peptides were missing in one or more of the donors completely, and 4,334 were only present on a single allele in at least one of the

donors. This corresponds to 13% coverage of the possible observable personal peptides across all protein-coding genes in the per-

sonal genomes, and a 1% increase in the number of significant distinct peptide sequences quantified (Data S4).

Gene quantificationwas conducted using only unambiguous peptides summing the peptide isobaric tag intensities. A total of 9,242

genes were quantified, 540 genes had non-reference peptides, 1,333 genes had peptides not present in all eight genomes (personal

peptides), 518 genes had peptides absent in at least one donor, and 1,260 genes had peptides specific to a single allele in at least

one donor.

For comparison between proteomic and RNA-seq abundances, a paired set of samples and confidently identified genesmatching

between the proteomic and RNA-seq datasets were extracted. For each dataset, the values were normalized and then scaled to the

maximum value across the samples/tissues. A Pearson correlation was then used to test the similarity between the two sets across

the samples.

All spectra were also processed via the ICR GENCODE OpenMS novel peptide discovery proteomics pipeline102 against a data-

base containing GENCODE v27 reference proteins and a set of potential novel protein-coding sequences, including many unanno-

tated PhyloCSF conserved regions.103 Novel peptide results were filtered according to high-stringency criteria.104 This resulted in

291 novel peptides, which were further filtered to remove peptides that could be explained by semi-tryptic cleavage or single amino

acid variants. The 27 remaining peptides were assessed, validating eight novel protein models, which have all now been annotated in

the GENCODE reference set (Data S4D).

All spectra, results, and supporting files, including the personal proteome database, have been deposited in the PRIDE105 prote-

omic repository (https://www.ebi.ac.uk/pride/) under project accession number PXD022787.

Reference comparison: Comparing between personal and reference genomes (related to ‘‘uniform multi-tissue data
collection & diploid mapping’’ in the main text and Figure S2)
Mapping functional genomics data to the personal genomes

We used DNA from transverse colon tissues to construct both haplotype sequences for each individual. Mapping sequences to the

derived haplotypes, rather than to the reference genome, resulted in an overall improvement in mapping accuracy across the

different assays (RNA-seq, DNA-seq, Hi-C, and ChIP-seq). By applying conventional mapping criteria, we observed an increase

in the number of mapped reads of about 0.5–1%. When we applied more stringent filtering criteria to select for high-quality, uniquely

mapping sequences, we observed amuch larger improvement, reaching an increase of 2–4%across assays over the four individuals

(Figure S1C). Datas S5A–S5C summarizes the numbers of reads and percentages for precision mapping across the four individuals
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for DNA-seq, CHIP-seq, Hi-C, and RNA-seq. Mapping categories includemapping to haplotype 1 (Hap.1), haplotype 2 (Hap.2), union

of Hap.1 and Hap.2 (Hap1&Hap2), reference (ref), intersection between Hap.1 and Hap.2 but not ref (Hap1&&Hap2:Ref), and
improvement as a measure of Gain = [(Hap.1

S
Hap.2)-Ref]/Ref.

For all assays, we excluded counting reads that mapped to the X, Y, and M chromosomes for all individuals. In general, to ensure

high-quality mapping we selected reads with at most two mismatches and unique mapping. We used raw reads from transverse co-

lon, publicly available at the ENCODE portal, with the exception of DNA-seq. For DNA-seqmapping, we used reads from blood sam-

ples that we obtained fromGTEx to avoid any bias deriving from the construction of haplotypes using DNA sequences. For DNA-seq

and RNA-seq mapping, we used paired-end reads. For RNA-seq, to account for gene splicing, we used *.gtf files with transcript

genomic coordinations and STAR Aligner (ver. 2.7). For DNA-seq, Hi-C, and ChIP-seq we used BWA (ver. 0.7.17) and selected reads

with at most two mismatches and quality Q > 30. For RNA-seq, we used sequences with quality mapping Q = 255.

Differential gene expression analysis between reference and personal genomes

In order to evaluate the impact of personal genomes on gene expression quantification, we performed a differential gene expression

(DGE) analysis between gene expression read counts obtained after mapping to reference and personal genomes. Conventional

software to perform DGE analysis (such as DESeq2106 or edgeR107) rely on the existence of replicates. Due to the study design, how-

ever, the vast majority of RNA-seq experiments in EN-TEx are unreplicated. For this reason, we performed a DGE analysis for each of

the four donors, running DESeq2 with default parameters and using RNA-seq experiments for different tissues of the same donor as

replicates. For each donor, we identified sets of upregulated and downregulated genes, defined as genes that have significantly

higher and lower expression, respectively, whenmapped to the reference genome compared to the diploid genome (adjusted p value

[Benjamini–Hochberg] < 0.1 and |log2 FC| > 1; Figure S2A, Datas S5D and S5E).

By taking the union of differentially expressed genes across the four donors, we identified a total of 112 upregulated and 100 down-

regulated genes. Overall, we observed an enrichment of immune-related genes among our sets of upregulated and downregulated

genes (gene ontology term: ‘‘MHC class II protein complex assembly,’’ log10(p value) = �9.74; gene ontology analysis performed

withMetascape108), as well as an enrichment of pseudogenes among downregulated genes (Data S5F). In Data S5G–S5I, we provide

a few examples of either immune-related (HLA-DQA1) or disease-relevant (SMN2,SIK1) genes that show increased expression when

mapped to the personal genomes.

We acknowledge that performing the DGE analysis using tissues as replicates is not optimal. However, we argue that it is a con-

servative approach. To demonstrate this, we performed two additional analyses. First, we identified six RNA-seq experiments with

two available technical replicates (from independent sequencing libraries), as well as one tissue (liver for individual 3) with two inde-

pendent RNA-seq experiments available (biological replicates). For each of these seven experiments, we performed a DGE analysis

between the reference and personal genome mappings with the same parameters as the one described above (Data S5J, upper

side). We identified 53 upregulated and 59 downregulated genes, including an additional set of 18 and 25 upregulated and down-

regulated genes, respectively. These genes were not previously reported by the per-donor DGE analysis.

Given that we obtained these results using only two replicates per experiment, we hypothesize that we could potentially identify a

larger number of genes differentially expressed between the reference and personal genomes if each tissue had multiple replicates

available. Thus, to estimate the reduced discovery power due to the lack of replicated experiments, we generated a personal genome

of the cell line GM12878 and performed a DGE analysis using 5 polyA+ RNA-seq experiments available from the ENCODE portal

(each experiment with two biological replicates). The list of experiments is provided in Data S5J (lower side). We applied the

same pipeline as for the EN-TEx RNA-seq experiments to obtain read counts mapped to both the reference (hg19) and personal as-

semblies, using GENCODE v19 annotation. We performed DGE analysis running DESeq2 with default parameters as described for

the previous two analyses, after specifying batch information per replicate based on the ENCODE experiment identifier (Data S5J,

lower side). This analysis identified 46 upregulated and 43 downregulated genes, including an additional set of 31 and 34 upregulated

and downregulated genes, respectively.

Overall, these results demonstrate that our reduced discovery power of differentially expressed genes between the reference and

personal genomes could be partially due to the lack of multiple replicated experiments available per each tissue. The approach

described above, which uses tissues of the same donor as biological replicates, can best measure the impact of personal genomes

on genes that are expressed across a wide range of tissues. However, this approach might not be suited for tissue-specific genes,

whose changes in expression between the reference and personal genomes in a particular tissue might be masked or underesti-

mated when averaged across all tissues.

The differentially expressed gene lists are available in the following ancillary files. Specifically, novel differentially expressed genes

identified in the analysis of experiments with available replicates or in the analysis of GM12878 cells are marked with an asterisk.

File: table.DE.genes.tsv. Union of genes differentially expressed between reference and personal genomes across the four EN-TEx

individuals.

File: table.DE.genes.techReps.liver.tsv. Union of genes differentially expressed between reference and personal genomes across

seven EN-TEx RNA-seq experiments with available replicates.

File: table.DE.genes.GM12878.tsv. Genes differentially expressed between reference and personal genome in GM12878.

Differential regulatory element activity between reference and personal genomes

To better characterize the cCRE activity between reference- and diploid-based alignment, we set up a pipeline to accurately estimate

the H3K27ac signals of active cCREs from the four EN-TEx individuals by considering their gender information when we performed
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the ChIP-seq read alignment. Briefly, for the female individuals, we mapped the reads to the autosomal and X chromosomes, while

for the male individuals, we mapped the reads to the autosomal and X/Y chromosomes. When considering diploid-based mapping,

we performed read alignment to their diploid genomes separately, and calculated the normalized read coverage for each active

cCRE, followed by computing the mean value, which was used to represent the activity signals of cCREs under the scenario of

diploid-based mapping. Similar to our approach for the DGE analysis, we applied DESeq2106 to identify the active cCREs that

show significantly differential activity under reference-versus diploid-based alignment across all the samples (adjusted p value

[Benjamini–Hochberg] < 0.1 and |log2 FC| > 1; Figure S2B, Datas S5K–S5N). See the following ancillary file for the result.

File: differentially_marked_H3K27ac_cCREs.txt: Union of cCREs with differential H3K27ac signal between reference and personal

genomes across the four EN-TEx individuals.

Variation analysis: Analysis of the variation in element activity (related to ‘‘uniform multi-tissue data collection &
diploid mapping’’ in the main text and Figures S2C and S2D)
Visualizing the variation of cCRE activity with JIVE

To visualize the relationship among the functional genomic data across the tissues, we used a dimension-reduction approach,

namely Joint and Individual Variance Explained (JIVE).109 For each functional genomic experiment of histone modifications, we

calculated its signals at the cCREs using the UCSC Genome Browser bigWig tools.110 For proteomics and RNA-seq experiments,

we simply used the normalized protein abundance and RNA abundance of each gene. For each type of assay, we generated a

data matrix in which the columns are the tissues from the four individuals and the rows are cCREs or genes, and each element is

the signal of the functional genomic activity measured by the assay. For each assay type, we quantile-normalized the signals. For

the joint analysis of the different experimental assays, we combined these matrices by column to form a meta-matrix. In each sepa-

rate data matrix, some columns in each data matrix are not shared by all the assays, and thus these columns are excluded from the

meta-matrix.

To reduce computation burdens, we removed the rows that have low SD. From this informative meta-matrix, we applied the JIVE

algorithm to project the columns into a two-dimensional (2D) space (Figure S2C, Data S6M). As expected, this projection used all the

information of the matrix. In addition, from the matrix of each assay, the JIVE algorithm excluded the information that can be ex-

plained by the other matrices, and then projected the matrix containing the information unique to the assay into a 2D space (Fig-

ure S2C, Data S6M). For example, in the 2D space of RNA-seq, the same tissues from different individuals are well clustered, and

the different tissues are well separated. This tendency is weaker for the other assays. Taken together, this observation indicates

that RNA-seq likely captures the most unique signatures of different tissues.

Using a regression-based approach to quantify activity variation

With a linear regression approach, we used the explained variation of the regression to measure the similarity between two exper-

iments. A larger explained variation of the regression indicated a higher similarity between the two experiments. To elaborate on the

variation, we use a concrete example: the H3K27ac signals of cCREs from the spleens of two individuals. In this example, each of

these individuals had two technical replicates of the H3K27ac signals measured by ChIP-seq. In each replicate, the signal at a cCRE

was the fold change of reads between the immunoprecipitation experiment and the control experiment. For each cCRE, we first

calculated the percentage difference of the signals between the two replicates. We focused on the cCREs with differences smaller

than a certain cutoff so that the signals of these selected cCREs in one replicate can be largely explained by their counterparts in the

other replicate using linear regression (i.e., R2 > 0.95). To compare the two individuals, we used the common set of the selected

cCREswith low technical noise. For each of the two individuals, we averaged the signals of the two replicates for the common cCREs.

Therefore, we generated two sets of cCREswith H3K27ac signals having little noise, respectively, for the two individuals. Again, using

a simple linear regression, we calculated the variance in one of the sets explained by the other. A high value indicates that the two sets

of H3K27ac signals are very similar in terms of a linear relationship. As an example, the explained variation between replicates and the

explained variation between experiments for different types of histone modifications in spleen is demonstrated in Datas S5A–S5F.

The aforementioned calculation was used for all the available histone modifications and samples (examples shown in Datas S6G–

S6H) as well as normalized protein and RNA abundances (Datas S6I–S6L). For each modification, we estimated the variance ex-

plained between individuals (i.e., the same tissues of different individuals) and between tissues (i.e., different tissues of the same in-

dividual). In addition, we estimated the variance explained between two different histone modifications (i.e., within the same tissue of

an individual). For MS, to make the protein abundances of different genes comparable across different tissues, we normalized

the protein abundances of each gene across tissues so that the highest and lowest protein abundances were one and zero, respec-

tively. The MS approach we used pooled and labeled multiple samples together to determine protein abundances in a batch, result-

ing in little technical noise across the samples. To be comparable, we also normalized the RNA-seq data of the samples in the

same way.

In general, histone modifications showed high similarity between the same tissue of two individuals; as expected, this number was

smaller when comparing different tissues of the same individuals (Datas S6G–S6H). The similarity between different types of func-

tional genomic activities from the same tissue was extremely low (Datas S6G–S6H). For example, H3K27ac between individuals was

very similar in spleen and in transverse colon. However, the H2K27ac similarity between the two tissues was substantially reduced
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(Datas S6G–S6H). In linewith this disparity across tissues, the similarity between normalized gene expression and protein abundance

also varied substantially across tissues. The lower similarity in prostate is consistent with previous observations.111 Full details of the

comparison are reported in the following files:

File: Similarity_of_functional_genomic_activities_of_cCREs.xlsx: Similarities between all the available histone modifications.

File: normalized_proteomics_RNA-seq.dat: Normalized proteomics and RNA-seq data of genes.

Prior to the development of the EN-TEx resource, the similarities among assays were usually calculated from unmatched data. For

example, a large number of histone modification signals were detected from many different human individuals in Roadmap.12 The

intrinsic difference between two individuals due to genetic and environmental factors is expected to bias the similarity of two histone

modifications. For the histone modifications that are positively correlated with each other, their similarity is expected to be under-

estimated, whereas for the negatively correlated ones, the similarity may be overestimated. The degree of such bias due to un-

matched data has not been investigated for the many types of functional genomic data generated from numerous human samples.

With the EN-TEx data, we can finally estimate such bias quantitatively and reliably. For example, wemeasured both the H3K27ac and

H3K4me3 signals from the spleens of two individuals, individual 1 and 2; the average similarity between the two signals from the same

individuals was 80% in terms of variance explained, but was reduced to 70% when comparing the two signals from different indi-

viduals. We used this approach for all the EN-TEx histone modifications, and thus estimated the influence of unmatched data on

the similarity between different types of assays (Datas S6N–S6O). The difference varies with the explained variance. For the two sig-

nals with high similarity (i.e., large explained variance), using unmatched data results in about 10% smaller explained variance than

usingmatched data. As expected, this trendwas the opposite for two signals with low similarity. In addition, we applied this approach

to measure the influence on the similarity between different tissues (Datas S6N–S6O).

AS calling: Determining Individual AS Events (related to ‘‘large-scale determination of AS SNVs & construction of the
AS catalog’’ in the main text and Figure S3A)
ASE, AS binding (ASB), and AS chromatin accessibility (ASCA)

ASE, ASB and ASCA were measured with an extended version of the AlleleSeq pipeline, dubbed AlleleSeq2 (see EN-TEx portal for

Github with code). Broadly, the pipeline incorporates personal variation, including large SVs, to account for reference bias22,42,45 in a

straightforward way.We have included additional filters tomitigate ambiguousmapping biases.22,112 In order to account for the over-

dispersed nature of the functional genomics readcount data, the significance of the allelic imbalance is assessed with the beta-bino-

mial test22 (Data S7A).

For each available replicate of the EN-TEx experiments, functional genomics reads were mapped to both personal haplotypes

simultaneously using STAR-2.6.0c.113 We required stringent mapping criteria, allowing the maximum number of mismatches to

be 3%of the read length. For ChIP-seq, ATAC-seq andDNase-seq datasets, mapping was performed forbidding spliced alignments.

Adapters were also removed from the ATAC-seq and DNase-seq reads with cutadapt.114 For RNA-seq data, we used GENCODE

v2498 annotation converted to personal coordinates. RNA-seq mapping was performed in the two-pass mode to identify and incor-

porate novel junctions. Read duplicates were identified and removed from all alignments using picard (http://broadinstitute.github.io/

picard/). The fraction of assay reads that were preferentially aligned to either haplotype and overlapped hetSNVs across all samples

ranged from 1.1–7.3%. The allelic imbalance is measured by the fraction of unique reads mapped to each haplotype.

To visualize functional genomics reads on individual haplotypes (Figure 2A), we used SAMtools (ver. 1.9)115 to extract haplotype-

specific reads from the BAM files generated by STAR from the last step. If an assay had multiple replicates, we merged all the BAM

files. The number of reads mapped to a given region in the personal genomewas calculated by bedtools (ver. 2.29.2)116 and stored in

bedgraphs, lifted over to the reference genome with UCSC LiftOver,117 and converted to bigwigs with bedgraphToBigWig

(ver. 2.8).110 Data S7B summarizes the pipeline used to generate the haplotype-specific bigwigs. The bigwigs are displayed with

the Integrative Genomics Viewer.118 See Data S7C for accession numbers of the data used to generate the signal tracks in Figure 2

and Data S17. A script that generates the haplotype-specific read coverage from the BAM files is provided at https://github.com/

gersteinlab/AlleleSeq2. An example of the process is demonstrated in the following files.

File: sample_signal_track.tar.gz: Example output of haplotype-specific signal tracks.

File: AlleleSeq2_workflow_examples.tar.gz: AlleleSeq2 workflow demonstrated using RNA-seq and H3K27ac ChIP-seq experi-

ments from ENC-003 thyroid gland samples.

The number of reads overlapping each hetSNV and carrying the corresponding alleles was calculated after filtering. The filtering

included.

- Potentially misphased loci;

- Reads bearing an incorrect allele;

- HetSNVs located in potential copy number variation sites through assessment of the surrounding read depth (+/� 1 kb);

- Sites with potential ambiguous mapping22,112;

- Non-autosomal chromosomes (for most downstream analyses we used call sets that only include loci from autosomes).

We aggregated read counts from all replicates available for each experiment (sample). We then called AS sites at an FDR of 10%as

described previously22,45 (Data S8) by calculating the significance of the imbalance at each heterozygous locus.
e13 Cell 186, 1493–1511.e1–e31, March 30, 2023

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/gersteinlab/AlleleSeq2
https://github.com/gersteinlab/AlleleSeq2


ll
OPEN ACCESSResource
We provide the read counts and p values for all the ASE and ASB sites that are either significantly imbalanced or accessible (SNVs

that have at least the minimum number of reads needed to be statistically detectable for allele specificity), which can be found in the

following file.

File: hetSNVs_default_AS.tsv: Full list of accessible hetSNV loci with haplotype-specific read counts.

File: hetSNVs_default_AS_DNase.tsv: Full list of accessible hetSNV loci with haplotype-specific read counts from the DNase-seq

datasets.

Columns in the hetSNV files are.

1) chr: chromosome

2–3) ref_start, ref_end: GRCh38 locus positions (0-based, half-open)

4) ref_allele: reference allele

5–6) hap1_allele/hap2_allele: haplotype ½ allele

7) experiment_accession: ENCODE experiment ID

8) donor: EN-TEx individual

9) tissue: tissue

10) assay: assay

11–14) cA/cC/cG/cT: number of reads with A/C/G/T

15) ref_allele_ratio: number of reads with reference/total number of reads

16) p_betabinom: p values calculated from the beta-binomial test

17) imbalance significance: ‘1’ passes the FDR10% threshold, ‘0’ not a significantly imbalanced site.

Since the EN-TEx samples have had independent genome sequencing completed for more than one tissue (i.e., transverse colon

from EN-TEx and blood from GTEx), we can use this information to evaluate the impact of sequencing errors and somatic mutations

on our AS call set. We have done this in a limited fashion in Data S35.

Allele-specific methylation (ASM)

We used WGS variant calls to determine the positions of hetSNVs and identify all homozygous CpG positions in the genome of each

donor (Data S9). With such information, and with the fully processed tissue-specific WGBS-aligned reads, an in-house script was

then used to identify positions exhibiting significant allelic differences in CpG methylation. Our script counted the number of times

amethylated or unmethylated homozygous CpG occurred in the same read as each of the two possible alleles at the hetSNV position

for autosomal chromosomes. If the same read overlapped multiple CpGs, they were each considered as independent observations.

Reads that overlapped with indels, had a low-quality score (Phred <20) on the SNP position, or had a base call that did not match

either of the two alleles expected in that position based on the WGBS calls were discarded. Due to the nature of bisulfite sequencing

data, where cytosinesmay be observed as thymines during bisulfite conversion, it was not possible to determinewhich allele the read

came from in several cases. In such cases, the read was also discarded. If a low-quality score or an unexpected base call was

observed on a CpG position for a particular read, that observation did not contribute to the final counts. The significance of the as-

sociation between the allele at the hetSNV position and the methylation state of the CpGs in the 300 bp surrounding region was as-

sessed using Fisher exact test. The 300 bp windows surrounding the hetSNV position were chosen as the WGBS dataset was

composed of paired-end 150 bp reads. The test was only performed for hetSNV positions that showed aminimumof six observations

of either a methylated or unmethylated CpG position for both alleles, and the p values were subsequently corrected with the

Benjamini-Hochberg method for FDR control. The difference in the level of methylation between alleles was also computed for

each hetSNV. Finally, Allele-specific methylation (ASM) calls were made by identifying the heterozygous SNP positions with FDR

values below a specified threshold (10%), and absolute differences in methylation between alleles above a minimum threshold of

10%. The result can be found in the following file.

File: ENTEx.TissueStacked.phased.final.txt: Assessment of allelic imbalance in CpG methylation.

Explanations of the columns are as follows.

- chromosome, start,end: position of the SNV. Coordinates are 0-based in hg38

- Allele1[2].[Un]Methylated (int): Number of [un]methylated CpG in the 300 bp region surrounding Allele1[2]

- Number.of.good.reads (int): Number of reads used to count methylated and unmethylated CpGs

- Is.on.heterozygous.CpG (binary): 0 indicates that the variant is not on CpG; 1 indicates that the variant is on CpG

- P.Values (float): p value of Fisher’s exact test based on Allele1.Methylated, Allele1.Unmethylated, Allele2.Methylated, and

Allele2.Unmethylated

- FDR (float): Adjusted p value based on Benjamini-Hochberg method

- Methylation.Allele1[2] (float): Fraction of methylated CpG in the 300 bp window of allele1[2]

- Methylation.Difference (float): Methylation.Allele1 - Methylation.Allele2

- Phasing.Set (string): Phasing set designated by individual VCF

- Tissue (string): Tissue from which the sequenced sample originated

- Individual (string): EN-TEx individual ID
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AS Hi-C interactions

Each pair of the paired-end reads are aligned separately to both of the parental haplotypes using BWA-MEM.92 Sequencing reads are

then paired based on their read names. Each paired-end read is then assigned to either one or both of the parental haplotypes as

follows: for each paired-end read, a score is assigned to each parental haplotype based on the number ofmismatches of themapping

to that haplotype. Paired-end reads are then assigned to either haplotype 1 or haplotype 2 based on their corresponding score. In

brief, pairs of reads are assigned to a haplotype if they map exclusively or with a better score to that haplotype. Additionally, pairs of

reads that exclusively map to one of the haplotypes are also assigned to that haplotype. After every paired-end read is assigned to a

parental haplotype, chimeric reads and PCR duplicates are removed and we generate an interaction matrix for each haplotype of

each tissue of each individual (Datas S10A and S10B for the pipeline and Data S10C for the matrices).

For each significant interaction captured by Fit-Hi-C, we found the number of reads that map to haplotype 1 and haplotype 2 using

the haplotype-specific interaction matrices. If there was a difference in the number of reads that mapped to one haplotype vs. the

other, we then calculated the p value for the significance of the allelic imbalance using a binomial test. The results are reported in

the following file.

File: hic_files.tar.gz: Allele-specific Hi-C interactions.

The above file contains two folders: ‘‘ref’’ and ‘‘pgenome’’. The ‘‘ref’’ folder contains.hic files for each individual and tissue (each

individual and tissue combination is a separate folder, totaling up to eight folders); these files contain information on the genome-wide

interaction matrices. The information can be extracted using Juicer tools and the contact matrices can be visualized using Juicebox

(Data S10C for an example). The ‘‘Pgenome’’ folder contains two subfolders: ‘‘hap1’’ and ‘‘hap2’’. Each of these folders contain

two.hic files for each chromosome of each individual and tissue. Chr*.hap*.hic files contain the Hi-C data for that chromosome in

personal genome coordinates and Chr*.hap*2ref.hic files contain the Hi-C data for that chromosome in a reference genome coordi-

nate (lifted over using personal genome chain files). Data S10D shows the total number of raw AS interactions and significant allelic

imbalances per sample (calculated using the binomial test described above).

AS peptide (ASP) analysis

The proteomics data weremapped at the gene level and filtered to a set containing one ormore ASPs in any donor. These fell into two

categories: genes with ASPs for one allele only or those with peptides specific to both alleles. Both groups were considered for ASP

ratios. The ASP ratios were calculated for each tissue and donor in which allelic peptides were quantified, based on the ratio of the

summed peptide intensities of peptides specific to the two alleles. Individual ASPs were filtered to require aminimum of three distinct

peptides unambiguously identifying a gene, an expression level for the tissue of not less than 5-fold lower than the highest expressed

tissue and an ASP ratio of greater than 0.75. Data S26D summarizes key numbers of genes with allelic peptides. A full list of allelic

peptides is included in the Supp_data_proteomics.xlsx file described in the section ‘‘proteomics’’.

AS elements (related to ‘‘large-scale determination of AS SNVs and construction of the AS catalog’’ in the main text
and Figures S3A and S3B)
Genes and cCREs

We extended our pipeline to measure allelic imbalance at genomic regions and elements of interest. To do so, we aggregated read

counts from all hetSNVs within the relevant region and assessed the significance of imbalances between personal haplotypes for

individual hetSNVs as described above. We provide a large catalog of genomic elements measured for AS activity (e.g., ASE genes

and cCREs) with corresponding haplotype-specific assay read counts and significance scores of the imbalance (Data S11A). Results

are summarized in the following files.

File: genes_default_AS.tsv: List of accessible genes with haplotype-specific read counts.

File: cCREs_default_AS.tsv: List of accessible regulatory elements with haplotype-specific read counts.

Columns in these files are similar to those described in the section ‘‘ASE, AS Binding (ASB), and AS Chromatin Accessibility

(ASCA)’’ with the following differences:

4) region_id: gene name (GENCODE v24) or cCRE id.

5–6) hap1_count/hap2_count: number of reads mapped to haplotype ½.

Correlation between AS genes and diseases

We compared the set of AS genes to a set of genes associated with certain diseases. The list of disease genes includes those known

to be affected by disease-associated mutations and expressed in disease-related tissues.119 For each tissue and individual, we

noted the genes that were present in both the set of AS genes and the set of disease genes. Many of the correlations were sensible.

For example, TSHR, TG, and PAX8, which are associated with hyperthyroidism, showed AS behavior in the thyroid, and TNNT2,

LDB3, and SCN5A, associated with cardiomyopathy, showed AS expression in the heart. The list of the overlapping genes and their

associated diseases can be found in the following file.

File: Associated_AS_Disease_Genes.xlsx: Allele-specific genes associated with diseases.

Gene Ontology enrichment analysis of AS genes

To determine the characteristics of active AS genes, we performed gene ontology enrichment analysis of protein-coding genes that

showed AS activity in different assays (Data S11B). DAVID Bioinformatics Resources 6.8120,121 was used to perform the functional

annotation clustering. For ASB, the background list for each assay includes all protein-coding genes with accessible promoters in

that assay; for ASE, the background list includes all protein-coding genes with an accessible expression level from RNA-seq. The
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AS gene list for each assay includes genes showing AS activity in any EN-TEx individual or tissue, and genes were ranked by p value

to be AS genes. For ASE analysis, since DAVID has a 3,000 gene limit, the top 3,000mostly ASE+ protein-coding geneswere selected

for the enrichment analysis, and the top 20 enriched terms are shown. We found that protein-coding genes showing AS activity in

assays are mostly enriched in phosphoprotein, and their sequences are featured with polymorphisms and variants.

Aggregation: Aggregating Individual AS Events Across Tissues and Assays (related to ‘‘large-scale determination of
AS SNVs & construction of the AS catalog’’ in the main text, Figures 1C, S3C, and S3D)
We use two strategies for aggregating AS events across tissues and assays (see Figures 1C and S3A–S3D). The first is to simply take

the union of AS SNVs from each individual tissue or assay. The second is to pool the reads across different tissues or assays and then

re-perform the allelic calculation using the pooled reads as input. This increases the statistical power of the allelic calculation at the

expense of distinguishing AS behavior between different tissues or assays. We employ both methods in constructing the EN-TEx AS

catalog. In Alleleseq2, we developed an approach to pool reads from alignment files obtained from multiple tissue samples (or as-

says) to reassess AS imbalance and generate a "pooled" joint call set (see "ASE, ASB, and ASCA" below). We also provide a script

that allows for the union of call sets from donors/tissues/assays as part of the AlleleSeq2 repository, creating "union" call sets.

ASE, ASB, and ASCA

We observed a large increase in detection power when we pooled reads for each hetSNV across all tissues in each individual. We

calculated the significance of the imbalance at each hetSNV for the pooled call set in the same manner as for individual tissues and

called ASE, ASB and ASCA sites at an FDR of 10%.22,45 Figures 1C and S3 provide a summary of the AS catalog, including the num-

ber of AS hetSNV and AS elements, with different aggregation methods and levels. Results of the aggregation can be found in the

following file.

File: hetSNVs_pooled_AS.tsv: List of accessible hetSNVs with haplotype-specific read counts pooled across tissues.

File: hetSNVs_pooled_AS_DNase.tsv: List of accessible hetSNVs with haplotype-specific read counts pooled across tissues from

the DNase-seq datasets.

Methylation

We aggregated the counts of methylated and unmethylated homozygous CpG positions surrounding both alleles of each hetSNV

across tissues for each individual to assess the cross-tissue association between the allele at the hetSNV position and the methyl-

ation state of the homozygous CpGs. The significance of association was computed using Fisher exact test; the Benjamini-Hochberg

method was used to control the FDR. For aggregated observation, the test was only performed for accessible hetSNV positions that

showed aminimum observation of methylated or unmethylated homozygous CpG positions for both alleles. The number of positions

n (around 12) was determined by maximizing the sum of p values. ASMs were called at FDR values under 10% and absolute methyl-

ation differences larger than 10%.

We then generated a combined ASM call set that includes cross-tissue counts of methylated and unmethylated homozygous CpG

observations surrounding accessible hetSNVs for all four individuals. Identical hetSNVs across individuals were included as separate

records of CpG counts. All accessible hetSNVs, their associated gene, distance to gene, and genomic region were annotated based

on the refGene database. Alternative allele frequency was annotated based on the Genome Aggregation Database (gnomAD) 3.0

database using ANNOVAR.122 cCREs were annotated based on ENCODE. The aggregated result can be found in the following

file, with columns similar to those described in the section ‘‘allele-specific methylation’’.

File: ENTEx.TissueAggregated.final.txt: Assessment of allelic imbalance in CpG methylation with haplotype-specific methylated

and unmethylated homozygous CpGs pooled across tissues.

Note that in Figure 2B, because DNA methylation tends to repress gene expression, the polarity (direction of AS imbalance) of the

AS DNA methylation in the promoter region is in the opposite direction to that of the AS expression and chromatin active state in the

gene body. As expected, the active epigenetic marks H3K4me3 and H3K27ac demonstrate consistent AS imbalances, and most of

the AS SNVs associated with DNAH11 are known eQTLs from GTEx. One such SNV (rs11760336) lies within the DNAH11 promoter,

likely changing the gene expression directly. In addition, some of the AS SNVs overlap with known GWAS variants as indicated in

the figure.

AS catalog (related to ‘‘large-scale determination of AS SNVs and construction of the AS catalog’’ in the main text,
Figures 1C, S3B, and S3D–S3F)
Generalizability of the AS catalog

We discovered over one million SNVs that show AS activity in gene expression, DNA methylation, histone modification, and/or TF

binding. This catalog should cover a large fraction of AS activity of common SNVs. To estimate the coverage, we started by using

the 1,000 Genomes project high-coverage data5 to assign allele frequencies to the EN-TEx SNVs. We found that 76% (i.e.,

5,276K) of the common SNVs (EUR minor allele frequency (MAF) >5%) in 503 European individuals (specifically, individuals of

GBR, FIN, IBS, TSI, and CEU) were discovered in EN-TEx, 4,414K of which were heterozygous and unambiguously genotyped in

at least one of the four EN-TEx individuals. Among these 4,414K SNVs, 946K (21.4%) show AS activity in at least one assay (whereas

63K of the AS variants are rare, EURMAF <1%). If the EN-TEx project was conducted on all 503 European individuals from the 1,000

Genomes project, which contains 6,946K commonSNVswith AF < 1, then the number of ASSNVswould be 6,946K * 21.4%=1,486K

(assuming each of the 6,946KSNVs is heterozygous in at least one individual). This number is only a 540K increase from the 946K that
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are currently in the AS catalog, indicating that our catalog includes a majority of the AS events at common SNV loci in the European

population.

While previous studies also compiled AS histone modifications and/or DNA methylation, our catalog is larger. For example, while

Onuchic et al.28 reported 125K ASM loci, 36K loci with ASB H3K27ac, and 0.5K loci with ASB H3K27me3 (Table S1 of Onuchic et al.),

our catalog includes 469K, 79K, and 96K loci, respectively. Similarly, Chen et al.22 used SNVs discovered by the 1,000 Genomes

project (2,504 individuals) to construct a diploid genome for each of the 384 individuals compiled by Geuvadis. They mapped

RNA-seq and ChIP-seq to these diploid genomes and identified 63K ASE hetSNVs and 6.1K ASB (ChIP-seq) hetSNVs, the latter

of which is a much smaller number than the 361K in our catalog. In terms of AS activity in the regulatory regions, we also found

more (28K vs. 11.7K) AS cCREs than a similar study using the Roadmap data.46 While we note that the EN-TEx resource does

not have more ASE events than GTEx21 or AlleleDB,22 we found that ASE is only a small fraction of all the AS events in the genome

(Datas S8B and S8C). Most AS events are related to the chromatin states of the regulatory regions.

Calling AS events in external datasets used for validation

In addition to the EN-TEx AS catalog, we have generated ASE and ASB call sets for the CEPH individual NA12878 and Roadmap12

individuals STL002 and STL003. We used these call sets for external validation of our predictive models.

Personal genome sequences for STL002 and STL003 were constructed using variant calls generated previously.28 For NA12878,

we used SNVs and indels available from the Illumina Platinum Genomes project123 (2016–1.0) and large deletions generated by the

1,000 Genomes Phase 3 SV Analysis Group.37 All datasets with matching assays (and all tissues for STL002 and STL003) that are

available from the ENCODE portal were utilized to generate the AS call sets. These personal genome files are available as described

below.

File: pgenome_NA12878.tar.gz: Personal genome for NA12878.

File: pgenome_STL-002.tar.gz: Personal genome for STL002.

File: pgenome_STL-003.tar.gz: Personal genome for STL003.

See Data S12 for the number of AS hetSNVs detected in each sample. The files are formatted as described in the section ‘‘ASE, AS

binding (ASB), and AS chromatin accessibility (ASCA)’’. These call sets were used for validation of predictive models described in the

sections ‘‘prediction of promoter AS activity with a random forest model’’ and ‘‘ASEffect prediction with the BERT model’’.

High-confidence and high-power call sets

We also developed a "high-confidence" call set requiring that at least one read from both alleles was detected in the functional ge-

nomics assay, thus accounting for potential false-positive genotype calls. In addition, we generated a "high-power" tissue-specific

call set by allowing a more relaxed threshold (FDR 20%) for loci that were detected as significantly imbalanced after read pooling-

based joint calling across all tissues (Data S13A). These two call sets can be accessed in the following files.

File: hetSNVs_high-confidence_AS.tsv: List of hetSNVs with high-confidence allelic imbalance calculations.

File: hetSNVs_high-power_AS.tsv: List of hetSNVs with the high-power allelic imbalance calculations.

In addition, we tested two methods for increasing detection power of AS hetSNVs in datasets with low read counts. Both methods

impose a less strict test for allele specificity on hetSNVs that have been determined to be AS in prior experiments. This prior knowl-

edge can be taken from other experiments on the same individual, or from experiments on different individuals entirely. The first

‘‘high-power’’ method relaxes the FDR threshold from 10% to 20% for all hetSNVs that have prior evidence of allele specificity.

All other hetSNVs are evaluated at the usual 10% FDR threshold. The second method uses a one-sided beta-binomial test, instead

of the default two-sided test, to determine whether the direction of imbalance is consistent with prior data. With both high-power

methods, new AS hetSNVs are identified that did not meet the threshold using the default calling method.

To validate these high-power methods, we tested them on a deep RNA-seq experiment of the cell line GM12878 (Datas S13B–

S13E). We first identified ASE hetSNVs in the dataset using our default calling method. This was our ‘‘gold standard’’ list of

24,685 ASE hetSNVs. Then, we simulated a shallower sequencing experiment by downsampling by a factor of 4. Using the default

ASE calling method on the downsampled dataset, we identified 6,928 ASE hetSNVs. Approximately 80% of these hetSNVs were in

common with the gold-standard list. We expect that the error rate is a product of the randomness of downsampling. Then, both high-

power calling methods were performed on the downsampled dataset.

We generated priors for the high-power methods using the pooled reads across all tissues from the four EN-TEx individuals. If

a hetSNV was ASE in at least one individual, it was included in the high-power test. If two or more individuals had ASE of the

same hetSNVs, the direction of imbalance should agree (e.g., both favor the reference allele over the alternative allele), otherwise

that hetSNV was excluded. We did not take into account the identity of the alternative allele for any hetSNV.

For the relaxed FDR method, 122 new ASE hetSNVs were identified that did not meet the threshold for allele specificity using the

default method. For the one-sided method, 275 new ASE hetSNVs were identified. For both, approximately 60% of the new ASE

hetSNVs were in common with the ‘‘gold standard’’ list. The validation shows that both methods can be used to identify a modest

number of new ASE hetSNVs, at the cost of somewhat reduced specificity.

It should be noted that the results of the high-power methods are dependent on the nature of the prior. Both methods can only be

used to evaluate hetSNVs for which there is prior information. Using data from the EN-TEx individuals as a prior for non-EN-TEx cell

lines such as GM12878 captures most common hetSNVs but excludes most rare variants. If more of the individual’s hetSNVs are in

common with the prior, it is likely that the high-power methods will identify more AS hetSNVs. In the case of the EN-TEx individuals,
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we circumvent this problem by using AS hetSNVs identified from the all-tissue pooled reads as the prior for high-power analysis of

individual tissue datasets. Because both sets come from the same individual, they share both common and rare variants.

Integration with the ClinGen allele registry

The variants identified in all four EN-TEx individuals are registered in the ClinGen Allele Registry,124 which provides unique variant

identifiers for canonical alleles defined at the level of nucleic acid sequences or at the level of proteins. The unique identifier integrates

different types of labels and definitions of the same allele acrossmultiple databases including dbSNP,125 gnomAD,126 ClinVar,127 and

ExAC128; approximately 24K variants were previously recorded in ClinVar.129 A total of 58 variants are classified as ’pathogenic’ or

’likely pathogenic’, 14 of which show AS behavior (including ASM) in at least one of the EN-TEx samples. All variants are bulk regis-

tered in VCF format using API specified by Allele Registry documentation (http://reg.clinicalgenome.org/doc/AlleleRegistry_1.01.

xx_api_v1.pdf). Variants can be queried either programmatically via APIs or via search interface using any type of ID associated

with the variant. Metadata for allele(s) are available in machine readable form (JSON) on ClinGen and can be queried in bulk as well.

AS examples: Illustrating the Coordination of AS Activity Across Assays (related to ‘‘examples of coordinated AS
activity, involving SNVs & SVs’’ in the main text, Figures 2 and S4)
X chromosome inactivation (XCI) presents an ideal opportunity to showcase coordinated AS activity inferred using the EN-TEx

resource while allowing for important biological discoveries. We first categorized the AS activity into three categories: ‘‘gene expres-

sion’’, ‘‘active histone mark enrichment’’, and ‘‘repressive histone mark enrichment’’. For gene expression, we used AS RNA-seq

data. For the active and repressive histone mark enrichments, we pooled seven (CTCF, EP300, H3K27ac, H3K4me1, H3K4me3,

POLR2A, and POLR2AphosphoS5) and two (H3K27me3 and H3K9me3) histone marks for each tissue, respectively. We then

analyzed the AS activity of each pooled dataset.

To determine which haplotype is inactivated, we calculated the log2 ratio of activity between the haplotypes as log2(haplotype1/

haplotype2). This calculation was performed for all tissues of both female individuals (ENC-003 and ENC-004) as shown in Data

S14A. For gene expression, the ratio relates individual gene read counts between haplotypes. For either active or repressive marks,

the ratio relates the sum of activity within a +/� 10 kb region surrounding each gene. We also computed a tissue-level score by calcu-

lating the mean log2 ratio across all genes in each tissue (top bar in Data S14A). As shown in Figure 2A and Data S14A, most tissues

have the same haplotype inactivated in both individuals. Active histone marks and gene expression showed bias in the same direction,

highlighting the coordinated activity across the X chromosome. By contrast, activating and repressive histone marks showed limited

(due to data sparsity) bias in opposite directions. These observations were quantified by a cosine similarity analysis in Data S14B.

We then sought to identify genes that escape XCI, denoted as ‘‘escaper’’, using the EN-TEx resource. Escaper genes (Data S14C,

top) were identified as those genes that were expressed in at least eight tissues and showed balanced expression (log2 ratio between

�0.4 and 0.4 [inclusive]) in 60% of their expressed tissues. Tissues that showed balanced expression were excluded from this anal-

ysis (ENC-003: LIVER and OVARY; ENC-004: ADPSBQ, ADRNLG, ESPMSM, ESPSQE, HRTAA, STMACH, SKINNS, and SKINS). A

curated list of escaper genes in both individuals was created (Data S14C, bottom) and their status was validated by a literature re-

view. Data S14D shows three examples of identified escaper genes that show balanced gene expression between both haplotypes

despite tissues showing a strong bias toward one haplotype. We also provide a breakdown of haplotype specificity in XCI across

different chromatin marks and gene expression in Datas S14E and S14F.

We found an example of AS activity for a less-characterized locus in ENC-003.We detected ASHi-C interactions in the XACT locus

(Data S14G) on the active copy of the X chromosome. We first determined the active copy of the X chromosome by considering the

gene expression distribution on both haplotypes and found that haplotype 2 has more gene expression than haplotype 1. We then

looked at the differential interaction of the X chromosome by subtracting the Hi-C matrices of the haplotypes. We found that an inter-

action between the XACT locus and an upstream region is significantly elevated in the active haplotype. We also found that both the

XACT locus and the upstream region are bound to CTCF, which might be mediating the interaction. XACT is a long non-coding RNA

(lncRNA) found to be active in the active copy of the X chromosome early in cell development. This CTCF-mediated haplotype-spe-

cific interaction could play a role in activating the XACT locus established at early stages of cell development. While such observa-

tions are interesting, they are provisional on additional supportive data. Our analysis of haplotype-specific Hi-C data revealed an AS

skew in Hi-C interactions between another gene, XACT, and its potential distal regulatory element on the active haplotype of the X

chromosome (see Data S14G).

SVs: Illustrating the Impact of SVs (related to ‘‘examples of coordinated AS activity, involving SNVs & SVs’’ in themain
text, Figures 2D–2F, S4B, and S4C)
Analysis of SVs

We focused our analysis on SVs that are larger than or equal to 50 bp, although the VCF files of each individual also contain smaller

‘‘SVs.’’ Note that the SVs identified fromOxford Nanopore data had fewer large INSs than those identified from the PacBio data (Data

S15). This likely resulted from differences between the two sequencing technologies.77,130

To analyze the sequence composition of the SVs, we used RepeatMasker (ver. 4.0.7, slow search mode, http://www.

repeatmasker.org) to classify the sequences that are inserted, deleted, or inverted.

We also estimated the allele frequencies of the SVs. For this purpose, we checked for overlaps in the location between the EN-TEx

SVs and those reported by Audano et al. (2019).36 To increase the chance of finding an overlap between these two datasets, we used
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the confidence intervals (CIs) of an EN-TEx SV’s coordinates as the location of the SV. Specifically, the CIs of the breakpoints were

denoted by CI_POS and CI_END in the VCFs of individuals 2 and 3. The SVs of individuals 1 and 4 were called by different tools;

therefore, the corresponding VCFs did not have CI_POS and CI_END. Instead, we used +/� 2*STD_quant_start as the Cl of the

POS and +/� 2*STD_quant_stop as that of the END. For DELs and inversions, we extended the POS upstream by its CI and the

END downstream by its CI. For INSs, we extended the POS upstream and downstream but did not extend the END.When an overlap

was found, we further checkedwhether the two SVswere of the same type (e.g., both are deletions). If the two SVswere not the same

type, we considered the two SVs to be different. Through this analysis, we matched SVs in Audano et al. (2019) with 68.3%, 65.9%,

63.4%, and 65.3% of the SVs in the four individuals, respectively. We assigned these EN-TEx SVs an allele frequency in European

populations estimated by Audano et al. (2019).36 We performed a similar analysis by using more recent SVs called from long-read

DNA sequencing data131 and gnomAD SVs.126 A total of 71.4%, 68.9%, 66.5%, and 68.0% of the SVs in the four individuals, respec-

tively, overlap with the former dataset. Because gnomAD annotates SVs differently, we allowed EN-TEx ‘‘INS’’ to match ‘‘INS’’,

‘‘DUP’’, ‘‘BND’’, and ‘‘MCNV’’ in gnomAD, EN-TEx ‘‘DEL’’ to match gnomAD ‘‘DEL’’, ‘‘BND’’, and ‘‘MCNV’’, and EN-TEx ‘‘INV’’ to

match gnomAD ‘‘INV’’ and ‘‘BND’’. In this way, we found a match for 63.4%, 61.4%, 60.3%, and 63.1% of the SVs in the four indi-

viduals, respectively.

To understand how SVs distribute in the genome, we generated a null expectation of SV distribution by shuffling the locations of

SVs, using amethod similar to that used in the 1,000Genomes SV study.37 Specifically, we placed the SVs in random locations on the

same chromosomewhile avoiding gaps in the assembly. We calculated the ratio of the number of unshuffled SVs intersecting a given

genomic region over the number of shuffled SVs. We repeated the shuffling 1,000 times.

Associating SVs with eQTLs

Weaimed to identify heterozygous SVs that potentially cause AS gene expression and underlie the action of known eQTLs. To do this,

we first identified eQTLs16 that are compatible with the ASE of the associated genes. For each ASE gene, we checked if the two al-

leles at each associated eQTL locus had the expected regulatory effect. The numbers of heterozygous SNPs and indels that were

identified as compatible eQTLs in at least one tissue were 219K, 190K, 184K, and 137K in the four individuals, respectively (Datas

S16A and S16B). We used the compatible eQTLs associated with a given ASE gene to define a window spanning from �10 kb of

the compatible eQTL on the far 50 end to +10 kb of the compatible eQTL on the far 30 end. For a heterozygous SV that intersects

with this window, we determined whether the SV and the compatible eQTLs may locate on the same linkage block by comparing

their allele frequency and haplotype. Specifically, for each SV identified in the last step, we identified all compatible eQTLs (with

respect to the given ASE gene) that fell within +/� 10 kb of the SV. Suppose the SV is on haplotype 1, then we calculated the allele

frequencies of the alleles of the compatible eQTLs on haplotype 1. Here, we used the allele frequency in the European population

reported by the 1,000 Genomes project5 for the alleles at each compatible eQTL. For each individual, about 500–800 compatible

eQTLs carried an alternative allele that could be found in the 1,000 Genomes project. These compatible eQTLs were excluded

from the next steps. If at least 30% of the haplotype 1 alleles of the compatible eQTLs within +/� 10 kb of the SV had similar allele

frequencies as the SV’s allele frequency (defined as 80–120% of the SV’s allele frequency), then we considered the SV to be poten-

tially linked to the compatible eQTLs and that it may contribute to the ASE of the given gene. We listed SVs that meet this criteria, the

associated ASE gene, and the compatible eQTLs +/� 10 kb from the SVs in the following file.

File: Supp_Data_SVs_associated_with_eQTL.xlsx: List of SV associated with AS expressed genes and eQTLs.

We identified known eQTL-associated SVs (including SV-eQTLs)37,51 in our list of potential eQTL-associated SVs. We considered

that an SV was a match if a reported eQTL-associated SV was found within +/�100 bp of this SV and both SVs were associated with

the same gene. We searched for matches in tissue-specific and non-tissue-specific ways. For individual 1, our list includes 337 SVs

that are associated with eQTLs in at least one tissue, of which 67 match known eQTL-associated SVs. The fractions are 84/317, 70/

304, and 46/215 for individuals 2 to 4, respectively. Details of these results are listed in Supp_Data_SVs_associated_with_eQTL.xlsx.

For comparison, we also calculated the fraction of known eQTL-associated SVs in our SVs that are close to genes with ASE (Datas

S16C–S16E). We pooled genes that have ASE in at least one tissue. Because GTEx eQTLs fall within +/� 1Mb of the TSS of genes,16

we used the samewindow to look for SVs near the geneswith ASE, requiring the SVs to at least partially overlapwith thewindows.We

further required SVs to be heterozygous, clearly phased, and relatively common (i.e., present in Audano et al. (2019)36). We found

4,912 SVs in individual 1 that meet these criteria, of which 596match known eQTL-associated SVs. This fraction is significantly lower

than the observed fraction of 67/337 (p = 3.4e�5, Chi-square test). We observed similar enrichment in the other three individuals

(p = 4.2e�12, 3.1e�4, 4.9e�6).

See Data S17 for examples of indels potentially changing the gene expression and examples of splicing variants.

Aggregating the impact of SVs on neighboring chromatin

Our goal is to calculate potential changes in the chromatin state in the neighborhood of SVs. Intuitively, this can be done by

comparing the chromatin state near heterozygous SVs between the haplotypes of an individual. We excluded heterozygous SVs

within 5 kb of other SVs in the same individual.

In the remaining heterozygous SVs, we focused on those that have relatively precise breakpoints. Specifically, we kept SVs where

the total lengths of the start position’s CI and the end position’s CI are at most 50 bp. To minimize the influence of SVs on mapping

sequence reads, we further excluded SVs for which the averagemappability of a window +/� 500 bp of the SV is below 0.9. Because

EN-TEx requires the length of a ChIP-seq read to be at least 50 bp, we used 50-mer multi-reads Umap mappability132 to filter SVs

when calculating potential disruption to chromatin openness (measured by ATAC-seq) and histone modifications (measured by
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ChIP-seq). We used 100-mer multi-reads Bismap mappability132 to filter SVs when working with WGBS data. We also excluded SVs

that fall in blacklist regions that are known to give problematic ChIP-seq reads.133When Umapmappability was used, the numbers of

SVs that passed the filters were 3,931, 3,636, 3,006, and 3,258 for the four individuals, respectively. When Bismap mappability was

used, the numbers were 4,522, 4,246, 3,497, and 3,777.

For each SV that passed the above filters, we calculated the average chromatin state in the SV’s flanking regions.We defined flank-

ing regions of an SV as the�500 bp��100 bp region and the 100 bp� 500 bp region (Data S18A) – the extra 100 bp upstream and

downstream of the SV are extra buffer regions that should reduce the influence of SVs on mapping sequencing reads. Because the

chromatin state can be tissue specific and individual specific, we treated the SV-sample combinations as independent data points.

We summed the allelic ATAC-seq and ChIP-seq reads on hetSNVs that fall into the flanking regions of a given SV in a given sample.

For ATAC-seq and each ChIP-seq assay, we excluded SV-sample combinations in which the total reads from both haplotypes were

less than 15. This step left about 4.4 K–7.2 K SV-sample combinations (each SV has 2.9–3.8 samples on average) for the ChIP-seq

assay. If the haploid that carries the SV had 70% or less reads (e.g., ATAC-seq reads) than the other haploid, we considered that the

SV reduces the given chromatin state (e.g., chromatin openness). For CpG methylation measured by WGBS, we averaged the ASM

levels around hetSNVs that fall into the flanking regions of SVs. About 58% of the SV-sample combinations lacked suitable hetSNVs

in the SV flanking regions. We similarly required at least 70% reduction in the methylation levels near SVs, but we included all 45.6 K

SV-sample combinations (6.2 samples per SV), since the general methylation levels of CpGs were high (in 98% of SV-sample com-

binations the methylation levels of the SV flanking regions averaged over the two haplotypes were above 50%). For each chromatin

state, we reported the fraction of SV-sample combinations where the chromatin state was reduced near the SVs (Datas S18B–S18D).

We also repeated the analysis by comparing one individual that carries the SVwith onewho does not. In this case, we excluded SVs

within 5 kb of any other SVs in individual 2 or individual 3, and SVs that fall on the sex chromosomes. We similarly filtered out SVs that

have imprecise breakpoints and/or lowmappability in the neighborhoods. A total of 1,974 SVs in individual 2 and 2,154 in individual 3

passed the filters when Umap mappability was used; the numbers were 2,294 and 2,478 when Bismap mappability was used.

We calculated the average fold-change over control of ATAC-seq and histone ChIP-seq, and the average methylation levels of

CpG sites, in the flanking regions of SVs. For ATAC-seq and histone ChIP-seq, we also excluded SV-assay combinations in which

the sum of the fold-change over the two individuals is less than 1.0, leaving 43–93% of the SV-assay combinations to determine

reduction in chromatin state. For DNAmethylation, we included all SV-assay combinations. To qualify a reduction in chromatin state,

the above signal in the individual who carries the given SVmust be 70% or lower than in the individual who does not. The right panels

of Data S18C show the fraction of SV-assay combinations where a given chromatin state is reduced near the SVs. Again, TE-related

SVs tended to reduce chromatin openness and H3K27ac levels in the neighboring regions.

Decoration process: Layering EN-TEx Information on ENCODE cCREs (related to ‘‘application 1: decorating ENCODE
elements with EN-TEx tissue & AS information’’ in the main text, Figures 3A and S5A)
Signal normalization method

In order to overcome batch effects, matrices of gene expression and histonemarks’ values were quantile-normalized across samples

(tissues and donors). The choice of the quantile normalization method was made after performing benchmarking of several normal-

ization methods. The methods selected for the benchmarking are among the ones analyzed in a recent publication134: quantile

normalization, smooth quantile normalization, upper-quartile normalization, variance stabilization normalization, and local regression

normalization (two variants: LoessF and LoessCyc). These normalization techniques are widely applied in other bioinformatics fields,

such as microarray and proteomics analyses. The pilot analysis was performed independently for two cell lines, K562 and GM12878,

for which different polyA+ RNA-seq evaluation datasets were produced by the Wold, Gingeras, and Graveley labs during ENCODE

Phase II. The benchmarking consisted of three steps: i) for eachmethod, we computed the distribution of Pearson’s and Spearman’s

correlation coefficients across all genes between each pair of samples; ii) we ranked the methods based on the mean of the distri-

bution of all genes’ variance across samples,135 and iii) we calculated the relative log expression distribution (distribution of log2 ratio

for a given gene between one particular sample and themedian across all samples), which should be close to 0.136 Overall, the quan-

tile and smooth quantile normalization techniques performed similarly between each other and better than the other methods. We

thus opted for quantile normalization. For each of the histone modifications used in the decoration procedure below, we provide

the quantile-normalized fold-change signals of cCREs across all the available tissues and individuals. The data file for each of the

histone modifications is a data matrix, in which each row corresponds to a cCRE and each column corresponds to a tissue from

an individual. As a result, the element in the matrix is the quantile-normalized signal of the histone modification observed in the

cCRE from a tissue. These data are available in the following file.

File: cCRE_histoneSignals_qnorm.tar.gz: Normalized signal matrix of histone modifications in cCREs.

Decoration of regulatory annotations

We used the ChIP-seq datasets of both active and repressed marks to decorate (i.e., re-annotate) the cCREs from ENCODE, which

are based on a set of high-quality DNase hypersensitive sites.17 The ENCODE regulatory elements consist of 0.9 million cCREs aver-

aging �400 bp. For each type of functional genomic data, we normalized the activity signals of the cCREs from all tissues and

focused on the cCREs with relatively strong signals (Data S19A). In the decoration, we considered three active marks (H3K27ac,

H3K4me1, and H3K4me3) and three repressed marks (H3K27me3, H3K9me3, and DNA methylation). ChIP-seq datasets were uni-

formly processed using the ENCODE standard pipeline, including alignment, quality control, and peak calling. With the uniformly
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processed ChIP-seq datasets, the average epigenomic signals were calculated and normalized for a registry of cCREs from

ENCODE (Data S19A). Namely, we first calculated the average fold-change against the control, typically input DNA, for each

cCRE. The average fold-change was quantile normalized independently across experiments but jointly between individuals and tis-

sues. Finally, the scores for each experiment were scaled from 1 to 10. For a particular tissue type, we defined a set of cCREs for each

epigenomic mark that are considered as ‘‘active’’ (i.e., thresholding the normalized and scaled quantile values of the cCREs). The

thresholding value was calculated for each assay by maximizing the similarity — the fraction of shared active cCREs — among

the four individuals across tissues. We used the average threshold score across the transverse colon, spleen, and esophagus, since

those were the most commonly comprehensive assays across individuals.

For each tissue, we then defined a set of active, repressed, and bivalent cCREs based on their active and repressed epigenomic

signals, respectively (Data S19B; Figure S5A as an example from spleen). Briefly, the active cCREs show high activity for only the

active marks (i.e., H3K27ac, H3K4me1, and H3K4me3); the repressed cCREs show high activity for only the repressed marks

(i.e., H3K27me3, H3K9me3, and DNA methylation); and the bivalent cCREs show high activity for both the active and the repressed

marks. Note that repressed and bivalent categories are not included in the current ENCODE encyclopedia. The cCREs were then

separated into distal and proximal groups according to their distance to TSSs (proximal as those within 2 kb of annotated TSSs).

We also intersected these cCREs with the CTCF binding sites from the matched tissue type to define CTCF+ and CTCF- cCREs.

Finally, the active and repressed cCREs were further annotated using their allelic signature to identify a set of AS and non-AS cCREs,

respectively. In the AS decoration, we used the allelic signature from the matched epigenomic marks to define the active/repressed

AS and non-AS cCREs. Any active/repressed cCREs intersecting with the AS cCREs were considered to be active/repressed AS

cCREs. The active/repressed AS cCREs from different individuals were pooled together to generate a set of active/repressed AS

cCREs in the corresponding tissue. We found that the numbers of repressed cCREs are comparable to those of active cCREs in

many tissue types, highlighting the necessity of decoration using the repressed markers (Data S19C). Finally, we provided the

cCRE decoration results (Data S19D) in all the tissue types in the following files.

File: cCRE_decoration.matrix: cCREs annotated by the EN-TEx resource.

File: active.combined_set.txt.zip: Active cCREs of all the human tissues.

File: bivalent.combined_set.txt.zip: cCREs that have both active and repressive signals.

File: repressed.combined_set.txt.zip: Repressed cCREs of all the human tissues.

To further explore the association between DNA methylation and other repressive histone modifications (i.e., H3K27me3 and

H3K9me3), we partitioned the repressive cCREs from each tissue type into diverse groups, which contain only DNA methylation

or only repressive histone modifications or both (Data S20D). We found that on average 53.2% of the repressive cCREs contain

DNA methylation (Data S20E), and very few repressive cCREs are supported by multiple repressive epigenomic modifications

(i.e., DNA methylation and H3K27me3/H3K9me3) (Data S20D).

File: Repressive_cCRE_DNAmethy_repressiveHM.zip: Binary tables showing whether the repressive cCREs are supported by

DNA methylation or repressive histone modifications (H3K27me3 and H3K9me3) in each tissue type.

File: Repressive_cCRE_DNAmethy_repressiveHM_summary.csv: Summary of the binary tables showing the number and percent-

age of the repressive cCREs with specific patterns of repressive epigenomic modifications (DNA methylation, H3K27me3 and

H3K9me3) in each tissue type.

A focused subset of the above just giving the cCREs that are methylated is:

File: cCRE_DNAme_subset.tsv.zip: A set of repressed cCREs with DNA methylation signals.

The first column is the cCRE ID and the second column is the tissues in which the cCRE was found. On average, there are 144K

methylated repressed regions per tissue.

In order to further subdivide the active cCREs, we created an annotation set that focuses on regions with high H3K27ac signals. We

call this set the ‘‘stringent’’ annotation set. To create this stringent annotation, we intersected the cCRE regions with the top 1% of

scored regions as prioritized by the H3K27ac feature from the MatchedFilter program.137 This stringent annotation was further used

in other analyses and labeled as ‘‘stringent’’ in the main manuscript and figures. A file containing these stringent regions (bed file) can

be found in the following file.

File: stringent.regions.MF.hg38.bed: Stringent regions with high MatchedFilter scores.

Completely repressed regions

Gene activation and repression can be mediated through the combination of different histone marks. Historically, much effort has

been devoted to elucidating how genes are activated; however, emerging evidence suggests that appropriate heterochromatin for-

mation is required for the preservation of genome stability and the cell type-specific silencing of genes.138 In themammalian genome,

H3K9me3 and H3K27me3 are well-documented histone marks enriched for ‘‘constitutive’’ and ‘‘facultative’’ heterochromatin,

respectively. For genomic regions not containing any active regulatory elements (cCREs), we have identified a set of elements

that are marked by either H3K9me3 or H3K27me3 and do not have any active marks (H3K27ac, H3K36me3, H3K4me1, or

H3K4me3) or transcriptional activities as fully repressed in the EN-TEx tissues. Regions within the ENCODE4 GRCh38 blacklist

(ENCSR636HFF) and GENCODE gene list (GRCh38_v24) were removed. In summary, 45,207 non-overlapping elements of at least

200 bp in size (roughly approximate nucleosome size) are uniquely marked by H3K9me3, spanning 12,655,795 bp (less than 0.4%) of

the reference genome, and 24,006 elements by H3K27me3, spanning 7,474,178 bp (less than 0.3%). As shown in Data S20, nearly

75% of these elements are specifically repressed in a certain tissue, and the rest show some degree of tissue specificity. It was
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previously known that H3K27me3-enriched facultative heterochromatin contains repressed genes in a cell-type-specific manner,

whereas H3K9me3-enriched constitutive heterochromatin mainly occurs at the same gene-lacking regions in every cell

type.139,140 Observations also suggest that large domains of H3K9me2/3 form in a cell-type-specific manner and can influence

cell identity by silencing lineage-inappropriate genes and impeding the conversion of terminally differentiated cells into a different

cell type, highlighting a role for H3K9me3 in cell-type-specific gene regulation.138,141–144 Identified elements can be found in the

following file.

File: ENTEx_fully_repressed_regions_independent_of_cCREs.bed: Genomic regions not containing any active regulatory ele-

ments and marked only by repressive histone marks, not by active marks or transcriptional activity.

DNAmethylation is amajor contributor to gene repression and has been reported to interact with H3K9me3 in chromatin repressive

pathways.145 We further analyzed themethylation rate of CpG sites within these repressed elements. WGBS of CpG sites were avail-

able for 11 EN-TEx tissues that also have H3K9me3 and H3K27me3 ChIP-seq data. For the same tissue from different donors, we

aggregated theCpG reads by taking the sumof reads fromall donors, and considered aCpG site to bemethylated (meCpG)when it is

covered by at least 5x reads and the ratio of meCpG reads is at least 50%. The overall meCpG rate in each tissue was calculated and

used as a control to evaluate the meCpG rate in H3K9me3-and H3K27me3-marked elements. As shown in Datas S20A–S20C, ele-

ments uniquely marked by H3K9me3 show significantly (t test, p values <0.05) higher meCpG rates than elements uniquely marked

by H3K27me3. Compared with the control, H3K9me3-marked regions seem to be hypermethylated, whereas H3K27me3-marked

regions are hypomethylated. This is consistent with the current understanding of constitutive heterochromatin and facultative het-

erochromatin, of which the former is defined by high levels of DNA methylation and H3K9me3 and the latter displays DNA hypome-

thylation and high H3K27me3.146

Validating annotations using the 3D genome organization

Chromosome compartments that are observed fromprincipal-component analysis (PCA) on aHi-C correlationmatrix give insight into

the activity level of the chromatin. Chromosomes are divided into two distinct compartments, A and B, at amegabase scale.147 The A

compartment (positive values) corresponds to the active regions on the chromosome and the B compartment (negative values) cor-

responds to the inactive regions. Chromatin interactions are constrained within the compartment types, e.g., the loci in A compart-

ment interact with the loci in the same compartment. Since A/B compartment assignments are proxies for the activity level of different

loci, our tissue-specific regulatory element annotations can be validated by looking at their corresponding compartment in the tissue-

level Hi-C data. We showed that our annotated tissue-specific active regulatory elements are dominantly located in the active

compartment of the chromosomes of corresponding tissues, with a significantly higher number of regulatory elements permegabase

observed in the positive compartment values when layered onto the first principal component of the Hi-C data.

We have assessed where the cCREs are located with respect to the chromatin compartments. To do so, we first binned the

genome into 1 MB consecutive bins. We then counted the total number of cCREs in each bin and divided that number by the total

number of cCREs in the genome, resulting in the cCRE density per 1 MB. We then plotted this density against the A/B compartment

score obtained by the first eigenvector of the correlation matrix calculated from the Hi-C contact matrix. We performed this analysis

for the master cCRE list from ENCODE3, tissue-specific active cCRE list derived in this study, more restrictive tissue-specific active

cCRE list derived in this study, and tissue-specific repressed cCRE list derived in this study. The scatterplots for two tissues and four

individuals are included in Data S21.

Tissue specificity (related to ‘‘Application 1: Decorating ENCODE elementswith EN-TEx tissue and AS information’’ in
the main text, Figures 3B–3D and S5B)
There aremanymethods for determining tissue specificity, most of which are based on continuous positive values.148 Here, we chose

the simple method of tissue count to determine the tissue specificity of genes/cCREs based on thresholds.148 We chose this method

because we can consistently apply it across different annotations including cCREs, genes, TSSs, and epigenomic peaks. Most of the

other methods that are based on continuous positive values can be only applied on one annotation category (e.g., genes). Briefly, all

genes and cCREs (as well as peaks and TSSs) were defined as active or inactive by thresholding their expression/activity level in a

particular tissue type. The numbers of tissue types in which these genes/cCREs are active were then summarized. For each gene/

cCRE annotation category, we then calculated a tissue-specificity score using the number of genes/cCREs that are active in only one

tissue type divided by the total number of genes/cCREs in the category. The uniqueness scores range from 0 to 1, with higher scores

indicating stronger tissue specificity.

For the genes, we included three gene types: protein-coding genes (fromMS andRNA-seq), lncRNAs, and pseudogenes. To better

estimate the expression level of pseudogenes, we applied our previously developed pipeline to quantify the expression level of pseu-

dogenes, which canminimize the effects ofmultiplemapping bias in RNA-seq data149 (Data S22C).We then applied this pipeline to all

three gene types and defined a set of active genes in the tissues by thresholding the FPKM (fragments per kilobase of transcript per

millionmapped reads) values (FPKM>1 for protein-coding genes; FPKM>0.5 for lncRNAs and pseudogenes) (Data S22A). Over 40%

and 35% of the detected pseudogenes and lncRNAs, respectively, were actively transcribed in a single tissue, confirming that non-

coding RNAs exhibit higher tissue specificity than protein-coding genes.150,151 Of the pseudogenes demonstrating tissue specificity,

a large fraction showed transcriptional activity only in testis (Data S22B). For the cCREs, we used the decorated annotations in the

tissues to calculate the tissue-specificity scores as described above (Figure S5B and Data S22D). We also explored the tissue

specificity of regulatory elements and epigenomic peaks (Figure 3B). The epigenetic profiles analyzed, including H3K27ac and
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DNase-seq, demonstrated tissue specificity, with the exception of DNAmethylation, which exhibited ubiquity. An example of the tis-

sue specificity of RAMPAGEdata (for TSSs) is shown in Data S22E. The tissue specificity of the genes, cCREs, and epigenomic peaks

are shown in the following file.

File: Tissue_Specificity.zip: The tissue specificity of gene expression and functional signals of cis-regulatory elements.

Tissue specificity of ASB and ASE

Similar to H3K27ac-ASB cCREs (Figure 3), most ASE geneswere detected in a single tissue (Data S22F). For the�20 genes that were

detected as ASE across all tissues, the allelic imbalance is in the same direction (Data S22G). We further compared our pan-tissue

H3K27ac-ASB and ASE genes with housekeeping genes. Annotation results are shown in Data S22H–S22I. Furthermore, the non-AS

categories show a "U" shape trend between fraction of elements and tissue specificity, indicating that there aremany non-AS cCREs

either extremely tissue specific or ubiquitous, whereas (bottom) the AS categories demonstrate an "L" shape trend between fraction

of elements and tissue specificity, indicating that there aremany AS cCREs extremely tissue specific but not ubiquitous. In particular,

‘‘fraction’’ refers to the fraction of elements falling in a given bin of the histogram. In other words, we take the original frequency from

the histogram and divide it by the total number of elements for that category.

The effect of tissue specificity on conservation

The tissue-specificity influence on conservation is shown in Data S23A. Candidates are separated into categories of active, bivalent,

and repressed. The number of candidates, rare derived allele frequency (DAF) values, and corresponding total SNP counts (from gno-

mAD) are given as a function of increasing tissue specificity (shared tissue count). In order to select rare variants, a MAF of 0.05

was used.

Various decorations further subdivide the categories and affect the conservation level, based specifically on whether elements are

distal or proximal as well as if they are CTCF bound or not. Conservation is shown for both phastCons (cross-species) and rare DAFs

(cross-population) in Data S23B. Furthermore, we check the statistical significance of the difference in conservation and tissue spec-

ificity of non-AS and AS active (distal or proximal) cCREs. A proportion test is used in each case and all differences are measured to

be p value<2.2e�16.

We show the conservation across active and repressed cCREs in both ubiquitous and tissue specific cases in Data S23C. We

include the results across the 1,000 Genomes, Pan Cancer Analysis Working Group, and gnomAD projects. Additionally, we

show an increase in conservation when filtering for high H3K27ac signals (using stringent definitions for active elements with

MatchedFilter137), which is supported by all three datasets. The overall conservation calculation is described in the section below.

The relationship between purifying selection and regions exhibiting allele specificity

The fraction of causative variants may be estimated by purifying selection. The analysis by the NIH Roadmap Epigenome project of

epigenomes from 36 distinct cell and tissue types from 13 donors suggests that the donor genomes harbor on average at least 200

regulatory variants that are under purifying selection and therefore detrimental.28

In order to calculate the purifying selection on AS events, population-scale variants from three cohorts were used. We used two

measures of purifying selection and conservation for this analysis. The first is the fraction of rare variants, which is calculated as #rare/

(#rare + #common) for variants falling in a given AS region. In order to categorize variants as rare or common, ancestral alleles (i.e., the

measurement was a DAF) and a MAF threshold of 0.05 were used. MAF is a commonly used metric for calculating selection in pop-

ulations.22,28,44 When considering the number of variants in each category, we found that across all tissues and individuals, 8,294 out

of 128,448 ASB variants were rare. Of the 2,711,078 total non-ASB variants, 274,287 were rare. In total there were 40,123 ASE+ var-

iants, of which 2,961 were rare. Finally, of the 624,210 ASE-variants, 70,370 were rare. The second method we used is phastCons,

which measures the cross-species conservation.152 All purifying selection analyses (rare DAF and phastCons) were performed for

AS/non-AS cCREs, ASB/non-ASB H3K27ac regions, and ASE/non-ASE genes. The results are shown in Data S23D–S23G. Further-

more, we found that proximal AS events in the promoter were under stronger selection as compared to distal AS events.

Decoration enrichments: Relating encyclopedia decorations to QTLs and GWAS loci (related to ‘‘application 1:
decorating ENCODE elements with EN-TEx tissue & AS information’’ in the main text and Figures 4B and 4C)
We utilized various methods to evaluate the regulatory impact of our cCRE decorations. QTL and GWAS SNPs are important func-

tional genomic variants and are useful for interpreting the function of our decorations. We performed GWAS enrichment analysis us-

ing eQTL and GWAS SNPs to assess the disease relevance of our cCRE decorations.

QTL enrichment analysis

We estimated the QTL (eQTL and sQTL) enrichment in the cCREs by calculating an odds ratio (OR) score using the numbers of real

QTL SNPs and control SNPs located in the cCREs compared to those in the baseline regions (Data S24A).

OR =
a=b

c=d

in which a is the number of QTL SNPs in the cCREs; b is the number of control SNPs in the cCREs; c is the number of QTL SNPs in

the baseline region; and d is the number of control SNPs in the baseline region.

The eQTL and sQTL SNPs were downloaded from GTEx v8.15 The baseline regions are the union of all the functional and putative

functional regions in the human genome, including coding regions, untranslated regions, non-coding RNA genes, open chromatin

regions, TF binding sites, active and repressed histone peaks from multiple tissue and cell types, and evolutionary conserved
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regions.153 The set of control SNPs was generated with the same number and same MAF distribution as the real QTLs, and this pro-

cedure was repeated 30 times to calculate a SD for the SNP enrichment. The results of the QTL enrichment are in the following file.

File: QTL_enrichment.zip: The enrichment of QTL in cis-regulatory elements (cCREs).

We also compared the eQTL/sQTL enrichment in the regulatory elements from EN-TEx with those fromRoadmap (Datas S24B and

S24C). First, we found that the distal regulatory elements from EN-TEx show stronger enrichment than the enhancer annotation from

Roadmap. In addition, the active proximal regulatory elements from EN-TEx show stronger eQTL/sQTL enrichment than the TSS-

associated annotations from Roadmap.

GWAS enrichment analysis

We downloaded the GWAS tag SNPs from the GWAS Catalog.154 We performed several steps of quality control to generate a set of

high-quality GWAS tag SNPs by removing some insignificant SNPs (p values >5*10�8), low-confidence SNPs, and SNPs from non-

European studies. We also removed all SNPs in the human leukocyte antigen locus (for hg38: chr6:29,723,339-33,087,199). Next, we

extended the set of tag SNPs by including the SNPs in high linkage disequilibrium (LD scores >0.6) with the tag SNPs, which can

generate more SNPs to increase the statistical power in the enrichment analysis. Some GWAS with very few LD-extended SNPs

were removed. This approach resulted in a clean dataset with �70K unique tag SNPs from 1,140 GWAS covering 717 unique traits.

In Figure 4B, we show the LD score regression (LDSC) (left two panels) and GWAS enrichment (right panel) results for the analysis

detailed here.

We then applied the hypergeometric test to estimate the enrichment of the GWAS tag SNPs in the cCREs from a particular tissue

type (Data S25A).

PðX = kÞ =

�
K
k

��
N � K
n � k

�
�
N
n

�

in which N is the total number of cCREs in the genome; K is the total number of cCREs that carry GWAS tag SNPs; n is the number

of cCREs in a particular tissue type; and k is the number of cCREs in a particular tissue type that also carry GWAS tag SNPs. Notably,

we extended the cCREs 500 bp on both sides in the calculation (Data S25C). The results of the GWAS tag SNP enrichment are shown

in the following file.

File: GWAS_enrichment.zip: GWAS enrichment of cis-regulatory elements (cCREs).

For the active distal cCREs, we identified 141 GWAS that are enriched in at least one tissue type (Data S25D). However, for the

active proximal cCREs, we did not find any enriched GWAS in any tissue type. These results are consistent with previous studies

showing that the causal GWAS SNPs are enriched in the enhancers instead of the near-gene promoters64,155 and also suggest

that the active distal cCREs from our decoration are indeed significantly enriched in enhancers as we observed in the original Road-

map annotations (Data S25E).

Stratified LDSC values were also calculated for each tissue using 1,000 Genomes LD scores and GWAS summary statistics pro-

vided by Bulik-Sullivan, et al. This approach regresses chi-square statistics from the GWAS summary statistics with LD scores to

estimate partitioned heritability in a disease-specific manner. The p value indicates enrichment for a particular trait within an

annotation.

In Data S25D, we show the p value enrichment of each tissue with respect to various GWAS traits. Notably, distal active AS regions

experienced higher enrichment compared to distal active non-AS regions (Data S25F), and both types of regions experienced higher

enrichment compared to the original Roadmap annotations (Data S24C). For LDSC enrichment analysis of distal active elements in

coronary artery (Data S25B), we found stronger associations between AS elements with respect to celiac disease, neuroticism, and

type II diabetes, which were elucidated in previous clinical studies.156–158 These results demonstrate that AS elements can signifi-

cantly improve GWAS trait enrichment compared with the total set of elements across different traits as well as diverse tissue types,

indicating that AS elements are valuable for the interpretation of GWAS data and that they potentially help pinpoint small subsets of

regulatory elements driving a trait in specific tissues.

Compatibility: Analysis of the Compatibility Between Assays (related to ‘‘application 2: relating AS SNVs to GTEx
eQTLs & modeling eQTLs in hard-to-obtain tissues’’ in the main text, Figures 4A, 4D, S5C, and S5D)
Compatible and incompatible: Single chromatin mark vs. gene expression

Using the methods described in previous sections, we identified promoters (±2 kb from the TSS) with allelic imbalance in the chro-

matin states measured by H3K27ac, H3K27me3, etc. We determined the compatibility between AS promoter chromatin states and

AS gene expression in a straightforward way. The allele with more active promoter chromatin should have higher expression levels,

otherwise the promoter and the gene are incompatible. Similarly, alleles with more repressed promoter chromatin are compatible

with lower expression levels. We treated histone marks H3K27ac, H3K4me3, and H3K4me1, chromatin openness indicated by

ATAC-seq or by DNase-seq, and the binding of EP300, POLR2A, POLR2AP, and CTCF, asmarks of active chromatin. Histone marks

H3K27me3 and H3K9me3, and CpG methylation were considered as marks of repressed chromatin.
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Because AS gene expression and/or AS chromatin state can be tissue specific and/or individual specific, we did not merge

compatible (or incompatible) promoter-gene pairs that appeared in multiple samples. Overall, the average number of ASE genes

compatible with at least one of the 13 marks was 35 per tissue per individual, while the average number of ASE genes suitable for

the compatibility analysis (i.e., the promoters of these genes were accessible for measuring the potential AS chromatin state indi-

cated by any of the 13 marks) was 226 per tissue per individual.

We note that some assays were performed twice for a given tissue of a given individual. For example, the RNA-seq data of indi-

vidual 3’s liver includes two experiments (ENCSR226KML and ENCSR504QMK), while there is only one H3K27ac ChIP-seq exper-

iment for the same sample. In another example, there are two CTCF ChIP-seq experiments for individual 3’s spleen (ENCSR756URL

and ENCSR773JBP), while there is only one RNA-seq experiment for the same sample. In these cases, we combined ASE genes or

ASB promoters that were called from either of the duplicated experiments, excluding those where the directions of the allelic imbal-

ance were the opposite in the two experiments. The combined ASE genes and ASB promoters were analyzed for compatibility and

the results are listed in the following file.

File: Supp_Data_Compatibility.xlsx: The compatibility of genes with ASE in each tissue and individual.

To test the numbers of compatible vs. incompatible promoter-gene pairs, we identified genes that have ASE in at least one tissue of

at least one individual. We shuffled the gene-promoter relation for these genes and calculated the ratio of N_compatible vs. N_incom-

patible. We repeated this process 1,000 times for each chromatin mark (after excluding replicates where N_incompatible is zero) to

calculate a Z score of the ratios shown in Figure S5D.

Compatibility of AS expression and binding with eQTL effect

We used the GTEx v8 catalog of known tissue-specific eQTLs (GTEx Consortium, 2020) to evaluate compatibility of AS expression

and binding in the EN-TEx individuals with eQTL effect. For ASE, we identified all eGene-eQTL pairs where the eGene is AS in match-

ing EN-TEx tissues and the eQTL is a heterozygous variant present in the EN-TEx donors. We used the slope (beta coefficient) of the

eQTL and calculated the AS gene ratio of the number of reads mapped to the haplotype with the alternative allele. For ASB, we iden-

tify all GTEx eQTLs that are H3K27ac ASB hetSNVs in matching tissues and calculate the AS ratio of reads with the alternative allele.

The slope is positively correlated with the AS ratio (see Figures 4A and 4D and more details in Datas S26B and S26C and in the

following file).

File: AS_ratios_and_eQTL_effect.tsv: Compatibility between GTEx eQTLs and EN-TEx AS expression and binding.

Compatibility with AS proteomics

Of the high-stringency ASP set, 114 were overlapped with ASE events calculated from RNA-seq data, 58 showed compatibility, and

56 showed incompatibility (Data S26D). The Z score 0.26 of the ratio of the compatible to the incompatible (based on ASP/ASE pairs

being randomized 1,000 times) was not significant (p < 0.05), indicating that the compatibility between the RNA-seq and protein-level

allele expression is near random. Although some of this incompatibility is likely due to technical issues, manual examination of the

most biased ASPs-overlapping ASEs showed compelling evidence for ASP expression, implicating post-translational regulation

(Data S26E).159,160 For some of the incompatible cases, there are clear biological reasons for the difference between the ASP and

ASE ratios such as frameshift variants. More results of the compatibility between ASP and ASE are included in the Supp_data_com-

patibility.xlsx file described in the previous section ‘‘compatible and incompatible: single chromatin mark vs. gene expression’’.

Enrichment of ASE genes near ASM promoters

We evaluated the association between the ASMof the promoters and the ASE of the corresponding geneswhile ignoring the compat-

ibility between the two. We annotated all hetSNVs showing ASMwith the closest associated gene based on the refGene database161

using ANNOVAR.122 Chi-squared tests were used to determine whether ASE is significantly enriched among genes associated with

ASM hetSNVs in promoter-like sequences (PLSs) identified by ENCODE17 with or without AS of TF binding compared to that among

genes only associated with ASM hetSNVs in non-cCREs.17 Significant enrichment was called at p values <0.05 and error in enrich-

ment was estimated based on binomial distribution. Data S26F shows that genes with ASE are more highly enriched near PLSs with

ASM and/or TF binding than near non-cCREs with ASM.

transferQTLmodel: Extending eQTLAnnotation of Hard-to-obtain Tissues (related to ‘‘Application 2: relating ASSNVs
to GTEx eQTLs & modeling eQTLs in hard-to-obtain tissues’’ in the main text, Figures 5 and S6)
Correlation between chromatin features and eQTL activity

We overlapped chromatin (histone marks and TFs ChIP-seq, DNase-seq, ATAC-seq) peaks with GTEx catalogs of eQTLs and fine-

mapped eQTLs for every EN-TEx sample and observed a higher overlapping proportion in the case of fine-mapped eQTLs (Fig-

ure S6A and Data S27A). We obtained fine-mapped eQTLs after intersecting eQTLs with a posterior probabilityR0.8 from the three

GTEx fine-mapping eQTL catalogs (CAVIAR, CaVEMaN, and DAP-G; see https://gtexportal.org/home/datasets#filesetFilesDiv15).

Next, we identified 1,353,101 SNVs that show tissue-specific eQTL activity: these SNVs areGTEx eQTLs inR5 EN-TEx tissues and

are not GTEx eQTLs inR5 other EN-TEx tissues. Thus, for every SNV we defined two groups of tissues: i) tissues in which the SNV is

an eQTL, and ii) tissues in which the SNV is not an eQTL. In this way, we could compute at which frequency the SNVs aremarked by a

particular histone modification when they do or do not show eQTL activity. We observed that SNVs are more likely to be marked by a

given histone modification in the tissues in which they are eQTLs, compared to the tissues in which they are not eQTLs (Figure S6B

and Data S27B). For each histonemark, we excluded lowly marked SNVs, i.e., SNVs overlapping with chromatin peaks in <10%of all

EN-TEx ChIP-seq samples for that particular histone mark.
e25 Cell 186, 1493–1511.e1–e31, March 30, 2023

https://gtexportal.org/home/datasets#filesetFilesDiv15


ll
OPEN ACCESSResource
Predictive model that transfers eQTLs from a donor tissue to a target tissue

In this section, we explain how we trained a machine learning model that can predict the tissue-specific activity of a set of eQTLs.

Specifically, one such model takes as input a set of SNV-eQTLs previously identified in a given tissue (i.e., donor tissue) and predicts

whether each of these SNVs is also an eQTL in another tissue (i.e., target tissue). Practically, the goal is to transfer eQTLs from a donor

tissue to a target tissue (Figures 5A and S6C). Because of this, we called this application ‘‘transferQTL’’.

For a given donor-target tissue pair, we first retrieved the set of GTEx donor-tissue SNV-eQTLs associated with a single eGene,

and randomly partitioned them into training and test sets (containing 70% and 30% of SNV-eQTLs, respectively). Next, we trained a

random forest model by providing, for every SNV-eQTL, a number of features related to either the donor or target tissue (see Data

S28A). The response class was defined as ‘‘yes’’ if the SNV-eQTL was annotated as GTEx eQTL in the target tissue, and otherwise

was defined as ‘‘no’’. We trained the random forest model using the R package caret162 and by implementing a 5-fold cross-valida-

tion schema.

Only chromatin data from EN-TEx assays (histone marks and TFs ChIP-seq, DNase-seq, ATAC-seq) were employed. For this

reason, the number of features employed in the model for a given target tissue depends on the type of EN-TEx experiments available

for that particular tissue (i.e., if no ATAC-seq experiments were performed for lung tissue, then features ‘‘ATAC’’ and ‘‘ATAC_k’’ would

not be employed to predict eQTLs in lung tissue). We downloaded a BED file containing repeated regions annotated in GRCh38 from

http://genome.ucsc.edu/cgi-bin/hgTables, after setting ‘‘group’’ = ‘‘repeats’’ and ‘‘track’’ = ‘‘Repeatmasker.’’ We downloaded a BED

file containing ENCODE candidate cCREs from https://api.wenglab.org/screen_v13/fdownloads/GRCh38-ccREs.bed.

Because GTEx eQTLs catalogs are available for matched EN-TEx tissues, we considered all possible pairs of donor-target tissues

among 28 deeply sampled EN-TEx tissues, leading to a total of 756 (28*27) predictive models. For simplicity, we can consider these

as different tissue-specific parameterizations of the general predictive model. We hereafter refer to the 756 donor-target models as

‘‘submodels.’’ Thus, a submodel is defined as the model for a particular donor-target tissue pair. For each target tissue, we have 27

submodels, each using a different donor tissue.

In the case of artery aorta, we combined data from experiments performed on both ascending aorta (individuals 1 and 2) and

thoracic aorta (individuals 3 and 4).

The pipeline code to obtain the input matrices and train the predictive models can be found at https://github.com/gersteinlab/

transferQTL. The model objects are available in the following ancillary files.

File: R6_RData.objects: All transferQTL submodels obtained using eQTLs from a given donor tissue.

File: R6_RData.4hm.objects: All transferQTL submodels obtained using chromatin features from only four histone marks

(H3K36me3, H3K27ac, H3K4me1, H3K27me3), in addition to the non-chromatin features.

Model performance, validation, and application

Weused several metrics (seeData S28B) to evaluate the performance of each submodel on either the five cross-validation folds (Data

S28C) or the test set (Figure 5B and Data S28D). The mean balanced accuracy across donor tissues is 0.86.

We further decomposed the submodels’ performance by considering different sets of SNVs (Figure 5C). Specifically, within a given

submodel’s test set, we identified sets of true positives (TPs: SNVs classified as eQTLs in a given target tissue that are also GTEx

eQTLs in the same tissue), false negatives (FNs: SNVs not classified as eQTLs but that are GTEx eQTLs in the target tissue), false

positives (FPs: SNVs classified as eQTLs but that are not GTEx eQTLs), and true negatives (TNs: SNVs not classified as eQTLs

that are not GTEx eQTLs) SNVs. The violin plots in Figure 5C show distributions of GTEx nominal p values in the corresponding target

tissue for these four sets of SNVs (each point of the distribution corresponds to the median p value of an SNV set in one of the 756

submodels). Of note, the significance of the TP and FP sets is stronger compared to the FN and TN sets. This suggests that ourmodel

i) predicts the strongest among all GTEx eQTLs in a target tissue and ii) could help prioritize some of the SNVs with marginally sig-

nificant p values discarded byGTEx. The number of ‘‘additional likely eQTLs’’ (i.e., the SNVs classified as eQTLs by ourmodel but that

are not present in theGTEx catalog) can be found in Data S28E.We identify an average of�160K additional ‘‘likely’’ eQTLs per tissue.

This list of eQTLs can be found in the following ancillary file.

File: perTissue.likely.eQTLs.tsv: Additional ‘‘likely’’ eQTLs in each target tissue predicted across all transferQTL submodels.

For 4 of the 28 tissues, we focused on additional eQTL catalogs other than GTEx, available from66: i) pancreatic islets eQTLs (van_

de_Bunt_2015 dataset) matched to pancreas (PNCREAS); ii) muscle eQTLs (FUSION dataset), matched to skeletal muscle

(GASMED); and iii) skin eQTLs (TwinsUK dataset), matched to both suprapubic (SNINNS) and lower-leg (SKINS) skin. Thus, for these

four tissues we evaluated the proportion of eQTLs identified by these studies (SNVs with p value <10�5) that were also classified as

‘‘eQTLs’’ in the test set of the relevant target tissue (pancreas, muscle, or skin) by our submodels (see Figure 5D). The eQTL catalogs

used in this analysis were downloaded from http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/(files ‘‘.all.tsv.gz’’).

Currently, large-cohort eQTL studies are restricted to tissues such as blood that can be easily obtained from donors (e.g., over

30,000 donors in67), while most other tissues are difficult to profile in a large number of individuals. For this reason, and to showcase

the utility of our predictions, we have directly applied our model to a set of >1.5 M blood eQTLs from.67 In this way, we could predict

which of these blood eQTLs are active in every EN-TEx tissue (Figure 5E and Data S28F–S28G). We downloaded the eQTL catalog

from https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/(2019-12-11-cis-eQTLsFDR0.05-ProbeLevel-CohortInfoRemoved-

BonferroniAdded.txt.gz). Specifically, we selected 1,547,430 blood eQTLs found to be associated with only one eGene in the original

study and lifted them over to the assembly GRCh38 using LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). The metric ‘‘GTEx

v8 eQTL-eGene regression slope’’, which was one of the predictive features employed in the training step (Data S28A), was not
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available in this second eQTL catalog; thus, for these predictions we instead used the metric log2(Z score). Since blood tissue is not

included in the EN-TEx collection and given that we do not currently have any submodel using blood as donor tissue, we applied each

of the 756 submodels trained on GTEx data to this blood eQTL set. As an example, when using artery aorta as donor tissue, we trans-

ferred up to 60% of the blood eQTLs to some of the EN-TEx tissues, such as thyroid and tibial artery (Figure 5E and Datas S28F–

S28G). These results were computed after excluding those eQTLs contained in the original training sets. The number of additional

‘‘candidate’’ eQTLs transferred from this external blood eQTL catalog to each GTEx tissue is shown in Data S28G. On average,

we identified �500K candidate eQTLs per tissue. Results are available in the following ancillary file.

File: predictions.blood.eQTLs.tar.gz: Predictions of transferQTL submodels using the blood eQTLs from Vosa et al., Nat

Genet 2021.

Please note that these ‘‘candidate’’ eQTLs represent a more speculative set of novel eQTLs compared to the average-per-tissue

�160K ‘‘likely’’ eQTLsmentioned above. Themain difference is that the 160K ‘‘likely’’ eQTLs are obtained by leveraging donor-tissue

eQTL-eGene pairs identified in GTEx tissues, while the �500K ‘‘candidate’’ eQTLs are obtained by leveraging donor-tissue eQTL-

eGene pairs identified in the large-cohort eQTL blood study, many of which are not reported by the GTEx catalog (see67).

Model interpretation

To facilitate the interpretation of themodel, we computed, across the test set of each submodel, the correlation between the level of a

particular feature at a donor-tissue eQTL and the probability of classifying the donor-tissue eQTL as an eQTL in the target tissue. In

Figure 5F we show, for the first 15 features in Data S28A, the strongest correlation coefficient (i.e., the coefficient with the largest

absolute value) obtained across all 756 submodels. This analysis highlights that most chromatin features, with the exception of

H3K27me3, are positively correlated with predicting eQTLs in a given tissue, while other features are negatively correlated (e.g., tis-

sue specificity of the eGene and distance from the eGene’s TSS).

Data S29A shows a comprehensive representation of these correlation patterns across all predictive features and submodels. In

this case, we discarded 4 of the 39 features (‘‘POLR2A’’, ‘‘POLR2Aphospho5’’, ‘‘EP300’’, and ‘‘POLR2A_k’’) since they were not used

in a large proportion of the submodels (because ChIP-seq assays for these TFs were performed on a limited number of tissues; for

more details on these features see Data S28A). We thus focused on 432 donor-target submodels that did not have missing data for

the remaining 35 features. The heatmap in Data S29A shows, for each of these 432 submodels (rows), Pearson’s correlation coef-

ficients between the level of predictive features (columns) at donor-tissue eQTLs in the target tissue and the probability of donor-tis-

sue eQTLs being classified as eQTLs also in the target tissue (clustering method: ‘‘Ward.D2’’, clustering distance: ‘‘manhattan’’). The

vast majority of the chromatin features show stronger correlations in a specific set of submodels, as highlighted by hierarchical clus-

tering (cluster at the bottom).We found that these submodels use donor tissueswith larger GTEx sample sizes (Data S29A, right side).

Thus, chromatin features have a stronger impact when transferring eQTLs from donor tissues with larger sample sizes, which tend to

detect more eQTLs albeit with lower effects.15,16 By contrast, certain features appear to be systematically either negatively (‘‘tis-

sue_specificity’’, ‘‘tss_distance’’, ‘‘H3K27me3_k’’) or positively (‘‘sum’’, ‘‘is_proximal’’, ‘‘H3K36me3’’, ‘‘H3K36me3_p’’) correlated

with the SNV’s probability of being an eQTL, independent of the donor tissue. These results suggest that donor-tissue eQTLs

with a higher number of chromatin peaks and/or marked by H3K36me3 in the target tissue are more likely to be eQTLs in the target

tissue as well. Conversely, donor-tissue eQTLs associated with tissue-specific genes, or that are located far from the eGene’s TSS,

are less likely to be transferable from one tissue to another.

Because of this, and with the goal of simplifying the interpretation of these models, we evaluated whether two simple rules could

help transfer eQTLs from one tissue to another. In Figure 5G we show that, on one hand, donor-tissue eQTLs either characterized by

strong chromatin activity (feature ‘‘sum’’R 3) in the target tissue, or whose eGene is constitutively expressed across EN-TEx samples

(feature ‘‘tissue_specificity’’ < 0.8), tend to be eQTLs also in the target tissue (rule #1: 67% eQTLs, 33% not eQTLs). On the other

hand, donor-tissue eQTLs that have low chromatin activity (feature ‘‘sum’’ = 0) in the target tissue and whose eGene shows tis-

sue-specific expression (feature ‘‘tissue_specificity’’ > 5) are less likely to be eQTLs in the target tissue (rule #2: 23% eQTLs, 77%

not eQTLs). Figure 5G refers to the specific case employing testis as the donor tissue and thyroid as the target tissue. Data S29B

shows that these findings are generalizable across all the 756 donor-target tissue pairs.

Evaluating the impact of tissue specificity on predicted eQTLs

Many of our predicted eQTLs are fairly ubiquitous, but we also report a considerable fraction of predicted eQTLs that are active only in

a small fraction of GTEx tissues (see Data S29C). To demonstrate that our random-forest model (transerQTL) is not simply predicting

ubiquitous eQTLs, we built a simple strawman model that transfers eQTLs to a given tissue based on the tissue specificity of the

eQTLs. We transferred eQTLs based on different thresholds of tissue specificity, from including very tissue-specific eQTLs (active

in at least 10% of GTEx tissues) to transferring only very ubiquitous eQTLs (active in at least 90% of GTEx tissues). In Figure S6D

and Data S29D we show that the performance of this simplified model, combined with different thresholds of tissue specificity for

eQTL activity, is worse compared to the performance of our transferQTL model.

Sensitive motifs: The Relationship Between AS SNPs and TF Motifs (related to ‘‘application 3: modeling AS activity
from variant impact on the nucleotide sequence, highlighting "sensitive" TF motifs’’ in the main text, Figures 6A, 6B,
and S7A)
We collected 660 human TFmotifs from theCis-BP database.68 Specifically, we required themotifs to be from protein-bindingmicro-

array and SELEX-based experiments. Position weight matrices (PWMs) from multiple motifs are combined into a single PWM file for
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each TF. We used FIMO163 with p < 10�e4 to scan the motif occurrence in the human genome. We then intersected the AS SNV file

with each motif occurrence file with bedtools and retrieved the contingency table of counts of SNPs depending on whether an SNV

wasAS andwhether an SNVwas in amotif. AnORwas used as themeasurement of AS enrichment and Fisher exact test was used for

statistical significance (p < 0.05). The motifs were then ranked based on the OR. For H3K4me3 ChIP-seq-based or any other assay-

based ranking, only the SNVs that were accessible in that assay were used to intersect with the motifs. In addition, we annotated all

EN-TEx SNVs with whether they overlap with TF motifs and whether they overlap with cCRE regions. The full result of the motif

ranking and SNV annotation can be found in the following files.

File: motif_ranking.tsv: List of motifs with their OR, p values and rank in overall or in a specific assay.

File: SNPs_motif_cCRE.txt.gz: Relationship among SNVs, motifs, and cis-regulatory elements.

In the SNV annotation file, the first three columns show the coordinates of the SNV. The fourth column is a list of names of TFs

whose motifs overlap with this SNV. The sixth column is the ID of the overlapping cCRE regions.

For the conservation score of the motifs, we downloaded the genome-wide phyloP score from the UCSC Genome Browser. For

each occurrence of the motif, the conservation score of the region was determined by the mean of each base (from UCSC Kent_tool

bigWigAverageOverBed). The conservation of the TF was the mean of the scores from all occurrences of its motifs. The entropy of a

motif was calculated by sum(-plog(p)) where p is the relative frequency of each base in each position. The fraction of CG of a motif

was calculated as the number of positions where C or G was the most frequent base, divided by the length of the motif. Spearman’s

correlation was used for all pairs of the rank and each motif property (Datas S30F–S30G).

To test whether the GC content and motif entropy biased our result, we tried to remove their effect under a linear model. We used

theGC content andmotif entropy as variables to predict the AS enrichment score, and then re-ranked the TFmotifs using the residual

of the model only (Data S30H). The formula is:

OR = b1 �GC content + b2 �motif entropy + ε
where OR is the odds ratio and ε is the residual. We solved the lin
ear regression by minimizing the ordinary least squares to get the

estimated b1 and b2 as cb1 and cb2 . The residual with GC content and motif entropy effect corrected is calculated as:

εcorrected = OR � cb1 �GC content � cb2 �motif entropy

We then re-ranked the TF motifs by εcorrected. We found that the rankings of original top 100 motifs were largely preserved (Data

S30H). For example, the Pearson correlation between the original rank and the new residual-corrected rank was 0.64

(p < 1.1e�12) for the top 100 but dropped to 0.03 (p < 0.416) for the rest of the TF motifs. This result suggests that the top 100 motifs

are not strongly affected by the GC content and further justifies using the top 100 for the downstream analysis.

Each motif’s family information was obtained from Cis-BP as well. We noticed that the top-ranked motifs were more likely to be in

the C2H2 zinc finger family. A C2H2-ZF domain typically contains 3–4 base-contacting residues, and zinc finger proteins usually

contain multiple tandem C2H2-ZF domains. The individual DNA motifs of these tandem domains often overlap with each other

and assemble into the full-length motifs we observed in SELEX (e.g., 4-mer and another 4-mer overlapping by one base results in

a 7-mer).69 Thus, mutations in the overlapping base in the middle of the motif might be more likely to affect the binding affinity of

the TF. Consistent with this reasoning, we observed that AS SNVs occurred more frequently in the ‘‘conjunction’’ base while non-

AS SNVs occurred relatively randomly across all positions of the motif (see FOXO3 in Figure 6).

AS promoter: Prediction of Promoter AS Activity with a Random Forest Model (related to ‘‘application 3: modeling AS
activity from variant impact on the nucleotide sequence, highlighting "sensitive" TF motifs’’ in the main text,
Figures 6C and S7B)
We trained a random forestmodel that could predict the ASBstate of the gene promoters in an assay and in an individual tissue-specific

manner. We call this the "reverse" model as it goes from gene to promoter. The models achieved good performance on both internal

EN-TEx andRoadmapSTL002/3 data (Data S31A). After testing different combinations of features,modelswere built using four features

(Data S31B) according to Gini impurity-based importance scores. The first feature is the number of the top 100 AS sensitive TF motifs

that intersect the SNV. The second feature is those within 100 bp of the SNV that do not intersect. The third feature is the number of the

660 TFmotifs distal to the SNV (i.e., >100 bp away). AS bound promoters have significantly moremotifs than non-AS bound promoters

(also see Data S31D). The fourth feature is the AS imbalance ratio between transcripts from haplotype 1 and haplotype 2. In addition to

the feature importance score from the random forest model, we investigated the association of each feature with ASB promoters, indi-

cated by an R2 score (Data S31C). Other features (including gene expression level, eQTL, all 660 non-ranked TF features in the pro-

moter) were tested but proven to not be informative (Data S31D).We applied ourmodel on a large scale to the entire GTEx cohort (>800

people) to predict AS promoters from the available genotypes and ASE data. The GTEx individuals, gene names, assay types, predic-

tions of the associated promoter, and additional results of the model are included in the following file.

File: ASB-predictions-on-GTEx-cohort.tsv: Results of AS binding prediction model on GTEx.

We also constructed a "forward" model to predict ASE from ASB. Specifically, to interrelate AS activities of genes and promoters

(Data S31E), a random forest model was trained using assay-based annotations of the promoters. The assay-based ASB of the pro-

moters was informative for the prediction of ASE genes (Data S31F), but we did not have enough validation data for a full evaluation.
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Transformer model: Prediction of AS Effect with a BERT Model (related to ‘‘application 3: modeling AS activity from
variant impact on the nucleotide sequence, highlighting "sensitive" TF motifs’’ in the main text, Figures 7 and
S7C–S7E)
Strawman random forest model for AS prediction of CTCF binding regions

A random forest model was trained with the following features to predict the tissue-specific AS effect labels for CTCF.

(1) the prediction score of the sequence-based transformer model

(2) the tissue-specific epigenomic signals (DNase and histone marks, but excluding CTCF) averaged across the input sequence

region

We considered the transformer model score as an indicator of sequential patterns that are genetically related to AS effects, which

was then modified with tissue-specific epigenomic features to predict the tissue-specific AS effect.

Training and testing data were split by a 3:1 ratio for each tissue of each individual. For each of the four individuals, we trained a

separate model using all the tissue data of the individual. The max depth for the random forest was chosen using a grid search from 2

to 9.

BERT model

BERT is a natural language model based on the Transformer neural network architecture. This model has been widely applied to nat-

ural language processing due to its ability to incorporate long-range contextual information.164 Thus, it can also be applied to extract

meaningful sequential patterns from genomic sequences, such as to predict AS effects of SNPs.

We extracted the 128 bp sequence upstream and downstream of the SNP in question as the input. The sequences were labeled as

positive or negative based on their AS effects. For balancing considerations, the negative set was randomly downsampled to the

same size as the positive set. The dataset was then split into training, cross-validation, and testing sets at a 8:1:1 ratio.

We initialized the BERTmodel with the weights of the pre-trained DNABERT model.70 A single-layer classifier was added on top of

the output of DNABERT and the model was fine-tuned on the AS datasets. For fine-tuning, we selected from a range of hyperpara-

meters (learning rate = 1e�5, 5e�5; training epoch = 5, 10, 20). As the pre-trained DNABERTmodel has different versions with k-mer

sizes of 3–6, we report the model with the highest performance.

Themodel was first trained with only SNPs from donor individual 3 to predict the "pooled" AS SNVs (i.e., SNVs that were active in at

least one tissue). For many of the prediction tasks, the model achieved a performance of AUROC > 0.7 on the validation set, signif-

icantly higher than logistic regression and random forest on sequence embeddings (Data S32; see below for more details). We then

tested themodel performance on validation sets composed of SNPs exclusive to the other three donors. The validation sets for these

three individuals have been randomly downsampled to the same size as the validation set for individual 3. The sampling was repeated

ten times and average results are reported. As expected, the performance was lower compared to individual 3. Specifically, the

model showed exceptional performance on the prediction for CTCF (AUROC= 0.7936) and generalized well to the other three donors

(average AUROC = 0.6876). The model for H3K27ac AS SNVs also showed high validation performance on the test set (AUROC =

0.8001), other individuals (average AUROC = 0.7286), and an external validation set from Roadmap individuals (average

AUROC = 0.7426).

For model interpretation, we used the method implemented by,70 where the attention scores of the last layer for the first token are

averaged over all 12 attention heads, and then regularized by k-mer coverage. As a comparison, we used the dna2vec model

released by165 to transform k-mers to continuous-valued vectors, preserving their contextual preference. Using the same training,

test, and validation data as above, we represented each input sequence as an average over the embedding of all its k-mers. We

then trained a logistic regression classifier based on the average embedding vector. We performed embedding with k-mer sizes

of 3–8 and reported the one with the highest performance.

We also implemented amuch simpler model based onmotif information only (Figure 7). We overlapped the hetSNVs from the same

training set as abovewith identified CTCFmotifs from theCis-BP database. The following features were used to build a random forest

classifier.
Feature Feature frequency

A: SNP overlaps with a CTCF motif 287/28,891 (positive)

45/28,891 (negative)

B: SNP overlaps with conserved positions in a CTCF motif 16½8,891 (positive)

27/28,891 (negative)

C: Presence of a CTCF motif within the 256 bp window 1489/28,891 (positive)

689/28,891 (negative)

D: # of TF motifs within the 256 bp window Average 56.8 (positive)

Average 62.2 (negative)
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A logistic regressionmodel using only features A andB has almost no predictive performance (AUROC= 0.504). By adding features

C and D, which include some contextual information, the performance increases to AUROC = 0.5618, which is still much lower than

other models in comparison. This is expected because the frequency of CTCF motifs is quite low and only accounts for a very small

portion of the dataset.

Portal: A central location for accessing EN-TEx data, analyses, and visualization tools
The EN-TEx portal website

We have a dedicated website (portal) for the EN-TEx resource: entex.encodeproject.org. The portal is organized into three organized

sections: (i) data files, (ii) interactive visualization tools, and (iii) source code, as described below.

Data files. The raw and processed EN-TEx data, including the personal genomes, are accessible via a dedicated data-slice PAGE

built into the ENCODE data center. In the data-splice PAGE, the EN-TEx assays and data are displayed with a graphic interface for

users. The website provides a search function where users can look for the data of particular assays/tissues in which they are

interested. In addition, the EN-TEx portal hosts the ancillary analysis files for EN-TEx (e.g., the AS catalog and the cCRE

decorations). All data contained in the EN-TEx resource are fully open-consented and accessible without registration as of the

date of publication. Accession numbers are listed in the key resources table or the STAR Methods.

Interactive visualization. The EN-TEx portal provides multiple tools for users to visualize the EN-TEx data in a genomic context. In

particular, the genome annotation by EN-TEx data can be visualized using the ENCODE SCREEN Viewer. We also provide

Chromosome Painter and the Explorer Tool to visualize the EN-TEx data in a large-scale and high-dimensional fashion. See

section ‘‘visualization of the EN-TEx data’’ for more information.

Source code. All original code has been deposited on Github and is publicly available as of the publication date. DOIs are listed in

the key resources table. Specifically, the EN-TEx portal provides GitHub links to the source codes of the Chromosome Painter, the

Explorer Tool, the AlleleSeq2 pipeline, the transferQTL model, and the transformer model for predicting AS activity from sequence

("Application #300).
Explorer tool

The EN-TEx Explorer Tool, which can be run in R, installed as an offline executable, or hosted on a website through integration with

Amazon Web Services, allows for the interactive exploration of low-dimensional visualizations created by an in-house data analysis

pipeline (Datas S33A–S33E). This pipeline performs dimensionality reduction on cCRE signals, genomic data, and proteomic data.

Methods include PCA, variational autoencoder, Umap,166 potential of heat diffusion for affinity-based transition embedding,167 set

intersection plots generated by user-specified thresholds, and t-distributed stochastic neighbor embedding.168 The pipeline then

generates the tool programmatically in R Shiny in one of the three forms above.

The visualizations generally cluster samples from common tissues together. Through extensive precomputation, the tool allows

users to interactively adjust analysis parameters, including scaling, normalization, feature subsetting, method-specific hyperpara-

meters, the type of visualization used (ggplot2, plotly 2D, plotly 3D, boxplot, heatmap, UpSetR, Venn diagram), and the appearance

of the resulting figures. Users are able to save figures as images, download analysis results as Excel spreadsheets, or bookmark their

sessions as short URLs that can be easily shared (Datas S33A–S33E). To install the tool, please consult the Github README. Instruc-

tions and documentation regarding tool usage can be found by pressing the ‘‘Instructions’’ button on the tool. The following input files

for the explorer tool are available.

File: ENTEx.Explorer.cCRE.Combined.zip: cCREs used in EN-TEx.

File: ENTEx.Explorer.Expression.Combined.zip: Expressed genes analyzed in EN-TEx.

File: ENTEx.Proteomics.cCRE.Combined.zip: Results of MS.

Chromosome-level data visualization tool

Because the EN-TEx data span a wide range of the human genome, it may be useful to visualize the distribution over each chromo-

some. Accordingly, we present the EN-TEx Chromosome-Level Data Visualization Tool, which generates heatmaps for datasets for

all assays, individuals, and tissues present in the EN-TEx data catalog. The data, which were initially in BED format, were prepro-

cessed with in-house Bash and Python scripts and converted to GRCh38 coordinates using LiftOver169 prior to the generation of

the plots using the R package chromoMap.170 The EN-TEx Chromosome-Level Data Visualization Tool was also used to generate

the plots in Figure 2C of the main text.

The EN-TEx Chromosome-Level Data Visualization Tool can be accessed at http://entex.encodeproject.org/. Users can specify

any combination of parameters (individual, assay, ploidy, and color) for a track and subsequently generate interactive plots contain-

ing one to four tracks each by pressing the ‘‘Submit’’ button (Data S33F–S33G). By default, the tool generates heatmaps for the data

of each chromosome at a fixed resolution of 2.5 Mb. The user can get information about the data displayed in a specific bin by hov-

ering over the bin with a mouse cursor.

The ‘‘Advanced’’ tab contains tools for custom chromosome and region selections. To view the data in only one chromosome, one

can select the chromosome of interest in the ‘‘Chromosomes’’ dropdown menu. To view a subregion of the chromosome, the user

can input the region in the format initial_position:final_position in the ‘‘Region’’ text box (e.g., if the user wishes to visualize data be-

tween 1Mb and 2Mb, the user would input 1,000,000:2,000,000). The tool automatically sets the resolution of the data for subregions

of the chromosome to the length of the inputted interval divided by a factor of one hundred (e.g., for the 1,000,000:2,000,000 interval,
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the resolution would be 10 kb). Users can also visualize the data as heatmaps accompanied by either histograms or scatterplots by

selecting the desired option in the ‘‘Plot Type’’ dropdown. A series of plots generated with this tool is shown in Data S33H.

Additional data exploration with SCREEN

The SCREEN website (https://screen.encodeproject.org/) is a center for the ENCODE cCRE registry and annotation. This website is

routinely used by researchers all over the world. The annotations of cCREs using our EN-TEx data are also available at the SCREEN

website (Data S33I). The EN-TEx data provide many unique annotations. For example, different from the annotation from other data-

sets, the EN-TEx data indicate the repressed states of cCREs. In addition, the EN-TEx data specify whether each cCRE is AS in terms

of functional genomic signals. Data S33I shows a step-by-step guide from the main webpage of SCREEN to an cCRE with repressed

states in multiple human tissues. In line with the repressed states, this cCRE has no CTCF binding and is not AS.

Buffering hypothesis: Providing Evidence Connecting AS Elements and Housekeeping Genes (related to the
‘‘discussion’’ in the main text)
Genetic variants in cCREs can change functional signal and gene expression. For these changes to occur, the variants must escape

from buffering effects.28 Such effects are strong in important genomic regions. We used allele specificity as a proxy for escaping

buffering. Based on our allelic decoration, we evaluated the allele specificity of housekeeping genes expressed in EN-TEx tissues,

as shown in Data S22J. For each tissue, expressed protein-coding genes were split into housekeeping genes and non-housekeeping

genes according to the Housekeeping and Reference Transcript Atlas (http://www.housekeeping.unicamp.br).58 A two-sided Fisher

exact test was performed to measure the enrichment of AS housekeeping genes. We found that, compared with non-housekeeping

genes, the expression of housekeeping genes show less allele specificity, supporting the buffering hypothesis. We further examined

the allele specificity of proximal active (pAct) cCREs in a ±10 kb window centered on the TSS (defined by the gene starting site) of

each housekeeping and non-housekeeping gene. The cCREs flanking housekeeping genes were significantly (Data S22J, paired-tis-

sue two-sided t test, p value <2.2e�16) longer than the cCREs flanking non-housekeeping genes. To control for this factor, we split

genes into 20 bins based on the total length of the flanking cCREs. Within each bin, cCRE length remained similar (paired-tissue two-

sided t test, p value >0.05) between housekeeping and non-housekeeping genes. The bins with less than 30 housekeeping or non-

housekeeping genes were removed from further analysis. The pAct cCREs flanking housekeeping genes were less likely AS than the

ones flanking non-housekeeping genes (two-sided t test).

The buffering effect is likely due to redundant TFs. To test this, we counted the number of TF motifs that intersect with each CTCF+

andCTCF- cCRE in each tissue. For this calculation, we used themotifs of 206 TFs (CTCF excluded) fromCis-BP.68 The total count of

all TF motifs was compared between CTCF+ cCREs and CTCF- cCREs using a two-sided t test. As shown in Data S30K, for both

distal and proximal cCREs, CTCF+ cCREs have significantly (p value <0.05)more TFmotifs thanCTCF- cCREs. In addition, we tested

whether the genetic variants in large motif clusters tend to be associated with ASB. To this end, we identify the locations of themotifs

of 660 TFs in the human genome. For each motif, we counted the number of all motifs within 500 bp of the motif. A larger number

suggests that themotif likely hasmany functionally redundant motifs. According to the proxy of redundancy, we divided all the motifs

evenly into two groups: likely redundant or not. The genetic variants were considered ASB if significantly imbalanced reads were

observed in any of the tissues of the four individuals with any assays. As a result, we found that the genetic variants in the motifs

that are likely redundant tend to not be AS, consistent with the buffering effect.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative and statistical methods are described above within the context of individual analyses in the method details section.

ADDITIONAL RESOURCES

Ancillary files and guidance on raw data of this study can be found on the EN-TEx portal: http://entex.encodeproject.org/ All files are

described in detail in their corresponding sections of STARMethods. When mentioned, these files are referred to as "File: file_name:

short_description."
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Supplemental figures

Figure S1. Additional details on uniform multi-tissue data collection and diploid mapping, related to Figure 1 and STAR Methods ‘‘Data

stack,’’ ‘‘Personal genome,’’ ‘‘Reference comparison,’’ and ‘‘SVs’’ sections

(A) Data matrix for the EN-TEx resource. Each voxel in the cube stack corresponds to a functional genomic assay for a particular tissue from one of the four

individuals. A dark gray voxel indicates that the functional genomic data have been generated. The total experimental counts per assay across the tissues and

individuals are shown above the cube stack. The total experimental counts per tissue type are shown on the left. The color and acronym scheme of the tissues is

adopted from GTEx (Data S2). We also note that the small RNA-seq column represents the consolidation of both small RNA-seq and targeted micro-RNA-seq

assays; the data for both these assays are available from the portal. Due to the hearts from both male donors being selected for organ transplant, we do not have

heart-derived tissue for both genders. Also, the aortic tissue is sublocalized into samples derived from ascending aorta and thoracic aorta. Note further that in

GTEx these aortic tissues are combined and considered to be a single tissue.

(B) Constructing personal genomes using the CrossStitch method. This diagram shows an overview of the CrossStitch method with the specific software and

data types used. (Details in STAR Methods ‘‘personal genome’’ Section.)

(C) Mapping reads to personal and reference genomes. Due to the genetic variants, some reads can be mapped only to the personal genome but not to the

reference genome (and to a lesser extent just to the reference genome). Such reads (yellow) are referred to as "personal genome unique," whereas the reads that

can be mapped to both genomes (gray) are referred to as "common." Compared with the reference genome, using the personal genome results in an average of

�2.5%more mapped reads for the various functional genomic experiments. The percentages range from�1% for RNA-seq to�4% for Hi-C data. Note that the

numbers for these differences only apply to the high-stringency mapping. (Details in STAR Methods ‘‘reference comparison’’ Section.)

(D) Classification and frequency of SVs. The fractions of SVs for each individual are shown and broken down ito insertions (INSs), deletions (DELs), and inversions

(INVs). INSs and DELs are further classified based on whether they are related to TEs. (Details in Data S15 showing a breakdown of the SV composition.)
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Figure S2. Additional details on improvements in genome analysis from uniform multi-tissue data collection and diploid genome mapping,

related to STAR Methods ‘‘Reference comparison’’ and ‘‘Variation analysis’’ sections

(A) Comparing the quantification of gene expression using personal diploid genomes and the reference haploid genome. The left panel shows the gene

expression levels for individual 2 calculated using the readsmapped to the reference genome (x axis) and to the personal diploid genomes (y axis). The expression

values of the genes are log-transformed, i.e., log10(TPM +0.001). Differentially expressed genes are color-coded (downregulated: red; upregulated: blue).

Genes that are not differentially expressed are shown in gray. The panel on the right is a volcano plot reporting, for every gene, the log2(fold-change) and the

-log10(p value) obtained from the differential-gene expression analysis with DESeq2. The same color schema as in the left panel is applied. Some outlier genes

were removed from the volcano plot. The full version of these plots, including all genes and all individuals, is available in Datas S5D and S5E.

(legend continued on next page)
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(B) Comparing the quantification of regulatory element activity using personal diploid genomes and the reference haploid genome. The left panel shows the

H3K27ac signal at cCREs for individual 2 calculated using the reads mapped to the reference genome (x axis) and to the personal diploid genomes (y axis). The

H3K27ac signals of the cCREs are log-transformed. Differentially marked cCREs are color-coded (downregulated: red; upregulated: blue). cCREs that are not

differentially marked are shown in gray. The panel on the right is a volcano plot reporting, for every cCRE, the log2(fold-change) and the -log10(p value) obtained

from the differential analysis performed with DESeq2. The same color schema as in the left panel is applied. Some outlier cCREs were removed from the volcano

plot. The full version of these plots, including all cCREs and all individuals, is available in Datas S5K–S5L.

(C) Consistently analyzing functional genomic data across individuals, tissues, and assays. Joint analysis of variation (JIVE, Hellton and Thoresen, 2016) was used

to project all of the functional genomic signals from different samples onto two-dimensional planes (one for each assay, e.g., ChIP-seq, ATAC-seq, DNase-seq).

For each assay type (e.g., H3K27ac), the samples are represented as dots on the plane. Two dots that are close to each other have similar levels of functional

genomic signals. Combining all of the types of assays, we projected the samples onto a single two-dimensional plane. The tissues are colored according to the

GTEx convention from Figure 1A and Data S2I. For each tissue, the number of colored dots indicates the number of individuals, up to four. In addition, a linear-

regression-based approach was used to measure the difference between two samples in functional genomic signals, (Details in STAR Methods ‘‘variation

analysis’’ Section.) The variance explained is used to indicate the similarity between two samples. Note that the value of variance explained is equal to the squared

correlation coefficient. The difference is measured by one minus the explained variance of the regression. Taking H3K27ac as an example, on average, only 14%

of the variation in the functional signals between the spleens of two individuals is unexplained, indicating that the spleen samples have very similar H3K27ac signal

patterns. The dissimilarity is also small (15%) between the transverse colons of two individuals. In contrast, the average dissimilarity between these two types of

tissues of the same individuals increases to 35%. For H3K27me3, the dissimilarity between different tissues is also high (42%). The dissimilarities between

different types of functional signals are even higher. In particular, the dissimilarity between H3K27ac and H3K4me3 in spleen is 51%. (Details in STAR Methods

‘‘variance analysis’’ Section and Data S6.)

(D) An example of a more accurate inter-tissue comparison using matched samples. For histone modification signals at cCREs, the spleen and esophagus of the

same individual aremore similar (i.e., median 0.92 correlation, 84% variance explained [or 16%dissimilarity]) than those of different individuals (0.89 or 79%). This

difference indicates the genetic and environmental difference between individuals and its influence on inter-tissue comparisons.
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Figure S3. Additional details on the construction of the AS catalog, related to Figure 1 and STAR Methods ‘‘AS calling,’’ ‘‘Aggregation,’’ and

‘‘AS catalog’’ sections

(A) Schematic of calling ASSNVs and AS elements. Examples of the number of reads are shown for each SNV and element. For a functional genomics experiment,

if the numbers of reads mapped to the two haplotypes at a heterozygous SNV position are significantly different, the SNV is referred to as an AS SNV. For a given

genomic element (e.g., a cCRE) with multiple heterozygous SNVs, we pool the reads of all the SNVs to determine its AS state. Genomic elements with a single AS

SNV are identified as AS elements. (Details in STAR Methods ‘‘AS calling’’ Section.)

(B) Distribution of the number of AS events in different assays. The distribution of H3K27ac AS events in spleen from individual 1 is highlighted as an example here

and in panel (D) and further distributions are shown in Data S11A.

(C) Details of union and pooling approaches for read aggregation. We used two approaches to aggregate the information across samples to increase the

detection power. In the ‘‘union’’ approach, any SNV observed as AS in any sample is included in our AS catalog — i.e., we call individually on samples and then

take the union of the calls. In contrast, in the ‘‘pooling’’ approach, because a given functional genomic assay, e.g., RNA-seq, is usually conducted on many

samples, for each SNV, we pool the mapped reads from all the samples together to determine its AS state (see STAR Methods ‘‘aggregation’’ Section). For

instance, to do multi-tissue pooling, we pool the reads from all tissues and then jointly call AS SNVs on the pooled reads. This approach increases the statistical

power of the AS test and thus may be able to identify an SNV as AS, even though the SNV is not AS in each tissue.

(D) Summary of AS catalog. The colored circle on the right shows the aggregation method along that axis. Take the third row as an example. The upper one

indicates that the operation is the union across tissues, averaged across assays and individuals, while the bottom one pools reads across tissues, averaged

across assays and individuals. Data obtained by merging the tissue-specific AS call sets resulted in �5.5K unique AS hetSNVs (for either AS binding or

expression) and �1K AS genomic elements (not shown in the figure) for each individual per assay. Pooling the reads from each assay across all tissues

dramatically increased the detection power by�5X fold, making it possible to identify�27K AS hetSNVs per assay for each individual. Finally, merging across all

assays provided a catalog of all loci where AS activity could be assessed in any of the tissues of the four individuals.

(E) Numbers of AS SNVs across assays. The Venn diagram of SNVs shows AS activity in selected assays using the ‘‘pooling’’ approach. (Details in Data S8B.)

(F) Numbers of AS elements across samples. The distribution of the number of genomic elements (genes and cCREs) with AS activity across EN-TEx donors,

tissues, and assays is shown. (Details in Data S11A.) Donors and tissues are indicated using the conventions from Figure 1.
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Figure S4. Examples of coordinated AS activity involving SNVs and SVs, related to Figure 2 and STAR Methods ‘‘AS examples’’ section

(A) Detecting AS events at a known imprinted locus: H19/IGF2. Functional genomic signals are measured in the gastrocnemius medialis of individual 2. In

agreement with the known imprinting mechanism (top), we detected AS expression of H19 on haplotype 2 (known to bematernally expressed) and AS expression

of IGF2 on haplotype 1 (known to be paternally expressed). Consistent with the expression data, we found an ASHi-C interaction between an upstream cCRE and

H19 on haplotype 2 (bold blue arc), and an AS interaction between the same cCRE and IGF2 on haplotype 1 (bold red arc). Other neighboring ASHi-C interactions

(which have fewer read counts or contact irrelevant genes) are also depicted with shaded arcs.

(B) The effect of a 5.2-kb homozygous deletion. This SV removed an H3K9me3 peak in individual 2, potentially resulting in an increase in PCCB expression in the

spleen. The sashimi plots, below the signal graphs, show examples of novel splicing isoforms identified by long-read RNA-seq in the adrenal gland of individual 2

and in the heart left ventricle of individual 3 (without the SV). Data S17K shows more details on the splicing isoforms. The differences in splicing between in-

dividuals 2 and 3, although supported by only one long read, potentially reflect the SV-disrupting regions important to splicing, as suggested by the known GTEx

sQTL sites nearby.171 Alternatively, the differences in splicing between the two samplesmay be due to tissue specificity. In addition, Data S17L provides evidence

of novel splicing variants that are potentially associated with an SV in the gene TRDN-AS1.

(C) The effect of a 2.3-kb homozygous deletion. This SV removed an H3K27ac peak downstream of lncRNA RP11-362F19.1 in individual 3, which has lower

expression in the spleen sample. In individual 2 without the SV, there are CTCF peaks that point to a potential interaction between the H3K27ac peaks

downstream and upstream of the lncRNA. Together, these observations suggest that the loss of the H3K27ac peak due to the SV contributes to the reduction in

lncRNA gene expression. (Details in Datas S17E and S17F.)
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Figure S5. Additional details on Applications 1 and 2: Relating decorations and AS SNVs to GWAS and eQTL loci, related to Figures 3 and 4

and STAR Methods ‘‘Decoration process,’’ ‘‘Tissue specificity,’’ and ‘‘Compatibility’’ sections

(A) Workflow of cCRE decoration. This figure shows the workflow of cCRE decoration and the number of different subgroups of cCREs in the spleen. Note that we

define the following abbreviations for the various decorations. dAct: distal active; pAct: proximal active; dBiv: distal bivalent; pBiv: proximal bivalent; dRep: distal

repressed; pRep: proximal repressed; CTCF+ and CTCF�: with and without CTCF binding, respectively; and AS and nonAS: with and without allelic signature,

respectively. Spleen is used as an example to illustrate the tissue-specific decoration of these cCREs using EN-TEx data. In this tissue, 290k of the cCREs have

functional genomic signals and can be categorized as active (117k), repressed (154k), or bivalent (19k). Then, for each category, the cCREs can be consecutively

classified according to their genomic locations (proximal or distal), CTCF binding, and allele specificity. (This classification can occur in any order.) As a result, the

spleen has 2,866 AS cCREs with various genomic activities and locations. More details on the workflow are included in the STARMethods ‘‘decoration process’’

Section. The numbers of active and repressed cCREs are comparable in each tissue (i.e., on average �202k active and �166k repressed cCREs). Only a small

subset of the active cCREs exhibit AS activity (�2.5% or 1,750 cCREs, averaged across tissues; see details in Data S19C for all available tissues).

(B) Tissue specificity of different subgroups of cCREs vs. genes and epigenomic peaks. We compared the tissue specificity of protein-coding genes, non-coding

genes, different subgroups of decorated cCREs, and various epigenomic peaks. The uniqueness of the activity across tissue types is shown in different colors.

Note that the decoration terms are defined in Figure S5A.

(C) Compatibility between AS expression and AS promoter state. As shown in the examples, a high active histone modification signal (e.g., H3K27ac) of a

haplotype should correspond to high gene expression of the same haplotype. Note that for a repressive histone modification, this trend is the opposite. For AS

genes with promoters accessible to H3K27ac, there is indeed a strong and positive correlation. The exact read counts of H3K27ac and gene expression,

respectively, from haplotype 1 and 2 for LAMTOR1 andRPL4P4 are indicated in the examples. In addition, we used the slope (beta coefficient) of the leading eQTL

of an AS gene (GTEx Consortium, 2020). The slope is positively correlatedwith the AS ratio (overall Pearson’s correlation coefficient of 0.6 with p = 0.01). Note that

genetic variants with beta coefficients around 0 are unlikely to have sufficient statistical significance to be identified as eQTLs. This also holds for SNVs with read

fractions of approximately 0.5. Therefore, there are no data points observed at the center of the plot.

(D) Overall compatibility between AS expression and promoter AS chromatin activity. The compatibility is measured by the fraction of genes for which the AS

expression is compatible with promoter AS chromatin state or AS peptide expression (Data S26 and STARMethods ‘‘compatibility’’ Section). As a null model, we

randomly paired genes with promoters (and peptides) to calculate z scores. (Details in STAR Methods ‘‘compatibility’’ Section.) Compatibility between AS

expression and AS methylation (meCpG), H3K9me3, and H3K27me3 is weak, potentially because these marks of repressed chromatin also can be associated

with genes poised for transcription or genes that are actively transcribed.172,173 Note for the bottom entry, compatibility is calculated between ASE and AS

peptide expression, which is independent of the other compatibility comparisons between AS promoter activity and ASE.
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Figure S6. Additional details on Application 2:Modeling eQTLs in hard-to-obtain tissues, related to Figure 5 and STARMethods ‘‘transferQTL

model’’ section

(A) Chromatin features can help prioritize causal eQTLs. Barplots showing the percentage of eQTLs overlapping a given feature. The fraction of fine-mapped

eQTLs (likely causal, red) overlapping peaks of six histone marks (H3K27ac, H3K4me1, H3K4me3, H3K27me3, H3K9me3, H3K36me3) is higher compared with

the total set of GTEx eQTLs (blue) reported in a given tissue. (Details in Data S27A.)

(B) Chromatin-marked loci associated with eQTL activity. We have identified 1,353,101 SNVs that show tissue-specific eQTL activity. These SNVs are GTEx

eQTLs inR5 EN-TEx tissues and are not GTEx eQTLs inR5 other EN-TEx tissues. Thus, for every SNVwe define two groups of tissues: i) tissues inwhich the SNV

is an eQTL (eQTL+, orange) and ii) tissues in which the SNV is not an eQTL (eQTL-, cyan). We observed that SNVs are more likely to be marked by H3K36me3 in

the tissues in which they are eQTLs, compared with the tissues in which they are not eQTLs (p value <2.2e�16, Wilcoxon paired test). (Details in Data S27B.)

(C) Schema of the predictive model using skin as the donor tissue and tibial artery as the target tissue. We first retrieve GTEx eQTLs associated with one single

eGene in sun-exposed skin (n = 967,288). This set of eQTLs is split into training and test sets (70%and 30%, respectively). Next, we train a random forest model in

order to predict whether these eQTLs are eQTLs also in the tibial artery. The model uses a number of predictive features described in Data S28A: i) eQTL-gene

properties in the skin tissue (blue; features 1–3), ii) chromatin profiles at the eQTL loci in the tibial artery tissue (red; features 4–24), iii) chromatin profiles at the

eQTL loci across all EN-TEx tissues (gray; features 25–36), and iv) genomic features of the eQTL loci (white; features 37–39). (Details in Data S28B–S28G.)

(D) transferQTL outperforms simplified models that transfer eQTLs based only on a tissue-specificity threshold. We built a simple model that transfers eQTLs to a

given tissue based on their degree of tissue specificity. We compared the performance of this simple model by using different thresholds of tissue specificity. For

instance, 10% corresponds to a model that transfers to a given tissue eQTLs that are active in at least 10% of the GTEx tissues. The performance is compared to

our random-forest model trained on multi-omics EN-TEx data (transferQTL). (Details in Datas S29C and S29D.)

(E) The predictive models have high performance (balanced accuracy) even when trained on a reduced number of histone modifications. This modified version of

transferQTL utilizes only chromatin features related to the four histone marks that have the strongest predictive power (H3K36me3, H3K27ac, H3K4me1,

H3K27me3; also see Figure 5F). The x axis indicates the tissues used as the donors (GTEx coloring) and the y axis indicates the average performance (balanced

accuracy) across the target tissues that are available. The whiskers indicate variation across targets (standard deviations).
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Figure S7. Additional details on Application 3: Modeling AS activity from variant impact on the nucleotide sequence, related to Figures 6 and

7 and STAR Methods ‘‘Sensitive motifs,’’ ‘‘AS promoter,’’ and ‘‘Transformer model’’ sections

(A) Distribution of themotif rank across tissues. Similar to Figure 6A, we rank themotifs based on the enrichment of H3K4me3 ASSNVs, but using SNVs from each

tissue individually. The y axis shows the tissue-specific rank. The x axis represents the motifs in the order of the pan-tissue analysis ranking, as in Figure 6A. Each

vertical gray line represents the range between the 25% and 75% percentile of the motif rank across all tissues for that motif. The median value is shown in red.

(B) Contingency table for AS genes and AS promoters. The 2-by-2 contingency table shows AS genes vs. non-AS genes (in terms of AS gene expression) and AS

promoters vs. non-AS promoters (in terms of H3K27ac activity). The overall odds ratio of the table indicates the association between AS activity in genes and

promoters. Tables for other assays are included in Data S31E.

(C) Schematic of the analysis in Figures 6 and 7. In Figure 6, we overlap motif instances with the AS SNPs and discover motifs that are AS sensitive based on

enrichment odds ratio. In Figure 7, we use the genomic sequence context surrounding the SNV loci to predict the AS effect using a transformer model, with no

motif or ChIP-seq experimental information provided. In the process, the model learns an attention weight over the input sequence. By aggregating the learned

attention patterns across the samples, we find that the pattern corresponds to motif enrichment patterns, which in turn agrees with the AS-sensitive motifs in

Figure 6. In short, the AS-sensitive motifs are re-discovered by the transformer model.

(D) The average attention scores for H3K4me3 (upper panel) and the enrichment of ZNF460 and FOXO3 surrounding H3K4me3 AS SNPs (lower panel). The two

TFs are highly ranked for H3K4me3 in Figure 6. Their enrichment patterns are centered on the SNV position, which agrees with the attention pattern. This result

indicates that the transformer model attaches high importance to regions containing these motifs. The attention score was averaged over 2,000 randomly

selected test samples. This sub-figure is to be compared with Figure 7E: H3K4me3 appears similar to the CTCF. In Figure 7E, as expected, the attention score

peaks around the AS SNV for CTCF binding; by contrast, there are no such strong peaks for POLR2A. This is likely because POLR2A is coordinated with many

different regulatory factors instead of particular TFs, and these factors are not necessarily close to POLR2A binding, leading to a less-peaked attention score

pattern. RNA-seq is used as a control because the AS SNV for expression is usually present as a tag and is not the causal SNV. In line with the average attention

patterns, some TFmotifs, including the CTCFmotif itself and SP1, show stronger enrichment within the proximity of the AS SNV of CTCF binding as compared to

(legend continued on next page)
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SNVs that are accessible to CTCF binding but do not show AS behavior. This result also agrees with the attention pattern of the model, indicating potentially

discriminating motifs.

(E) The maximum difference of the enrichment patterns between AS and non-AS SNVs of top- and bottom-ranked motifs in H3K4me3. The top-ranked motifs

show much larger differences between AS and non-AS SNPs than the bottom-ranked ones. Thus, for the top-ranked motifs, there is a much higher peak for the

AS SNPs, which is not observed in the non-AS SNPs, while for the bottom-ranked motifs the difference is minimal.
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