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Abstract

The signature of early cancer dynamics on the spatial arrangement of tumour cells is poorly

understood, and yet could encode information about how sub-clones grew within the

expanding tumour. Novel methods of quantifying spatial tumour data at the cellular scale

are required to link evolutionary dynamics to the resulting spatial architecture of the tumour.

Here, we propose a framework using first passage times of random walks to quantify the

complex spatial patterns of tumour cell population mixing. First, using a simple model of cell

mixing we demonstrate how first passage time statistics can distinguish between different

pattern structures. We then apply our method to simulated patterns of mutated and non-

mutated tumour cell population mixing, generated using an agent-based model of expand-

ing tumours, to explore how first passage times reflect mutant cell replicative advantage,

time of emergence and strength of cell pushing. Finally, we explore applications to experi-

mentally measured human colorectal cancer, and estimate parameters of early sub-clonal

dynamics using our spatial computational model. We infer a wide range of sub-clonal

dynamics, with mutant cell division rates varying between 1 and 4 times the rate of non-

mutated cells across our sample set. Some mutated sub-clones emerged after as few as

100 non-mutant cell divisions, and others only after 50,000 divisions. The majority were con-

sistent with boundary driven growth or short-range cell pushing. By analysing multiple sub-

sampled regions in a small number of samples, we explore how the distribution of inferred

dynamics could inform about the initial mutational event. Our results demonstrate the effi-

cacy of first passage time analysis as a new methodology in spatial analysis of solid tumour

tissue, and suggest that patterns of sub-clonal mixing can provide insights into early cancer

dynamics.
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Author summary

Tumours consist of a mosaic of cell sub-populations, which may differ in ways such as

growth rate and their response to anti-cancer treatment. Understanding how sub-popula-

tions emerge and evolve is therefore central to predicting future behaviour of tumours

and improving treatment regimes. Traditional methods of studying tumour heterogene-

ity, however, are often ignorant to the spatial context of cells, or preserve only low-resolu-

tion spatial data, yet spatial information may contain important clues about the evolution

of tumour sub-populations. To exploit this fact, new methods of describing spatial pat-

terns of tumour cells are needed in order to relate experimental observations to the under-

lying evolution of the tumour. In this study, we present a new methodology for spatial

analysis of tumour tissue, utilising random walks to quantify clustering and heterogeneity

within high-resolution spatial maps of tumour sub-population mixing. We apply our

method to maps of sub-population mixing in colorectal cancer samples and, using spatial

computational modelling, estimate the relative growth rate and age of mutated sub-popu-

lations, along with the strength of cell pushing within these samples. Our work demon-

strates the potential of spatial information to inform about cancer evolution, and

establishes a foundation for future research into spatial analysis of tumour data.

Introduction

Understanding the origins and effects of intra-tumour heterogeneity is a fundamental chal-

lenge in cancer research and is central to characterising the evolutionary forces which drive

disease progression and the response to treatment [1–5]. Tumours comprise of a diverse popu-

lation of cells, often containing sub-populations, or sub-clones, carrying genetic alterations

which may confer phenotypic changes such as increased rate of proliferation, elevated meta-

static potential or evasion of the body’s immune system. Understanding the evolution of sub-

clones within tumours could therefore greatly advance our ability to perform better prognoses

and design more effective anti-cancer treatment strategies [6].

Direct observation of the early sub-clonal evolution is often infeasible as, in some cancers,

sub-clones arise in the early, undetectable, malignancy [4, 7]. This problem is confounded

by the difficulty of obtaining temporal samples in humans. Recently, computational and

mathematical modelling, however, has been applied to explore various questions including

estimating the probability of developing treatment-resistant sub-clones, and characterising

the influence of tissue architecture on the evolution of both neutral and oncogenic muta-

tions [8–11]. Spatial information itself, often derived using histopathological approaches, is

used in cancer diagnosis, classification and prognosis [12–14]. For example, the spatial dis-

tribution of tumour infiltrating immune cells has been shown to have prognostic value in

some cancers [15–18] and, recently, higher dimensional measurements of tumour tissue

obtained using CODEX technology have revealed correlations between the spatial arrange-

ment of the tumour microenvironment and patient survival in colorectal cancer [19]. In this

study, we reason that the sub-clonal spatial pattern is a readout of the evolutionary history of

a tumour and could present a route to quantifying the evolution of sub-clones. To investi-

gate this, we use spatial computational modelling to develop methodologies for inferring the

growth history of tumour sub-clones based on their spatial arrangement in sampled

tumours.

We apply our analysis to human colorectal cancer samples, where the spatial composition

of point mutations is mapped at the cellular level using the BaseScope RNA in situ
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hybridisation assay. Specifically, this technique is used to detect mRNA in mutant and non-

mutant (wild-type, WT) cancer cells. Tumour tissue samples are combined with molecular

probes, designed to bind specifically to the mutant and WT mRNA sequences of interest,

resulting in signals which can be amplified, enabling a precise spatial mapping of tumour cells

which are WT or mutated at that particular position in the genome. Previously, Baker et al.
demonstrated the high sensitivity and specificity of this method, targeting a small panel of

driver gene point mutations (within the PIK3CA, BRAF and KRAS genes) found commonly in

human cancers [20].

In their study, Baker et al. used BaseScope to reveal diverse patterns of sub-clonal mixing

between mutated and WT tumour cells (Fig 1a), and quantified these patterns using a spatial

analogue of Shannon’s entropy. Initial spatial analysis suggested that the observed BaseScope

patterns were consistent with early arising, weakly selective, mutated sub-clones or later arising

sub-clones endowed with a larger replicative advantage over the WT population. Whilst Shan-

non’s entropy provided the first analysis of tumour heterogeneity, it is defined at a single spa-

tial scale and thus is strongly scale dependent. We address this issue here by quantifying

clustering and heterogeneity of cell mixing patterns at multiple spatial scales using the statistics

of random walks to obtain a more complete description of the complex sub-clonal patterns

elucidated with BaseScope.

Many spatial systems can be naturally represented as a network of interacting and con-

nected nodes, of different classes, as a way to study the effects of the system’s structure on its

dynamics. Heterogeneity and segregation within networks can influence the statistics of a ran-

dom walker on the graph, making random walks a useful tool in network science to quantify

the structural properties of a system [21–24]. By quantifying the structure of the sub-clonal

patterns at multiple length scales, therefore improving on previous analyses of these patterns,

we propose that methods exploiting random walks have the potential to advance our under-

standing of the link between the spatial arrangement of sub-clones and the underlying sub-

clonal dynamics.

In this study, we focus on the class mean first passage times (CMFPT) on a network,

defined as the expected time, ταβ, for a random walker beginning on a node of class α to first

arrive at a node of class β. This method has recently been applied to other complex systems to

quantify spatial segregation in voting patterns [25], ethnic segregation in UK and US metro-

politan areas [26], and to show that internal clustering and spatial heterogeneity of individuals

of different ethnic groups contributed to the observed excess of infectious diseases [27]. Here,

we leverage the CMFPT to quantify the complex spatial patterns of mutated sub-clonal cells in

BaseScope images.

We first demonstrate the capability of the CMFPT method to measure pattern structures

using an artificial model of WT and mutant population mixing. We then compare CMFPT

measurements of sub-clonal mixing patterns in human colorectal cancers to the same mea-

surements derived from our agent-based simulations. We perform parameter estimation using

our computational model, predicting the relative age and replicative fitness advantage of the

mutated sub-clone and the strength of cell pushing most consistent with the spatial patterns

observed with BaseScope. Our analysis indicates that sub-clonal populations often appear rela-

tively early in the expansion of the WT population, and exhibit a wide range of fitness advan-

tages over WT cells. This work demonstrates the capability of the class mean first passage time

as a method of quantifying cell mixing patterns in vivo, and our findings suggest that patterns

of sub-clonal mixing in mature tumours could potentially provide insights into early sub-

clonal dynamics.
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Fig 1. Sub-clonal mixing in human colorectal tumours. (a) Sub-clonal mixing patterns in human colorectal adenocarcinoma tissue revealed with

BaseScope. Tumour cells carrying the KRASG12A mutation are highlighted in red. Those which are wild-type at this loci are highlighted in yellow. (b) Cell

pushing in spatial simulations. A dividing cell (star) creates the space needed to divide into two cells by pushing neighbouring cells along a path to a nearby

empty lattice point. (c) Computational model of tumour sub-clonal mixing. Competing wild-type (yellow) and mutated (red) cell populations clonally

expand on a 2-dimensional square lattice.

https://doi.org/10.1371/journal.pcbi.1010952.g001
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Results

Computing first passage time statistics

To estimate the class mean first passage time (CMFPT), we simulate the trajectory of random

walkers on cell mixing patterns embedded in a square lattice. The mean number of steps, ταβ,

taken to first arrive at a node of class β when departing from a node of class α, is computed

over all starting nodes of the same class α on the graph. In this study we focus on spatial pat-

terns of two classes, mutated (red) and WT cells (yellow), giving rise to four possible CMFPT

quantities: τrr, τry, τyr and τyy. Different spatial patterns will differ naturally in magnitude and

shape. Thus, to compare the CMFPT of different images we normalise the first passage times

for each image to the corresponding quantities derived under a null model, in which the con-

stituent classes in the spatial pattern are reassigned uniformly at random to each lattice point,

but maintaining the abundances of each class and the general geometry of the original image.

We denote these quantities as the normalised first passage times ~trr, ~try, ~tyr and ~tyy.

We explore the phase space spanned by ~try and ~try=~tyr, where ~try and ~tyr denote the normal-

ised CMFPT for red!yellow and yellow!red transitions respectively. Through our analysis

we find that the combination of these quantities enables us to distinguish between spatial pat-

terns which differ in heterogeneity and pattern structure, and separates images containing

clusters of different characteristic sizes. Measurements in this phase space have been used in

previous analyses involving CMFPT to characterise colour distributions on 2-dimensional lat-

tices [25]. Spatial patterns in which the two colours are distributed uniformly at random will

lie at ð~try; ~try=~tyrÞ ¼ ð1; 1Þ, since this particular pattern exactly resembles the null model used

for normalisation. In general, patterns which contain a more ordered, or segregated, distribu-

tion of colours give rise to ~try � 1. The CMFPT reflects not only the extent of segregation of

the colours, but also the fine-grain details of the patterns. As a result, the size, shape and spatial

distribution of clusters will affect the CMFPT, with patterns containing large yellow clusters

leading to ~try=~tyr < 1 and those with large red clusters giving rise to ~try=~tyr > 1.

We define the class ratio, ϕ, of an image as the ratio of red to yellow classes,

� ¼
Nr

Nr þ Ny
; ð1Þ

where Nr and Ny represent the number of red and yellow pixels in an image respectively. Note

while ϕ is a direct input in our artificial cell mixing model, it is an outcome of the agent-based

simulations, depending on the replicative advantage of the sub-clonal population, the relative

time at which it emerges in the simulations, and the strength of cell pushing.

A model of 2-dimensional cell mixing patterns

We first develop a simple model to generate a set of diverse spatial patterns of two colours (red

and yellow) in a 2-dimensional lattice background. In particular, we generate three distinct

patterns, which are: (1) clusters; (2) large centred cluster and (3) column arrangement (Fig 2a–

2f). We run a number of simulations whilst varying class ratio, ϕ, between 0< ϕ< 1 for each

of these patterns and calculate the corresponding normalised CMFPT in the (~try,~try=~tyr) phase

space in each case (Fig 2g). Results from these initial calculations demonstrate how pattern

structure and class ratio are reflected in the CMFPT, with a clear correspondence between ϕ
and ~try=~tyr value (vertical axis) observed across all patterns. Patterns with � < 1

2
generally lie

below ~try=~tyr ¼ 1, and those with � > 1

2
fall above ~try=~tyr ¼ 1, reflecting the increasing segre-

gation of classes at either extreme of class ratio. Moreover, this effect is intensified for specific
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spatial patterns, with a stronger dependence for fully segregated patterns (i.e. column patterns

e, f in Fig 2g), and a weaker dependence for more intermixed patterns (i.e. cluster patterns a, b
in Fig 2g).

Our normalised CMFPT measure allows for more precise interrogation of pattern struc-

tures than class ratio alone. The separation of each pattern type is shown along the ~try (hori-

zontal) direction of Fig 2g. Being most similar to its corresponding null model used to

normalise the CMFPT, the small clusters pattern (Fig 2a) occupies a region of the phase space

near to ð~try,~try=~tyrÞ ¼ ð1; 1Þ. The normalised CMFPT measurement is sensitive to an increase

in the cluster size, even when class ratio remains constant (Fig 2b). For both the centred (Fig

2c and 2d) and column (Fig 2e and 2f) patterns, discrete trajectories in the phase space are

observed in Fig 2g, with the value of ϕ determining the position of the specific pattern along

the curve.

We compared the CMFPT metric to Shannon’s entropy (S1 and S2 Figs), which was previ-

ously applied by Baker et al. to colorectal cancer samples analysed with BaseScope [20], and

mean shortest distance, a similar measure to the CMFPT (see Methods). Shannon’s entropy,

H, ranges betweenH = 0 for fully segregated patterns, andH = 1 for fully mixed patterns (S1

(a) & S1(b) Fig) and, when supplemented with information on ϕ for each pattern, is able to

describe some of the geometrical features of the different pattern structures. Crucially, how-

ever, we found that it is not sensitive to changes in the column model, and is only weakly sensi-

tive to changes in patterns generated for different centered cluster sizes (S1(i) Fig). More

fundamentally, the Shannon’s entropy approach requires one to choose a scale at which to ana-

lyse the pattern. This should not affect the analysis of the simple patterns analysed here, since

these patterns typically contain structures with only one, known, characteristic length scale,

however it limits the efficacy of Shannon’s entropy when applied to more complex data, such

as biological tissue. Indeed, more complex data such as that derived from human tissue may

exhibit multiple characteristic length scales which are not known a priori, and the size and

dimensions of samples cannot be reliably controlled at all stages of the data acquisition

process.

Fig 2. Characterising 2-dimensional mixing patterns using CMFPT. Patterns were generated using the (a, b) clusters; (c, d) centred and (e, f) column

models. (g) Location of the patterns in the ð~try,~t ry=~tyrÞ phase space obtained for three models with varying class ratio, ϕ.

https://doi.org/10.1371/journal.pcbi.1010952.g002
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Analysis of the same patterns using the mean shortest distance metric produces similar

results to those derived using the CMFPT (S3 and S4 Figs). As with the CMFPT, the mean

shortest distance is computed for transitions between cell types, such as the yellow to red mean

shortest distance, ~dyr, and is related the mean shortest path, in terms of number of nodes, con-

necting cells of one type to the other. The quantity itself is normalised, similar to the CMFPT,

by the corresponding quantity derived in a null model in which the constituent classes in the

spatial pattern are reassigned uniformly at random to each lattice point (see Methods).

Although CMFPT and mean shortest distance are similar measures, the main difference

between them is in the construction of the path between nodes. Mean shortest distance is a

deterministic measure of the distance between cells, whereas CMFPT constructs paths between

pairs of cells using a stochastic process, resulting in a distribution of first passage times for

each starting cell. As such, CMFPT may provide different information about the texture of the

patterns than mean shortest distance by incorporating information about the neighbourhood

of each cell. In this study, we summarise the CMFPT distributions using the mean, however

one could also make use of higher order moments of the distributions to obtain further infor-

mation about each cellular neighbourhood.

Analysing simulated tumour sub-clone mixing patterns

We next investigate the efficacy of our method in characterising cell mixing patterns generated

in silico. We developed a generic 2-dimensional agent-based simulation model of expanding

tumour populations, incorporating cell birth, death and mutation on a lattice (Fig 1b and 1c).

Simulations begin with a single WT tumour cell in the centre of the lattice which seeds a grow-

ing WT population. After a threshold number of WT cell divisions, specified by the model

parameter nmut, an existing WT cell acquires a mutation which confers a fitness advantage of s
(see Methods). We model fitness via a modulation of cell replication rates, such that cells carry-

ing the mutation have a replication rate which is (s × 100)% greater than that of WT cells. Neu-

tral selection, where the mutant sub-clone grows at the same rate as the WT population,

corresponds to s = 0. Here, nmut represents the fraction of the final system size, Nmax (a fixed

model parameter), at which point the mutant population first appears. Throughout this paper

we will refer to this parameter as representing the time of sub-clone emergence, however this

interpretation should be adopted with caution. Despite an increase in nmut implying a later

arising mutation, the number of cell replication events per unit time scales with the size of the

tumour and thus nmut should not be interpreted straight-forwardly as a time, but rather an

expression of absolute number of cell divisions. For example, for Nmax = 105 and nmut = 0.1,

the mutation appears in an existing WT cell once the initially expanding WT population has

reached Nmax × nmut = 104 cells. All descendants of the mutated cell also carry the mutation.

These simulations result in 2-dimensional spatial patterns of WT cells coexisting with a sub-

clonal population of mutated cells. We utilise this framework to explore the impact on the

resulting patterns of population mixing when varying three model parameters, i.e. mutant rep-

licative advantage, s, the relative time, nmut, at which the mutation appears in the growing WT

population, and the strength of cell-cell pushing on the lattice, q (see S1 Table).

Before analysing the patterns of the normalised CMFPT as a function of s, nmut and q, we

first characterise its relationship with the class ratio, ϕ, in each of the patterns (Fig 3). Similar

to our observation in the artificial cell mixing model, we find a complex non-linear relation-

ship between ϕ and the CMFPT, and a general trend of increasing ~try=~tyr with class ratio. In

the artificial model, we can vary ϕ and the underlying pattern independently, since ϕ is an

explicit model parameter. In our agent-based tumour model, however, this ratio has a depen-

dence on s, nmut and q, being simply a readout quantity rather than a tunable parameter. Thus,
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class ratio and pattern structure are naturally coupled. Correspondingly, certain underlying

pattern structures are observed only for small mutant sub-clones, and therefore small ϕ (Fig

3d), whereas combinations of (s, nmut, q) which give rise to higher ϕ will also result in substan-

tially different pattern topologies (Fig 3a). As a result, the CMFPT measurements of the simu-

lated patterns do not fall onto distinct curves (Fig 3e), as was observed for different underlying

structures in the artificial model.

Beyond class ratio, we investigate the extent to which the CMFPT reflects spatial patterns

generated under different model parameter combinations (Fig 4). When we classify our simu-

lations according to mutant fitness, s, and the arising time of the mutant, nmut, spatial patterns

generated by different parameter combinations occupy distinct regions of the (~try,~try=~tyr)

phase space, demonstrating that the CMFPT can be used to quantify distinct spatial heteroge-

neity. Patterns corresponding to neutral selection, s = 0 (purple points in Fig 4), lie in the left-

most region 1 � ~try � 2, and sub-clones with strong selection, 2� s� 3 (yellow and red

points in Fig 4), are associated with larger values of ~try. Due to the coupled effects of s and

nmut, tumours with low s and nmut (Fig 4, navy & turquoise circles), and those with large s and

nmut (Fig 4, yellow & orange triangles) fall into similar regions of the phase space, especially for

q = 0. Here, the CMFPT may struggle to distinguish these different dynamics. Nevertheless we

would still expect to see differences in the appearance of the sub-clonal patterns under these

different dynamical regimes, however, and it does appear that the mean CMFPT of these pat-

terns subtly reflects these differences. Tumours with the earliest arising sub-clones with the

strongest replicative advantage (Fig 4, red & orange circles), representing the most extreme

dynamics we tested, occupy a unique area of the phase space for all cell pushing strengths.

Varying the strength of cell pushing, q, has clear qualitative impacts on spatial heterogene-

ity. At weak pushing strengths cell displacement occurs at short ranges, leading to greater clus-

tering of sub-clones. Conversely, at larger values of q cells are subject to more frequent

displacement by nearby dividing cells, so that any sub-clonal clusters are more quickly

Fig 3. Analysis of simulated sub-clonal mixing patterns. (a-d) Simulated sub-clonal mixing patterns with cell pushing strength of q = 5. (e) Analysis of all

simulated mixing patterns simulated with a cell pushing value of q = 5 in the (~try,~try=~tyr) phase space. Data represent simulations for all possible

combinations of s and nmut where s 2 {0, 0.1, 0.2, 0.5, 1, 2, 3} and nmut 2 {0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.5}, with q = 5 (approximately 100 simulated

patterns for each parameter combination). Point colour corresponds to the relative abundance of red and yellow, ϕ.

https://doi.org/10.1371/journal.pcbi.1010952.g003

PLOS COMPUTATIONAL BIOLOGY Cancer spatial analysis using first passage time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010952 March 13, 2023 8 / 34

https://doi.org/10.1371/journal.pcbi.1010952.g003
https://doi.org/10.1371/journal.pcbi.1010952


dispersed. These effects are also reflected in the distribution of CMFPT measurements in the

(~try,~try=~tyr) phase space (Fig 4a–4d). For weak pushing strengths (Fig 4a) the simulated spatial

patterns follow a path in phase space more similar to that of the centred artificial model pat-

terns (Fig 2c and 2d), with two distinct “arms” demarcating patterns with ϕ< 0.5 and those

with ϕ> 0.5. In the limit of zero cell pushing (q = 0), varying the mutant replicative advantage,

s, and arising time, nmut, impacts the final class ratio. Since, however, cell proliferation is lim-

ited to the periphery of the system, we observe little variation in the size and spatial heteroge-

neity of sub-clonal patterns for different realisations of the same system (i.e. the same value of

s and nmut). This lack of variation in sub-clonal pattern structure at weaker q is reflected in the

CMFPT, with measured values clustering strongly in the phase space according to the values

of s and nmut and the class ratio of the sub-clonal pattern (Fig 4a, inset).

Conversely, under stronger cell pushing the diversity in the observed sub-clonal pattern

structures is greater, resulting in increased variation in measured CMFPT values for different

tumours with the same s and nmut values, and weaker clustering of CMFPT measurements

according to the class ratio of the simulated pattern. This is explained by the loss of distinct

clusters of closely related cells when cell pushing strength is increased. The increased fragmen-

tation of sub-clones is captured by the CMFPT and represented by a steeper initial decline in

~try/~tyr for patterns with low s.

Fig 4. Analysis of simulated sub-clonal mixing patterns for varying sub-clonal dynamics. Mean CMFPT values for simulated sub-clonal mixing

patterns in the phase space (~try,~try=~tyr), with points coloured according to values of model parameter s and point shape depending on parameter nmut.
Data within each panel represent simulations for all possible combinations of s and nmut where s 2 {0, 0.1, 0.2, 0.5, 1, 2, 3} and nmut 2 {0.001, 0.01, 0.03,

0.05, 0.08, 0.1, 0.5} (approximately 100 simulated patterns for each parameter combination). Inset plots contain the same data as in the main panels, but

show individual data points (one per pattern, n� 100 patterns per s and nmut combination) with point colour corresponding to the class ratio, ϕ.

Images are separated depending on their pushing value q = 0 (a), q = 5 (b), q = 10 (c) and q = 20 (d).

https://doi.org/10.1371/journal.pcbi.1010952.g004
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Overall, our analysis of simulated tumour sub-clonal mixing patterns points to an impor-

tant result. That is, despite carrying little genetic information, different underlying sub-clonal

growth dynamics each have their own spatial signature, left behind in the mixing patterns of

WT and sub-clonal tumour cell populations, and it is possible to narrow down the potential

underlying cell dynamics by quantifying the resulting spatial patterns alone. Moreover, our

results suggest that CMFPT provides a promising new route to understanding these spatial

patterns by describing the structural features of the patterns over multiple spatial scales.

Quantifying sub-clonal dynamics in human colorectal cancer

Having shown that CMFPT can be used to recover the underlying parameters of generative

models by analysing spatial mutation patterns alone, both with a simple artificial model and

agent-based simulated tumours, we next explore an application of our method to human

colorectal carcinoma samples spatially mapped by BaseScope [20]. We analysed 22 cell mix-

ing patterns produced with BaseScope (S10(a) Fig) which detail the spatial composition of

tumour cells, mapping out sub-clonal populations carrying point mutations in one of three

genes commonly mutated in colorectal cancer—PIK3CA, BRAF and KRAS. Mutations in

these genes have been associated with cancer driver events, poor prognosis and treatment

resistance [28–32]. Based on our understanding of how the CMFPT measurement relates to

sub-clonal mixing patterns generated with our agent-based model, we aim to reconstruct the

underlying dynamics driving the growth of the mutated sub-clones observed with BaseScope,

in terms of our computational model parameters. It is important to note that, whilst the

mutation time in our 2-dimensional simulations, nmut, describes the time at which the muta-

tion first appears in the entire system, the interpretation of this parameter changes when

applied to the BaseScope samples. It is extremely rare that the same mutation will happen

independently in multiple regions of any tumour, yet since the BaseScope images represent

2-dimensional sub-samples of a larger 3-dimensional system, a single spatially continuous

sub-clone in the 3-dimensional tumour can lead to the appearance of spatially distinct sub-

clonal regions in 2-dimensional samples. Accordingly, any inferred values of nmut will repre-

sent the relative length of time that the WT population was expanding in that localised area

prior to the mutant sub-clone. In a few cases, where the BaseScope samples involve multiple

spatially discontinuous tumour areas, the distribution of inferred nmut values across all local

areas reveals how fast the mutant population spread in these tumours (details explained

below).

Whilst the number of tumour cells contained within the experimental colorectal cancer

samples is of the same order of magnitude as the simulated patterns to which they will be com-

pared, the experimental images vary in resolution and contain far more pixels than the simu-

lated patterns. Furthermore, we fix the final number of cells in our simulations, however the

number of cells contained within the experimental patterns, and smaller sub-regions which we

later analyse, varies across samples. Despite our efforts to parameterise our model such that

simulated and experimental patterns contain a similar number of tumour cells, our compari-

sons may not be optimal in this regard and could possibly be more informative by improving

the concordance of tumour cell numbers under comparison. A modified agent-based model,

in which the final system size, Nmax, is allowed to vary, could allow for better matching of cell

numbers. Alternatively, keeping Nmax fixed in the simulations, but extracting sub-regions of

the simulated patterns, the size of which could be varied, could also achieve this. One of the

strengths of the CMFPT, however, is the normalisation of this quantity to corresponding first

passage times in a null model, which enables the comparison of geometrical features of pat-

terns of different sizes.
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Initial analyses of the BaseScope images, for which we estimated the CMFPT over the total-

ity of each image, highlighted some important additional processing steps that should be

applied to the BaseScope images prior to parameter inference. Crucially, the presence of un-

highlighted areas in the BaseScope images, representing all other non-cancerous tissue, signifi-

cantly impacted our estimations of the CMFPT. We do not consider non-cancerous cells in

our agent-based model, in order to maintain modest model complexity, however this makes

naive comparisons of experimental to simulated sub-clonal patterns less informative. This is

evidenced by our initial analysis of the unprocessed BaseScope images where we found some

CMFPT values falling far outside of the range of measured times from our simulated patterns,

and little correlation between the CMFPT of a BaseScope pattern and it’s class ratio (S11 Fig).

To improve comparisons between experimental and simulated sub-clonal patterns, we execute

a number of pre-processing steps on the BaseScope images. We first process each image by

manually filling in un-highlighted interior areas of colonic crypts in predominantly WT or

mutant regions with the relevant colour (S10(b) Fig). To address the remaining un-highlighted

areas which correspond to regions of non-cancerous cells (e.g. connective tissue), we separate

BaseScope images containing spatially discontinuous tumour regions into smaller sub-sec-

tions. These sub-sections are not arbitrarily selected, but instead are manually delineated

regions, identified by us, which contain locally connected areas of WT and mutated cells. By

analysing these sections individually, we reduce the influence of un-highlighted space separat-

ing these regions, enabling a better comparison of experimental and simulated measurements.

Following these pre-processing steps, the results are largely improved compared to our ini-

tial analyses of the full BaseScope images, and reveal a similar general trend to that observed

with our in silico pattern results, where higher ϕ patterns appear in the ~try=~tyr � 1 region of

the phase space, and lower ϕ patterns are situated below ~try=~tyr ¼ 1 (Fig 5e). Only a handful of

the analysed BaseScope patterns lie below ~try=~tyr ¼ 0:5, a region of the phase space predomi-

nantly occupied by simulated patterns with high cell pushing, q, and low mutant selection, s,
suggesting cell pushing might be generally weak in vivo.

To describe the sub-clonal dynamics more quantitatively, we performed a grid-search to

find the best-fit simulated parameters for each of the analysed sub-components in the Base-

Scope images (Fig 5a–5d, S12–S27 Figs) (see Methods). Plotting the best-fit simulated patterns

demonstrates that our method not only captures the statistical features of the experimental

images, but that the best-fit simulated patterns often also share a close visual correspondence

to the BaseScope patterns both in terms of class ratio and pattern heterogeneity. BaseScope

patterns with high segregation of WT and mutant populations are predicted to have low cell

pushing. Highly segregated patterns which, in addition, have a large mutant frequency, ϕ, are

most consistent with model patterns simulated with early arising mutant sub-clones endowed

with a strong replicative advantage.

We tested the robustness of our inference method by predicting model parameter values

for simulated sub-clonal patterns, generated with known values of s, nmut and q (Fig 5f). In the

phase space of first passage times we find that the spread of values for simulated tumours with

identical parameters can be reasonably large, and that the distributions obtained for tumours

differing only by small changes in their parameters are not always easily distinguishable.

Despite this, we find our method of inference to be reasonably accurate for parameters s and q,

as evidenced by the agreement between the “ground truth” parameter values and the predicted

values. Large values of s were more consistently correctly predicted than lower values, which is

likely due to the small differences between values at the low end of the parameter range, result-

ing in sub-clonal patterns with similar statistical properties which were then misclassified by

our algorithm. Of the three model parameters of interest, our method appears to be least
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sensitive to the timing of the mutation, nmut. Patterns simulated with intermediate values

(nmut = 0.01, 0.03, 0.05, 0.08 & 0.1) are often predicted to have a nmut value an increment above

or below the true value (e.g. true value of nmut = 0.05 ascribed a value of nmut = 0.03 or nmut =

0.08). These values, however, correspond to differences of 2,000–3,000 WT cell divisions,

which are small relative to the size of the whole tumour itself. Accuracy with respect to cell

Fig 5. Analysing sub-components of BaseScope sub-clonal patterns. (a-d) Representative examples of sub-components of the BaseScope samples (after

pre-processing steps applied) and their best-fit simulated sub-clonal patterns. (d) Marginal posterior distributions of model parameters s, nmut, and q,

comprising of the n = 100 nearest simulated sub-clonal patterns in the 4-dimensional phase space spanned by ~t rr , ~t ry, ~tyr and ~tyy. Inferred parameter value

is indicated by the vertical dashed line in the diagonal panels. 95% credible regions lie within the shaded region in the diagonal panels. (e) CMFPT analysis

of all simulated sub-clonal patterns (circles) and connected WT and mutant cell sub-regions within BaseScope images (triangles). Points are coloured

according to pattern class ratio, ϕ. (f) Distribution of predicted s, nmut, and q values inferred from simulated patterns (left) and probability of correct

prediction for each parameter value (right).

https://doi.org/10.1371/journal.pcbi.1010952.g005
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pushing strength, q, was particularly good, with our method appearing to correctly predict the

value of q in the majority of cases.

The inferred best-fit parameters for connected WT and mutant regions within our Base-

Scope images point to a wide range of sub-clonal growth dynamics. Analysis of the majority of

the BaseScope samples suggests that the mutated populations experience some degree of repli-

cative advantage, s, over the WT population, with some patterns consistent with mutated cells

dividing at up to 4 times the rate of WT cells (s = 3). Approximately 10% of the sub-regions we

analysed were consistent with neutral sub-clonal dynamics (s = 0). Inferred values for the rela-

tive time of mutant sub-clone invasion, nmut, within each BaseScope sub-component range

between 0.1% and 10% for the majority of the samples, suggesting that in many of the sub-

regions we analysed, the mutant sub-clones arose early in the expansion of the WT tumour

populations. Consistent with our earlier supposition, the inferred value of cell pushing param-

eter q is mostly q = 0 or q = 5, however some larger inferred pushing values are predicted.

The newly implemented pre-processing steps reduced the influence of spatial regions of

non-tumour tissue on the CMFPT measurements, improving the concordance between exper-

imental and simulated tumours. Yet, not all of the experimental samples are visually consistent

with their ascribed best-fit model image, despite having similar CMFPT values. This is due to

the variance in the distribution of CMFPT values for certain combinations of s, nmut and q,

meaning that, in some instances, experimental patterns can have CMFPT values consistent

with multiple combinations of model parameters (S9 Fig). As a result, we occasionally assign

best-fit model patterns and parameters that do not accurately resemble the experimental

image (for example, sub-region 1 in Fig 6a), despite being supported statistically within the

inference framework.

For three of the most fragmented BaseScope images, samples 02, 28 and 34, we were able to

separately analyse several isolated sub-components of tumour cells and construct a distribu-

tion of inferred parameter values across the full images (S28 and S29 Figs & Fig 6 respectively).

We surmise that the distribution of inferred selection strength, s, and mutation time, nmut, can

offer additional insights into the nature of the early sub-clonal evolution in these tumours. As

previously mentioned, nmut should not be interpreted as the time at which the mutant popula-

tion first appears in the tumour, but instead it indicates the relative length of time that the WT

population was expanding in that area prior to invasion by the expanding mutated sub-clone.

Despite this, there will be some correspondence between the distribution of inferred local nmut
values and the time of the original mutational event: with our computational modelling dem-

onstrating that earlier arising mutations tend to lead to higher infiltration of the mutant sub-

clone throughout the mature tumour, and less variegation in the mutant sub-clone pattern.

Following this rationale, we would expect an earlier mutational event to result in a unimodal

distribution of inferred nmut values, with a low variance. Conversely, later occurring mutations

should lead to a wider distribution of inferred nmut values, which may deviate from

unimodality.

In particular, sample 34 (Fig 6) suggests high mutant replicative advantage and an early

emerging sub-clone. This sample possesses a narrow distribution of inferred nmut across the

different sub-sampled regions, concentrated towards low nmut values, indicating early invasion

of the mutant sub-clone within the WT population, and pointing to an overall early emerging

mutation in the evolution of the tumour. This narrow distribution of nmut is coupled to a nar-

row distribution of s, trending towards large values. Given that our inference method is most

accurate when predicting large selection strengths (Fig 5f), this trend of high selection across

the majority of the sub-regions would suggest that the mutant sub-clone as a whole is indeed

subject to strong selection.
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These factors point to an early arising, positively selected mutant sub-clone within this

tumour. Conversely, samples 02 and 28 (S28 and S29 Figs) contain a larger proportion of sub-

regions consistent with a late invading mutant sub-clone (nmut = 0.5), and a wider distribution

of inferred nmut overall, along with lower inferred selection strength. Despite our inference

method appearing to have reduced accuracy for intermediate nmut values, the results from our

inference validation lend support to the wide distribution of sub-clone invasion times which

were predicted within samples 02 and 28. Whilst we have limited resolution in these distribu-

tions, this might suggest that the mutation itself occurred later in the evolution of samples 02

and 28 than it did in sample 34.

Our inference of cell pushing within samples 02, 28 and 34 pointed to a trend of weak cell

pushing. One should take care, however, when drawing conclusions about the cell pushing

Fig 6. Sub-section analysis of BaseScope sample 34. (a) Best-fit simulated sub-clonal pattern shown next to each sub-section with corresponding model

parameters. (b) Marginal distributions of inferred model parameters across all sub-sections.

https://doi.org/10.1371/journal.pcbi.1010952.g006
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strength within these samples as a whole based on the sub-region analyses. This is because, of

the three model parameters we inferred, the perceived cell pushing strength may be most

affected by the sub-sampling strategy employed here, as even highly mixed patterns will begin

to appear segregated when viewed with a higher magnification. Validation of our inference

method (Fig 5f) would suggest that the majority of sub-regions across these samples were

indeed consistent with weak cell pushing, however it is also plausible that stronger cell pushing

was acting within these tumours, which led to the observed fragmented patterns of tumour

cells, which in turn necessitated the sub-region analysis in these samples.

The observed distributions of inferred values for mutant replicative advantage, s, and cell

pushing, q, within the same BaseScope image could be due to a number of reasons. The experi-

mental tissue represents 2-dimensional samples taken from a 3-dimensional system along a

randomly oriented plane. As previously discussed, this sampling can have significant impacts

on the appearance of the sub-clonal pattern, potentially creating the false appearance of spa-

tially distinct sub-clones. When analysed individually, these small isolated sub-clones are likely

to lead to variances in the inferred dynamics. Beyond this, however, such variances in inferred

parameter values could reflect local fluctuations in the dynamics of the system. Cell mixing is

likely to be a result of a complex combination of cell-intrinsic and extrinsic factors, influenced

by physical stresses exerted by the tumour microenvironment. Physical stresses may fluctuate

even across small areas of tissue, and inferring fluctuating values of cell pushing in different

areas of the tumour may be consistent with this notion. In line with this reasoning, the

observed distribution of mutant replicative advantage, s, could reflect the varying propensity

of mutant cells to proliferate, which can be expected to fluctuate spatially. Whilst certain

genetic alterations may confer a cell-intrinsic increase in proliferation rate, other cell-extrinsic

factors are also expected to contribute to the “effective” replication rate of any particular cell,

such as the availability of free space, access to nutrients, and proximity to the immune system.

Simulating sub-clonal growth in 3-dimensions

An important limitation of our agent-based model is that it simulates growing tumours explic-

itly in 2 spatial dimensions. We chose not to perform the majority of our simulations in 3D in

order to reduce the complexity of our spatial data, allowing us to focus on developing the

CMFPT analysis framework. It is likely, however, that tumour sub-clones will exhibit different

topologies when simulated in 2D, compared to 2D samples of 3D tumours. The latter, of

course, more closely resembles the BaseScope images to which we compare our simulated

data, and so it is necessary to explore how our spatial analysis framework would perform when

applied to 3D simulated tumours.

To explore this, we extended the same agent-based model from 2D to 3D, whilst preserving

all other features and rules of the model other than the final system size, Nmax, which we

increased from 105 to 107 cells. To simulate the spatial sampling of real colorectal cancer tissue,

we then extracted 2D slices of the simulated 3D tumours along three orthogonal axes. This

yielded, for each simulated tumour, a set of 2D sub-clonal mixing patterns (S30(a) Fig).

Qualitatively, the patterns of WT and sub-clonal population mixing are far more diverse for

sampled 3D tumours compared to 2D tumours (S30(b) Fig). This is especially true for bound-

ary-driven growth tumours (q = 0). When simulated in 2D, boundary-driven growth gave rise

to a low diversity set of sub-clone topologies, with strong segregation of WT and mutated pop-

ulations, and mutated sub-clones which exhibited a distinct conical shape. Interestingly, when

boundary-driven growth is simulated in 3D, the resulting 2D samples are far more diverse,

both in terms of sub-clone shape and the degree of WT and mutant population mixing. These

simulations reveal that, even in the absence of any cell pushing, population mixing is possible
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depending on the orientation of 2D samples obtained from the 3D tumour, and suggest that

some of the BaseScope samples to which we previously ascribed non-zero values of cell push-

ing, using 2D simulated patterns, could in fact be consistent with boundary-driven growth.

Moreover, we find that the ratio of WT to mutant cell populations varies significantly for

different 2D samples of the same 3D tumour (S30(b) Fig). This will likely impact the perceived

sub-clonal selection strength, s, and time of emergence, nmut, and demonstrates that the rela-

tionship between these parameters and the resulting ratio of WT to mutant sub-clonal cells is

far more complex in 3D versus 2D simulated tumours.

The difference between 2D and 3D derived mixing patterns is less pronounced for non-

zero values of cell pushing, although a range of WT to mutant frequency ratios is also observed

in this regime (S31 Fig). Interestingly, we note that the set of sub-clonal patterns generated

under any given dynamics in 2D are also observed in the 3D sampled tumour, and represent a

sub-set of the possible patterns under the corresponding 3D system. This is an important

observation as, despite showing that the observed spatial patterns are different when simula-

tions are extended from 2D to 3D, it provides some validation of our approach utilising 2D

simulated patterns, showing that any given sub-clonal dynamics simulated in 2D results in a

limited, but not unrealistic, representation of the same dynamics in the more complex 3D

systems.

Analysis of a small number of sampled 3D simulated tumours using CMFPT further sug-

gests that explicit 3D systems are far more complex than explicit 2D systems (S32 Fig). Param-

eter combinations which lead to narrow distributions of CMFPT measurements in 2D

tumours often give rise to more diffuse and widely distributed data under the corresponding

3D system. This highlights the stark increase in complexity in 3D compared to 2D systems and

the challenges of accounting for the effects of physical tissue sampling of 3D systems in real

tumours. Whilst we have provided the first look at understanding the dynamics of a system

using spatial mutation signatures, future work must address the complex tissue sampling pro-

cess and better characterise its effect on the perceived dynamics.

Discussion

The challenges involved with obtaining longitudinal samples in cancer studies calls for novel

methods to analyse single time sampled data, especially spatial information, to unravel early

tumour dynamics in vivo. Spatially resolved tumour samples have been studied in a multitude

of ways in the prognosis of cancer, yet spatial information may also have the potential to

inform on the past sub-clonal dynamics. Here, we leveraged statistics of random walkers as a

new methodology to quantify complex patterns of sub-clonal mixing observed in vivo. We first

characterised the normalised class mean first passage time (CMFPT) using a set of standard

two-class artificial cell mixing patterns. By normalising each image measurement to that from

a null model, in which the image pixels are rearranged uniformly at random, we were able to

compare CMFPT data for patterns of different total sizes, and different ratios of the two clas-

ses. These simple measurements demonstrated the power of the CMFPT to distinguish

between patterns of different class ratios and underlying pattern structures. Patterns with weak

and strong segregation of the two classes were represented in radically different regions of the

phase space.

Extending our analysis to a large dataset of simulated sub-clonal mixing patterns generated

with our agent-based model, we showed that the CMFPT is capable of distinguishing between

different regimes of sub-clonal dynamics, through the resulting patterns of sub-clonal mixing.

Tumours with weakly advantageous mutant sub-clones, which emerged late during the WT

population expansion, led to spatial patterns with vastly different first passage times to those
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with more rapidly replicating mutant sub-clones, those with relatively early emerging sub-

clones, or both. Consistent with other recent computational modelling based on genomic

sequencing data [4, 33], we find that earlier arising mutant sub-clones lead to greater variega-

tion in the final tumour. Whilst these effects have been studied through multiomic sequencing

analysis of spatial bulk sub-samples, here we show for the first time that these dynamics can

also be measured using the CMFPT applied to cellular resolution maps of the sub-clonal

architecture.

These analyses demonstrate how the CMFPT provides a more detailed and informative

description of the patterns of mutant sub-clonal mixing than the spatial Shannon’s entropy

measure that was previously used to analyse the BaseScope patterns. Whilst the agent-based

model used in this study and the original BaseScope study were similar, here we also explored

the influence of varying the strength of cell pushing. We showed that cell pushing can pro-

foundly affect the resulting mutant sub-clonal pattern. Whilst the patterns produced under a

surface growth model and one with cell pushing were qualitatively similar when analysed

using Shannon’s entropy, such dynamics were measurable when analysing the mixing patterns

at multiple spatial scales using the CMFPT.

By applying our CMFPT method to human colorectal cancer samples analysed with Base-

Scope, we compared statistical features of the experimental patterns to the simulated sub-

clonal patterns. In doing so we estimated values for the replicative advantage of sub-clonal

cells, s, the relative time at which the sub-clone infiltrated the local WT population, nmut, and

the strength of cell pushing, q. We inferred a wide range of dynamics, with some samples con-

sistent with neutral sub-clonal evolution, and others suggesting strongly positive sub-clonal

selection, with mutated cells replicating up to 4 times faster than WT cells (S2 Table). By ana-

lysing sub-regions of the sub-clonal patterns, we inferred local values for the relative time of

sub-clonal emergence. In part due to confounding factors of inter-patient variability and sto-

chasticity relating to the tissue sampling process, the range of predicted values was large, with

some sub-regions consistent with very early sub-clonal populations that emerged after only

100 WT divisions (nmut = 0.001) and others suggesting the WT population had undergone up

to 50,000 divisions prior to the emergence of the sub-clonal population (nmut = 0.5). In general,

boundary driven growth (q = 0) or weak cell pushing (q = 5) was favoured over strong cell

pushing (q = 10 & q = 20).

By analysing multiple sub-regions of the sub-clonal patterns in BaseScope samples 02, 28

and 34 we were able to obtain a more detailed insight into the sub-clonal dynamics in these

tumours. When viewed in aggregate, the measurements within these samples formed a trend

suggestive of highly aggressive mutant sub-clones, with rates of replication as high as 3 or 4

times that of the WT population. Whilst we were only able to infer local values for the relative

time of sub-clonal invasion, the trend formed by these measurements allows us to speculate at

the time of the original mutational event in the tumours. For instance, BaseScope sample 34

contains a greater fraction of sub-regions which are best described by very early invading sub-

clones compared to samples 02 and 28. This suggests that the original mutational event

occurred earlier in the evolution of this tumour than those in samples 02 and 28. To make a

more qualitative statement would require extensive 3-dimensional modelling and remains a

challenge for future work. However, our analysis of these samples demonstrates how impor-

tant the role of sampling is in quantifying tumour evolution and how additional dynamics can

be revealed by comparing sub-regions within the same tumour.

Many of the experimental sub-clonal patterns we analysed contained spatially disparate

sub-clonal regions, yet it is rare for the same mutation to occur independently in multiple

regions of any tumour. Despite some evidence of parallel evolution in clear-cell renal cell carci-

noma (ccRCC) [34–36], where the same driver mutation occurs simultaneously in multiple
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cells within the tumour, evidence of this phenomenon in colorectal cancer is limited. If this

were to have occurred for the specific point mutations which were stained for using BaseScope,

however, it may lead to multiple, potentially non-contiguous, regions of mutant cells. Since

our computational model does not account for multiple occurrences of the same mutation,

patterns of parallel evolution in our experimental samples would most likely be explained

within our model framework by high cell pushing strength, q, since large values of this param-

eter can lead to the fragmentation of mutant cell clusters. Our computational model could be

adapted straight-forwardly to model parallel evolution where, for example, mutations occur

within two or more WT cells at similar times. Such a model could then be applied to study the

spatial population mixing patterns in cases of ccRCC where parallel evolution has been

observed using multi-region sequencing data, if data on the spatial mutational patterns were

available.

Alternatively, the occurrence of spatially distinct sub-clonal regions could indicate modes

of cell movement other than the passive cell pushing mechanic which we implement in our

model. For instance, short range cell migration may also have important implications for sub-

clonal mixing in colorectal cancers [7], especially in the early stages of tumourigenesis, and cell

migration has been studied in other computational models of tumour growth [8, 37, 38]. We

did not include these dynamics within our model, however future research should be devoted

to understanding the spatial signatures of short range cell migration.

Alongside the measured sub-clonal patterns published in the original paper on BaseScope

(Ref [20]) we also applied our method to a small number of colorectal cancer samples pub-

lished in a recent study by Househam et al. [33]. In their work, Househam and colleagues com-

bine multi-region sequencing data of colorectal tumours with spatial computational modelling

to infer values for sub-clonal selection, relative time of sub-clone invasion and cell pushing

strength. Samples from two patients in this study were also analysed with BaseScope (samples

A7, A10 & A11 from patient C537, and A12 from patient C539; S10(a) Fig), giving us an

opportunity to compare the modelling framework of Househam and colleagues to our spatial

analysis approach as a means to measure the sub-clonal dynamics within these tumours. For

instance, positive sub-clonal selection was predicted by the model of Househam et al. in

patient C539. Analysing BaseScope sample A12 from the same patient using CMFPT, we

also inferred positive sub-clonal selection (indicated by s = 1), and a late emerging sub-clone

(nmut = 0.5) which is consistent with the predictions made by Househam and colleagues.

Our predictions for patient C537, however, deviate from those made by Househam and col-

leagues. Our modelling suggested strong sub-clonal selection (best-fit values of s = 3 for each

of samples A7, A10 & A11) which, whilst self-consistent, differ significantly from the predic-

tions of Househam et al. who predicted neutral sub-clonal evolution in this tumour. It is not

likely that these values of selection were erroneously ascribed due to biases in our inference

approach (Fig 5f) suggesting that, within the confines of our agent-based model, these patterns

were indeed consistent with large selection strengths. The disparity between our predictions

for these samples and those made by Househam and colleagues highlight the challenges associ-

ated with the stochastic tissue sampling process, and the limited statistical power of an

approach which utilises single spatial samples with low-depth genetic information. The multi-

region whole genome sequencing performed by Househam et al. enabled them to employ

more traditional statistical methods to measure sub-clonal selection [39, 40]. Furthermore, the

spatial information derived from their sampling strategy assisted the reconstruction of ances-

tral relationships between cell lineages, which is a well-established and ostensibly more robust

approach to detecting sub-clonal selection and placing bounds on sub-clone age [41–45].

Given that the tissue samples for patients C537 and C539 used in this study were different to

those used by Househam et al., albeit from the same patients, and given the vastly different
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techniques and quantity of data used in both studies, it is difficult to compare the two methods

closely. It is likely, however, that the approach of Househam et al. offers a more accurate

description of the sub-clonal dynamics than the spatial analysis used in this study. Nevertheless

our work shows that, despite carrying little genetic information, the high spatial resolution

BaseScope data encodes important information about the sub-clonal dynamics, and our

CMFPT method can be used to summarise these high-dimensional measurements in a lower-

dimensional space whilst preserving the important features of the patterns.

The most obvious simplification of the computational model is that it neglects the third spa-

tial dimension. The BaseScope data are an example of 2D samples taken from 3D systems, and

it is likely that comparing these to simulated patterns explicitly generated in 2D will impact

our inferences on the sub-clonal dynamics. Despite this, our modelling approach is consistent

with the majority of spatial modelling in the literature, including that of Househam et al.,
which tends to be performed in 2D, mostly for common reasons of computational efficiency

and model complexity. It may be, however, that the unique dependence of our method on the

specific spatial arrangement of cells within the tumour makes our approach more sensitive to

errors associated with neglecting the third spatial dimension. We sought to understand at a

basic level the relationship between sub-clonal patterns sampled from 2D and 3D tumours

with the same underlying sub-clonal dynamics. To do this, we extended our spatial simulations

to 3D and simulated tumours for a small number of (s, nmut, q) parameter combinations,

extracting 2D slices of cells from these 3D systems in a process which more faithfully repre-

sented the tissue acquisition process in our experimental samples. Visually, the sub-clonal pat-

terns obtained from 3D simulated tumours highlighted both that intermixing of WT and sub-

clonal tumour populations is possible even without any cell pushing (i.e.q = 0) in 3D but not

2D simulated tumours, and that the coupling of population size and sub-clonal dynamics,

observed in 2D simulated tumours, is markedly weaker in 2D samples obtained from 3D simu-

lated tumours. This is in part why we did not include information on ϕ to infer sub-clonal

dynamics using our 2D model, since doing so may have actually obscured our conclusions

about the dynamics in the 3D experimental tumours. Future work must address and character-

ise the influence of tissue sampling to better exploit the information contained within the mea-

sured sub-clonal patterns.

A further limitation of our agent-based model is the absence of the surrounding non-

cancerous tissue. We chose to exclude these cells in our spatial simulations for two main rea-

sons. First, whilst physical forces exerted by the tumour microenvironment on cancer cells,

and their impact on tumour architecture, have been studied [46–48], these effects are likely to

suffer from significant inter-patient variability, and indeed there remains no consensus on

how to model such interactions in silico. Whilst one could, in principle, perform simulations

which included a third population, representing all other non-cancerous cells, and simulate

random walks on the three-colour patterns, the increased complexity of such a model may

obscure any inferences made on the experimental data. Second, explicit modelling of non-

cancerous cells would in turn necessitate careful identification of tertiary structures within the

tissue, such as colonic crypts, and other physical obstacles which might influence the spatial

arrangement of the growing tumour. As a result, we opted not to include these factors in our

spatial model, in order to optimise the balance between model complexity and instructiveness.

Instead, accepting the model limitations, when applying our analysis framework to real

tumour data, we endeavoured to mitigate the impact of the third colour in our experimental

patterns by manually filling in un-highlighted areas of the BaseScope images, where appropri-

ate, and separately analysing spatially distinct regions of tumour tissue. Future work should

involve spatial models which explicitly model the non-tumour cell population, preserving this
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information in the experimental samples and exploiting the extra information contained

within.

Overall, we predicted a wide range of dynamics across our different patient samples. Our

limited 3D simulations suggest that stochasticity introduced by the tissue sampling process

itself could play a role in the range of observed dynamics, however intrinsic inter-patient vari-

ability may also be an important factor to explain these observations. Cancer cells exist as part

of a highly complex biological and ecological system, and many factors can influence the evo-

lution of a tumour in vivo including patient genetic background, lifestyle, and metabolic state,

as well as the time of oncogenesis and precise location of the tumour within the body. Indeed,

previous studies of cancer evolution have reported similar levels of variability across patient

cohorts, including previous spatial analysis of the same colorectal cancer samples analysed in

this study [20] and studies such as that of Househam et al. [33] which employ more traditional

sequencing approaches. By better understanding factors such as the influence of sampling tis-

sue from 3D tumours, we may be able to gain a deeper understanding of these other biological

sources of variability.

In addition to their relevance to real biological systems, our focus on parameters s, nmut and

q was motivated by our need for a simple generative model with parameters which each might

affect different aspects of the sub-clonal spatial pattern. Specifically, mutant replicative advan-

tage, s, impacts the size and shape of the mutant sub-clone, sub-clone emergence time, nmut,
affects the size of the sub-clone, its position within the tumour and the extent of variegation of

the WT and mutant pattern, and cell pushing strength, q, influences sub-clone cluster size and

the extent of mixing between WT and mutant populations. These dynamics alone were not

capable of recapitulating the full range of spatial mutation patterns observed in real human

tumours, but rather we used this simple model to explore the spatial signatures of these

dynamics, and demonstrated that our CMFPT framework is capable of recovering the under-

lying model parameters based solely on the resulting spatial patterns of population mixing. In

spite of our specific choice of model design, many other models could conceivably have been

adopted here, incorporating other dynamics relevant to expanding tumour populations. In

addition to modelling mechanical interactions between tumour and non-tumour cells, we also

could have modelled competition for resources between tumour cells as well as interactions

between tumour and stroma other than competition for space. Interactions between tumour

cells and cancer associated fibroblasts have been associated with poor prognosis in colorectal

cancer patients [49]. Similarly, interactions between tumour and immune cells are known to

be an important process in the evolution of cancers, and specifically colorectal cancer [15–18].

The spatial distribution of tumour and non-tumour cells such as cancer associated fibroblasts

and immune cells could influence the spatial patterns of the WT and sub-clonal tumour popu-

lations themselves, perhaps by inducing non-homogeneous tumour cell killing or growth, and

such dynamics could be incorporated into simulations. We could not obtain information from

our experimental samples on these stroma populations, however our CMFPT framework

could potentially be used to study the spatial signatures of these interactions.

Dynamics related to non-genetic evolution, such as phenotypic switching, could also be

incorporated into future simulation models, with the forward and backward switching rates

likely impacting the observed spatial patterns. The pushing algorithm in our model could have

been replaced by other similar dynamics, such as a local dispersal model in which dividing

cells can place one daughter cell in a nearby empty lattice point, without pushing any cells in

between. These dynamics could lead to similar spatial patterns to those produced with our

pushing model, though perhaps with some difference in sub-clonal cluster size due to the

reduction in the number of displaced cells per division event. We would expect that our
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CMFPT framework could be used to measure the spatial signatures in a model with this type

of local dispersal, relating the sub-clonal patterns to parameters such as dispersal rate or range.

In this study we explored the efficacy of the mean of the class first passage time to quantify

spatial signatures of sub-clonal dynamics. In its current form, we showed that the CMFPT is

similar to the mean shortest distance. Future implementations of our metric, however, could

potentially go further than mean shortest distance by leveraging higher order moments of the

first passage time distributions, such as combining information about the mean and variance

for each of the 2-class transitions. In doing so, first passage time methods could possibly be

used to quantify the neighbourhood of each cell, capturing more nuanced differences between

different sub-clonal patterns, and in turn enabling more sophisticated and biologically relevant

models to be fitted to the spatial patterns. Further research should be directed at exploiting the

distribution of first passage time values to obtain a fuller description of the underlying sub-

clonal dynamics.

In summary, we have developed the use of CMFPT as a new method of quantifying cluster-

ing and heterogeneity of sub-clonal patterns in spatially resolved tumour samples. We

extended this method from previous applications in spatial demographic data to patterns of

sub-clonal mixing in colorectal tumour samples acquired with BaseScope, and combined

experimental measurements with spatial computational modelling of expanding tumour pop-

ulations to estimate parameters of early sub-clonal evolution in our samples. In line with some

contemporary models of tumour evolution [1, 4, 7], our analysis suggests that the large tumour

sub-clones which were observed may have arisen early in the expansion of the WT tumour cell

population, exhibiting a range of selective growth advantages over WT cells. Our work demon-

strates the capability of CMFPT as a means to measure underlying dynamic parameters using

their resulting spatial signatures, and the potential to understand early cancer evolution by

applying CMFPT to high resolution spatial data of tumour sub-population boundaries. Fur-

ther research to determine the influence of 2-dimensional sampling on inference of the

dynamics, and effectively modelling the role of the tumour microenvironment, is required to

further elucidate early cancer dynamics.

Methods

Ethics declaration

Formalin-fixed paraffin embedded (FFPE) tissue blocks were obtained from University Col-

lege and St Mark’s Hospitals, London, under multi-centre ethical approval (11/LO/1613); the

QUASAR2 trial (ISRCTN45133151, ethical approval REC 09/H0606/5+5); the COIN trial

(ISRCTN; 27286448); and the FOCUS trial (ISRCTN; 79877428, ethical approval 15/EE/0241).

Written informed consent was waived by the relevant RECs due to the retrospective and anon-

ymous nature of this study.

Simulating random walkers and estimating first passage time statistics

To assess the spatial heterogeneity of cell types we use the normalised class mean first passage

times ~tab between any pair of classes α and β [25]. To estimate this quantity, we first compute

the unnormalised class mean first passage time from class α to β by simulating 5,000 random

walks, and averaging over the resulting first passage times, for each starting node of class α in

the image. To compute the class mean first passage time, we then average over this value

across all α nodes. The normalised class mean first passage time, ~tab, is obtained by dividing

the unnormalised class mean first passage time by its null-model counterpart, tnull
ab

. To esti-

mate tnull
ab

we simulate random walks on a graph with the same connectivity as the original
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graph, but with the node classes redistributed uniformly at random, such that for an original

graph with class ratio ϕ = x, any arbitrarily selected coloured node will be of class α and β
with probabilities Pα = x and Pβ = 1 − x respectively. For each pattern, the null model values

tnull
ab

are obtained over multiple realisations of this colouring process. Since the quantity ~tab is

normalised by a null-model, it is dimensionless and represents whether the time to arrive at

a node of a given class is smaller or larger than the corresponding transition in the null-

model. For example, if ~tab < 1 then the expected number of steps taken before arriving at a

node of class β is less in the experimental pattern than in the null-model, and is greater when

~tab > 1.

To reduce computational time, we downsample the BaseScope data by binning image pix-

els. When altering the image resolution, the proportion of pixel classes is preserved in each

bin. For example, if the pixels falling into a particular bin consisted of 50% red and 50% yellow

pixels, then a walker on the downsampled network will encounter either a red or yellow bin at

these coordinates with equal probabilities of Pred ¼ Pyellow ¼ 1

2
. We downsample all BaseScope

and simulated sub-clonal patterns to the same resolution, 3000 pixels in total, prior to

analysis.

Spatial simulations of sub-clonal evolution in tumours

We generate cell mixing patterns using an algorithm based on the Gillespie algorithm [50] to

simulate stochastic birth and death of cells on a 2-dimensional square lattice. Since the Base-

Scope assay targets and detects specific genetic point mutations, we adopt a binary system in

which a particular cell can either be wild-type (WT) or mutated. A simulation begins by seed-

ing a single WT cell on the lattice, which has a birth rate greater than its death rate, and termi-

nates when the entire system (WT and mutated cells) reaches a specified size Nmax. During

initial growth, the WT clone expands until it reaches a size n = Nmax�nmut cells, at which point

an existing cell is randomly chosen to acquire a mutation. All subsequent cells related to the

newly mutated cell will inherit the mutation, and cells can not revert from the mutated state

back to WT.

Cells carrying the mutation experience a relative fitness advantage compared to WT cells.

This fitness advantage manifests as an increased birth rate, giving the birth rate of a mutated

cell, bmut, as

bmut ¼ ð1þ sÞ � bWT; ð2Þ

where s represents the relative fitness advantage conferred by mutations and bWT is the replica-

tion rate of WT cells. Our model assumes that cell cycle times are Poissonian distributed.

Whilst in reality cell cycle distributions are more tightly peaked, this assumption has been

shown to reduce lattice artefacts in cellular automaton models [51]. Cell death is coupled to

cell birth in the simulations. Before a cell divides, it is randomly determined either to continue

with the division, or die giving a death rate for cell i, di, of

di ¼ bi � c; ð3Þ

where ψ 2 [0, 1], and is fixed at ψ = 0.3 throughout this study unless stated otherwise. This

implies that cells which divide at a faster rate also die at a faster rate, which could reflect the

greater rate of apoptosis resulting from faster cell cycling in these cells. When a cell dies it

immediately is removed from the lattice leaving behind an empty lattice point.

To model the displacement of neighbouring cells during division, we adapted an algorithm

developed by Waclaw et al. [8], which involves the dividing cell searching its neighbourhood

and finding a “path” to one of the nearest empty lattice points. In order to create space to
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divide into two daughter cells, the dividing cell pushes neighbouring cells along this path, fill-

ing the nearby empty lattice point and creating a new empty space adjacent to itself. In our

simulations we implement these mechanics and extend them by accounting for relative posi-

tions of cells during pushing, favouring straight-line pushing over displacement in other direc-

tions, in accordance with Newton’s second law of motion. The parameter q determines the

maximum allowed size for the constructed path in this algorithm. If no path can be found

which is less than or equal to q in length, the cell cannot successfully divide. Setting this param-

eter to q = 0 leads to surface growth dynamics, in which a cell must be adjacent to an empty lat-

tice point in order to divide successfully.

The range of values used for mutant selective advantage, s 2 {0, 0.1, 0.2, 0.5, 1, 2, 3}, was

chosen so that we were able to investigate spatial signatures of neutral sub-clonal growth,

through intermediate positive selection, up to very strong positive selection. These values span

the expected range of selective coefficients related to driver point mutations [52, 53]. Our cho-

sen range of nmut was naturally restricted between 0< nmut< 1. We chose to explore values

spanning several orders of magnitude ranging nmut 2 {0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.5}

leading to, for Nmax = 1 × 105, the earliest emerging mutant populations appearing after just

100 WT divisions (nmut = 0.001) and the latest appearing after 50,000 WT divisions (nmut =

0.5). Our motivation for our chosen range of pushing values, q 2 {0, 5, 10, 20}, was to simulate

a spectrum of pushing dynamics ranging from boundary driven growth (q = 0) up to increas-

ingly stronger pushing strengths approaching the volumetric (exponential) growth regime.

Whilst our implementation of cell pushing is somewhat abstract, and one could conceive of

other approaches to modelling cell movement on the lattice, the mode of growth in human

tumours and its relation to tumour type and stage is not well known. This model design allows

us to explore the spatial signatures of the different regimes and smoothly transition between

different modes of growth using the parameter q.

Model parameters used to generate in silicomixing patterns are listed in S1 Table. Note

that, due to decreased probability of sub-clonal survival for (s, nmut, q) = (0, 0.5, 20), (0.1, 0.5,

20) and (0.2, 0.5, 20), sub-clonal pattern data could not be generated for these parameter

combinations.

Bayesian grid-search for best-fit model parameter inference

To perform inference of mutant replicative advantage (s), mutation timing (nmut) and cell

pushing strength (q) for each BaseScope sub-sampled region (S12–S27 Figs), we implement a

Bayesian-style grid search. For each experimental pattern, we construct the posterior distribu-

tion of s, nmut and q by finding the n nearest simulated sub-clonal patterns in the 4-dimen-

sional phase space of class mean first passage times ~trr, ~try, ~tyr and ~tyy, as determined by log-

Euclidean distance. We chose a sample size of n = 100 for each experimental pattern, and com-

puted 95% credible regions for our estimations of each parameter value. To select the “best fit”

simulated sub-clonal pattern we found the most abundant combination of s, nmut and q within

the posterior sample set and assigned these parameter values as point estimates for the experi-

mental pattern. Information on the mutant frequency ϕ, could be used to supplement the

CMFPT measurements during our grid-search inference, however this ratio is highly suscepti-

ble to uncertainty introduced by the tissue sampling process, as evidenced by our exploratory

3D simulations which demonstrate that measured ϕ can vary wildly depending on the orienta-

tion of the 2D sample acquired from the 3D tumour. Measurements of ϕ could in principle be

incorporated into the grid-search analysis, however in this study we were interested in explor-

ing the efficacy of CMFPT measurements alone in quantifying sub-clonal dynamics based on

the appearance of the mutant sub-clones.
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Shannon’s entropy calculations

We replicated the calculations of Shannon’s entropy from Ref [20] and applied these to our

own set of simple 2-dimensional mixing patterns generated using the clusters, centred and col-

umn models (S1 Fig). To calculate the Shannon’s entropy of a pattern, we divide the pattern

into n non-overlapping quadrats with dimensions L × L cells, and compute the frequency of

mutant cells within each quadrat. We then compute Shannon’s entropy,H, as

H ¼ �
1

n

Xn

i¼1

pi log2
pi þ ð1 � piÞlog2

ð1 � piÞ
� �

; ð4Þ

where pi denotes the frequency of mutant cells in the ith quadrat. When analysing our

2-dimensional mixing patterns, which themselves have dimensions of 54 × 54 cells, we use

quadrats with dimensions 10 × 10. As has been discussed with respect to quadrat-based meth-

ods for estimating fractal dimension [54–56], the estimation of Shannon’s entropy using this

method can change depending on the placement of the grid in the (x, y) plane. To address

this, we compute H for each pattern for a number of x and y grid offsets, specifically from 0

up to L in both orthogonal directions independently. We then take the minimum measured

value of H across all x and y offsets.

Mean shortest distance calculations

We compute the mean shortest distance [57] on our simple 2-dimensional mixing patterns

generated using the clusters, centred and column models (S3 Fig). As with our CMFPT calcu-

lations, we obtain four quantities from our 2-colour patterns, ~dyy, ~dyr, ~dry and ~drr. For example,

to compute the mean shortest distance from yellow to red, ~dyr, we compute the average short-

est path length in the adjacency network between cells (in terms of number of edges) between

the pair of nodes i and j for i 2 Y and j 2 R

hdyri ¼
1

jYj � jRj

X

i2Y
j2R

dij; ð5Þ

where Y and R denote the set of all yellow and red nodes, respectively, and dij denotes the

shortest path length connecting cells i and j. To obtain ~dyr, hdyri is normalized by hdnullyr i, which

is the same quantity calculated over a null-model where colors are reshuffled at random.

Supporting information

S1 Fig. Characterising 2-dimensional mixing patterns using Shannon’s entropy. Shannon’s

entropy analysis using the approach described in Ref [20]. Validation of our algorithm using

(a) fully segregated and (b) fully mixed patterns, where the latter value represents

mean ± standard deviation for entropy values of 10 randomly generated fully mixed patterns

(ϕ = 0.5 in both cases). (c, d) Shannon’s entropy of patterns generated using the clusters; (e, f)

centred and (g, h) column models. (i) Location of the patterns obtained for the three models

with varying class ratio, ϕ. All patterns have dimensions of 54 × 54, and Shannon’s entropy

was computed using quadrats of size 10 × 10.

(TIF)

S2 Fig. Characterising 2-dimensional simulated sub-clonal patterns using Shannon’s

entropy. Shannon’s entropy analysis of the same set of simulated tumour sub-clonal patterns

as were analysed using CMFPT. Points are coloured according to values of model parameter s
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and point shape depends on parameter nmut. Data within each panel represent simulations for

all possible combinations of s and nmut where s 2 {0, 0.1, 0.2, 0.5, 1, 2, 3} and nmut 2 {0.001,

0.01, 0.03, 0.05, 0.08, 0.1, 0.5} (approximately 100 simulated patterns for each parameter com-

bination). Images are separated depending on their pushing value q = 0 (a), q = 5 (b), q = 10

(c) and q = 20 (d). Inset within each panel is a magnified section of the phase space spanning

approximately 0< ϕ< 0.1 and 0� Shannon’s entropy < 0.1.

(TIF)

S3 Fig. Characterising 2-dimensional mixing patterns using mean shortest distance. Nor-

malised mean shortest distance analysis of patterns generated using the (a, b) clusters; (c, d)

centred and (e, f) column models. (g) Location of the patterns obtained for the three models

with varying class ratio, ϕ. Normalised mean shortest distance from red to yellow cells is

denoted ~dry, and from yellow to red denoted ~dyr.
(TIF)

S4 Fig. Characterising 2-dimensional simulated sub-clonal patterns using mean shortest

distance. Normalised mean shortest distance analysis of the same set of simulated tumour

sub-clonal patterns as were analysed using CMFPT. Points are coloured according to values of

model parameter s and point shape depends on parameter nmut. Data within each panel repre-

sent simulations for all possible combinations of s and nmut where s 2 {0, 0.1, 0.2, 0.5, 1, 2, 3}

and nmut 2 {0.001, 0.01, 0.05, 0.1, 0.5} (approximately 100 simulated patterns for each parame-

ter combination). Images are separated depending on their pushing value q = 0 (a), q = 5 (b),

q = 10 (c) and q = 20 (d).

(TIF)

S5 Fig. Analysis of simulated sub-clonal patterns. (a-d) Representative examples of tumour

sub-clonal patterns simulated with a pushing strength of q = 0. (e) CMFPT analysis of all simu-

lated sub-clonal patterns with a pushing strength of q = 0 in the (~try,~try=~tyr) phase space. Data

represent simulations for all possible combinations of s and nmut where s 2 {0, 0.1, 0.2, 0.5, 1, 2,

3} and nmut 2 {0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.5}, with q = 0 (approximately 100 simulated

patterns for each parameter combination). Points are coloured according to pattern class ratio,

ϕ, and images shown in (a-d) are highlighted in the phase space.

(TIF)

S6 Fig. Analysis of simulated sub-clonal patterns. (a-d) Representative examples of tumour

sub-clonal patterns simulated with a pushing strength of q = 10. (e) CMFPT analysis of all sim-

ulated sub-clonal patterns with a pushing strength of q = 10 in the (~try,~try=~tyr) phase space.

Data represent simulations for all possible combinations of s and nmut where s 2 {0, 0.1, 0.2,

0.5, 1, 2, 3} and nmut 2 {0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.5}, with q = 10 (approximately 100

simulated patterns for each parameter combination). Points are coloured according to pattern

class ratio, ϕ, and images shown in (a-d) are highlighted in the phase space.

(TIF)

S7 Fig. Analysis of simulated sub-clonal patterns. (a-d) Representative examples of tumour

sub-clonal patterns simulated with a pushing strength of q = 20. (e) CMFPT analysis of all sim-

ulated sub-clonal patterns with a pushing strength of q = 20 in the (~try,~try=~tyr) phase space.

Data represent simulations for all possible combinations of s and nmut where s 2 {0, 0.1, 0.2,

0.5, 1, 2, 3} and nmut 2 {0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.5}, with q = 20 (approximately 100

simulated patterns for each parameter combination). Points are coloured according to pattern

class ratio, ϕ, and images shown in (a-d) are highlighted in the phase space.

(TIF)
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S8 Fig. Analysis of simulated sub-clonal patterns for varying model parameter values.

Images generated by the model in the phase space (~try,~try=~tyr), with points coloured according

to value of ϕ. Data within each panel represent simulations for all possible combinations of s
and nmut where s 2 {0, 0.1, 0.2, 0.5, 1, 2, 3} and nmut 2 {0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.5}

(approximately 100 simulated patterns for each parameter combination). Images are separated

depending on their pushing value (a) 0, (b) 5, (c) 10 and (d) 20.

(TIF)

S9 Fig. Mean and variance of CMFPT in simulated sub-clonal patterns. Representative data

showing distribution (mean and variance) of CMFPT measured in simulated sub-clonal pat-

terns for various s, nmut and q combinations. For each combination of parameters, we simu-

lated approximately 100 tumours and quantified the sub-clonal patterns using CMFPT. Top

row: data for (a) nmut = 0.001 and (b) nmut = 0.5 tumour, both with s 2 {0, 0.1, 0.2, 0.5, 1, 2, 3}.

Bottom row: data for (c) s = 0 and (d) s = 3 tumours, both with nmut 2 {0.001, 0.01, 0.03, 0.05,

0.08, 0.1, 0.5}. Data are mean ± s.d.

(TIF)

S10 Fig. All BaseScope patterns analysed in this study. (a) Sub-clonal mutations in colorectal

tumours analysed with BaseScope used in this study, from Refs [20, 33]. Colorectal tumour

cells and surrounding epithelium is pictured, with wild-type tumour cells highlighted in yel-

low, and mutated sub-clonal tumour population highlighted in red. Non-cancerous tissue is

not highlighted. Scale bars, where present, represent 2000μm (b) Representative example of a

“raw” BaseScope image, and the same image after application of the pre-processing steps

described in the main text.

(TIF)

S11 Fig. Initial CMFPT analysis of unprocessed sub-clonal patterns in human colorectal

tumour samples. CMFPT analysis of human colorectal tumour samples plotted in the

(~try,~try=~tyr) phase space. Each triangular marker represents a single colorectal cancer sample

analysed with BaseScope. Circular points represent all simulated sub-clonal patterns, and

points are coloured according to pattern class ratio, ϕ.

(TIF)

S12 Fig. Bayesian grid-search analysis of BaseScope sample 02. (a) Sub-sample of sample 02.

(b) Marginal posterior distributions of model parameters s, nmut, and q, representing mutant

selection strength, mutation timing and cell pushing strength respectively. Inferred parameter

value is indicated by the vertical dashed line along the diagonal panels. 95% credible regions lie

within the shaded region in the diagonal panels. Where no shaded region is given, this interval

was the entire parameter range. (c) All analysed simulated sub-clonal mixing patterns (grey

points) with CMFPT value of the BaseScope sub-sample (star) and posterior samples (green

points). (d) Best-fit simulated sub-clonal pattern and parameters representing the most abun-

dant parameter combination within the posterior distribution.

(TIF)

S13 Fig. Bayesian grid-search analysis of BaseScope sample 11. (a) Sub-sample of sample 11.

(b) Marginal posterior distributions of model parameters s, nmut, and q, representing mutant

selection strength, mutation timing and cell pushing strength respectively. Inferred parameter

value is indicated by the vertical dashed line along the diagonal panels. 95% credible regions lie

within the shaded region in the diagonal panels. Where no shaded region is given, this interval

was the entire parameter range. (c) All analysed simulated sub-clonal mixing patterns (grey

points) with CMFPT value of the BaseScope sub-sample (star) and posterior samples (green

PLOS COMPUTATIONAL BIOLOGY Cancer spatial analysis using first passage time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010952 March 13, 2023 26 / 34

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010952.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010952.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010952.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010952.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010952.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010952.s013
https://doi.org/10.1371/journal.pcbi.1010952


points). (d) Best-fit simulated sub-clonal pattern and parameters representing the most abun-

dant parameter combination within the posterior distribution.

(TIF)

S14 Fig. Bayesian grid-search analysis of BaseScope sample 12. (a) Sub-sample of sample 12.

(b) Marginal posterior distributions of model parameters s, nmut, and q, representing mutant

selection strength, mutation timing and cell pushing strength respectively. Inferred parameter

value is indicated by the vertical dashed line along the diagonal panels. 95% credible regions lie

within the shaded region in the diagonal panels. Where no shaded region is given, this interval

was the entire parameter range. (c) All analysed simulated sub-clonal mixing patterns (grey

points) with CMFPT value of the BaseScope sub-sample (star) and posterior samples (green

points). (d) Best-fit simulated sub-clonal pattern and parameters representing the most abun-

dant parameter combination within the posterior distribution.

(TIF)

S15 Fig. Bayesian grid-search analysis of BaseScope sample 13. (a) Sub-sample of sample 13.

(b) Marginal posterior distributions of model parameters s, nmut, and q, representing mutant

selection strength, mutation timing and cell pushing strength respectively. Inferred parameter

value is indicated by the vertical dashed line along the diagonal panels. 95% credible regions lie

within the shaded region in the diagonal panels. Where no shaded region is given, this interval

was the entire parameter range. (c) All analysed simulated sub-clonal mixing patterns (grey

points) with CMFPT value of the BaseScope sub-sample (star) and posterior samples (green

points). (d) Best-fit simulated sub-clonal pattern and parameters representing the most abun-

dant parameter combination within the posterior distribution.

(TIF)

S16 Fig. Bayesian grid-search analysis of BaseScope sample 16. (a) Sub-sample of sample 16.

(b) Marginal posterior distributions of model parameters s, nmut, and q, representing mutant

selection strength, mutation timing and cell pushing strength respectively. Inferred parameter

value is indicated by the vertical dashed line along the diagonal panels. 95% credible regions lie

within the shaded region in the diagonal panels. Where no shaded region is given, this interval

was the entire parameter range. (c) All analysed simulated sub-clonal mixing patterns (grey

points) with CMFPT value of the BaseScope sub-sample (star) and posterior samples (green

points). (d) Best-fit simulated sub-clonal pattern and parameters representing the most abun-

dant parameter combination within the posterior distribution.

(TIF)

S17 Fig. Bayesian grid-search analysis of BaseScope sample 17a1. (a) Sub-sample of sample

17a1. (b) Marginal posterior distributions of model parameters s, nmut, and q, representing

mutant selection strength, mutation timing and cell pushing strength respectively. Inferred

parameter value is indicated by the vertical dashed line along the diagonal panels. 95% credible

regions lie within the shaded region in the diagonal panels. Where no shaded region is given,

this interval was the entire parameter range. (c) All analysed simulated sub-clonal mixing pat-

terns (grey points) with CMFPT value of the BaseScope sub-sample (star) and posterior sam-

ples (green points). (d) Best-fit simulated sub-clonal pattern and parameters representing the

most abundant parameter combination within the posterior distribution.

(TIF)

S18 Fig. Bayesian grid-search analysis of BaseScope sample 17a2. (a) Sub-sample of sample

17a2. (b) Marginal posterior distributions of model parameters s, nmut, and q, representing

mutant selection strength, mutation timing and cell pushing strength respectively. Inferred
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parameter value is indicated by the vertical dashed line along the diagonal panels. 95% credible

regions lie within the shaded region in the diagonal panels. Where no shaded region is given,

this interval was the entire parameter range. (c) All analysed simulated sub-clonal mixing pat-

terns (grey points) with CMFPT value of the BaseScope sub-sample (star) and posterior sam-

ples (green points). (d) Best-fit simulated sub-clonal pattern and parameters representing the

most abundant parameter combination within the posterior distribution.

(TIF)

S19 Fig. Bayesian grid-search analysis of BaseScope sample 17b. (a) Sub-sample of sam-

ple 17b. (b) Marginal posterior distributions of model parameters s, nmut, and q, represent-

ing mutant selection strength, mutation timing and cell pushing strength respectively.

Inferred parameter value is indicated by the vertical dashed line along the diagonal panels.

95% credible regions lie within the shaded region in the diagonal panels. Where no shaded

region is given, this interval was the entire parameter range. (c) All analysed simulated sub-

clonal mixing patterns (grey points) with CMFPT value of the BaseScope sub-sample (star)

and posterior samples (green points). (d) Best-fit simulated sub-clonal pattern and parame-

ters representing the most abundant parameter combination within the posterior distribu-

tion.

(TIF)

S20 Fig. Bayesian grid-search analysis of BaseScope sample 25. (a) Sub-sample of sample 25.

(b) Marginal posterior distributions of model parameters s, nmut, and q, representing mutant

selection strength, mutation timing and cell pushing strength respectively. Inferred parameter

value is indicated by the vertical dashed line along the diagonal panels. 95% credible regions lie

within the shaded region in the diagonal panels. Where no shaded region is given, this interval

was the entire parameter range. (c) All analysed simulated sub-clonal mixing patterns (grey

points) with CMFPT value of the BaseScope sub-sample (star) and posterior samples (green

points). (d) Best-fit simulated sub-clonal pattern and parameters representing the most abun-

dant parameter combination within the posterior distribution.

(TIF)

S21 Fig. Bayesian grid-search analysis of BaseScope sample 28. (a) Sub-sample of sample 28.

(b) Marginal posterior distributions of model parameters s, nmut, and q, representing mutant

selection strength, mutation timing and cell pushing strength respectively. Inferred parameter

value is indicated by the vertical dashed line along the diagonal panels. 95% credible regions lie

within the shaded region in the diagonal panels. Where no shaded region is given, this interval

was the entire parameter range. (c) All analysed simulated sub-clonal mixing patterns (grey

points) with CMFPT value of the BaseScope sub-sample (star) and posterior samples (green

points). (d) Best-fit simulated sub-clonal pattern and parameters representing the most abun-

dant parameter combination within the posterior distribution.

(TIF)

S22 Fig. Bayesian grid-search analysis of BaseScope sample 28 (continued). (a) Sub-sam-

ple of sample 28. (b) Marginal posterior distributions of model parameters s, nmut, and q, rep-

resenting mutant selection strength, mutation timing and cell pushing strength respectively.

Inferred parameter value is indicated by the vertical dashed line along the diagonal panels.

95% credible regions lie within the shaded region in the diagonal panels. Where no shaded

region is given, this interval was the entire parameter range. (c) All analysed simulated sub-

clonal mixing patterns (grey points) with CMFPT value of the BaseScope sub-sample (star)

and posterior samples (green points). (d) Best-fit simulated sub-clonal pattern and
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parameters representing the most abundant parameter combination within the posterior dis-

tribution.

(TIF)

S23 Fig. Bayesian grid-search analysis of BaseScope sample 34. (a) Sub-sample of sample 34.

(b) Marginal posterior distributions of model parameters s, nmut, and q, representing mutant

selection strength, mutation timing and cell pushing strength respectively. Inferred parameter

value is indicated by the vertical dashed line along the diagonal panels. 95% credible regions lie

within the shaded region in the diagonal panels. Where no shaded region is given, this interval

was the entire parameter range. (c) All analysed simulated sub-clonal mixing patterns (grey

points) with CMFPT value of the BaseScope sub-sample (star) and posterior samples (green

points). (d) Best-fit simulated sub-clonal pattern and parameters representing the most abun-

dant parameter combination within the posterior distribution.

(TIF)

S24 Fig. Bayesian grid-search analysis of BaseScope sample A7. (a) Sub-sample of sample

A7. (b) Marginal posterior distributions of model parameters s, nmut, and q, representing

mutant selection strength, mutation timing and cell pushing strength respectively. Inferred

parameter value is indicated by the vertical dashed line along the diagonal panels. 95% credible

regions lie within the shaded region in the diagonal panels. Where no shaded region is given,

this interval was the entire parameter range. (c) All analysed simulated sub-clonal mixing pat-

terns (grey points) with CMFPT value of the BaseScope sub-sample (star) and posterior sam-

ples (green points). (d) Best-fit simulated sub-clonal pattern and parameters representing the

most abundant parameter combination within the posterior distribution.

(TIF)

S25 Fig. Bayesian grid-search analysis of BaseScope sample A10. (a) Sub-sample of sample

A10. (b) Marginal posterior distributions of model parameters s, nmut, and q, representing

mutant selection strength, mutation timing and cell pushing strength respectively. Inferred

parameter value is indicated by the vertical dashed line along the diagonal panels. 95% credible

regions lie within the shaded region in the diagonal panels. Where no shaded region is given,

this interval was the entire parameter range. (c) All analysed simulated sub-clonal mixing pat-

terns (grey points) with CMFPT value of the BaseScope sub-sample (star) and posterior sam-

ples (green points). (d) Best-fit simulated sub-clonal pattern and parameters representing the

most abundant parameter combination within the posterior distribution.

(TIF)

S26 Fig. Bayesian grid-search analysis of BaseScope sample A11. (a) Sub-sample of sample

A11. (b) Marginal posterior distributions of model parameters s, nmut, and q, representing

mutant selection strength, mutation timing and cell pushing strength respectively. Inferred

parameter value is indicated by the vertical dashed line along the diagonal panels. 95% credible

regions lie within the shaded region in the diagonal panels. Where no shaded region is given,

this interval was the entire parameter range. (c) All analysed simulated sub-clonal mixing pat-

terns (grey points) with CMFPT value of the BaseScope sub-sample (star) and posterior sam-

ples (green points). (d) Best-fit simulated sub-clonal pattern and parameters representing the

most abundant parameter combination within the posterior distribution.

(TIF)

S27 Fig. Bayesian grid-search analysis of BaseScope sample A12. (a) Sub-sample of sample

A12. (b) Marginal posterior distributions of model parameters s, nmut, and q, representing

mutant selection strength, mutation timing and cell pushing strength respectively. Inferred
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parameter value is indicated by the vertical dashed line along the diagonal panels. 95% credible

regions lie within the shaded region in the diagonal panels. Where no shaded region is given,

this interval was the entire parameter range. (c) All analysed simulated sub-clonal mixing pat-

terns (grey points) with CMFPT value of the BaseScope sub-sample (star) and posterior sam-

ples (green points). (d) Best-fit simulated sub-clonal pattern and parameters representing the

most abundant parameter combination within the posterior distribution.

(TIF)

S28 Fig. Sub-section analysis of BaseScope sample 02. (a) Best-fit simulated sub-clonal pat-

tern shown next to each sub-section with corresponding model parameters. (b) Marginal dis-

tributions of inferred model parameters across all sub-sections.

(TIF)

S29 Fig. Sub-section analysis of BaseScope sample 28. (a) Best-fit simulated sub-clonal pat-

tern shown next to each sub-section with corresponding model parameters. (b) Marginal dis-

tributions of inferred model parameters across all sub-sections.

(TIF)

S30 Fig. Overview of 3-dimensional simulations. (a) 3D simulated tumour with (s, nmut, q) =

(1, 0.01, 0). 2D slices are extracted from 3D tumour, with the observed 2D spatial patterns ana-

lysed using fractal analysis. In total, approximately 10 3D tumours were simulated for each of

the following combination of parameters; (s, nmut, q) = (0, 0.001, 0); (0, 0.1, 0); (0.5, 0.001, 0);

(0.5, 0.5, 0); (1, 0.001, 0); (1, 0.1, 0); (1, 0.1, 10); (3, 0.001, 0); (3, 0.1, 0); (3, 0.1, 20); (3, 0.5, 0)

(b) Examples of 2D slices obtained from the 3D tumour in (a).

(TIF)

S31 Fig. Examples of 2D samples obtained from 3D simulated tumours. 2D sampling of 3D

simulated tumours with model parameters s = 1, nmut = 0.01 (a) q = 0, (b) q = 5 and (c) q = 10.

Samples are obtained by sweeping through the 3D tumour along three orthogonal axes (one

direction of sampling depicted in 3D images on left of each sub-figure).

(TIF)

S32 Fig. CMFPT analysis of 2D and 3D derived simulated sub-clonal patterns. CMFPT

analysis of sub-clonal patterns generated using 2D and 3D simulations for a range of sub-

clonal parameters. CMFPT measurements are plotted in the (~try,~try=~tyr) phase space) with

measurements of patterns derived from 3D tumours coloured according to their ratio of

mutant to WT cell numbers, ϕ. Measurements of sub-clonal patterns generated with the corre-

sponding 2D system are coloured blue.

(TIF)

S1 Table. Parameters used for 2D spatial simulations.

(XLSX)

S2 Table. Summary of all sub-sample best-fit parameters. Best-fit model parameters, for-

matted as (s, nmut, q). Sub-sample number is shown in parentheses next to BaseScope sample

number.

(XLSX)
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