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Abstract

Background: The distinctive features of the digital reality platforms, namely augmented reality (AR), virtual reality (VR), and
mixed reality (MR) have extended to medical education, training, simulation, and patient care. Furthermore, this digital reality
technology seamlessly merges with information and communication technology creating an enriched telehealth ecosystem. This
review provides a composite overview of the prospects of telehealth delivered using the MR platform in clinical settings.

Objective: This review identifies various clinical applications of high-fidelity digital display technology, namely AR, VR, and
MR, delivered using telehealth capabilities. Next, the review focuses on the technical characteristics, hardware, and software
technologies used in the composition of AR, VR, and MR in telehealth.

Methods: We conducted a scoping review using the methodological framework and reporting design using the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. Full-length
articles in English were obtained from the Embase, PubMed, and Web of Science databases. The search protocol was based on
the following keywords and Medical Subject Headings to obtain relevant results: “augmented reality,” “virtual reality,”
“mixed-reality,” “telemedicine,” “telehealth,” and “digital health.” A predefined inclusion-exclusion criterion was developed in
filtering the obtained results and the final selection of the articles, followed by data extraction and construction of the review.

Results: We identified 4407 articles, of which 320 were eligible for full-text screening. A total of 134 full-text articles were
included in the review. Telerehabilitation, telementoring, teleconsultation, telemonitoring, telepsychiatry, telesurgery, and
telediagnosis were the segments of the telehealth division that explored the use of AR, VR, and MR platforms. Telerehabilitation
using VR was the most commonly recurring segment in the included studies. AR and MR has been mainly used for telementoring
and teleconsultation. The most important technical features of digital reality technology to emerge with telehealth were virtual
environment, exergaming, 3D avatars, telepresence, anchoring annotations, and first-person viewpoint. Different arrangements
of technology—3D modeling and viewing tools, communication and streaming platforms, file transfer and sharing platforms,
sensors, high-fidelity displays, and controllers—formed the basis of most systems.

Conclusions: This review constitutes a recent overview of the evolving digital AR and VR in various clinical applications using
the telehealth setup. This combination of telehealth with AR, VR, and MR allows for remote facilitation of clinical expertise and
further development of home-based treatment. This review explores the rapidly growing suite of technologies available to users
within the digital health sector and examines the opportunities and challenges they present.
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Introduction

Background
The term telemedicine refers to the provision of clinical health
care services over a distance through information and
communication technology (ICT) channels. Telemedicine
overcomes geographical barriers in facilitating remote medical
services. Building on this, the concept of telehealth extends to
include continuing health education, research, and evaluation
by medical professionals, all while promoting the health
outcomes of individuals and communities [1]. Telehealth
broadly encompasses the delivery of remote health-related
services, including nonclinical services such as medical provider
training; medical education; public health education;
administrative meetings; and electronic exchange of clinical
data enabling diagnosis, evaluation, consultation, treatment,
and care management. The term telehealth has evolved as
available technologies have improved, such that the term “digital
health” is now often used as a more inclusive term reflecting
the application of various different types of technologies and
telecommunications systems in health care delivery. Digital

health platforms can be either provider-to-provider or
direct-to-consumer systems supported by the ICT infrastructure
[2,3]. The telehealth sector has seen an effective increase in the
past few years and has grown exponentially because of
COVID-19 pandemic restrictions. According to the report
published by Fortune Business Insights, the global telehealth
market size was estimated at around US $144.38 billion in 2020
and is likely to reach US $636.38 billion by 2028 [4].

From the reality-virtuality continuum model, according to
Milgram et al [5] (as seen in Figure 1), the real environment is
that which is viewed without any overlay of the
computer-generated entity, while at the opposite end of this
continuum, immersive virtual reality (VR) is observed as
completely enhanced computer-generated environments viewed
through a head-mounted display unit. In the augmented reality
(AR)–based display, digital information or entities are overlaid
in the real environment, such that different aspects of reality
are observed between the real and virtual environment. These
augmentation-based realities can be discovered by optical
see-through head-mounted displays (HMDs), mobile phones,
tablets, or computer monitors [5].

Figure 1. Representation of reality-virtuality continuum by Milgram et al [5]. AR: augmented reality; AV: augmented virtuality; MR: mixed reality;
VR: virtual reality.

In AR technology, the digitally created data directly coincide
with the user’s real-world environment, where the user can see
the computer-generated 2D or 3D entities such as holograms.
The virtual entities superimposed or mapped onto the real-world
space are typically rendered using optical see-through display
such as HMDs or mobile-based devices, also allowing for
stereoscopic visualization. The next most advanced form of
reality platform, the mixed reality (MR), follows the footstep
of AR and allows interaction with these virtual entities by using
hand gesture inputs, gaze recognition, or controllers. The VR
platform is a completely enhanced digital representation
featuring a 2D or 3D virtual environment or objects that can
replicate real-life surroundings. VR provides engaging sensory
perceptions for both visual and acoustic stimulation. Immersive
VR relies on headsets or stand-alone VR devices, whereas
nonimmersive VR relies on the monitor display [6].

The introduction of VR and AR technologies in medicine has
been focused on clinical-related research. The key areas

incorporating this digital reality are surgery, psychology,
neurological condition, rehabilitation, and medical educational
[7]. The 3D picturing capabilities of the VR- and AR-based
platforms have been sought for applications in the visualization
of scientific experimental imaging data, tools for surgical
planning and studying anatomy, and other collaborative
interfaces for education and telehealth [8]. Surgical simulation
has distinctively used digital reality, while VR is principally
used for visual and haptic rendering, whereas AR and MR were
predominantly positioned for the tracking system and graphical
rendering, with the latter being used in a real surgical setting
[9]. The usefulness of VR education and training using
simulation methods for nursing students was comparable with
the standard models of education and training on the outcomes
of skills, confidence, satisfaction, and performance time [10].
The current prospects of AR software applications in medical
criteria are treatment and training based [11]. Surgical
development using an MR platform has been linked as a
predominant utilization tool for training and simulation
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technology, advanced imaging and navigation, and broadening
the extent of clinical application. Recently, MR has been adapted
to neurosurgery, otolaryngology, ophthalmology, urology, and
dentistry [12]. Digital reality technology has been incorporated
into the preoperative surgical planning for several cranial-based
applications for the neurosurgical subspecialty [13]. VR-based
exposure therapy is used for various psychiatric disorders such
as anxiety, trauma and stress, neurocognitive disorders, and
several mental disorders. The effects of VR have been studied
to have long-lasting positive outcomes for the treatment [14].
VR-based training has been effective in the improvement of
executive limb function and cognitive function in patients with
stroke [15,16].

Objectives
Many published studies have reviewed the use of AR and VR
capabilities in medical research and practice and have not
detailed its implication in telehealth, thus addressing this
research gap. This systematic scoping review provides an
overview of the prospects of AR and VR applications delivered
using telehealth platforms in clinical settings. This review offers
end users and providers an update of the current use of AR, VR,
and MR effectively in telehealth delivery and highlights the
prospects of such technologies in the future. This review aims
to explore the following research questions:

• What clinical specialties have incorporated digital reality
platforms such as AR, VR, or MR exclusively with
telehealth?

• What are the different hardware and software technology
formats used in AR, VR, or MR within telehealth?

• Which important technical features of AR and VR have
been used in telehealth?

Methods

Overview
This scoping review used the framework of the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines [17].
Included studies from the database were solely concerned with
the application of high-fidelity simulation technology such as
AR, VR, or MR exclusively delivered via the telehealth
platform. The study has no written or published protocol.

Database and Search Strategy
Articles from Embase, PubMed, and Web of Science were
explored to obtain relative pieces of evidence. An exploded
search strategy string was developed with the support of a
university librarian. The search string included appropriate
keywords and Medical Subject Headings terms—“augmented
reality,” “virtual reality,” “mixed reality,” “extended reality,”
“telemedicine,” “telehealth,” “m-Health,” “e-Health,” and
“digital health.” The search strategy was initially developed on
the Embase database and replicated across the other databases
using predefined filtering techniques. The entire search strategy
can be seen in Multimedia Appendix 1.

Eligibility Criteria
The studies included must satisfy the active component use of
AR, VR, or MR delivered via telehealth approaches and should
have been published between the years 2016 and 2021, since
such devices with this technology format became commercially
available, marked in reference to the release date for the
first-generation Microsoft HoloLens [18]. The collaboration
aspect of AR and MR technology into social or digital
communication avenues could be observed during the same
period [19]. Telemedicine or telehealth includes a broad
spectrum of health care delivery, including education prospects;
however, this review will focus on clinical aspects, including
simulation. Only full-length text articles available on the web
in the English language were included. Full-length text from
peer-reviewed articles such as randomized controlled trials,
feasibility studies, exploratory studies, narrative reviews,
systematic reviews, case and cohort studies, book sections, and
technical reports was considered eligible for inclusion. Any
studies highlighting the mentioned technology for gaming,
entertainment, or medical education were excluded.
Correspondence papers, letters, conference abstracts (no full
texts), editorial, commentary, poster presentations, and gray
literature were also excluded from this review.

Study Selection and Data Extraction
The papers obtained from the applied search strategy from the
information databases were imported to the reference manager
EndNote 20 library, and duplicates were discarded [20]. Three
researchers (HW, SC, and JK) performed initial screenings
based on titles, abstracts, and keyword searches. Author HW
conducted eligibility criteria and full-text screening. The selected
studies were then reviewed based on the article type, study
design, clinical condition addressed in the study, mode of
telehealth communication, acceptance criteria, and the hardware
and software used in the studies for the guidance for data
synthesis. Finally, the relevant information from the studies was
tabulated into an Excel (Microsoft Corp) spreadsheet, and a
descriptive synthesis of the data was generated. In our review,
we summarized and grouped the various telehealth branches
using digital reality platforms for the various clinical condition
based on descriptive statistical findings for the included studies.
Different facets of the digital reality technology were detailed
for its application in clinical research.

Results

Overview
Of the 4407 abstracts identified from the search protocol, 134
full-text articles fulfilled the inclusion criteria. A total of 1079
duplicate records were removed, 2598 records were discarded
after title, abstract, and keyword search, and 410 records were
deemed not fit after the initial screening as these articles were
not about topic of interest having objectives that did not align
with the outcomes of this review and did not satisfy the inclusion
criteria. Of the 320 articles that were subjected to full-text
review, 177 articles were deemed not relevant because they
either included the digital reality technology or telehealth
strategies but not delivered jointly, and 9 were excluded after
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recognizing multiple papers published on the same topic by the HW, SC, and JK (Figure 2).

Figure 2. Flowchart for the structured literature search and selection.

Digital Reality Platform via Telehealth
As demonstrated in Figure 3, VR and AR cover most of the
listed telehealth domains for the eligible studies. The most
studied and researched area is telerehabilitation accomplished
using VR. The other subareas involving VR use include
telepsychiatry for evaluation and treatment, telediagnosis, and
teleconsultation. In addition, AR and MR are prevalent modes
of the reality technology platform for telementoring and
teleconsultation. Finally, telesurgery and telemonitoring are the

2 subfields of telehealth where AR technology have seen an
upward trend.

Clinically based digital health applications were considered for
the review as various specific branches of the telehealth
spectrum (Figure 4). Telerehabilitation is a postclinical care
service delivered at home or remotely for recovery purposes
and constitutes most of the included telehealth group from the
included studies [21,22]. Evident from the included studies,
stroke rehabilitation emerges as the leading medical condition
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that has seen an uptake of these services. Different aspects of
rehabilitation, such as functional motor training, including
upper-extremity training and fine motor skills, cognitive
functional training, visuomotor tracking training, and balance
and gait training are primarily used for treating poststroke
survivors [23-41]. In turn, the patient groups who have used
telehealth for the purposes of rehabilitation have reported
improvements in their quality of life, increased daily activities,
and improved levels of motivation [42]. From the multiple
studies included, telerehabilitation has been experimented as a
home-based treatment for various neurological and cognitive
disorders or diseases such as Parkinson disease, acquired brain
injuries, multiple sclerosis, cerebral palsy, mild cognitive
impairment, Alzheimer disease, and dementia [43-58].

Conventional therapy programs in the form of physical therapy
and behavioral therapy are the nonpharmacological treatments
that have used this remote delivery platform. In a small number
of studies, the home-based rehabilitation in the form of novel
telerehabilitation have been used for patients undergoing surgical
procedures, such as total hip replacement, total knee
arthroplasty, and total knee replacement, as a postrecovery
treatment measure [59-62]. Mirror therapy for patients with
phantom limb pain and physiotherapy treatment for patients
with chronic body pain have incorporated this model of remote
teletherapy [63-68]. This field has also been applied in physical
rehabilitation for musculoskeletal disorders, provision of
vestibular rehabilitation therapy in patients with a balance
disorder, and kinesiotherapy for older adults at risk of falls
[2,69,70]. Physical therapy in the pediatric group and musical
therapy in patients with spinal cord injury have explored this
stream of technology [71,72]. Pulmonary rehabilitation therapy
for respiratory disorders such as chronic pulmonary respiratory

disorder, pulmonary fibrosis, and myocardial infarction; low
vision rehabilitation in providing functional visual assistance;
and the COVID-19 pandemic have been an influential factor in
accelerating remote rehabilitation therapy [22,73-77].

Telementoring is a subset of telemedicine that reflects remote
expert guidance such as training or telenavigation to medical
and nonmedical personnel in performance of life-sustaining
procedures [78]. The impact and usability of the telementoring
technique in provision of cardiopulmonary resuscitation in
treating cardiac arrest has been demonstrated by different
authors in simulated environments, with the assistance of a
remote mentor using an HMD or Google Glass [79,80]. Other
authors have explored the use of telementoring guidance, in
intraoperative telenavigation, and preoperative planning in
simulated battlefield and emergency trauma. The telementoring
approach for preoperative planning and telenavigation during
the intraoperative process has been demonstrated in complex
emergency hand reconstruction surgery [81,82]. Forward
damage control procedure performed on a patient-simulator
model depicting a right-sided femoral gunshot wound and
simulated trauma injuries such as airway obstruction by
conducting cricothyroidotomy have been carried out using
remote instruction—as have, lung decompression, tracheostomy,
or REBOA (resuscitative endovascular balloon occlusion of the
aorta) catheter deployment to deal with specific trauma injuries
with the aid of a remote medical expert [82-86]. The feasibility
of telementoring applicability in the performance of chest
thoracotomy, skin grafting, and fasciotomy has been evaluated
using ex vivo animal models [78,87,88]. Telementoring has
been used to great effect in different stages of surgical planning
in various orthopedic, craniofacial, spinal cord, vascular, and
cardiothoracic surgeries [6,89-100].

Figure 3. Collaboration between digital reality technology and telehealth for the included studies.
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Figure 4. An overview of different clinical conditions and groups categorized within specific telehealth domains.

Teleconsultation is a primary segment of telehealth services,
broadly consisting of remote consultation services using ICT.
This remote consultation can be synchronous or asynchronous
and between clinicians (provider-to-provider) for shared
decision-making or between clinicians and their patients
(provider-patient) [101]. This approach has been applied in
patient assessment using the National Institute of Health Stroke
Scale for patients with acute stroke and during remote clinical
rounds in isolation wards for patients with COVID-19, thereby
reducing direct exposure of the staff [102,103]. This technique
has also been evaluated in trauma and emergency-related
scenarios, such as remote consultation in reading and
interpreting electrocardiogram reports related to drug
intoxication or poisoning [104,105]. The effectiveness of
provider-to-provider teleconsultation has been demonstrated in
provision of support for ambulatory staff and first-responders

in triage during simulation of major trauma [106]. The
applications of teleconsultation in provision of surgical care are
broad, allowing collaborative, contextual, and presurgical
planning and visualization and intraoperative surgical navigation
through high-fidelity immersive reality platforms and devices,
as well as facilitating remote delivery of complex information
to patients [107-115]. Teleconsultation via the reality platforms
has been used to explore the feasibility of telepathology in
carrying out an autopsy, image scanning, and transfer of serially
sectioned cancer tissue from a mouse [116].

Telemonitoring is an advanced form of clinical care service that
provides patient-centered care. This method allows health care
providers to collect and track patient information and deliver
remote care assistance [117]. This branch of telehealth has been
evaluated in pediatric cohorts dealing with hospital-induced
stress as a shared experience on a mobile-based AR game for
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play therapy. This aspect allows managing pediatric patient
profiles, data collection, and further analysis for effective
treatment [118]. Telemonitoring via holographic conversational
agents; that is, a computer-generated character to deliver
physiotherapy home exercises to patients with musculoskeletal
disorders and chronic pain has been demonstrated to increase
their treatment adherence [119]. Supervised AR-based home
training has been used for patients with phantom limb pain by
providing mirror therapy, thereby promoting visuomotor
integration by reengaging the neural circuits related to lost limbs
[120]. Telemonitoring has been used in postoperative care and
wound assessment in orthopedic and neurosurgical cases and
has also been applied for teleproctoring or remote monitoring
in pilot simulation as training for fundamentals of laparoscopic
surgery examination [121-123].

Telepsychiatry uses ICT to offer a range of clinical and
nonclinical services such as psychiatric evaluation, therapy
(individual or group-based), patient education, and management
remotely [124]. Studies using this element of telehealth and
computer-generated virtual environments have evaluated the
feasibility of remote therapy such as Virtual Reality Exposure
Therapy for patients with acrophobia and evaluation of the
technical system in delivering specific phobia treatment for
arachnophobia [125,126]. Remotely delivered psychological
treatment by the mental health professional include behavioral
intervention therapy, cognitive behavioral therapy, mindfulness
therapy, and acceptance and commitment therapy for patients
facing stress, anxiety, public speaking anxiety, and social anxiety
disorder, among others [127-130]. In a simulation study,
cognitive and affective assessment of astronauts has been carried
out to characterize social isolation from space [131]. Evaluation
of telepsychiatry using the reality platform such as VR versus
the traditional videoconferencing platform, and the development
of newer platforms such as social VR for older adults in urban
areas has demonstrated such techniques could lead to improved
quality of life by reducing social isolation [132]. Telepsychiatry
assessment via VR as a home-based treatment delivered by
mental health professionals, such as a psychiatrist, psychologist,
licensed social worker, or a mental health counselor, has been
demonstrated to mitigate clinician burnout [133,134].

Another exciting subsection of the telehealth sphere, telesurgery,
enables teleoperation in an operating field executed over a
distance. Telesurgery involves using various disciplines such
as communication technology, imaging techniques, motor
control systems, robotics, reality platforms, and digital signal
processing [135,136]. For example, in an experimental setup,
a VR-based teleoperative system consisting of a robotic catheter
operating system can be used to imitate vascular interventional
surgery for arterial aneurysms or other vascular diseases. This
method allowed unskilled surgeons to train in essential catheter
guidance skills and enabled experienced physicians to conduct
surgeries cooperatively [137]. In addition, a telesurgical
experiment was conducted with a tendon-driven continuum
robot via telenavigation for endoscopic and minimally invasive
surgical procedures by tracking coordinate trajectory registration
[138]. Finally, in another simulation case, a magnetically driven
endoscopic capsule enabled the teleoperator or user to receive

visual feedback in VR to conduct capsule endoscopy for
colorectal cancer [139].

Moreover, the reality platform is streamed as a functional
stereoscopic display and navigates space during telesurgery.
This aspect of telesurgery has been experimented with as a
visualization opportunity using smartphone-delivered vision
and VR headsets to perform microsurgery for cataract and
phacoemulsification [140]. In addition, Stereoscopic AR
Predictive Display using the da Vinci R Surgical System to
perform laparoscopic surgery and AR-assisted robotic surgery
for kidney transplant procedures are some of the current practical
applications of telesurgery [141-143]. Telediagnosis refers to
the detection or evaluation of a disease or condition using
telematics technology. It is achieved remotely while the patient
is at a local site with remote diagnostic tools and devices
[144,145]. For instance, in experimental analysis, locating and
evaluating tumor-bearing hysteromyoma coordinates during a
3D navigated gynecological operation facilitates telediagnosis
when visualized on a 3D user interface of the medical record
[146]. Another study proposes a framework based on
bidirectional haptic feedback and tele immersion in the
evaluation of range of motion and maximum isometric strength
using the 10 arm movements method in the diagnosis of
musculoskeletal disorders, poststroke rehabilitation, or
postshoulder surgery [147]. Ultrasonography (USG) is a field
in which telediagnosis using the high-fidelity visualization
system has been used to great effect. Evaluation of 3D VR
telenavigation in cardiac USG has been undertaken in simulated
settings. The added benefits of AR enable real-time teleguidance
on procedural performance and image registration for
point-of-focus ultrasonography (POCUS) and foveated imaging
pipeline in extending VR-based telediagnosis [148-150].
Another study mentions AR video communication projected
by mobile-based AR guidance to conduct POCUS on popliteal
nerve block and a subsequent diagnosis based on the availed
health information [151].

Overview of the Hardware and Software Units for the
Included Studies
To experience MR, high-simulation visualization hardware
devices and some of the commercial ones included in the
selected studies are listed in Multimedia Appendix 2. These
include high-end AR and VR devices, smart glasses, mobile
devices, standard LED (light emitting diode) and LCD (liquid
crystal display) television or display screen, 3D television, and
3D projectors. The commonly included immersive
reality-capable devices are mostly wearable technology such
as smart glasses, VR or AR HMDs, and nonimmersive standard
display units. However, these high-fidelity simulation display
technologies form the final part of any system and are primarily
used in combination with optical capturing and tracking devices
and input devices. The optical capturing and tracking systems
or devices incorporate 3D depth and color-sensing camera
sensors. The input devices such as controllers, trackers, or
customized input modules help navigate the immediate VR or
any MR environment. Various studies have included the VR
gaming element in their rehabilitation programs, with some
having their own developed VR rehabilitation system. Most
included studies have used biometric devices for specific
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medical parameter evaluation to draw analysis and simulation
models to conduct various training. Other relative hardware
devices and systems that have been used are listed in the
Multimedia Appendix 3.

The graphical representation for any software harbors a
visualization platform, and more specifically, the MR system
incorporates contextual 3D figures and scenes. The various
software applications and source platforms that were featured
and used in the included studies are listed as a table in the
Multimedia Appendix 4. These applications are grouped as 3D
modeling and visualization software, communication and
streaming software, file-sharing and transfer applications, and
other specific and personalized software applications. The 3D
composite images and environment for the MR technology are
created using the computer graphic designing software and
gaming engine platforms. Processing and accessing the 3D
computer-generated environment or images needs specific and
compatible visualization file applications supported by the
device. The featured 3D modeling and viewing application
allows for creating and editing static and interactive
multidimensional models and VR scenes, animations, and
games, conversion of the produced scanned images to
computer-aided design models, and stereoscopic 3D display
content. The telehealth domain explores the ICT for effective
remote clinical services while using the streaming facilities
offered by various low-bandwidth platforms. This domain allows
offline or real-time interactive communication and collaboration
for any dedicated clinical services. Many communication and
streaming applications allow for remote one-to-one or group
video calls and messaging, screen sharing, file sharing, hosting
channels, and video broadcasting. Some of these platforms allow
for direct AR and VR integration and acceptance. The
file-sharing and other specific applications are synchronously
and explicitly used as a sequential fragment of the entire system.
The developed software from the studies mentioned in the table
encapsulates the combination of AR and VR cooperatively with
the remote telehealth applications.

Virtual Environment
A virtual environment (VE) recreates a coordinated appearance
of sensory information representing that of a physical
environment that can be unreal, interactive, or wholly imagined
environment perceived when the user wears an appropriate
gadget [152]. In addition, the term virtualworlds has been
interchangeably used with a VE. Developing this state-of-the-art
perceived environment is created using a subset of tools arising
from computer game technology, specifically through
commercial game engines. The scene can be a 2D or 3D
illustration, which is a complex and time-consuming process
for its creation [153]. This element of VE has been recreated in
almost every aspect using the VR platform. For example, the
study by Levy et al [125] demonstrated the use of virtual worlds
such as a subway station and a 24-story high-rise building as
background scenes to overcome acrophobia as a VR exposure
therapy. Similarly, Cikajlo et al [127] developed a program
called ReCoVR (Realizing Collaborative Virtual Reality for
Well-being and Self-Healing). The participant attends a remote
guided mindfulness program as part of a group. This
mindfulness program was organized as 360° video scenes where

they carried out different tasks and exercises. Initially, all the
participants that joined were seated in the virtual fireplace room;
upon the program’s progression, they were switched to other
3D VEs, such as the Dooney Rock, River Bonnet, or the
mountain-view. Shao and Lee [132] have addressed a social
VR platform that uses the 3D scenes in the VE for real-time
face-to-face communication in different distant locations to
learn about its value and urgency in the urban older adult
population. Tamplin et al [72] developed a web-based music
therapy telehealth platform using social VR, vTIME (vTime
Limited), allowing group music therapy sessions in VE, such
as singing around a campfire in a forest.

Gaming-Based VE
Moreover, many studies used VE in interactive game–based
settings for rehabilitative exercise programs. In a program
described by Meca-Lallana et al [53], patients were required to
carry out specific tasks to accomplish a mission in 2 different
scenes: a medieval fantasy world and a deserted island. Yet
again, in another exercise setup, VR exercises depict a wooden
church in Hrabova Roztoka. The patient explores this particular
place using a VR headset, thereby facilitating lower-limb
rehabilitation [36]. Telerehab VR, a custom-built application
program that runs on either a mobile-based tablet or PC, was
developed using the game engine Unity (Unity Technologies
Inc). This system provides upper-limb rehabilitation for patients
with multiple sclerosis. They perform various activities of daily
living tasks happening in the VE in a realistic home setting. A
leap motion controller (Ultraleap) was used to track and control
the hand motion executed while performing the gaming tasks
[48].

Telepresence
Telepresence describes the characteristic of directly interacting
with the actual physical state, experienced from the first-person
viewpoint of the user located remotely [154]. Tian et al [147]
used the H-TIME (Haptic Enable Tele-Immersion
Musculoskeletal Examination) set up at both the patient and
doctor ends to conduct a remote diagnosis of musculoskeletal
examination. At both sites, the doctor and patient could feel
each other’s movements because of the bidirectional force
feedback mechanism. They could view and communicate with
each other in the VE, bringing them to the same examination
room virtually. In another instance, in treating phobia, in
particular, fear of spiders, the patients were allowed to interact
in the VE, where the therapist gradually added the feared
creature to the scene. This treatment is performed remotely via
the tactile internet with VR headsets or standard computer
screens using a hand-tracking and haptic device such as a glove
[126].

Teleoperation refers to performing designated highly skilled
manual tasks remotely, similar to a telerobotic medical system
in minimally invasive surgery [155]. In a simulated study, an
endoscopist performs a teleoperation process using a haptic
device that controls the position of an external permanent
magnet positioned at the end of a robotic arm. The user is
wearing a VR headset and receives the corresponding visual
information from the camera of the endoscopic capsule and then
proceeds with the navigation process inside the colon [139].
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Another simulated study used teleoperated ultrasonography that
builds on the VE developed as a 3D representation of a real
USG probe and a mannequin imitating a patient’s body
highlighted with a geometric mesh for the purpose of following
the examination. The user wears an Oculus Rift DK2 HMD
(Oculus) to perform this simulation of tele-USG [148].
Syawaludin et al [150] introduced the use of 360° foveated
pipeline imaging viewed via an HMD. The image or video
capture is facilitated by the use of an omnidirectional
pantilt-zoom camera module, and the remote physician can
remotely diagnose the wound by zooming in and inspecting it

in a 360◦ view over the HMD.

Exergaming and Serious Gaming via VR
In the context of virtual telerehabilitation, exergaming and
seriousgames are the 2 most popular applications that emerge.
Simply put, exergaming is an activity connected with playing
video games that involve physical exercise [70]. In contrast,
serious games follow the objective of games, implicitly focusing
on increasing skills and abilities and gaining experience and
knowledge [156]. The TELEKIN system, a beta edition, uses
the interface of the serious game to rehabilitate cognitive and
musculoskeletal disorders using a web-based framework [43].
The training sessions are conducted and played in a 3D VE that
includes a number of games. Two of them involve physical
actions—flexion and extension of wrist, hip, or shoulder as the
doctor chooses to control the ball and platform in executing the
game. Another game focuses on cognitive rehabilitation by
featuring random words that the user must arrange them to form
a sentence, which can be achieved using gesture-based controls
[43]. Gandolfi et al [44] used the Tele Wii Lab platform as a
home-based balance training, and Sheehy et al [28] and Allegue
et al [30] used the Jintronix system (Jintronix, Inc) in
upper-extremity rehabilitation of chronic poststroke patients,
which used the exergaming platform. The study by Triandafilou
et al [24] that developed a networked multiuser gaming format,
Virtual Environment for Rehabilitative Gaming Exercise
(VERGE), conducted a feasibility trial to determine the
effectiveness of this developed system with other potential home
treatments. The VERGE system features a set of 3 exercises,
namely Ball Bump, where the users pass the ball back and forth
across the table; Food Fight, where the users in multiplayer can
pick up the food on the table and throw it at each other; and the
Trajectory Trace game, where 1 player draws a trajectory path
in the space while another player retraces the trajectory to erase
it. Burdea et al [32] included a commercial rehabilitation system
with a novel therapeutic game controller, BrightBrainer (Bright
Cloud International Corp). This system offers a multitude of
interactive games (Breakout 3D and Card Island Towers of
Hanoi, among others), training motor, cognitive, and executive
functions for chronic poststroke patients. Qiu et al [35]
demonstrated the feasibility of a home-based VR system that
features 12 developed games focusing on the elbow-shoulder,
hand, wrist, and entire arm for upper-extremity rehabilitation
in poststroke patients (finger games: car, bowling, and piano;
hand games: piano and fruit picking; wrist games: Wakamole
and wrist flying; and finally, the shoulder-elbow games: the
Maze, Arm Flying, Brick Break, and soccer goalie)

Avatar Representations or Virtual Agents
The term avatar is a distinguishable digital characterization of
a human form (either specific or random) [128]. Moreover,
these avatars can be either in 2D or 3D illustration, representing
a specific part of the body, usually arms or an entire body
structure with particular facial expressions. 3D avatars have
been a central representation in the scope of VR and AR. The
study by Anton et al [59] implements the Kinect-based
Telerehabilitation (ie, KiRES) interface, providing two 3D
avatars to guide the patient during their physical therapy session.
One of the avatars represents the remote therapist and represents
the local user or the patient, colored red and blue, respectively,
so the patient can follow and perform the exercises executed
by the 3D remote therapist avatar (in red). The patient can see
their movements reflected by their blue avatar changing their
positions as per the scenes from the therapy. In the study trial
conducted by Jung et al [74], in a telerehabilitation
program—Pulmonary Rehabilitation in Virtual Reality (PR in
VR) program—each patient was provided with a VR headset,
pico G2 4k (Pico Immersive Pte Ltd), preloaded with the PR in
VR application. This application contains education and
rehabilitation modules, and the chronic obstructive pulmonary
disorder rehabilitation module comprises several physical
exercises directed by a virtual instructor in 3D avatar
embodiment.

The REWIRE autonomous telerehabilitation platform offers
home-based intensive rehabilitation as offline remote monitoring
by hospital clinicians. This system features a virtual therapist
with artificial intelligence implanted and provides real-time
feedback to maintain correct posture. In addition, the exercises
performed by the patients are showcased as a 3D avatar on the
screen. This intelligent system highlights each body segment
of the exercise in a different color, intense green for the proper
posture and red color for the incorrect posture [23]. The VERGE
system enables the use of avatars to control and manipulate
objects in the virtual gaming environment, allowing the
capability to include multiple avatars and different users to
manipulate the same object [24]. In the social VR app, vTIME
(vTime Limited), an avatar persona is used for
self-characterization to communicate in an immersive VE [128].
Afyouni et al [65] describe the use of RehaBot, a virtual assistant
that illustrates to the user how to perform the exercises correctly
(both the therapist and patient can replay the session in a 3D
avatar). The RehaBot embeds real-time pattern and gesture
recognition together with a dynamic correction module that
considers the game difficulty level and reading from the virtual
assistant to produce a tailored set of exercises that are rather
fitting to the patient’s native abilities.

Telestration and Annotations via AR and MR
Telestration enables the drawing of freehand representations,
also known as annotations (such as lines, circles, or any other
symbols or sketches) over any image or video feed. With the
latest AR and MR technology, this telestration can be achieved
in 2D and 3D and superimpose this annotation in the live video
streaming during the video call [157]. The Virtual Interactive
Presence and AR tool is a mobile or tablet-based augmented
reality platform running on an iPad device (Apple). It
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incorporates the telestration feature, allowing the remote expert
surgeon to freeze the screen and then draw an image using a
2D pen tool. This composite video feed, viewed on both the
local and remote stations, enables intraoperative
telecollaboration in real-time [90]. In the feasibility study by
Wang et al [100], POCUS using the HoloLens was conducted
by the trainee in a simulated teleconference session. The MR
capture video from the trainee was broadcasted. Live guidance
provided by the expert mentor facilitates the trainee to complete
a right quadrant Focussed Assessment using Sonography in
Trauma examination. The broadcasting was achieved using
VSee, a proprietary low-bandwidth, group videoconferencing
and screen-sharing application. To perform complex hand
reconstruction of a patient after a bomb-blast injury, a
telementoring network was established between an expert
surgeon in Lebanon and a local surgeon in Gaza. This session
was hosted using a cloud-based AR platform Proximie (Proximie
Limited), allowing the remote surgeon to superimpose their
own hands or range of annotations and drawing tools into the
virtual surgical field [82].

Mitsuno et al [93] demonstrated telementoring in a simulation
study to perform craniofacial surgery by using a
teleconferencing setup, Skype (Microsoft Corp) for HoloLens,
enabling the telestrated features and images overlaid on the
receivers’ visual field. A POCUS examination was performed
using a novel smartphone app Vuforia Chalk (PTC Inc), an AR
video platform for remote AR assistance, anchoring the AR
annotations in each other’s supposed visual environment [151].
In the study, Ritcher et al [141] proposed the first predictive
display with AR registration and rendering using stereoscopic
displays designed for teleoperated surgical robots known as
Stereoscopic AR Predictive Display. The simulation study
measured the effectiveness of Stereoscopic AR Predictive
Display conducted on the da Vinci R Surgical System (Intuitive
Surgical) to complete the peg transfer task. The System for
Telementoring with AR (STAR) platform now combines optical
see-through display, HoloLens AR HMD. Similarly, this system
allows for telementoring guidance by overlaying 3D graphical
annotations onto the mentee’s view of the surgical field, which
remains anchored in the same place even after the mentee moves
their head position [95].

The experiment by Zhang et al [110] aimed to enhance
teleconsultation by using the AR technology ARkit (Apple) to
create an immersive replica of the consultant. Using a Kinect
sensor (Microsoft Corp) to capture the skeletal feature points
of the consultant, the patient views a 3D dynamic virtual avatar
doctor appearing in the patient’s telepresence environment on
their iPad device. A qualitative study was conducted to gain the
experience and perception of AR Glasses in patients with
pulmonary disorders for home-based telerehabilitation. The
web-based telerehabilitation system Optimov (Optimov) enabled
via an AR Glasses device Laster WAV  headset (Laster
Technologies) provides exercise coaching using a 3D virtual
agent [73]. A holographic virtual therapist was deployed in the
HOLOBALANCE, a novel health care platform for providing
vestibular rehabilitation therapy for patients with balance
disorders [158]. In the design and evaluation user study by
Kowatsch et al [119], a hybrid ubiquitous coaching model

relying on mobile and holographic conversation agents was
introduced. The 3D virtual conversation agent demonstrated
the squat exercise, engaging in real-time audio feedback for
counting the repetition or providing automatic error detection
for incorrectly or incompletely following the exercise. An
innovative 3D point tracking module and unique AR system
integrated with the HoloLens was used for surgical applications
using telementoring. This module allowed for real-time 3D
position tracking of the virtual scalpel handled by an experienced
surgeon remotely. The inexperienced trainee wearing the
HoloLens can see the surgical annotation superimposed with
the actual surgical scene; the virtual path coregistered on the
phantom arm model [78]. Next-generation mobile-based AR
games for pediatric health care allow shared experiences with
multiple other AR-supported devices to detect and interact using
the same local area network. Several games were developed
using the Unity game engine and ARCore Unity, a software
development kit for Android operating software. Jungle
Adventure, Map explorer, and Wakamole implemented AR
interaction, whereas Map explorer and Wakamole particularly
enabled the inclusion of a 2-player for a shared collaborative
experience [118].

First-Person View for AR Capture Video Feed
Noorian et al [102] demonstrated smart reality glasses to conduct
remote consultation using the National Institutes of Health
Stroke Scale scores for stroke assessment. The onsite doctor
wears the reality glass, Google glass. This Google glass is
embedded with the Xpert Eye platform (AMA XpertEye),
capable of assisted reality, allowing the person wearing this
device to share their field of view in a 2-way real-time
videoconferencing. Similarly, Nikouline et al [123] presented
a feasibility study using the Google glass live video stream
coming from the onsite proctor and the participant tasks related
to fundamentals of Laparoscopy for scoring and evaluation done
by the remote proctor. In their experiment, Lin et al [84]
implement projective video texture-mapping that supplements
a robust high-level stabilization video feed obtained from the
mentee’s first-person view. This effective format provides the
remote expert with an effective workspace visualization,
allowing seamless integration of annotations in an effective AR
surgical telementoring. The prospective observational study by
Martin et al [103] uses HoloLens 2 MR device to conduct remote
clinical consultation in a COVID-19 ward. A senior staff
member would enter the COVID-19 ward to undertake clinical
rounds, and the other staff members of the staff team would
join virtually, thereby minimizing exposure and infection
transmission. Dynamic 365 Remote Assist (Microsoft Corp)
software allowed for bidirectional audio and video functionality
through which the remote staff team could see the first-person
view from the HoloLens 2 device. In addition, this platform
allowed to place relevant imaging and electronic health record
data in the user field of view, improving situational awareness
and better clinical decision-making. Finally, it significantly
reduced the risk of direct viral transmission.

Web- and Cloud-Based Telehealth Delivery Modes
As digital communication network and services evolve, these
are rapidly being adopted in health care delivery. The web- and
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cloud-based applications have become prevalent in telehealth.
Telehealth relies on the backbone of internet infrastructure
supported using various broadband connections such as digital
subscriber lines, fiber broadband, and wireless connection,
including fixed wireless broadband, cellular network or mobile
broadband, and satellite communication. Thus, ICT has become
central to offering an array of digital health solutions such as
real-time audio and videoconferencing, remote patient
monitoring, store and forward technologies, and mobile health,
among others [159,160]. A web-based application principally
operates on the webserver. It is accessed through a web browser
over an internet connection, whereas cloud-based applications
operate similarly to web applications, operating on either or
both the client and server sides [161]. The custom-developed
systems KiRES [59] and STAR [85] rely on the WebRTC
framework, an open-source application programing interface
allowing for real-time audio-video and multimedia connection.
In addition, the study by da Silva et al [55], included a
web-based gaming application MoveHero, to evaluate the
feasibility of home-based nonimmersive serious games in
patients with cerebral palsy.

Interestingly, any virtual web-based application feeds on the
information; thus, data storage and hosting become integral to
all online services. The study by Kato et al [42], adopted the
cloud-based storage and file hosting service Dropbox (Dropbox
Inc) for collecting the spatial coordinate data for each joint using
the 3D optical camera during the VR telerehabilitation. The
proof-of-concept study by Sirilak et al [107], implemented an
e-consultation system based on the AR and MR systems using
the HoloLens device for remote consultancy services in the
intensive care environment. This e-consultation platform
depended on a cloud-based data center that performed as an
information exchange and provided services for the end devices.
It also consisted of body area network technology to integrate
the vital physiological information from different client devices
to the data center. Prvu Bettger et al [62], used a virtual
telehealth system—virtual exercise rehabilitation assistant or
virtual exercise rehabilitation assistant (Reflexion Health,
Inc)—for posthospital care for total knee arthroplasty, Tsiouris
et al [2] included a custom-developed platform
HOLOBALANCE system in managing balance disorders, both
using the technology-forward cloud-based platform.

Discussion

Principal Findings
This scoping review explores state-of-the-art extended reality
platforms and telehealth solutions used in the clinical context.
This review highlights the reported evidence-based practical
and probable applications of the extended and MR platform
with telehealth used in different clinical specialties. This review
also addresses the technical characteristics of the AR and VR
features used in telehealth services, including various hardware
and software arrangements.

Stroke is the leading clinical condition incorporating
telerehabilitation, a segment of the telehealth service and digital
VR [23-41]. Approximately half of the included studies from
the search strategy feature the use of telerehabilitation (Figure

4). Other clinical conditions such as neurological or cognitive
disorders, musculoskeletal conditions, and postsurgical recovery
have also adopted telerehabilitation facilities in the home or
remote settings to continue treatment. Telerehabilitation used
technical attributes of exergaming and serious gaming in
improving the motor and cognitive functional skills [43-58].

Other divisions of telehealth, namely telementoring,
teleconsultation, and telemonitoring, have been more frequently
used for surgical-related procedures, emergencies and trauma,
and in several disaster simulation for disaster response and
preparedness [162]. The AR and MR technologies are more
prevalent with telementoring, teleconsultation, and telesurgery
(Figure 3). Exposure therapy under telepsychiatry has used VR
to give the patient a photorealistic experience of overcoming
their pathological response to their fear [126].

Telestrated AR features through anchoring of annotations in
real-time and space, performed remotely via various
communication channels: a useful aid in telesurgery [81]. The
technical features from the digital reality technology of VE,
digital avatars, telestration or the 3D rendering of annotations,
and first-person viewpoint have demonstrated telemedical
capabilities. The web- and cloud-based applications have various
potential uses across the web-based clinical sphere [110]. Most
of the included studies relied on existing commercial
high-fidelity simulation technological hardware devices such
as head-mounted AR and VR displays. The study and software
designs for most of the included studies were codeveloped by
the respective research teams by using multiple supportive
platforms as a direct requirement for the project objectives.

These novel reality technologies of AR, VR, and MR enable
3D visualization, thereby creating a visual sense and experience
of high ecological validity [163]. This technology has been
extended as a remote, home-based solution for patients, thereby
enabling patient empowerment [164]. This technology is highly
engaging and motivating from the patient responses to
telerehabilitation, consequently necessitating initial patient
training needs may become an arduous task to the facilitator
[42,165]. Network connectivity, internet and server security
concerns, and technological constraints are some of the most
common pitfalls across several studies included in this review
[99,166]. The lack of interoperability between the hardware and
software platforms poses a significant challenge in realizing the
potential of this technology [2]. The need for improved network
infrastructure and scalability poses a challenge and target for
telehealth services; however, there is a risk of complete network
failure, which can affect the use of such systems in critical care
applications [83]. Patient confidentiality is integral at any stage
during electronic exchange of health-related data; thus, network
and data security protection are crucial factors for accessing
telehealth services and should be robustly adhered to the
governing regulations [66,149,167].

The exploded search strategy captures a broad array of important
clinical applications of this high-fidelity reality technology and
telehealth facilities. This review presents a current road map
and the prospects of digital reality technology and telehealth in
the clinical space. The determining factors presented allow the
readers and researchers to evaluate the relevance of this
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technology and its subsequent uptake in the clinical health
sector. The study protocol was not registered, the included
studies were not classified for risk of bias assessment, and the
general characterization for the included studies were not
presented. In addition, the review only included studies available
in the English language and no relevant additional pieces of
information was considered from the gray literature. From the
broad array of literature-based evidence, most of the included
experimental studies were pilot feasibility studies with small
sample sizes, leading to reporting bias.

Conclusions
This review uniquely details the current and potential
applications of digital reality technologies such as VR and AR
and telehealth solutions. The feasible and practical application
of AR and VR in the digital clinical space has been explored,
as well as the challenges this multiparty technology endures in
effective implementation and adoption. This suite of

technologies offers a collaborative experience among health
care professionals and their patient community. The telehealth
component with the high-fidelity digital reality allows for an
immersive and integrative means for teleconsultation,
telesurgical procedures, and telementoring among the medical
peer-to-peer group allowing for effective decision-making and
treatment approaches. The uptake of VR and exergaming in
various telerehabilitation programs has opened new avenues to
posttreatment measures. This essential application of telehealth
enhances the traditional health care delivery approach by
enabling remotely delivered clinical care and services and
developing home-based treatment programs. Further validated
studies are needed to evaluate the overall assessment of this
trending technology, thereby leading to commercial pathways.
A robust and secure communication infrastructure will improve
the accessibility of telehealth capabilities and extend the
interoperability of the digital reality platform allowing for a
diverse digital health care ecosystem.
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Abbreviations
AR: augmented reality
HMD: head-mounted display
H-TIME: Haptic Enable Tele-Immersion Musculoskeletal Examination
ICT: information and communication technology
LCD: liquid crystal display
LED: light emitting diode
MR: mixed reality
POCUS: point-of-focus ultrasonography
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping
Reviews
REBOA: resuscitative endovascular balloon occlusion of the aorta
ReCoVR: Realizing Collaborative virtual reality for well-being and self-healing
STAR: System for Telementoring with Augmented Reality
USG: ultrasonography
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VE: virtual environment
VERGE: Virtual Environment for Rehabilitative Gaming Exercise
VR: virtual reality
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