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Nuclear gene proximity and protein interactions
shape transcript covariations in mammalian single
cells
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Single-cell RNA sequencing studies on gene co-expression patterns could yield important
regulatory and functional insights, but have so far been limited by the confounding effects of
differentiation and cell cycle. We apply a tailored experimental design that eliminates these
confounders, and report thousands of intrinsically covarying gene pairs in mouse embryonic
stem cells. These covariations form a network with biological properties, outlining known and
novel gene interactions. We provide the first evidence that miRNAs naturally induce
transcriptome-wide covariations and compare the relative importance of nuclear organiza-
tion, transcriptional and post-transcriptional regulation in defining covariations. We find that
nuclear organization has the greatest impact, and that genes encoding for physically inter-
acting proteins specifically tend to covary, suggesting importance for protein complex for-
mation. Our results lend support to the concept of post-transcriptional RNA operons, but we
further present evidence that nuclear proximity of genes may provide substantial functional
regulation in mammalian single cells.
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wo genes that increase or decrease coordinately in

expression over multiple conditions are said to covary.

Gene expression covariation can be studied over two
conditions (e.g., healthy and diseased tissue), in time-series
experiments, or in metastudies spanning hundreds of tissues and
cell types, for instance from public expression repositories!=3.
Over the last 20 years, such studies have yielded numerous
important biological insights due to the fact that covarying genes
are often functionally related, and commonly share the same gene
regulatory mechanisms.

In the last ten years, single-cell sequencing methods have
emerged, making it possible to profile the entire transcriptomes of
individual cells*-®. This makes it possible to identify the genes
that covary in expression across individual cells, considering in
effect every cell as a distinct condition. This research direction
holds great promise, since it could reveal biological covariations
that are not detectable in analyses of bulk cell populations. First,
differences in cellular compositions between samples may disturb
covariation analyses in bulk tissues’”. And second, transcripts can
appear to be constantly and moderately expressed in all studied
tissues or cell cultures, but may in fact display temporally fluc-
tuating and covarying expression in single cells. This type of
covariation may never be detected in bulk tissues. Until now,
however, transcriptome-wide single-cell studies of such intrinsic
gene covariation patterns have been limited by confounding
factors such as cell cycle progression and cell differentiation,
which are extrinsic to the genes of interest®°. These confounding
factors have a strong impact on the global covariation patterns
and could overshadow the more subtle—and potentially more
interesting—underlying patterns.

Here, we apply carefully designed experimental conditions to
remove the confounding extrinsic effects of differentiation and
cell cycle progression, and apply sensitive Smart-Seq2 single-cell
sequencing to profile the transcriptomes of hundreds of mouse
embryonic stem cells (mESCs). Specifically, using stringent cut-
offs we report >67,000 gene pairs that intrinsically covary in
expression—more than have been described in previous single-
cell studies. These covarying gene pairs interlink to form a net-
work with well-established biological features, following a so-
called power-law distribution, and recover known regulatory
patterns and pathways. We further apply a novel computational
framework to study the relative importance of distinct regulatory
mechanisms for gene expression covariation, and find that genes
regulated by the same transcription factors or miRNAs tend to
covary. We validate that a subset of the covariations is directly
induced by miRNAs by repeating our entire experiment in
miRNA-deficient cells. The strongest effect, however, is seen
between genes that are in nuclear proximity on the same chro-
mosomes, and a similar but weaker effect is seen for genes that
are in nuclear proximity but located on distinct chromosomes.

Finally, we test two competing hypotheses regarding the
putative function of these gene expression covariations. The first
hypothesis states that genes covary in expression to ensure stoi-
chiometric abundances of proteins that function in the same
pathway, while the second hypothesis proposes that covariations
are important for proper stoichiometry of proteins that are part of
the same complexes. We find that covarying genes only tend to
share the same function if their encoded proteins also physically
interact, lending evidence to the protein complex hypothesis.

In summary, we have combined single-cell RNA sequencing
with a tailored experimental design and computational frame-
work to quantify regulatory drivers in single mammalian
embryonic stem cells, highlighting the importance of nuclear
proximity for gene expression covariations. Additionally, we
present evidence that these covariations play a role in ensuring
stoichiometry between interacting proteins.

Results

Smart-Seq2 sequencing of mouse single-cell transcriptomes. To
obtain reliable and reproducible measurements of gene expres-
sion for our study, we applied the Smart-Seq2 protocol to
sequence the transcriptomes of 567 individual mouse embryonic
stem cells divided between three well-plates which serve as bio-
logical replicates (Supplementary Table 1). While labor-intensive
and not easily scalable, Smart-seq2 is highly sensitive and
precise®!011 Tt also reliably detects both exons and introns,
which is useful for distinguishing between transcriptional and
post-transcriptional regulation!2. We performed strict quality
filtering on the initial set of cells, which resulted in a total of 355
cells considered (see “Methods” section, Supplementary Fig. 1
and Supplementary Table 2). Gene expression values in each cell
were normalized to the sum of mRNA sequence reads in the
given cell (see “Methods” section, Supplementary Fig. 2), and
only genes that displayed substantial biological variation above
technical noise, as estimated by artificial ERCC spike-ins (see
“Methods” section, Supplementary Fig. 3), were retained. Overall,
our analysis yielded reliable gene expression measurements for
8989 genes (Supplementary Table 3 and Supplementary Data 1).

Homogenous cell population unconfounded by dynamic
processes. For the sequencing experiment, we took several pre-
cautions to eliminate the confounding extrinsic effects of cell
cycle and differentiation. First, all cells were cultured in 2i+LIF
medium, which is a well-established protocol to maintain
embryonic stem cells in a homogeneous pluripotent state—
excluding potential differentiation effects!3. Second, we used
fluorescence-activated cell sorting to specifically select cells in
G2/M phase of the cell cycle, thus excluding major cell cycle
effects. This exact combination of growth medium (2i + LIF) and
cell cycle phase (G2/M) has been reported to generate particularly
homogeneous cell populations with regard to their transcriptome
signatures®. Indeed, our cell population forms a single cluster
when common dimensionality reductions are applied (Supple-
mentary Fig. 4). Using published marker genes, we confirmed
that our cells were in the correct cell cycle phase!®!#4 and
expressed pluripotency but not differentiation marker genes®!>
(Supplementary Fig. 5). Altogether our cells comprise a homo-
genous population, unconfounded by cell cycle or differentiation
effects.

Discovery of >67,000 significant positive and negative gene
covariations. To study pairwise gene covariations we calculated
Spearman’s rank correlation coefficient for all possible gene pairs.
We chose this procedure for its ability to detect nonlinear
monotonous dependencies and for its robustness towards outliers
(see “Methods” section). The measured correlation coefficients
were centered around zero (Fig. 1a, left), indicating the absence of
overall confounding factors. Importantly, the observed coex-
pression values had a greater spread than those of permutated
controls (Fig. 1a), suggesting the presence of numerous nonran-
dom biological covariations. Sixty-seven thousand three hundred
and twenty-eight gene pairs were considered significantly cov-
arying (42,938 positively and 24,390 negatively) after stringent
covariation calling (see “Methods” section). We randomly per-
muted the count matrix one thousand times and found that the
highest number of significant covariations observed was ~2000,
which corresponds to only 3.1% of the covariations observed in
the original data (see Online Methods, Supplementary Table 4
and Supplementary Data 2). As an additional benchmark, we
performed correlation calculations on the pooled replicates and
applied multiple-hypothesis testing (Benjamini-Hochberg).
Around 90% of the covariations called by our approach are
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Fig. 1 Covariation network reflects biological features. a Transcriptome-wide covariation (co-expression) values for all possible gene pairs. Violin plot of
Spearman'’s ranked statistics (rho-value) for the entire transcriptome (blue) and for a permuted control matrix (gray). Value for the gene pair Npm1—Ppia is
highlighted. Arrows indicate at which rho-value p-values become smaller than 0.01 (rho ~ 0.253). b Covariation of the genes Ppia and Npm1. Abundances
for the two genes are in reads per million (RPM) and plotted in log scale. Each data point represents their respective measurement in the same single cell.
Spearman'’s ranked correlation was applied. € Spearman’s ranked coefficients are in accordance with other covariation and dependency measures. d Gene
covariation network is scale-free (y ~ 2.1). Number of significant covariations per gene against the number of genes with that number of covariations (blue
points). Green line illustrates the degree distribution of a random network with same number of genes (nodes) and covariations (edges) as the observed
network. e Cholesterol biosynthesis pathway is highly enriched for gene pair covariations. Genes involved in cholesterol biosynthesis from acetyl-CoA.

Only genes that were robustly detected in our sequencing data are shown.

Arrows indicate the flow of metabolites, lines indicated significant covariation

between genes. Gene names in bold indicate direct targets of Srebpf1, a transcription factor that is well known to regulate cholesterol biosynthesis. f Gene
sets that share functional annotations are enriched for covariations. Gene covariation enrichment scores (CES) for gene sets sharing the same gene
ontology or sharing the same KEGG pathway annotation as well as respective controls (p-values represent a two-sided independent two-group t-test).
Gene covariation enrichment scores indicate the ratio of observed significant covariations relative to the amount of expected covariations (see main text).
g Example subnetworks (subset of significant covariations, selected functional subnetworks are highlighted).

supported by pooled and corrected covariations. In fact, our
approach is stricter than simple multiple-hypothesis testing since
fewer gene pairs are considered significant. An example of a
highly significant gene pair is shown in Fig. 1b, wherein each data
point represents expression measures in one individual cell. Sig-
nificant covariations identified using Spearman’s ranked corre-
lation coefficient have a high overlap with those retrieved by
Pearson’s correlation coefficient and with dependency measures
recovered through Hoeffding’s D statistics (Fig. 1c), showing the
robustness of the approach. Finally, we validated several of the
gene expression covariations using single-molecule FISH (Sup-
plementary Figs. 6, 7) and single-cell quantitative RT-PCR
(Supplementary Fig. 8). In summary, we present >67,000 high-
confidence gene pair covariations—more than have been reported
in previous single-cell studies.

Covariation network features reflect biological functions. We
observed that the covarying gene pairs link together in complex
patterns that can be described as a network. It is well-established
that biological networks, such as those arising from transcription
factor targeting or protein interactions, have properties that differ
from those of random networks!®. For instance, biological net-
works tend to be scale-free following a so-called power law dis-
tributions, such that most genes only have few interactions with
other genes while few genes represent hubs in the network,
interacting with many other genes. Consistent with our network
having biological rather than technical origins, we found that our
covariation network follows such a power law distribution (y =
2.1, Fig. 1d, blue). Importantly, this network structure is distinctly
different from that of a random network with the same overall
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connectivity (Fig. 1d, green). Further network features are listed
in Supplementary Fig. 9c.

Within this covariation network we identified many biologi-
cally meaningful subnetworks, such as the one formed by genes
involved in cholesterol biosynthesis (Fig. le). These genes are
known to be activated when the SREBF1 transcription factor is
cleaved from the Golgi membranes, and shuttled to the nucleus in
response to lack of cholesterol!” and can therefore be expected to
covary in expression, depending on the localization of SREBF1
protein. Another notable subnetwork is formed by genes involved
in the formation of the TCP1 ring complex, a chaperone involved
e.g. in tubulin biogenesis!® (Supplementary Fig, 10).

A substantial proportion of the observed covariations (~14,500
gene pairs, not included in overall counts listed above) are
between ribosomal proteins. These covariations have previously
been reported for bulk cell populations!® and likely have
functions in proteostasis2’. It was recently reported that four of
these proteins (RPL10, RPL38, RPS7, and RPS25) are optional
components of the ribosome whose inclusion or exclusion can
influence which pools of transcripts are preferentially trans-
lated?!. We find that these four ribosomal proteins all covary
positively and significantly with each other, providing evidence
that they may not function by a mutually exclusive either-or logic
in single mouse embryonic stem cells in steady state condition. In
the following sections, we have excluded ribosomal protein genes
and focus on other types of covariations.

Applying our method for measuring covariation enrichment over
large gene sets (see section of CES score below), we find that genes
sharing common Gene Ontology terms are 1.47-fold more likely to
be covarying (we observe 47% more significant covariation than we
would expect by chance), while permuted control sets show no such
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enrichment (Fig. 1f). The same holds true for genes sharing
common a KEGG pathway annotation, where the enrichment is
1.86-fold (Fig. 1f). We reason that genes sharing functions or
pathways are more likely to be regulated in a similar fashion and
thus tend to covary. In conclusion, the covarying gene pairs form a
comprehensive scale-free network which is associated with
annotated cellular functions and pathways.

Covariations retrace known aspects of stem cell biology. The
pluripotency of mouse embryonic stem cells has been studied
extensively and several studies focus on characterizing their
transcriptomes and gene regulatory circuits!31922-24, The net-
work we observe recapitulates many known relationships between
pluripotency markers in mouse embryonic stem cells. For
instance, positive covariations support the activation of Fgf4
through Nanog and Sox2%>%%, while negative covariations support
the inhibition of Dnmt3a/b/l by Prdmi14'>%7 and of Dppa3 by
Tbx3?8. While our data support previous claims that Nanog is
positively covarying with Kif4, Sox2, Tet2, and Kat6h®, we see
little support for a covariation with Esrrb, Zfp42 and Tetl, and we
observe significant negative covariations with Pou5f1 and Dnmt3a
in single cells. With regard to predicted pluripotency genes, we
can confirm that there are strong covariations between Etv5 and
weak covariations between Ptma, and Zfp710 and other plur-
ipotency genes. Covariations of pluripotency genes can be found
in Supplementary Table 5. In summary, the detected covariations
are in accordance with known gene expression patterns in stem
cell biology and give hints at new connections.

Covariation enrichment score (CES). To systematically investi-
gate the functional and regulatory implications of expression cov-
ariations, we defined the CES for gene sets of interest. It indicates
whether for a given gene set, we observe fewer or more significant
covariations between the genes than we would expect based on a
simple background model. The CES provides an easily interpretable
single metric—fold-enrichment rather than coefficients and p-
values, which can be difficult to interpret. It also allows for easy
visualization and comparison of covariations in gene sets.

Our background model considers the total number of
significant covariations for each gene as well as the number of
covariations of all its potential pairing genes. In other words, it is
the factor of the probabilities of two genes if their covariations
were distributed randomly [Eq. (1)], summing over all possible
pairs in the gene set (Supplementary Fig. 11).

Yo sigCov(g,, &) x Xi', sigCov(gy, &)
S o siglovig;, g)

P(sigCov(g,,8,)) =

(1)

We can then test whether genes that are regulated by the same
regulatory factor, e.g., a transcription factor or a miRNA, tend to
covary as a consequence of varying abundance or activity of said
factor in individual cells.

MiRNAs induce transcriptome-wide gene expression covariation.
We first apply the CES to study the regulatory impact of miRNAs,
which are important post-transcriptional regulators of gene
expression?®. In most conditions, these small RNAs downregulate
the expression of protein coding genes by binding their mRNA
transcripts and leading to their degradation30. This targeting takes
place in the cytoplasm and is therefore spatially decoupled from
transcriptional regulation.

We speculate that miRNA regulation of gene expression may
be a source of gene covariations. For instance, if a miRNA is
highly abundant in a given cell, its targets may be coordinately

repressed, and we expect an enrichment of covariations across
single cells for these targets. To test this hypothesis, we
investigated the top-ranking miRNA targets according to
TargetScan3!, the most widely used catalog of miRNA-target
interactions. In this study, we focused on the seven most highly
expressed conserved miRNA families (including the miR-15 and
miR-290 families) in mouse embryonic stem cells.

Strikingly, miRNA gene target sets are significantly enriched
for gene covariations. In median the top 200 targets of each of the
seven miRNA families are 28% more likely to covary with each
other than expected (p=0.032). The enrichments exhibit a
gradient such that the top-ranking targets show a stronger
enrichment in comparison to sets that include lower ranking
targets (Fig. 2a). As introns are spliced out in the nucleus, their
abundances cannot be impacted by miRNA action in the cytosol.
Consistent with this, miRNA targets do not significantly covary at
the intron level (Fig. 2b).

To exclude the possibility that these covariations originate
from other post-transcriptional effectors, we investigated cells
that are void of canonical miRNAs. DROSHA is an endonuclease
involved in the biogenesis of miRNAs without which canonical
miRNAs cannot be produced. We used an inducible Drosha
knock-out cell line to validate the miRNA dependence of these
covariations (see “Methods” section) and sequenced the tran-
scriptomes of 343 of these knock-out cells using clonal expansion
from a single cell and sorting of cells in G2/M phase as described
above. We have previously demonstrated the global loss of
miRNAs in this particular cell line32. Furthermore, predicted
miRNA targets are specifically upregulated in cells void of
miRNA as a result of their de-repression (Supplementary Fig. 12).
As expected, there is no covariation enrichment in miRNA target
sets in Drosha knock-out cells (Fig. 2b), demonstrating that these
covariations are directly caused by miRNA activity.

We additionally investigated what we call the reverse
covariation enrichment. Here, we observe whether significantly
covarying gene pairs are regulated by the same miRNA more
often than a permuted background set (see “Methods” section).
We find that covarying genes are 12% more likely to be co-
regulated by the top 16 miRNAs and 35% more likely to be
regulated by the seven most highly expressed conserved miRNAs
(Fig. 2¢), showing the importance of miRNA conservation and
abundance in inducing covariations. It has previously been
reported that individual miRNAs can induce gene covariations?3,
but here we show that this in fact holds true for many miRNAs,
transcriptome-wide. We also present evidence that natural
(noninduced) fluctuations of miRNA abundance or activity are
sufficient to cause gene expression covariations.

From a network perspective, we found that >6000 high-
confidence gene covariations were lost in the cells devoid of
miRNAs, while less than 3000 new covariations were gained
(Supplementary Fig. 9a). A substantial number of the genes that
ceased to covary were miRNA targets and the ratio of lost to
gained covariations increased when high-confidence targets were
considered (Supplementary Fig. 9b). The genes that lost
covariations were enriched in functions in RNA biology
(Supplementary Fig. 9d), including PolII regulation. The average
number of covariations per gene decreased significantly in the
miRNA-depleted cells, from 10.1 to 8.4 covariations, and the
number of genes without covariations increased from 2265 to
2866 (Supplementary Fig. 9c). Overall, this indicates a global loss
of gene expression coordination in cells devoid of miRNAs.

Genes regulated by the same TFs covary with each other. To
investigate how regulation by transcription factors influences
covariation patterns, we studied the binding sites of 145
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are miRNA-dependent. Enrichment in sets of the top 200 ranked miRNA targets in parental cells (WT) and Drosha KO cells, that are void of canonical
miRNAs. Enrichments are color coded for exonic reads, representing post-transcriptional regulation (orange) or intronic reads representing transcriptional
regulation (yellow). ¢ Covarying genes are enriched for shared miRNA targeting. Reverse covariation enrichment shows the log2 ratio between covariations
that share a common miRNA and permuted covariations that share a common miRNA. d Transcription factor targets are enriched for gene covariations.
Enrichment in sets of the top 200, 300, and 500 transcription factor targets, for 145 transcription factors profiled with ChlP-seq. Control for comparison is
shown for 500 randomly selected targets. p-values refer to respective controls. e Transcription factor target covariations are transcriptional and miRNA-
independent. Enrichment in sets of the 200 ranked transcription factor targets in parental cells (WT) and Drosha KO cells. Enrichments are color coded for
exonic reads (dark green) or intronic reads (light green). f Covarying genes are enriched for shared transcription factor targeting (figure similar to c).
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Fig. 3 Relative importance of miRNAs, transcription factors and nuclear
proximity for covariations. Comparison of covariation enrichment (CES)
scores for genes that are either regulated by the same miRNA, regulated by
the same transcription factor or that are in nuclear proximity—divided into
intrachromosomal and interchromosomal pairs.

transcription factors for which mouse ES cell ChIP-seq data
were deposited in the Cistrome database?*. As for miRNAs, we
observe a gradient in covariation enrichment which is stronger
for the top-ranking transcription factor targets compared to lower
ranking targets (Fig. 2d). Importantly, transcription factor target
sets are significantly enriched for gene covariations both on the
exon and the intron level (Fig. 2e), consistent with transcriptional
regulation. In median, the top 200 ranked targets of these tran-
scription factors 1.38-fold enriched for coexpression on the exon
level (p-value <2.3 x 10716) and 1.22-fold enriched for coex-
pression at the intron level (p-value <2.3 x 10716). As expected,
the covariation enrichment of transcription factor targets is not
significantly lowered in Drosha knock-out cells (Fig. 2e). In
conclusion, genes that are regulated by the same transcription
factor tend to covary, possibly due to stochastic variations in
transcription factor abundance and activity between individual
cells. This effect acts on millions of gene pairs while the mean
magnitude of the regulation is similar to what we describe for
miRNA-specific regulation.

Proximal genes on the same or different chromosomes covary.
Genes that neighbor on the same chromosome are known to
show coexpression>; this also holds for genes within the same
chromatin loop or within the same topologically associated
domain (TAD). Furthermore, the concept of transcription fac-
tories covers dynamically assembled complexes that facilitate
transcription, and are dependent on intrachromosomal or inter-
chromosomal interactions®®. To investigate the covariation
enrichment on genomic regions that are in proximity within the
nucleus, we analyzed mouse embryonic stem cell Hi-C-seq
data7-38. From here on, we define proximal genes as those whose
interaction is supported by Hi-C data, whether the interaction is
intrachromosomal or interchromosomal (see “Methods” section).
Our data shows that genes which are proximal and located on the
same chromosome are highly enriched for covariations (Fig. 2g).
Genes that are close in linear distance on the chromosome (<5
MB) are enriched ~4-fold in covariations, while genes that are
distal (>50 MB) are enriched 2.1-fold. This observation is robust
to changes in the computational analysis and normalization
(Supplementary Figs. 13, 14). The effect is also detectable at the
intron level, confirming an origin in transcriptional regulation at
the level of nascent transcripts. Genes that are on the same
chromosome are almost twice (1.9-fold) as likely to covary than

expected, even when their proximity is not supported by Hi-C
(Fig. 2g, far right). The highest enrichment was detected for genes
that are both close in linear distance on the same chromosome
and are predicted to be in the same TAD, which are ~15-fold
more likely to covary (Fig. 2g, far left). Intriguingly, proximal
genes on different chromosomes also show substantial covaria-
tion enrichment (Fig. 2h—j), supporting the notion of transcrip-
tion factories that incorporate areas from multiple chromosomes.

Next, we ranked the relative importance of transcription
factors, miRNAs, and nuclear proximity for the regulation of
covariation (Fig. 3). We observed that miRNA targets were 1.28-
fold, transcription factor targets were 1.38-fold, genes in nuclear
proximity on different chromosome were 1.46-fold, and,
remarkably, genes that are proximal on the same chromosome
are 4.3-fold more likely to covary. While the exact enrichments
are likely specific to the study system and target selection strategy,
it is clear that transcriptional regulation, miRNA-mediated
regulation and, surprisingly, interchromosomal nuclear proximity
all play important roles. In our setting, however, intrachromo-
somal nuclear proximity is the strongest predictor of gene
expression covariations.

Protein interaction drives gene covariations. Next, we examined
putative functions of the covariations that we observe in single
cells. We formulated two hypotheses. The first hypothesis is
the pathway hypothesis: that genes involved in the same pathway
are coordinated in expression, for instance to avoid bottlenecks
in the production of metabolic intermediates’. The second
hypothesis is the complex hypothesis: that covariations ensure
correct stoichiometry among proteins that are part of the same
heteromeric protein complex, since surplus proteins may misfold
or even cause aggregates®0.

As previously stated, genes that share the same Gene Ontology
function or process or the same KEGG pathway annotation are
significantly enriched for gene covariations (Fig. 1f). The same is
true for genes that physically interact on the protein level
according to experimental evidence gathered by the STRING
database (Fig. 4a). For these interactions we observe a gradient in
which those interactions with the highest confidence/affinity
score also have the highest enrichment for covariations,
consistent with previous findings in single cancer cells*l. We
then determined that genes that contribute to the same complex
are 2.6-fold more likely to covary, compared to just 1.6-fold for
genes that are part of the same pathway (Fig. 4b), lending support
to the complex hypothesis.

To further test the two hypotheses, we split the set of
functionally related genes into one set with genes that share a
functional annotation as well as protein interaction and those that
share a functional annotation but no protein interaction. If the
pathway hypothesis holds, we would expect both gene sets to
covary, since they share functions. If the complex hypothesis
holds, we would expect only the genes whose proteins physically
interact to covary, since the covariations are needed for proper
stoichiometry of proteins in the complexes. Strikingly, when
genes that physically interact at the protein level are excluded
from the analysis, we find no covariation enrichment for either of
the GO and KEGG functional annotations (Fig. 4c). In other
words, there is no indication of covariation enrichment for
proteins in the same pathway without evidence that they
physically interact. Altogether, our data suggests that direct
interactions between proteins in the same complex, rather than
pathway stoichiometry, (Fig. 4b—d) as a selector for covariations.

Predictive power of gene covariations. We next investigated if
our observed covariations can be used to predict genes that share
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upstream regulators through a guilt-by-association principle. We
hypothesize that if a gene of interest covaries with numerous
known targets of a transcription factor, it is likely a target of said
factor. To test this hypothesis, we noted all genes that had been
identified as a targets of the transcription factor Ctnnbl in a
mouse ES cell ChIP-seq experiment#2. This gene is known to
regulate cell adhesion and has been linked to various cancer
phenotypes®3. We then ranked all other genes according to how
many of the top 100 Ctnnbl targets they covary with, and
observed that the more covariations a gene exhibited, the more
likely it is to be bound by Ctnnbl in a second ChIP-seq experi-
ment*? (Fig. 5a). In other words, the more significant covariations
a gene had with the high confidence targets identified in the first
experiment, the more often it was observed among the high
confidence targets identified in a second independent experiment.
While the predictive power of our method is limited (target
probability ~25%, Fig. 5a) it serves as a proof of principle that
single-cell transcriptome data can be used for predicting reg-
ulatory relations even in a homogeneous cell population. This
approach could be used to make sparse data sets more complete,
through guilt-by-association with previously identified targets or
to identify targets that escape current technologies due to biases.
Last, we found that the function of genes could be inferred by
surveying functional annotations of covarying genes (Fig. 5b, see
“Methods” section). This may not only aid functional annotation

but could also reveal hidden gene functions, so-called moon-
lighting. In conclusion, knowledge of gene covariations across
homogeneous single cells can be used to infer gene function and
regulation through associations.

Discussion
We show that statistically robust and biologically meaningful
gene covariations that can be detected in homogeneous non-
dynamic single cell populations. Evidence to support this claim
include the validation by statistical methods, a low estimated false
discovery rate, the recovery of known regulatory patterns, and a
power-law distribution of network edges commonly found in
biological networks. Our experimental set-up allows for the study
of widespread gene expression covariations unrelated to cell cycle
and other dynamic changes in the cells such as differentiation.
Strikingly, all major regulatory mechanisms—post-transcrip-
tional, transcriptional and by nuclear proximity—influence cov-
ariation patterns. We experimentally confirmed the importance
of post-transcriptional regulation through miRNAs by showing
that depletion of miRNAs results in a specific loss of a subset of
covariations.

Based on our findings, we propose a hierarchy of gene covar-
iation regulation in mESCs. We place regulation via intrachro-
mosomal proximity first due to the strength of the effect, and
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transcription factors second because of the size of the affected
target pool (Fig. 3). The influence of interchromosomal proximity
and miRNA regulation is comparatively smaller though still
substantial.

As targets of the same regulator tend to covary as well as genes
that are part of the same functional units, covariations can be
used to predict gene function and regulation. We show that we
not only recover known gene functions and transcription factor
targeting but, as a proof of principle, also demonstrate the pre-
dictive potential for both gene function and regulation.

Importantly, we find that covarying genes only tend to share
the same function if their encoded proteins also physically
interact, suggesting a role in protein complex stoichiometry. The
induction of gene expression covariation could be beneficial to
cells as it is well understood that the formation of heteromeric
protein complexes is often needed for proper folding and for the
stability of the proteins involved%. In bacteria, spatial separation
of the translation of such proteins leads to misfolding events*. It
is conceivable that temporal separation might result in similar
effects. The production of misfolded proteins that must be
removed by degradation is costly from an energetic point of view,
and the accumulation of misfolded protein can have lethal con-
sequences for cells (Fig. 4d). We suggest, therefore, that estab-
lishing expression covariation of such genes already on the RNA
level might be an advantage in evolutionary terms.

In this study, we measure RNA rather than protein with the
latter being closer to the cellular phenotype. However, when
inferring upstream regulation, it may be more informative to
measure RNA. Furthermore, many of the most interesting and
biologically meaningful covariations that we discover may not be
detectable at the protein level, even in single cells. For instance,
transcript covariations may be important for cofolding, but they
may not be visible at the proteome level for proteins that have
long half-lives and that are therefore more stably expressed. It will
be exciting to study covariations at the protein level, when
technologies to accurately profile hundreds of proteins in single
cells become available.

A caveat of our study is that different published data sources
and methods were used to identify miRNA targets, transcription
factors targets and genes that are in close proximity, complicating
direct comparisons among them. For example, public ChIP-seq
was used to infer transcription factor targets, while Hi-C was used
to detect genes in the same nuclear vicinity. These methods have
distinct limitations and ranges of sensitivity. However, all of the
methods we employ are state-of-the-art in their respective fields,
and in some cases the methods have limitations even within those
areas. For instance, there is evidence that Hi-C may under-
estimate interchromosomal contacts*® and it is well-established
that even the best miRNA target prediction has imperfect
accuracy?’#8, meaning the effects of nuclear proximity and
miRNA repression on gene expression covariations may be more
profound than we estimate here.

Gene coexpression studies have been conducted on pools of
cells for decades, yielding important insights into covariations
and network properties. These studies, however, have been lim-
ited in their capacity to study changes in network properties
following a genetic perturbation. For instance, to study the effects
of Drosha knockout using pooled cells, it would be necessary to
ablate the gene in dozens or hundreds of cell lines in parallel to
have the statistical strength to call covariations. In contrast, our
study serves as a proof-of-concept that it is possible to delete a
gene in a single cell line, and then consider each of hundreds of
individual cells as an independent condition, thus obtaining the
statistical power to resolve network properties in a single
experiment. In our study, we find that many more covariations
are lost than gained in the Drosha knockout cells, and we observe

a general loss of network connectivity. This highlights the
importance of miRNAs in maintaining gene expression syn-
chronicity and global gene network connectivity—an insight that
would be difficult to obtain with bulk cell or classical single-gene
approaches. In summary, we demonstrate that the combination of
single-cell sequencing, gene covariation analysis and genetic
perturbations can yield insights into the robustness of regulatory
networks with unprecedented ease and depth.

A previous study of RNA and protein covariations using
samples from bulk cell populations®> found that neighboring
genes on the same chromosomes are often coexpressed at the
RNA level, but are not functionally related and that the covar-
iations do not translate to the protein level. On the contrary, we
observe that gene pairs in nuclear proximity that share an
interaction on the protein level are in fact 7.5-fold enriched for
covariations, suggesting a specific co-occurrence of nuclear
proximity, RNA co-expression and shared function. Using a
database for bulk cell protein expression covariations*®, we fur-
ther find that 21% of our observed proximity-related RNA cov-
ariations translate to the protein level, compared to 6% for
background gene pairs. The apparent contrast between these
results may derive from the fact that the previous study was
conducted in immortalized primary cell lines from human indi-
viduals3>, where genetic variants that strongly impact protein
levels may have been specifically selected against by evolution. In
contrast, temporal fluctuations of protein levels may be tolerated
in individual cells from cell lines, allowing more refined mea-
surements. It is possible that nuclear proximity limits indepen-
dent regulation of physically close genes rather than enabling
active coregulation. Genes that need tight coregulation may
therefore evolutionary tend to locate in proximity on the same
chromosome. Regardless of the causality, genes that share a
protein interaction and therefore need stoichiometric coexpres-
sion may be placed in nuclear proximity through evolution.
Surprisingly, a recent study provides evidence that chromosome
rearrangements do not substantially impact gene expression in
Drosophila®®. These findings are not inconsistent with ours,
however, and may reflect differences between mammals and
invertebrates, or between measuring averages of gene expression
in tissues and expression covariations in single cells. Overall, our
findings highlight the advantages of studying variation of gene
regulation at the single-cell level.

It has been proposed that while prokaryotes use cotranscribed
operons to ensure synchronized expression and stoichiometry of
proteins in common pathways or complexes, eukaryotes use post-
transcriptional regulation to ensure a similar outcome at the RNA
level. The integrated effect of dispersed transcription and coor-
dinated post-transcriptional regulation has been named RNA
operons or Regulons®l. Our results support the idea that eukar-
yotic post-transcriptional regulators such as miRNAs can coor-
dinate gene expression at the RNA level. Finally, we provide
evidence that substantial functional regulation occurs at the level
of nuclear organization, by genes on the same chromosome or by
genes that are in proximity although on distinct chromosomes.

Methods

Drosha knock-out. The Droshaf E14 129Sv-derived mouse embryonic stem cell
line (mESC) was provided by M. Chong®2. DroshaXO cells were generated using the
Drosha® cell line containing the tamoxifen-inducible LoxP—exon9—LoxP and a
neomycin selection cassette. The tamoxifen induction was performed in standard
serum-containing media. After 48 h of incubation with tamoxifen, single cells were
FACS-sorted, clonally expanded and selected for deletion of exon 9 yielding the
null allele of Drosha.

Cell culture. The mESCs were maintained in (1) standard serum-containing media
(DMEM media, Gibco): 1x nonessential amino acids (Gibco), 1000 U ml—1
ESGRO mouse LIF medium supplement (Millipore), 15% heat-inactivated fetal
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bovine serum (Gibco), 2 mM glutamine (Gibco), 1 mM sodium pyruvate (Gibco),
0.1 mM b-mercaptoethanol (Gibco), 1x penicillin-streptomycin (Gibco). The
standard serum-containing media was supplemented with 250 pg ml~! neomycin
(Sigma) for maintenance of Droshal cells; (2) 2i media containing Ndiff227
medium (Cellartis Takara Bio), 1000 U ml~! ESGRO mouse LIF medium sup-
plement (Millipore), 1 uM PD0325901 (Selleckchem), 3 uM CHIR-99021 (Sell-
eckchem) and 1x penicillin-streptomycin (Gibco) onto feeder-free 0.1%
EmbryoMax gelatine (Merck Millipore) coated flasks at 5% CO, and 37 °C. Cells
were tested for mycoplasma contamination and propagated in serum-containing
media for three passages before switching to 2i media. After adapting to the serum-
free media, the cells were propagated for at least three passages in 2i media and
used for single-cell sequencing when 50-70% confluency was reached. To harvest
cells, they were incubated with Accutase (Sigma) at 37 °C for 5 min followed by
centrifugation.

Cell sorting. Cells were resuspended in 2i media (~106 cells ml—1), DNA stained
with 10 pg ml~! Hoechst-33342 (Sigma) at 37 °C for 15 min, and then stained with
1 pg ml~! propidium iodide (Sigma) to reveal cell viability. Single cells were sorted
in G2/M using a BD Influx (BD Bioscience) into 384-well plates containing 2.3 ul of
lysis buffer containing ERCC spiking (1:40,000 dilution) in each well.

cDNA library preparation and RNA sequencing. Dual-indexed cDNA libraries
were prepared using the Illumina Nextera XT dual index library prep kit following
the Smart-Seq2 protocol®. cDNA libraries were pooled and 50-bp single-end
sequencing was performed on an Illumina HiSeq 2000 platform.

Read mapping and counting. An extended mouse genome assembly was created
by concatenating the ERCC spike-in sequences (obtained from thermofisher.com)
to the mouse genome assembly mm10 (obtained from genome.ucsc.edu). This
assembly was indexed using bowtie2 (2.2.3) and reads were mapped to the indexed
genome using TopHat (2.0.12). tophat2-GTF transcriptome.gtf mm10_geno-
me_index_dir raw_reads.fastq. After mapping, PCR duplicates were removed with
SAMtools rmdup (version 0.1.19-44428 cd). samtools rmdup -s infile.bam
rmdup_file.bam. For the read count assignment to gene loci, a custom Perl script
(available upon request) was used to intersect reads with gene annotation (RefSeq,
obtained from genome.ucsc.edu, 28.08.2015). Specifically, to ensure stringency in
the covariation analysis, only reads having a unique genome mapping position and
gene annotation were considered. Transcript isoforms from the same gene locus
were fused so that two overlapping exons from different isoforms were combined
into a single exon, which comprises the start of the upstream exon and the end of
the downstream exon. Gene models called GmNumber (e.g., Gm10024) were
excluded. Similar analysis was performed separately for reads mapping to intron
annotations.

Quality control of sequencing data. Cells were kept for further analysis if they
fulfilled the following criteria: cells had more than 200,000 sequenced reads, more
than 80% of the reads mapped to the transcriptome or genome, more than 40% of
19,127 genes were detected, the spike-in fraction of reads was less than 1%, the
mitochondrial mapped reads were below 5% and the PCR duplicates per cell were
below 30% of all reads. This procedure also removed empty wells, duplets and
incompletely lysed cells due to their different mapping statistics. Mapping statistics
are shown in Supplementary Fig. 1. Additionally, cells that were flagged as S or G1
phase using the cyclone function of the SCRAN package for R were excluded®.
Remaining cells showed homogeneous expression of pluripotency and G2/M-phase
markers, while differentiation markers and G1/S-phase markers were largely absent
(Supplementary Fig. 5). Individual genes were excluded from analysis if they were
not expressed in at least half of all cells in all subsets of conditions (control and
Drosha knock-out, respectively) and replicates. This resulted in 8989 genes (9105
in Drosha KO, 8501 in both) that were considered reliably expressed. These genes
generally exhibited mean abundances higher than 16 RPM (see below), which we
considered to be the cut-off for reliably detected genes above technical background
(Supplementary Fig. 3).

Gene expression normalization. To ensure that the normalization method did
not bias the covariation analyses, the following well-established normalization
methods were all tested and considered: normalization by overall read count,
overall spike-in count, overall count of endogenous reads, and fraction of spike-ins
reads. To avoid over-fitting we further investigated whether the normalization
factors which were applied to all observations (individual cells) itself correlated
with the features (genes) after the normalization. Normalization methods that
induced correlations in our data or failed to remove correlation with technical
factors were excluded. Simple normalization by sequencing depth was most sui-
table for removal of technical effects while avoiding overfitting (Supplementary
Fig. 2). For this normalization read counts for each gene were divided by the total
sum of mapped reads in the respective cell and multiplied by 106, resulting in reads
per million (RPM). No length normalization was applied for two reasons. First,
with regard to the ERCC spike-ins an RPKM normalization was found to over-
estimate the abundance of short transcripts. Second, when analyzing pair-wise

correlations between genes with a ranked approach the relative abundance of each
gene across cells is sufficient.

Covariation. Covariations were calculated using Spearman’s rank correlation
coefficient. p-values were determined via a z-score for the Fisher transformation of
the correlation coefficient rho (p). For a more stringent analysis we only considered
genes that were significantly correlated (p <0.01) in at least two of our three
replicates. Furthermore, covariations were discarded if the sign of the correlation
coefficient differed in one of replicates.

We note that ribosomal proteins make up a sizeable proportion of the positive
covariations with 68% of all possible riboprotein gene-pairs being significantly
covarying, whereas only 0.3% of all other gene pairs covary. Riboproteins are
known to be coordinately expressed, however the underlying regulatory
mechanism is not well understood—especially in mammals>*. We therefore
excluded riboproteins from the following analysis, resulting in 67,328 remaining
covariations of which 42,938 are positive and 24,390 are negative.

Covariation enrichment score. We developed a simple covariation enrichment
approach. The probability of a gene pair to be covarying by chance can be cal-
culated by the product sums of significant covariations of each individual gene,
divided by the total sum of significant covariations within the whole data set (2).
For a set of multiple genes, the sum of individual probabilities will be referred to as
“expected covariations”.

oI sigCov(g,, &) x Y-, sigCov(g,, )
Zx"\il Z;L Sigcov(gi:gj)

This estimation works remarkably well for random gene sets (Supplementary
Fig. 11). An enrichment for a gene set of interest can be calculated as the fold-
change (or log2 fold-change) of the expected and the observed significant
covariations within the aforementioned gene set. As an intuitive control for the
CES a reverse enrichment approach is applied. While the CES describes
enrichment for covariations in a gene pair set, e.g., genes that are targeted by the
same miRNA, the reverse enrichment describes how often a certain gene pair
feature, e.g., shared miRNA targeting, is found in the set of all significantly
covarying gene pairs in comparison to a permuted set of these pairs.

P(sigCov(g,, g,)) = . (2)

Binning approaches. Covariation enrichment scores can only be calculated on
reasonably sized sets of gene-pairs. Each set needs to contain one—preferably
multiple—significant covariations. Therefore individual pairs have to be binned
together. Depending on the overall sparseness of significant covariations in a
certain array of gene pairs varying bin sizes may be applied. Binning is performed
in a randomized manner. The details of each binning operation is described in the
respective sections.

Transcription (co-)factor targets. Transcription factor and cofactor targets were
determined by public chromatin immunoprecipitation with massively parallel
DNA sequencing (ChIP-seq) data. Transcription factor lists were retrieved from
the Cistrome database” setting “Mus musculus” for species and “Embryonic Stem
Cell” for biological sources. Only sets passing 4 out of 6 listed quality scores were
considered. Putative target lists were downloaded and used for analysis. Target
rank was determined by the assigned score. Covariation enrichment was calculated
for each target set using the indicated number of top-ranking targets. For tran-
scription factors listing multiple putative targets sets from the same or multiple
studies enrichments were calculated individually and the median of all enrichments
was used as representative for said transcription factor.

MiRNA targets. MiRNA targets were obtained from TargetScanMouse (targets-
can.org/mmu_71) Release 7.1°1. Targets were ranked by the total number of 8mer
sites first, then total number of m8-7mer sites and finally according to the
cumulative weighted context score. Only miRNAs with at least 4000 RPM in
mESCs>® were considered. Covariation enrichment was calculated for each target
set using the indicated number of top-ranking targets.

Nuclear proximity. Nuclear gene proximity was estimated using chromosome
conformation capture via high-throughput sequencing (HiC). Public preprocessed
data for intrachromosomal’” (retrieved from the HiC project website of the Bing
Ren lab) and interchromosomal3 contacts were integrated. Annotations mapping
to mouse genome assembly mm9 were lifted to assembly mm10 using UCSC
Genome Browser Utilities (liftOver). Normalized HiC reads for the assessment of
intrachromosomal proximity were binned into 40 kilobase (kb) regions. Reads were
considered supporting the proximity between two genes if their gene bodies (entire
gene annotation plus a 2 kb region upstream of the gene) were each within 20 kb
distance from the respective regions. Only contacts that were supported by more
than one normalized read were considered. For the covariation enrichment analysis
gene pairs were stratified according to their linear proximity (their absolute dis-
tance along the genome in base pairs) and according to whether there was evidence
for 3D proximity based on HiC data as described above. Topologically associated
domains were based on HiC experiments performed with HindIII restriction
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enzyme>’. HiC reads for the assessment of interchromosomal proximity were
binned into 500 kilobase (kb) regions. Reads were considered supporting the
proximity between two genes if their gene bodies (entire gene annotation plus a
2 kb region upstream of the gene) were each within 500 kb distance from the
respective regions. Ranking is based on the total number of reads supporting each
gene pair.

Functional gene annotation and protein interaction. Gene ontology and path-
way annotations were retrieved from Gene Ontology project®” (version 2.1, via
MG]I) and the KEGG PATHWAY Database® (via KEGGREST for R) respectively.
Exceedingly small (fewer than ten genes) or big (more than 100 genes) gene
ontologies were discarded. Each gene ontology and each KEGG pathway was
considered as gene set for enrichment analysis. Protein interactions were retrieved
from the STRING Database®® (v10). Only interactions supported by experimental
evidence were considered. For enrichment plots, gene pairs were randomly binned
together (bin size 500). Further information on protein interaction in pathways and
in complexes was retrieved from the Reactome project®. Reactome data was
stratified according to whether genes interact in complex or reaction (in this paper
the latter is termed pathway for reasons of consistency). Pairs were binned together
randomly for enrichment plots (bin size 100).

Regulatory and functional predictions. Potential novel transcription factor tar-
gets are predicted as those genes that covary significantly with a certain number of
the top 100 targets that were identified in one ChIP-seq experiment. Furthermore,
novel predictions had to be absent from the top 1000 targets in this first experi-
ment. Predictions success was scored as the fraction of these genes that could be
identified as targets via ChIP-seq in a second experiment. For this, the top 1000
targets of this second experiment were considered. To test whether gene function
can be deducted from neighboring gene pairs in a covariation network, we picked
nine genes that are well characterized but act in different pathways and complexes.
We then performed gene ontology enrichment with topGO on the ten genes that
show the highest covariation coefficients with the gene in question. If the bona fide
function of said gene was among the top ten enrichments we list the function with
the associated p-value.

Single-cell quantitative PCR (sc-qPCR). sc-qPCR was performed on preamplified
cDNA (Illumina Nextera XT dual index library prep kit following the Smart-Seq2
protocol) for 21 genes and 112 cells. Applied Biosystems TagMan assays (FAM-
MGB) were used and reactions were run on a Fluidigm Biomark microfluidic gPCR
chip (PN 100-6170 C1). Spearman’s ranked coefficient was used for estimating
covariations between sc-qPCR and single-cell RNA sequencing data. Limit of
detection (LoD) was set at 39 cycles for covariations. Importantly, the results were
overall consistent when using lower LoDs (incl. 25 cycles).

Single-molecule RNA fluorescence in situ hybridization. Custom mouse specific
probes for single-molecule fluorescence in situ hybridization of gene pairs of
interest were designed and produced in-house using an analytic software and
production pipeline®!. Each probe consists of 42-86 oligos (47, 51, 63, 42, and 86
oligos for the probe targeting the Adam19, Adam23, Dnmt3, Mme, and Tmem?2
respectively) and each oligo consists of four parts (from 5’ to 3’): (1) a 20 nt
adapter, C, for probe visualization; (2) a 20 nt adapter, F, for PCR amplification
during probe synthesis; (3) a 30 nt T sequence complementary to the target; and (4)
a 20 nt adapter, R, for PCR amplification during probe synthesis. The T sequences
were designed using a custom-made pipeline run with the following parameters:
(1) Targeting the longest transcript. (2) Having GC content between 40 and 60%.
(3) Having up to 4 nt long homopolymers. (4) Allowing for at least 3 nt between
consecutive oligos. The T sequences for all the probes as well as the transcript
variant which they are targeting can be found in Supplementary Data 3. The C, F,
and R adapter sequences were designed as explained in Gelali et al.%! with the
difference that the sequences were checked for orthogonally against the mouse
genome. The probes were produced using a pipeline for large-scale enzymatic
production of hundreds of probes in parallel that is describe in details in (Gelali
et al.b1). More specifically, the F and R sequences are used as barcodes for the
selective amplification of the desired oligonucleotides from an array-synthesized
complex oligo pool (containing thousands of different species of oligonucleotides).
During the PCR reaction the C and the T7 promoter sequences are incorporated
into the PCR products. The T7 promoter sequence is used for the in vitro tran-
scription (IVT) step that follows the PCR. The RNA product of the IVT is used as a
template for the reverse transcription and in the final step it is removed via alkaline
hydrolysis resulting in the production of the desired ssDNA probes containing the
C sequence of interest. Mouse ESCs were fixed on coverslips immobilized onto a
silicon gasket. The first hybridization was performed at 37 °C for 16-18 h using a
hybridization buffer containing 45% Formamide, 2x SSC, 10% Dextran sulfate,

1 mgml~! E.coli tRNA, 0.02% bovine serum albumin, 10 mM Vanadyl-
ribonucleoside complex, and the subsequent wash was performed at 37 °C using a
wash buffer containing 35% Formamide, 2x SSC while the hybridization of a
fluoresently labelled oligo to the C adapter was performed at 37 °C for 16-18 h
using a hybridization buffer containing 30% Formamide, 2x SSC, 10% Dextran
sulfate, 1 mg ml~! E. coli tRNA, 0.02% bovine serum albumin, 10 mM Vanadyl-

ribonucleoside complex, and the subsequent wash was performed at 37 °C using a
wash buffer containing 25% Formamide, 2x SSC. All solutions were prepared in
RNase-free water. The transcripts were probed as follows: Tmem2 with A594 and
Mme with Cy5 (representing a negatively covarying gene pair); Adam19 with Cy7
(measured on the ir800 channel) and Adam23 with Cy5 (representing a positively
covarying gene pair). To quantify the smFISH signal, all mRNA molecules in each
field of view were counted using custom scripts in MATLAB®. To get an estimate
of the mRNA counts per cell, the z-projection of the mRNA dots identified in each
stack was split into a regular grid of squared pseudo-cells.

Computation. All computational analyses were performed in R Studio (v1.2.1335,
R v3.6.1) All values (e.g., p-values) that are estimated to be smaller than the
machine epsilon (machine precision) of 2.220446 x 1016 are conservatively
rounded up to 2.3 x 10~16,

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Sequencing data have been deposited at NCBI SRA under the BioProject ID
PRJNA592852. Gene Ontology data can be retrieved via MGI http://www.informatics.jax.
org/faq/GO_dload.shtml. KEGG data was retrieved using KEGGREST in R. STRING DB
data can be downloaded via http://version10.string-db.org/download/protein.links.
detailed.v10/10090.protein.links.detailed.v10.txt.gz. Other data is available at the
indicated locations (see “Methods” section). Preprocessed data tables can be provided
upon request. All data is available from the corresponding author upon reasonable
request.

Code availability

iFISH software can be found at http://ifish4u.org. R code is available upon request.
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