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Remarkable progress in molecular analyses has improved our understanding of the evolution of 

cancer cells towards immune escape1–5. However, the spatial configurations of immune and 

stromal cells, which may shed light on the evolution of immune escape across tumor geographical 

locations, remain unaddressed. We integrated multi-region exome and RNA-seq data with spatial 

histology mapped by deep learning in 100 non-small cell lung cancer (NSCLC) patients from the 

TRAcking Cancer Evolution through Therapy (Rx) (TRACERx) cohort6. Cancer subclones 

derived from immune cold regions were more closely related in mutation space, diversifying more 

recently than subclones from immune hot regions. In TRACERx and in an independent multi-

sample cohort of 970 lung adenocarcinoma (LUAD) patients, the number of immune cold regions 

significantly correlated with risk of relapse, independently of tumor size, stage and number of 

samples per patient. In LUAD, but not lung squamous cell carcinoma (LUSC), geometrical 

irregularity and complexity of the cancer-stromal cell interface significantly increased in tumor 

regions without disruption of antigen presentation. Decreased lymphocyte accumulation in 

adjacent stroma was observed in tumors with low clonal neoantigen burden. Collectively, immune 

geospatial variability elucidates tumor ecological constraints that may shape the emergence of 

immune evading subclones and aggressive clinical phenotypes.

Using an artificial intelligence framework, we developed a generalizable deep learning 

pipeline to spatially profile immune infiltration and discover tumor topological determinants 

of immunosuppression in digital pathology. Convolutional neural networks were tailored for 

the analysis of NSCLC morphology using diverse histology samples in the multi-region 

TRACERx 100 cohort6 to avoid overfitting (Methods). This approach enabled the spatial 

mapping of cancer cells, lymphocytes, stromal cells (fibroblasts and endothelial cells), and 

an “other” cell class (macrophages, pneumocytes and non-identifiable cells) in hematoxylin 

& eosin (H&E)-stained images (275 tumor regions from 85 patients and 100 diagnostic 

slides from all patients, Fig. 1a-c, CONSORT diagram Extended Data Fig. 1a-b, 

Supplementary Table 1). T cell subsets were also identified in CD4/CD8/FOXP3 

immunohistochemistry (IHC) images for all 100 diagnostic samples (Fig. 1d).

This pipeline for H&E analysis exhibited high accuracy and consistency compared with five 

orthogonal data types within TRACERx, including DNA-seq, RNA-seq, IHC, 5,951 single-

cell annotations by pathologists (balanced accuracy, as an average of specificity and 

sensitivity = 0.932), and pathology tumor-infiltrating lymphocyte (TIL) estimates following 

the guidelines developed by the International Immuno-Oncology Biomarker Working 

Group7 (Extended Data Fig. 2, Supplementary Table 2). The Leicester Archival Thoracic 

Tumor Investigatory Cohort8 (LATTICe-A, Extended Data Fig. 1c-d), a retrospective study 

of 970 resected LUAD patients that included H&E sections from all diagnostic tumor blocks 

with a median of four samples per tumor, was used for independent validation. The 

pipeline’s generalizability was supported using 5,082 pathologists’ single-cell annotations 

(balanced accuracy = 0.913), and virtual integration of IHC and H&E images generated 

from the same slides (Fig. 1e-h, Extended Data Fig. 2e-g, Supplementary Table 3). Using 

this unbiased scalable approach, immune infiltration was quantified as the percentage of all 

cells that were lymphocytes in each H&E image.
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High geospatial immune variability between tumor regions within the same patients was 

revealed (Fig. 2a-b), which did not reflect associations with pathological stage (Extended 

Data Fig. 3). To differentiate highly from poorly immune infiltrated tumor regions, regions 

containing a lymphocyte percentage greater than a quarter standard deviation above the 

median lymphocyte percentage were classified as immune hot, and regions containing a 

lymphocyte percentage below a quarter standard deviation of the median were classified as 

immune cold. The remaining 20% were classified as intermediate (Fig. 2b). Subsequent 

results were tested on four more classification schemes based on the standard deviation to 

ensure that results derived from this classification were not contingent upon choice of 

thresholds used (Extended Data Fig. 4). Significant difference in pathology TIL estimates 

was observed between immune hot and cold regions (R = 4.6x10-8, Extended Data Fig. 5a). 

Significantly higher levels of RNA-seq estimated immune infiltrate1, particularly for 

immune activation subsets, were consistently observed in immune hot compared to cold 

regions, supporting the validity of histology-based immune classification (Fig. 2c-d). We 

next directly compared our immune hot and cold regional classification (excluding 

intermediate regions) against RNA-seq-based1 classifications ( = 109 regions with histology 

and RNA-seq data). 78 out of 109 regions were in agreement (Fisher’s exact test for overlap: 

R = 7.8x10-6, Extended Data Fig. 5b). Regions with discrepant classification ( = 31) had 

significantly higher spatial heterogeneity of lymphocyte distribution compared to regions 

concordant between the two methods (R = 0.01, Extended Data Fig. 5c), suggesting spatial 

intratumor heterogeneity could contribute towards the discrepancy, since the different data 

types were derived from adjacent sections of the same tumor blocks.

Ecological selection pressures drive genetic divergence9,10. To determine if cancer genetic 

divergence differs according to immune context, we calculated the genomic distance as the 

Euclidean distance of subclonal mutations for each pair of tumor regions with the same 

immune phenotype in a patient. We observed significantly lower genomic distance, 

indicating more shared subclonal mutations, for pairs of immune cold regions than for pairs 

of immune hot regions in LUAD (Fig. 3a, Extended Data Fig.4b, R < 0.005 for all immune 

classification schemes), but not in LUSC (Extended Data Fig. 6a). In LUAD but not LUSC, 

analysis of immune phenotypes mapped onto the phylogenetic trees6 revealed that dominant 

clones (cancer cell fraction ≥ 75%, see Methods) in pairs of cold regions were more closely 

related on the phylogenetic tree, compared to dominant clones in pairs of immune hot 

regions (Fig. 3b). Moreover, dominant clones in hot regions almost always diversified at the 

most recent common ancestor of the tree (13/15, 87%, Fig. 3c), in contrast no such 

preference was observed in immune cold regions (11/23, 48%).

We investigated the impact of immune context on disease-free survival. Tumors with high 

number of immune cold regions were at significantly increased risk of relapse that was 

independent of the total number of regions sampled, tumor size and stage in both histology 

types in TRACERx (Fig. 3d-e, Extended Data Fig. 6c-h). This association with disease-free 

survival was also significant using the number of immune low regions as estimated by 

RNAseq1 in 64 TRACERx tumors with available RNA-seq data (R = 0.002, Extended Data 

Fig. 6b). Following the genomic findings in LUAD, we sought to validate this in 970 LUAD 

patients in the multi-sample LATTICe-A cohort, confirming the prognostic value of immune 

cold sample count, that was also independent of the number of samples per patient, tumor 
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size and stage (Fig. 3f-g, Extended Data Fig. 6c-e). In both cohorts, the number of immune 

cold samples per patient correlated with relapse, more significantly than any other immune 

feature generated using deep learning, including the average and variability of lymphocyte 

percentage per tumor, number of immune hot regions, proportion of immune cold regions to 

the number of regions sampled, as well as CD8+ cell percentage or CD8+ to CD4+FOXP3+ 

ratio in TRACERx diagnostic slides (Extended Data Fig. 6e).

Studies have revealed immunosuppressive fibroblast subsets localizing to the boundary of 

tumor nests possibly contribute to T cell exclusion11–13. Therefore, we hypothesized that 

increased cancer-stroma physical contact may reflect stroma-modulated inhibition of 

antitumor immune responses14–17. To measure the physical contact between cancer and 

stromal cells (the majority being fibroblasts) identified by image analysis, we developed a 

spatial measure, using fractal dimension to quantify the geographical irregularity and 

complexity of the cancer-stromal cell interface (Methods, Fig. 4a, Extended Data Fig. 

7a,b,e). Within the same tissue space, higher fractal dimension of cancer-stromal cell 

interface suggests increased geometric irregularity and more extensive physical contact 

between tumor and stromal cells than samples with a smooth interface. For both histology 

types, fractal dimension was significantly higher in immune cold regions compared to 

immune hot regions (Fig. 4b, Extended Data Fig. 7c). Moreover, the difference in fractal 

dimension between immune cold and hot regions was more significant compared to the 

difference in stromal cell percentage (both histology types combined: R = 0.00036, 

effectsize 0.49 for fractal dimension versus R = 0.018, effect size 0.38 for stromal cell 

percentage, Extended Data Fig. 7d), suggesting the importance ofstromal cell geographical 

location rather than their quantity. This supports the hypothesis that the stroma-based 

inhibition of immune infiltration17 may result from a specific topological pattern in the form 

of cancer-stroma engagement.

To understand the associations of stromal-mediated immunosuppression in the context of the 

genetic mechanisms of immune evasion, we related fractal dimension to dysfunction in 

antigen presentation through loss of heterozygosity at the human leukocyte antigen locus 

(HLA LOH), which has been identified as a potent immune escape mechanism1,18. A 

significantly higher fractal dimension was found in LUAD tumor regions with intact HLA 

alleles compared with regions harboring HLA LOH (Fig. 4c, Extended Data Fig. 7f). This 

was observed at the tumor level (see Methods for definition), independent of clonal 

neoantigen burden (R = 0.04, multivariate regression, Extended Data Fig. 7h), but was not 

observed in LUSC (Extended Data Fig. 7g, i).

Although clonal neoantigens have been associated with a cytotoxic immune response19, the 

spatial distribution of lymphocytes in relation to clonal neoantigens remained unclear. To 

provide sufficient spatial context for analysis of cell distribution, whole-section TRACERx 

diagnostic H&E images, typically 10x larger than the regional samples, were used. To test 

the relationship between lymphocyte spatial distribution and clonal neoantigens, we 

leveraged an established method for lymphocyte spatial modeling20. Each lymphocyte was 

classified into three distinct spatial compartments: intra-tumor, adjacent-to-tumor or 

distaltumor, based on unsupervised modeling of cancer-lymphocyte proximity (Fig. 4d). In 

LUAD, but not LUSC, clonal neoantigens19 were found to be associated with a specific 
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immune spatial score to approximate pathology TIL estimates7, defined as the ratio of 

adjacenttumor lymphocytes to stromal cells in the diagnostic H&E samples (R = 0.0074, 

high clonal neoantigen defined as above median in LUAD, Fig. 4e; correlation as continuous 

variables Rho = 0.37, R = 0.035 after multiple testing correction, Extended Data Fig. 8a). By 

contrast, subclonal neoantigen burden did not correlate with any immune score (Extended 

Data Fig. 8a), supporting the notion that clonal but not subclonal neoantigens is associated 

with infiltration of cytotoxic T cells19 adjacent to tumor nests.

To determine if there was an enrichment of a specific lymphocyte subpopulation within the 

adjacent-tumor compartment in LUAD, we spatially aligned IHC to H&E in 10 samples 

with the highest adjacent-tumor lymphocytes to stromal cell ratio, and projected IHC-

derived T cell subsets onto H&E images, thereby creating virtual staining of cells in the 

H&E sections (Methods, Fig. 4f, Extended Data Fig. 8b-c). CD4+FOXP3-, CD8+, and 

CD4+FOXP3+ cells classified in IHC were projected onto a density map of cancer cell 

distribution inferred from H&E, and were classified into adjacent-tumor, intra-tumor, and 

distal-tumor compartments. In this limited dataset, a significant increase of the effector-

regulator balance defined by CD8+/CD4+FOXP3+ cell ratio was observed in adjacent-tumor 

stroma compared to the distal tumor compartment (Fig. 4g).

In summary, by training deep learning algorithms in diverse histology samples, we 

demonstrated that digital pathology can provide accurate tools for defining the ecological 

spatial context that may improve our understanding of cancer evolution and the immune 

response. In TRACERx and LATTICe-A cohorts, LUAD tumors with increased immune 

cold regions were at a significantly higher risk of cancer relapse, independent of total 

regions sampled and immune phenotypes of other regions. Thus, even within a tumor that 

has on average increased immune infiltration, if it contains regions classified as immune 

cold, prognosis appears to be associated with the number of cold regions. Analysis of cancer 

branched evolution within the ecological context of immune hot and cold regions revealed a 

difference in the evolution history of cancer subclones in these regions, possibly as a result 

of immunoediting. Based on this finding, we speculate that by identifying the subclone 

where immunoediting is likely to have occurred, new drivers of immune evasion may be 

elucidated.

Spatial histology data can extend our knowledge of the tumor microenvironment topological 

configuration in relation to genetic alterations relevant to immune surveillance, including 

HLA LOH and clonal neoantigens in LUAD (Extended Data Fig. 9). Increased 

cancerstromal engagement as measured by fractal dimension may signal physical constraints 

against T cell ingress. This is supported by previous studies in lung cancer showing 

restriction of CD8+ and CD4+ T cell motility in dense stromal extracellular matrix areas 

around tumor epithelial cell regions which prevent them from entering tumor islets13. 

Additionally, the association between specific spatial localization of lymphocytes in 

tumoradjacent stroma and clonal neoantigens further support exploration of the role of 

stromal cells in limiting tumor infiltration by T cells14–17.

It will be imperative to validate our findings on a larger multi-region cohort of untreated 

NSCLC tumors. Differences in our findings pertaining to LUAD and LUSC may reflect 
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differences in biology21–23 and immune evasion mechanisms, including increased 

prevalence of antigen presentation dysfunction (HLA transcriptional repression and HLA 

LOH1) in LUSC. Other limitations include the lack of detailed staining using multiplexing 

technologies24–26 that could provide further insights into immune composition. However, 

with advanced deep learning developments and detailed tumor phylogenetic data, histology 

can be used to highlight fundamental immune contexture such as immune exclusion and its 

topological determinants. These data illuminate the clinical significance of immune cold 

regions that may reflect immune evading subclones, warranting further investigation into 

mechanisms that could contribute to the spatial variability of immune cells.

Methods

Tissues and digital images

The main cohort evaluated comes from the first 100 patients prospectively analyzed by the 

lung TRACERx study6 (Extended Data Fig. 1, Supplementary Tables 1, 4, https://

clinicaltrials.gov/ct2/show/NCT01888601, approved by an independent Research Ethics 

Committee, 13/LO/1546). 62 were men and 38 were women, with a median age of 68. 61 

were LUAD, 32 were LUSC and the remaining 7 had ‘other’ histology subtypes (including 

adenosquamous carcinoma, large cell carcinoma, large cell neuroendocrine carcinoma, 

pleomorphic carcinoma and pleomorphic carcinoma arising from adenocarcinoma).

The 85 case subcohort with regional histology consisted of 55 male and 30 female patients 

and of those 49 were LUAD, 32 were LUSC and 6 were ‘other’ types. 10 of these patients 

had a single region while the rest ranged between 2-8 regions (= 275 total regional histology 

samples). Snap-frozen regional samples were processed to FFPE blocks after dissecting 

fresh-frozen tissues for DNA-seq and RNA-seq analyses. Tissue microarrays (TMAs) were 

created containing 133x2mm regional tissue cores from 75 patients in 7 blocks.

In addition to the regional samples, full-sized diagnostic blocks were obtained for all 100 

cases precisely mirroring the Jamal-Hanjani et al. 2017 prospective 100 patient cohort6. 4μm 

thick sections were cut and subjected to H&E staining and multiplex IHC for CD8/CD4/

FOXP3: anti-CD8 (type: Rabbit Monoclonal, clone: SP239, cat. no.: abl78089, source: 

Abeam Pic, Cambridge, UK, used at 1:100); anti-CD4 (type: Rabbit Monoclonal, clone: 

SP35, cat. no.: ab213215, source: Abeam Pic, Cambridge, UK, used at 1:50); antiFOXP3 

(type: Mouse, clone: 236A/E7, source: kind gift from Dr G Roncador, CNIO, Madrid, Spain, 

used at: 1:100). All regional and diagnostic slides were scanned using NanoZoomer S210 

digital slide scanner (C13239-01) and NanoZoomer digital pathology system version 3.1.7 

(Hamamatsu, Japan) at 40x (228 nm/pixel resolution).

The external validation cohort was obtained from the Leicester Archival Thoracic Tumor 

Investigatory Cohort – Adenocarcinoma (LATTICe-A) study8, a continuous retrospective 

series of resected primary LUAD tumors from a single surgical center between years 1998 to 

2014 (Extended Data Fig. 1, Supplementary Table 5). It consists of 4,324 whole-tumor 

diagnostic blocks from 970 LUAD patients (ranging from 1 to 16 blocks per case with a 

median of 4). 455 were men and 515 were women with a median age of 69. Most clinical 

data (age, sex, adjuvant therapy status and time to recurrence or death) were available for all 
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patients, with complete pathological stage for 827 and smoking history for 651. All archival 

slides containing tumor material were used in order to capture the full diversity of each 

lesion. Slides were dearchived and scanned using a Hamamatsu NanoZoomer XR at 40x 

(226 nm/pixel resolution) yielding 15 TB of image data. Images containing incidental lymph 

node tissue were excluded to avoid confounding immune infiltration analysis. For the 

biological validation assay, a subset of 49 paraffin blocks from 49 patients was obtained 

from the same study, and from these a validation TMA was prepared, containing a single 

1mm core from each case. The work was ethically approved by an NHS research ethics 

committee (ref. 14/EM/1159). This study complies with the STROBE guidelines.

The deep learning pipeline for cell detection and classification

The deep learning pipeline consists of three parts. First, the pipeline segments tissue regions 

utilizing multi-resolution input/output image features (Micro-Net27). It was designed to 

capture global tissue context and learn weak features that could be important for identifying 

tissue boundary, but are often not achieved by other machine learning methods such as 

thresholding of the grey-scale image, active contours, watershed segmentation or Support 

Vector Machine-based training on local binary pattern features27. Tissue segmentation 

removes background noise and artefacts and subsequently allows for more computationally 

efficient cell detection and accurate classification. Secondly, a cell detection model modified 

from SCCNN28 predicts for each pixel the probability that it belongs to the center of a 

nucleus within tissue regions identified by Micro-Net. Nuclei are detected from the 

probability map obtained from the deep network. Lastly, a cell classification framework 

utilizes a neighboring ensemble predictor classifier coupled with SCCNN to classify each 

cell by type.

For tissue segmentation, each whole slide image was reduced to 1.25x resolution and 

segmented for tissue regions using Micro-Net-5 1 227 architecture. This architecture 

visualizes the image at multiple resolutions, captures context information by connecting 

intermediate deep layers and adds bypass connections to max-pooling to maintain weak 

features (Fig. 1b). 10 whole slide images were used to train the tissue segmentation network 

using MicroNet. The segmented images from the network were inspected visually and 

quantitatively (Supplementary Table 6, Supplementary Figures 1-20) to evaluate 

performance using an independent set of images.

The SCCNN adds two layers to conventional deep learning architecture for cell detection 

within the segmented tissue. SC1 estimates the location and probability of each pixel 

belonging to the center of a cell, and these probabilities are then mapped by SC2 to the 

image. A customized implementation of SCCNN was coded in Python (version 3.5) using 

TensorFlow29 library (version 1.3) which makes it computationally more efficient compared 

to the original MATLAB implementation28. To process an image of size 1000×1000 pixels, 

the Python implementation takes 4.8 seconds for nucleus detection compared to 41.0 

seconds using the original implementation28, excluding preprocessing which remained the 

same in both implementations (using MATLAB (version 2018b)). In addition, through 

empirical experimentation, we optimized the patch size to 31x31 instead of 27x27 in the 

original implementation for increased cell detection accuracy. To generate nuclear locations 
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from the SC2 probability map, peak detection was applied where thresholds for intensity and 

minimum grouping distance were also optimized to 0.15 and 12 pixels through 

experimentation using validation data.

For cell classification, a neighboring ensemble predictor was used. This predictor utilizes 

SCCNN to classify cells in neighboring locations to the detected center of the cell. In our 

implementation, the ensemble classifier required votes from SCCNN classification of nine 

different neighborhood locations near to the center of the cell compared to five votes in 

original implementation. Through experimentation, the patch size was optimized to 51x51 

for classification instead of 27x27 as originally proposed. This permitted incorporation of 

greater tissue spatial context while maintaining the accuracy of classifying small cells.

Altogether, this pipeline enabled the spatial mapping of four cell types from H&E images: 

cancer (malignant epithelial) cells, lymphocytes (including plasma cells), noninflammatory 

stromal cells (fibroblasts and endothelial cells), and an “other” cell type that included 

nonidentifiable cells, less abundant cells such as macrophages and chondrocytes, and 

‘normal’ pneumocytes and bronchial epithelial cells.

Training the deep learning pipeline

To improve neural network generalizability and to avoid overfitting for cell detection and 

classification, we trained and tested our pipeline on a variety of sample types, including 

diagnostic (= 100), regional (= 275) and 133 cores corresponding to 75 TRACERx patients 

from TMA slides (63 patients had two cores and 12 patients had a single core). Both cell 

detection and classification were trained based on single-cell annotations from pathologists. 

Two thoracic pathologists annotated 26,960 cells on 53 whole slide images (3 TMAs, 35 

regional slides and 15 diagnostic slides) to incorporate morphological variations in 

appearance of various cell types and stain variability. Several hundred examples of each cell 

class were marked on 76 cores selected at random from TMA images. In total, 4,056, 5,310, 

15,007, 2,587 annotations were collected for stromal cells, lymphocytes, cancer cells and 

“other” cell types, respectively. These whole slide images were divided into small tile 

images of size 2000×2000 pixels (each pixel = 0.5μm), which were then divided into three 

sample sets maintaining the class distribution of cells. These included: 13 diagnostic, 58 

regional and 134 TMA tile images for training; 4 diagnostic, 21 regional and 72 TMA tile 

images for validation; and 3 diagnostic, 22 regional and 61 TMA tile images for testing. As 

a result, the annotations were divided between the three groups; 2/3 for training, 1/6 for 

validation and 1/6 for testing. The training set included annotations for 2,147 stromal cells, 

3,183 lymphocytes, 10,103 cancer and 1,357 other cell types. The validation set had 

annotations for 473 stromal cells, 825 lymphocytes, 2,562 tumor and 359 other cell types. 

Breakdown for the test set is provided in Supplementary Table 2.

For IHC cell classification, we used a pretrained SCCNN network on samples stained for 

CD4/CD8/FOXP3. The training set consisted of 1,657 CD4+FOXP3-, 3,187 CD8+, 1,001 

CD4+FOXP3+, and 3,488 other (negative) cells. The trained network was tested on 5,028 

cell annotations collected on 6 lung diagnostic whole slide images, including 251 

CD4+FOXP3-, 406 CD8+, 123 CD4+FOXP3+ and 4,248 other cells to test the ability of the 

algorithm in correctly detecting and classifying negative cells. See Supplementary Table 7 
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for the total number of identified cells in the H&E diagnostic, H&E multi-region and IHC 

diagnostic datasets.

Validation of the H&E deep learning pipeline with orthogonal data types

The algorithms’ performance in detecting and classifying single cells in H&E were first 

evaluated against the test set of 5951 cells. Individual class accuracy statistics were 

calculated using the R function ‘confusionMatrix’ from the R package ‘caret’.

Pathology TIL estimates were scored following the international guidelines developed by the 

International Immuno-Oncology Biomarker Working Group7. Briefly, by inspection of H&E 

slide of a given tumor region, the fraction of the stromal area infiltrated by TILs was 

assessed.

For regional samples, tumor cellularity, estimated as the computed percentage cancer cells 

was correlated with tumor purity estimated by ASCAT based on DNA-seq copy number and 

VAF purity (both available from Jamal-Hanjani et al.6, = 239 regional tumor samples). The 

RNA-seq-based CD8+ T cell signature (available from Rosenthal et al.1, computed using the 

Danaher et al. method30) was correlated with the deep learning based lymphocyte 

percentage for 142 regional tumor samples. For diagnostic samples, deep learning-based 

lymphocyte percentage from H&E was correlated with deep learning-based CD8+ cell 

percentage from IHC (= 100 diagnostic samples, Extended Data Fig. 2a-d).

Discordance rate between RNA-seq based1 and histology/deep learning-based immune hot 

and cold regional classification was calculated by cross-tabulation of immune hot and cold 

(from histology) versus high and low (from RNA-seq), disregarding any regions without one 

of these two types of data. The RNA-seq method used 15 immune cell signatures presenting 

different T- and B-cell subsets, as well as neutrophils, macrophages, mast and dendritic cells, 

to classify tumor regions into high and low categories. A Fisher’s exact test was used to 

compute the overlap between the two immune classifications. Distributions of multiple 

immune scores (lymphocyte percentage, intra-tumor lymphocytes and adjacent-tumor 

lymphocytes/stroma) as well as ASCAT tumor purity were compared between hot versus 

cold (deep learning) and high versus low (RNA-seq) classifications (Extended Data Fig. 5).

Validation of the deep learning pipeline with the independent LATTICe-A cohort

The external validity of the proposed deep learning pipeline was performed on 100 randomly 

selected patients from the LATTICe-A cohort8. This validation ensures that the trained cell 

detection and cell classification models from the TRACERx tumor blocks are generalizable 

to a distinct dataset which is processed, stained and scanned in another center (the 

LATTICe-A study, University of Leicester).

All 100 whole-tumor H&E sections were processed using the same TRACERx trained 

model. The validation was then performed using two data types. First, a pathologist provided 

5,082 single-cell annotations following the same protocol for TRACERx in 20 randomly 

selected LATTICe-A sections. The breakdown for single-cell annotations was 1,997 stromal 

cells, 787 lymphocyte cells, 1,839 cancer cells and 459 other cells (see Supplementary Table 

3). Second, two independent pathologists jointly scored the remaining 80 sections for overall 
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fraction of lymphocytic infiltration and pathology TIL estimates7. These manual scores were 

correlated with the deep learning-based lymphocyte percentage and adjacent-tumor 

lymphocytes/total stroma (Extended Data Fig. 2e).

Validation of the deep learning pipeline with biological assays

A new biological validation method was developed to overcome the challenge of obtaining 

large quantities of cell-specific validation data (Fig. 1f-h, Extended Data Fig. 2f-g). 48 cores 

were available for the TTF1-H&E image pairs, 38 for the CD45-H&E pairs, and 33 for the 

SMA-H&E pairs. Stains were performed using a Ventana BenchMark ULTRA instrument 

(H&E, TTF-1) or a Dako Link 48 (CD-45, SMA). Digital images were acquired using a 

Hamamatsu Nanozoomer slide scanner. First, H&E staining was performed using a Leica 

Infinity kit, and a digital image was collected. The slide was subsequently de-coverslipped, 

the H&E stain removed by acid alcohol washing, and then an immunohistochemical stain 

with haematoxylin counterstain was applied using a standard diagnostic antigen retrieval and 

antibody protocol. A second digital image was acquired after mounting and coverslipping. 

Through experimentation, no difference in the staining was observed when the procedure 

was reversed.

TTF-1 (type: Novocastra Liquid Mouse Monoclonal antibody thyroid transcription factor 1, 

clone: SPT24, cat. no.: NCL-L-TTF-1, source: Leica biosystems, Germany, used at 1:100) 

was selected as the cancer cell marker in these LUAD samples because it is the most robust 

and widely used immunohistochemical marker of LUAD cells31. It is very specific, both in 

that only epithelial cells are stained in the lung, and in that very few tumors of non-lung or 

thyroid origin are stained32. The sensitivity of the antibody clone used (SPT24) is also high, 

staining >75% of tumor cells in 76% of LUAD tumors in one published series33. However, 

as this implies, there are many tumors in which tumor cell staining is incomplete (i.e. 

<100%). Therefore, only cores showing near-universal TTF-l-positivity of tumor cells were 

used for validation, in order to provide the best possible ‘gold standard’ comparator for the 

deep learning algorithm. The same procedure was followed for pairs of H&E-CD45 (anti-

human CD45, type: Mouse Monoclonal, clone: 2B11 + PD7/26, cat. no.: M0701, source: 

Agilent DAKO, USA, used at 1:200) and H&E-SMA (myofibroblast marker, type: Mouse 

Monoclonal antibody Smooth Muscle Actin (1A4), cat. no.: 760-2833, source: Roche, 

Switzerland, a ready to use antibody) to biologically validate the accuracy of single cell 

classification.

In total, 64,976 TTF1+ cells, 26,284 CD45+ cells and 46,343 SMA+ cells were detected 

from the IHC images, denoting the advantage of this method in acquiring large amount of 

validation data at single-cell resolution. The correlation measured (Fig. 1f-h, Extended Data 

Fig. 2g) was that between the fraction of classified cells in the H&E versus fraction of 

positively stained IHC cells per 100μm2.

Immune phenotype classification

To classify tumor regions into different immune phenotypes, we assigned each region to an 

immune hot, cold or intermediate category based on lymphocyte percentage. The 

dependency of our subsequently results on thresholds chosen for this classification scheme 
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was tested after applying perturbations to the thresholds used. Four new classification 

schemes were tested: no intermediate zone (i.e. using median lymphocyte percentage for 

separating hot and cold regions), regions with lymphocyte percentage greater than standard 

deviation/2 above/below the median lymphocyte percentage classified as immune hot/cold,, 

and similarly for standard deviation/3 and standard deviation/6 (Extended Data Fig. 4a-b). 

For every new classification, we repeated the multivariate survival analysis to confirm the 

significance of the number of immune cold regions in predicting disease-free survival as 

well as the genomic distance test for pairs of immune hot versus immune cold regions in 

LUAD patients (Extended Data Fig. 4b). In addition, the CD8+ RNA-seq signature was used 

to test the difference in CD8+ levels between immune hot and immune cold phenotypes 

across all classification schemes (Extended Data Fig. 4c).

Genomic distance measure

Genomic distance was calculated as described previously1, by taking the Euclidean distance 

of the mutations present for every pair of immune hot and immune cold regions from the 

same patient. All mutations present in a region from a tumor were turned into a binary 

matrix of which the rows were mutations and columns were the tumor regions. From this 

matrix, the pairwise distance was determined.

Distance between dominant clones to the last common ancestor of region pair

Deep learning-based immune phenotypes were integrated with the TRACERx phylogenetics 

data6. Dominant clones (using the upper quartile of cancer cell fraction, ≥ 75%) were 

labelled for all tumor regions’ trees which had an available H&E sample in LUAD patients 

(= 76 regions, 15 immune hot pairs and 23 immune cold pairs). For every pair of immune 

hot ≥ cold regions within a tumor, the distance between the dominant clones (as measured 

by branch length, i.e. number of mutations) via their last common ancestor was computed. 

The recently shared ancestry clone between the two dominant clones was labelled as the 

‘last common ancestor of region pair’ (annotated with arrows in Fig 3.c). To ensure this 

analysis was not dependent on a certain cancer cell fraction threshold, multiple thresholds 

(CCF ≥ 80%, 85%) were placed while repeating the same analysis. Next, by identifying the 

last common ancestral subclone for pairs of the same phenotype, each pair was categorized 

into one of two diversification patterns: ‘diversifying at the most recent common ancestor 

(MRCA) of the tree’ or ‘diversifying at a descendant subclone of the MRCA of the tree’. 

The latter category included a pattern exclusive to immune cold pairs, where the two regions 

shared the same dominant subclone that was the direct descendant of the MRCA of the tree.

Tumor spatial modelling

H&E and IHC cell abundance scores (e.g. lymphocyte percentage, CD8+ percentage) were 

computed as the percentage of a cell type in the total sample cell count. Stromal TILs were 

identified using spatial modelling20,34,35, where lymphocytes were classified (using 

unsupervised clustering) into intra-tumor lymphocytes, adjacent-tumor lymphocytes and 

distal-tumor lymphocytes based on their spatial proximity to epithelial cell nests in H&Es. 

The immune hotspot score was calculated using the Getis-Ord algorithm as previously 

described36. To capture the emergence of complex morphological patterns that dictate 

cancer-stromal cell spatial contact preserved over varying spatial scales, a fractal dimension 
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calculation (Minkowski-Bouligand dimension) was performed using the boxcounting 

algorithm37. This algorithm calculates the number of boxes of a certain size needed to cover 

a geometric pattern. We modified a MATLAB-based algorithm38 to include both spatial 

information of cancer and stromal cells, as opposed to its conventional use on one variable 

(i.e. pixel information of an image). The analysis was carried out on spatial maps generated 

using coordinates of classified stromal and cancer cells, while utilizing the tissue segmented 

image (as a boundary mask) to exclude all empty tissue areas. Choices of box size were 

informed by the distribution of minimum and maximum Euclidean distance for each stromal 

cell to its nearest cancer cell in all 275 tumor regions (Extended Data Fig. 7a). The mean 

minimum distance was 21.43μm. We limited the upper box size at 300μm, which is just 

above a previously proposed cell-cell communication distance of 250μm39 but designed to 

be more inclusive. For statistical tests where fractal dimension was represented at tumor 

level, the maximum regional score was used.

H&E-IHC spatial alignment/immune subset projection

For a H&E diagnostic slide, we determined the number of intra-tumor lymphocytes, 

adjacent-tumor lymphocytes and distal-tumor lymphocytes (nI, nA, nD) based on spatial 

modelling of the H&Es. After spatial alignment of IHC and projecting IHC-derived cells 

onto the H&E, the number of CD8+ cells that were also intra-tumor lymphocytes was 

determined (nCD8 ITL), and similarly for other cell types. As a result, intra-tumor 

lymphocytes were deconvolved by nI = nCD8 I, + nCD4 I, + nFOXP3, + nother I. Two-sided 

paired Wilcox was used to test the difference in the percentage of CD8+ cells among intra-

tumor lymphocytes, adjacent-tumor lymphocytes and distal-tumor lymphocytes (nCD8 ATL, 

nCD8 DTL, nCD8 ITL). The same test was performed for CD4+FOXP3- and CD4+FOXP3+ 

cells.

The 10 LUAD patients with the highest adjacent-tumor lymphocytes to stromal cell ratio 

were selected for this immune subset spatial projection. All samples had above median 

CD8+%. One sample was excluded due to poor HE-IHC alignment quality and the 

subsequent analysis was performed on the remaining nine samples. The quality of alignment 

was evaluated by manually identifying 238 visible landmarks and placed on corresponding 

positions in H&E and IHC tiles (total number of tiles = 249, maximum landmarks per tile = 

5), as shown in Extended Data Fig. 8b. These marked points were used to compute the 

Euclidean distance (difference in, coordinates) between them to obtain a quantitative 

measurement ofalignment accuracy. The average distance between matching landmarks was 

9.57μm, whereas the maximum distance between the H&E and CD4/CD8/FOXP3 sections 

was 16μm.

Survival analysis and other statistical methods

Survival tests were conducted using Kaplan-Meier estimator (‘ggsurvplo’ R function from 

the ‘survminer’ and ‘survival’ R packages) as well as Cox model (‘coxph’ R function and 

displayed using ‘ggfores’ R function). Forest plots show the hazard ratio in the x-axis; each 

variable’s hazard ratio is plotted and annotated with a 95% confidence interval. The clinical 

parameters included in the multivariate model were age, sex, smoking pack years, histology 

(whether LUAD, LUSC or otherwise), tumor stage, adjuvant therapy (whether received or 
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not). Because of its prognostic importance in TRACERx, the upper quartile of clonal 

neoantigens in each histology cohort was also incorporated in the multivariate model. The 

range of available disease-free survival data was 34-1364 days (median = 915 days) in 

TRACERx, and 1-6139 days (median = 684 days) in LATTICe-A. All hazard ratios were 

computed on all time points (i.e. the whole survival curve, not at a specific time point). 

Correlation tests used Spearman’s method and were generated using the function ‘ggscatter’ 

from the ‘ggpubr’ R package. All correlation plots show the Rho (ρ) coefficient and the 

significance R-value. For statistical comparisons among groups, a two-sided, non-

parametric, unpaired, Wilcoxon signed-rank test was used, unless stated otherwise. All box 

plots were generated using the function ‘ggboxplo’ from the ‘ggpubr’ R package (all data 

points are plotted with the ‘jitter’ option, the median value is indicated by a thick horizontal 

line; minimum and maximum values are indicated by the extreme points; the first and third 

quantiles are represented by the box edges; and vertical lines indicate the error range) or the 

function ‘ggbetweenstats’ from the ‘ggstatplo’ R package for more than two groups. Tests 

for concordance between two data classes were analyzed using a Fisher’s exact test. All 

statistical tests were two-sided, a R value of less than .05 was considered statistically 

significant. To adjust R-values for multiple comparisons, the Benjamini & Hochberg method 

was used. To measure effect size, Cohen’s d method was used. All statistical analyses were 

conducted in R (version 3.5.1).
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Extended Data

Extended Data Fig. 1. CONSORT diagrams for TRACERx 100 and LATTICe-A histology 
cohorts and patient characteristics.
a. TRACERx CONSORT diagram to illustrate sample collection and analysis of regional 

and diagnostic histology samples, as well as the overlap with RNA and DNA studies. b. 

TRACERx patient characteristics for the histology cohort. c. LATTICe-A CONSORT 

diagram (= 970 LUAD patients). Legends for ‘type of the analysis’ correspond to panel a. d. 

Demographics and clinical patient characteristics for TRACERx (top three panels) and 
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LATTICe-A (bottom three panels) showing the distribution of age (colored by sex), 

distribution of smoking pack years and the proportion of patients in each pathological stage. 

Horizontal lines indicate the median value.

Extended Data Fig. 2. Validation of the automated single-cell classification for H&E.
a. A scatter plot showing the correlation between H&E-based adjacent-tumor lymphocytes/

stromal and pathology TIL estimates in diagnostic samples (= 98 diagnostic slides/patients). 

b. Scatter plots showing the correlations between H&E-based tumor cellularity estimate and 
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ASCAT/VAF purity scores (= 238 regions; 83 patients). c. A scatter plot showing the 

correlation between H&E-based estimate of lymphocyte percentage among all cells and 

RNA-seq-based CD8+ signature using the Danaher et al. method30 (= 142 regions; 56 

patients). d. A scatter plot showing the correlation between H&E-based estimate of 

lymphocyte percentage among all cells and CD8+ cell percentage in IHC in the diagnostic 

samples (= 100 diagnostic slide/patients). e. Scatter plots showing the correlation between 

H&E-based lymphocyte percentage versus pathological scores of overall lymphocytic cell 

fraction, and adjacent-tumor lymphocytes/stromal versus pathology TIL estimates in an 

external cohort (LATTICe-A, = 80 diagnostic slides/patients). f. Illustrative example to show 

the spatial alignment of TTFl/CD45/SMA-stained IHC and H&E images obtained using 

sequential staining on the same tissue microarray section for biological validation, g. A 

scatter plot showing the correlation between stromal cell percentage determined by H&E 

and SMA+ cell percentage per LUAD image tiles of size 100μm2 (= 144). The experiment 

was conducted once using one TMA (= 33 cores/patients). The shading indicates 95% 

confidence interval.
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Extended Data Fig. 3. Distribution of regional lymphocytic infiltration according to pathological 
stage.
All available patients’ data have been used in this figure except for the standard deviation 

tests excluding patients with a single tumor region. Patients without pathological staging 

information from the LATTICe-A cohort were also removed. a, b, c, top row: TRACERx 

and bottom row: LATTICe-A. Horizontal lines indicate the median value. a. Distribution of 

the standard deviation of regional lymphocyte percentage for LUAD and LUSC patients in 

TRACERx (= 69), and LUAD in LATTICe-A (= 814). b. Distribution of the standard 
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deviation of regional lymphocyte percentage across pathological stages (= 69 for TRACERx, 

814 for LATTICe-A). c. Distribution of regional mean of lymphocyte percentage across 

stages (= 79 for TRACERx, 827 for LATTICe-A). d. No significant difference among stages 

with respect to standard deviation (= 69 for TRACERx, 814 for LATTICe-A) or mean (= 79 

for TRACERx, 827 for LATTICe-A) of regional lymphocytic infiltration. Left panel, 

TRACERx and right panel, LATTICe-A. Correction for multiple testing was applied in d, 
for each cohort individually. A two-sided, non-parametric, unpaired, Wilcoxon signed-rank 

test was used; each dot represents a patient; the mean value is annotated with a large dot; the 

median value is represented by a thick horizontal line; minimum and maximum values are 

indicated by the extreme points; the first and third quantiles are represented by the box 

edges; and the violin shape shows the data distribution as a kernel density estimation.
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Extended Data Fig. 4. Validation of immune phenotype classification.
a. The proposed immune classification imposed on density plot showing distribution of 

lymphocyte percentage. The middle zone corresponds to the intermediate phenotype, red 

zone for immune hot and blue zone for immune cold. Black dash line shows the median. 

This classification was validated after applying small perturbations to the thresholds to 

reclassify regional immune phenotypes, illustrated as grey dash lines: no intermediate zone 

(i.e. hard median for separating hot and cold), standard deviation (SD)/2 above and below 

the median, SD/3 and SD/6. b. Forest plots to show repeated multivariate Cox regression 
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tests for the number of immune cold regions using these new classifications (= 79 patients), 

after accounting for stage, total number of samples, upper quartile of clonal neoantigens 

determined for LUAD and LUSC individually, and other clinical parameters. Box plots 

showing difference in genomic distance for pairs of hot regions compared with pairs of cold 

regions for LUAD and LUSC separately (LUAD: = 45 hot pairs, 45 cold pairs for no 

intermediate zone; = 19 hot, 25 cold for SD/2; = 25 hot, 33 cold for SD/3; = 32 hot, 41 cold 

for SD/6. LUSC: = 32 hot pairs, 54 cold pairs for no intermediate zone; = 19 hot, 27 cold for 

SD/2; = 19 hot, 37 cold for SD/3; = 27 hot, 41 cold for SD/6.). c. Box plots showing 

significant difference in CD8+ RNA-seq signature using the Danaher method between 

regions of hot and cold phenotype across all classification schemes (= 219 for SD/4; 275 for 

no intermediate zone; 173 for SD/2; 204 for SD/3; 237 for SD/6). d. Distribution and 

difference of lymphocytic infiltration for LUAD versus LUSC regions in TRACERx (= 275 

regions; 85 patients) as well as distribution for LUAD in LATTICe-A (= 4,324 samples; 970 

patients). Horizontal lines in the distribution plots indicate mean values. For statistical 

comparisons among groups, a two-sided, non-parametric, unpaired, Wilcoxon signed-rank 

test was used, unless stated otherwise.

Extended Data Fig. 5. Concordance between histology deep learning and RNA-seq immune 
classification.
a. A box plot showing the difference in pathology TIL estimates between immune hot and 

immune cold regions (= 219). Pathology TIL estimates score fraction of stroma containing 

TILs, whereas immune classification was defined based on the percentage of lymphocytes in 

all cells within a slide, b. A confusion matrix to compare RNA-seq and deep learning 

histology immune classifications (discarding immune intermediate regions, = 109 regions 

(57 LUAD, 37 LUSC, 15 other histology subtypes); 52 patients). The p-value was generated 

using a two-sided Fisher’s exact test for overlap. c. A box plot showing the difference in the 

fraction of immune hotspots36 in regions where the two classifications are in agreement (= 
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78; labeled as ‘In agreement’) against the discrepant regions (= 31, labeled as ‘Discrepant’). 

Each dot represents a region, the median value is indicated by a thick horizontal line; 

minimum and maximum values are indicated by the extreme points; and the first and third 

quantiles are represented by the box edges. d. Box plots to support the overall consistency 

between H&E-deep learning and RNA-seq methods by comparing different immune scores 

as well as ASCAT tumor purity between immune hot/high and cold/low tumor regions (all 

R-values < 0.0001). Top row, H&E-deep learning immune classification (= 219; except the 

ASCAT purity box plot = 186 regions), bottom row, RNAseq derived immune classification 

(= 142; except the ASCAT purity box plot, = 141 regions). For statistical comparisons 

among groups, a two-sided, non-parametric, unpaired, Wilcoxon signed-rank test was used, 

unless stated otherwise.
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Extended Data Fig. 6. Genomic and survival analysis of tumor regions according to immune 
phenotypes.
a. A box plot showing the difference in genomic distances for pairs of immune hot versus 

immune cold regions within the same LUSC patients (= 59 pairs). A two-sided, non-

parametric, unpaired, Wilcoxon signed-rank test was used. b. Forest plots to show the 

univariate prognostic value for the number of immune low regions (both as continuous and 

dichotomized at the median (≤1 versus >1)), or the number of immune high regions, using 

the immune classification generated by RNA-seq-based infiltrating immune cell 

populations1 in 64 TRACERx tumors (41 LUAD, 16 LUSC and 7 other histology subtypes). 
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c. Forest plots showing multivariate Cox regression analyses in both TRACERx (= 79 

patients; LUAD and LUSC combined) and LATTICe-A (= 651 LUAD patients representing 

a subset with complete stage and smoking pack years data) with the number of immune cold 

regions dichotomized at the median (≤1 versus >1). This remains significant when the 

number of immune cold regions was replaced as a continuous variable, in the same 

multivariate model, (R = 0.019 in TRACERx and < 0.001 in LATTICe-A, for the number of 

immune cold regions). Clonal neoantigens were dichotomized using the upper quartile, 

determined individually for LUAD and LUSC tumors1. d. The same test in c when tumor 

size (in mm) was also controlled in the multivariate model in LATTICe-A. This test also 

remained significant for a bigger group of patients with complete stage data, but missing 

pack years information (= 815, R < 0.001, HR = 1.4[1.1-1.8]). e. Forest plots to compare the 

prognostic value of regional immune scores as well as diagnostic H&E and IHC scores for 

relapse-free survival in TRACERx (= 79 patients, LUAD and LUSC combined). Wherever 

possible, these immune features were tested in LATTICe-A (= 970 patients). To compare the 

prognostic value of the number of immune cold region with other immune features, 

LATTICe-A comparisons were conducted in Cox multivariate regression models to include 

every immune feature after correcting for the number of immune cold regions in the same 

model. Each variable’s HR is plotted with a 95% confidence interval; all R-values were 

adjusted for multiple testing; and the size of the circles denotes–log10(R). For the sake of 

visualization, a minor adjustment was made to the HR for the number of cold regions/total 

number of regions in LATTICe-A from 0.88[0.57-1.3] to 0.99[0.97-1.3], SD: standard 

deviation, used for measuring variability of lymphocyte percentage among samples within a 

tumor, f. Forest plots using Cox multivariate regression analysis showing that the prognostic 

value of the number of immune cold regions was independent of: 1) genetic measure, 

subclonal copy number alteration (obtained from 6); 2) tumor cellularity from DNA-seq-

based ASCAT purity, 3) tumor cellularity measured by deep learning-based cancer cell 

percentage, g. Kaplan Meier curves to illustrate the difference in relapse-free survival for 

TRACERx patients including other histology types (= 85; representing all TRACERx 

patients in the multiregion histology cohort) with high and low number of immune cold 

regions, dichotomized by its median value. Log-rank R = 0.0017. h. Forest plot using Cox 

regression for the multivariate survival analysis for the number of immune cold regions in 

TRACERx including patients with other histology subtypes (= 85).
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Extended Data Fig. 7. Fractal dimension and relationships with stromal cells.
a. Distribution of the average minimum Euclidean distance between a stromal cell to its 

neighboring cancer cell. For every stromal cell in a tumor region slide, the minimum 

distance to nearest cancer cell was computed. This distance was then averaged for all 

identified stromal cells in every region to plot the distribution (= 275 regions; 85 patients). b. 

Distribution of the fractal dimension of the cancer-stroma cell interface for histology types 

in the TRACERx cohort (= 275 regions; 85 patients). c. Box plots to show the difference in 

fractal dimension between immune hot and cold regions in TRACERx LUAD (= 113) and 
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LUSC (= 84). d. Box plots showing the difference in stromal cell percentage between 

immune hot and cold regions in all (= 219), LUAD (= 113), and LUSC (= 84). e. Scatter 

plots showing the correlation between fractal dimension and percentage of cells that are 

stromal or cancer in all tumor regions (= 275 regions; 85 patients). This shows that fractal 

dimension was independent of tumor cell composition, with only a weak correlation with 

stromal cell percentage and no correlation with tumor cellularity. f. Box plots showing the 

difference in fractal dimension between LUAD tumor regions harboring an LOH event for 

HLA type A (= 106), type B (= 113), type C (= 108) versus regions that do not, adjusted for 

multiple comparisons with the corresponding test in Fig. 4c. g. The same test in f repeated 

for LUSC tumor regions (= 87) for HLA of any type. h. Box plots showing the difference in 

tumor-level fractal dimension using the maximum value of regional measures between 

LUAD tumors (= 48) harboring a single LOH event for any HLA type, HLA type A, type B 

and type C versus tumors that do not, independent of predicted clonal neoantigens. Each p-

value was generated using a multiple regression linear model and was also adjusted for 

multiple testing correction. i. The same test in h repeated for LUSC tumors (= 29) for HLA 

of any type. For statistical comparisons among groups, a two-sided, non-parametric, 

unpaired, Wilcoxon signed-rank test was used, unless stated otherwise.
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Extended Data Fig. 8. Relationship of immune subsets and spatial TILs in LUAD.
a. Spearman’s correlations between immune scores in diagnostic slides and genetic 

measures including predicted neoantigens and HLALOH in LUAD patients (= 46). ITLR: 

intra-tumor lymphocytes to total tumor cell ratio. Only significant correlations after multiple 

testing are highlighted (rho = 0.37, R = 0.035). b. Examples of registered H&E and IHC 

tiles. The green cross denotes a manually placed landmark repeated 238 times on pairs of 

H&E-IHC image tiles. The Euclidean distance (difference in, coordinates) was computed 

between the two landmarks which was then c. shown as a distribution to represent the 
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accuracy of the registration (= 249 total H&E-IHC image tiles, maximum five landmarks per 

a pair of tiles). The average distance between matching landmarks was 9.57μm and the 

distribution is within the expected range of maximum distance between four serial sections 

(16μm). d. Box plots to illustrate the difference in percentage of immune cell subsets among 

adjacent, intra and distal-tumor lymphocytes (= 20 image tiles), a non-parametric, paired 

Wilcoxon test was used.

Extended Data Fig. 9. Summary of immune and genomics features in NSCLC.
An extended heatmap showing all immune variables described in TRACERx across all 

patients (= 275 regions; 85 patients), along with genetic measures and clinical parameters. 

Each column represents a tumor, grouped by their histologic subtype. Tumor regions 

(illustrated as dots) were assigned to immune hot, immune cold and intermediate phenotypes 

based on percentage of lymphocytes in all cells following H&E-based deep learning 

analysis. Cancerstromal fractal dimension, defined using the maximum fractal dimension in 

regions of a patient, using the median as cut-off to determine high and low groups.
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Data availability

The digital pathology images from the TRACERx study generated or analysed during this 

study are not publicly available and restrictions apply to its use. A test subset of such digital 

pathology images are available through the Cancer Research UK & University College 

London Cancer Trials Centre (ctc.tracerx@ucl.ac.uk) for non-commercial research purposes 

and access will be granted upon review of a project proposal that will be evaluated by a 

TRACERx data access committee and entering into an appropriate data access agreement, 

subject to any applicable ethical approvals. Digital pathology images for LATTICe-A 

samples with expert pathologist’s annotations used for validation are available: https://
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github.com/qalid7/compath. Request for data access for the remaining LATTICe-A samples 

can be submitted to J.L.Q.

Code availability

The deep learning pipeline for digital pathology image analysis is available for 

noncommercial research purposes: https://github.com/qalid7/compath. All code used for 

statistical analyses of image data was developed in R version (3.5.1) and is available: https://

github.com/qalid7/tx100_compath.
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Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.
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Figure 1. The computational pathology deep learning pipeline for dissecting heterogeneous 
NSCLC tumor microenvironment.
a. Histology sample generation in Lung TRACERx. To preserve morphology and generate 

good quality histology, samples from the same tumor regional frozen blocks specifically 

collected for TRACERx and generated molecular data1,6 were re-embedded in formalin 

fixed paraffin (FFPE). From these, H&Estained tumor section slides were generated. In 

addition, H&E section and triplex CD4/CD8/FOXP3 IHC slides were also generated from 

diagnostic blocks that represent clinical standard sampling, b. Our multistage deep learning 

pipeline consists of three key stages: fully automated tissue segmentation, single-cell 

detection and classification. The final output is shown as an image with all cells identified. 

For more details, please see the ‘Training the deep learning pipeline’ section of the Methods. 

c. Illustrative 3-dimensional distribution of input image patches in the feature space learned 
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by the convolutional neural networks, using Principal Component Analysis. The feature 

clusters were pseudocolored to display segregation for four cell types in H&E, and d CD8+, 

CD4+FOXP3+, CD4+FOXP3- and “other” cell class (hematoxylin cells) in IHC, respectively, 

e. The deep learning single-cell classification model was trained using expert pathology 

annotations from a variety of TRACERx samples (diagnostic, regional, TMA). The trained 

model was then applied to the remaining TRACERx samples (predominantly LUAD and 

LUSC) and the LATTICe-A cohort (only LUAD), identifying over 171 million cells in 

TRACERx and over 4.9 billion cells in LATTICe-A. WSI: whole-section image, f. 

Biological validation of the deep learning approach. H&E and IHC images generated from 

the same TMA slide were virtually integrated for comparison of H&E-based cell 

classification and cell type marker expression. For each marker, the experiment was 

conducted once using a single TMA (cores/patients = 48 TTF1; 38 CD45). Scale bars 

represent 100μm. g-h. Correlations between cancer/lymphocyte cell percentage determined 

by H&E and TTF1+ (tumor marker)/CD45+ (immune marker)cellpercentage per LUAD 

image tilesof size 100μm2 ( = 100 TTF1; 83 CD45). The shading indicates 95% confidence 

interval.
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Figure 2. Geospatial heterogeneity of lymphocytic infiltration in the TRACERx cohort.
a. Representative examples of immune hot and immune cold multi-region H&E samples, 

scale bars represent 100μm. b. Each column represents a tumor, grouped by their histologic 

subtype (the “Other” group consists of adenosquamous carcinoma, large cell neuroendocrine 

carcinoma, pleomorphic carcinoma, and sarcomatoid carcinoma of pleomorphic type arising 

from adenocarcinoma). Tumor regions (illustrated as dots) were assigned to immune hot, 

immune cold, and intermediate phenotypes based on percentage of lymphocytes in all cells 

following H&E-based deep learning analysis. CD8+/CD4+FOXP3/CD4+FOXP3+ 
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percentages based on automated analysis of the IHC diagnostic samples are also shown. c. A 

heatmap showing gene expression patterns of 14 immune cell populations across tumor 

regions, each row represents a tumor region (= 142). The three clusters correspond to the 

proposed immune regional classification as shown in b. d. Significant enrichment of all 

immune cell populations in hot regions, as compared to cold regions, particularly for the 

immune activating cell subsets, including cytotoxic, B-cell, and natural killer cells (= 109 

regions; 52 patients). A two-sided, nonparametric, unpaired, Wilcoxon signed-rank test was 

used for each box plot, all R-values were corrected for multiple comparisons. Thick 

horizontal lines indicate the median value; outliers are indicated by the extreme points; the 

first and third quantiles are represented by the box edges; and vertical lines indicate the error 

range.
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Figure 3. Evolution of immune escape, and survival analysis in TRACERx and LATTICe-A.
a. A box plot showing the difference in genomic distances for pairs of immune hot or 

immune cold regions within the same patients in LUAD (= 66 pairs), b. A box plot showing 

the difference in mutational distance between the dominant subclones in pairs of immune 

hot or immune cold regions via their last common ancestor in LUAD (= 23 immune cold 

pairs; 15 immune hot pairs). This distance was calculated by taking the furthest dominant 

clone (cancer cell fraction (CCF) ≥ 75%) from the trunk, and it remained significant when 

the dominant clone closest to the most recent common ancestor of each tree was considered 
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(R = 0.02). c. Illustrative examples of tumor phylogenetic trees for a pair of immune hot and 

immune cold regions. Dominant subclones were labelled and their last common ancestor 

(annotated with arrows) was then identified. Minor (CCF < 75%) or undetected clones were 

neglected in this analysis. d,e. Kaplan-Meier curves illustrating the difference in disease-free 

survival according to the number of immune cold regions, dichotomized by the median 

value, in TRACERx (d) (LUAD and LUSC, = 79 patients, 249 regions) and LATTICe-A (e) 

(LUAD, = 970 patients, 4,324 samples). The same deep learning histology analysis and 

immune regional classification developed for TRACERx were applied directly to LATTICe-

A. WSI: whole-section image, f. Forest plots showing multivariate Cox regression analyses 

in TRACERx (= 79 patients; LUAD and LUSC). Clonal neoantigens were dichotomized 

using the upper quartile, determined individually for LUAD and LUSC tumors1. g. Forest 

plots showing multivariate Cox regression analyses in LATTICe-A (= 651 LUAD patients 

with complete stage and smoking pack years data). For the patient subset with complete 

stage data but missing pack years information, the test remained significant (= 827, R < 

0.001, HR = 1.4[1.1-1.9]). For statistical comparisons among groups, a two-sided, non-

parametric, unpaired, Wilcoxon signed-rank test was used, unless stated otherwise.

AbdulJabbar et al. Page 43

Nat Med. Author manuscript; available in PMC 2021 May 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Association of spatial histology with genetic alterations relevant to immune 
surveillance.
a. An illustrative example of fractal dimension calculated by the box-counting algorithm to 

quantify the geospatial complexity of the cancer cell-stromal cell interface. By examining 

boxes of decreasing sizes that contain both cancer and stromal cells, the box counting 

algorithm quantifies the rate at which the geometrical details of cancer-stromal interface 

develop at increasingly fine scales. Blue box illustrates the smallest box of 20μm by 20μm in 

size. Scale bar represent 100μm. An example of a fractal structure displaying geometrical 
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self-similarity is shown below the panel, b. A box plot to illustrate the significant difference 

in fractal dimension between all TRACERx immune hot and cold regions (= 219). c. A box 

plot showing a significant difference in fractal dimension between LUAD tumor regions (= 

116) harboring an LOH event for class 1 HLA of any type versus regions that do not, 

adjusted for multiple comparisons with the remaining HLA type-specific tests (see Extended 

Data Fig. 7f). d. Illustration of the adjacent-tumor lymphocyte/stroma ratio inferred by 

spatial modeling of cancer cell density (contours) and lymphocyte classification into spatial 

compartments. Cell classification in IHC sample of the same block was shown for 

comparison. Scale bars represent 50μm. e. A box plot showing the difference in the adjacent-

tumor lymphocyte/stroma ratio between high (≥ median) and low (< median) clonal 

neoantigens for all LUAD patients in TRACERx (= 61). f. Illustration of image registration 

to spatially align serial sections of H&E and IHC and generate a virtual composite map of T 

cell subset in the context of cancer/stroma density. T cell subsets classified in the IHC were 

projected onto the cancer density map inferred from H&E, so that they can be classified into 

adjacent-tumor, intra-tumor, and distal-tumor compartments, g. A box plot showing 

significantly higher ratio of CD8+ to CD4+FOXP3+ cells in adjacent-tumor and intratumor 

lymphocytes compared with distal-tumor lymphocytes in registered LUAD image tiles (= 20 

image tiles, using paired Wilcoxon test). For statistical comparisons among groups, a two-

sided, non-parametric, unpaired, Wilcoxon signed-rank test was used, unless stated 

otherwise.
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