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The proteomic landscape of soft tissue
sarcomas
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Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with
limited treatment options. Here we undertake comprehensive proteomic
profiling of tumour specimens from 321 STS patients representing 11 histolo-
gical subtypes. Within leiomyosarcomas, we identify three proteomic sub-
types with distinct myogenesis and immune features, anatomical site
distribution and survival outcomes. Characterisation of undifferentiated
pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating
CD3 + T-lymphocyte levels nominates the complement cascade as a candidate
immunotherapeutic target. Comparative analysis of proteomic and tran-
scriptomic profiles highlights the proteomic-specific features for optimal risk
stratification in angiosarcomas. Finally, wedefine functional signatures termed
Sarcoma Proteomic Modules which transcend histological subtype classifica-
tion and show that a vesicle transport protein signature is an independent
prognostic factor for distant metastasis. Our study highlights the utility of
proteomics for identifying molecular subgroups with implications for risk
stratification and therapy selection and provides a rich resource for future
sarcoma research.

Soft tissue sarcomas (STS) are a group of rare and diverse
mesenchymal malignancies comprising more than 80 histological
subtypes1. At the genomic level, these tumours fall into two main
categories, those with complex karyotypes or those with specific

genetic alterations such as translocations and point mutations2.
However, the biological understanding of these disparate diseases
remains incomplete due in part to the inherent molecular hetero-
geneity within and between histological subtypes. Clinical
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management of localised disease is dependent on anatomical site,
tumour grade and histological subtype3–6 but despite multi-
disciplinary management, cure rates in the localised setting remain
unsatisfactory with up to 50% of patients developing tumour relapse
after surgery7–9. Following recurrence, patients with locally advanced
and metastatic STS have poor outcomes with limited systemic
treatment options10,11. To improve patient outcomes, there is a need
to move away from current “one size fits all” treatment approaches
towards molecular strategies able to dissect the biological hetero-
geneity inherent in STS, anddeliver better risk stratification tools and
biomarker-matched therapies.

While several large-scale genomic and epigenomic pan-STS
studies have been published12–15, these findings have yet to be
translated into routine clinical management. Proteins are key med-
iators of cellular communication and serve as targets for multiple
oncology drugs and ancillary diagnostic tests16,17. Proteomics is thus
complementary to genomic studies and could bridge this transla-
tional gap. Underscoring the importance of protein-level analysis,
recent large-scale proteomic profiling studies from The Clinical
Proteomic Tumour Analysis Consortium (CPTAC) in multiple epi-
thelial cancer types have led to improved molecular classification
beyond what can be achieved by genomic or transcriptomic data
alone, with the identification of cancer drivers and biomarkers with
clinical utility18–22.

A pan-STS proteomic study was reported by The Cancer Genome
Atlas (TCGA) consortiumusing the Reverse Phase ProteinArray (RPPA)
platform to profile 206 cases across 6 histological subtypes12. How-
ever, RPPA is a targeted platform that is limited to a few hundred pre-
selected proteins and unlike mass spectrometry (MS)-based analysis
does not provide a systems-level view of the proteome23. Furthermore,
prior STS molecular profiling studies have relied on fresh frozen
materialwhich, in contrast to formalin-fixedparaffin-embedded (FFPE)
specimens, is typically not archived in biobanks.Molecular profiling of
adequate numbers of frozen specimens with sufficient follow-up for
long-term survival analysis is often impractical for rare cancers and
therefore large-scale proteomic studies require methods that are
compatible with standard FFPE tissue.

Here we present the proteomic landscape of STS comprising a
well-annotated cohort of FFPE specimens from 321 cases spanning
11 histological subtypes, including paediatric and adult patients,
across multiple anatomical sites. Undertaking histological subtype-
specific, immune-based and pan-sarcoma analyses, we show the
utility of this MS-based proteomic resource in addressing the bio-
logical heterogeneity in STS by revealing defined molecular sub-
groups with implications for clinical risk stratification and selection
of therapy.

Results
Samples and clinicopathological data
The cohort is comprised of a multi-institutional series of 321 primary
cases (Fig. 1a) including the more common STS histological subtypes
such as leiomyosarcoma (LMS), undifferentiated pleomorphic sar-
coma (UPS), synovial sarcoma (SS), dedifferentiated liposarcoma
(DDLPS), as well as rare and ultra-rare sarcoma subtypes of angio-
sarcoma (AS), epithelioid sarcoma (EPS), extracranial rhabdoid tumour
(RT), alveolar soft part sarcoma (ASPS), desmoplastic small round cell
tumour (DSRCT) and clear cell sarcoma (CCS). Among these subtypes,
four are known to have complex karyotypes (LMS, UPS, DDLPS, AS)
with the remainder harbouring simple genomes characterised either
by translocations (SS, ASPS, DSRCT, CCS), or loss of SWI/SNF complex
components (EPS, RT). Desmoid tumours (DES), a locally aggressive
soft tissue neoplasm that lacks metastatic potential and harbours
CTNNB1mutations have also been included in the cohort. The median
age at diagnosis was 58.4 (range: 0.1–90) years and most cases were
intermediate to high grade (79%) (full clinicopathological information
provided in Supplementary Data 1). All specimens included in this
study are comprised of primary tumours which were resected from a
range of anatomical locations with extremity cases being the most
common site (Fig. 1b). Of the cases included in this study, 40 patients
(12%), the majority of which were SS (n = 25), had undergone pre-
operative therapy (Supplementary Data 1).

Pan-sarcoma proteomic landscape analysis
The workflow of the proteomic pipeline is outlined in Fig. 1c. FFPE
tissue was reviewed for tumour cell content and subjected to protein
extraction and digestion. A multiplexed isobaric labelling strategy
(Tandem Mass Tag 11-plex) was utilised where 10 unique cases were
analysed in everyMS runwith the 11th sample being a pooled reference
from multiple cases representative of the diversity of STS subtypes
within the cohort. This pooled reference enabled normalisation across
the entire dataset of 321 cases for further downstream analysis.

A total of 8148 proteins were identified with 3290 proteins
quantified across all samples (Supplementary Data 2), with an average
of 4313 proteins identified perMS experiment. A subset of cases where
duplicate sample extractions from the same tumour block were ana-
lysed showed high reproducibility with a mean Pearson’s correlation
coefficient of r = 0.81. Unsupervised clustering of the proteins quan-
tified across all samples indicates that LMS, DES and SS each had a
unique proteomic profile with cases clustering by histological subtype
and not anatomical site (Fig. 2a). Uniformmanifold approximation and
projection for dimension reduction (UMAP) analysis highlight LMS as
the most distinct sarcoma subtype in the cohort based on proteomic
profiles (Fig. 2b). Overrepresentation analysis of proteins that are

Histological subtype
(n =  321)

LMS
80 (25%)

UPS
53 (17%)

SS
43 (13%)

DDLPS
39 (12%)

DES
37 (12%)

AS
30 (9%)

EPS
16 (5% )

RT
12 (4% )

ASPS
4 (1% )

DSRCT
4 (1% )

CCS
3 (1% )

Archival FFPE
tissue samples

Protein extraction
and digestion

Tandem Mass Tag
11-plex labelling

High pH fract ionat ion
& LC-MS/ MS

Bioinformat ic and
stat ist ical analyses

Selection
m/z

Identification
m/z

Quantitation
m/z

Pooled
reference
sample

combine

a b cAnatomical site
(n =  321)

Ext rem ity
125 (39% )

Trunk
65 (20% )

Ret ro-
peritoneal
57 (18% )

Intra-
abdominal
28 (9%)

Pelvic
24 (7% )

Head/ neck
13 (4% )

Uter ine
9 (3% )

Fig. 1 | Schematic overview of the study. a, b Pie charts showing the count and
percentage breakdown of histological subtypes (a) and anatomical sites (b) within
the study cohort. cOverviewof the proteomic analysis workflow. AS angiosarcoma,
ASPS alveolar soft part sarcoma, CCS clear cell sarcoma, DDLPS dedifferentiated

liposarcoma, DES desmoid tumour, DSRCT desmoplastic small round cell tumour,
EPS epithelioid sarcoma, LMS leiomyosarcoma, RT rhabdoid tumour, SS synovial
sarcoma, UPS undifferentiated pleomorphic sarcoma, FFPE formalin-fixed paraffin-
embedded, LC liquid chromatography, MS mass spectrometry.
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exclusively upregulated in each subtype (with at least 20 cases) high-
lighted key biological processes and proteins that operate in these
subtypes (Fig. 2c, Supplementary Data 3 and 4).

Although no ontologies were enriched in the overrepresentation
analysis of DDLPS, consistent with the amplification of CDK4 in a large
proportion of DDLPS24, our data shows that at the protein level, CDK4
is highly expressed in this subtype (Fig. S1A and Supplementary

Data 3). Upregulated LMS proteins were predominantly composed of
muscle system ontologies which are reflective of the smooth muscle
lineage of this histological subtype25. Of the proteins that were iden-
tified as significantly upregulated in LMS, three proteins (MYH11, SRC
and GAPDH) were also present in the RPPA dataset from the inde-
pendent TCGA sarcoma cohort (LMS n = 80, SS n = 10, DDLPS n = 50,
UPS n = 44)12. Evaluation of the expression levels of these proteins in
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the TCGA cohort finds that they are similarly upregulated in LMS,
providing independent validation of our MS results (Fig. S1C). DES is
characterised by elongated spindle-shaped cells set in a dense col-
lagenous matrix26 which is in line with the enrichment of proteins
involved in collagen organisation. No ontologies were enriched in SS
but these tumours showed an upregulation of DNA damage response
proteins particularly those involved in non-homologous end joining
(NHEJ), including the catalytic subunit of DNA-dependent protein
kinase (PRKDC), XRCC1, XRCC5, XRCC6, RAD50 and MRE11 (Fig. S1B
and Supplementary Data 3), suggesting that exploiting double-strand
break repair mechanisms could be an important therapeutic avenue in
this histological subtype27,28. We further evaluated if pre-operative
treatment impacts the enrichment of DNA damage response proteins
in SS. Analysis of cases that had undergone pre-operative treatment or
those that did not finds that these 6 proteins were similarly enriched in
both groups of patients when compared to the rest of the STS cohort
(Fig. S2 and Supplementary Data 5), indicating that the observed
upregulation of DNA damage response proteins in SS is inherent in the
biology of this subtype and not dependent on pre-treatment status.
The ability ofMS-based proteomics to capture known subtype-specific
molecular processes in FFPE tissue specimens highlights the validity of
this approach for biological discovery.

Proteomic profiling of LMS identifies 3 molecular subtypes with
distinct biological features and survival outcomes
LMS is one of the most common sarcomas subtypes accounting for
~20%of newly diagnosed STS25. It is typified by clinical heterogeneity in
treatment responses, rates ofmetastasis and patient outcomes11,29–31. In
keeping with these clinical observations, several studies have identi-
fied transcriptomic LMS subtypes with distinct clinicopathological
features and biological pathways12,32–35. However, the presence of these
molecular subtypes and the activation of thesepathways remains to be
verified at the protein level.

To determine whether proteomic data can account for the het-
erogeneity observed in LMS, consensus clustering of the proteomic
dataset inour cohort of 80 LMS caseswasperformed (Fig. S3A–D). The
baseline clinicopathological features of this LMS cohort are presented
in Table S1. Three consensus proteome-based clusters (P1–P3) were
identified which were determined to be significant by SigClust
(p < 0.001) (Fig. 3a). Assessment of key tumour features (FNCLCC
grade and tumour size, depth and margins) as well as patient char-
acteristics (sex, performance status and age) showed no association
with any of the three clusters identified (Fig. 3A and Table S1). By
undertaking single sample gene set enrichment analysis (ssGSEA) for
each case within the LMS cohort, we demonstrate that the proteomic
clusters have distinct biological features. P1 is characterised by sig-
nificantly lower ssGSEA scores for inflammatory response and KRAS
signalling compared to P2 (p <0.001) and P3 (p < 0.001) (Fig. 3a,
Supplementary Data 6). In line with the observation of reduced
inflammatory response, LMS cases in P1 displayed an “immune cold”
phenotype with less CD3+ and CD4+ tumour infiltrating lymphocytes
(TILs) compared to the other two clusters (p =0.008) (Fig. S4A, B).
However, CD8+ TILs were not different across the three clusters.
P3 showed a marked reduction in ssGSEA scores for myogenesis
compared to P1 (p =0.001) and P2 (p <0.001) (Fig. 3a, Supplementary
Data 6). We further show that known smooth muscle protein markers

including CFL2, SLMAP, MYLK, MYH11, and ACTA2 are significantly
decreased in P3 versus P1 and P2 (Fig. S4C)36. A subset of cases in
P3 segregated from theother LMS tumours in theUMAP analysis of the
full STS cohort (Fig. S4D) which is in keeping with a “dedifferentiated”
form of LMS that has previously been reported in transcriptomic and
immunohistochemistry (IHC)-based studies32,36. Finally, P2 had rela-
tively high levels of both myogenesis and inflammatory response
ssGSEA scores and we termed this cluster the “classical” subtype. Sig-
nificance analysis of microarrays (SAM) and prediction analysis of
microarrays (PAM)was applied to the full dataset to identify a reduced
subset of proteins that enables accurate classification of the three
subtypes. This resulted in a reduced set of 153 proteins with an overall
misclassification error rate of 0.037 for the three LMS proteomic
subtypes (list of proteins provided in Supplementary Data 7).

Next, we determined the distribution of the three LMS proteomic
subtypes by anatomical site. There was a clear dichotomy in subtype
proportion with the retroperitoneal and intra-abdominal cases being
enriched for the immune cold and classical subtypes with an under-
representation of the dedifferentiated subtype; while the extremity,
uterine and pelvic cases showed a different distribution with around
half of the cases being classical, a third dedifferentiated and the
remainder immune cold (Figs. 3b and S4E). We then evaluated the
5-year survival outcomes of patients in the three proteomic subtypes
(Fig. 3c, d). In multivariable analysis, the dedifferentiated subtype had
significantly inferior local relapse-free survival (LRFS) outcomes com-
pared to the immune cold and classical (HR 7.25, 95% CI 1.93–27.2,
p =0.003) subtypes (Fig. 3d and Table S2). There was no difference in
metastasis-free survival (MFS) and overall survival (OS) between the
three proteomic subtypes (Fig. S4F). Taken together, our analyses
provide evidence that LMS is comprised of three proteomic subtypes
with distinct biological features, anatomical site distribution and LRFS
outcomes.

CD3+TIL-low UPS and DDLPS harbour elevated levels of com-
plement cascade proteins
Data from clinical trials of anti-PD-1/PD-L1 immune checkpoint inhibi-
tors (CPIs) have shown that a subset ofUPS andDDLPS patients benefit
from treatment with this class of drugs37,38. Additionally, correlative
studies from the SARC028 trial indicate that responders to the anti-PD-
1 antibody pembrolizumab harbour higher TIL densities compared to
non-responders39. Here we sought to dissect the biological processes
associated with TIL levels in these two subtypes. We first evaluated the
levels of CD3+, CD4+, and CD8+ TILs in a subset of UPS (n = 50) and
DDLPS (n = 32) patients for which there was sufficient tissue to gen-
erate tumour microarrays (Fig. 4a). The median TIL levels were as
follows: CD3+ 107 cells/mm2 (range: 1–1239), CD4+ 89 cells/mm2

(range: 1–1735) and CD8+ 31 cells/mm2 (range: 0–869). Stratifying
patients into CD3+ TIL-high or -low groups based on median TIL
counts showed that the CD3+TIL low cases had a significantly
poorer OS in univariable (HR 2.33, 95% CI 1.3–4.16, p =0.004) and
multivariable (HR 2.07, 95% CI 1.01–4.23, p =0.048) analysis (Fig. 4b,
and Table S3). A similar trend was observed for LRFS (HR 2.04, 95% CI
1.03–4.04, p = 0.04) but not MFS (Fig. S5).

To evaluate if other immune cell markers and checkpoint mole-
cules are associated with CD3+TIL-high or -low subgroups, we
undertook targeted gene expression analysis of 21 key immune genes

Fig. 2 | The proteomic landscape of soft tissue sarcoma. a Annotated heatmap
showing the unsupervised clustering (Pearson’s distance) of 3290 proteins across
the study cohort. From top to bottom, panels indicate histological subtype, ana-
tomical site, tumour grade, patient sex, patient age, and tumour size. b Uniform
manifold approximation and projection (UMAP) of the proteomic data with indi-
vidual cases coloured by histological subtype. c Heatmap showing the proteins
(n = 1362) uniquely upregulated in histological subtypes with greater than 20 cases
in the cohort (FDR < 1%, fold change≥1.5), sortedby histology. Annotations indicate

keyproteins (DDLPS&SS) identifiedby significant analysisofmicroarray (SAM) and
gene sets (AS, DES, LMS, UPS) identified by overrepresentation analysis in each
histological subtype (Supplementary Data 4). AS angiosarcoma, ASPS alveolar soft
part sarcoma, CCS clear cell sarcoma, DDLPS dedifferentiated liposarcoma, DES
desmoid tumour, DSRCT desmoplastic small round cell tumour, EPS epithelioid
sarcoma, LMS leiomyosarcoma, RT rhabdoid tumour, SS synovial sarcoma, UPS
undifferentiated pleomorphic sarcoma.
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(SupplementaryData 8). Several genes involved in immune checkpoint
regulation were elevated in CD3+TIL high versus low cases (Fig. 4c).
These include PDCD1 (which encodes for the PD-1 receptor),PDCD1LG2
(which encodes for the PD-L2 ligand), IDO1 and LAG3. Only PDCD1
remained significant following multiple testing correction. Of the 21
immune genes analysed, 3 were present in the proteomics dataset

(CD163, NCAM1 and STAT6). Spearman’s rank correlation analysis of
gene expression versus protein expression levels showed a poor cor-
relation for CD163 (ρ =0.46, p <0.001) and STAT6 (ρ = 0.39, p = 0.001)
and a moderate correlation for NCAM1 (ρ =0.59, p <0.001).

Given that UPS and DDLPS patients with low CD3+ TIL levels are
considered to have “immune cold” tumours and unlikely to benefit
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from anti-PD-1/PD-L1 inhibitors, we mined the proteomic data to
establish if other biological pathways that could be exploited for
therapy were present. Gene set enrichment analysis (GSEA) showed
that CD3+TIL-high patients had enrichment of ontologies associated
withT-cell activation, T-cell receptor signalling, leucocyte proliferation
and cell adhesion, and interferon responses (Fig. 4d). In contrast,
patients in the CD3+TIL-low subgroup were enriched for ontologies
comprising the complement cascade and its closely related pathway,
the coagulation cascade (Supplementary Data 9). These proteins
include serine proteases in the two pathways that are thought to ori-
ginate from the same ancestral genes40, the serpin family of serine
protease inhibitors and components of themembrane attack complex
(MAC) (Fig. 4e). These data indicate that while CD3+TIL-low tumours
have reduced levels of cellular immunity and expression of key
immune checkpoint genes, these patients harbour an active comple-
ment system.

Comparative analysis of transcriptomic and proteomic profiles
of AS
AS is a rare and aggressive vascular subtype comprising <3% of all STS
and arises from endothelial cells41. These cancers can be classified into
two groups based on their aetiology. Primary AS arise de novo and
develops primarily in younger patients (30–50 years of age) while
secondary AS comprise radiation-associated or lymphedema-
associated AS that present in older patients (median age of ~70
years)42. Here we performed RNA-seq on a subset of 25 AS cases in our
cohort and undertook a comparative analysis of the transcriptomic
and proteomic data.

We first assessed the correlation between the genes/proteins
within the two datasets. Of the 3383 genes/proteins that were present
in both datasets, 666 were significantly positively correlated (FDR <
0.05) with Spearman correlation coefficient ρ of 0.51–0.91 (Fig. 5a and
Fig. S6). Several of the highly positively correlated genes/proteins
include previously reported candidate sarcoma drug targets such as
argininosuccinate synthetase 1 (ASS1), lactate dehydrogenase B
(LDHB), melanoma cell adhesion molecule (MCAM)43–45. Interestingly,
there were also 5 genes/proteins that were negatively correlated (ρ of
−0.73 to −0.53, FDR <0.05), including proteins involved in the reg-
ulation of RNA splicing (HNRPH2, WTAP, and POLR2A) (Fig. 5a).

To determine whether the use of proteomic or transcriptomic
datasets can identify clinicallymeaningful expression patterns relating
to the biology of AS, we performed Monte-Carlo consensus clustering
(M3C) of the two datasets separately. This analysis identified 2 and 7
clusters for the proteomic and transcriptomic datasets respectively
(Figs. 5b and S7A). Notably, the clusters of samples defined by the
proteomic data were not further sub-classified by the clusterships
defined by the RNA-seq data, suggesting that both datasets harboured
distinct information about the biology of AS. To evaluate whether
using the smaller number of proteins identified by MS had an impact
on the clusterships defined by the transcriptomic data, we repeated
the M3C using the full RNA-seq gene list of 9780 genes. There were
only two samples assigned to a different membership of clusters when
compared to the limited gene list (n = 3383), indicating that the
reduction in the number of genes had minimal impact on the clus-
tering results (Fig. S7B). Importantly, only the proteomic but not the
RNA-seq data defined molecular clusters which were clinically

meaningful: AS proteomic cluster 2 (ASP2) which is comprised mostly
of secondary AS (radiation-associated and lymphedema-associated
AS) and AS proteomic cluster 1 (ASP1) which is comprised of an almost
equal mix of secondary and primary AS (Fig. 5b).

We sought to establish if biomarker(s) identified within each of
the two datasets provide distinct prognostic information. Univariable
Cox analysis was performed on the 3383 genes or proteins to deter-
mine the association and their significance with OS, LRFS or MFS
(Fig. 5c). The scatter plots show that for each of the outcomemeasures
assessed, there was a distinct set of genes or proteins that were
prognostic for survival outcome (p < 0.05). The number of significant
proteins (with HR > 2.0 or <0.5) is 439, 84, and 400 for OS, LRFS, and
MFS, respectively, while the number of significant genes (withHR > 2.0
or <0.5) is 521, 115, and 375 for OS, LRFS, and MFS respectively. Of the
12 proteins and 24 genes that were significantly associated with all the
survival endpoint measures (OS, LRFS, and MFS), only one protein/
gene (EPM2AIP1) was overlapping (Fig. 5d). In addition, our analysis
identified a subset of genes/proteins in which the gene and protein
expression levels showed opposing associations with survival: OS
(ROCK2, ALDH9A1, RTN1), LRFS (ZYX), and MFS (EDF1, PRSS1, CTSA,
DDX5, NELFE, SARNP, SREK1, and MAT2B). Our analysis demonstrates
the distinct and complementary nature of the proteomic and RNA-seq
datasets in the identification of candidate prognostic factors for AS
risk stratification.

We next used multivariable models to assess the additional
prognostic information provided by the proteomic clusterships (ASP1
and ASP2) (Fig. 5b), RNA-seq clusterships (Fig. S7A), or aetiology (pri-
mary or secondary AS) compared to the use of baseline clinico-
pathological variables (tumour grade, size anddepth) alone (Fig. 5e). In
univariable Cox regression analysis, the survival estimates of the RNA-
seq clusterships could not be estimated as a result of extreme hazard
ratios and infinite confidence intervals from the models and therefore
was not included for multivariable analysis. Including the interaction
between the proteomic clusterships and aetiology provided a gain of
123.1%, i.e. twice the prognostic information, compared to a model
comprising of clinico-pathological variables only (MFS, change in
LRχ² = 8.77). This model also outperformed the multivariable Cox
models that added either aetiology or proteomic clusterships only.
Collectively, these findings demonstrate the proteome-specific fea-
tures that provide optimal risk classification for distant metas-
tasis in AS.

Sarcoma proteomic modules define pan-STS biological sub-
groups of prognostic value
We next established whether pan-sarcoma biological signatures
defined by co-regulated proteins or protein complexes were intrinsic
within the sarcoma proteomic dataset. Utilising weighted gene co-
expression network analysis (WGCNA)46 on the dataset comprising
proteins that were quantified across all samples (Figs. 6a and S8), we
identified 14 distinct and 1 ungrouped Sarcoma proteomic modules
(SPMs) comprising between 41 and 420 proteins (Supplementary
Data 10). Constructing a protein co-expression network of 3290 nodes
and 168,574 edges revealed SPMs comprising a broad range of biolo-
gical functions including splicing, immunity, DNA replication, and
cellular metabolism (Fig. 6b). We then evaluated the association of
SPMs with LRFS, MFS and OS to identify prognostic biological

Fig. 3 | Leiomyosarcoma (LMS) is comprised of three proteomic subtypes.
a Annotated heatmap showing the unsupervised clustering (Spearman distance) of
3262 proteins across LMS cases (n = 80), arranged by proteomic subtype (top
annotation). Bottom annotations indicate key tumour and patient characteristics,
and significant (one-way ANOVA; FDR<0.001) biological features obtained from
single sample Gene Set Enrichment Analysis (ssGSEA) of theMSigDBHallmark gene
sets (Supplemental Data 6A, B). b Pie charts depicting the breakdown of LMS

proteomic subtypes at different anatomical sites. c Kaplan–Meier plot of local
recurrence-free survival (LRFS) across the LMS proteomic subtypes stratified by P3
and P1/P2 combined. Hazard ratio (HR), 95% confidence intervals (CI) and p-value
determined by univariable Cox regression. d Multivariable Cox regression asses-
sing local recurrence-free survival (LRFS) in patients categorised by leiomyo-
sarcoma (LMS) proteomic subtype. I-A intra-abdominal, RP retroperitoneal.
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signatures (Fig. 6c). For survival analysis, we removed RT as this is a
paediatric disease and DES which unlike the other subtypes in the
study is a locally infiltrative disease with no metastatic potential.

Two SPMs (SPM6 and SPM10) were associated with MFS (Fig. 6c).
SPM6 has 41 proteins and is enriched in key components regulating
DNA replication such as the minichromosome maintenance (MCM)
complex as well as cell cycle proteins CDK1 and CDK2 (Fig. S9A).

Analysis of the histological subtype breakdown of patients classified
into SPM6-high, -intermediate and -low subgroups based on the
median protein expression levels of the 41 proteins showed that this
biological approach was subtype-agnostic with a broad representation
of histotypes in each SPM6 subgroup (Fig. S9B). Patients in the SPM6-
high subgroup had a significantly poorer MFS (HR 2.42, 95% CI
1.48–3.95, p <0.001) compared to the SPM6-low (Fig. S9C) subgroup,
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which is in line with published studies showing that theMCM complex
is a prognostic factor inmultiple cancer types47. SPM10has94proteins
that comprise the intracellular vesicle transport machinery. These
proteins include coatomer subunits (COPG1, COPA, COPB1/2, ARCN1),
and components of the adaptor protein complexes (AP2M1, AP3B1,
AP2B1, AP2A1/2, AP3D1) (Fig. 6d). Evaluation of the histological sub-
types categorised as SPM10-high, -intermediate and -low subgroups
showed that although there is some enrichment of histological sub-
types in the different subgroups (e.g. LMS in the SPM10-low group), all
histotypeswere represented in the three SPM10 subgroups (Fig. 6e). In
contrast to SPM6, patients in the SPM10-high subgroup had a sig-
nificantly superior MFS compared to the SPM10-low subgroup (HR
0.479, 95% CI 0.285–0.803, p =0.005) (Fig. 6F). Adjusting for clin-
icopathological factors including age, tumour size, grade, margins and
depth, performance status and histological subtype, the
SPM10 signature remained an independent prognostic factor
(Table S4) in the multivariable Cox regression analysis. This analysis
highlights the utility of a biological signature approach based on SPMs
to refine clinical risk stratification for localised STS.

SAM and PAM were applied to identify a reduced subset of pro-
teins that enables accurate classification of the three
SPM10 subgroups. This resulted in a reduced set of 53 proteins with an
overall misclassification error rate of 0.085 (a list of 53 proteins is
provided in SupplementaryData 11). To assess if SPM10 has prognostic
value beyond STS, we applied the centroids of this reduced set of
proteins to the CPTAC breast cancer proteomic dataset19. We find that
unlike STS, intermediate expression of SPM10 proteins in breast can-
cer is associated with poor OS and disease-specific survival (DSS)
compared to SPM10-high and SPM10-low strata (log-rank OS:
p =0.003, DSS: p = 0.00057), suggesting that the utility of SPM10 as a
prognosticator is likely to be cancer-type specific (Fig. S10).

Discussion
This proteomic study of multiple sarcoma histological subtypes
advances our current knowledge of the STS proteome which has thus
far been restricted to low-resolution RPPA studies. By utilising an MS-
based methodology that is compatible with standard FFPE specimens
routinely collected for diagnostics, we were able to identify >8000
proteins with 3290 proteins quantified across all samples. We
demonstrate the power of this approach to extend our understanding
of STS biology and identify strategies for molecular-based disease
classification, biomarker-informed prognostication and candidate
therapeutic avenues.

LMS is a clinically and molecularly heterogenous disease and
while several studies have reported transcriptomic-based molecular
subgroups with defined biological pathways and clinical
outcomes12,32–35, there are currently no consensus molecular defini-
tions of LMS subtypes48. Here we show that at the protein level, LMS
can be distinguished into three proteomic subtypes. The dediffer-
entiated proteomic subtype P3 is characterised by a reduction in
smooth muscle protein expression and has inferior LRFS outcomes
within our LMS cohort. Notably, our study shows that while

retroperitoneal and intra-abdominal LMS cases have a much lower
incidence of the dedifferentiated subtype, a third of uterine, pelvic and
extremity cases comprise of this proteomic subtype, indicating that
protein-based biomarkers could facilitate prognostication of LMS
tumours from the same anatomical site. It has previously been shown
that UPS-like poorly differentiated LMS cases with progressive loss of
smooth muscle markers (as measured by IHC) have poorer outcomes
independent of tumour morphology36. This feature was similarly
reported in the transcriptomic subtype 1 identified in a genomic study
by Anderson et al. and transcriptomic subtype II defined by Guo
et al.32,34,48. Given the agreement between proteomic, IHC and tran-
scriptomic analyses across multiple studies and cohorts, we believe
that there is a strong rationale to support a consensus definition of a
poorly differentiated molecular LMS subtype with the prospective
evaluation of protein-basedbiomarkers to aidpatient risk stratification
in the clinic.

Clinical trials and real world-experience of anti-PD-1/PD-L1 CPI use
in sarcomas have shown that a subset of UPS and DDLPS patients
derive clinical benefits from this class of drugs37,38,49–51. Furthermore,
UPS has consistently been found to have the highest TIL levels across
multiple histological subtypes52–54. Candidate biomarkers of CPI
response in sarcoma patients include TIL density, presence of tertiary
lymphoid structures, PD-1/PD-L1 expression and transcriptomic-based
sarcoma immune classes39,55–57. A common theme of these putative
biomarkers involves the identification of the “immune hot” subset of
patients who are more likely to respond to CPIs. An outstanding
question remains as to the therapeutic options for the vast majority of
STS patients who are classified as “immune cold” and therefore are not
ideal candidates for CPI therapy. By mining the proteomic dataset in
the CD3 + TIL-low subset of UPS and DDLPS patients, we show that
these tumours are enriched in components of the complement-
mediated innate immune response. Studies in other cancer types have
reported that complement activation promotes tumour growth and
suppresses anti-tumour immunity including levels of CD8+ and
CD4+TILs58–61 which is consistent with the inferior survival outcomes
in the CD3+TIL-lowUPS andDDLPS patients in our cohort. In addition,
combined blockade of PD-1/PD-L1 and complement proteins has been
shown to restore antitumour immune responses with synergistic
effects in lung and colon cancer murine models58,62. Very recently,
Magrini et al. demonstrated that complement activation is immune
suppressive and has a pro-tumoral role in sarcoma mouse models of
UPS and in sarcoma patients. They further showed that preclinical
inhibition of the complement pathway potentiates anti-PD-1 therapy63.
Complement antagonists such as the anti-C5 monoclonal antibody
eculizumab which is FDA-approved for paroxysmal nocturnal hae-
moglobinuria and other antagonists including pexelizumab, TP-10,
MLN-2222 which are in advanced clinical development for coronary
artery bypass grafting, represent opportunities for cancer therapy
repurposing64. Our data, therefore, provide support for future pre-
clinical and clinical evaluation of complement inhibitors in CD3+TIL-
low UPS and DDLPS with the potential for combination therapy with
anti-PD-1/PD-L1 CPIs.

Fig. 4 | Characterisation of the immune profiles of dedifferentiated lipo-
sarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS).
aRepresentative images of high and lowCD3+ tumour infiltrating lymphocyte (TIL)
staining from an exemplar in DDLPS (green) and UPS (purple) cases in the cohort.
Samples were stratified as high and low based on median TIL counts (107 cells/
mm2). b Kaplan–Meier plot of overall survival (OS) in CD3+ TIL-high and -low
patients (n = 82). Hazard ratio (HR), 95% confidence intervals (CI) and p-value
determined by univariable Cox regression. c Boxplots comparing expression of 21
immune-related genes in CD3+ TIL-high and -low cases. Boxplots indicate 25th,
50th, and 75th percentile, with whiskers extending from 25th percentile−(1.5*IQR)
to 75th percentile+(1.5*IQR), and outliers plotted as points. p values determined by
Kruskal–Wallis tests and adjusted to false discovery rate (FDR). d Gene set

enrichment analysis (GSEA) results showing the top 15 gene sets enriched in
CD3+ TIL-high and and-lowcases basedonnormalised enrichment score (NES)with
gene sets related to complement activity (blue) and coagulationprocesses (orange)
highlighted. e To inspect the proteins contributing to the enrichment of comple-
ment and coagulation cascades in these tumours, protein-protein interaction (PPI)
networks were constructed based on the Kyoto Encyclopaedia of Genes and
Genomics (KEGG) and WikiPathways databases. Node colour indicates Log2(Fold
ChangeCD3+TIL low:CD3+TIL high) protein expression. Grey indicates nodes that
are not in the proteomic data. This analysis highlighted the serpin family of serine
proteases tobe stronglyupregulated in lowCD3+TILpatients (SERPINA1/A5/C1/D1/
F2/G1). Several complement proteins were also upregulated in low CD3+ TIL
patients, including those of the membrane attack complex (MAC).
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Several large-scale comparative studies have shown that the cor-
relation of protein and mRNA levels in cells and tissues is generally
poor65–67. Reasons for the poor global correlation between mRNA and
protein levels aremulti-factorial andmay include differences inmRNA
and protein abundance as well as turnover68,69. By undertaking a
comparative analysis of proteomic and transcriptomic data, we

demonstrate that only ~20% of proteins in our dataset are significantly
correlated withmRNA levels in AS. Consistent with a previous study of
9 human cell lines and 11 human tissues65, we find that ASS1 is highly
correlated at both themRNA and protein levels. Loss of ASS1 confers a
synthetic lethal interaction to arginine deprivation (with pegylated
arginine deiminase) and chloroquine combination therapy in
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sarcomas43. Our data suggest that both ASS1 protein and mRNA levels
maybe used as a biomarker for this therapeutic strategy. Furthermore,
we show that proteomic but not transcriptomic data identified two
molecular subgroups (ASP1 and ASP2) that were clinically meaningful
in separating AS subtypes with distinct aetiology. Our analysis also
indicates thatmRNAandproteins providedistinct and complementary
prognostic information and few genes/proteins can be used inter-
changeably as prognostic clinical biomarkers in AS. Notably, only the
incorporationof proteomicsdata into amultivariableCoxmodel led to
a significantly increased (nearly two-fold) improvement in prognostic
information compared to a model comprising only baseline clin-
icopathological variables. Given the relatively small patient numbers in
our cohort, these promising results need to be independently vali-
dated in future studies.

We defined 14 SPMswhich are biological signatures that capture a
broad spectrum of STS functional biology. To demonstrate the proof-
of-principle utility of these signatures, we identified several SPMs
which are associated with survival. We further show that when cate-
gorised by high, intermediate or low subgroups, these tumours share
protein-based molecular characteristics that transcend histological
subtype. Current clinical management of STS in the localised setting,
including risk stratification and treatment selection, is largely reliant
on histological subtype, anatomical site and other factors including
size and grade4. Conceptually, our findings indicate that in addition to
current histotype-focused strategies, an orthogonal and com-
plementary biological signature-driven approach may also aid clinical
decision-making. Several gene expressionprognostic signatures based
on a priori-defined biological pathways such as chromosome integrity
and hypoxia have been reported13,70,71. However, our study is distinct in
that the SPMs were derived de novo from the sarcoma proteomic
dataset with no prior knowledge of specific biological pathways. The
power of this discovery-based approach is demonstrated by the find-
ing that a vesicle transport protein signature (SPM10) is an indepen-
dent positive prognostic indicator for MFS. Previous reports have
found that gene expression levels of coatomer componentsCOPB1 and
COPB2 are not associated with survival in the TCGA SARC dataset72,73.
However, recent studies have shown that a deficiency in COPA or
COPG1 leads to deregulation of the immune system resulting in
immunodeficiency74,75. Since sarcoma patients with immune cold
tumours have poorer outcomes compared to those with immune hot
tumours56, one hypothesis is that sarcoma patients with low SPM10
protein expression levels have poor immune cell function and there-
fore inferior MFS outcomes. This hypothesis needs to be functionally
tested in future experiments. The use of SPMs could have a clinical
impact in improving sarcoma cure rates by identifying high-risk
patients that may benefit from intensified treatment regimens
including peri-operative chemotherapy. Our approach paves the way
for future studies that combine SPMs with established nomograms
such as Sarculator and PERSARC to develop integrated tools for
improved risk classification of STS patients76–78.

There are several limitations to our study. Our analysis was per-
formedona retrospective cohortwhich is susceptible to selectionbias.
Our findings should thus be considered hypothesis-generating and

require future validation in independent cohorts. In addition, several
sarcoma subtypes are known to harbour extensive intra-tumoural
heterogeneity79,80 and our bulk proteomic approach is unable to
resolve the individual contribution of distinct heterogenous tumour
regions to the aggregate proteomic data. Despite this limitation, we
are able to readily identify both previously reported and new findings
associated with STS biology, highlighting the utility and validity of our
approach. Future studies incorporating emerging spatial and single-
cell proteomic technologies could shed light on the impact of intra-
tumoural heterogeneity on protein-based signatures. However, unlike
MS-based bulk proteomics, the cost of deploying suchmethodologies
in the routine clinical setting is prohibitive and will therefore likely
remain research use-only tools. Finally, our study has focused on
localised disease and given the clonal evolution of tumours that have
recently been reported in several sarcomas subtypes32,81,82, it remains
to be determined if our findings will apply to locally relapsed and
metastatic tumours.

In conclusion, we have developed a valuable proteomic resource
for the sarcoma community which is rich in biological and linked long-
term clinical data.While the reduced set of proteins identified for LMS
subgroup classification as well as SPM10 prognostication is relatively
large and canonly be evaluatedbyMSas opposed to conventional IHC,
advances in targeted MS assays such as multiple/selective reaction
monitoring (MRM/SRM) means that such analyses can be done within
clinically meaningful timescales, as recently demonstrated by the use
of this strategy in COVID-19 vaccine trials83. We anticipate that this
proteomic resource will facilitate the discovery of pathophysiological
mechanisms, new therapeutic strategies and candidate biomarkers to
catalyse future advances in basic and translational sarcoma research.

Methods
Patient cohort selection
This research complies with all relevant ethical regulations. Retro-
spective collection and analysis of formalin-fixed paraffin-embedded
(FFPE) tissue and associated clinical data were approved as part of the
Royal Marsden Hospital (RMH) PROgnoStic and PrEdiCTive ImmUno-
profiling of Sarcomas (PROSPECTUS) study (NHS Research Ethics
Committee Reference 16/EE/0213), National Taiwan University Hospi-
tal (Research Ethics Committee Reference 201912226RINB), and New-
castle University as part of Children’s Cancer and Leukaemia Group
(CCLG) Biological Study 2012 BS 05 (Research Ethics Committee
Reference 8/EM/0134). Written informed consent was obtained from
participants. Patients were selected for inclusion based on the avail-
ability of sufficient primary tumour tissue in institutional archives from
the three institutions. Diagnoses were confirmed by an expert histo-
pathological review by soft tissue pathologists (K.T., C.F.). Baseline
clinicopathological characteristics and survival data were collected by
retrospective review of medical records.

Each FFPE block underwent histologic assessment through a
review of haematoxylin and eosin (H&E) stained sections. Cases with
>75% tumour cell content were subjected to downstream sample
preparation workflows while those cases with <75% tumour cells were
macrodissected to enrich for tumour content prior to sample

Fig. 5 | Comparative analysis of transcriptomic and proteomic profiles of
angiosarcomas (AS). a Volcano plot showing Spearman’s correlation and -log10
transformed p-values for the 3383 genes/proteins. Negatively correlated genes/
proteins with p-value < 0.005 and positively correlated genes/proteins with FDR<
0.001 are annotated on the plot. b Annotated heatmap of proteomic data (3383
proteins) for 25 AS cases. The samples were clustered using M3C method with K-
means. From top to bottom, panels indicate age, sex, size, performance status,
tumour grade, depth,margin, size and aetiology/subtype. The corresponding RNA-
seq clusters (Fig. S7A) are shown. c Scatter plots of log2-transformed hazard ratios
from univariate Cox regression models fitted using OS (left panel), LRFS (middle
panel) andMFS (right panel) using gene/protein expression. Blue dots are proteins

with ap-value < 0.05, greendots are geneswith ap-value < 0.05 and reddots are the
gene/proteins where both datasets returned a p-value < 0.05. d Venn diagram
showing the overlap of the genes and proteins that are significantly associated with
all the survival endpoint measures (OS, LRFS, and MFS). e Likelihood ratios (Chi-
square) of the different Cox regression models and the relative improvement of
prognostic information with the addition of different variables (aetiology, pro-
teomics clustership or aetiology*proteomics clustership interaction) to models
comprising only baseline clinicopathological variables alone. *p <0.05. LAAS
lymphedema-associated angiosarcoma, PAS primary angiosarcoma, RAAS
radiation-associated angiosarcoma, PS performance status, Rx margin unknown.
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preparation84. Liposarcoma (LPS) samples were assessed for well-
differentiated (WD) and de-differentiated (DD) areas and macro-
dissected to enrich for regions with DD histology. Of a total of
390 samples that were identified from our archive, 41 samples were
dropped due to poor protein extraction yields following lysis, 12 sam-
ples dropped due to poor peptide yields following protein digestion

and 16 samples dropped due to poor proteomecoverage followingMS
data acquisition, resulting in a final cohort of 321 cases (Fig. S11).

Proteomics analysis
Protein extraction and digestion. Each tumour sample was depar-
affinised with 3 xylene washes, rehydrated twice in a decreasing
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ethanol gradient (100%, 96%, 70%), and dried in a SpeedVac con-
centrator (Thermo Scientific, Waltham, MA, USA). Lysis buffer (0.1M
Tris–HCl pH 8.8, 0.5% (w/v) sodium deoxycholate, 0.35% (w/v) sodium
lauryl sulfate) was added at 200μL/mg of dried tissue, samples
homogenised by 3 × 30 s pulses with a LabGen700 blender (Cole-
Palmer, Vernon Hills, IL, USA), sonicated on ice for 10min, and heated
to 95 °C for 1 h to reverse formalin crosslinks. Lysis was performed for
2 h by shaking at 750 rpm at 80 °C. Samples were centrifuged at
14,000 × g at 4 °C for 15min, the supernatant retained, and protein
concentration measured by bicinchoninic acid (BCA) assay (Thermo
Scientific Pierce, Waltham,MA, USA). Tissue extracts were digested by
filter-aided sample preparation (FASP), as previously described85.
Briefly, samples were concentrated in Amicon-Ultra 4 centrifugal filter
units (Merck Group, Darmstadt, Germany), and detergents were
removed by washing with 8M urea. Samples were transferred to
Amicon-Ulta 0.5 filters (Merck Group, Darmstadt, Germany), reduced
with 10mM dithiothreitol (DTT) for 1 h at 56 °C, and alkylated with
55mM iodoacetamide (IAA) for 45min at room temperature in the
dark. Samples were washed with 100mM ammonium bicarbonate
(ABC) anddigestedwith trypsin (Promega,Madison,WI,USA) at a ratio
of 1:100 µg sample at 37 °C overnight. Peptides were collected by three
centrifugations at 14,000 × gwith 100mMABC, desalted using SepPak
C18 Plus cartridges (Waters, Milford, MA, USA), and dried in a Speed-
Vac concentrator (Thermo Fisher Scientific, Waltham, MA, USA).

Tandem-Mass-Tag labelling. Dried peptides were labelled with TMT
11-Plex reagents (Thermo Scientific, Waltham, MA, USA) as per the
manufacturer’s guidelines. For the 11th (131C) channel, a pooled
reference containing lysates from LMS, DDLPS, UPS, and SS cases was
used in all MS experiments. Briefly, samples were incubated with
respective TMT labels for 1 h at room temperature, and the reaction
was quenched with 5% hydroxylamine. Labelled peptides were pooled,
dried in a SpeedVac concentrator, and desalted with SepPak C18 Plus
cartridges as before.

High-pH reverse-phase fractionation. All samples were fractionated
offline by Dionex UltiMate3000 HPLC system (Thermo Fisher Scien-
tific, Waltham, MA, USA). Each sample was dissolved in 100 µL of sol-
vent A (0.1% NH4OH in water), sonicated for 5min and centrifuged at
15,000× g for 2min. Supernatantwas loaded onto a 2.1 × 150mm, 5 µm
Waters (Milford, MA, USA) XBridge C18 column (5 µm particles) at a
flowrate of 200 µL/min and peptides were separated using a gradient
of 5–40%of solvent B (0.1%NH4OH in acetonitrile) for 30min followed
by 40–80% of solvent B in 5min and held at 80% for additional 5min.
Overall 90 fractions (30 s per fraction) were collected by an automatic
fraction collector into a 96 well-plate and combined into 10 fractions
with a stepwise concatenation strategy. Pooled fractions were dried in
SpeedVac concentrator.

Liquid chromatography and mass spectrometry. The liquid chro-
matography (LC)/MS analysis was performed on a Dionex Ulti-
Mate3000 HPLC coupled with the Orbitrap Fusion Lumos Mass
Spectrometer (Thermo Scientific, Waltham, MA, USA). Each peptide
fraction was dissolved in 40μL of 0.1% formic acid and 10μL were
loaded to the Acclaim PepMap 100, 100μm×2 cmC18, 5μm, trapping

column (Thermo Fisher Scientific, Waltham, MA, USA) with a flow rate
10μL/min. Peptides were then separated with the EASY-Spray C18
capillary column (75μm×50cm, 2μm) at 45 °C. Mobile phase A was
0.1% formic acid andmobile phase B was 80% acetonitrile, 0.1% formic
acid. The gradient method at a flow rate of 300 nL/min included the
following steps: for 120min gradient from 5 to 38% B, for 10min up to
95% B, for 5min isocratic at 95% B, re-equilibration to 5%B in 5min, for
10min isocratic at 5%B. The precursor ions were selected at 120kmass
resolution, with automatic gain control 4 × 105 and ion trap for 50ms
for collision-induced dissociation (CID) fragmentation with isolation
width 0.7 Th and collision energy at 35% in the top speedmode (3 sec).
Quantification spectra were obtained at the MS3 level with higher-
energy C-trap dissociation (HCD) fragmentation of the top 5 most
abundant CID fragments isolated with Synchronous Precursor Selec-
tion (SPS) with quadrupole isolation width 0.7 Th, collision energy 65%
and 50k resolution. Targeted precursors were dynamically excluded
for further isolation and activation for 45 sec.

MS data processing. The SequestHT search engine in Proteome Dis-
coverer 2.2 or 2.3 (Thermo Scientific, Waltham, MA, USA) was used to
search the raw mass spectra against reviewed UniProt human protein
entries (v2018_07 or later) for protein identification and quantification.
The precursor mass tolerance was set at 20 ppm and the fragment ion
mass tolerance was 0.02Da. Spectra were searched for fully tryptic
peptides with maximum 2missed cleavages. TMT6plex at N-terminus/
lysine and Carbamidomethyl at cysteine were selected as static mod-
ifications. Dynamic modifications were the oxidation of methionine
and deamidation of asparagine/glutamine. Peptide confidence was
estimated with the Percolator node. Peptide false discovery rate (FDR)
was set at 0.01 and validationwasbasedon q-value anddecoydatabase
search. The reporter ion quantifier node included an integration win-
dow tolerance of 15 ppmand an integrationmethodbased on themost
confident centroid peak at the MS3 level. Only unique peptides were
used for quantification, considering protein groups for peptide
uniqueness. Peptides with average reporter signal-to-noise >3 were
used for protein quantification. Proteins with an FDR <0.01 and a
minimum of two peptides were used for downstream analyses.

Proteomic data imputation and normalisation. All data were pro-
cessed using custom R scripts in R v3.5.1 or later. Proteins identified in
<75% of samples were removed, and those remaining were imputed
using the k-nearest neighbour (k-NN) algorithm86. Datawas normalised
andbatch effectswere removed in amulti-stepprocedure. Firstly, each
sample was divided by the corresponding reference sample, data was
then log2 transformed, median-centred across samples, and standar-
dised within samples. For subtype-specific analyses, data were first
filtered for samples of interest, and protein filtering, imputation, and
normalisation were performed as before.

Immunohistochemistry (IHC)
Fourteen tissue microarrays (TMA) containing 63 LMS, 50 UPS and 32
DDLPS with at least 2 replicate cores were used for IHC. Consecutive
4μmTMA sectionswere stained forH&E, CD3, CD4, andCD8using the
DAKO link automated stainer (Agilent, CA, USA). Sections were
deparaffinised by xylene and rehydrated by graded ethanol. Antigen

Fig. 6 | Sarcoma proteomicmodules (SPM) are associatedwith patient survival
outcomes. aCo-expressionheatmapshowing the correlationof protein expression
based on topological overlap matrix (TOM) dissimilarity (1−TOM)7. Cluster den-
drogram height indicates 1−Pearson’s correlation. b Protein co-expression network
comprising 3290 nodes and 168,574 edges. Nodes indicate proteins and are
coloured based on SPM membership. Edges show a correlation between protein
expression, where a thicker line indicates a stronger correlation. Representative
biological features are annotated for each module. c Overview of univariable Cox
regression results for each SPM and local recurrence-free survival (LRFS),

metastasis-free survival (MFS), and overall survival (OS). d Protein–protein inter-
action (PPI) network of SPM 10 comprising 94 nodes and 233 edges. Nodes are
proteins and edges represent the StringDBdatabase score between proteins, where
a thicker line indicates a higher score (range =0.401– 0.999). e Sankey diagram
illustrating the distribution of histological subtype (excluding DES and RT) across
three SPM10 subgroups. Subgroups identified by tertile stratification based on
medianSPM10 expressionacross the full cohort. fKaplan–MeierplotofMFS across
the three SPM 10 subgroups. Hazard ratio (HR), 95% confidence intervals (CI) and p-
value determined by univariable Cox regression.
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retrieval was performed using a DAKO FlexEnvision kit (K8002; Agi-
lent, CA, USA) by either pressure cooking in citrate (pH 6) for 2min
(CD3) or incubating with pH 9 pre-treatment module (PTM) buffer
(Agilent, CA, USA) for 20min at 97 °C (CD4 and CD8). Incubation with
primary antibody (CD3 DAKO M0452 at 1:600 dilution; CD4 DAKO
4B12 at 1:80 dilution; CD8 DAKO C8/144B at 1:100 dilution) was for
60min at room temperature. Secondary antibody staining and visua-
lisation were performed using DAKO FlexEnvision (Mouse) Kit, fol-
lowed by the application of DAB and haematoxylin counterstaining.
H&E slides were assessed to confirm viable tumour content, and CD3/
4/8 + TIL stains were counted under direct brightfield microscopy at
x400 magnification. For cores with section preservation of 50–100%,
cell countswerecorrected to 100%area.Data fromcaseswhere section
preservation was <50%were excluded. Replicate scores were averaged
and then multiplied by 1.274 to produce average CD3+, CD4+ or
CD8+TIL/mm2. Digitalmicroscopy images for all stained TMA sections
were captured at ×40 resolution using Nanozoomer-XR (Hamamatsu
Photonics, Japan).

NanoString gene expression analysis
Tumour total RNAwas extracted using theAll PrepDNA/RNAFFPE kit
(Qiagen, Hilden, Germany) following the vendor’s standard protocol.
mRNA concentrations were measured using Qubit fluorometric
quantitation (Thermo Fisher Scientific, Waltham, MA, USA). RNA
Integrity Number was measured using 2100 Bioanalyzer system
(Agilent, CA, USA). RNA samples were stored at −80 °C until use.
Targeted gene expression profiling was performed using a custom
panel of 21 immune-related genes and 3 housekeeper genes with the
nCounter PlexSet-96 platform (NanoString Technologies, Seattle,
WA, USA). Total RNA of 150–450 ng (variable to account for RNA
degradation) of tumour samples and calibration samples was input
for hybridisation and analysis performed per manufacturer’s
instructions using the nCounter Max system (NanoString Technolo-
gies, Seattle, WA, USA). The expression values of calibration samples
were used to adjust for differences between PlexSet plates (i.e.
technical variance). The calibrated raw expression data were then
normalised using the NanoStringNorm R package by ‘CodeCount’ =
‘geo.mean’, ‘Background’ = ‘mean’, and ‘SampleContent’ = ‘house-
keeping.geo.mean’. Additionally, values < 1 were set to 1, data log2
transformed and gene-level median centring was performed.

Statistical methods
All statistical tests were two-sided and where required, p values were
adjusted to false discovery rate (FDR) using the Benjamini–Hochberg
procedure to account for multiple comparisons87. Where appropriate,
the distribution of the data was assessed using Shapiro–Wilk tests for
normality, and tests not assuming a normal distribution implemented
if p < 0.05. Kruskal–Wallis one-way analysis of variance (ANOVA) tests,
one-way ANOVA tests, Tukey’s honestly significant difference (HSD)
tests, and chi-square tests of independence were implemented. Fur-
ther details of specific statistical tests are listed in figure legends.
Unless otherwise specified, data were analysed using custom R scripts
in R v3.5.1 or later.

Clustering. To visualise the STS proteomic dataset, hierarchical clus-
tering using Pearson correlation distance and dimension reduction by
uniform manifold approximation and projection (UMAP)88 were used.
To identify LMS molecular subtypes, consensus clustering (CC) was
performed by agglomerative hierarchical clustering using Spearman’s
rankwith average linkage (ConsensusClusterPlus R package89). Protein
and item (sample) resampling was set at 80% and CC was run for 1000
iterations for up to 10 clusters (k). Optimal k was determined through
inspection of consensus matrices, the cluster tracking plot, the con-
sensus cumulative distribution function (CDF) plot, the delta (Δ) area
plot, and by calculating silhouette scores. Clusters were confirmed as

statistically significantly different by SigClust with hard thresholding
and 1000 sample simulations (p <0.05)90.

Differential expression analysis. To identify upregulated proteins in
histological subtypeswith n > 20, 2-class unpaired significance analysis
ofmicroarrays (SAM) tests wereperformedusing Student’s t-tests with
an FDR < 1% and fold change ≥1.5 (samr R package, https://cran.r-
project.org/web/packages/samr/samr.pdf).

Overrepresentation analysis (OA), gene set enrichment analysis
(GSEA) and single sample GSEA (ssGSEA). OA and GSEA were per-
formed with ClusterProfiler in R91 using the gene ontology (GO) bio-
logical process (BP) and hallmark gene sets with between 9 and 501
genes92,93. Proteins were ordered by Log2-fold change, and for OAwere
filtered to those identified as uniquely upregulated in histological
subtype by differential expression analysis. ssGSEA was performed
using ssGSEA (v10.0.11) on the GenePattern public server94. Rank nor-
malisation and a weighting exponent of 0.75 were used to assess
enrichment of the hallmark gene sets containing at least 10 genes, and
normalised enrichment scores were z-scored across gene sets. All gene
sets were downloaded from the Molecular Signatures Database v7.5.1
and filtered for proteins within the proteomic dataset.

RPPA analysis. The level 4 (log2 transformed with loading and batch
corrected) RPPA dataset from the TCGA-SARC study was downloaded
from The Cancer Proteome Atlas portal (https://tcpaportal.org/tcpa/)
and clinical data downloaded from the TCGA Pan-cancer Clinical Data
Resource (TCGA-CDR) within the NCI Genomic Data Commons
(https://gdc.cancer.gov/about-data/publications/PanCan-Clinical-
2018). The RPPA dataset was feature level (protein) median centred
across samples and plotted along with the TMT-MS data using box-
and-whisker plots.

Weightedgene correlationnetwork analysis (WGCNA).WGCNAwas
performed using theWGCNA R package46. Normalised proteomic data
was used to construct a co-expression network. Network type was
specified as signed hybrid and constructed with an optimal soft
threshold value (β) of 5, determined by graphical inspection of net-
work scale-free topology and mean connectivity across a range of β
values. Average linkage hierarchical clustering with dynamic cutting
and a deep split of 2 was used to identifymodules of ≥30 proteins, and
1−Pearson correlation cut height ≥0.25.

Protein–protein interaction (PPI) networks. All PPI networks were
built in Cytoscape v3.9.195. To assess the complement and coagulation
cascades, WikiPathway WP558 (63 nodes) was imported, adapted to
include the C5 axis, and layout manually applied. To visualise the SPM
landscape, a protein co-occurrence matrix was used, with co-
occurrence scores between pairs restricted to >0.05 and an edge-
weighted spring-embedded layout used. To inspect individual SPM
networks, the STRING database v11.0 was queried96, a confidence cut-
off score of 0.4 was applied and a circular layout was used.

Survival analyses. The association of biomarker(s) with survival
outcome were evaluated based on Kaplan–Meier survival estimates
and multivariable Cox regression analyses adjusted for standard
clinicopathological variables. Tumour size showed non-linearity in
relation to outcome, therefore the variable was log-transformed and
martingale residuals were used to identify optimal cutpoints for
categorisation. The three survival outcome endpoints (events) are as
follows: (1) local recurrence-free survival (LRFS) defined as the time
from primary disease surgery to radiologically confirmed local
recurrence or death, (2) metastasis-free survival (MFS) defined as the
time from primary disease surgery to radiologically confirmed
metastatic disease or death, (3) overall survival (OS) defined as the
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time from primary disease surgery to death from any cause. Patients
whodo not have events were censored at their last follow-up time, up
to 5 years. The significance of differential survival was evaluated by
Wald tests.

SAM–PAM analysis. Significance analysis of microarrays (SAM) and
prediction analysis of microarrays (PAM) were performed to reduce
the list of proteins for the SPM10 and LMS subgroups. siggenes
(https://www.bioconductor.org/packages/release/bioc/html/siggenes.
html) and pamr (https://tibshirani.su.domains/PAM/Rdist/doc/
readme.html) packages were used for performing SAM and PAM,
respectively. SPM10 consists of 94 proteins expression in a total of
271 samples. LMS consists of a total of 3262 proteins expression in
80 samples. Z-score was applied to protein expression data before
performing SAM. SAM analysis was performedwith high, inter and low
group labels (for the SPM10 dataset) and P1–P3 group labels (for the
LMS dataset). This analysis gave a set of proteins with a set of delta
values for each dataset. PAM analysis with 10-fold cross-validation was
then performed on this protein set. A final protein set for each dataset
was chosen based on minimum overall misclassification error. For
SPM10, the PAM centroids obtained for the selected protein set were
then used to predict high, inter and low subtypes of CPTAC breast
cancer samples19. Survival analysis was also performed on CPTAC
breast cancer samples with the subtypes obtained. Log-rank test p-
value < 0.05 was set as the level of significance.

Comparative analysis of the angiosarcoma cohort. Details of the
comparative transcriptomic and proteomic analysis of the angio-
sarcoma cohort are provided in the Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw proteomic data generated in this study have been deposited
in the ProteomeXchange Consortium via the PRIDE partner
repository97,98 with the dataset identifier PXD036226. The raw tran-
scriptomic data are deposited at the European Genome-phenome
Archive (EGA)99, which is hosted by the EBI and the CRG, under
accession number EGAD00001010839. To protect patient privacy, as
required by law, access to the raw transcriptomic data deposited in
the EGA is controlled by the Data Access Committee (DAC) of the
Institute of Cancer Research. All researchers can obtain access by
submitting a project proposal to the DAC by contacting the corre-
sponding author (P.H.H.). Requests will be handled within ~2 weeks.
The DAC will also determine the length of permitted access. The
clinical data is available under restricted access due to data privacy
legislation, access can be obtained by contacting the corresponding
author (P.H.H.) and will require the researcher to sign a data access
agreement with the Institute of Cancer Research after approval by
the DAC. The DACwill determine the length of permitted access with
an expected response timeframe of ~2 weeks for access requests. The
normalised proteomic dataset and normalised NanoString dataset
are provided in the Supplementary Information. The TCGA SARC
RPPA data is available from The Cancer Proteome Atlas portal
(https://tcpaportal.org/tcpa/) and clinical data are available from the
TCGA Pan-cancer Clinical Data Resource (TCGA-CDR) within the NCI
Genomic Data Commons (https://gdc.cancer.gov/about-data/
publications/PanCan-Clinical-2018). The raw mass spectra were
searched against UniProt human protein entries (v2018_07 or later)
for protein identification and quantification (https://www.uniprot.
org/proteomes/UP000005640). Source data are provided with
this paper.
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