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Abstract 

Background Characterization of clinical phenotypes in context with tumor and host genomic information can aid 
in the development of more effective and less toxic risk-adapted and targeted treatment strategies. To analyze the 
impact of therapy-related hyperbilirubinemia on treatment outcome and to identify contributing genetic risk fac-
tors of this well-recognized adverse effect we evaluated serum bilirubin levels in 1547 pediatric patients with acute 
lymphoblastic leukemia (ALL) and conducted a genome-wide association study (GWAS).

Patients and methods Patients were treated in multicenter trial AIEOP-BFM ALL 2000 for pediatric ALL. Bilirubin tox-
icity was graded 0 to 4 according to the Common Toxicity Criteria (CTC) of the National Cancer Institute. In the GWAS 
discovery cohort, including 650 of the 1547 individuals, genotype frequencies of 745,895 single nucleotide variants 
were compared between 435 patients with hyperbilirubinemia (CTC grades 1-4) during induction/consolidation treat-
ment and 215 patients without it (grade 0). Replication analyses included 224 patients from the same trial.

Results Compared to patients with no (grade 0) or moderate hyperbilirubinemia (grades 1-2) during induction/con-
solidation, patients with grades 3-4 had a poorer 5-year event free survival (76.6 ± 3% versus 87.7 ± 1% for grades 1-2, 
P = 0.003; 85.2 ± 2% for grade 0, P < 0.001) and a higher cumulative incidence of relapse (15.6 ± 3% versus 9.0 ± 1% 
for grades 1-2, P = 0.08; 11.1 ± 1% for grade 0, P = 0.007). GWAS identified a strong association of the rs6744284 
variant T allele in the UGT1A gene cluster with risk of hyperbilirubinemia (allelic odds ratio (OR) = 2.1, P = 7 ×  10− 8). 
TT-homozygotes had a 6.5-fold increased risk of hyperbilirubinemia (grades 1-4; 95% confidence interval (CI) = 2.9-
14.6, P = 7 ×  10− 6) and a 16.4-fold higher risk of grade 3-4 hyperbilirubinemia (95% CI 6.1-43.8, P = 2 ×  10− 8). Replica-
tion analyses confirmed these associations with joint analysis yielding genome-wide significance (allelic OR = 2.1, 
P = 6 ×  10− 11; 95% CI 1.7-2.7). Moreover, rs6744284 genotypes were strongly linked to the Gilbert’s syndrome-
associated UGT1A1*28/*37 allele  (r2 = 0.70), providing functional support for study findings. Of clinical importance, 
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the rs6744284 TT genotype counterbalanced the adverse prognostic impact of high hyperbilirubinemia on therapy 
outcome.

Conclusions Chemotherapy-related hyperbilirubinemia is a prognostic factor for treatment outcome in pediatric ALL 
and genetic variation in UGT1A aids in predicting the clinical impact of hyperbilirubinemia.

Trial registration http:// www. clini caltr ials. gov; #NCT00430118.

Keywords Childhood acute lymphoblastic leukemia, Treatment-related toxicity, Hepatotoxicity, Hyperbilirubinemia, 
UGT1A

Background
The systematic evaluation of tumor and host genomic 
information can help to identify new predictive markers 
and cancer vulnerabilities and lead to novel effective and 
less toxic risk-adapted and targeted treatment strategies 
[1]. During the last five decades, treatment of pediatric 
patients with acute lymphoblastic leukemia (ALL) has 
significantly improved and is one of the success stories 
in clinical oncology [2]. However, although most chil-
dren diagnosed with ALL can be cured by contemporary 
clinical protocols [2, 3], benefits in survival come with 
acute and long-term adverse effects. This may complicate 
administration of therapy or impact on health and qual-
ity of life during and after completion of treatment [2, 3]. 
Thus, there is continuing medical need to improve risk 
assessment and tailored treatment for children and ado-
lescents with ALL.

Hepatotoxicity, mainly captured in clinical trials by 
assessment of hyperbilirubinemia and transaminasemia, 
is a well-known complication frequently occurring in 
the early phases of ALL treatment [4, 5]. Surprisingly, 
detailed reports describing incidence and impact of 
hepatotoxicity on the overall outcome of pediatric ALL 
are lacking. A recent study including 1872 pediatric ALL 
patients treated according to the ALL IC-BFM 2002 pro-
tocol reported 934 grade 3 or above events of hepatotox-
icity according to the National Cancer Institute (NCI) 
Common Toxicity Criteria (CTC; for details see Suppl. 
Methods section) [6] in 527 individuals (28%) during 
the entire therapy [5]. A previous single institution study 
reported that event-free survival (EFS) was rarely influ-
enced by hyperbilirubinemia, whereas treatment modifi-
cations including delays were common [4]. Overall, 17% 
of patients in the latter study had bilirubin levels equal or 
above CTC grade 3 at least once in the course of therapy 
[4]. Another study determined such high levels in 10, 2 
and 15% of patients during induction, consolidation and 
maintenance phases, respectively [7].

High total serum bilirubin levels – with or with-
out transaminasemia – may indicate liver dysfunction 
upon exposure to various antileukemic drugs including 
L-asparaginase or antimetabolites [8–10]. However, in 
this context the biological basis of hyperbilirubinemia 

is poorly understood. In the last decade, genome-wide 
association studies (GWAS) enabled a refined risk 
assessment of many diseases – including pediatric 
ALL – by identifying risk-associated genetic variants 
[11–13].

In the present study, we evaluated the clinical impact 
of hyperbilirubinemia in a large cohort of pediatric 
ALL patients and applied a GWAS approach to iden-
tify genetic variants influencing chemotherapy-related 
hyperbilirubinemia.

Methods
Study individuals
Patients included were 1 to 18 years of age at diagnosis 
of ALL and enrolled in the German part of the Euro-
pean AIEOP-BFM ALL 2000 multicenter clinical trial for 
frontline treatment of pediatric ALL from August 1999 to 
November 2005 [14–16] (for treatment details see Suppl. 
Table 1). Primary patient selection criteria were the avail-
ability of bilirubin toxicity gradings for induction or con-
solidation – protocols IA/IB – and, for the assembly of 
our GWAS discovery cohort, the availability of genome-
wide germline genotyping information (Suppl. Fig.  1) 
obtained during a previous project [13]. When available, 
we also assessed bilirubin gradings related to subsequent 
treatment phases (extracompartment therapy, high-risk 
block treatment, and re-intensification protocols II and 
III). No information was available for maintenance treat-
ment. For further details including statistical analyses, 
see Suppl. Methods section.

Toxicity definitions
As part of the routine safety management, toxicity was 
assessed for all treatment elements except for interim 
maintenance and maintenance phases. Considering 
17.1 μmol/L as the upper normal limit (UNL), total bili-
rubin serum levels were graded according to the CTC 
of the NCI, version 2 [6] (for details see Suppl. Methods 
section).

https://www.clinicaltrials.gov/
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Genotyping
In the discovery cohort, DNA obtained from bone mar-
row samples in morphological remission was geno-
typed on Human Omni1-Quad v1 arrays (Illumina, San 
Diego, CA, USA) as previously described [13]. Geno-
type information on rs6744284 for replication purposes 
was derived from a preceding analysis using Affymetrix 
Genome-wide Human SNP arrays 5.0 (Affymetrix, South 
San Francisco, CA, USA) [17].

Out of the discovery cohort, we genotyped 544 patients 
with additional DNA available for UGT1A1*28/*37 varia-
tions using a pre-developed KASP assay (LGC Biosearch 
Technologies, Hoddesdon, UK).

Genome‑wide association study
GWAS conduction, including data pruning, association test-
ing with plink 1.9 (www. cog- genom ics. org/ plink/1. 9/), evalu-
ation and plotting, was realized with an in-house developed 
R (3.6.0) script using RStudio (1.0.143). A strict quality con-
trol was performed prior to association testing. For details on 
data pruning, association testing, genotype imputation and 
further statistical analyses see Suppl. Methods section.

Results
Clinical characterization of hyperbilirubinemia
Within the 1547 patients of the AIEOP ALL-BFM 
2000 study population with available toxicity infor-
mation, 540 (34.9%) had normal and 1007 (65.1%) had 
increased bilirubin levels during induction/consoli-
dation (protocols IA/IB) (Table  1). This included 825 
(53.3%) patients with moderate hyperbilirubinemia 
(grades 1-2; 707 during induction, 575 during consoli-
dation, 355 in both phases) and 182 (11.8%) with high 
hyperbilirubinemia (grades 3-4; 158 reports during 
induction, 50 during consolidation, 26 in both phases). 
Comparing patients without to patients with hyperbili-
rubinemia (grade 0 vs. grades 1-4), we noticed a larger 
proportion of older patients (P < 0.001) and more T 
cell ALL patients (P = 0.022) among those affected. 
The group of B cell ALL patients exhibiting hyper-
bilirubinemia contained fewer hyperdiploid patients 
(P = 0.002). However, no differences with regard 
to other genetic subgroups were observed (ETV6-
RUNX1, BCR-ABL1 and KMT2A-AFF1) (Table  1). 
Considering the entire course of therapy, 245 patients 
(16.0%) had high hyperbilirubinemia in at least one 
treatment element. We determined a median time to 
protocol day 78 (after completion of induction and 
consolidation) of 89 ± 11 days (range 64-185 days), ana-
lyzing 1453 of 1547 individuals of our study popula-
tion with available information. Compared to patients 
with moderate or no hyperbilirubinemia, patients 

with hyperbilirubinemia grades 3-4 experienced more 
therapy delays, requiring 91 days (range 64-174 days) 
to complete induction/consolidation vs. 88 days 
(range 70-154 days) for grades 1-2 and 89 days (range 
70-185 days) for grade 0 (P = 0.002). No alterations of 
therapy in response to hyperbilirubinemia were noted.

In outcome analyses, patients with high hyperbiliru-
binemia (grades 3-4) during induction/consolidation 
fared significantly worse compared to patients with mod-
erate or no hyperbilirubinemia: 5-year EFS 76.7 ± 3% vs. 
87.7 ± 1% (P < 0.0001), and vs. 85.2 ± 2% (P = 0.0031), 
respectively (Fig. 1A). The corresponding 5-year cumula-
tive incidences of relapse (CIR) were 15.6 ± 3% for high, 
9.0 ± 1% for moderate hyperbilirubinemia, and 11.1 ± 1% 
for patients without hyperbilirubinemia (Fig. 1B).

In our study cohort, 1443 (93%) patients were observed 
with elevated hepatic transaminase activity levels (grades 
1-4) during induction/consolidation (Table  1), 765 of 
which demonstrated grades 3-4. Transaminase lev-
els were positively correlated with hyperbilirubinemia 
and, in particular, patients with high hyperbilirubine-
mia were at risk for concurrent high transaminase levels 
(grades 3-4) compared to the remaining patients (70% 
vs. 40%, odds ratio (OR) = 21.3, 95% confidence interval 
(CI) = 5.1-88.2, P = 2.53 ×  10− 5) (Suppl. Table 2).

Interestingly, 5-year EFS and CIR did not differ between 
patients with moderate (grades 1-2), high (grades 3-4) or 
absent transaminasemia during induction/consolidation 
(Suppl. Fig.  2A and B). The 5-year EFS of patients with 
concurrent high hyperbilirubinemia and high transami-
nasemia was 76.2 ± 4% and 78.1 ± 6% in patients with 
high hyperbilirubinemia accompanied by moderate or no 
transaminasemia (grades 0-2, P = 0.63; Suppl. Fig.  2C). 
The corresponding CIR were 17.5 ± 3% and 11.0 ± 4% 
(P = 0.13; Suppl. Fig. 2D).

Multivariate analyses including established prognostic 
factors in AIEOP-BFM trials identified high hyperbiliru-
binemia as an independent predictor of outcome, while 
severe transaminasemia (CTC grade 4) did not demon-
strate an impact here (Table 2).

Characteristics of the GWAS discovery cohort
The finally pruned GWAS discovery cohort included 650 
of 1547 patients with available genome-wide genotyp-
ing information (Suppl. Table  3). Both the distribution 
of hyperbilirubinemia and the clinical characteristics 
were comparable to those of the entire study population 
(Table 1 and Suppl. Tables 3 and 4).

Of the 650 patients in this discovery cohort, 215 
(33%) patients had normal and 435 (67%) had increased 
bilirubin levels during induction/consolidation: 367 
(56.5%) patients demonstrated moderate hyperbiliru-
binemia (grades 1-2; 313 during induction, 248 during 

http://www.cog-genomics.org/plink/1.9/
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Table 1 Characteristics of 1547 patients according to serum bilirubin levels during induction/consolidation therapy for acute 
lymphoblastic leukemia

Patients without 
hyperbilirubinemia

Patients with 
hyperbilirubinemia

Pa

(n = 540) (%) (n = 1007) (%)

Sex Male 300 (56%) 561 (56%)

Female 240 (44%) 446 (44%) 0.954

Age at diagnosis of ALL [y] < 6 372 (69%) 483 (48%)

≥6 < 10 93 (17%) 205 (20%)

≥10 75 (14%) 319 (32%) < 0.001

Immunophenotype B cell ALL 461 (85%) 833 (83%)

T cell ALL 55 (10%) 146 (14%) 0.022

Other/not  characterizedb 24 (4%) 28 (3%)

White blood cell count at diagnosis of ALL [/μL] < 10,000 261 (48%) 488 (48%)

≥10,000 < 50,000 187 (35%) 323 (32%)

≥50,000 < 100,000 52 (10%) 95 (9%)

≥100,000 40 (7%) 100 (10%) 0.364

Unknown 0 (0%) 1 (0%)

CNS  positivityc No 508 (94%) 932 (93%)

Yes 13 (2%) 33 (3%) 0.326

Unknown 19 (4%) 42 (4%)

Hyperdiploidyd No 303 (56%) 627 (62%)

Yes 105 (19%) 138 (14%) 0.002

Unknown 132 (24%) 242 (24%)

ETV6-RUNX1 rearrangement Negative 380 (70%) 688 (68%)

Positive 120 (22%) 231 (23%) 0.636

Unknown 40 (7%) 88 (9%)

BCR-ABL1 rearrangement Positive 8 (1%) 20 (2%)

Negative 500 (93%) 941 (93%) 0.500

Unknown 32 (6%) 46 (5%)

KMT2A-AFF1 rearrangement Positive 2 (0%) 4 (0%)

Negative 471 (87%) 890 (88%) 0.948

Unknown 67 (12%) 113 (11%)

Prednisone  responsee Good 492 (91%) 898 (89%)

Poor 40 (7%) 96 (10%) 0.162

Unknown 8 (1%) 13 (1%)

MRD risk  groupf Standard 223 (41%) 428 (43%)

Intermediate 251 (46%) 432 (43%)

High 32 (6%) 72 (7%) 0.393

Unknown 34 (6%) 75 (7%)

Final risk  groupg Standard 167 (31%) 318 (32%)

Intermediate 303 (56%) 532 (53%)

High 69 (13%) 156 (15%) 0.282

Other/Unknown 1 (0%) 1 (0%)

Maximum transaminase levels during protocols IA/IBh CTC grade 0 71 (13%) 25 (2%)

CTC grades 1-2 249 (46%) 429 (43%)

CTC grades 3-4 212 (39%) 553 (55%) < 0.001

Unknown 8 (1%) 0 (0%)
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consolidation, 159 in both phases) and 68 (10.5%) had 
high hyperbilirubinemia (grades 3-4; 59 reports during 
induction, 21 during consolidation, 12 in both phases). 
Pre-treatment hyperbilirubinemia at diagnosis was rare, 
but more frequent among patients developing chemo-
therapy-related hyperbilirubinemia during induction/
consolidation compared to those not (7.5% (19/252) vs. 
1.7% (2/116), P = 0.025). Considering the entire course of 
therapy, 91 patients (14.0%) had high hyperbilirubinemia 
in at least one treatment element.

Genome‑wide association study
When comparing the 435 patients with hyperbiliru-
binemia (grades 1-4) during induction/consolidation 
to the 215 patients with normal bilirubin levels, the 
five loci most associated with this phenotype were the 
UGT1A gene cluster, MARK2P5, SULF2, MIR924HG 

and USH2A (Suppl. Table 5). The strongest associations 
were observed for variants residing in the UGT1A (UDP 
glucuronosyltransferase family 1 member A) locus at 
2q37. The only variant reaching near genome-wide sig-
nificance (OR = 2.1, 95% CI = 1.6-2.7, P = 7.3 ×  10− 8), 
rs6744284 was also the index SNV of a 189 kb region 
of high linkage disequilibrium (LD). Information on the 
complex UGT1A cluster with its overlapping genes and 
results of imputation are presented in supplementary 
material (Suppl. Fig. 3, Suppl. Tables 6 and 7).

To examine whether inclusion of age and immu-
nophenotype would influence allelic association, we 
compared results from crude and adjusted logistic 
regression analyses. We did not detect any differences 
in conferred risk for the variant rs6744284 T allele with 
reference to the wild-type C allele (unadjusted allelic 
OR = 2.1, 95% CI = 1.6-2.7, P = 1.8 ×  10− 7; adjusted 

Abbreviations: CNS central nervous system, CTC  Common Toxicity Criteria of the National Cancer Institute version 2, UNL Upper normal limit
a P-values resulting from X2 or Fisher’s exact test: Patients of the study cohort with hyperbilirubinemia, i.e. bilirubin levels > 17.1 μmol/L (UNL) during induction and/or 
consolidation (protocols IA/IB) of the AIEOP-BFM ALL protocol (CTC grades 1-4, cases) versus patients with normal levels ≤17.1 μmol/L (CTC grade 0, controls)
b  One patient was diagnosed with acute undifferentiated leukemia and no immunophenotype information was available for 51 patients
c  CNS negative, puncture nontraumatic without leukemic blasts in the cerebrospinal fluid (CSF) after cytocentrifugation; CNS positive, puncture nontraumatic with > 5 
leukocytes /μL in the CSF with identifiable blasts
d  Defined by cytogenetics (> 50 chromosomes) or by flow cytometric analyses of the ratio of DNA content of leukemic G0/G1 cells to normal diploid lymphocytes 
(≥1.16)
e  Good < 1000 leukemic blasts/μL peripheral blood on treatment day 8; poor ≥1000 blasts/μL
f  Risk stratification based on minimal residual disease (MRD) analysis for ERG: Standard risk, MRD-negative on treatment day 33 and 78; high risk, leukemic cell load 
≥5 ×  10−4 on treatment day 78; all other results correspond to intermediate risk
g  Treatment group according to risk stratification including all relevant diagnostic parameters
h  Toxicity grading of the alanine and aspartate transaminase serum activity levels during induction/consolidation (protocols IA/IB) was according to CTC, considering 
20 U/L as the UNL
i  Bilirubin toxicity grading during induction/consolidation (protocols IA/IB) was according to the CTC, with grade 0 corresponding to total serum levels ≤UNL, grade 1 
to levels >UNL to 1.5xUNL, grade 2 levels > 1.5x UNL to 3.0x UNL, grade 3 levels > 3.0x UNL to 10.0x UNL and grade 4 to levels > 10.0x UNL
j  The highest individual bilirubin toxicity level throughout the entire treatment course under investigation (compare Suppl. Fig. 4). Toxicity grading was as above (CTC)

Table 1 (continued)

Patients without 
hyperbilirubinemia

Patients with 
hyperbilirubinemia

Pa

(n = 540) (%) (n = 1007) (%)

Maximum bilirubin levels during protocol  IAi CTC grade 0 499 (92%) 121 (12%)

CTC grades 1-2 0 (0%) 707 (70%)

CTC grades 3-4 0 (0%) 158 (16%) < 0.001

Unknown 41 (8%) 21 (2%)

Maximum bilirubin levels during protocol  IBi CTC grade 0 501 (93%) 342 (34%)

CTC grades 1-2 0 (0%) 575 (57%)

CTC grades 3-4 0 (0%) 50 (5%) < 0.001

Unknown 39 (7%) 40 (4%)

Maximum bilirubin levels during protocol IA/IBi CTC grade 0 540 (100%) 0 (0%)

CTC grades 1-2 0 (0%) 825 (82%)

CTC grades 3-4 0 (0%) 182 (18%) < 0.001

Maximum bilirubin levels during the entire course of  therapyj CTC grade 0 412 (76%) 0 (0%)

CTC grades 1-2 123 (23%) 767 (76%)

CTC grades 3-4 5 (1%) 240 (24%) < 0.001
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OR = 2.1, 95% CI = 1.6-2.8, P = 1.2 ×  10− 7) (Suppl. 
Table 5).

The genotypic association of rs6744284 with fre-
quency and risk of hyperbilirubinemia during induc-
tion/consolidation increased stepwise (Table  3). 
Compared to wild-type patients (CC; 58% with hyper-
bilirubinemia grades 1-4), heterozygotes (TC; 71% with 
hyperbilirubinemia grades 1-4) demonstrated a 1.7-fold 

higher risk of hyperbilirubinemia, while homozygo-
sity for the T allele (TT; 90% with hyperbilirubinemia 
grades 1-4) conferred an OR of 6.5 (95% CI = 2.9-14.6, 
P = 7.0 ×  10− 6) (Fig.  2A and Table  3). Inclusion of age 
and immunophenotype as covariates or as stratifying 
variables did not significantly alter these results (Suppl. 
Tables  7, 8 and 9). Notably, TT-homozygotes were at 
particular risk of developing high hyperbilirubinemia 

Fig. 1 A Probability of 5 year event free survival (EFS) [%] and (B) corresponding cumulative incidence of relapse (CIR) according to the maximum 
total bilirubin toxicity during induction/consolidation – protocols IA/IB –in the in the AIEOP ALL-BFM 2000 study population with available bilirubin 
information (n = 1547 patients). Bilirubin toxicity grading was according to the Common Toxicity Criteria (CTC) of the National Cancer Institute, 
version 2; standard error (SE) and the number of included individuals are indicated for each category

Table 2 Estimated hazard  ratiosa from the multivariable Cox proportional model on event-free survival and hazard of relapse in 
patients of the study cohort

a  Hazard ratios (HR) are given as indicated with the corresponding 95% confidence intervals (95% CI), all patients of the study cohort with complete information were 
included in this analyses (n = 1518 of 1547)
b  HR compared patients with high bilirubin serum levels ≥ grade 3 of the Common Toxicity Criteria of the National Cancer Institute version 2 (CTC) with patients 
presenting normal levels or moderate levels
c  HR compared patients with severe alanine (ALT) or aspartate (AST) transaminase activity levels ≥ CTC grade 4 with patients presenting normal or moderately 
elevated levels
d  Minimal residual disease (MRD) standard risk, negative on treatment days 33 and 78; MRD high risk, leukemic cell load ≥5 × 10-4 on treatment day 78; all other 
results MRD intermediate risk. HR compared with the other respective MRD groups
e  MRD ≥5 × 10-4 on treatment day 33 and positivity of < 5 × 10-4 on treatment day 78. HR compared with MRD intermediate-risk patients with no slow early response
f  Leukemic blasts ≥1000/μL in the peripheral blood on treatment day 8. HR compared with patients with ≥1000/μL leukemic blasts
g  HR compared patients with a white blood cell (WBC) count at diagnosis ≥100,000 /μL with patients presenting WBC counts < 100,000 /μL

Variable Event Relapse

Hazard Ratio (95%  CIa) P(X2) Hazard Ratio (95%  CIa) P(X2)

Bilirubin CTC grades 3-4b 1.67 (1.21-2.30) 0.002 1.49 (1.00-2.21) 0.049

ALT/AST CTC grade  4c 0.88 (0.56-1.38) 0.575 1.02 (0.61-1.69) 0.955

MRD standard  riskd 0.49 (0.34-0.69) < 0.001 0.51 (0.34-0.77) 0.001

MRD high  riskd 4.07 (2.87-5.78) < 0.001 4.17 (2.72-6.38) < 0.001

Slow early  responsee 3.32 (2.19-5.03) < 0.001 4.21 (2.66-6.66) < 0.001

Poor prednisone  responsef 1.12 (0.77-1.64) 0.556 0.91 (0.57-1.45) 0.686

Initial WBC count ≥100,000g 1.39 (0.96-2.02) 0.078 1.50 (0.96-2.32) 0.074
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(grades 3-4, OR with reference to CC genotype 16.4, 
95% CI = 6.1-43.8, P = 2 ×  10− 8).

Independent replication analysis
We performed independent replication analyses in 
a cohort of 224 ETV6-RUNX1-rearranged pediatric 
ALL patients (Suppl. Table  10), results of which sup-
ported our initial GWAS findings. The allelic OR for 
hyperbilirubinemia (grades 1-4) during induction/con-
solidation conferred by the variant rs6744284 T allele 
versus the wild-type C allele was 2.3 (95% CI = 1.5-
3.7, P = 2.4 ×  10− 4). Genotypic OR in comparison to 

wild-type patients (CC) were 2.4 (95% CI = 1.3-4.3, 
P = 3.8 ×  10− 3) for heterozygotes (TC) and 6.1 (95% 
CI = 1.7-21.6, P = 5.6 ×  10− 3) for homozygous vari-
ant patients (TT) (Table  3). Similar to our findings in 
the GWAS discovery cohort, patients possessing the 
rs6744284 TT genotype were at particular risk of high 
hyperbilirubinemia (OR with reference to CC genotype 
13.6, 95% CI = 2.6-71.8, P = 0.002).

Association testing in the combined discovery and 
replication cohorts resulted in genome-wide signifi-
cance. Compared to the rs6744284 wild-type allele, 
presence of the T allele was associated with an OR of 
2.1 (CI = 1.7-2.7) for hyperbilirubinemia (grades 1-4) 

Fig. 2 Frequency of rs6744284 genotype by bilirubin toxicity grading in induction/consolidation (protocols IA/IB) treatment according to the 
Common Toxicity Criteria of the National Cancer Institute, version 2 (CTC) (A), and by UGT1A1*28/*37 genotype (B). The number of patients (n) 
for each rs6744284 genotype is given above the columns. A analysis based on 650 patients of the discovery cohort; (B) based on a subset of 544 
patients subsequently genotyped for UGT1A1*28/*37 depending on availability of DNA
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during induction/consolidation at a significance level of 
P = 5.7 ×  10− 11.

UGT1A rs6744284 genotype in subsequent treatment 
elements
Similar to initial findings, we observed that the rs6744284 
TT genotype was also strongly associated with hyperbili-
rubinemia during extracompartment therapy (Protocol 
M, OR = 4.1, 95% CI = 2.2-7.9; P < 0.001), re-intensifica-
tion (Protocols II and III, OR = 9.1, 95% CI = 4.5-18.6, 
P < 0.001) and high-risk (HR) block elements (OR = 15.3, 
95% CI = 1.8-126.6; P = 0.012) (Table  3, Suppl. Fig.  4). 
Thus, the effect of rs6744284 on risk of hyperbilirubine-
mia was not limited to early chemotherapy, but was gen-
eralizable to all intensive treatment phases for pediatric 
ALL.

UGT1A rs6744284 and Gilbert’s syndrome‑associated 
variants
The UGT1A enzyme family is crucial for bilirubin glu-
curonidation and related impairing genetic alterations 
form the mechanistic basis of the Gilbert’s syndrome (GS) 
[18–20]. Therefore, we genotyped the GS-related func-
tional genetic variations UGT1A1*28 and *37 [21, 22] 
in 544 (84%) patients of our discovery cohort with avail-
able remission DNA (Suppl. Table  11). Comparable to 
rs6744284, we observed a strong association with hyper-
bilirubinemia: the allelic OR for *28/*37 vs. wild-type (*1) 
was 1.9 (95% CI = 1.4-2.5, P = 5.0 ×  10− 6). Genotype-based 
analyses demonstrated a stepwise increase of frequency 
and risk of hyperbilirubinemia for the variant alleles. Out 
of 544 patients 62 (11%) were homozygous for either 
UGT1A1*28/*28 or *37/*37 – this cannot be differentiated 
by our assay – and had the highest rate and risk of hyperbil-
irubinemia (89% compared to 58% for *1/*1; OR in compar-
ison to *1/*1 5.8; 95% CI = 2.5-13.3; P = 3.3 ×  10− 5) (Suppl. 
Table 12). Homozygous variant patients were at particular 
risk of developing high hyperbilirubinemia (grades 3-4, 
OR = 12.4, 95% CI = 4.4-34.8, P = 1.9 ×  10− 6). The strong 
interrelationship of rs6744284 with UGT1A1*28/*37 is 
depicted in Fig. 2B. Extended haplotype analyses including 
eight additional GS-related variants further documented a 
strong association with rs6744284 (see Suppl. Table 13 and 
related additional information). Of note, none of the GS-
related variants showed a stronger association with hyper-
bilirubinemia than rs6744284.

Hyperbilirubinemia, transaminase levels, rs6744284 
genotype, treatment delay and outcome in the GWAS 
discovery cohort (n = 650)
Similar to the patients of the entire study population 
(n = 1547), patients in our discovery cohort with high 
hyperbilirubinemia during induction/consolidation tended 

to take 2 days longer to complete consolidation (P = 0.072) 
(for details see Suppl. Information, page 25). Of inter-
est, we did not observe significant differences between 
rs6744284 genotypes: 88 days for TT vs. 89 days for CT 
and 90 days for CC (P = 0.122).

Consistent with the results obtained for the entire study 
cohort, outcome analyses of the discovery cohort showed 
that high hyperbilirubinemia during induction/consolida-
tion was associated with a poor 5-year EFS of 71.8 ± 5%, 
compared to 87.4 ± 2% and 81.7 ± 3% in patients with 
moderate and without hyperbilirubinemia, respectively 
(Fig. 3A). The corresponding 5-year CIR were 19.3 ± 5% 
for high hyperbilirubinemia, 10.7 ± 2% for moderate, and 
13.2 ± 2% for no hyperbilirubinemia (Fig. 4A). Although 
rs6744284 was strongly associated with high hyperbili-
rubinemia and the proportion of patients with TT geno-
type among those with high hyperbilirubinemia was 28% 
(19/68), there were no differences between rs6744284 
genotypes related to EFS or CIR (Figs. 3B and 4B) in the 
discovery cohort. However, within high hyperbilirubine-
mic patients those carrying the TT genotype had a better 
EFS (84.2 ± 8% vs 66.9 ± 7%, P = 0.110) and a lower CIR 
(5.3 ± 5% vs 24.9 ± 6%, P = 0.039) at 5 years compared to 
the remaining genotypes (TC, CC) (Figs. 3D and 4D).

In the GWAS discovery cohort 604 (93%) patients 
were observed with elevated hepatic transaminase lev-
els (grades 1-4) during induction/consolidation (Suppl. 
Table  3), 315 of which demonstrated high grades 3-4. 
Similar to the results obtained for the 1443 patients 
in the entire study cohort with available information, 
transaminase levels were positively associated with 
hyperbilirubinemia. Especially patients with high hyper-
bilirubinemia were at increased risk for concurrent high 
transaminase levels compared to the remaining patients 
(75% vs. 41%, OR = 16.8, 95% CI = 2.2-127.1, P = 0.006) 
(Suppl. Table  14). Of importance, transaminasemia was 
not associated with rs6744284 genotype (P = 0.74). Five-
year EFS and CIR did not differ between patients with 
no (grade 0), moderate (grades 1-2) or high (grades 3-4) 
transaminasemia during induction/consolidation (Suppl. 
Fig. 5A and B).

Patients with high hyperbilirubinemia and concurrent 
high transaminasemia tended to have a higher 5-year 
EFS of 74.3 ± 6% compared to 64.7 ± 12% in patients with 
high hyperbilirubinemia accompanied by moderate or no 
transaminasemia (grades 0-2, P = 0.480; Suppl. Fig.  5C). 
Corresponding CIR were 21.8 ± 6% and 11.8 ± 8% 
(P = 0.260, Suppl. Fig. 5D).

Multivariate analyses including established prognostic 
factors in AIEOP-BFM trials identified high hyperbiliru-
binemia as an independent predictor of outcome, while 
rs6744284 TT genotype demonstrated only a tentative 
protective effect in these analyses (Table 4). However, in 
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multivariate analysis restricted to patients with prognos-
tically unfavorable high hyperbilirubinemia in induction/
consolidation, the rs6744284 TT genotype was associ-
ated with a statistically significant 14-fold lower relapse-
risk compared to rs6744284 wild-type or heterozygous 
variant patients (CC or TC) (Suppl. Table 15).

Discussion
Routine hepatotoxicity monitoring in clinical trials for 
pediatric ALL is typically performed by grading of ele-
vated bilirubin and liver transaminase levels as absent, 
mild, moderate, severe or life-threatening/fatal accord-
ing to the NCI CTC criteria. Although the evaluation 
of laboratory values for hepatotoxicity is common prac-
tice, it can be debated how precise such measurements 
reflect liver dysfunction. To enhance the phenotypic 
characterization in context with abnormal laboratory 

values, alternative classifications integrate additional 
clinical information (e.g., coagulopathy, impairment of 
liver function-dependent organs) [23]. Similarly, genetic 
biomarkers hold the potential to aid strategies directed 
at improved evaluation of hepatotoxicity. Nonetheless, 
only a few are currently used in clinical routine to guide 
a genotype-adapted dosing of specific chemotherapeutic 
agents and thereby reduce adverse reactions (e.g., TPMT 
with thiopurines [24], UGT1A1 with irinotecan [25, 26]). 
In the present study, we applied an unbiased genome-
wide approach and identified genetic variation in the 
UGT1A gene cluster as a major contributor to hyperbili-
rubinemia associated with chemotherapy for pediatric 
ALL.

Genetic variation in UGT1A is well-established to 
affect enzymatic glucuronidation activity and to modu-
late the metabolism of endogenous metabolites as well 

Fig. 3 Event-free survival (EFS) at 5 years in ALL patients from the discovery cohort according to (A) maximum total bilirubin toxicity grade during 
induction/consolidation (protocols IA/IB); (B) rs6744284 genotype (CC, TC, TT); and (C) homozygosity for the UGT1A1*28 or *37 allele. D illustrates 
the EFS by rs6744284 genotype (CC/TC and TT) restricted to patients with high bilirubinemia (n = 68; grades 3 and 4). Bilirubin toxicity grading 
was according to the Common Toxicity Criteria (CTC) of the National Cancer Institute, version 2; standard error (SE) and the number of included 
individuals are indicated for each category
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as multiple xenobiotics [27–35]. Out of nine functional 
isoforms, only UGT1A1 is relevant for bilirubin glucu-
ronidation [31, 36]. Various functional UGT1A1 vari-
ants result in partial or complete reduction of enzymatic 
activity and determine the phenotype of heritable dis-
eases of bilirubin metabolism [31, 36, 37]. The most com-
mon genetic cause for reduced bilirubin conjugation is 
an insertion polymorphism in the TATA box of UGT1A1 
– the (TA)7 variant allele UGT1A1*28; homozygosity for 
this allele confers a reduced transcriptional activity of 18 
to 33% [22, 38], corresponding to the residual glucuroni-
dation activity of ~ 30% determined in patients with Gil-
bert’s syndrome (GS) [39, 40]. While other associated risk 
alleles have been described, e.g. UGT1A1*6 (rs4148323) 
in Asian populations [41], UGT1A1*28 is by far the 
most common cause for the Gilbert’s syndrome in Cau-
casians and African Americans [22, 37]. Our lead SNV, 

rs6744284, was closely correlated to all GS-related vari-
ants assessable in our investigational setting – including 
UGT1A1*28 – and was the best predictor of hyperbili-
rubinemia in our patients. These findings are concord-
ant with reports on multi-SNV haplotypes of UGT1A 
involved in impaired glucuronidation associated with GS 
[20, 42] and support a potential diagnostic role for the 
simple assessment of rs6744284.

With relevance to cancer treatment, UGT1A1*28 or 
UGT1A1*6 homozygotes are low metabolizers of irinote-
can and have an increased risk of severe neutropenia, 
requiring preventive dose adjustments [25, 43]. Likewise, 
UGT1A*28 homozygotes are recommended to receive 
reduced doses of belinostat [44, 45]. The UGT1A1 geno-
type also influences the pharmacokinetics of other glu-
curonidation-dependent drugs – including several ones 
used in ALL treatment (e.g., methotrexate, etoposide, and 

Fig. 4 Cumulative incidence of relapse (CIR) at 5 years in ALL patients from the discovery cohort according to (A) maximum total bilirubin toxicity 
grade during induction/consolidation (protocols IA/IB); (B) rs6744284 genotype (CC, TC, TT); and (C) homozygosity for the UGT1A1*28 or *37 allele. 
D shows the effect of the rs6744284 genotype (CC/TC and TT) on CIR in the group of patients with high bilirubin levels (n = 68; grades 3 and 4). 
Bilirubin toxicity grading was according to the Common Toxicity Criteria (CTC) of the National Cancer Institute, version 2; standard error (SE) and the 
number of included individuals are indicated for each category
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cyclophosphamide) [28, 32, 33, 35, 46, 47]. For example, 
low UGT1A1 activity was associated with higher plasma 
methotrexate and bilirubin levels, suggestive of competi-
tive interactions between the three [7, 48]. Similar to our 
study, these former investigations in the field of pediatric 
ALL showed that patients with GS were prone to hyper-
bilirubinemia throughout all treatment phases [7, 48].

One of the previous studies demonstrated that despite 
higher bilirubin levels, ALL patients with GS did not 
experience significant treatment modifications, including 
delays, or worse therapy outcomes [48], which is in line 
with our findings. These observations may explain why 
universal screening for GS in all patients diagnosed with 
ALL is not routinely performed so far. Although it was 
recommended previously to screen at least ALL patients 
with hyperbilirubinemia for GS [48], common stand-
ard recommendations agreed on between international 
ALL trial consortia do not exist, and may be promoted 
through the Ponte di Legno initiative [23].

In our study, high hyperbilirubinemia was an inde-
pendent prognostic factor negatively affecting EFS and 
CIR of patients treated on a modern risk-adapted BFM 
protocol. To our knowledge, this is the first report from 
a large pediatric ALL cohort receiving relatively homog-
enous therapy demonstrating an effect of hyperbiliru-
binemia on long-term treatment outcome. Importantly, 

the negative prognostic impact was not determined in 
patients who demonstrated high hyperbilirubinemia 
and were homozygous for the variant T allele of our lead 
SNV rs6744284. This observation could have direct clini-
cal implications by helping to differentiate hyperbiliru-
binemia conferring a negative prognostic impact from 
hyperbilirubinemia of a less severe clinical phenotype. 
Moreover, our findings imply that patients with pheno-
typically relevant genetic variation in UGT1A/GS can be 
spared from experiencing treatment modifications, as 
it was suggested previously [48, 49]. Besides replication 
in other independent clinically and genetically compre-
hensively characterized cohorts, functional studies are 
particularly required to augment our knowledge of hyper-
bilirubinemia as a treatment-related toxicity in pediatric 
ALL and to elucidate involved pathomechanisms.

Despite interesting perspectives, there are several limi-
tations associated with our study: 1) We were only able 
to study total serum bilirubin levels. However, a sepa-
rate analysis of unconjugated and conjugated bilirubin 
will be important for an improved understanding of 
therapy-related hyperbilirubinemia and its prognostic 
value. 2) No data on additional intake (e.g., vitamin B 
complex, ursodiol) and/or pharmacokinetics of glucu-
ronidation dependent drugs (e.g., methotrexate), poten-
tially confounding our observations, were available to 

Table 4 Estimated hazard  ratiosa from the multivariable Cox proportional model on event-free survival and hazard of relapse in 
patients of the discovery cohort

a  Hazard ratios (HR) are given as indicated with the corresponding 95% confidence intervals (CI), all patients of the discovery cohort with complete information were 
included (n = 642) in this analyses
b  Events were resistance to therapy (non-response), relapse, secondary neoplasm or death from any cause. Failure to achieve remission due to early death or non-
response was considered as event at time zero
c  Compared to rs6744284 wild-type (CC) or heterozygous (TC) genotypes
d  Compared to bilirubin grades 0 to 2 of the Common Toxicity Criteria of the National Cancer Institute version 2 (CTC)
e  Compared to CTC grades 0 to 3 of alanine (ALT) or aspartate (AST) transaminase serum levels
f  Minimal residual disease (MRD) standard-risk patients were negative on treatment days 33 and 78; MRD high-risk patients had a leukemic cell load ≥5 ×  10−4 on 
treatment day 78; all other results were classified MRD intermediate-risk. MRD standard- or high-risk compared with MRD intermediate-risk
g  HR compared with MRD intermediate-risk patients with no slow early response
h  Leukemic blasts ≥1000/μL in the peripheral blood on treatment day 8. HR compared to patients with < 1000/μL leukemic blasts (prednisone good responders)
i  White blood cell (WBC) count at diagnosis ≥100,000 /μL. HR compared to patients with WBC counts < 100,000 /μL

Variable Eventb Relapse

Hazard Ratio (95% CI) P(X2) Hazard Ratio (95% CI) P(X2)

rs6744284  TTc 0.56 (0.27-1.13) 0.103 0.40 (0.09-1.84) 0.240

Bilirubin CTC grades 3-4d 2.67 (1.59-4.48) < 0.001 4.61 (1.71-12.42) 0.003

ALT/AST CTC grade  4e 1.17 (0.60-2.27) 0.643 0.43 (0.06-3.29) 0.417

MRD standard-riskf 0.94 (0.57-1.54) 0.798 1.10 (0.37-3.24) 0.870

MRD high-riskf 4.52 (2.73-7.48) < 0.001 6.52 (2.41-17.66) < 0.001

Slow early  responseg 2.60 (1.35-5.00) 0.004 2.21 (0.48-10.17) 0.311

Poor prednisone  responseh 1.38 (0.82-2.32) 0.223 2.09 (0.77-5.64) 0.148

Initial WBC count ≥100,000/μLi 1.48 (0.92-2.39) 0.109 1.18 (0.43-3.22) 0.750
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us. 3) Selection bias for inclusion in our GWAS and/or 
replication cohorts is immanent to a clinical investiga-
tion depending on availability of reported hepatotoxicity 
and biological material. 4) The clinical importance of our 
findings could be enhanced by systematic collection of 
information on the potential long-term burden of hepa-
totoxicity. 5) Finally, the generalizability of our findings to 
other therapy protocols for pediatric ALL is limited due 
to differences in medication and timing between them. 
All of these issues need to be addressed in future investi-
gations and will help to resolve the limitations of our cur-
rent observations.

Conclusions
High hyperbilirubinemia acted as an independent prog-
nostic factor of therapy outcome in pediatric ALL 
patients treated on the AIEOP-BFM ALL 2000 proto-
col. Further, the rs6744284 genotype reliably predicted 
hyperbilirubinemia throughout all intensive treatment 
phases. Thus, both assessment of hyperbilirubinemia and 
UGT1A genotyping will be useful for complementing 
toxicity risk profiling and optimizing risk-adapted thera-
peutic strategies for pediatric ALL.
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