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Abstract
Short linear motifs (SLiMs) are a unique and ubiquitous class
of protein interaction modules that perform key regulatory
functions and drive dynamic complex formation. For decades,
interactions mediated by SLiMs have accumulated through
detailed low-throughput experiments. Recent methodological
advances have opened this previously underexplored area of
the human interactome to high-throughput protein–protein
interaction discovery. In this article, we discuss that SLiM-
based interactions represent a significant blind spot in the
current interactomics data, introduce the key methods that are
illuminating the elusive SLiM-mediated interactome of the
human cell on a large scale, and discuss the implications for
the field.
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Introduction
Over the last decade, numerous breakthroughs in the
scale and quality of interactomics methods have resha-

ped our understanding of the human interactome. This
era of high-throughput interactomics has largely been
www.sciencedirect.com
driven by technical advances that have enabled large-
scale mapping of protein interactions. Three comple-
mentary yet distinct approaches are central to the
interactomics data explosion: yeast two-hybrid (Y2H)
discovering direct binary interactions [1]; affinity puri-

fication coupled to mass spectrometry (AP-MS)
discovering protein complexes [2]; and proximity la-
beling mass spectrometry (e.g. BioID [3], TurboID [4],
Apex2 [5]) defining cellular proximity [6] (Figure 1a).
Each of these approaches has provided a map of the
human interactome. When integrated, in conjunction
with other sources of data on proteineprotein in-
teractions (PPIs), they result in a draft map of the wiring
of the interactome of the human cell [7,8].

Despite the revolutionary contribution of interactomics

data to the understanding of cell biology, the current
interactome is biased towards PPIs that are most
readily captured by widely applied methods [1,2,6].
The biases result from technical limitations of the
method used, such as the trade-off between noise and
signal in AP-MS, which can result in a bias
towards stable interactions, and the Y2H requirement
for proteins that are not toxic in yeast, can translocate
to the nucleus and do not autoactivate in the absence of
an interaction. Other factors relate to interactions that
occur conditionally (e.g. dependent on post-

translational modifications; PTMs), in specific cell
types, or between low-abundance proteins. Conse-
quently, many subsets of the interactome remain
undersampled. Also, the classical definition of a PPI has
somewhat drifted as many of the reported interactions
are not through direct binary interfaces but report on
larger complexes or on protein proximity (Figure 1a).
Recent advances in deep learning for protein complex
modeling may successfully add interface-level infor-
mation and improve our confidence for a direct inter-
action in a single stroke [9]. However, given the lack of

data for the inaccessible subsets of the interactome, the
blind spots for the interactomics approaches may be
reflected by the machine learning approaches.

One of the main blind spots of the current interactome
is short linear motif (SLiM)-mediated interactions as
they are often of low affinity and transient [10]. SLiMs
are a distinct class of interaction modules generally
Current Opinion in Structural Biology 2023, 80:102593
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Figure 1

(a) Schematics of the interaction types returned by commonly used high-throughput PPI detection methods. The network illustrates that the approaches
provide complementary data. The # indicates that most SLiM-binding assays discussed (e.g., arrays, display methods, and affinity measurements) are
providing information on direct binary interactions, but when combined with MS read outs (e.g., PRISMA and hold up) can report on both direct and
indirect interactions. The * indicates that while most SLiM discovery methods can be geared towards the identification of binding sites with amino acid
resolution (e.g. by dense tiling of proteins by overlapping peptides, or by mutagenic analysis), this is not always the case. (b) List of important information
required for the comprehensive characterization of a SLiM instance or SLiM-binding pocket. Representative structure of a SLiM-mediated interaction
showing the SLiM-binding pocket of the serine/threonine-protein phosphatase 4 regulatory subunit 3A (PP4R3A) EVH1 domain bound to a model FxxP
motif-containing peptide (PDB ID:6R8I) [31]. (c) Design principles for a high-throughput SLiM analysis method.

2 Sequences and Topology (2023)
found in intrinsically disordered regions of the prote-
ome. SLiMs are compact (<10 amino acids in length)
with simple specificity determinants (w3e4 key resi-
dues define the majority of the specificity and affinity of
binding) [11]. They regulate key processes in the cell
by acting as targeting signals to control protein locali-
zation, transactivation domains to modulate transcrip-
tion, enzyme docking sites to define substrates for

PTMs, degrons to modulate protein stability, and
binding sites to drive dynamic complex formation [12].
Most of the currently known SLiM-based interactions
were characterized by low-throughput studies [13], as
the often low-to-mid mM affinity range of SLiM-
mediated interactions makes them relatively difficult
to capture using the PPI discovery approaches
mentioned above. The lack of methods to specifically
discover and characterize transient, low-affinity SLiM-
mediated interactions in a high-throughput manner
was obvious (Figure 1b).

In recent years, the SLiM field has made a concerted
effort to develop large-scale approaches specifically
designed to characterize SLiMs (Table 1). The resulting
methods encompass a set of approaches that assay mul-
tiple peptides in a single experiment with the goal of
testing the binding or function of SLiMs. The
Current Opinion in Structural Biology 2023, 80:102593
applications include discovering SLiM-containing pep-
tides, defining the specificity determinants of SLiMs,
understanding the effects of specific mutations in a
SLiM, quantifying the affinities of SLiM-mediated in-
teractions, or functionally characterizing SLiM-
containing peptides. Some approaches can perform
several of these applications in a single experiment,
however, usually with a trade-off to quality and scale. The

assayed peptides can be designed based on randomized
sequences, protein-derived sequences, or mutated
protein-derived sequences. The number of peptides
tested can range widely in scale from tens of peptides to
millions of peptides. When used for PPI discovery, the
peptide-centric nature of these methods allows the dis-
covery of SLiMs with amino acid resolution.

In this article, we introduce experimental SLiM dis-
covery tools focusing on recent approaches and studies
that have pushed the SLiM discovery field into the

high-throughput era. The methods are divided into
two major classes: binding assays that analyze the phys-
ical interaction between the peptide and peptide
binding partner, and functional assays that measure the
downstream function encoded by the motif (Table 1).
We briefly discuss the importance of applying com-
plementary approaches to confidently map the
www.sciencedirect.com
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Table 1

Overview of methods for large-scale identification and characterization of SLiM-based interactions and SLiM-mediated functions. Semi titative read outs indicate that the read
out of the assay is related to the relative binding strengths of interactions probed (e.g. denser spot intensities for higher affinity intera s).

Type Method Scale of
peptides
published

Advantages Challenges Preys Bait avidit
increas
capture

PTM-dependent
interactions
described

Recent publications

Binding assays
Synthesized peptide

arrays
Peptide arrays 100s Semi-quantitative readout.

Ease of experiment.
Ease of studying effects
of PTMs.

Loss of low-affinity
interactions.
Limited by cost of arrays.
One protein at a time.

Purified
proteins

Yes Yes [17,18]

PRISMA 100s Discovery of SLiM-binding
proteins.
Ease of studying effects
of PTMs.

Loss of low-affinity
interactions.
Difficult to find
interactions with low-
abundant proteins.
Interactions found may be
indirect rather than direct.
Limited by MS access.
Noisy data.

Cell lysate Yes Yes [20,21,23]

Display methods ProP-PD 1,000,000 Scalability (1011 variants).
Highly parallelizable.
Multiplexed NGS
analysis.

Library size is limited by the
cost of designed
oligonucleotide library.
Multiple rounds of
selections are required to
enrich binders.
For multiple parallel
screens – bait protein
production

Purified
proteins

Yes/No Yesb [26,29]

Yeast-surface
display

11,000 Scalability (108 variants).
Information on binders
and non-binders.
Library-on-library screens
are possible.

Limited by FACS sorting
Limited in terms of
parallelization
opportunities

Purified
proteins

Yes No [35–37]

Bacterial-surface
display

420,000 Scalability (1011 variants).
Information on binders
and non-binders.

Library size is limited by the
cost of designed
oligonucleotide library.
Screening is limited by
FACS sorting.
Limited in terms of
parallelization
opportunities

Purified
proteins

Yes Yes [41,42,72]

(continued on next page)
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Table 1. (continued )

Type Method Scale of
peptides
published

Advantages Challenges Preys Bait avidity to
increase
capture

PTM-dependent
interactions
described

Recent publications

mRNA display 10,000 Large peptide libraries
possible (1013).
Cell free.

Library size is limited by the
cost of designed
oligonucleotide library.
Multiple rounds of
selections are required to
enrich binders.

Purified
proteins

No No [46]

Quantitative binding
assays

MRBLE-pep 100 Multiplexed affinity
determinations.

Limited by synthesis of
peptide-linked beads
Requires specialized
equipment.

Purified
proteins

Yes Yes [47]

Hold-up assay 500 Affinity determinations.
Many options for
detection.
Versatile – allows peptide
or protein as bait.

Peptide synthesis if using
peptide bait.
Bait protein production if
using purified proteins.
Limited by peptide
synthesis and detection
cost.

Purified
proteins
Cell extract

Yes Yes [51,52]

In cell binding assays Pheromone
signaling
competitive
growth assay

1000 Binding under physiological
conditions.
Affinity ranked list of
peptides.

In cell assays can introduce
complex biases.
Limited by transduction of
cells during library
construction.
NGS costs.

Genetically
encoded

No No [58]

MAPK
competitive
growth assay

10,000 Binding under physiological
conditions.
Affinity ranked list of
peptides.

In cell assays can introduce
complex biases.
Limited to the MAPK
kinase studied.
Limited by transduction of
cells during library
construction.

Genetically
encoded

No No [59]

Functional assays Transactivation
assays

10,000 Functional information.
Semi-quantitative
readout.

No information on binding
partner.
Limited by transduction of
cells during library
construction and/or FACS
sorting

N/A No No [46,62]

Degradation
assays

50,000 Functional information.
Semi-quantitative
readout.

No information on binding
partner.
Limited by transduction of
cells during library
construction and/or FACS
sorting

N/A No No [64,65,67,71]

a Monovalent display on P3, multivalent display on P8.
b Using targeted library design (e.g. using phosphomimetic mutations) or enzymatic treatment of libraries. Note that similar strategies can be applied to different display techniques.
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nsient SLiM-based interactions and the significance of
these approaches to the next wave of interactomics.
In vitro analysis of SLiM-based interactions
Qualitative in vitro binding assays
Qualitative screening (or selection) assays are used to
find SLiMs among a large number of peptides and can
be grouped into array and display methods.

Peptide arrays
A peptide array is a set of peptides immobilized on a
solid support (e.g. glass or a cellulose membrane) that is
probed for binding to a protein of interest.

Classical peptide arrays
Peptide arrays have been applied for specificity deter-
minant screening using substitution scanning mutagen-
esis, for scanning a tiled protein for binding regions, or for
larger-scale motif discovery using proteomic peptides.
Peptide arrays are commonly used to study binding and

binding determinants of individual proteins through the
incubation of an array with a purified protein. The
interaction with the protein of interest is then detected
using antibodies, chemiluminescence, or autoradiog-
raphy. High-density peptide arrays can present hundreds
of thousands of peptides [14,15]; however, for most
SLiM discovery applications, the number has been in the
range of hundreds of peptides [16e18]. Peptide arrays
were, for example, used to explore the molecular de-
terminants of the ATG8-binding LIRmotifs [17] and the
ubiquitin-binding DisUBM motif [19].

Protein interaction screen on peptide matrix
(PRISMA)
Peptide array protocols have been extended by including

AP-MS identification of the bound protein(s), which
allowexploratory analyses todiscover novel SLiM-binding
partners from cell lysate (Table 1). In particular, protein
interaction screen on peptidematrix (PRISMA) has been
developed for the discovery of SLiM-binding partners
[20,21]. While allowing de novo discovery of SLiM-
mediated interactions, the results appear noisy and
require careful data analysis [22]. A particularly inter-
esting application of this approach is the analysis of dis-
ease mutations in the intrinsically disordered regions of
thehumanproteome to analyze the gain and loss of SLiM-

mediated interactions linked to disease [23]. Recently, it
was also applied to find interactions of microprotein
potentially encoded by small open reading frames [24].

Display methods
Display methods genetically encode the sequence of the
peptide such that enrichment of the displayed peptide,

through binding to a protein of interest, results in the
enrichment of the coding sequence. This coding
sequence can then be identified and quantified using
next-generation sequencing (NGS).
www.sciencedirect.com
Proteomic peptide phage display
In proteomic peptide phage display (ProP-PD) [25],
libraries of protein-derived peptides are multivalently
(P8) or monovalently (P3) presented on the surface of
the filamentous M13 phage [25e27]. The libraries are

used in selections against immobilized purified
bait proteins, followed by NGS analysis. Libraries
displaying peptides from yeast, human, and viral
proteomes have been developed, and over 100 protein
domains have been screened against these libraries
providing information on thousands of interactions
[25,26,28e33]. ProP-PD has further been applied to the
identification of phospho-modulated interactions [33].

Yeast-surface display
In yeast-surface display, peptides are displayed on a
yeast cell surface protein (typically Aga2p) [34]. A li-
brary of peptides is multivalently displayed on yeast
cells and incubated with a fluorescently labeled bait
protein (or a protein with an antibody-binding epitope).
Cells displaying binding peptides are then sorted and
analyzed by sequencing. Yeast-surface display was
recently applied to screen for SARS-CoV-2 peptides
binding to the major histocompatibility complex pro-
teins [35]. The approach can be tuned to determine

relative affinities [36], and variants of the approach have
been developed for library-on-library affinity character-
ization of SLiM-based interactions [37].

Bacterial display
Bacterial display assays are similar to the experimental
setup of yeast display, but the peptides are linked to
bacterial outer membrane proteins for multivalent
display [38,39]. Using a library composed of single and

double mutants of TRAF2/3/5-binding peptides, it was
shown that the NGS results after sorting can generate
quantitative binding information on variant peptides
[40]. The approach, termed MassTitr bacterial display,
was recently scaled to proteome-wide screening by tiling
the human proteome as 36 amino acid peptides and
applied to find interactors of the ENAH EVH1
domain [41,42].

mRNA display
mRNA display screens peptide-RNA fusions in a cell-
free format. In this case, in vitro translated peptides
are covalently linked to their encoding mRNA via a
puromycin linkage [43]. The peptides are used in se-
lections against an immobilized bait, followed by reverse
transcription and sequencing. The approach is often
used to find high-affinity ligands with inhibitory po-
tential [43] and can provide high-throughput quantifi-
cation of binding kinetics [44]. mRNA display has been
applied to find endogenous SLiM-based interactions, as

showcased by the search of KEAP1 ligands using a li-
brary of fragmented mRNAs from human cells [45], and
for evaluating transactivation domains (TAD) in-
teractions with MED15 [46].
Current Opinion in Structural Biology 2023, 80:102593
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Quantitative binding assays
A distinct class of in vitromethods exists where the focus
of the binding assay is to produce accurate quantitative
data for a large number of proteinepeptide pairs.

MRBLE-pep
MRBLE-pep assays peptides synthesized on spectrally
encoded lanthanide beads to perform medium-

throughput quantitative measurement of proteine
peptide interactions [47]. The peptide-bead library is
pooled and incubated with a fluorescently labeled pro-
tein of interest. The sample is then imaged to quantify
binding and identify the peptide-bead pairs. Measure-
ments are repeated at distinct concentrations to create
concentration-dependent binding curves. The approach
has been used to determine affinities for peptides
binding to the PP2A-B56 and calcineurin phospha-
tases [47,48].

Hold-up assay
SLiM-based hold-up assays are comparative retention
assays where peptides are immobilized on beads, the
beads are distributed in a filter plate, proteins of interest
are allowed to bind at equilibrium, and the unbound
proteins are collected by filtration. The quantity of a
protein in the total and unbound fractions is determined
using capillary electrophoresis, intrinsic fluorescence, or
MS. The results are then correlated with dissociation

constants determined through classical affinity mea-
surements [49e52]. The approach has been applied to
characterize the affinities of 65,000 interactions
involving PDZ domains and PDZ-binding motifs [51],
explore the effects on PTMs on the binding landscape
[53,54], and was recently developed for the determi-
nation of affinities with proteins in cell lysate [52].

In cell binding assays
Several in cell binding assays have been applied to
screen for SLiM binding in cellular settings, including
Y2H variants [55e57] and recent competitive growth
assays that link peptide binding to cell proliferation.

Pheromone signaling competitive growth assay
A yeast pheromone signaling-based assay was developed
to explore the specificity of LPmotif docking interactions
of the yeast G1 cyclin Cln2 using deep mutational scan-
ning. Cell growth was encoded in an interaction between
a chimeric signaling protein Ste20Ste5PM and the Cln2,
whereby a functional LP docking motif can recruit Cln2,
leading to phosphorylation of the Ste20Ste5PM reporter

therebyblocking the signaling that inhibits cell division in
response to pheromone [58]. The change in the relative
abundance of a library of peptides in a cell population is
calculated at different timepoints and analyzed to provide
relative quantification of the affinities of the LP
motif interactions.
Current Opinion in Structural Biology 2023, 80:102593
MAPK competitive growth assay
A yeast growth assay has been developed leveraging the
toxicity of exogenous mitogen-activated protein kinase
(MAPK) signaling components to elucidate MAPK
docking motifs [59]. The assay exploits the fact that
human MAPKs p38a/JNK1 can be activated by MKK6
and active p38a/JNK1 results in growth suppression in
yeast cells lacking endogenous MAPK Hog1 and MKK
Pbs2. As the interaction between theMAPK andMKK is
dependent on a single docking motif and linked to cell
growth, the manipulation of the interaction allows for

systematic exploration of MAPK kinase docking motifs.
The reporter of the system is a third component, namely
glutathione transferase-fused peptides to compete with
the MAPK-substrate docking interaction, thereby
rescuing cell growth.

Functional assays
Some classes of motif are amenable to high-throughput
analysis using functional assays, which identify the
consequences of SLiM-mediated interactions, but do
not directly report on an interaction or binding part-
ners (Table 1).

Transactivation assays
Several functional studies have focused on the
discovery of TADs, a class of SLiMs which are bound

by transcriptional coregulators and regulate transcrip-
tion. The read out of TAD assays is generally cell
viability [60] or the production of a fluorescent re-
porter (e.g. GFP) as a function of transcriptional ac-
tivity [46,61,62]. NGS analysis reveals the identity of
the TAD peptides in the population of cells with
functional TAD interactions. The specificity de-
terminants of TAD sequences have been defined using
libraries of randomized peptides and through single
and double mutant analysis of previously known TADs
[60,61]. Designed transcription factor-derived pep-

tides have been used to discover yeast TADs [46],
human TADs [62], and motifs involved in transcrip-
tional repressions [63].

Degradation assays
Large-scale functional assays have provided novel in-
sights into degradation motifs, or degrons, a class of
SLiMs that promote protein degradation. In these
assays, a putative degron is fused to a fluorescent protein
reporter. The reporter is co-transcribed with a second
control fluorescent reporter that is translated as a
separate protein. Functional degrons lead to the degra-
dation of the fluorescent reporter relative to the control

fluorescent reporter, and cells can be sorted by FACS
into bins, allowing peptides that drive reporter degra-
dation to be quantified by NGS. Stability profiling assays
have resulted in the discovery of numerous novel N- and
C-terminal degrons [64e67].
www.sciencedirect.com
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Box 1. Reusing old parts to make new tools

Many major scientific breakthroughs are incrementally driven by
technical advances that result in the availability of novel methods or
facilitate a transition from low throughput to high throughput. In the
SLiM discovery field, the transition to a large-scale discovery era
was built on such advances, namely the ability to (i) encode/syn-
thesize and (ii) quantify large numbers of peptides accurately and at
a relatively low cost. At the core of every high-throughput SLiM
screen is a library of peptides under investigation. There are two
major sources of these peptides: peptide synthesis and oligonu-
cleotide synthesis. In both cases, the scale, cost, and quality of
synthesis have improved continuously over the past decade. The
technology to quantify the experimental readout has mirrored the
advance to the peptide encoding. Three technologies, in particular,
are widely used in the available SLiM analysis methods: next-
generation sequencing (NGS); fluorescence-activated cell sorting
(FACS); and mass spectrometry (MS). The blueprint for high-
throughput methods for the analysis of SLiM-mediated interactions
is now clearly established (Figure 1c). Both binding and functional
assays have taken advantage of the simplicity and transplantable
nature of SLiMs. They encode a library of peptides of interest in a
system that can separate motif-containing from non-motif-
containing peptides based on either functional or biophysical
discrimination and quantify that discriminatory attribute using well-
established experimental readouts. Huge diversity and innovation
are possible using these simple experimental design principles, and
much of the possibilities in this space remain to be explored.
Consequently, the methods developed to date are likely to be joined,
particularly in the functional assay space, by further methods in the
coming years.
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Discussion
We briefly surveyed methods that are advancing the

SLiM discovery field into the high-throughput era. Each
method can be applied to answer distinct questions
(qualitative, quantitative, and functional). The display
methods are very powerful in terms of library sizes and
are key methods for expanding the SLiM-mediated
interactome. The PRISMA assay (and the hold-up
assay if coupled to MS) allows the identification of the
binding partners of SLiM-containing peptides from cell
lysate. Among the quantitative binding assays, the hold-
up assay is highly promising given the ability of the
method to generate quantitative data on a large scale.

The functional assays provide complementary informa-
tion to the binding assays, however, with the caveat that
they are often dedicated to the discovery of a specific
type of SLiM and they do not provide a direct readout of
binding. Each method thus provides complemen-
tary information.

Given the largely unexplored search space of SLiM-
based interactions, there is a need to combine the
different approaches. Indeed, as for other interactomics
data, the identification of an interaction by multiple

methods increases confidence, so the generation and
integration of complementary approaches will be key to
defining a comprehensive map of the SLiM-mediated
interactome. In addition to the SLiM discovery
methods outlined, other interactomics approaches and
computational searches for SLiMs will continue to
contribute to the SLiM discovery field as described
elsewhere [68,69].

However, difficulties still exist, such as the challenge of
discriminating which of the identified in vitro biophysi-
cal binding events occur in a cellular setting and have
functional consequences. Currently, there is a need for
extensive downstream validation of the functionality of
the newly discovered motifs in the context of full-length
proteins and under relevant cellular conditions. Diverse
functional assays leveraging the same set of underlying

design principles and technologies (Box 1), providing
high-throughput functional validation would accelerate
this process. Furthermore, the application of base and
prime editing technology [70] to mutate and insert
SLiMs in situ will likely simplify in vivo functional assays.
Other challenges relate to finding conditional PTM-
dependent interactions. Although not discussed here,
several of the methods described (e.g. peptide arrays,
hold-up) can be used also for finding PTM-depen-
dent interactions.

This era of high-throughput SLiM-based interactomics

data has already begun and will reveal exciting insights
into the wiring of the cell, the deregulation of the cell
by disease mutations, and open new avenues for thera-
peutic intervention. Almost a decade ago, Tompa et al.
predicted one hundred thousand SLiM-mediated
www.sciencedirect.com
interactions remain undiscovered in the human inter-
actome [10]. The tools are now in place to test this
prediction and fully characterize this elusive part of the
human proteome. We expect SLiM discovery ap-
proaches to result in the unprecedented generation and
release of information over the coming years.
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