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Abstract 

The aim of this work is to develop a discrete ordinates Boltzmann solver that can be used for 

calculation of absorbed dose from both photons and protons within an inverse planning 

optimizer, so as to perform accurate dose calculation throughout the whole of the inverse 

planning process.  With photons, five transport sweeps were performed to obtain scattered 

photon fluence, and unscattered electron fluence was then obtained and used as a fixed source 

for solution of the electron transport equations.  With protons, continuous slowing down was 

treated as a fixed source, and five transport sweeps were used to calculate scattered fluence.  

The total electron or proton fluence was multiplied by the stopping power ratio for the 

transport medium to obtain absorbed dose.  The method was evaluated in homogeneous media 

and in a lung case where the planning target volume was surrounded by low-density lung 

material.  Photon arc, proton passive scattering and proton arc treatments were considered.  

The results were compared to a clinically validated convolution dose calculation for photons, 

and with an analytical method for protons.  In water-equivalent media, the discrete ordinates 

method agrees with the alternative algorithms to within 2%.  Convergence is found to be 

sufficiently complete for water-, lung- and bone-equivalent materials after five iterations.  The 

dose calculated by the relatively simple angular quadrature is seen to be very close to that 

calculated by a more comprehensive quadrature.  For inhomogeneous lung plans, the method 

shows more heterogeneity of dose to the planning target volume than the comparative 

methods.  The discrete ordinates Boltzmann solver provides a general framework for dose 

calculation with both photons and protons.  The method is suitable for incorporation into an 

inverse planning optimizer, so that accurate dose calculation in a heterogeneous medium can 

be obtained throughout inverse planning, with the result that the final dose distribution is as 

predicted by the optimiser. 

 

Keywords: Inverse planning, discrete ordinates, Linear Boltzmann transport equations, 

proton therapy, VMAT 
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1.  Introduction 

In the last decade, the value of the discrete ordinates method of solving the linear Boltzmann 

transport equations (LBTE) as a means of absorbed dose calculation in radiotherapy has been 

widely appreciated (Gifford et al 2006, Vassiliev et al 2010, Bedford 2019).  Compared to 

Monte Carlo simulation, which is an alternative method of solving the LBTE, the discrete 

ordinates method is deterministic and therefore provides solutions in which stochastic 

uncertainty is absent (Vassiliev 2017).  The Acuros implementation (Varian Medical Systems, 

Palo Alto, CA) has also led to the widespread application in many centres, together with 

numerous comparisons with Monte Carlo simulation (Han et al 2011, 2013, Fogliata et al 

2012, Hoffmann et al 2018).  The inclusion of a magnetic field in the physical modelling has 

enabled application to MR-guided radiotherapy (St Aubin et al 2015, 2016, Zelyak et al 

2018a,b). 

However, the method has much greater potential for application in radiotherapy than 

has so far been realised.  Two particular impediments to its application can be identified, 

notably (a) the difficulty of applying it to proton therapy, and (b) the difficulty of its 

application to inverse planning.  In the former, that of application to proton therapy, the 

difficulty is that proton transport is largely unidirectional, with relatively little energy loss 

until the Bragg peak, where the particles change direction considerably, and lose all of their 

remaining energy.  Modelling this process using LBTE without any prior assumptions such as 

continuous slowing down approximation requires many energy and direction ordinates, most 

of which, for the initial part of the beam trajectory, are irrelevant, and a drain on memory 

resources (Sanchez and McCormick 2004, Uilkema 2012). 

With regard to the latter impediment, that of inverse planning, one of the advantages 

of the discrete ordinates method is that the absorbed dose due to all control points of all 

beams can be calculated by one solution of the transport equations.  This is efficient for 

volumetric modulated arc therapy (VMAT), where there are many control points, but a 

difficulty arises with inverse planning, where the dose distribution due to each fluence 

element, or bixel, of each beam is invariably required for the inverse planning algorithm.  

This can be accomplished by the discrete ordinates method by repeated applications, but is 

very inefficient. 

The ultimate aim of the project described in this paper is to address these issues so as 

to provide a discrete ordinates solver which can be used for proton therapy and also applied 

efficiently to inverse planning.  For proton therapy, the approach is to treat the initial highly 

directional proton trajectory as a fixed source based on semi-empirical methods, mostly 
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reserving the discrete ordinates solution for the Bragg peak.  With inverse planning, the 

approach is to use the discrete ordinates method to perform regular calculations of the dose 

due to the entire plan, thereby utilizing the efficiency of the method, and then to use a 

convolution method to provide the bixel-based doses required for inverse planning purposes.  

Compatibility of the LBTE solver with the convolution method is therefore required.  For all 

of these methods, a short computation time and a reasonable memory allocation are needed, 

and it is therefore necessary to make some simplifications to produce a practical solution.  

The main simplification, compared to the Acuros implementation (Vassiliev et al 2010), is to 

use fewer directional and energy ordinates in the quadrature. 

As this project is substantial, it is not feasible to present all of the work in one paper.  

This paper therefore concentrates on the methods and validation of Boltzmann solutions with 

both photon and proton beams.  Actual incorporation of the methods into inverse planning is 

not described, although this goal is in the background throughout.  The form of the paper is 

consequently as follows: the Boltzmann solver is described firstly for photon beams and then 

for proton beams.  The adequacy of the iterative scheme and the quadrature is demonstrated 

for homogeneous media.  The method is then applied to a lung case, where the tissue 

inhomogeneity is particularly pronounced.  In this case, photon arcs (VMAT), fixed 

(passively scattered) proton beams and proton arcs are used.  The results when using the 

Boltzmann approach are compared with those produced by alternative algorithms already 

implemented in the inverse planning context. 

 

2.  Materials and methods 

2.1.  Head model 

The LBTE solver proceeded by projecting unscattered photons or protons into the patient 

model.  In the case of photons, the fluence was calculated using a dual-source model of a 

Versa HD linear accelerator (Elekta AB, Stockholm) with a source-axis distance of 1000 mm 

(Bedford et al 2013).  A 6-MV flattened beam was considered in this work, although the 

approach can also be used for a flattening filter-free beam.  For each of the two radiation 

sources in the dual-source model, representing primary photons and head scatter, divergent 

rays were traced throughout the patient model according to a regular Cartesian grid defined at 

the isocentric plane (Siddon 1985, Bedford et al 2022).  The intensities of the rays were 

determined from the off-axis position of the rays according to a lookup table defined in the 

beam data for the dose calculation model (Bedford 2002).  A fluence grid at the position of 

the collimating device was defined for each source in the model and the contributions of the 
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rays to the elements of the fluence map were determined, taking into account the divergence 

of the rays.  The resulting fluence was then convolved with a Gaussian source function of 

specified intensity and width, again determined as part of the beam data.  For the Versa HD 

accelerator, the primary source was modelled as having a width (standard deviation) of 0.8 

mm and a length of 1.0 mm, while the secondary source, at 150 mm from the primary source, 

was modelled as having a width and length of 18.0 mm.  Further details of the source model 

are given elsewhere (Bedford et al 2022). 

In the case of passively scattered protons, the same source model was used, but with 

parameters representing the 230 MeV beam of a double-scattering system (Ion Beam 

Applications S.A., Louvain-la-Neuve, Belgium) (Slopsema 2012), with a single source having 

a source-axis distance of 2300 mm.  The width and length of the source were both modelled 

as 30.0 mm (Slopsema et al 2014).   For proton arcs, the pencil beam width (two standard 

deviations) was taken as 10.0 mm. 

 

2.2.  Quadrature 

The angular quadrature for discrete ordinates was based upon the IEC61217 convention for 

gantry and couch angles, so that the different discrete directions could be conveniently 

addressed using the corresponding beam orientations.  The ‘gantry angles’ of the quadrature 

were 0.0°, 47.5°, 90.0°, 132.5°, 180.0°, 227.5°, 270.0° and 312.5°, i.e. approximately 45° 

spacing, with a bias of the diagonal directions of 2.5° towards the lateral directions.  The 

‘couch angles’ were spaced at 45° from 270° to 45° through 0°.  The couch angles, c, and 

gantry angles, g, were considered as a spherical coordinate system, with each combination of 

c and g giving a direction vector, Ω: 

 

 
T

c g=Ω .           (1) 

 

This range of gantry and couch angles permitted the complete orientation space to be 

addressed, corresponding to the arrangement of lines of latitude and longitude around the 

globe (Figure 1).  This was useful for visualization purposes, but had the drawback that the 

solid angle occupied by each orientation varied between the ordinates, reducing towards the 

orientations with gantry 0° and 180°.  At these two orientations, the variation of the couch 

angles led to multiple ordinates at identical orientation.  The couch angles of the ordinates at 

gantry 0° and 180° were therefore constrained to 0°.  A simple uniform weighting was used 
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for the angular quadrature, the small bias of the diagonal gantry angles towards 90° or 270° 

being used to ensure even coverage of the orientation space.  For an ordinate with couch angle 

c and gantry angle g, the weighting was given by: 

 

( )0, 0,180 0

4
, otherwise,

cgw g c

CG



= =  

=
        (2) 

 

where C (=4) and G (=8) represented the total number of couch and gantry angles in the 

quadrature.  For Compton scattering of photons, an additional weighting factor was used, 

which is described in section 2.3.  Note that the angular quadrature was fixed in space and 

used for all segments of the VMAT arcs, so that a single application of the LBTE could be 

used to calculate dose for the complete plan, with maximum efficiency. 

 

 

 

Figure 1.  Illustration of the angular quadrature used in this work.  The set of directions 

shown in the transaxial view is repeated at the four angles in the coronal view, thereby 

covering the 4π steradians of direction space. 

 

 

Energy was discretized into G groups (g = 1, 2, 3, … , G) using the multigroup 

method (Lewis and Miller 1984).  Each group was characterized by a discrete energy, Eg.  For 

photons, the energy quadrature was arranged such that Eg increased in 0.5 MeV steps up to 

4.0 MeV, followed by 1.0 MeV steps up to 10.0 MeV.  For protons, the energy quadrature 

was arranged in 5 MeV steps from 5 MeV to 250 MeV.  The uppermost energies for both 
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photons and protons were redundant, but were included for generality, should higher energy 

particles need to be considered.  The group boundaries lay midway between the discrete 

energies, Eg, with the upper boundary for group g being gE + and the lower energy boundary 

being gE − .  As in previous work (Gifford et al 2006), the continuous fluence ( ), ,E r Ω , 

where Ω referred to the angular ordinate, was divided into a fluence component and an energy 

component: 

 

( ) ( ) ( ), , ,gE f E =r Ω r Ω ,        (3) 

 

with ( )f E  then being selected to be constant within each energy range: 

 

( ) ( )1 g gf E E E+ −= − .          (4) 

 

Note that a consequence of this was that the total fluence for group g, as given by the integral 

( ), ,

g

g

E

E

E dE

+

−

 r Ω , was simply equal to ( ),g r Ω , which simplified the computational handling 

of the energy quadrature. 

 

 

2.3.  Photon transport 

The differences between transport of photons and protons in the LBTE solver were mostly 

found in the initial transport of unscattered fluence, and they are therefore outlined separately.  

With regard to photons, for each ray cast from the head model, equivalent path length was 

determined, from which an exponential decay was calculated.  The energy for this was 

calculated from an energy spectrum and the attenuation coefficients were taken from ICRU46 

(ICRU 1992).  Taking the position in the beam’s eye view to be represented by coordinates x 

and y, and the depth in the patient to be represented by z, the unscattered fluence, ( ), E  r , 

at position ( ), ,x y zr , with quadrature energy E was calculated as: 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )2 2

02

1
, , , , expE x y s x y x y E E z x y z

z
        

=  − − +r   (5) 
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where ( ),x y  was a two-dimensional step function representing the beam aperture, ( ),s x y  

was the Gaussian source profile, ( ),x y  was the tabulated fluence profile of the radiation 

exiting the accelerator head, ( )E   was the energy spectrum, ( )0 E 
 was the attenuation 

coefficient and   represented the off-axis softening of the beam.  Note that ω and   were 

actually functions of beam aperture size and shape, but that dependency is suppressed in the 

equation for simplicity. 

To assign the unscattered photon fluence to the quadrature orientations, the fluence 

calculated by equation (5) was assigned to the four orientation ordinates encompassing the 

beam orientation in a process analogous to bilinear interpolation.  If the gantry angles of the 

ordinates were g1 and g2, the couch angles were c1 and c2, and the gantry and couch angles of 

the beam were g and c respectively, the fluence assigned to each of the four ordinates was 

given by: 

 

2 2
11

2 1 2 1

.
g g c c

g g c c


− −
=

− −
,          (6a) 

1 2
21

2 1 2 1

.
g g c c

g g c c


− −
=

− −
,          (6b) 

2 1
12

2 1 2 1

.
g g c c

g g c c


− −
=

− −
,          (6c) 

1 1
22

2 1 2 1

.
g g c c

g g c c


− −
=

− −
,          (6d) 

 

where the subscripts on Φ referred to the gantry and couch ordinates respectively. 

The photon fluence was initially set equal to the unscattered fluence as calculated 

from equations (5) and (6).  The dose calculation then solved the linear Boltzmann transport 

equations for photons, to give the scattered fluence.  Defining Ω  to be a unit normal in the 

direction of interest, r to be the position of interest and E  to be the photon energy of interest: 
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( )

( ) ( ) ( )

( ) ( ) ( )

scat

scat

e C,

0 4

tot scat

e C,

, ,

, , , ,

, ,

E

E E E d dE

E E

   



         



    

 =

     

−

 



  

  

Ω r Ω

r Ω Ω r Ω Ω

r r Ω

     (7) 

 

where ( )e r  was the electron density at position r, ( )scat , , E  r Ω  was the scattered 

photon fluence at position r, with direction Ω and energy E , ( )C, , ,E E     
  Ω Ω  was the 

differential Compton scattering cross section of a photon travelling initially with energy E
  in 

direction 
Ω  and finally with energy E  and direction Ω , and ( )tot

C, E    was the total 

Compton scattering cross section (Hensel et al 2006).  The integral term of equation (7) 

referred to scattered sources and was denoted as ( )scat , ,nijkQ x y z , where n indexed the discrete 

ordinates in the quadrature and i, j and k indexed the voxels in the patient model: 

 

( ) ( ) ( ) ( )scat scat

e C,

0 4

, , , , , ,nijkQ x y z E E E d dE



     =            



  r Ω Ω r Ω Ω .   (8) 

 

In practice, the integrals of equation (7) were discrete sums over the discrete ordinates.  

Moreover, a particle undergoing a scattering event for the particular angle between one 

direction of transport and another, with cosine  Ω Ω , and ending with energy E, had a 

specific initial energy, E , as governed by the kinematics of the scattering event.  

Consequently, the double integral collapsed to a single summation: 

 

( ) ( ) ( ) ( )scat scat

e C,

1

, , , , , ,
N

nijk

n

Q x y z E E E
=

              r Ω Ω r Ω .    (9) 

 

This required the initial interaction energy to be calculated for a given transition between the 

N angular ordinates and a given final energy.  The equations given by Hensel et al (2006) 

were largely used for this purpose, leading to an N × N matrix of initial energies. 

The differential and total scattering cross sections were also precalculated and stored 

at the beginning of each photon calculation.  Again, the differential scattering cross sections 

were only needed for the specific angles between each of the ordinate directions, N × N items. 
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The differential cross sections for Compton scattering of both photons and electrons, together 

with the total cross section, were taken from Hensel et al (2006), based on Davisson and 

Evans (1952), and were straightforward to handle.  Due to the coarse sampling of the angular 

quadrature, it was necessary to adjust the relative contributions of forward-scattered and large 

angle-scattered photons.  Defining the cosine of the photon scattering angle to be θ, a 

threshold, θ0, was set.  Then for 0  , the differential scattering cross sections were 

weighted by a factor 0

C,f   = 2.0, for 0  the differential scattering cross sections were 

weighted by a factor of 
C,f 

= 10.0 and the total scattering cross section was correspondingly 

multiplied by a factor of 
tot

C,f   = 3.0.  The value of θ0 was 1.0 in this instance, although lower 

values were also used in the validation (section 2.10).  These factors were used for all types of 

tissue.  The factors mostly affected the gradient and curvature of the depth dose curves, 

particularly in the region between 50 mm and 150 mm depth, where photon scatter formed a 

prominent part.  They were chosen by varying them systematically to give good agreement of 

the calculated dose with measured depth-dose curves.  Although this step was not physically 

exact, the empirical approach yielded satisfactory results. 

The equations (7) were solved using a series of transport sweeps (Lewis and Miller 

1984).  Within each iteration, a transport sweep was carried out for descending energy for 

each of the discrete ordinates.  The sweep proceeded in either the x-, y- or z- direction, 

depending upon which octant the discrete ordinate direction was located in.  If the voxels 

were indexed by i, j, k, bounded by x1/2, x3/2, …xI+1/2, y1/2, y3/2, …yJ+1/2, z1/2, z3/2, …zK+1/2, with 

dimensions: 

 

1/2 1/2 1/2 1/2 1/2 1/2, ,i i i j j j k k kx x x y y y z z z  + − + − + −= − = − = − ,    (10) 

 

integrating the transport equation over voxels and dividing by i j kx y z   , gave the 

relationship: 

 

( ) ( ) ( )

( ) ( ) ( )

scat scat scat scat scat scat

, 1/2, , 1/2, , 1/2, , 1/2, , 1/2 , 1/2

tot scat scat

e C,, , , , , , ,

n n n
n i jk n i jk ni j k ni j k nij k nij k

i j k

nijk nijk

x y z

x y z x y z Q x y z

+ − + − + −



− + − + −

+ =

  
     

  

  

  (11) 
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where n, n and n were the direction cosines of the discrete ordinates, n (Hensel et al 2006).  

The following relationship was used to relate the fluence at the centre of the voxel to that at 

the edge: 

 

scat scat

, 1/2,nijk n i jk+=  ,         (12a) 

scat scat

, 1/2,nijk ni j k+=  ,         (12b) 

scat scat

, 1/2nijk nij k+=  .         (12c) 

 

Note that this represented a hybrid scheme between the diamond difference relationship 

(Lewis and Miller 1984) and a step scheme: the fluence changed from the side of the voxel 

with the lower index 1 2i − , 1 2j − , 1 2k −  to the centre of the voxel and then levelled off 

to the side of the voxel with the higher index 1 2i + , 1 2j + , 1 2k + .  The standard transport 

sweep of Lewis and Miller (1984) was then used to solve for scattered fluence: 

 

( )

scat scat scat scat

, 1/2, , 1/2, , 1/2

scat

tot

e C,

2 2 2

2 2 2
, ,

n n n
n i jk ni j k nij k nijk

i j k

nijk
n n n

i j k

Q
x y z

x y z
x y z

− − −



+ + +

=

+ + +

  
  

  


  
 

  

.     (13) 

 

As the unscattered fluence remained constant, regardless of the scattering events taking place, 

this fluence was added to the scattered fluence after each iteration of equation (13): 

 

scat unscat

nijk nijk nijk= +   ,          (14) 

 

where 
scat

nijk  referred to the scattered fluence calculated from equation (13) and 
unscat

nijk  

referred to the unscattered fluence from equations (5) and (6).  The overall procedure was as 

shown in the pseudocode of figure 2. 

Figure 3 also illustrates the process of performing the transport sweep.  Multiple 

threads were used to carry out the sweeps for the different ordinates in parallel.  Within each 

thread, the sweeps were ordered in descending order of photon energy and in the cardinal 

directions of the patient coordinate system, in the order ±x, ±y, ±z.  Five iterations were found 
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to be sufficient to give convergence of the photon equations, corresponding to five scattering 

events for each particle. 

 

 

 

 

Figure 2.  Transport sweep for photons. 
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Figure 3.  Schematic illustration of the transport sweep for one discrete direction and energy 

ordinate in relation to the patient voxel grid.  Each directional sweep proceeded in the 

direction of decreasing particle energy, with the numerals indicating the order of calculation.  

For each voxel of the patient, the inflow was first calculated, then the fluence at the centre of 

the voxel (circled), which was the fluence actually used for the final dose calculation, then the 

outflow was calculated.  The inflow for the next voxel was identical to the outflow for the 

current voxel. 

 

 

2.4.  Electron transport 

Once the photon distribution was defined, the Compton cross sections were used to calculate 

the fixed electron sources for electron transport.  The electron fluence could then be 

calculated by solving the equations: 

 

( ) ( ) ( ) ( )e e e e e C,e e e

0 4

, , , , , ,E E E E d dE   


      



      =  Ω r Ω r Ω Ω r Ω Ω  

( ) ( ) ( )M

0 4

, , , ,e e e e e e e e e eE E E d dE





     +    r Ω Ω r Ω Ω  

( ) ( ) ( )c Mott e e e e e e e

4

, , , ,E E d  


  + r r Ω Ω r Ω Ω  

( ) ( ) ( )tot

e M e e e e, ,E E  − r r Ω  

( ) ( ) ( )tot

c Mott e e e e, , ,E E  − r r r Ω      (15) 
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where ( )c r  was the density of atomic cores at position r, ( )e e e, , E r Ω  was the electron 

fluence at position r, with direction eΩ and energy eE , ( )C,e e e, ,E E  
  Ω Ω  was the 

differential Compton scattering cross section of a photon travelling initially with energy E
  in 

direction 
Ω  and giving rise to an electron travelling with energy eE  and direction eΩ , 

( )M e e e e, ,E E   Ω Ω  was the differential Møller scattering cross section of an electron 

travelling initially with energy eE  in direction e
Ω  and finally with energy eE  and direction 

eΩ , ( )Mott e e e,E  Ω Ω  was the differential Mott scattering cross section of an electron 

travelling with energy eE , initially in direction e
Ω  and finally in direction eΩ , ( )tot

M eE  

was the total Møller scattering cross section for an electron travelling initially with energy eE , 

and ( )tot

Mott eE  was the total Mott scattering cross section for an electron travelling initially 

with energy eE  (Hensel et al 2006). 

The first integral of equation (15) was denoted by fix

nijkQ  and represented the fixed 

sources resulting from Compton interactions.  The sum of three integrals was denoted by 

nijkQ .  The differential scattering cross sections for electron scattering were singular at the 

angle of forward scattering, which was found to be problematic.  Forward scattering was 

therefore excluded from equation (15) on the basis that a forward scattering event could be 

considered as a continuation of the particle fluence, so-called streaming, thereby not 

contributing to scatter.  This was accomplished in practice in a similar manner to photons by 

zeroing the differential cross sections for 0  , where the value of θ0 was 1.0.  The total 

scattering cross sections (which were almost completely dominated by the forward scattering 

direction) were adjusted accordingly, as follows: 

 

tot 0

M M Mf=  ,           (16) 

 

where 0

M  was the calculated theoretical total cross section for Møller scattering and fM = 8.0 

× 10-5 was the correction factor.  Likewise, for Mott scattering: 

 

( ) ( )
( )tot 0

Mott Mott, Mott Mott,

, ,
, , , ,

w m

w m

A

A A x y z
x y z f x y z f

N

− 
= + 
 

      (17) 
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where ( )0

Mott , ,x y z  was the calculated theoretical total cross section for Mott scattering, 

fMott,w = 8.0 × 10-3 was a correction factor in water-equivalent material and fMott,m = 10.0 was a 

material correction factor, effective for materials of higher or lower density than water.  This 

factor therefore varied with material type.  The constant Aw was the atomic mass of water, Am 

was the atomic mass of the material at location (x, y, z) and NA was Avogadro’s number.  This 

yielded a corrected total scatter cross section ( )tot

Mott , ,x y z . 

The differential cross sections for Møller scattering were taken from equation 2.15 of 

ICRU37 (ICRU 1984), which was differential in energy, and then converted to differential in 

solid angle using the chain rule.  The total Møller scattering cross section was calculated by 

integrating the differential cross section with respect to energy.  The differential and total 

Mott scattering cross sections were taken from Hensel et al (2006), cross checked against 

ICRU28 (ICRU 1978) and also against the cross section differential in scattering angle cosine 

in the EGSnrc manual (Kawrakow et al 2019) with a change of variable to solid angle. 

Unlike the photon equations, where the distribution of unscattered fluence was known 

beforehand and therefore excluded from the solution of equation (13), in the solution of the 

electron equations, the fixed sources were added to the other scatter sources in the right hand 

side of equation (15).  Equation (15) was thus solved for the total electron fluence 

( ), ,nijk x y z  by means of an analogous equation to equation (13): 

 

( ) ( )

, 1/2, , 1/2, , 1/2

tot tot

e M Mott

2 2 2

2 2 2
, , , ,

n n n
n i jk ni j k nij k nijk

i j k

nijk
n n n

c

i j k

Q
x y z

x y z x y z
x y z

− − −+ + +

=

+ + + +

  
  

  


  
   

  

,     (18) 

 

As with photons, the integrals of equation (15) were handled as discrete sums over the 

discrete ordinates, analogous to equation (9).  Again, five transport sweeps were found to be 

sufficient for convergence.  Figure 4 summarizes the process. 
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Figure 4.  Transport sweep for electrons. 

 

 

2.5.  Proton transport 

For passive scattering, each beam was implicitly divided into 100 energy layers.  The fluence 

weights, ( )pE , were determined using the formula of Bortfeld and Schlegel (1996) for 

discrete energy layers, subsequently corrected by a factor ( )
0.7

d R , where d was the depth and 

R was the nominal range of the energy in question.  This corrected formula was found to be 

more accurate than the original formula when using real depth-dose curves rather than the 

simple analytical curves described by Bortfeld (1997).  These weights were then converted to 

monitor units by allowing for the in-air stopping power of the protons in the monitor chamber 

(Sahoo et al 2008, Zhu et al 2010, Clasie et al 2012).  With proton arcs, the arc segments 

were collected into groups, each group representing 20° of gantry arc, and the individual 

segments within each group were assigned specific energies, thereby forming energy layers. 

The three types of interactions of protons with matter (Newhauser and Zhang 2015) 

were dealt with as follows.  Due to the high mass of protons in comparison with electrons 

(1832 times the mass), the protons were considered to continue in approximately the same 
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direction during inelastic Coulomb interactions, so that the process could be represented by a 

continuous slowing down approximation (CSDA).  Inelastic nuclear interactions were 

represented as a linear loss of proton fluence in the fixed sources (Bortfeld 1997).  

Consequently the proton fluence in the presence of these two types of interaction could be 

handled as a fixed source for purposes of solving the linear Boltzmann transport equations.  

The LBTE were then used to solve for elastic Coulomb interactions with the atomic nucleus, 

Mott scattering.  Note that range straggling was considered in this approach to be a multiple-

scattering effect, so was not included in the fixed CSDA sources, but resulted naturally from 

the LBTE solution. 

For each of the 100 initial energies contributing to the spread-out Bragg peak, the 

energy with depth was calculated recursively as: 

 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 e, ,n n n n n n n ne e S e  + += − −r r r r r r r r      (19) 

 

where n indexed the voxels traced by the protons, nr  represented the position vector of voxel 

n, ( )ne r  was the energy of the protons at that location, 1n n+ −r r  was the equivalent path 

length of the protons between voxels indexed n and n+1.  ( )n r  was the mass density at 

voxel n and ( )e n r  was the electron density.  The corresponding fluence was calculated as: 

 

( ) ( ) ( )( ) ( ) ( )( )unscat tot

Mott2

1
, , , 1 ,p p p pE x y s x y E z E

z
=  − −    r r    (20) 

 

where the notation was the same as in equation (5).  The constant  = 5 × 10-4 represented the 

loss of proton fluence per unit radiological path length due to nuclear interactions and the 

constant τ = 1.0 × 10-3 represented the loss of fluence due to elastic scattering.  As with 

electron transport, singularities in the Mott cross sections were handled by zeroing the cross 

section for scattering angles with cosine greater than or equal to a threshold, θ0 = 1.0, and then 

reducing the total cross section accordingly.  This latter adjustment was carried out in an 

energy-dependent manner: 

 

( ) ( )tot 0

Mott Mott, ,p p low high

E e e
E E f f

E E
 

 −  
= +  

  
r r ,      (21) 
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where ( )0

Mott , pE r  was the calculated theoretical total cross section, e = 0…E-1 was the 

index of the energy quadrature, flow = 0.8 was the low-energy reduction factor and fhigh = 0.05 

was the high-energy reduction factor. 

The reduction in fluence represented by the final term in equation (20) then formed 

scattered fluence, for which the LBTE were as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

scat scat

c Mott

4

tot scat

c Mott

, , , , , ,

, , ,

p p p p p p p p p p p

p p p p

E E E d

E E



   = 

−

   

  

Ω r Ω r r Ω Ω r Ω Ω

r r r Ω

,  (22) 

 

and the integral term was denoted as scat

nijkQ .  The LBTE were then solved iteratively in the 

same manner as for photons in equations (13) and (14): 

 

( )

scat scat scat scat

, 1/2, , 1/2, , 1/2

unscat

tot

e C,

2 2 2

2 2 2
, ,

n n n
n i jk ni j k nij k nijk

i j k

nijk nijk
n n n

i j k

Q
x y z

x y z
x y z

− − −



+ + +

= +

+ + +

  
  

  
 

  
 

  

.    (23) 

 

 

2.6.  Absorbed dose 

Dose was calculated by summing the electron fluence (in the case of photon beams) or proton 

fluence (in the case of proton beams) from all discrete ordinates at a given energy, and then 

multiplying by the mass collision stopping power for that energy (Larsen et al 1997, Ma and 

Li 2011).  For photon beams: 

 

( )
( )

( ) ( )e e e e e

0 4

1
, , ,eD S E E d dE







    =  r r r Ω Ω
r

,      (24) 

 

which, in the discrete context of the calculations, was approximated as: 

 

( )
( )

( ) ( )e e e e

1 1

1
, , ,

e aN N

e

e n

D S E E
 = =

=  r r r Ω
r

.       (25) 
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Similarly, for protons: 

 

( )
( )

( ) ( )e

1 1

1
, , ,

e aN N

p p p p

e n

D S E E
 = =

=  r r r Ω
r

.       (26) 

 

The mass collision stopping power, Se, was obtained from the formula given in 

ICRU37 (equations 2.16 and 2.17) (ICRU 1984) with a correction for density effect according 

to Sternheimer et al (1983)  For simplicity, the material for the Sternheimer density effect was 

taken to be water throughout. 

For all of the dose calculation, the stoichiometric tissue conversion (Schneider et al 

1996, 2000) of Vanderstraeten et al (2007) was used.  Mass density was calculated using a 

lookup table for the CT scanner in use.  The Hounsfield numbers were used to categorize the 

tissue into one of 14 ranges, each range providing the relative proportion by mass of 12 

elements.  The atomic numbers and weights of these elements and their relative proportions 

were then used to calculate the electron and nuclear densities at each voxel and the scattering 

cross sections. 

 

2.7.  Inclusion of spatial uncertainty 

A simple means of robust treatment planning (Unkelbach et al 2018) was incorporated by 

considering the clinical target volume (CTV) to have a spatial probability distribution 

(Bedford et al 2019).  In practice, this was carried out by shifting the unscattered fluence in 

the opposite direction to the direction of target volume motion.  In each of the three 

orthogonal Cartesian directions in the patient coordinate system, a set of positions was 

specified, ranging from -16 mm to +16 mm in 2-mm steps, relative to the planned CTV 

position.  The operator then specified the probability of finding the CTV at each of these 

coordinates.  The probability of finding the CTV at coordinate (xi, yi, zi) was therefore given 

by: 

 

( ) ( ) ( ) ( ), ,i j k i j kp x y z p x p y p z= ,        (27) 

 

and a discrete uncertainty kernel was therefore constructed as a series of coordinates (xi, yi, zi) 

with corresponding probabilities ( ), ,i j kp x y z .  As this led to a combination of 4913 points, 
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which was computationally demanding, the kernel was resampled by casting the points onto a 

regular grid of resolution 2 mm and then selecting the voxels with the highest 64 intensities, 

with rescaling to ensure conservation of energy (Bedford et al 2019).  The result was a kernel 

consisting of 64 coordinates and probabilities.  Unscattered fluence was then distributed 

according to the relation: 

 

( ) ( ) ( )unscat unscat, , , , , ,ijk i j k i j kx x y y z z p x y z x y z+ + + =  ,     (28) 

 

where    referred to each of the four fluences in equation (6) in turn.  Thus, the calculated 

fluence of equation (5) (for photon beams) or (20) (for proton beams) was distributed over the 

appropriate angular ordinates of equation (6) and voxels of equation (28).  Note that this 

approach produced a single expectation value for the dose distribution, as opposed to a range 

of discrete scenarios, which would take too long to calculate in the present context. 

 

2.8.  Adaptive patient model 

The LBTE were solved on a regular Cartesian grid of resolution 2.5 mm × 2.5 mm × 2.5 mm.  

The dose calculation grid itself was adaptive.  The unscattered fluence within each cluster of 4 

× 4 × 4 voxels was evaluated and if less than a given percentage of the maximum unscattered 

fluence, that cluster of voxels was combined into a single voxel of dimensions 10 mm × 10 

mm × 10 mm.  For photons, the threshold was 20% and for protons, the threshold was 5%.  

The accuracy of calculation was not very sensitive to the choice of threshold, but selecting a 

threshold too low caused high dose resolution to be used throughout the patient, thereby 

taking additional calculation time, and a value too high caused that the low resolution was 

used too close to the high-dose region, thereby affecting the visualisation of dose fall-off.  

This latter situation was prone to occur with protons at the distal edge of the spread-out Bragg 

peak, so the lower threshold of 5% was used with protons.  The inflowing fluences to such an 

adaptive voxel, i.e. , 1/2,n i jk − ,  , 1/2,ni j k −  and  , 1/2nij k −  were calculated by taking the mean of 

the outgoing fluences from the previous 16 separate voxels abutting this voxel.  The outgoing 

fluences from the adaptive voxel, i.e. , 1/2,n i jk +  , 1/2,ni j k +  , 1/2nij k +  in equation (12), to the 16 

following voxels were all replicated from the single value calculated for the large adaptive 

voxel.  In the event that multiple adaptive voxels were adjacent, which was commonly the 

case, the transport proceeded normally between them as in the normal voxels. 

 



Bedford                 Discrete ordinates for photons and protons  21 

2.9.  Implementation 

The above scheme was incorporated into a simple evaluation environment enabling the 

visualisation of the particle fluences and the resulting absorbed dose.  It was also operated as 

a dose calculation in the AutoBeam (v6.0) in-house treatment planning system (Bedford 2009, 

2013).  The software was written in multithreaded Java for speed and cross-platform 

portability, and was operated on a SPARC T4 server (Sun Microsystems, Oracle Corporation, 

Reading, UK) with 128 hyperthreads and 128 GB memory. 

The eventual goal of this work was to use the LBTE solver in the context of the 

inverse planning optimizer.  For photons, the dose distributions were therefore compared with 

those produced by the fast convolution algorithm already implemented in the AutoBeam 

environment (Bedford 2002).  The convolution algorithm had previously been validated and 

used routinely for production of clinical VMAT plans (Bedford et al 2008).  For protons, the 

comparison algorithm was a modified version of the analytical algorithm by Bortfeld 

(Bortfeld and Schlegel 1996, Bortfeld 1997).  In particular, range straggling was included at 

radiological depth r by averaging three dose values: 

 

( ) ( ) ( ) ( ) 3D r d r d r d r= − + + +    ,       (29) 

 

where ( )D r  was the total dose and ( )d r  was the value using the method described by 

Bortfeld (Bortfeld and Schlegel 1996, Bortfeld 1997).  The value of Δ was chosen empirically 

as 1.0 mm. 

 

2.10.  Validation 

Basic validation was performed by comparing depth doses and profiles between the LBTE 

solver and convolution in the case of photon beams and between the LBTE solver and the 

analytical algorithm in the case of proton beams.  For photons, this was performed for a 100 

mm × 100 mm photon beam with 1000 mm source-to-axis distance and 850 mm source-to-

surface distance.  For protons, a 100 mm × 100 mm beam passively scattered beam was used 

with 2300 mm source-to-axis distance and 2150 mm source-to-surface distance.  The proton 

beam energy ranged from 115 MeV to 174 MeV so as to provide a spread-out Bragg peak 

from 100 mm to 200 mm depth.  Field size tests using fields from 20 mm × 20 mm to 200 mm 

× 200 mm were also performed but are not described here in the interests of brevity.  

Likewise, a 100 mm × 100 mm × 300 mm inhomogeneity was introduced into a 300 mm × 
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300 mm × 300 mm phantom and assigned densities from 0 gcm-3 (vacuum) through 0.23 gcm-

3 (lung), 1.51 gcm-3 (dense bone) to 4.50 gcm-3 (titanium) to assess the dose calculation in 

heterogeneous media, but these tests are not discussed further.  In the presentation of results, 

absorbed dose was normalised such that the overall maximum dose in the complete three-

dimensional LBTE solution was designated 100% and the convolution or analytical solution 

was normalised by the same factor to ensure preservation of the relative magnitude of the two 

methods. 

In order to ensure that the scheme was converging completely, the evolution of 

particle fluence was observed for each type of particle: photons, electrons and protons.  The 

fluence directions at 0° and 90° to the beam axis of a single 100 mm × 100 mm beam were 

chosen for this purpose.  The beam was directed to a water-equivalent phantom of dimensions 

300 mm × 300 mm × 300 mm, and also to a lung-equivalent phantom (mass density 0.25 gcm-

3) and a bone-equivalent phantom (mass density 1.3 gcm-3), so as to consider the main types 

of tissue likely to be encountered practically.  The dose calculation was run for 10 iterations 

in each case, and the fluence relative to that of the final iteration was examined at the centre 

of the beam and phantom, 150 mm deep.  In the case of the proton beam, the beam energy 

spectrum was varied according to the material density so as to maintain a spread-out Bragg 

peak from 100 mm to 200 mm depth. 

To assess the adequacy of the relatively simple angular quadrature used in this work, 

the dose was calculated using the quadrature described above (section 2.2) and then compared 

with that calculated using a more comprehensive quadrature.  This consisted of the same 

coordinate system as in section 2.2 but used ordinates in both couch and gantry angle at 10° 

separation.  The ordinates were weighted according to the solid angle that they occupied in 

angular space (see figure 1).  Thus, they were weighted equally in couch angle but weights in 

gantry angle were set according to: 

 

( ) ( )0, sinw c g w g= ,          (30) 

 

where c and g were the couch and gantry angles, in radians, of the ordinates, respectively, and 

w0 was the solid angle subtended by the ordinates with gantry angle 2 : 

 

2

0

2
w

CG


= ,           (31) 
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where C (=18) was the number of couch ordinates and G (=36) was the number of gantry 

ordinates.  With the more comprehensive quadrature, the remaining details were identical to 

those given above, except for using θ0 = 0.97, 
C,f 

= 7.5 and tot

C,f   = 3.5 for photons, θ0 = 0.97, 

fM = 4.0 × 10-4 and fMott,w = 4.0 × 10-3 for electrons and θ0 = 0.93,  = 2.0 × 10-4 and τ = 1.5 × 

10-3 for protons. 

 

2.11.  Treatment plans 

Finally, the performance of the LBTE solver was evaluated by producing treatment plans for 

a demanding tumour environment.  This typically occurs in the treatment planning of lung 

patients, so the CT scan of a lung patient from a clinical trial of SPECT lung perfusion in 

radiotherapy (Weller et al 2019) was retrospectively used for this study.  The margin from the 

gross tumour volume (GTV) to the CTV was 5 mm.  A further margin of 5 mm from the CTV 

to the planning target volume (PTV) was used.  The PTV had a volume of 95.7 cm3. 

Three types of treatment plan were produced: photon VMAT, proton passive 

scattering and proton arcs.  The dose prescription was a median of 64 Gy in 32 fractions to the 

PTV.  The isocentre was positioned at the centre of the PTV and a single coplanar 

counterclockwise arc was used to create the photon treatment plan. The gantry angle ranged 

from 179° to 339° i.e. 200° of arc with 4° control point spacing, giving 51 control points.  

Collimator angle was fixed at 2°.  For the passive scattering proton treatment plans, four fixed 

beams were used, for delivery with passive scattering.  Gantry angles were 135°, 90°, 45° and 

0°.  In this case, the range of energies used for each beam was calculated according to the 

minimum and maximum equivalent path length encountered across the PTV, and a range 

shifter was used to adapt the isodoses to the distal contour of the PTV.  For proton arc 

planning, the same gantry angles were used as for photons.  The plans were created using the 

standard algorithms available within AutoBeam (see section 2.9) and recalculated using 

LBTE for comparison purposes.  The plans were evaluated using dose-volume histograms. 

The general performance of the LBTE algorithm was also assessed by comparing 

LBTE with Monte Carlo simulation for a prostate plan a lung plan, both plans using photon 

IMRT.  These plans were previously used for a comparison of tumour tracking technologies 

and the Monte Carlo dose distributions were also previously reported (Bedford et al 2022).  

Further details of the plans and the phase space model are given in that publication. 
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3.  Results 

3.1.  Basic validation 

Examples of the agreement between the dose distributions produced by the LBTE solver and 

convolution are shown for a photon beam in Figure 5.  The agreement between the two 

methods is generally within 2% except in the high-dose gradients and out-of-field region.  

The convolution approach has limited accuracy in the buildup region due to its discrete scatter 

kernel and in the out-of-field region due to its use of a uniform transmission value (Bedford 

2002).  Figure 5c also shows the effect of varying the parameters 0

C,f  , 
C,f 

 and tot

C,f   by a 

factor of two.  These factors principally affect the gradient and curvature of the depth-dose 

curve.  The dose distribution is not very sensitive to these parameters. 

The corresponding comparison for proton beams is shown in Figure 6.  In general, the 

agreement is within 2% with the exception of the distal edge of the spread-out Bragg peak.  

Here the range of the beam varies by approximately 3 mm between the two calculations, 

which could be clinically significant, although both methods attain zero at the same depth.  

The difference in range is therefore due to a difference in steepness of the distal edge, the 

accuracy of which is limited by the 2.5 mm voxel size.  The impact of varying factors λ and τ 

of equation (20) is also shown in figure 6c.  The factor λ has a gentle effect along the whole of 

the depth dose curve, where non-elastic scattering takes place, whereas τ has a preferential 

effect near to the distal edge of the depth dose, where elastic scattering is dominant.  The dose 

distribution is comparatively sensitive to these factors, but they are robust.  In other words, 

once chosen, they are suitable for use in a variety of beam sizes and materials. 

Computation time is in the order of 2-5 minutes for calculation of a photon beam or 

proton beam, depending on the dose grid size and resolution.  There is a slight dependency on 

the number of beams and segments in the treatment plan being calculated due to the time 

taken to calculate fixed sources, but the overall time is almost unaffected as the transport 

sweeps are similar, regardless of the initial unscattered fluence. 
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Figure 5.  Photon validation.  (a) Depth dose and (b) profile at isocentric depth 150 mm for 

discrete ordinates (DO) and convolution (Conv).  The difference between the two curves as a 

percentage of local dose is also shown (Diff).  (Some of the percentage differences at low 

dose are high so the scale is not extended to include them.)  (c) Depth dose showing the 

impact of varying 
C,f 

, 
0

C,f   and 
tot

C,f  .  Each factor is reduced by 50% in turn and compared 

against the standard set of factors 
C,f 

= 10.0, 
0

C,f   = 2.0, 
tot

C,f   = 3.0 (STD, same curve as DO 

in (a)). 
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Figure 6.  Proton validation.  (a) Depth dose and (b) profile at isocentric depth 150 mm for 

discrete ordinates (DO) and an analytical method (Anal).  The difference between the two 

curves as a percentage of local dose is also shown (Diff).  (Some of the percentage differences 

at low dose are high so the scale is not extended to include them.)  (c) Depth dose showing the 

impact of varying λ and τ of equation (20).  Each factor is reduced by 10% in turn and 

compared against the standard set of factors λ = 0.0005 and τ = 0.001 (STD, same curve as 

DO in (a)). 

 

3.2.  Convergence 

The convergence of the discrete ordinates scheme is shown in Figure 7 for photons, electrons 

and protons in several materials.  In general, the development of fluence at 90° to the beam 

requires more iterations than development of fluence at 0° to the beam due to the larger 

number of scattering events required for the larger angle.  With photons, a higher-density 

material takes longer to converge, with electrons, a lower-density material takes longer to 

converge, and with protons, the density has little effect on convergence.  Note that at gantry 

90°, the fluence is approximately one order of magnitude lower than at 0° for all of the types 

of transport, thereby having a correspondingly small impact on final computed dose.  Thus, in 

the case of protons, convergence of the 90° fluence to 90% of its final value is sufficient to 
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provide absorbed dose within 1% of the converged value.  Continuing to iterate for longer is 

undesirable in terms of computational time, particularly in the inverse planning context. 

 

 

 

Figure 7.  Examples of convergence for photons, electrons and protons.  The chosen number 

of five iterations is shown in each case by the dotted line. 

 

 

 

 

 



Bedford                 Discrete ordinates for photons and protons  28 

3.3.  Angular quadrature 

Figure 8 shows the depth dose curve and profile when the number of angular ordinates is 

increased.  Generally the result is very similar to when using the standard angular quadrature.  

Some differences are observed around the depth of maximum dose in the depth dose curve 

and in the in-field region of the profile.  The out-of-field differences in the profile are 

considered to be primarily due to the limited accuracy of the convolution model.  The 

calculation time in this case was around 18 hours, the increased number of angular ordinates 

having a considerable impact on computational time and memory resources used. 

 

 

 

Figure 8.  Increased number of angular ordinates in calculation of a photon beam.  (a) Depth 

dose and (b) profile at isocentric depth 150 mm for discrete ordinates using fine (FINE) or 

standard (STD) quadrature.  The difference between the two curves as a percentage of local 

dose is also shown (Diff).  (Some of the percentage differences at low dose are high so the 

scale is not extended to include them.)  The differences in the profile (b) beyond ±75 mm are 

due to the use of a narrower phantom for the fine quadrature. 
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Figure 9 shows the corresponding comparison for a proton beam.  The proton range 

with fine quadrature is slightly lower than with standard quadrature, so that the overestimation 

of range seen in figure 6 is corrected.  The resulting distal edge of the spread-out Bragg peak 

for the LBTE solution is in good agreement with that of the analytical model, except for a 

difference of around 5% in the final 10 mm of the high-dose region.  The profiles produced by 

the LBTE and analytical models are within 1%. 

 

 

 

 

 

Figure 9.  Increased number of angular ordinates in calculation of a proton beam.  (a) Depth 

dose and (b) profile at isocentric depth 150 mm for discrete ordinates using fine (FINE) or 

standard (STD) quadrature.  The difference between the two curves as a percentage of local 

dose is also shown (Diff).  (Some of the percentage differences at low dose are high so the 

scale is not extended to include them.) 
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3.4.  Lung treatment plans 

Dose-volume histograms for the photon treatment plan, as calculated by convolution and 

discrete ordinates, are shown in Figure 10a.  The inset to this figure shows the transaxial dose 

distribution calculated by discrete ordinates.  The doses to the organs at risk are similar for the 

two calculation methods, but the dose to the GTV and PTV vary.  The convolution method 

shows good homogeneity in target dose, but the coverage is found to be not so high when the 

final dose is recalculated with the Boltzmann solver.  This is a result of the more 

comprehensive treatment of the inhomogeneities by the Boltzmann solver, in comparison to 

the use of spatially invariant scatter kernels in the convolution calculation. 

Similar results are observed in the dose-volume histograms for passively scattered 

protons (Figure 10b) as with photons.  In this case, the comparison calculation is relatively 

simple, so the PTV dose appears very homogeneous centrally, with a loss of dose peripherally 

due to the motion modelling.  When the final dose calculation is carried out with the 

Boltzmann solver, the PTV dose distribution is different, with much of the GTV and PTV 

receiving a lower dose. 

With proton arcs (figure 10c), the effect is also seen.  The simple algorithm produces a 

homogeneous dose distribution in the PTV, but the heterogeneity is found to be slightly 

greater when the final dose distribution is calculated with the Boltzmann solver and the 

median doses to the PTV and GTV are lower.  This indicates that an improvement in the final 

dose distribution might be obtained by using the Boltzmann solver throughout the 

optimization. 
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Figure 10.  Cumulative dose-volume histograms for the lung treatment plans using (a) photon 

VMAT, (b) passive scattered protons, and (c) proton arcs, with discrete ordinates calculation 

(DO, solid lines) and convolution (Conv, dotted lines) or an analytical method (Anal, dotted 

lines).  The discrete ordinates plans are prescribed such that the PTV median dose is 64 Gy in 

32 fractions, and the convolution and analytical plans are calculated for the same monitor 

units as the discrete ordinates plans.  The transaxial discrete ordinates dose distribution is 

shown on the right for each type of treatment plan. 
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The comparison of LBTE with Monte Carlo simulation is shown in figure 11.  The 

results shown are for equal monitor units.  The difference in PTV dose between the two 

algorithms for the prostate case is approximately 3% and the difference in organ at risk dose 

is similar in magnitude.  (The difference in dose to penile bulb is due to the field edge in 

relation to the small organ volume rather than due to differences in particle transport.)  For the 

lung case, both LBTE and Monte Carlo simulation are in agreement to within around 3%.  

The dose to spinal cord differs by around 3 Gy. 

 

 

 

Figure 11.  Cumulative dose-volume histograms for (a) a prostate photon treatment plan, and 

(b) a lung photon treatment plan, calculated using discrete ordinates (DO, dotted lines) and 

Monte Carlo simulation (MC, solid lines). 
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4.  Discussion 

This study shows the possibility of implementing a discrete ordinates Boltzmann solver that is 

compatible with dose calculation algorithms used in the context of inverse planning.  The 

LBTE solver is shown to be sufficiently accurate and fast for this application, thereby 

facilitating the eventual goal of using LBTE within the optimizer itself, so as to provide 

optimum inverse planning solutions. 

The source models for both photons and protons are comparable to those described in 

the literature (Fix et al 2001, Aboulbanine and El Khayati 2018).  It should be emphasised 

that the accuracy of every advanced dose calculation algorithm depends on an accurate 

representation of the particle fluence from the accelerator.  For the case of photons, an 

evaluation of the source model used in this work has been carried out previously (Bedford et 

al 2022).  With regard to the LBTE solver itself, there are some limitations as it is currently 

implemented.  In particular, for photon calculations, the electron transport is treated as 

consisting of discrete Møller and Mott scattering cross sections, whereas a more accurate 

treatment can be obtained using multiple scattering theory (Goudsmit and Saunderson 

1940a,b, Kadri et al 2009), corresponding to condensed history methods in Monte Carlo 

simulation.  There is therefore scope for further work in this area. 

Estimating the accuracy of the cross sections used in the model is not straightforward.  

However, ICRU report 46 (ICRU 1992) tabulates quantities which use these formulae, with 

stated uncertainty of 1% for photon mass attenuation coefficients, 1-2% for electron collision 

stopping powers and 1-2% for proton mass stopping powers, at the energies relevant to this 

work.  ICRU report 37 (ICRU 1984) also quotes an uncertainty of 1-2% for electron collision 

stopping powers derived from the same formulae as used in this study, and ICRU report 49 

(ICRU 1993) gives the uncertainty in proton mass stopping power as 1-2% for elements and 

1-4% for compounds.  Thus, the cross sections used in this study are considered to be accurate 

to within around 2%. 

  In connection with the electron cross sections, the inclusion of the shielding effect 

produced by the outer orbital atomic electrons could be included in the cross section, thereby 

removing the singularity at the forward direction.  However, there are two reasons for not 

pursuing this in the work so far.  The first is that multiple scattering theory is likely to have a 

greater impact on the accuracy than the shielding effect.  Secondly, it is still necessary in the 

context of inverse planning to separate out forward scattering so as to avoid having to use a 

highly structured, and therefore computationally demanding, angular quadrature. Likewise, it 
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is possible that the continuous slowing down approximation used for the proton transport can 

be more accurately handled by including it into the Boltzmann solver itself as a series of 

interactions.  This is beyond the scope of the present work, although an interesting possibility 

for further work.  Direct comparisons with Monte Carlo simulation are limited in this study 

because there are already many comparisons in the literature (Bedford 2019, Han et al 2011, 

Hoffmann et al 2018). 

Another limitation of the LBTE solver is that photoelectric and pair production 

interactions are currently not implemented.  For water-equivalent materials in the 1-10 MeV 

energy range used in this study, these interactions are negligible.  Below this energy range, 

photo-electric effect increases significantly, and at higher energies, pair production increases 

significantly.  Both of these types of interaction increase strongly with atomic number, so it is 

important to consider them when calculating dose in and around metals such as prostheses.  In 

the present implementation of the Boltzmann solver, it is necessary to avoid beam entry 

through prostheses. 

The dose calculation time is currently in the order of several minutes for a typical 

patient dataset with calculation on a dose grid of resolution 2.5 mm × 2.5 mm × 2.5 mm, 

when run on the current SPARC architecture.  However, this architecture uses a 

hyperthreaded approach in which there are 128 threads of execution, but only 8 floating point 

units.  This does not equate to 128 CPU cores, but depends somewhat on what tasks are 

required at each time instant, in practice achieving about the same speed as an 8-core Intel 

processor.  It is expected that an order of magnitude improvement in speed can be obtained 

using the latest CPUs, and as the current code is written in multithreaded Java, transfer to an 

alternative platform is trivial.  Implementation of the Boltzmann solver on a Graphics 

Processing Unit (GPU) is also a possibility, which should increase the performance 

considerably.  The main limitations are likely to be that the transport sweeps are inherently 

sequential, with higher energy particles considered before lower energy particles, and 

upstream particles before downstream particles, so the parallelisation should be applied within 

each sweep rather than over sweeps. 

A limited means of introducing robustness into the inverse planning process has been 

included by using the simple motion convolution model in the calculation.  This is beneficial 

for both photons and protons, but particularly so for the latter, where range uncertainty can 

produce significant dose artefacts (Seco et al 2012).  It is recognized that position uncertainty 

can be handled more comprehensively, but it is thought that the simple approach is sufficient 

for the present context, where inclusion of the LBTE into the inverse planning process is the 
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focus.  The dose distributions shown in the results section include the impact of the 

uncertainty modelling, thereby indicating the practical reality of the treatment plan. 

The differences in the dose distribution resulting from the use of the Boltzmann solver 

for the final dose calculation in inverse planning indicate that some benefit might be obtained 

by using the LBTE solver throughout the inverse planning process rather than purely at the 

end.  In this way, the final dose distribution should reflect the more accurate dose distribution 

that is used throughout the process.  Work is in progress to develop this improvement in 

accuracy. 

 

5.  Conclusions 

A discrete ordinates Boltzmann solver is sufficiently accurate and fast to apply to 

inverse planning for both photons and protons.  The simple algorithm used in this study 

separates particle streaming from the remaining transport, thereby facilitating the use of a 

relatively simple angular quadrature.  This approach is shown to converge reliably in several 

iterations of the transport sweep, and to give results which are comparable to those using a 

more extensive angular quadrature.  Furthermore, the algorithm is consistent with a 

convolution algorithm for photons, or an analytical model for protons.  For the lung case 

considered in this study, where the tumour environment is inhomogeneous, an application of 

the solver at the end of inverse planning shows the dose distribution to be suboptimal in 

comparison with the dose distribution obtained with a simple dose calculation throughout 

inverse planning.  Application of the Boltzmann solver at intervals throughout the inverse 

planning is therefore worthy of investigation. 
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