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Summary
Evidence linking coding germline variants in breast cancer (BC)-susceptibility genes other than BRCA1, BRCA2, and CHEK2with contra-

lateral breast cancer (CBC) risk and breast cancer-specific survival (BCSS) is scarce. The aim of this study was to assess the association of

protein-truncating variants (PTVs) and rare missense variants (MSVs) in nine known (ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2,

RAD51C, RAD51D, andTP53) and 25 suspected BC-susceptibility geneswith CBC risk and BCSS. Hazard ratios (HRs) and 95% confidence

intervals (CIs) were estimated with Cox regression models. Analyses included 34,401 women of European ancestry diagnosed with BC,

including 676 CBCs and 3,449 BC deaths; the median follow-up was 10.9 years. Subtype analyses were based on estrogen receptor (ER)

status of the first BC. Combined PTVs and pathogenic/likely pathogenic MSVs in BRCA1, BRCA2, and TP53 and PTVs in CHEK2 and

PALB2 were associated with increased CBC risk [HRs (95% CIs): 2.88 (1.70–4.87), 2.31 (1.39–3.85), 8.29 (2.53–27.21), 2.25

(1.55–3.27), and 2.67 (1.33–5.35), respectively]. The strongest evidence of association with BCSS was for PTVs and pathogenic/likely

pathogenic MSVs in BRCA2 (ER-positive BC) and TP53 and PTVs in CHEK2 [HRs (95% CIs): 1.53 (1.13–2.07), 2.08 (0.95–4.57), and

1.39 (1.13–1.72), respectively, after adjusting for tumor characteristics and treatment]. HRs were essentially unchanged when censoring

for CBC, suggesting that these associations are not completely explained by increased CBC risk, tumor characteristics, or treatment.

There was limited evidence of associations of PTVs and/or rare MSVs with CBC risk or BCSS for the 25 suspected BC genes. The CBC

findings are relevant to treatment decisions, follow-up, and screening after BC diagnosis.
Introduction

Breast cancer (BC [MIM: 114480])-susceptibility genes may

modulate BC prognosis. Studies of unselected young
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women diagnosed with invasive breast tumors showed

worse survival for BRCA1/2 (BRCA1 [MIM: 113705];
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non-carriers.1,2 On the other hand, a large meta-analysis
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concluded that differences in breast cancer-specific survival

(BCSS) by carrier status in the adjuvant setting are likely to

be small.3 Poorerprognosishas alsobeen reported incarriers

of the CHEK2 (MIM: 604373) c.1100delC variant4–6 (Gen-

Bank: NM_007194.4) (p.Thr367fs*15) and of some patho-

genic PALB27,8 (MIM: 610355) variants. Evidence linking

other putative BC-risk genes with prognosis is scarce.

Germlinegeneticvariants couldaffectprognosis bypredis-

posing to an aggressive BC subtype, by impairing BC treat-

ment response, or by increasing the risk of a second primary

BC.1,9–13 These variants could also influence immune re-

sponses to the tumor.14–17 Recently, a large study,18
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BRIDGES, investigated coding germline genetic variants in

apanelof34genes,providing strongevidence for association

with nine of these genes with risk of developing a first

primary BC. Using the BRIDGES data, we mainly aimed to

investigate the association of protein-truncating variants

(PTVs) and rare missense variants (MSVs) in the nine

known BC-susceptibility genes (ATM [MIM: 607585],

BARD1 [MIM: 601593], BRCA1, BRCA2, CHEK2, PALB2,

RAD51C [MIM: 602774], RAD51D [MIM: 602954], and

TP53 [MIM: 191170]) with BCSS andwith risk of developing

a contralateral breast cancer (CBC). Our secondary goal was

to evaluate the evidence of associations of PTVs and rare
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MSVswithCBC risk andBCSS in the remaining 25 suspected

BC-risk genes on the BRIDGES panel.
Material and methods

Study sample
We selected women of European ancestry from studies partici-

pating in the Breast Cancer Association Consortium (BCAC). In

particular, ancestry was defined on the basis of array genotype

data if available,19 or self-reported. Women were included if diag-

nosed with a primary invasive BC without known distant metasta-

ses, were between 18 and 79 years of age (median: 56; interquartile

range [IQR]: 48–64) in the period 1942–2018 (median: 2003; IQR:

1999–2006), and had available information on vital status and

number of years from diagnosis to last follow-up. Our final study

sample consisted of 34,401 women from 34 BCAC studies

(Tables S1, S2, and S3): 28 population or hospital-based and six

family or clinical genetic center based.

Information on tumor characteristics, pathology, CBC, survival,

and treatment was collected by individual studies, pooled, and

harmonized (BCAC database: version 13, November 2020). The

BCAC database did not include information about preventive

contralateral mastectomy and oophorectomy.

All studies were approved by the pertinent ethics committees

and informed consent was obtained from all study participants.
Sequencing and variant classification
DNA of participants was collected through the individual studies

and collated for panel sequencing. Laboratory methods, including

calling and classification of PTVs and MSVs, have been described

elsewhere.18
Statistical analyses
Statistical analyses were performed by gene, for PTVs in aggregate

and rare MSVs (allele frequency < 0.001)18 in aggregate. More spe-

cifically, individual study subjects were considered as carriers of

PTVs in a given gene if they carried at least one PTV in that given

gene. The same was done for rare MSVs. Carriers of PTVs in a given

gene were excluded from the analyses of rare MSVs of that specific

gene. In addition, MSVs in aggregate in BRCA1, BRCA2, and TP53

determined to be likely pathogenic, as previously described,18

were also analyzed (supplemental methods). For BRCA1, BRCA2,

and TP53 pathogenic/likely pathogenic MSVs were combined

with PTVs in the analyses. This was done in consideration of the

previous evidence that pathogenic/likely pathogenic MSVs in

BRCA1 and BRCA2 have similar BC risk as PTVs,18 while MSVs in

TP53 are well established to contribute to risk.20

Missing values in clinical and pathological variables related to the

first BC (Table S4) were imputedwith theMICE R package (v.3.13.0).

Details are provided in the supplemental methods and Table S5.

The primary outcomes were time to development of a CBC and

BCSS (time to death due to BC). Overall survival (time to death due

to any cause) analyses were performed as sensitivity analyses

because several genes on the BRIDGES panel are associated with

different cancers or other diseases.18

We used delayed-entry Cox regressionmodels stratified by coun-

try to estimate hazard ratios (HRs) and 95% confidence intervals

(CIs) and we performed them by using the R package ‘‘sur-

vival.’’21,22 Standard errors of the HR estimates were re-computed

on the basis of the likelihood ratio test statistic.23
The Ameri
CBC risk analyses were based on women with known CBC status

and, for women who developed a CBC, time from diagnosis of the

first BC to CBC. In particular, women with missing time from first

BC to CBC diagnosis (43 out of the 1,523 CBCs reported in

Table S4), womendiagnosedwith aCBCwithin 3months after diag-

nosis of the first BC (492 out of 1,523), andwomenwhodeveloped a

CBC before study entry (312 out of 1,523) were excluded from the

CBC risk analyses. All CBCs were considered, including invasive

(70.7%), in situ (10.9%), and those with unknown invasive versus

in situ status (18.3%). For these analyses, time at risk started either

at3monthsafter thediagnosisof thefirstBCorat studyentry if study

entrywasmore than 3months after the diagnosis of the first BC and

ended at time of CBC, death, or last follow-up, whichever camefirst.

For BCSS and overall survival analyses, time-to-event started at

diagnosis of the first BC and ended at time of death or last

follow-up; time at risk started at study entry if this was after diag-

nosis of a first BC. For BCSS analyses, women who died from un-

known cause or cause other than BCwere censored at time of death

or otherwise at last follow-up. Additional BCSS analyses were per-

formed where women diagnosed with a CBC were censored at

time of CBC diagnosis. Women known to have developed a CBC

before study entry were excluded from the main survival analyses.

Main CBC risk and BCSS analyses were also performed by estro-

gen receptor (ER) status of the first BC. Subtype analyses included

only women with non-missing ER status. Heterogeneity of HR es-

timates by ER status was tested, as explained in the supplemental

methods.

In addition to the unadjusted analyses, comparing carriers to

non-carriers of PTVS or rare MSVs in a given gene, adjusted ana-

lyses were performed including age at diagnosis and characteristics

of the first BC and systemic treatment as covariates. In particular,

systemic treatment was defined as having received endocrine ther-

apy, any kind, (yes versus no), trastuzumab (yes versus no), and

neo-adjuvant and/or adjuvant chemotherapy (yes versus no).

The aim of the adjusted analyses was to assess to what extent

the impact of PTVs or rare MSVs in a given gene on CBC risk

and survival could be explained through other established prog-

nostic factors. We performed these analyses on imputed covariates

to keep the same sample size.

For each gene, the set of non-carriers includedwomenwhodidnot

carry any of the identified PTVs or rareMSVs for that specific gene, ir-

respective of whether they were carriers of a PTV or rare MSV in any

other gene. ForCBC risk, sensitivity analyseswere performed restrict-

ing the set of non-carriers to thosewomenwhodid not carry PTVs in

any of the nine main BC-susceptibility genes or pathogenic/likely

pathogenic MSVs for BRCA1, BRCA2, and TP53. Since early age at

onset has been shown to influence CBC risk in BRCA1/2 and TP53

carriers,24–26unadjustedCBCrisk analyseswereperformed separately

for combined PTVs and pathogenic/likely pathogenic MSVs in

BRCA1, BRCA2, and TP53 within subgroups of women diagnosed

with first BC at age younger than 40 years and at age equal to or older

than 40 years. Heterogeneity of HR estimates by age at onset of first

BC was tested as explained in the supplemental methods.

Additional sensitivity analyses were performed with data from

cohort, population-based, and hospital-based studies, excluding

studies that selected women with family history of BC or women

from studies that partially selected individuals with family history

of BC (Table S1).

CBC cumulative incidence estimates for the nine known BC-

susceptibility genes, allowing for competing risk of death (Figures 2

and S1), were computed as specified in the supplemental methods.

Kaplan-Meier curves for BCSS are shown in Figure S2.
can Journal of Human Genetics 110, 475–486, March 2, 2023 477



Table 1. Association of protein-truncating variants in nine breast cancer genes and of pathogenic/likely pathogenic rare missense
variants in BRCA1, BRCA2, and TP53 with risk of contralateral breast cancer

Gene Unadjusted analyses Adjusted analysesa No. of women No. of CBC

PTVs (unless
indicated
otherwise) HR (95% CI) p HR (95% CI) p Non-carriers Carriers Non-carriers Carriers

ATM 1.13 (0.50–2.58) 7.7E�01 1.17 (0.51–2.70) 7.1E�01 30,399 229 670 6

BARD1 1.97 (0.42–9.27) 3.9E�01 1.89 (0.40–8.85) 4.2E�01 30,577 51 674 2

BRCA1b 2.84 (1.71–4.72)* 5.7E�05* 2.88 (1.70–4.87)* 8.8E�05* 30,298 330 655 21

BRCA2b 2.31 (1.39–3.82)* 1.2E�03* 2.31 (1.39–3.85)* 1.3E�03* 30,208 420 656 20

CHEK2 2.24 (1.55–3.25)* 1.8E�05* 2.25 (1.55–3.27)* 2.2E�05* 29,972 656 638 38

c.1100delC 2.42 (1.63–3.59)* 1.2E�05* 2.43 (1.63–3.62)* 1.5E�05* 29,972 530 638 34

Other 1.40 (0.49–3.94) 5.3E�01 1.40 (0.49–3.96) 5.3E�01 29,972 126 638 4

PALB2 2.63 (1.32–5.24)* 6.0E�03* 2.67 (1.33–5.35)* 5.6E�03* 30,428 200 665 11

RAD51C 2.20 (0.46–10.58) 3.3E�01 2.21 (0.46–10.72) 3.2E�01 30,591 37 674 2

RAD51D 1.68 (0.20–14.12) 6.4E�01 1.47 (0.18–11.93) 7.2E�01 30,599 29 675 1

TP53b 7.98 (2.46–25.89)* 5.4E�04* 8.29 (2.53–27.21)* 5.1E�04* 30,587 41 671 5

Abbreviations: No., number; CBC, contralateral breast cancer; PTVs, protein-truncating variants; HR, hazard ratio; CI, confidence interval; p, p value. Analyses
included women from 32 studies with information about contralateral breast cancer diagnosis. Statistically significant associations (p < 5E�02) are denoted
with an asterisk.
aWe performed adjusted analyses by including age at diagnosis, nodal status, size category, grade, estrogen receptor (ER) status, ERB-B2 receptor tyrosine kinase 2
(ERBB2 [MIM: 164870]) status of the first breast cancer, (neo)adjuvant chemotherapy, endocrine therapy, and trastuzumabas covariates in theCox regressionmodel.
bCombined PTVs and pathogenic/likely pathogenic rare missense variants as defined in Dorling et al. (2021).18
Given the prior evidence that PTVs and pathogenic/likely patho-

genic rare MSVs in the nine main BC-susceptibility genes increase

BC risk,18 and therefore their hypothesized impact on disease

outcome through increased risk of CBC or recurrence, results of an-

alyses were considered statistically significant at a nominal level of

p<0.05. For the secondary analyses of the 25 other genes, a Bonfer-

roni corrected threshold of 0.05/25 ¼ 0.002 was used.
Results

Characteristics of the 34 Breast Cancer Association Con-

sortium studies and 34,401 women included in these ana-

lyses are shown in Tables S1, S2, and S3. Over a median

follow-up of 10.9 years, there were 6,898 deaths, of which

3,449 were known BC deaths.

Contralateral breast cancer risk

CBC risk analyses were based on 30,628 women with infor-

mationonCBCdiagnoses.Of676CBCs, 103were diagnosed

among carriers of variants in at least one of the nine BC-sus-

ceptibility genes, namely of PTVs in ATM, BARD1, BRCA1,

BRCA2, CHEK2, PALB2, RAD51C, RAD51D, TP53, and/or

pathogenic/likely pathogenic MSVs in BRCA1, BRCA2, and

TP53 (Table S6). HRs and 95% CIs for the association of

PTVs in the nine main BC genes and of likely pathogenic

rare MSVs in BRCA1, BRCA2, and TP53 classified as patho-

genic/likely pathogenic with CBC risk are shown in Table 1

and Figure 1. Only analyses adjusted by tumor characteris-

tics, age at diagnosis of the first BC, and systemic treatment

are reported in the text, unless differently specified. Carriers

of combined PTVs and pathogenic/likely pathogenic MSVs
478 The American Journal of Human Genetics 110, 475–486, March
in BRCA1 had a nearly 3-fold increased CBC risk compared

to non-carriers [HR (95% CI): 2.88 (1.70–4.87), p ¼
8.8E�05]. Carriers of combined PTVs and pathogenic/likely

pathogenic MSVs in BRCA2 had a 2-fold increased CBC risk

compared to non-carriers [HR (95% CI): 2.31 (1.39–3.85),

p ¼ 1.3E�03]. The association was more evident within

women diagnosed with an ER-negative for BRCA1 and an

ER-positive first BC for BRCA2 (Tables S7 and S8), although

the heterogeneity tests were not significant (Table S9). For

combined PTVs and pathogenic/likely pathogenic MSVs in

TP53, there was evidence of strong association with CBC

risk although the 95% CI was wide [HR (95% CI): 8.29

(2.53–27.21), p ¼ 5.1E�04]. The estimated unadjusted HR

(95% CI) for combined PTVs and pathogenic/likely patho-

genic MSVs in BRCA1, BRCA2, and TP53 based on women

diagnosed with first BC before age 40 years were 3.90

(1.52–10.02), 2.61 (1.00–6.78), and 13.15 (3.18–54.39),

respectively, with no strong evidence of heterogeneity by

age at first BC diagnosis (p > 1.3E�01). PTVs in CHEK2

were associated with a 2-fold increased CBC risk compared

to non-carriers, with no difference in the HR by ER status

of the first BC (Table S9). The estimated HR was higher for

CHEK2 c.1100delC [HR (95% CI): 2.43 (1.63–3.62), p ¼
1.5E�05] than for other CHEK2 PTVs, in aggregate [HR

(95% CI): 1.40 (0.49–3.96)], but the difference in HR was

not statistically significant. There was evidence that rare

MSVs in CHEK2, in aggregate, were also associated with an

increased risk of CBC [HR (95% CI): 1.78 (1.08–2.94);

Table S10], with no evidence of differential association

by ER status of the first BC (Tables S11–S13). The

estimated adjusted HR (95% CI) for PTVs in PALB2 was
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Figure 1. Forest plot showing the association of protein-trun-
cating variants (PTVs) in ATM, BARD1, CHEK2, PALB2, RAD51C,
and RAD51D and of combined PTVs and pathogenic/likely path-
ogenic rare missense variants (MSVs) in BRCA1, BRCA2, and
TP53 with contralateral breast cancer (CBC) risk
The black squares and solid lines represent hazard ratio (HR) esti-
mates and 95% confidence intervals (CIs) from the unadjusted ana-
lyses, respectively. The gray squares and dashed gray lines represent
HRestimates and95%CIs from theadjusted analyses.Weperformed
the adjusted analyses by including age at diagnosis, nodal status, size
category, grade, estrogen receptor (ER) status, ERB-B2 receptor tyro-
sine kinase 2 (ERBB2) status of the first breast cancer, (neo)adjuvant
chemotherapy, endocrine therapy, and trastuzumab as covariates
in the Cox regression model. For each gene, the exact numbers of
women and CBCs are reported in Table 1. PTVs and pathogenic/
likely pathogenic MSVs were defined as in Dorling et al.18
2.67 (1.33–5.35) (Table 1). PTVs in ATM, BARD1, RAD51C,

and RAD51D were not statistically significantly associated

with CBC risk (Table 1); however, the confidence intervals

for HRs in each case included 2, a suggested threshold to

define pathogenic/likely pathogenic variants that ‘‘could

be used to informmedical management.’’27

Results of sensitivity analyses comparing with women

who did not carry PTVs in any of the ninemain BC-suscep-

tibility genes nor likely pathogenic MSVs in BRCA1,

BRCA2, and TP53 were consistent with the main analyses

(Tables S14 and S15). Sensitivity analyses restricted to

cohort, population-based, and hospital-based studies

were also consistent (Tables S16 and S17).

The estimated 10-year cumulative incidence of CBC, af-

ter allowing for the competing risk of death from any

cause, was 7.2% for carriers of PTVs and pathogenic/likely

pathogenic MSVs in BRCA1, 5.4% for carriers of PTVs and

pathogenic/likely pathogenic MSVs in BRCA2, 6.7% for

PTVs carriers in CHEK2, 5.4% in PTVs carriers in PALB2,

and 18.0% in carriers of PTVs and pathogenic/likely path-

ogenic MSVs combined in TP53 (Figure 2).
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Among the remaining 25 putative BC-susceptibility

genes, there was evidence for association of PTVs in

RAD50 (MIM: 604040) [HR (95% CI): 4.75 (1.86–12.15),

p ¼ 1.2E�03; Table S18] and MSVs in XRCC2 (MIM:

600375) with CBC risk [HR (95% CI): 4.05 (1.88–8.73),

p ¼ 3.8E�04; Table S19], with no evidence of differential

association by ER status of the first BC (Tables S20–S25).

Breast cancer-specific survival

HRs for association of PTVs in ATM, BARD1, CHEK2, PALB2,

RAD51C, and RAD51D and of combined PTVs and patho-

genic/likely pathogenic MSVs in BRCA1, BRCA2, and TP53

with BCSS are shown inTable 2 and Figure 3. Therewas a sta-

tistically significant association of combined PTVs and path-

ogenic/likely pathogenic MSVs in BRCA2 with decreased

BCSS in the unadjusted analysis. However, after adjusting

for tumorcharacteristics, age atdiagnosis, and systemic treat-

ment given for the first BC, theHRwas no longer statistically

significant [HR (95% CI): 1.20 (0.95–1.52), p ¼ 1.2E�01].

HRs differed by ER status of the first BC [HR (95% CI): 1.53

(1.13–2.07) and 0.76 (0.44–1.31), for ER-positive and ER-

negative first BC, respectively; pheterogeneity ¼ 2.2E�02;

Tables S9, S26, and S27]. PTVs in CHEK2 were associated

with higher risk of BC death [HR (95% CI): 1.39

(1.13–1.72), p¼ 2.2E�03]withnostrongevidenceofhetero-

geneity in HRs by ER status (Table S9). There was also weak

evidence for a poorer BCSS for carriers of rare MSVs in

CHEK2 [HR (95% CI): 1.23 (0.97–1.57); Table S28], with no

evidence of differential association by ER status of the

first BC (Tables S13, S29, and S30). PTVs in PALB2were asso-

ciated with poorer BCSS (unadjusted HR¼ 1.65), but this as-

sociationwas attenuated after adjusting for additional tumor

characteristics [HR (95%CI): 1.39 (0.98–1.98), p¼ 6.8E�02].

There was no evidence for an association between PTVs in

ATM, BARD1, BRCA1, RAD51C, and RAD51D and likely

pathogenic MSVs in BRCA1 and BCSS. For TP53 there was

weak evidence for poorer BCSS in carriers of combined

PTVs and pathogenic/likely pathogenic MSVs [HR (95%

CI): 2.08 (0.95–4.57), p ¼ 6.8E�02] and of all rare MSVs in

aggregate [HR (95% CI): 1.63 (1.11–2.38), p ¼ 1.2E�02;

Table S28]. Sensitivity analyses restricted to cohort, popula-

tion-based, and hospital-based studies were consistent with

the main analyses (Tables S31 and S32).

Of the remaining 25 putative BC-susceptibility genes

evaluated, PTVs inBABAM2 (MIM: 610497) were associated

with decreased BCSS [Table S33: HR (95% CI): 7.74 (1.67–

35.84), p ¼ 8.8E�03], while PTVs in GEN1 (MIM: 612449)

and BRIP1 (MIM: 605882) were associated with decreased

BCSS in ER-negative tumors [Tables S34 and S35; HR (95%

CI): 7.41 (1.99–27.66) and 4.97 (1.42–17.43) for GEN1 and

BRIP1, respectively]. However, these associations were not

statistically significant after Bonferroni correction for 25

tests. MSVs, in aggregate, in the 25 putative BC genes

were not associated with BCSS (Tables S36–S38). For genes

with evidence of association of PTVs or MSVs with both

CBC risk and BCSS, results of the BCSS analyses censored

for CBC were broadly similar (Tables S39 and S40).
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Figure 2. Cumulative incidence curves for developing contralateral breast cancer in the presence of competing risk of death for any
cause
(A–E) Cumulative incidence for carriers (blue line) and non-carriers (red line) of combined protein-truncating variants (PTVs) and path-
ogenic/likely pathogenic missense variants (MSVs) in BRCA1 (A), combined PTVs and pathogenic/likely MSVs in BRCA2 (B), PTVs in
CHEK2 (C), PTVs in PALB2 (D), and combined PTVs and pathogenic/likely pathogenic MSVs in TP53 (E). PTVs and pathogenic/likely
pathogenic MSVs as defined in Dorling et al.18 were considered. We limited the y axis to the range (0.00, 0.30) to better visualize the
curves. The x axis is restricted to 15 years from diagnosis because of the low number of carriers after 15 years.
Overall survival

Results of overall survival analyses are shown in

Tables S41 and S42. Combined PTVs and pathogenic/

likely pathogenic MSVs in BRCA2 and PTVs in CHEK2

were associated with poorer overall survival, though the

HRs were smaller than for BCSS [Table S41; HRs (95%

CIs): 1.27 (1.06–1.52), p ¼ 1.1E�02 and 1.21 (1.03–

1.43), p ¼ 2.0E�02, for BRCA2 and CHEK2, respectively].

In TP53, combined PTVs and pathogenic/likely patho-
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genic MSVs were significantly associated with poorer

overall survival [HR (95% CI): 3.47 (1.98–6.09), p ¼
1.5E�05].
Discussion

Using data from the BRIDGES18 study, we evaluated PTVs

and rare MSVs in nine confirmed (ATM, BARD1, BRCA1,
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Table 2. Association of protein-truncating variants in nine breast cancer genes and of pathogenic/likely pathogenic rare missense
variants in BRCA1, BRCA2, and TP53 with breast cancer-specific survival

Gene Unadjusted analyses Adjusted analysesa No. of women No. of BC deaths

PTVs (unless
indicated
otherwise) HR (95% CI) p HR (95% CI) p Non-carriers Carriers Non-carriers Carriers

ATM 1.24 (0.85–1.83) 2.7E�01 1.07 (0.73–1.57) 7.3E�01 34,151 250 3,421 28

BARD1 1.14 (0.46–2.79) 7.8E�01 0.90 (0.38–2.15) 8.2E�01 34,347 54 3,444 5

BRCA1b 1.22 (0.89–1.66) 2.2E�01 0.90 (0.66–1.22) 4.9E�01 34,037 364 3,406 43

BRCA2b 1.54 (1.21–1.95)* 5.0E�04* 1.20 (0.95–1.52) 1.2E�01 33,914 487 3,372 77

CHEK2 1.47 (1.19–1.82)* 3.7E�04* 1.39 (1.13–1.72)* 2.2E�03* 33,702 699 3,349 100

c.1100delC 1.46 (1.15–1.85)* 1.6E�03* 1.43 (1.13–1.81)* 3.0E�03* 33,702 561 3,349 81

Other 1.51 (0.93–2.44) 9.6E�02 1.26 (0.79–2.02) 3.4E�01 33,702 138 3,349 19

PALB2 1.65 (1.15–2.36)* 6.7E�03* 1.39 (0.98–1.98) 6.8E�02 34,177 224 3,414 35

RAD51C 0.77 (0.26–2.28) 6.4E�01 0.79 (0.27–2.38) 6.8E�01 34,361 40 3,446 3

RAD51D 1.48 (0.63–3.46) 3.7E�01 0.95 (0.43–2.12) 9.1E�01 34,370 31 3,443 6

TP53b 2.52 (1.13–5.60)* 2.4E�02* 2.08 (0.95–4.57) 6.8E�02 34,354 47 3,441 8

Abbreviations:No., number; BC, breast cancer; PTVs, protein-truncating variants;HR, hazard ratio;CI, confidence interval; p, p value. Analyses includedwomen from34
studies listed in Table S1, excluding women who developed a CBC before study entry. Statistically significant associations (p< 5E�02) are denoted with an asterisk.
aWe performed adjusted analyses by including age at diagnosis, nodal status, size category, grade, estrogen receptor (ER) status ERB-B2 receptor tyrosine kinase 2
(ERBB2) status of the first breast cancer, (neo)adjuvant chemotherapy, endocrine therapy, and trastuzumab as covariates in the Cox regression model.
bCombined PTVs and pathogenic/likely pathogenic rare missense variants as defined in Dorling et al. (2021).18
BRCA2,CHEK2,PALB2,RAD51C,RAD51D,TP53) and25pu-

tativeBC-susceptibility genes18 for associationwithCBC risk

and BCSS both overall and by ER status of the first BC.

Combined PTVs and pathogenic/likely pathogenic MSVs

in BRCA1, BRCA2, and TP53 and PTVs in CHEK2 and

PALB2 were associated with increased CBC risk. These find-

ings are consistent with recent studies18,28,29 and support

the general hypothesis that mutations that predispose to a

first BC also predispose to a second BC. Carriers of PTVs

and pathogenic/likely pathogenic MSVs in BRCA1 and

BRCA2 had approximately a 2- and 3-fold increased CBC

risk, respectively, as reported previously.25,30 The larger HR

estimates in women with an ER-negative first BC for

BRCA1 and in women with ER-positive first BC for BRCA2

probably reflect the fact that BRCA1 and BRCA2 mutation

carriers are most likely to develop ER-negative and ER-posi-

tive first BCs, respectively.31 BRCA1 carriers with ER-positive

first BC and BRCA2 carriers with ER-negative first BC did not

appear to have an increased risk of CBC. However, in both

cases there was no evidence of heterogeneity of the HR esti-

mates by ER status of the first BC; therefore, we cannot

conclude that surveillance or risk-reduction strategies in

BRCA1 and BRCA2 carriers should differ according to the

ER status of the first BC. PTVs in PALB2 were associated

with an over 2.5-fold increased CBC risk. HRs for BRCA1,

BRCA2, and PALB2, while clearly elevated, were lower than

the relative risk estimates for the first BC. PTVs in CHEK2

were associated with an over 2-fold increased CBC risk,

similar to the relative risk for the first BC reported in

BRIDGES,18 and to a previous CBC analysis.5 In TP53, PTVs

and pathogenic/likely pathogenic MSVs combined were

associated with an 8-fold increased CBC risk, consistent
The Ameri
with the results of a previous study focused on carriers

younger than age 36 years at diagnosis of the first BC26 and

four times higher than the corresponding risk of first BC,18

although this estimate is imprecise because of the low

numbers of carriers.

The similarity of the relative risk estimates for a first BC

and a CBC for CHEK2 PTVs are broadly consistent with a

model in which the risks of the second cancer are indepen-

dent of the first, given the individual’s genotype.32 CHEK2

MSVs are also associated in aggregate with BC risk,18 and

the increased CBC risk in CHEK2 MSV carriers, although

lower than for PTV carriers, is also consistent with this

model. On the other hand, the lower relative risks of

CBC (in comparison with the first BC) observed for carriers

of rare PTVs in PALB2 and of rare PTVs and pathogenic/

likely pathogenic MSVs in BRCA1 and BRCA2 could be

partly explained by the fact that carriers of high-risk vari-

ants20 diagnosed with cancer are more depleted for other

risk factors (particularly risk alleles in common susceptibil-

ity variants)—a phenomenon known as elimination of sus-

ceptibles, or index event bias.33,34 However, other factors,

for example differential effects in carriers of endocrine

and/or chemotherapy regimens that have been shown to

lower CBC risk,35 may also play a role. An additional expla-

nation for the observed lower CBC HR estimates compared

to the estimates for the first BC, and lower estimated CBC

incidence in carriers of PTVs and/or pathogenic/likely

pathogenic rare MSVs in BRCA1 and BRCA2 than what

has been previously reported,25,36–38 is that some women

in our study sample may have undergone prophylactic

contralateral mastectomy. Contralateral mastectomy virtu-

ally eliminates the risk of developing a CBC, which in turn
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Figure 3. Forest plots showing the association of PTVs in ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D and of combined PTVs
and pathogenic/likely pathogenic rare missense variants (MSVs) in BRCA1, BRCA2, and TP53, with breast cancer-specific survival, in
women from all studies, excluding women who developed a CBC before study entry
(A–C) The results of the analysis shown in Table 2 are shown in (A). The results of the analysis based on women diagnosed with an es-
trogen receptor (ER)-positive first breast cancer (Table S26) are shown in (B). The hazard ratios (HRs) for the association of PTVs in
RAD51C with breast cancer-specific survival could not be estimated because of the low number of carriers and the absence of carriers
who died of breast cancer (Table S26). The results of the analysis based on women diagnosed with an estrogen ER-negative first breast
cancer (Table S27) are shown in (C). The black squares and solid lines represent hazard ratio (HR) estimates and 95% confidence intervals
(CIs) from the unadjusted analyses, respectively. The gray squares and dashed gray lines represent HR estimates and 95% CIs from the
adjusted analyses. Adjusted analyses shown in (A) included age at diagnosis, nodal status, size category, grade, ER status, ERB-B2 receptor
tyrosine kinase 2 (ERBB2) status of the first breast cancer, (neo)adjuvant chemotherapy, endocrine therapy, and trastuzumab as covariates
in the Cox regressionmodel. Adjusted analyses in (B) and (C) included the same covariates as in (A) except the ER status of the first breast
cancer. PTVs and pathogenic/likely pathogenic MSVs were defined as in Dorling et al.18
might affect BCSS because CBC occurrence is associated

with poorer prognosis.9–11,13 This would result in lower

HR (for both CBC risk and BCSS) and CBC incidence esti-

mates: the downward bias is stronger as the proportion
482 The American Journal of Human Genetics 110, 475–486, March
of women undergoing contralateral mastectomy increases.

Unfortunately, we did not have information on contralat-

eral mastectomy and thus could not account for it in the

analyses; therefore, the HR could be a lower bound to the
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true estimate. On the other hand, within our study popu-

lation, genetic testing was mostly carried out in the

research setting (BRIDGES panel) retrospectively (long) af-

ter women were diagnosed and treated. Therefore, most of

the women included in the analyses would not have been

aware that they carried pathogenic variants in BRCA1/2

and TP53, either before or at the time of diagnosis. More-

over, most of study individuals are part of population-

and hospital-based studies and without family history.

This could also partly explain the lower CBC incidence

in BRCA1 and BRCA2 carriers compared with previous re-

ports.25,36–38 Assuming that mainly women known to be

carriers of pathogenic variants in either BRCA1/2 or TP53

or women with known family history (from family or clin-

ical genetic center-based studies) underwent a contralat-

eral mastectomy, these would be a minor part of our study

population and we do not expect their inclusion to

substantially affect the results. Although the past decade

has seen an increase in the number of women opting for

a contralateral mastectomy without knowing their muta-

tion status,39–42 to the best of our knowledge most of this

increase has been in North America. Most of our study

population comes from European countries and only in-

cludes two USA studies and one study from Canada, which

amounts to approximately 7% of the total study popula-

tion. Again, it is unlikely that inclusion of this small per-

centage would substantially affect the results.

PTVs in ATM, BARD1, RAD51C, and RAD51D were

not associated with statistically significantly increased

CBC risk; however, HRs estimates were >1 in each case,

confidence limits were wide, and the HRs were mostly

consistent with the relative risk estimates for a first BC.

An earlier study also reported no significantly elevated

risk for pathogenic/likely pathogenic variants in ATM.43

Risk of BC-specific death was increased in carriers of

PTVs in CHEK2 and PALB2, and of PTVs/MSVs in BRCA2

and TP53; these associations were not substantially altered

by censoring for CBC. For BRCA2, the stronger increase in

risk of BC death observed in women with an ER-positive

BC compared to women with an ER-negative BC is consis-

tent with the results of a previous study.44 The association

with BCSS of BRCA2 PTVs and pathogenic/likely patho-

genic MSVs in women with ER-positive cancers, and of

CHEK2 PTVs and TP53MSVs in overall BC, although atten-

uated, remained significant after adjusting for age at diag-

nosis and tumor characteristics, suggesting that part of

the effect is not explained by less favorable tumor charac-

teristics or systemic treatment given for the first BC. The

observed association between PTV carriers in PALB2 and

BCSS was attenuated and not statistically significant in

the adjusted analyses, suggesting that most of the effect

might be mediated by tumor characteristics or treatment.

Consistent with the fact that PTVs/MSVs in TP53 are asso-

ciated with a spectrum of cancers, the HR for association

with overall survival was larger than for BCSS. Interest-

ingly, PTVs and pathogenic/likely pathogenic rare MSVs

in BRCA1 were not associated with BCSS, in spite of the
The Ameri
fact that BRCA1 carriers aremore likely to develop ER-nega-

tive tumors,31 which are known to lead to a higher risk of

short term recurrence and mortality.45 This lack of associa-

tionmight still be due to chance, since the upper 95% con-

fidence limit on the unadjusted HR (1.66) is still consistent

with an important survival difference. We speculate that

the lack of association of PTVs and pathogenic/likely path-

ogenic rare MSVs in BRCA1 with BCSS in our study might

be explained by the fact that BRCA1 carriers have a better

response to systemic treatment for the first BC, in partic-

ular chemotherapy.46

Analyses of the 25 remaining putative BC-susceptibility

genes showed some evidence of association between CBC

risk, PTVs in RAD50, and MSVs in XRCC2 and between

BCSS and PTVs in BABAM2 (in BC overall), GEN1, and

BRIP1 (ER-negative subtype), although the latter three an-

alyses had limited power and Bonferroni-corrected p

values for 25 tests were not statistically significant. A po-

tential role of XRCC2 polymorphisms47 and germline

PTVs in RAD5048 in BC prognosis have been reported. Pre-

vious evidence supporting a role of germline PTVs or rare

MSVs in BABAM2 and GEN1 in BC prognosis is lacking,

while PTVs/potentially damaging rare MSVs in BRIP1

have been reported to be associated with ovarian cancer

(MIM: 167000),49 which could explain the observed

poorer survival of carriers in our study.

Themain strength of this study is its large sample size and

long follow-up, which allowed us to provide estimates for

the association between PTVs and rareMSVs in BC-suscepti-

bility geneswithCBC risk and BCSS by gene. This is relevant

because data on prognosis for individual genes apart from

BRCA1, BRCA2, and CHEK2 have been limited. The inclu-

sion of studies that selected women with family history of

BC improvedpower but could bias the association estimates.

However, sensitivity analyses restricted to women without

family history of BC yielded results in line with those from

the main analyses. As previously mentioned, most of the

studies included inour study samplewere eitherpopulation-

or hospital-based and therefore most women did not have

family history. Some genes, such as TP53, are related to

raremulti-cancer syndromes and usually detected at genetic

centers and excluded from population-based studies, mak-

ing unbiased estimation difficult. Another limitation was

the fact that for 22% of the deaths observed during follow-

up, cause of death was unknown, reducing the power to

detect associations with BCSS. Similarly, CBC information

may have been incomplete for some studies, and therefore

some of our estimates might be slightly underestimated.

Despite the large sample size, variants in some of the genes

are so rare that their association with CBC risk and survival

couldnot be estimated. The statistical power to detect signif-

icant interactionsbyERstatus andageatdiagnosisof thefirst

BCwas also limited.Moreover, there was insufficient data to

carryoutanalysesbasedon tumorcharacteristicsof theCBC.

Finally, only women of European ancestry were included in

the analyses. Larger studies, including those drawing upon

women with different ethnicities, are necessary to provide
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precise and reliable estimates of CBC and BCSS in popula-

tions worldwide.

In conclusion, PTVs and/or rare pathogenic/likely path-

ogenic MSVs in five BC-susceptibility genes (BRCA1,

BRCA2, CHEK2, PALB2, and TP53) are associated with

increased CBC risk; PTVs and/or rare pathogenic/likely

pathogenic MSVs in three of these genes (BRCA2,

CHEK2, and TP53) are associated with poorer BCSS, not

completely explained by the increased CBC risk, tumor

characteristics, or treatment. There is limited evidence of

associations for other putative BC-susceptibility genes.

Our results have the potential to improve BC-risk coun-

seling, prognostic estimates, and prediction models for

BC outcome. In particular, the CBC findings are relevant

to improve treatment, follow-up, and screening of women

diagnosed with BC.
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kilä, P., Aittomäki, K., Blomqvist, C., and Nevanlinna, H.

(2009). The breast cancer susceptibility mutation PALB2

1592delT is associated with an aggressive tumor phenotype.

Clin. Cancer Res. 15, 3214–3222. https://doi.org/10.1158/

1078-0432.Ccr-08-3128.

8. Cybulski, C., Klu�zniak, W., Huzarski, T., Woko1orczyk, D., Ka-

shyap, A., Jakubowska, A., Szwiec, M., Byrski, T., Dębniak, T.,
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