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Enhancing anti-tumour innate
immunity by targeting the
DNA damage response and
pattern recognition
receptors in combination
with radiotherapy
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and Kevin J. Harrington2
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Radiotherapy is oneof themost effective and frequently used treatments for awide

range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising

radiation can augment the anti-tumour immune response by triggering pro-

inflammatory signals, DNA damage-induced immunogenic cell death and innate

immune activation. Anti-tumour innate immunity can result from recruitment and

stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell

priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also

induce immunosuppressive and anti-inflammatory mediators that can confer

radioresistance. Targeting the DNA damage response (DDR) concomitantly with

radiotherapy is an attractive strategy for overcoming radioresistance, both by

enhancing the radiosensitivity of tumour relative to normal tissues, and tipping

the scales in favourof an immunostimulatory tumourmicroenvironment. This two-

pronged approach exploits genomic instability to circumvent immune evasion,

targeting both hallmarks of cancer. In this review, we describe targetable DDR

proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia–telangiectasia

mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic

subunit) andWee1 (Wee1-like protein kinase) and their potential intersections with

druggable immunomodulatory signalling pathways, including nucleic acid-sensing

mechanisms (Toll-like receptors (TLR); cyclic GMP–AMP synthase (cGAS)–

stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-

like receptors), andhow thesemight be exploited to enhance radiation therapy.We

summarise current preclinical advances, recent and ongoing clinical trials and the

challenges of therapeutic combinations with existing treatments such as immune

checkpoint inhibitors.
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1 Introduction

Radiotherapy continues to be one of the most effective

treatments for a wide range of cancers since its discovery over

a century ago. Approximately half of cancer patients receive

radiotherapy at some point in their cancer treatment (1),

whether in the curative or palliative settings.

Radiotherapy exploits ionising radiation to cause cell death

or senescence via DNA damage. Broadly, necrotic or apoptotic

cell death occurs depending on cell type, radiotherapy dose and

fractionation schedule (2). Cancer cells that evade apoptosis and

continue to divide with accumulated DNA damage can die via

mitotic catastrophe. Also, excess autophagy can force the cell

into apoptotic or necrotic cell death (3, 4). Classically, the

response of tumours to conventional fractionated radiotherapy

is governed by the principles of the 4 “R”s of radiobiology: repair

of sublethal DNA damage after exposure to ionising radiation,

redistribution of cells in the cell cycle whereby cells in the G2/M-

phase are most radiosensitive and are preferentially killed in

comparison to the more radioresistant late S-phase, repopulation

of tumour cells and reoxygenation of previously hypoxic tumour

areas (5). A 5th “R” of intrinsic radiosensitivity has also

postulated by Steel, after observing the varying survival curves

of different tumour cell lines following irradiation, which is

thought to be independent of their DNA repair capacity (6).

Combining agents that can target DNA damage repair pathways,

as one of the 4 “R”s, with radiotherapy holds considerable

potential to enhance therapeutic outcomes.

In addition to direct cell killing, radiotherapy can induce

immunogenic cell death (ICD) and modulate the immune tumour

microenvironment to lead to anti-tumour innate immune

activation (7). Due to these immunostimulatory effects, there is

increased interest in radiotherapy as a promising combinatorial

agent with other immuno-oncology agents such as DNA-damage

response (DDR)-targeting agents (8). This two-pronged approach

exploits two hallmarks of cancer, namely genomic instability and

evasion of immune surveillance (9, 10). The DDR sensing and

signalling pathway are the collective mechanisms evolved by cells

to combat the threat of DNA damage, namely the detection of

DNA lesions, signalling of their presence and promotion of DNA

repair (11). Promising DDR druggable targets include those

within DNA repair pathways and cell cycle checkpoints, as well

as damage-associated molecular pattern (DAMP)-sensing

receptors which can amplify the DDR-induced immune

response when combined with radiotherapy.
2 Radiotherapy and the anti-tumour
immune response

Radiotherapy has both immunostimulatory and

immunosuppressive effects. The difference in the ability of
Frontiers in Oncology 02
radiotherapy to initiate pro-immunostimulatory effects and

turn immunogenically “cold” (low T-cell infiltrated) tumours

“hot” (high T-cell infiltrated) may account for the enhanced

response to radiotherapy of some pre-clinical models and

clinical cancer histotypes.
2.1 Immunostimulatory effects mediated
by radiotherapy

2.1.1 Immunogenic cell death
As a defence against microbial infection, the innate immune

system has evolved pattern-recognition receptors (PRRs) that

detect microbial pathogenic molecules known as pathogen-

associated molecular patterns (PAMPs). However, these

pathways do not exclusively sense foreign molecules. Immune

activation can also occur in the absence of microbial infection,

instead being triggered by inflammatory signals released from

stressed or dying cells collectively known as damage-associated

molecular patterns (DAMPs) (12). Radiotherapy-induced

cellular stress and ICD can stimulate an immune response

through the generation of DAMPs (13) detected by their

cognate pattern recognition receptors (PRRs) (14). ICD has

been defined as the chronic exposure of DAMPs in the

tumour environment (TME), which can induce an innate and

adaptive anti-tumour immune response in the host (15).

A characteristic DAMP induced by ICD is the secretion of

adenosine triphosphate (ATP) from dying cancer cells into the

extracellular space. Extracellular ATP functions as a “find-me”

chemoattractant signal for the recruitment and activation of

dendritic cells (DCs) (15–17). High-mobility group box-1

(HMGB1), secreted from the nucleus during ICD, binds to

Toll-like receptor (TLR-4) and is critical for activating DCs

and facilitating antigen processing and presentation to T cells

(18). Translocation of calreticulin to the cell surface on dying

cells provides an “eat-me” signal to antigen-presenting cells

(APCs) and results in their phagocytosing target cells (19). In

the context of cancer, ICD leads to release of tumour-associated

antigens (TAA) and subsequent priming of a cancer-specific

immune response. Another characteristic of ICD is the

expression of heat shock proteins (HSP) HSP70 and HSP90 on

dying cell membranes that drives cross-presentation of tumour-

derived antigens on major histocompatibility complex class I

(MHC-I) (15).

2.1.2 Secretion of pro-inflammatory mediators
Radiotherapy-induced DNA damage can function as a viral

mimic through the accumulation of cytosolic DNA or RNA in

irradiated cells (20). Cytosolic DNA and RNA activate cyclic

GMP-AMP synthase (cGAS)/stimulator of interferon (IFN)

genes (STING) and retinoic acid-inducible gene I (RIG-I)/

mitochondrial antiviral-signalling protein (MAVS) pathways,

respectively (21). These pathways activate complex
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downstream signalling via interferon regulatory factor 3 (IRF3)/

TANK-binding kinase 1 (TBK1) and nuclear factor kappa B

(NF-kB) that results in production of Type I IFN and other

inflammatory cytokines (e.g. interleukin (IL)-1, tumour necrosis

Factor (TNF)-a) (20).
Radiotherapy is a form of ionising radiation that hydrolyses

water and forms reactive molecules, such as reactive oxygen

species (ROS) and nitric oxide species (NOS), which can directly

alter DNA, cellular components, and molecules in the

extracellular matrix (ECM) (22). ROS and NOS can be derived

both from these direct ionisation events or activated immune

cells, and work with other DAMPs to accelerate lymphocyte and

DC recruitment. These activated immune cells generate pro-

inflammatory cytokines (e.g. TNF-a, IL-1b, IL-6, IL-12) (14, 23,
24), chemokines and growth factors leading to a sustained

inflammatory response (22, 25).

2.1.3 Immune cell recruitment and tumour-
specific T-cell activation

Recent data suggest that radiation can enhance cancer cell

antigenicity through upregulation of genes involved in DNA

damage repair and cellular stress responses (20). Immune cell

recruitment is subsequently increased via expression of adhesion

molecules (e.g. intercellular adhesion molecule 1 (ICAM-1),

vascular cell adhesion molecule 1 (VCAM-1) and E-selectin)

(26) and chemokines (e.g. chemokine (C-X-C motif) ligand 16

(CXCL16)) (27). Within the appropriate inflammatory

environment, DCs take up antigens in peripheral tissues and

mature and migrate to draining lymph nodes, where they induce

activation of naïve T-cells and differentiation into effector T-cells

(28). Radiotherapy-induced ICD, as discussed above, increases

tumour-associated antigen presentation that can lead to specific

tumour-associated antigen T-cell priming, expansion of tumour

reactive CD8+ T cells and infiltration into the tumour

microenvironment (TME) (29). In summary, inflammatory

DAMP signalling generates a favourable environment for

activated DCs to process and cross-present tumour-derived

antigens from irradiated cells as a “tumour vaccine”, to naïve

T cells. These T cells subsequently can be primed and sustain a

systemic tumour-specific immune response. The T-cell receptor

(TCR) repertoire is also known to be shaped following

radiotherapy, including when used in conjunction with

immune checkpoint inhibitors (ICI) (30–32).
2.2 Immunosuppressive mechanisms
triggered by radiotherapy

2.2.1 Immunosuppressive cells within the
tumour microenvironment

Whilst pro-inflammatory signalling can lead to a positive

anti-tumour effect, cancer cells adapt to survive with

mechanisms such as hypoxia resistance and unrestricted
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proliferation that can result in a state of chronic inflammation

and evasion of immune surveillance (33–35). Evasion of

immune recognition or immune escape (36) is now a

recognised hallmark of cancer (9) and this inclination towards

pro-tumour growth is mediated by changes in cytokine

signalling (TNF-a, IL-1b, IL-6, IL-10 and TGF-b) (37, 38) and
recruitment of TME-immunosuppressive immune cells such as

tumour-associated macrophages (TAMs), myeloid-derived

suppressor cells (MDSCs) (39) and regulatory T cells (Tregs)

(40, 41).

PD-L1 (programmed death-ligand 1) expression is found to

be elevated on tumour cells following irradiation due to

interferon gamma (IFN-g) release from tumour-infiltrating

lymphocytes (TILs) (42) and TILs have increased expression

of PD-1 (programmed death-1) following ex-vivo irradiation

(43). A recent publication found that irradiation of colorectal

cancer cells triggered an ATR-mediated DNA repair signalling

pathway to upregulate CD47 and PD-L1, through engagement of

signal-regulator protein a (SIRPa) and PD-1, respectively, to

limit tumour-associated cross-presentation and suppression of

innate immune activation (44).

Recruited MDSCs and TAMs can suppress T-cell function

through antagonistic cytokine signals (45). Supporting data

includes that from a phase I/II clinical trial testing the

combination of radiotherapy and a primed DC vaccine in

which non-responders had significantly higher baseline

tumour levels of MDSCs (46).

Tregs are relatively more radioresistant than other

lymphocyte subsets and radiotherapy may increase the

infiltration by phenotypically and functionally suppressive

Tregs within the TME (40, 41, 47). In several pre-clinical

mouse models (B16/F10, RENCA and MC38), Tregs in

irradiated tumours expressed higher levels of cytotoxic T-

lymphocyte-associated antigen-4 (CTLA-4), 4-1BB (CD137,

tumour necrosis factor receptor superfamily 9) and Helios

compared with Tregs in non-irradiated tumours (47).

Cancer-associated fibroblasts (CAFs) can be the

predominant component of the stroma in the TME and

facilitate stroma-mediated radioprotection through multiple

mechanisms. Following radiotherapy, CAFs can survive

through formation of integrin-mediated attachments (48) and

radioprotective integrin b-1 signalling (49). CAFs can promote

an oxygen-rich, immunosuppressive and pro-inflammatory

TME (50–52) resulting in increased tumour growth, invasion

and metastasis (53).

Conversion of ATP to adenosine by CD39 and/or CD73 is a

mechanism by which tumour cells can escape immune-

surveillance by limiting the functionality of multiple

potentially protective immune infiltrates, while enhancing the

activity of immunosuppressive cell-types (54). CD39 and/or

CD73 (over)expression has been found on the surface of

tumour cells (55), CAFs (56) MDSCs (57), TAMs (58), Tregs

and exhausted conventional CD4+ and CD8+ T cells (59–61).
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2.2.2 Tumour repopulation
One of the 4 “R”s of radiobiology is repopulation (5), and

tumour repopulation during radiotherapy and chemotherapy is an

important cause of treatment failure (62). Some tumours exhibit

accelerated tumour repopulation following irradiation by paracrine

caspase 3-dependent prostaglandin E2 (PGE2)-mediated signalling

(63). Tumour repopulation may also be driven by a small number

of cancer stem cells (CSC) which promote tumour growth

following an insult, such as radiotherapy (64). Rapid proliferation

of cancer cells is generally accepted as a prerequisite for most

conventional chemotherapies and radiotherapy to be effective, and

any senescent and/or quiescent tumour cells, such as CSCs, may be

treatment-resistant (64). The CSC response to therapy may

underpin why macroscopic tumour response to (chemo)radiation

is not a robust predictor for clinical outcome, since small numbers

of these relatively resistant and less immunogenic CSCs may

survive to repopulate the tumour (64). However, in vitro pre-

clinical data from human breast cancer cell lines (MCF-7 and

T47D) have shown that radiotherapy can recruit CSC cells from a

quiescent state into the cell cycle (65) and a CSC-druggable target in

combination with radiotherapy would be useful.

As we have seen, radiotherapy can trigger key events leading

to potent anti-tumour immune responses via production of

immunostimulatory cytokines, DC recruitment, and T-cell

recruitment and activation. However, these are negatively

balanced by the potential for concurrent triggering of

immunosuppressive cells within the TME and accelerated

tumour cell repopulation. Targeting the DNA-damage response

pathway (DDR) is an attractive approach to tip the scales towards

maintaining positive immune anti-tumour states, which can be

characterised as ‘pro-immunogenic’ and ‘pro-inflammatory’.
3 Targeting the DNA-damage
response pathway

Radiotherapy causes cell damage, stress and death through

induction of DNA lesions in the form of crosslinking, single-

strand breaks (SSBs) and, most significantly, double-strand

breaks (DSBs) (66). These processes induce a plethora of

intracellular signalling pathways involved in detecting and

repairing DNA damage. Targeting both DNA damage repair

and DDR’s downstream cytosolic nucleic acid sensing pathways

with small molecules in combination with radiotherapy can lead

to increased immune activation and anti-tumour efficacy of

these treatments (Figure 1).
3.1 DNA damage repair pathways

Radiotherapy induces double-strand breaks (DSBs) in

cancer cell DNA, which results in genomic instability, cell
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cycle arrest, apoptosis or death via mitotic catastrophe (66). In

response to radiotherapy, cancer cells can respond to exploit

individualised DNA damage repair mechanisms for survival

(67). Three primary DNA repair pathways have evolved to

process DSB repair and maintain genomic integrity:

homologous recombination, non-homologous end-joining

(NHEJ) and alternative end-joining (68). Upregulation of these

pathways is a mechanism by which cancer cells may acquire

radioresistance and, accordingly, radiosensitisation strategies

which inhibit radiation-induced DNA damage repair are

expected to provide increased cancer control (66). When DNA

repair is inhibited in cancer cells, this leads to accumulation of

DNA damage, cellular stress and cell death which subsequently

increases the likelihood of these cells triggering innate immune

pa thway s and be ing r e cogn i s ed by an t i - t umour

immune surveillance.
3.1.1 ATM and ATR inhibitors
ATM and ATR are both key mediators of the DSB signalling

response that induce cell cycle arrest to facilitate DNA repair

(69). In addition, conditions that activate ATM and ATR as part

of DDR may also participate in regulating the innate immune

system and alert it to potentially ‘dangerous’ tumour cells (70).

In response to DSB, the MRE11-RAD50-Nibrin (NBS1)

(MRN) complex assembles at DSB sites to act as a DNA

damage sensor that activates and recruits ATM to DSB sites

(71). Briefly, when a cell triggers the DDR, ATM initiates a

massive signalling cascade with the phosphorylation of

hundreds of substrates, including p53 and checkpoint kinase 2

(Chk2). Activated p53 transactivates the expression of p21Cip1/

kip1, which inhibits Cyclin Dependent Kinase (CDK) 2 and

CDK4/6 to induce G1/S arrest (66). Chk2 in turn

phosphorylates and inactivates Cell Division Cycle 25

(CDC25C), maintaining the inhibitory phosphorylation of

CDK1 by Wee1-like protein kinase (Wee1) and Myelin

Transcription Factor 1 (Myt1) to induce G2/M cell cycle arrest

or apoptosis (66, 72). Inhibition of the ATM/Chk2 axis can lead

to replication stress and accumulation of cytosolic DNA that

subsequently activates the cGAS-STING-mediated innate

immune response (73).

ATM was recognised as the defective gene in the

inheritable human disorder, ataxia-telangiectasia (A-T) (74),

and these patients have characteristic features including

genomic instability and profound radiosensitivity (75).

Deficiency of ATM-mediated signalling reactions causes

sensitisation of cells to radiation (76), which has sparked

interest in ATM as a therapeutic target for cancer treatment

(69). Inhibition of ATM and ATR have the potential to

improve radiotherapy outcomes as they are both key

mediators of the DDR (69). Indeed, ATM inhibitors such as

caffeine (77), wortmannin (78), CP-466722 (79), KU-55933

(80), KU-60019 (81) and KU-59403 (82) increase cell
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radiosensitivity (83, 84), particularly in p53 low/deficient and

phosphatidylinositol 3-kinase (PI3K) highly-expressing cells

(77, 85). In a preclinical study in vivo with KU60019 and

radiotherapy, combination treatment enhanced TBK1 activity,
Frontiers in Oncology 05
type I IFN production, antigen presentation and increased

CD8+ TILs; moreover, complete responders had established

immunological memory (86) (Table 1). The ATM inhibitor

(AZD1390) and radiotherapy is being investigated in a phase I
FIGURE 1

Druggable targets of the DNA damage response (DDR) pathway currently tested in clinical trials. Radiotherapy induces DNA damage and cell
death. Nucleic acid sensing pathways detect cytoplasmic DNA and RNA to stimulate downstream pathways. Cytoplasmic DNA activates the
Cyclic GMP–AMP synthase (cGAS) to produce cyclic GMP–AMP (cGAMP) that activates the stimulator of interferon genes (STING) pathway,
leading to type I interferon (IFN) production. Radiotherapy-induced type I interferon (IFN) can induce RNA sensor activation through RNA
polymerase III conversion of DNA to double-stranded RNA (dsRNA), radiotherapy-induced small non-coding RNA (sncRNA) or STAT1-induced
dsRNA synthesis from endogenous retroviral elements (ERVs). These activate (RIG-I)-like receptors (RLRs), melanoma differentiation-associated
protein 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I), which also drives pro-inflammatory signalling through type I IFN and pro-
inflammatory cytokine production. Toll-like receptors (TLRs) can recognise damage-associated molecular patterns (DAMPs) of single-stranded
RNA (ssRNA), dsRNA or unmethylated CpG DNA in intracellular compartments such as endosomes, to lead to activation of nuclear factor-kB
(NF-kB), mitogen-activated protein kinase (MAPKs) and interferon regulatory factors (IRFs). DNA damage repair mechanisms of single- (SSB) and
double-strand breaks (DSB) are often upregulated by cancer cells to avoid cell cycle arrest or death. Inhibitors of DNA damage repair
components, such as ataxia telangiectasia- mutated (ATM), ataxia telangiectasia and Rad3-related protein (ATR), DNA-dependent protein kinase,
catalytic subunit (DNA-PKcs), poly(ADP- ribose) polymerase 1 (PARP-1) and Wee1 (Wee1-like protein kinase) function to propel the cell through
the cell cycle, despite the presence of unrepaired damage, leading to accumulation of cytosolic DNA. This leads to cross-talk with the nucleic
acid sensing pathway via activation of the cGAS-STING pathway and dsRNA stress pathway via promotion of ERV expression. These two
pathways, through positive and negative cross-talk, shape the radiotherapy-induced DDR response that feeds into anti-tumour immune effects,
including recruitment of tumour-infiltrating CD8+ T-cells, natural killer (NK) cells and CD11b+ innate immune cells, such as macrophages and
neutrophils. Maturation and activation of dendritic cells (DCs) is increased, including DC cross-presentation of tumour-associated antigens to
naive T-cells, which can become activated leading to T-cell-mediated cytotoxic-killing of cancer cells. Furthermore, the immunosuppressive
effects of myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs) can be reversed and macrophages can be repolarised from
M2 to an M1 pro-inflammatory phenotype. Chk, checkpoint kinase; IKKi, inducible IkB kinase; IL, interleukin; IRAK, Interleukin 1 Receptor-
Associated Kinase; MAVS, mitochondrial anti-viral-signalling protein; MyD88, Myeloid differentiation primary response 88; TBK, TANK-binding
kinase 1; TNFa, tumour necrosis factor alpha; TRAF3, TNF Receptor-Associated Factor 3. Created with BioRender.com.
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TABLE 1 Preclinical RT and DDR combination studies.

Target (drug),
route

Additional
therapy

Radiotherapy
(RT)

Murine
tumour model

Immunological effects References

DNA repair inhibitors

ATR inhibitor
(AZD6738,
ceralasertib),
PO

- 2 Gy x 2 CT26 (colorectal
cancer)

Combination treatment increased TIL CD8+ T cell
infiltration, decreased TIL Treg cells, and promoted
immunological memory. AZD6738 blocked radiation-induced
PD-L1 upregulation to reduce number of TIL Tregs.

(87)

ATR inhibitor
(AZD6738,
ceralasertib),
PO

- 2 Gy x 4 TC-1 (HPV-
transformed
lung epithelial
cells)

Combination treatment showed enhanced type I and type II
IFN signature, increased PD- L1 expression, increased
numbers of DCs, T cells and NK cells.

(88)

ATR inhibitor
(AZD6738,
ceralasertib),
PO

Anti-PD-L1 18 Gy in 3
fractions on days 1,
3, and 5

Hepa 1–6 cells (a
C57/L murine liver
cancer cell line)
and H22 cells

AZD6738 further increased RT-stimulated CD8+ T cell
infiltration and activation and reverted the
immunosuppressive effect of radiation on the number of
Tregs in mice xenografts. Triple combination with anti-PD-L1
boosted the infiltration, cell proliferation, enhanced IFN-g
production ability of TIL CD8+ T cells, decreased trend in
number of TIL Tregs and exhausted T cells in mice
xenografts. Triple therapy led to more long-lasting immunity
with tumour rechallenge rejection.

(89)

ATR inhibitor
(AZD6738,
ceralasertib),
PO

Anti-TIGIT, Anti-
PD-1

20 Gy in four 5 Gy
fractions per day
(MOC2); 24 Gy in
three 8 Gy
fractions per day
over 5 days (SCC7)

MOC2 and SCC7
HPV-negative
murine oral
squamous cell
carcinoma cell lines

ATRi enhanced radiotherapy-induced inflammation in the
TME with NK cells playing a central role in maximizing
treatment efficacy. Anti-tumour activity of NK cells can be
further boosted with ICI targeting TIGIT and PD-1.

(90)

ATM inhibitor
(KU60019),
PO

Anti-PD- L1 8 Gy single
fraction

mT4 and KPC2
pancreatic cancer
cell lines

Combination treatment further enhanced TBK1 activity, type
1 IFN production, and antigen presentation. ATM inhibition
also increased PD-L1 expression, increased intratumoural
CD8+ T cells and established immune memory.

(86)

DNA-PK inhibitor
(M3814, peposertib),
PO

Anti-PD-L1 5 Gy or 8 Gy
single fraction

mT4 pancreatic
cancer cell line

Radiation with DNA-PK inhibition increased cytosolic
dsDNA and tumoural type 1 IFN signalling in a cGAS- and
STING-independent, but an RNA POL III, RIG-I, and
MAVS-dependent manner. Triple combination with anti-PD-
L1 potentiated anti-tumour immunity with a significant
increase in the number of CD4+ , CD8+ , and Granzyme B+
cells compared to radiation alone or radiation with M3814.

(91)

Wee1 inhibitor

MK1775/AZD177,
adavosertib,
PO

Anti-PD-1 8 Gy single
fraction

MOC-1 murine
oral squamous cell
carcinoma

Triple combination treatment efficacy is CD8-dependent.
Radiation alone reduced neutrophilic myeloid-derived
suppressor cells and increased Treg tumour accumulation,
unchanged with the addition of AZD1775. T-cells from
tumour-draining lymph nodes (TDLNs) from mice treated
with the triple therapy demonstrated the greatest activation
and IFNg production upon exposure to MOC1 tumour
antigen. Mice cured following triple agent treatment did not
engraft tumours following rechallenge.

(92)

STING agonists

Modified CDN
derivative molecules,
IT injection

- 10 Gy single
fraction

Panc02 murine
pancreatic
adenocarcinoma
cell line; SCC7
head and neck
cancer model,
MMTV-PyMT
mammary
carcinoma; 3LL
lung

Combination treatment showed early T-cell-independent and
TNFa-dependent haemorrhagic necrosis, followed by later
CD8+ T-cell-dependent control of residual disease.

(93)

(Continued)
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TABLE 1 Continued

Target (drug),
route

Additional
therapy

Radiotherapy
(RT)

Murine
tumour model

Immunological effects References

adenocarcinoma
model

Toll-like receptor agonists

Imiquimod,
topical

Cyclophosphamide 8 Gy x 3
consecutive days

TSA mouse breast
carcinoma

Increased tumour infiltration by CD11c+, CD4+ and CD8+
cells. Tumour control abolished by CD8+ depletion.
Combination treatment led to abscopal effect, long-term
tumour-free mice rejected rechallenge showing
immunological memory.

(94)

Imiquimod,
topical

- Whole-body RT 2
Gy single fraction

B16-F10 and B16-
F1 melanoma

Combination treatment led to enhanced cell death via
autophagy. Autophagy accelerated via ROS-mediated MAPK
and NF-kB signalling pathways. Combination increased
number of CD8+ T cells and decreased numbers of Treg and
MDSCs in the tumour lesions. Combination enhanced
systemic anti-cancer immunity by increasing the abundance
of T cell populations expressing IFN-g and TNF-a.

(95)

TLR7 agonist (R848),
IV

- 10 Gy single
fraction

B-cell lymphoma
line A20, the T-cell
lymphoma line
EL4, and its
ovalbumin-
expressing
derivative EG7

Combination treatment led to the longstanding clearance of
tumour in T- and B-cell lymphoma-bearing mice.
Combination therapy led to the expansion of tumour antigen-
specific CD8+ T. Mice that achieved long-term clearance of
tumour were protected from subsequent tumour rechallenge.

(96)

TLR7 agonist (DSR-
6434),
IV

- KHT and CT26
tumours received a
single dose of 25 or
15 Gy, or 5 daily
fractions of 2 Gy,
respectively.

CT26 colorectal or
KHT fibrosarcoma
tumours

Combination led to induction of type 1 interferon and
activation of T and B lymphocytes, NK and NKT cells.
Combination treatment primed an anti-tumour CD8+ T cell
response. Long-term surviving mice had significantly greater
frequency of tumour antigen-specific CD8+ T cells.

(97)

TLR7-selective agonist
(DSR-29133),
IV

- 2 Gy x 5 Syngeneic models
of renal cancer
(Renca), metastatic
osteosarcoma
(LM8) and
colorectal cancer
(CT26)

Administration of DSR-29133 led to the induction of IFNa/g,
IP-10, TNFa, IL-1Ra and IL-12p70.
Combined therapy resulted in curative responses in a high
proportion of mice bearing established CT26 tumours which
was dependent on the activity of CD8+ T-cells, but
independent of CD4+ T-cells and NK/NKT cells. Long-term
surviving mice treated with combination were protected from
subsequent tumour rechallenge.

(98)

TLR7/8 agonist (3M-
011 (854A)),
IP injection

- 2 Gy x 5 CT26 (murine
colorectal
carcinoma cell line)
or Panc-02 (murine
pancreatic
carcinoma cell line)

In vivo depletion identified NK and CD8 T cells as the cell
populations mediating the cytotoxic effects of treatment, while
in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-
diphtheria toxin receptor (DTR) transgenic mice revealed DC
as the pivotal immune hub in this setting.

(99)

TLR9 agonist
(CpG
oligodeoxynucleotide
1826),
SC peritumoural or IT
injection

- Single dose
(unspecified) or
fractionated RT
delivered in 1-9 Gy
fractions twice
daily, separated by
6-7 hours for 5
consecutive days
for total dose of
10-90 Gy

Murine
immunogenic
fibrosarcoma
tumour

Mice cured of their tumours by combined CpG
oligodeoxynucleotide 1826 plus radiotherapy were highly
resistant to SC tumour take or development of tumour
nodules in the lung from IV injected tumour cells when
rechallenged with fibrosarcoma cells 100 to 120 days after the
treatment, suggesting the development of a memory response.
CpG oligodeoxynucleotide 1826 also increased the
radioresponse of the non-immunogenic fibrosarcoma tumour
by a factor of 1.41 and 1.73 when CpG oligodeoxynucleotide
1826 was given SC and IT, respectively.

(100)

TLR9 agonist
(CpG
oligodeoxynucleotide
1826),
peritumoural injection

- 20 Gy single
fraction

Immunogenic
sarcoma (FSa)

The CpG ODN-induced enhancement of tumour
radioresponse was diminished in tumour-bearing mice
immunocompromised by sublethal whole-body radiation.
Tumours treated with combination showed increased
necrosis, heavy infiltration by host inflammatory cells
(lymphocytes and granulocytes), and reduced tumour cell
density.

(101)

(Continued)
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clinical trial in brain cancer (NCT03423628). A dual ATM and

DNA-PKc inhibitor (XRD-0394) and radiotherapy phase I trial

is also recruiting (NCT05002140) (Table 2).

ATR is activated by single-stranded DNA (ssDNA)

structures that may arise at resected DNA DSBs or stalled

replication forks. ATR is recruited via interaction of ATR-

interacting protein (ATRIP) with ssDNA-bound replication

protein A (RPA) (105). RPA-ssDNA complexes stimulate

loading of the RAD9–HUS1–RAD1 (9–1–1) heterotrimer, that

recruits DNA topoisomerase II binding protein 1 (TopBP1)

which activates ATR (106). Once ATR is activated,

downstream targets, including checkpoint kinase 1 (Chk1),

promote DNA repair (107, 108), restart of stalled replication

forks (109) and intra-S and G2/M cell cycle arrest (110, 111). In

response to DNA damage, activation of the intra-S-phase cell

cycle checkpoint slows progression of DNA replication to allow

time for resolution (110, 111). In addition, the ATR-dependent

G2/M cell cycle checkpoint is activated through degradation of

cell division cycle 25A (Cdc25A) (111), and phosphorylation of

Cdc25C phosphatase inhibits its ability to activate nuclear cell

division cycle 2 (Cdc2) and, hence, mitosis entry (112). Most

cancer cells are defective in DNA damage-induced checkpoints

through e.g. p53 pathway mutations, which leads to dependence

on the intra-S-phase and G2/M checkpoints for cell survival

(69). Therefore, ATR inhibition will lead to accumulation of

DNA damage, premature entry into mitosis, mitotic catastrophe

and cell death (69).

ATR inhibitors include schisandrin B (113), NU6027 (114),

NVP-BEZ235 (115), VE-821 (116), VE-822 (117), AZ20 (118)

and ceralasertib (AZD6738) (119, 120). NVP-BEZ235 has been

reported to induce marked radiosensitivity in Ras-
Frontiers in Oncology 08
overexpressing cancers (121), and NU6027 has been shown to

increase sensitivity to DNA-damaging agents in breast and

ovarian cell lines (114). VE-822 results in selective

sensitisation of pancreatic tumours to radiation in vivo by

increasing persistent DNA damage, decreasing cell cycle

checkpoint maintenance and reducing homologous

recombination repair (117). In vitro, ATR inhibition

downregulates radiotherapy-induced programmed death-

ligand 1/2 (PD-L1/2) expression to sensitise cancer cells to T-

cell killing, in addition to potentiating DNA damage (122).

Promising preclinical in vivo studies (Table 1) of the ATR

inhibitor ceralasertib (AZD6738) in combination with

radiotherapy have shown an enhanced type I/II interferon

response and increased immune cell infiltrate (88), increased

RT-stimulated CD8+ T cell infiltration (87, 89), NK-mediated

anti-tumour immunity (90), as well as reversal of the Treg

immunosuppressive effect (87, 89). In addition, further

addition of ICI (i.e. anti-PD-1, anti-PD-L1, anti-TIGIT (T-cell

immunoglobulin and ITIM domain)) to the ceralasertib

(AZD6738) and radiotherapy combination further improved

response and long-lasting immunity in a CD8+ (87, 89) and

NK-dependent manner (90).

There are, to date, three early phase clinical studies

investigating ATR inhibition and radiotherapy. PATRIOT, a

phase I study of ceralasertib (AZD6738) in combination with

palliative radiotherapy, has completed recruitment and is

awaiting report (NCT02223923). BAY1895344 in combination

with radiotherapy and pembrolizumab in recurrent head and

neck squamous cell carcinoma (HNSCC) (NCT04576091) and

M6620 with radiotherapy and chemotherapy in solid cancers

(NCT03641547) are ongoing studies (Table 2).
TABLE 1 Continued

Target (drug),
route

Additional
therapy

Radiotherapy
(RT)

Murine
tumour model

Immunological effects References

TLR9 agonist
(CpG
oligodeoxynucleotides),
peritumoural injection

30 Gy in 10
fractions of 3 Gy
over 12 days, or a
single dose (2, 6 or
10 Gy)

Rat glioma cell
lines 9L and RG2

Combination treatment efficacy was lost in nude mice
compared to immunocompetent mice, underlining the role of
immune cells in anti-tumour effects. Tumour infiltration by
immune cells and expression within tumours of the CpG
receptor, TLR9, were not modified by irradiation.

(102)

TLR9 agonist
CpG
oligodeoxynucleotides,
SC injection

- 20 Gy single
fraction

Lewis lung
carcinoma (3LL)
cells

TLR9 agonist alone expanded and activated B cells and
plasmacytoid dendritic cells in wild-type mice and natural
killer DCs (NKDCs) in B cell-deficient (B−/−) tumour-
bearing mice. Combined treatment led to a strong tumour-
specific humoral immune response with deposition of mouse
IgG auto-antibodies in tumour tissue in wild-type mice
whereas the number of tumour-infiltrating NKDCs increased
in B−/− mice.

(103)

(RIG-I)-like receptor agonist (RLR)

dsRNA mimic polyIC
by polyethylenimine
(PolyIC(PEI)),
IT cytoplasmic delivery

Low-dose
cyclophosphamide,
TLR agonist
(polyIC),
decitabine

Diffusing alpha-
emitting radiation
therapy (DaRT)
Intratumoural Ra-
224-coated seeds

4T1 triple-negative
breast tumours
Squamous cell
carcinoma (SCC)
tumour model SQ2

Splenocytes from PolyIC(PEI) and DaRT-treated mice,
adoptively transferred to naive mice in combination with 4T1
tumour cells, delayed tumour development compared to naïve
splenocytes. Delay in tumour development on re-challenge
was demonstrated.

(104)
fr
IV, intravenous; SC, subcutaneous; IP, intraperitoneal; IT, intratumoural; PO, oral.
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TABLE 2 Selected clinical trials investigating radiotherapy in combination with DDR inhibitor and/or other agents.

Target (drug) Additional Radiotherapy Phase Patient n Response Toxicity NCT ID

ecruiting NCT03423628

ctive, not recruiting NCT02223923

ecruiting NCT04576091

ecruiting NCT03641547

ot yet recruiting NCT04068194

ose-escalation results reported (n=16 patients enrolled).
he most frequent AEs were fatigue in 12/16 and nausea
/16. No patients discontinued due to DLTs. Four DLTs
ere reported: grade 3 mucositis lasting > 7 days in 3/16
nd odynophagia in 1/16, all recovered without sequelae.
ne fatal suspected unexpected serious AE considered as
adiation pneumonitis occurred.

NCT02516813

ecruiting NCT03770689

ecruiting NCT03724890

ecruiting NCT04555577

ecruiting NCT04533750

ecruiting NCT05002140

ecruiting NCT05002140
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9

& route therapy population

DNA repair inhibitors

ATM kinase
inhibitor
(AZD1390)

N/A 35 Gy over 2 weeks;
30 Gy over two
weeks;
60 Gy over 6 weeks

I Brain cancer 120 Recruiting

ATR inhibitor
(AZD6738)

None 20 or 30 Gy I Solid tumours 46 Active, not recruiting

ATR kinase
inhibitor
(BAY1895344)

Pembrolizumab SBRT 3 fractions
with 2-3 days
between fractions

I Recurrent head
and neck
squamous cell
carcinoma

37 Recruiting

ATR inhibitor
(M6620)

Cisplatin;
capecitabine

Not specified I Oesophageal
cancer and other
solid cancers

65 Recruiting

DNA- PK
inhibitor
(M3814)

Avelumab Hypofractionated in
5 fractions

I/II Advanced
hepatobiliary
malignancies

92 Not yet recruiting

DNA- PK
inhibitor
(M3814)

Cisplatin 3 Gy x 10; 2 Gy x
33-35

I Locally advanced
tumours

52 Preliminary efficacy: in-field response (n=16): one patient
had pCR, 4 PR, 7 SD, and 3 have not yet been evaluated.
One patient was not evaluable.

DNA- PK
inhibitor
(M3814)

Capecitabine 45–50 Gy in 25–28
fractions
over 5 weeks

Ib/II Rectal cancer 165 Recruiting

DNA- PK
inhibitor
(M3814)

Avelumab 30 Gy in 10
fractions over 2
weeks

I Various
advanced
solid tumours

24 Recruiting

DNA- PK
inhibitor
(M3814)

Temozolomide 60 Gy in 30
fractions over 6
weeks

I MGMT
promoter
unmethylated
glioblastoma or
gliosarcoma

29 Recruiting

DNA- PK
inhibitor
(M3814)

N/A Not specified I Advanced head
and neck cancer

42 Recruiting

DNA-PK
inhibitor
(XRD-0394)

N/A 20 Gy in 5 fractions
over 1 week

I Various
advanced
solid tumours

38 Recruiting

Dual ATM
and DNA-PK

N/A 20 Gy in 5 fractions
over 1 week

I Metastatic,
locally advanced,

38 Recruiting
R

A

R

R

N
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TABLE 2 Continued

Target (drug)
& route

Additional
therapy

Radiotherapy Phase Patient
population

n Response Toxicity NCT ID

cruiting NCT03923270

24 (8.7%) patients experienced acute grade 3 dermatitis
lated to RT. Olaparib-related toxicity grade 3-4
ematological toxicity was lymphopenia in 11/24 (45.8%)
tients.

NCT03109080

cruiting NCT03598257

cruiting NCT04728230

ctive, not recruiting NCT02229656

cruiting NCT03212742

cruiting NCT03945721

cruiting NCT04837209

ctive, not recruiting NCT03581292

dose-limiting AEs occurred: 4 moist desquamation, 1
utropenia. Crude Grade 3 toxicity was 10% at year 1,
.7% at year 2, and 46.7% at year 3. At year 3, 6 of 15
rviving patients had severe fibrosis in the treatment
ld.

NCT01477489
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inhibitor
(XRD-0394)

or recurrent
cancer

PARP
inhibitor
(olaparib)

Durvalumab;
Tremelimumab

30 Gy in
10 fractions over
2 weeks

I/II Extensive stage
small cell lung
cancer

54 Recruiting R

PARP
inhibitor
(olaparib)

N/A Not specified I Triple-negative
breast cancer

24 Awaiting report 2/
re
h
p

PARP
inhibitor
(olaparib)

N/A Unspecified
standard
radiotherapy
treatment 5 days
per week for 6
weeks

II Inflammatory
breast cancer

300 Recruiting R

PARP
inhibitor
(olaparib)

Durvalumab;
carboplatin;
etoposide

Not specified
consolidative
thoracic
radiotherapy

I/II Extensive-stage
small cell lung
cancer

63 Recruiting R

PARP
inhibitor
(olaparib)

N/A High-dose 70 Gy in
35 fractions; elective
neck 54.25 Gy in 35
fractions

I Head and neck
cancer

12 Active, not recruiting A

PARP
inhibitor
(olaparib)

Temozolomide 2 Gy per fraction
given once daily five
days per week over
6 weeks, for a total
dose of 60 Gy

I/IIa High-grade
gliomas

79 Recruiting R

PARP
inhibitor
(niraparib)

N/A Not specified I Triple-negative
breast cancer

20 Recruiting R

PARP
inhibitor
(niraparib)

Dostarlimab Not specified II Triple-negative
breast cancer

32 Recruiting R

PARP
inhibitor
(veliparib)

Temozolomide 30 daily fractions of
radiation therapy 5
days per week for 6-
7 weeks

II Newly diagnosed
malignant
glioma without
H3 K27M or
BRAFV600
mutations

115 Active, not recruiting A

PARP
inhibitor
(Veliparib)

N/A 50 Gy to the chest
wall and regional
lymph nodes plus a
10-Gy boost

I Inflammatory or
loco-regionally
recurrent breast
cancer

30 15 disease control failures during the 3 years of follow-up. 13
died (all after recurrence)

5
n
16
su
fi

e

a
a

e

e

e

e

e

e

e
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TABLE 2 Continued

Target (drug)
& route

Additional
therapy

Radiotherapy Phase Patient
population

n Response Toxicity NCT ID

%) of 31
ogical

Common AEs included nausea in 17 patients (53%),
diarrhoea in 16 (50%), and fatigue in 16 (50%). Grade 3
diarrhoea in three (9%) of 32 patients; no Grade 4 events.

NCT01589419

Completed NCT03028766

Active, not recruiting NCT03345784

Completed NCT02585973

ths
ly

8/34 patients (24%) experienced a dose-limiting toxicity,
most commonly anorexia, nausea, or fatigue.

NCT02037230

ed site.
ated

Grade 1-2 drug-related AEs reported by all patients. Most
common treatment-related side effect was a flu-like
systemic reaction. 8/29 patients (27.6%) had grade 3 drug-
related AEs. No drug-related grade 4 or serious AEs.

NCT02266147

Recruiting NCT03410901

rior
ese
R was
/7), and
ients

Awaiting report NCT03322384

Recruiting NCT03007732
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PARP
inhibitor
(Veliparib)

Capecitabine 50·4 Gy in 1.8 Gy
fractions daily, 5
consecutive days per
week for 5·5 weeks

!b Locally advanced
rectal cancer

32 Tumour downstaging at surgery was noted in 22 (71
patients; nine (29%) of 31 patients achieved a pathol
complete response.

Wee 1 inhibitor

Adavosertib
(AZD1775)

Cisplatin IMRT 5 days a
week, once daily,
Monday to Friday,
for 6 weeks

I Head and neck
cancer

9 Completed

Adavosertib
(AZD1775)

Cisplatin 45 Gy or greater I Cervical, upper
vaginal and
uterine Cancers

33 Active, not recruiting

Adavosertib
(AZD1775)

Cisplatin 70 Gy at 2Gy per
fraction, 35
fractions, Monday
to Friday over 7
weeks

I Intermediate/
high risk
squamous cell
carcinoma of
head and neck

12 Completed

Adavosertib
(AZD1775)

Gemcitabine 52.5Gy in 25
fractions (2.1Gy/
fraction), using
intensity-modulated
radiation therapy
(IMRT) after
chemotherapy

I/II Unresectable
adenocarcinoma
of the pancreas

34 Median overall survival for all patients was 21.7 mon
(90% CI, 16.7 to 24.8 months) which was substantial
higher than prior results combining gemcitabine wit
radiation therapy.

Toll-like receptor agonists

TLR9 agonist
(SD-101)
intratumoural

N/A 4 Gy in 2 fractions
over 2 days

I/II Untreated
indolent
lymphoma

29 26/29 (89.7%) patients had tumour reduction at trea
24 (82.8%) patients had tumour reduction at non-tre
sites.

TLR9 agonist
(SD-101)
intratumoural

Anti-OX40 (BMS-
986178)

Low-dose not
specified over 2
fractions

I Low-grade B cell
non-Hodgkin
lymphoma

15 Recruiting

TLR9 agonist
(SD-101)
intratumoural

Epacadostat 24 Gy in 8 fractions,
20 Gy in 5 fractions,
4 Gy in 2 fractions

I/II Advanced
solid tumours

20 Early outcome reported for 7 patients refractory to p
therapy with anti-PD-L1 checkpoint inhibition. In th
patients, disease control rate (DCR) and abscopal DC
86% (6/7) and 100% (7/7), response rate was 43% (3
abscopal response rate was 29% (2/7) including 2 pa
with long-term durable complete responses.

TLR9 agonist
(SD-101)
intratumoural

Pembrolizumab;
leuprolide acetate;
abiraterone

35 Gy in 7 fractions II Oligometastatic
prostate cancer

42 Recruiting
h
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TABLE 2 Continued

Target (drug)
& route

Additional
therapy

Radiotherapy Phase Patient
population

n Response Toxicity NCT ID

orted for 13 patients treated with a median
onths. 6 of 12 evaluable patients had
response (50% ORR) and 3 had achieved
distal tumour burden. Eight of 12 patients
ienced at least a 30% reduction in distal

AEs were consistent with known effects of ibrutinib and of
CpG with no unexpected AEs to suggest synergistic
toxicity. There were no grade 4 or 5 events. AEs led to
ibrutinib dose reduction or discontinuation in 3 patients.

NCT02927964

ing Active, not recruiting NCT04050085

Recruiting NCT03507699

Completed NCT02254772

Completed NCT01421017

e response of treated tumour in 8/11
) had stable disease/minor regressions at
nd three (27.3%) showed significant
ression.

All AEs Grade 1 apart from 1 patient with G2 fever NCT01976585

t with complete clinical response, distant

(33.3%).

Mild injection site
reaction and mild
flu- like symptoms

NCT00185965
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Acetate;
prednisone

TLR9 agonist
(SD-101)
intratumoural

Ibrutinib Not specified Ib/II Lymphoma 30 Early outcome rep
follow-up of 7.7 m
achieved a partial
>50% reduction in
(66.7%) had expe
tumour burden.

TLR9 agonist
(SD-101)
intratumoural

Nivolumab 6-10 Gy per fraction
to the injected
lesion given on days
1, 3, 5, 8, and 10

I Metastatic
pancreatic
adenocarcinoma

6 Active, not recrui

CMP-001
intratumoural

Nivolumab;
ipilimumab

Radiosurgery I Colorectal
cancer
metastatic to
liver

19 Recruiting

SD-101
intratumoural

Ipilimumab Low-dose radiation
therapy to 1 site of
disease

I/II Recurrent low-
grade B-cell
lymphoma

9 Completed

Imiquimod
(topical)

Cyclophosphamide 30 Gy in 5 fractions I/II Metastatic
breast cancer

31 Completed

Poly(ICLC)
intratumoural

rhuFlt3L/CDX-301 2 Gy x 2 I/II Lymphoma 11 Partial or comple
(72.7%). Six (54.5
non-treated sites
distant disease reg

CpG-
enriched
TLR9
agonist (PF-
3512676)
intratumoural

4 Gy in 2 fractions
over 2 days

I/II Mycosis
fungoides

15 One (6.7%) patien
site
clinical response
seen in 5 patients

AEs, Adverse effects; DLTs, Dose-limiting toxicities; NCT, National Clinical Trial; N/A, Not Applicable.
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A downstream target of ATR, Chk1, has also been

investigated as a potential therapeutic target, due to its ability

to activate intra-S and G2/M cell cycle checkpoints and

modulate the replication stress response (123), particularly as a

sensitiser to radiotherapy (124). Chk1 inhibitors, to date, include

UCN-01 (125), LY2606368 (126), PF-00477736 (127), MK8776

(128) and CCT244747 (129), AZD7762 (130) and LY2603618

(131). Although there have been promising results in refractory

acute myeloid leukaemia and advanced cancer with MK-8776

(132, 133) and LY2606368 (134), unfortunately severe adverse

effects such as drug-related cardiac toxicity have also been

reported during the clinical development of these drugs, e.g.

AZD7762 (135). Thus far, no clinical trials are investigating the

combination of Chk1 inhibition and radiotherapy.

3.1.2 DNA-PKcs (DNA-dependent protein
kinase, catalytic subunit) inhibitors

DNA-PK is pivotal for the initiation of DNA repair

following DSBs, which ultimately results in recruitment of

proteins involved in DNA damage repair progressing and

ligating the broken DNA ends most recognised via the NHEJ

pathway (136). Various cancer cell lines with reduced levels of

DNA-PKcs show increased radiosensitivity compared to

unirradiated controls (137–139) due to defective DNA DSB

repair, inhibition of phosphorylated protein kinase B (Akt) on

Ser473 and reduction of radiotherapy-induced transcription

factor hypoxia-inducible factor-1 a levels (HIF-1 a) (138).
Given that DNA-PKcs is critical in radiotherapy-induced

DDR, DNA-PKcs inhibition is an emerging therapeutic target

for potentiating radiotherapy responses (140, 141), and many

agents have already been tested in clinical trials. Non-selective

DNA-PKcs inhibitors include wortmannin, which also inhibits

ATM (142), and LY294002, which has a similar structure (143,

144). More selective DNA-PKcs inhibitors include NU7026

(145), NU7441 (146), IC86621, IC87102, IC87361 (147),

vanillin (148), OK-1035 (149), SU11752 (150), BVAN08 (151),

IC486241 (152) and NK314 (153). More recently, novel

inhibitors have been discovered including M3814 (154),

AZD7648 (155) and VX-984 (156). Doxycycline was first

approved by US Food and Drug Administration (FDA) in

1967 as a broad-spectrum antibiotic and has recently been

recognised to function also as an DNA-PK inhibitor (157).

Mechanisms by which DNA-PKcs helps to sensitise to

radiotherapy include prolongation of radiotherapy-induced

G2/M phase arrest (158) and reduced repair of radiotherapy-

induced DSB (147, 150, 159) leading to the induction of

autophagic cell death and mitotic catastrophe (66).

In terms of DNA-PKcs inhibition leading to stimulation of

the innate immune system, a recent study showed that

combining radiation with M3814-induced DNA-PK inhibition

increased cytosolic dsDNA and tumour type I interferon

signalling in a cGAS-STING-independent, but RNA

Polymerase III-, RIG-I- and MAVS-dependent manner, in
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pancreatic cancer models (91). Furthermore, radiotherapy and

M3814 increased PD-L1 expression and sensitised to anti-PD-L1

treatment in poorly immunogenic pancreatic cancers (91).

DNA-PKcs itself also functions as a DNA sensor that activates

innate immunity. It has been reported to function as a PRR by

binding to cytoplasmic DNA and can trigger a type I IFN

response in a STING/IRF-3/TBK1-dependent manner (160) as

well as a STING-independent manner via phosphorylation of

heat shock protein HSPA8/heat shock cognate HSC70 (161). It is

still unclear whether pharmacological inhibition of DNA-PKcs

kinase activity may dampen anti-tumour immunity in contrast

to inhibition of other DDR kinases described such as ATM

or ATR.

Clinical studies of DNA repair inhibitors, M3814

(NCT04533750) and XRD-0394 (NCT05002140), in

combination with radiotherapy are recruiting. In addition,

triple combination of M3814 with radiotherapy and

chemotherapy (NCT02516813, NCT03770689, NCT04555577)

or anti-PD-L1 (NCT04068194, NCT03724890) are also awaiting

report (Table 2).

3.1.3 PARP inhibitors
PARP-1 has been the most extensively studied of the PARP

superfamily and is a key regulator of DNA damage repair (162,

163). In response to DNA damage, such as that induced by

radiotherapy, an initial response is poly(ADP-ribosyl)ation

(PARylation) of proteins including nuclear DDR proteins,

such as DNA-PKcs, to provide a local signal of DNA damage

(163–165). Inhibitors of PARP generally function by inhibiting

PARylation or suppressing PARP-1 release by ‘trapping’. PARP-

1 inhibition has been reported to sensitise cancer cells to various

forms of ionising radiation including conventional gamma

irradiation (166, 167), proton-beam irradiation (167) and

radionuclide therapy (168, 169) (Table 2). Although SSBs are

primary repaired by PARP-1, its inhibition may not be lethal due

to other available repair pathways, such as homologous

recombination. However, deficiency in BRCA1/2 functionality,

which are key components in the HR pathway of DSB repair,

leads to synthetic lethality and selective sensitivity to PARP

inhibition (170).

B e y ond DNA r ep a i r , PARP - 1 a l s o p l a y s an

immunomodulatory role by regulating gene transcription of

several immune cell types, modulating the stimulatory ability

of DCs, and by directly affecting the differentiation and function

of T and B cells (171, 172). PARP-1 knockout mice show

reduced T helper type 2 (Th2) differentiation responses (172).

PARP-1 is also involved in the differentiation of Foxp3+

regulatory T cells (Treg) and promotion of Treg cell apoptosis

during inflammatory responses (172). PARP inhibitors generate

cytoplasmic chromatin fragments with micronuclei

characteristics which activate cGAS-STING, downstream type

I interferon signalling and chemokine ligand 5 (CCL5) secretion

in excision repair cross-complementation group 1 (ERCC1)-
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defective non-small cell lung cancer (NSCLC) cells (173). The

capacity of PARP1 inhibitors to upregulate innate immune and

inflammasome-like signalling events, such as cGAS-STING

signalling, closely depends on their PARP1-trapping abilities

(174, 175). In the context of viral infection, activated DNA-PK

has been reported to phosphorylate PARP1 leading to its

cytoplasmic translocation (176). Cytoplasmic PARP1 can then

interact with and directly PARylate cGAS to inhibit its DNA-

binding ability (176). This has implications to how PARP

inhibition, in the context of cancer-induced genome instability,

can positively modulate the host anti-tumour immune response.

Early PARP-1 inhibitors were non-specific and non-selective,

such as nicotinamide (177), AG14361 (178) and 4-amino-1,8-

naphthalimide (179). Newer PARP-1 inhibitors, such as olaparib

and niraparib, are now used in routine clinical practice following

approval by the FDA and European Union (180, 181). They are

licensed for use in patients with advanced BRCA-mutated ovarian

cancer, metastatic-castration-resistant prostate cancer with BRCA1/

2 or ATM mutation (182), suspected germline HR repair gene

mutated mCRPC who have progressed on enzalutamide or

abiraterone (183) and, most recently, recurrent epithelial ovarian,

fallopian tube or primary peritoneal cancer which has responded to

first-line platinum chemotherapy (184, 185).

Combining PARP-1 inhibition and radiotherapy has been

supported by preclinical studies. Particularly in BRCA1-mutant

cancers, PARP inhibition showed radiation hypersensitivity in

lymphoblastoid cells (186). In various models, PARP-1 inhibitors

KJ-28d (187), ABT-888 (188) and the PARP-1/2 inhibitor MK-

4827 (189) increased cancer cell radiation sensitivity.

Many clinical trials are underway investigating the combination

of PARP inhibitors and radiotherapy, with addition of

chemotherapy and/or immunotherapy agents (Table 1). The

mechanisms underlying radiosensitisation by PARP inhibitors are

still not completely clear and, indeed, recent studies have revealed a

wider immunological role for PARP-1 that could potentially be

exploited through new therapeutic approaches (190). For example,

one study showed through multiomics profiling that macrophage-

mediated immune suppression is a liability of PARP inhibition

(191). Following this evidence, the rationale for combining CSF-1R

blocking antibodies with PARP inhibitors led to reprogramming of

the TME and significantly enhanced innate and adaptive anti-

tumour immunity, which was CD8+-mediated in BRCA-deficient

tumours in vivo (191).

3.1.4 Wee1-like protein kinase (Wee1) inhibitors
Wee1 is a cell cycle checkpoint negative regulator at the G2/

M transition. The process by which Wee1 activation leads to

phosphorylation and inactivation of the cyclin B1/CDK1

complex blocking entry into mitosis is well described (192).

Emerging studies have highlighted the role of Wee1 directly

and indirectly in immune signalling (193). For example,

ineffective CDK-1-dependent nuclear laminin degradation
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abrogates apoptosis induction, leading to immune resistance in

tumour cells (194). Accordingly, Wee1 inhibition reconstitutes

CDK1 activity to reverse resistance of these cancer cells to

immune attack (194). In various cancer models, Wee1

inhibition promotes accumulation of cytosolic dsDNA, leading

to activation of the cGAS-STING pathway (Figure 1), increased

type I interferon target gene expression when delivered alone

(195), as well as in combination with ATR inhibitors (196) or

immune checkpoint blockade (197). A STING-independent

pathway by which Wee1 inhibition induces the interferon

response has also been reported. In cGAS-STING-defective

tumour models, Wee1 inhibition can upregulate immune

signalling through the dsRNA anti-viral defence pathway by

promoting expression of endogenous retroviral element (ERV)

(198). ERVs trigger dsRNA stress and the interferon response,

resulting in the recruitment of anti-tumour T-cells, and

increased expression of PD-L1 with sensitisation to anti-PD-

L1 blockade in multiple cancer models (198).

Wee1 inhibitors, some of which are concomitant CDK1

inhibitors, are promising as a combination partner with

radiotherapy (199). This combination has shown synergistic

effects in various cancer models (200–202). Wee1 inhibitors

such as 681641 (203), PD0166285 (204) and adavosertib

(MK1775/AZD1775) (92, 202, 205) have been reported to

increase the radiosensitivity of cancer cells. Cancer cells very

frequently harbour G1 checkpoint deficiencies and Wee1

inhibitor-mediated prevention of DNA repair following

radiotherapy may lead to premature entry into mitosis and,

ultimately, cell death via mitotic catastrophe (206). Other

mechanisms include blocking radiotherapy-induced DNA

damage repair (204) by impairing DNA repair protein RAD51

homolog 1 (RAD51) focus formation (202) and suppression of

Sirt1 (silent mating type information regulation 2 homolog 1).

Sirt1 interacts with and deacetylates HR-repair machinery

proteins including Nibrin (NBS1) and RAD51, thus, Wee1-

induced Sirt1 suppression impairs HR-repair activity (207).

Several clinical trials are exploring the combination of Wee1

inhibition by adavosertib (MK1775/AZD1775) with

r ad io the r apy and chemothe rapy (NCT03028766 ,

NCT03345784, NCT02585973, NCT02037230) (Table 2). The

emerging immune-mediating effects of Wee1 inhibition provide

a strong rationale for its combination with immune checkpoint

inhibitors (198).
3.2 Cytosolic nucleic acid
sensing pathways

The ability to detect cytosolic nucleic acids by PRRs, arising

from pathogens or disruption of cellular functions from

genotoxic stress such as DNA damage, is part of the protective

cellular response against infection or injury. These mechanisms
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are an evolutionary product of anti-microbial responses and can

trigger an inflammatory signalling cascade and subsequent

activation of the innate immune system. Targeting these

nucleic acid sensing mechanisms has the potential to further

amplify the DDR-induced anti-tumour innate immunity in

conjunction with radiotherapy.
3.2.1 Direct DNA sensing
3.2.1.1 STING agonists

Stimulator of interferon genes (STING) is an endoplasmic

reticulum adaptor that senses self and foreign cytoplasmic DNA,

via cyclic GMP–AMP synthase (cGAS), and is crucial for effective

innate immune signalling (208). Cytosolic DNA induces synthesis

of the cyclic dinucleotide (CDN) cyclic GMP–AMP (cGAMP)

from ATP and GTP by a cyclase enzyme called cGAS. cGAMP

directly binds to STING to cause its dimerization and activation

(209, 210), leading to activation of both NF-kB and IRF3

transcription pathways to induce expression of type I interferon,

recruitment of immune cells, promotion of DC maturation and

antigen-specific immune priming (211).

The cGAS-STING pathway is essential for anti-tumour T

cell responses (212). One proposed mechanism is that

CD8a+ DCs engulf apoptotic or necrotic tumour cells, and

tumour cell-derived DNA triggers STING signalling in DCs

(212–214). The subsequent type I IFN production by these DCs

facilitates antigen cross-presentation and T-cell priming

independent of the TLR or RIG-I/MAVS pathways (212).

Recent studies have also suggested that STING signalling in

the TME can suppress the immunosuppressive activity of

MDSCs (215, 216). STING signalling is critical for radiation-

induced anti-tumour responses (214) and, thus, it is an attractive

potential treatment combination with radiotherapy. Preclinical

data have shown that consideration needs to be given to

radiotherapy dose per fraction as doses above 12-18 Gy induce

the DNA exonuclease Trex1, which degrades the cytosolic DNA

required to stimulate an effective STING-dependent type I IFN

response (217).

The first generation STING agonist, 5,6-Dimethylxanthenone-

4-acetic Acid (DMXAA), was originally developed as a vascular-

disrupting agent (218, 219) and its anti-tumour effect is based on

vascular necrosis leading to tumour starvation and haemorrhagic

necrosis (218, 220). DMXAA has previously been shown to

synergise with radiotherapy in mouse models in a hypoxia-

preferential manner (221). However, the TME was found to

remain immunologically sterile and tumours eventually

progressed with time without durable protective anti-tumour

immunity (222, 223). High local STING concentrations can lead

to rapid T-cell apoptosis (224) whereas low-dose administration can

lead to ‘vascular normalisation’ and favourably transform the TME

to allow use of effective combinatorial anti-tumour immunotherapy

(225–227).
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There are two categories of STING agonists in clinical

development: synthetic cyclic dinucleotides (CDNs) or non-CDN

small molecules (228). These drugs are generally administered

intratumourally due to their poor stability and bioavailability.

This caveat limits their use to accessible tumours and recent

efforts have been focused on development of STING agonists for

systemic delivery (intravenously (228), orally (229, 230) and even as

an inhalable nanoparticulate (231)). In addition, novel STING

antibody-drug conjugates show promising preclinical results

(232). There have only been a handful of preclinical studies

investigating novel STING agonists with radiotherapy in vivo

(Table 1). In mouse models, STING agonists synergise with

radiotherapy to control local and distant disease and mediate

rejection of tumour rechallenge (93, 231) via early T-cell-

independent and TNF-a-dependent haemorrhagic necrosis,

followed by a later stage of CD8 T-cell-dependent control (93). A

number of clinical trials have looked into combining STING

agonists with ICI or conventional chemotherapy (233); however,

at the time of this review no radiotherapy and STING agonist

combination clinical trials are in progress.
3.2.2 Crosstalk with RNA sensors
3.2.2.1 Toll-like receptor agonists

Toll-like receptors (TLRs) are a form of PRR expressed on

sentinel immune cells which activate innate defence systems by

detecting PAMPs. Genotoxic stress and DNA damage are

increasingly recognised to signal through TLRs and cause the

upregulation of TLR expression (234) via p53 (235). TLR

signalling leads to maturation of APCs such as DCs, which are

key mediators of T-cell activation and subsequent adaptive

immunity. There is growing preclinical evidence that TLR

agonists in combination with radiotherapy may lead to

enhanced anti-tumour immunity, particularly through the

mechanism of enhanced DC-mediated T-cell priming

following radiotherapy (236). This occurs at various stages of

this pathway; for example, TLR activation enhances type I IFN-

signalling in many immune cells, modulates chemokine

expression to enhance DC migration to lymphoid tissues

(237–239) and upregulates CD80 and CD86 co-stimulatory

molecules on DCs, which bind to CD28 on naïve T-cells for

antigen/MHC-complex mediated TCR stimulation (240). TLRs

can also stimulate DC-mediated release of IL-6 to dampen Treg

suppressive signalling (241).

Given these observations, TLR agonists are seen as an

attractive combination partner with radiotherapy. There have

been numerous preclinical studies (Table 1) and early phase

clinical trials (Table 2) of different TLR agonists, particularly of

TLR3, TLR7/8 and TLR9, in combination with radiotherapy.

TLR3 senses dsRNA as a PAMP and polyinosinic-

polycytidylic acid or poly (I:C) is a synthetic mimic of dsRNA

which can stimulate TLR3-signalling pathways and lead to type

I-IFN-dependent (242, 243) DC antigen cross-priming in vivo
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(244, 245). Poly(I:C) also has several immunostimulatory effects,

including maturation and activation of DCs (246–248), T-cell

stimulation (249, 250), enhanced cytotoxicity of Natural Killer

(NK) cells (251–253), reprogramming of MDSCs (254) and

repolarisation of macrophage populations from an M2

(classically activated macrophages) to M1 (alternatively

activated macrophages) phenotype (255) (Figure 1). Pre-

clinical studies exploring TLR3 agonists with radiotherapy in a

radioresistant mouse model of lung cancer showed that poly(I:C)

enhanced radiotherapy anti-tumour effects (256). The results

from initial clinical trials have been disappointing, likely due to

the short half-life of poly(I:C) (257). To address this, a

degradation-resistant derivative polyinosinic-polycytidylic acid,

and poly-L-lysine or poly(ICLC) was developed that has shown

efficacy in clinical trials, although toxicity remains an issue

(257). Preclinical studies in a murine lymphoma model have

investigated the Fms-like tyrosine kinase 3 (Flt3)-ligand with

radiotherapy and poly(ICLC) (258). Flt3-ligand is a cytokine

which increases migration of DCs into the tumour and

radiotherapy then stimulates maturation of DCs via ICD and

HMGB-1 signalling for antigen uptake and processing (259).

This combination with the addition of poly(ICLC) further

maximises DC maturation and activation (246–248). There is

a clinical study investigating intratumoral delivery of poly

(ICLC) in combination with an in-situ vaccine rhuFlt3L/CDX-

301 and radiotherapy which was well-tolerated and showed

promising results (258) (NCT01976585) (Table 2). Two phase

2 studies in glioblastoma patients are also investigating the

efficacy of poly(ICLC) in combination with radiotherapy

(260, 261).

TLR7 and TLR8 detect guanosine or uridine-rich single-

stranded RNA and their activation can directly induce MDSCs

to lose their immunosuppressive function and acquire an APC-

like phenotype that can induce tumour-specific T-cell responses

(262), convert MDSCs to M1-like macrophages (263), activate

NK cells (264–267) and revert Treg immunosuppressive effects

(268). The imidazoquinolines are synthetic agonists for TLR7/8

of which topical imiquimod is the most extensively studied as

well as being currently licensed for the treatment of superficial

basal cell carcinoma (269). A preclinical study in breast cancer

has investigated topical imiquimod in combination with

radiotherapy and low-dose cyclophosphamide (94), and found

that this triple combination had synergistic anti-cancer effects at

both irradiated and unirradiated (abscopal) sites. Long-term

surviving mice were able to reject tumour rechallenge, likely

due to the establishment of anti-tumour immunological memory

(94) (Table 1). A phase 2 clinical trial in metastatic breast cancer

testing the efficacy of this triple therapy has finished recruiting

(NCT01421017) (Table 2). Synergistic effects of subcutaneous

TLR7 agonist and radiotherapy have also been observed in a

preclinical model of melanoma (95) (Table 1). The efficacy of

systemic delivery of the TLR7 agonists R848 (96), DSR-6434

(97), DSR-29133 (98) and 3M-011 (99), in combination with
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radiotherapy, has been explored in the treatment of several

preclinical models of solid cancers. Dual therapy works

synergistically to enhance tumour control, generate tumour-

antigen-specific T-cells, suppress tumour growth (96–99) after

rechallenge in long-term surviving mice (97) (98) and reduce the

formation of distant metastases (99). Systemically-administered

TLR7/8 agonists are not currently being investigated in a clinical

setting; notably a phase I clinical trial investigating systemic

TLR7 agonist ANA975 in chronic hepatitis C virus (270) had to

be withdrawn due to excessive toxicity in extended preclinical

studies (271), highlighting the need for caution when delivering

systemic TLR7/8 agonists, especially in combination with

radiotherapy (236).

Finally, TLR9 is expressed on APCs and B-cells and senses

unmethylated CpG oligonucleotides present in bacterial and viral

DNA (272–274). Again, TLR9 agonism can lead to activation and

maturation of DCs, cytokine release from T helper type 1 (Th1)

cells, differentiation of MDSC towards an M1 phenotype (275–279)

and inhibition of Treg immunosuppressive effects (280). Several

preclinical studies (281–284) have shown that TLR9 agonists can

lead to anti-tumour effects in an NK- and CD8 T-cell-dependent

manner (285). Preclinical studies showed enhanced tumour control

in combination with radiotherapy in a model of murine

fibrosarcoma and lung cancer (100–103), and induction of

immunological memory by mice rejecting tumour rechallenge

(102). The synergistic effects of radiotherapy and TLR9 agonists

are dependent on a competent host immune system (102). Early

clinical studies, although in small patient numbers, have tested

TRL9 agonists in combination with radiotherapy. CpG-enriched

oligodeoxynucleotide delivered intratumorally in combination with

radiotherapy, 4 Gy in two fractions, led to overall objective response

rates of 27% in the non-treated lesions of patients with relapsed

low-grade B cell lymphoma (286).

3.2.2.2 (RIG-I)-like receptor (RLR) agonists

RIG-I and melanoma differentiation-associated gene 5

(MDA5) are collectively (RIG-I)-like receptors (RLR) which

detect cytosolic RNA and are a key PRR in anti-viral responses

(287). RIG-I preferentially binds to short (>10 bp) dsRNAs

whereas MDA5 detects long accessible dsRNAs (>2 kbp) (288,

289), and downstream signalling of either activates IRF3 and

NF-kB pathways to induce type I IFN and other inflammatory

cytokines. In the context of DNA damage, RIG-I interacts with

X-ray repair cross complementing 4 (XRCC4) to impede

formation of the XRCC4/LIG4 (DNA ligase 4)/XLF (XRCC4-

like factor) at DSBs. High expression of RIG-I compromises

DNA repair and sensitises cancer cells to irradiation treatment.

In contrast, depletion of RIG-I renders cells resistant to

irradiation in vitro and in vivo (290).

In the anti-tumour response, there is increasing evidence

that RLR activation in various cancer models by RNA ligands

can induce cancer cell apoptosis in a type I IFN-dependent

(291), or -independent manner (292, 293). RIG-I signalling can
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induce ICD of ovarian and pancreatic cancer cells in vivo by

systemic activation of DCs, NK cells and CD8+ T cells (294,

295). In a pancreatic cancer model, tumour-derived type I IFN

activates DCs and CD8a+ DCs engulf apoptotic tumour material

and cross-present tumour-associated antigen to naïve CD8+ T

cells (296). RIG-I may also inhibit tumour growth indirectly

through regulation of tumour hypoxia (297) and the gut

microbiota (298). The efficacy of anti-cancer treatments such

as radiotherapy and many chemotherapy agents has also been

shown to depend on the RLR pathway through endogenous non-

coding RNAs, and depletion of RIG-I in human tumours confers

treatment resistance (299).

Harnessing the RLR-pathway through RLR agonists is an

attractive therapeutic target and several RLR mimetics or

agonists have been developed which have shown promise in

preclinical studies. For example, a unique RIG-I agonist in the

form of RNA stem-loop of 14 bp (SLR14), when delivered

intratumorally, significantly inhibited B16 tumour growth

locally and systemically in bilateral and tumour metastasis

models, with cured mice developing immunological memory

(300). SLR14 was mainly taken up by CD11b+ myeloid cells in

the TME leading to subsequent increase in the number of CD8+

T lymphocytes, NK cells, and CD11b+ cells in SLR14-treated

tumours (300). MK4621 (or RGT100), a synthetic RNA

oligonucleotide RIG-I activator is currently in phase 1 clinical

trials for the treatment of advanced/metastatic solid

tumours (NCT03739138).

Combining RLR agonists and radiotherapy is an attractive

strategy to activate multiple DDR pathways via cytosolic RNA

sensing and radiotherapy-induced cytosolic DNA/DNA damage

detection. In vitro, an RLR agonist Poly(I:C)-HMW (High

Molecular Weight)/LyoVec™ [Poly(I:C)-HMW] sensitised in

vitro human lung cancer cells to Fas ligand (FasL)-induced

apoptosis by radiotherapy (301). In vivo intratumoral

cytoplasmic delivery of the dsRNA mimic poly(I:C) by

polyethylenimine (PEI), prior to diffusing alpha-emitting

radiation therapy (DaRT), resulted in synergistic tumour and

metastatic disease control. Furthermore, immunological

memory was demonstrated, whereby splenocytes from treated

mice adoptively transferred to naïve tumour-bearing mice,

resulted in delayed tumour development and protection from

rechallenge (104). Combining RLR-agonists and radiotherapy

has not yet been translated into clinical practice and to the best

of our knowledge there are no clinical trials investigating

this combination.
4 Discussion

We have discussed in detail the various druggable targets

related to the DDR pathway, in particular agonists of the nucleic

acid sensing pathways and inhibitors of DNA damage repair

mechanisms. Next, this review will explore the clinical challenges
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and implications of combining radiotherapy with DDR-

targeted agents.
4.1 The role of
conventional chemotherapy

Conventional chemotherapy has historically been used in

the backbone of radical chemoradiation (CRT) in many locally

advanced tumours such as rectal, cervical and head and neck

cancers. Chemotherapy agents traditionally used as

radiosensitisers include platin salts (e.g. Cisplatin, Carboplatin)

or fluoropyrimidines (e.g. 5-fluorouracil or its prodrug

Capecitabine), which trigger cell death by instigating DNA

damage (302). Chemotherapy-induced cell death can lead to

DNA leakage into the cytosol and trigger intrinsic STING

pathway stimulation and activation of the immune system

(303). Some may argue that investigating novel DDR-pathway

specific agents is redundant given that chemotherapy may exert

its anti-cancer effects partly by stimulating the innate immune

system (303). However, it is recognised that chemotherapy

(304), radiotherapy (305) or concomitant CRT (306) in

various cancers can result in lymphocyte depletion which can

potentially negate a sustained effective anti-tumour response.

Lymphocyte depletion post-treatment is a poor prognostic factor

in patients who have undergone radiotherapy for Stage III lung

cancer (305) or CRT for newly diagnosed glioblastoma (306).

Furthermore, defects in DDR signalling may contribute to

chemoresistance in some cancer types (303) and, as such,

development of specific DDR-targeting agents remains an

important avenue for research.
4.2 Maintaining anti-tumour immunity
using ICIs

The anti-tumour innate immunity initiated by radiotherapy

and DDR inhibitors is likely to be complementary to the effect of

immune checkpoint inhibitors (ICIs), which can sustain and

maintain the adaptive arm of the anti-tumour immune response.

For example, preclinical studies in lymphoma have shown that

treatment with Flt3L, radiation and poly(ICLC) led to PD-L1

upregulation in both tumour cells and intratumoural DCs, and

that the further addition of anti-PD-1 antibody led to improved

local and systemic tumour control (258). There is an increasing

number of early phase clinical studies investigating the addition

of ICI with radiotherapy and DDR-targeted agents, such as TLR

agonists (NCT03007732, NCT04050085, NCT03507699,

NCT02254772) and DNA-PK inhibitors (NCT04068194,

NCT03724890, NCT04576091, NCT03923270).

Clinical response to ICIs is typically predicted by tumour

mutational burden and neoantigen load (307, 308). Preclinical

data suggests that radiotherapy and DDR inhibitors may
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replicate the phenotype of high mutational and neoantigen

burden and rationally direct therapeutic combinations with

ICIs. However, the caveat is that radiotherapy-induced

subclonal neoantigens may translate into poorer responses to

ICI in some tumour types (307). The combination of

radiotherapy and anti-CTLA-4 increases the diversity of TIL

TCR repertoire, leading to increased tumour control in vivo;

however, these tumours remain dominated by a small number

of high-frequency T-cell clones (30, 32). It is still unknown

whether it is more important to have an immune response

against pre-existing tumour antigens or new radiotherapy-

generated tumour antigens. As we await the results of the

ongoing triple combination treatments (RT + DDR agents +

ICI) in early phase clinical trials, further work is needed to

investigate such combinations in the context of creation of

subclonal neoantigens.
4.3 Tumour-specific radiosensitisation
and the safety profile of
combination therapy

A key principle of radiation oncology is that the dose

delivered to the tumour is limited by the surrounding normal

tissue organs-at-risk (OARs). Hence, strategies in designing

clinical trials arguably should have some basis for a selective

effect of any combination drug on the tumour (309). Preclinical

studies in mouse models, for example, show that M3814, a

DNA-PK inhibitor given with radiotherapy, shows marked

improvement in tumour control (310). However, when

translated into clinical practice, a clinical trial of M3814 with

radiation (NCT02516813) reported enhanced normal tissue

reactions including dysphagia, prolonged stomatitis and

radiation dermatitis (311). Pre-clinical models are also severely

limited in predicting long-term treatment toxicity in humans.

A further therapeutic challenge of using DDR pathway agents

with radiotherapy is that there may be high variability in drug

pharmacokinetics leading to varying degrees of radiosensitisation

between tumour versus normal tissues, which makes it difficult to

predict the therapeutic index for each individual patient (309).

Therefore, unless there is a clear mechanism for tumour-specific

radiosensitisation, clinical trials combining DNA repair inhibitors

and radiotherapy may be severely compromised by unacceptable

toxicity. Potential solutions may be an intratumoural route of drug

delivery, as taken by certain trials of TLR9 agonists and STING

agonists (Table 2), or conditional drug activation, such as with a

hypoxia-activated DNA-PK inhibitor (312, 313). Increased

knowledge of biomarkers and access to routine tumour profiling

may guide the best selection of which DDR agent to use in a

particular cancer subtype, for example PARP-inhibitors in BRCA-

mutant or ATM/ATR inhibitors in p53-mutant tumours.
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Advances in radiotherapy delivery techniques using stereotactic

techniques to irradiate tumour volumes highly selectively is a

further way to reduce off-target combination effects of DDR-

targeting agents. For example, a Phase I trial in recurrent head and

neck squamous cell carcinoma investigating combining an ATR

kinase inhibitor BAY1895344 with pembrolizumab and

stereotactic body radiotherapy (SBRT) (NCT04576091)

represents one such promising approach.
4.4 Radiotherapy planning, modality and
scheduling with DDR delivery

In some occasions, radiotherapy can result in the regression

of disease outside of the irradiated field in the so-called abscopal

effect, which is thought to be immune-mediated (314). Inducing

such systemic anti-tumour immune responses is likely highly

dependent on radiotherapy dose and fractionation and these

factors, therefore, need to be an important consideration in

combination treatments with DDR agents and/or ICI (315).

Irradiation of regional lymph nodes in cancer treatment is

common practice either with high doses in macroscopic disease or

prophylactic lower doses, if lymph nodes are deemed to be at risk

of harbouring micrometastatic disease. This approach has recently

become more controversial given that we know these lymphoid

organs have an important role in DC-mediated T-cell priming,

activation and subsequent tumour infiltration following

radiotherapy (31). Routine irradiation of regional lymph nodes

may potentially deplete important immune cells and have a

detrimental effect on the anti-tumour immune response (316).

The biological effects of radiotherapy, such as DNA damage

complexity, depend on radiation quality and degree of linear

energy transfer (LET). High LET radiation (e.g. protons, carbon

ions, a-particle-emitting radionuclides) can differentially affect

cell fate (317). For example, protons mainly induce apoptosis not

necrosis which may reduce the leakage of nucleic acids into the

cytoplasm to serve as danger signals, hence impacting on the

innate immune response (317). The effects of radiotherapy were

previously thought to be mainly due to nuclear DNA damage

and their repair mechanisms. However, the outcome of

irradiation depends also on the activation and regulation of

other organelles that determine cellular metabolism, survival

and immunological responses such as the mitochondria (318).

Recent studies have shown that mitochondrial DNA DSBs

activate a type I IFN response and mitochondrial RNA release

into the cytoplasm triggers a RIG-I-MAVS-dependent immune

response (319, 320). Low-dose versus high-dose radiation, as

well as radiation quality, can also have different effects on

mitochondria-mediated innate and adaptive immune

responses (318). Interestingly, high LET particle radiotherapy

which are more efficient in ROS production is reportedly more
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likely to lead to mitochondria-mediated apoptosis and anti-

tumour immune responses (318, 321).

The most appropriate scheduling of DDR agents with

respect to radiotherapy also needs to be investigated further.

For example, a study investigating a novel TLR7/8 agonist in

combination with radiotherapy showed that the optimal

combination efficacy required the drug to be administered

concurrently at the start rather than end of radiotherapy (98).

However, another investigation of a TLR9 agonist showed

maximum synergy was observed when mice received the agent

three days after radiotherapy in the adjuvant setting (102).

Clinical trials investigating TLR3 agonists used in the

concurrent or adjuvant setting with respect to radiotherapy

both showed activity (258, 260, 261, 322). More preclinical

studies investigating the biological basis of optimal scheduling

are required, although it may be that optimal scheduling may

ultimately be both treatment- and tumour-specific.
5 Conclusion

Our increasing knowledge of the mechanisms of how

radiotherapy-induced DDR interacts intimately with the host

immune response is critical to the discovery of novel therapeutic

targets and effective strategies against cancer. DDR-targeted

agents are an exciting avenue for overcoming radioresistance

and improving patient outcomes through enhancement of anti-

tumour immunity. Understanding the molecular mechanisms

and immunological effects of these DDR agents, through

rigorous preclinical testing and translational analyses, is key to

guiding rational clinical trial design in terms of drug route of

delivery, schedules and choice of additional combination

treatments, such as chemotherapy or immunotherapy.
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