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A B S T R A C T   

Background and purpose: Physiological motion impacts the dose delivered to tumours and vital organs in external 
beam radiotherapy and particularly in particle therapy. The excellent soft-tissue demarcation of 4D magnetic 
resonance imaging (4D-MRI) could inform on intra-fractional motion, but long image reconstruction times 
hinder its use in online treatment adaptation. Here we employ techniques from high-performance computing to 
reduce 4D-MRI reconstruction times below two minutes to facilitate their use in MR-guided radiotherapy. 
Material and methods: Four patients with pancreatic adenocarcinoma were scanned with a radial stack-of-stars 
gradient echo sequence on a 1.5T MR-Linac. Fast parallelised open-source implementations of the extra- 
dimensional golden-angle radial sparse parallel algorithm were developed for central processing unit (CPU) 
and graphics processing unit (GPU) architectures. We assessed the impact of architecture, oversampling and 
respiratory binning strategy on 4D-MRI reconstruction time and compared images using the structural similarity 
(SSIM) index against a MATLAB reference implementation. Scaling and bottlenecks for the different architectures 
were studied using multi-GPU systems. 
Results: All reconstructed 4D-MRI were identical to the reference implementation (SSIM > 0.99). Images 
reconstructed with overlapping respiratory bins were sharper at the cost of longer reconstruction times. The CPU 
+ GPU implementation was over 17 times faster than the reference implementation, reconstructing images in 60 
± 1 s and hyper-scaled using multiple GPUs. 
Conclusion: Respiratory-resolved 4D-MRI reconstruction times can be reduced using high-performance 
computing methods for online workflows in MR-guided radiotherapy with potential applications in particle 
therapy.   

1. Introduction 

The motion of treatment targets and vital organs poses challenges for 
accurately delivering external beam radiotherapy. Being able to acquire 
magnetic resonance imaging (MRI) with excellent soft-tissue contrast 
[1] at the time of treatment and resolving motion with 4D-MRI were key 
driving forces behind the development of MR-Linacs [2–5] and hybrid 
MR-integrated proton therapy [6,7]. 

In respiratory-resolved 4D-MRI, images are sorted based on the 
phase of the respiratory cycle during which they were acquired (called 
respiratory bin [8]), and one 3D image is reconstructed per bin. Radial 
acquisitions enable the extraction of a respiratory signal using self- 
gating [9] and reduce the blurring caused by respiratory motion [10] 
which led to their frequent use in 4D-MRI [10–13]. 

To integrate 4D-MRI into clinical workflows, data are undersampled, 
which causes image artefacts when reconstructing directly with the Non- 
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Uniform Fast Fourier Transform (NUFFT) [14]. Computationally- 
expensive iterative reconstructions based on compressed sensing [15] 
can mitigate the impact of undersampling by exploiting sparse data 
representations. Mickevicius and Paulson compared 4D-MRI recon
struction methods [16] in terms of overall image quality, reconstruction 
time, artefacts prevalence, and correctness of motion estimates. They 
found that the extra-dimensional golden-angle radial sparse parallel 
(XD-GRASP) algorithm [11] was least sensitive to undersampling arte
facts, but they opted for the faster conjugate gradient sensitivity 
encoding method when implementing 4D-MRI driven MR-guided online 
adaptive radiotherapy [17]. 

In online adaptive radiotherapy, images acquired on the MR-Linac 
directly before the treatment are used to adapt the radiotherapy plan 
to the daily anatomy and target motion. For abdominal tumours affected 
by respiration, treatment margins can be derived from a prior 4D 
computed tomography, but confidence could be improved if margins 
were based on 4D-MRI acquired online [18–20]. In this setting, the MRI 
reconstruction time is critical and needs to be kept within two minutes 
[21,22]. While MR-guided online adaptive proton therapy setups are 
still under development, early studies suggest that workflow re
quirements will be similar to MR-guided radiotherapy and that 4D-MRI 
will be necessary to account for interplay effects [23,24]. 

4D-MRI could also inform clinical decisions in MR-guided in
terventions in the thoracic and abdominal areas such as cardiac radio
frequency catheter ablation [25] and renal and hepatic cryoablation 
[26]. 

This study aims at reducing the reconstruction time of XD-GRASP to 
enable the use of high-quality 4D-MRI for online-adaptive radiotherapy 
workflows and interventions. We propose new optimized open-source 
implementations of XD-GRASP leveraging acceleration for central pro
cessing units (CPUs) and graphics processing units (GPUs) and mini
mising both multi-threading and communication overheads by 
exploiting the parallel characteristics of the XD-GRASP algorithm. 

2. Material and Methods 

2.1. Data acquisition 

Four cancer patients with pancreatic adenocarcinoma, aged between 
56 and 76, two males and two females who consented to participate in 
the PRIMER trial (NCT02973828) [27] were imaged on a 1.5T MR-Linac 
(Elekta AB, Stockholm, Sweden) at different time points of their radio
therapy treatment (three patients - 36–40 Gy/ 15 fractions and one 
patient - 50 Gy/28 fractions). In total, 17 datasets were acquired using 
the vendor-provided coils (four anterior and four posterior channels). In 
nine of these, the patients wore an abdominal compression belt which is 
used for the radiotherapy treatment of pancreatic cancer at our insti
tution. Following the current clinical protocol and similar to [17], a 
volumetric radial stack-of-stars gradient echo sequence with golden 
angle spacing [28] and balanced MRI contrast was used, which acquired 
831 radial spokes in 287 s. SPAIR fat-suppression was used in combi
nation with a partial Fourier factor of 0.7 and an oversampling factor of 
1.61 along the Cartesian kz dimension. Partial echo sampling was used 
to reduce the echo time to 1.34ms. Further MRI parameters were: 
repetition time 3.5ms, field-ofview 500× 500× 200mm3, flip angle 40∘, 
bandwidth 866Hz/px, acquired voxel size 1.5× 1.5× 3.0mm3. A 
gradient delay correction was applied [29] and coil sensitivities were 
estimated [30] before 4D-MRIs were reconstructed. The acquisition 
parameters were identical to the clinical protocol used for daily volu
metric re-contouring and re-planning of MR-guided pancreatic cancer 
treatments at our institution [31]. 

2.2. XD-GRASP parallelisation 

Before executing the XD-GRASP algorithm [11], data was prepared 

and arranged in a suitable format. The acquired data was first sorted into 
respiratory phases (bins) based on the central projection (kx = ky = 0) 
of the k-space data. The respiratory signal was extracted by principal 
component analysis (PCA) of the central points and combined across the 
different coils. The respiratory-resolved images d were then recon
structed by solving Eq. 1 using conjugate gradient descent: 

d = argmind{||F⋅S⋅d − m||
2
2 + λ||T⋅d||1} (1)  

where consistency with the raw data m was enforced by applying the 
NUFFT operator F with coil sensitivities S. Undersampling artefacts were 
suppressed by regularisation with the total-variation operator [32] T 
acting along the respiratory bin dimension. The XD-GRASP algorithm 
reconstructed a 4D image with dimensions nx, ny and nz from a pre- 
sorted 5D signal with nbins respiratory bins, where for each of the nc 
coil channels raw data with dimensions nkx, nlines = nky/nbins and nkz 

(Eq. 2) were acquired: 

XD − GRASP : data{nkx, nlines, nkz, nbins, nc}→images{nx, ny, nz, nbins}

(2) 

To achieve higher performance, slices were reconstructed in parallel 
using the algorithm from Fig. 1 by applying a Cartesian Fast Fourier 
Transform (FFT) along the z-axis to compute each output slice inde
pendently. This formulation is efficient because there is no communi
cation between reconstruction instances of different slices and the 
computed cost function is local and benefits from early termination. 

Alternative 3D formulations where the outermost loop iterates over 
respiratory phases are less efficient as they require sharing the NUFFT 
operators or communications between reconstruction instances to 
compute the total-variation across the different respiratory phases, 
which lower the achievable performance according to Amdahl’s law 
[33]. 

2.3. Implementation details 

In Eq. 1, the NUFFT is the most computationally expensive operation 
with a complexity of O(MJ2 +μ2Nln(μ2N)) [34], where M is the number 
of k-space samples acquired, N the pixel-size of the reconstructed image, 
J and μ the oversampling factor and the regridding kernel size used in 
the NUFFT implementation. The complexity for the total variation 
operator is lower: O(N) using the same notation as before. The NUFFT 
algorithm was extensively studied and optimized, hence this study le
verages the state-of-the-art FINUFFT [35] and cuFINUFFT [36] libraries. 
XD-GRASP is an iterative conjugate-gradient algorithm, requiring mul
tiple NUFFT operations both from non-uniform k-space to a uniform 
image (type one) and from image space back to k-space (type two). We 
handled the parallelisation manually using OpenMP [37] multi- 
threading capabilities to decrease the threading overhead and reuse 
the same thread for multiple slices. In the GPU case, this allowed us to 
saturate the GPU memory and reuse the data already transferred to the 
GPU and hide data transfer latency by overlapping computations and 
transfers. 

When computing the NUFFT, interpolation-based implementations 
require evaluating a Cartesian FFT on a fine uniform grid oversampled 
by a factor of R. For a fixed arbitrary calculation precision, multiple 
oversampling factors can be used [38] and we tested reconstructions 
with R = 2 and R = 1.25. At the time of writing, cuFINUFFT did not 
provide pre-computed weights for R = 1.25, we therefore limited the 
GPU experiments to R = 2. Following a previous study [39], we selected 
a NUFFT approximation error below 10− 3, leading to kernel widths of 
four for R = 2 and five for R = 1.25 [35]. The planning interface of 
FINUFFT and cuFINNUFT was used, such that NUFFT operators were 
only computed once per type (type one and type two) and per thread and 
could be reused across slices. 
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2.4. Reconstruction experiments 

Strategies used to bin the data could affect the reconstructed images 
depending on the mapping from data to respiratory phases [10] by 
reducing the undersampling or by considering a more robust respiratory 
surrogate. These changes can lead to a difference in reconstruction times 
by altering the convergence of the algorithm, especially if the amount of 
data per respiratory bin is modified. Thus, we extracted respiratory 
signals using two self-gating methods: the baseline strategy described in 
the XD-GRASP study [11] and a self-gating strategy applying an angle- 
dependent correction of the respiratory signal (ADERS) [8]. In the 
ADERS strategy, the magnitude signal of the k-space centre is sorted by 
acquisition angle and a background subtraction based on the moving 
average across adjacent angles is performed. After this correction, the 
quality of the respiratory signal is estimated for each receive coil [40] 
and half of the coils with the lowest data quality are rejected before 
applying PCA across the remaining coils. For a given respiratory signal, 
the acquired data is divided either into respiratory bins [11] or assigned 
to overlapping respiratory bins (ORB), in which a single spoke con
tributes to two adjacent respiratory bins, except for the extremum bins 
corresponding to maximum inhalation and exhalation. We combined the 
two binning techniques with the two self-gating methods, resulting in 
four data preparation strategies (baseline, ADERS, ORB, combined). 

To evaluate the reconstruction speed, volumetric images with 336 ×

336 × 64 voxels across 8 respiratory phases were reconstructed using 8 
iterations of XD-GRASP with regularisation parameter λ = 0.02 for all 
acquisitions and data preparation strategies. Each experiment was 
repeated five times and results were averaged across the runs. Images 
obtained with the fast CPU/ CPU-GPU implementations were compared 
with a parallelised MATLAB implementation based on Feng et al. [11] 
using the Structural Similarity Index Measure (SSIM) [41]. The refer
ence MATLAB implementation relied on the same inter-slice paralleli
sation but did not use the FINUFFT library. To compare the effect of 
integrating the FINUFFT library directly into the MATLAB code, a fifth 
parallel version was implemented using the available FINUFFT CPU 
bindings in MATLAB with an oversampling factor of R = 1.25. 

2.5. Open-source framework 

The proposed fast reconstruction framework (source code available 
on. https://github.com/instituteofcancerresearch) can perform all the 

necessary steps to reconstruct images from raw data, including respi
ratory signal extraction and data sorting. To facilitate the adoption of 
the framework, a MATLAB interface is provided, enabling users to 
change reconstruction parameters and to visualise and export results. 

2.6. Scaling experiments 

For the reconstruction experiments above, the timings were evalu
ated on a high-end consumer system incorporating an Intel i9-11900K 8- 
core CPU, DDR4-2933 MHz random access memory (RAM) and an 
NVIDIA RTX A5000 GPU using FINUFFT v2.0.4 (commit 0e013e6) and 
cuFINUFFT v1.2 (commit c17b3a9). The C++ and CUDA codes were 
compiled with GCC 11.1.0 and NVCC 11.4, respectively, and leveraged 
the AXV512 long vector instructions available on the CPU. 

To test the bottlenecks and the scaling of our accelerated imple
mentations, a single dataset from this study, previously used in [42] was 
reconstructed with the baseline strategy using two other systems - an 
AMD Ryzen 3700X CPU with DDR4-3600 MHz RAM for the R = 1.25 
CPU version and a multi-GPU system containing three NVIDIA 1080Ti 
GPUs for the GPU version. To benefit from the multiple GPUs on the 
multi-GPU system, the slices were distributed equally across the avail
able GPUs such that each GPU reconstructed adjacent slices. The 
observed scaling was compared to the theoretical linear scaling. To 
evaluate the scaling dependency on the number of respiratory phases, 
the same dataset was reconstructed using the Intel system while varying 
the number of bins. 

2.7. Amdhal’s law 

The theoretically achievable times were estimated using Amdahl’s 
law [33] for our CPU and GPU models using Eqs. 3.a and 3.b, assuming 
that the number of CPU cores was higher or equal to the number of slices 
to reconstruct. 

TXD− GRASP,CPU = TPreparation + TThreading + TPlan +max(TSlice) (3.a)  

TXD− GRASP,GPU = TPreparation + TTransfers +max(Tslice) (3.b) 

In the CPU case, the reconstruction time is governed by the slice with 
the longest reconstruction time (max(Tslice)). Using the same data as for 
our scaling experiment, we measured the reconstruction time for each 
slice. In Eq. 3.b, the NUFFT pre-calculations are masked by the time to 

Fig. 1. Parallel implementation of the XD-GRASP algorithm. After extraction of the respiratory signal and sorting of the data, a 1-dimensional fast Fourier transform 
is performed along the Cartesian dimension, to enable parallel solving of Eq. 1. 
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transfer the data from CPU to GPU (TTransfers). In the GPU case, we can 
further assume that TSlice ≈ 0 for all slices reconstructed simultaneously 
on the GPU assuming infinite parallelism. 

3. Results 

3.1. Reconstructed images 

4D-MRIs reconstructed using XD-GRASP showed remaining streak
ing artefacts, primarily originating from the arms. They did not affect 
the excellent visualisation of the internal anatomy with and without the 
compression belt (Fig. 2 and 3). Images reconstructed with the proposed 
fast implementations were identical to the reference MATLAB imple
mentation, with each reconstruction achieving an SSIM of 0.99. Images 
acquired with a compression belt appeared more blurry when using the 
baseline data preparation strategy compared to the other methods. In 
particular, non-moving structures appeared sharper when more data per 
bin was used (ORB and combined) as seen in Fig. 3. 

3.2. Measured speed-ups 

Speed-ups using the C++ implementations can be observed during 
the data preparation, (Fig. 4a) when compared with the MATLAB 
implementations. This part of the code had no GPU acceleration. The 
ADERS strategy showed no timing difference from the baseline. The ORB 
and combined strategies required longer preparation and overall 
reconstruction times (Fig. 4b). Non-overlapping bins (baseline, ADERS) 
were reconstructed in 1060 ± 26 s with MATLAB, 1020 ± 40 s for the 
MATLAB-FINUFFT, 241 ± 3.3 s with CPU and R = 2.0, 120 ± 3 s with 
CPU and R = 1.25, and in 59 ± 1 s with the heterogeneous CPU  + GPU 
implementation. Reducing the oversampling factor from R = 2.0 to R =

1.25 halved the reconstruction time for our CPU-only implementation. 
The GPU version achieved the best speed-up (Fig. 4c), being more than 
17x faster than the baseline version. 

3.3. Scaling 

The CPU implementation showed sub-linear scaling on both tested 
systems (Fig. 5a) with similar single-core performance. The recon
struction benefited from a higher thread count up to the number of 
physical cores of the tested machines. The system with the higher RAM 

bandwidth showed better scaling at higher thread counts. The measured 
speed-up on the system with multiple GPUs, represented in Fig. 5b, was 
higher than the theoretical linear speed-up with the reconstruction 
being 3.6 times faster when using three GPUs. This could be attributed to 
a better resource utilisation across the CPU and GPU. The reconstruction 
time increased linearly with the number of respiratory phases for all 
implementations. 

3.4. Amdhal’s law 

Following the assumptions of Eqs. 3.a and 3.b, we measured that the 
minimal achievable reconstruction time for our datasets would be 
9.42s+TPreparation for the CPU only reconstruction and 1.95s+TPreparation 

for the GPU case. In the GPU case, the data preparation time on the CPU 
would be larger than the slice reconstruction time on the GPU. 

4. Discussion 

Short reconstruction times are required to integrate advanced 
reconstruction methods such as 4D-MRI into online adaptive radio
therapy workflows. By applying parallelisation and high performance 
computing, our open-source implementations shorten the reconstruc
tion time of 4D-MRI while maintaining the same image quality. Using a 
GPU, we achieved reconstruction times of one minute. 

Time constraints for online adaptive radiotherapy are loosely defined 
in literature. Feng et al. suggested that online treatment adaptation re
quires a reconstruction time below two minutes for typical matrix sizes 
of 256 × 256 × 48 voxles and 10 respiratory phases [22], which is 
equivalent to a minimal throughput of 262, 144pixels/second. Our fast 
CPU and GPU implementations exceeded this minimum throughput and 
are therefore promising candidates for MR-guided online-adaptive 
radiotherapy. We compared our implementations to other state-of-the- 
art XD-GRASP implementations based on published information (Sup
plementary Document 1). Most of the previous studies did not meet the 
throughput requirement except for the CPU + GPU implementation 
from Barbone et al. [42], which was faster than all our implementations. 
However, they achieved a lower relative speed-up of 11x and SSIM of 
0.97 compared to the same reference MATLAB implementation, using a 
high-end enterprise-grade system containing two AMD EPYCTM 7551 
and an NVIDIA TESLA V100 GPU. 

Instead of re-implementing the XD-GRASP algorithm in C++/ 

Fig. 2. Slice reconstructed for the end inspiration and end respiration phases. The differences in respiration can be assessed using the size of the liver dome in both 
images and show a larger motion amplitude when no compression belt was applied. Streaking artefacts originating from the arms are visible at the edge of the field- 
of-view, but do not affect the excellent visualisation of the internal anatomy. 
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Fig. 3. End-inspiratory phase of 4D-MRI acquired with abdominal compression and reconstructed from the same acquisition using the different data preparation 
strategies. Details from fine non-moving structures appear sharper in (b), (c) and (d) compared with the baseline (a). 

Fig. 4. Timing and speed-up results for the different 
data preparation strategies using our different imple
mentations. The ORB and combined data preparation 
strategies increased both the data preparation (a) and 
the overall reconstruction times (b). In all cases, the 
GPU implementation was more than 17 times faster 
than the MATLAB reference implementation (c), 
reconstructing images in 60s (baseline, ADERS) and 
77s (ORB, combined). The MATLAB implementation 
using the FINUFFT bindings was slower than the 
original version for ORB and combined with speed-up 
below 1 (dashed line).   
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CUDA, less involved techniques could have been considered to improve 
performance. We explored calling FINUFFT directly from MATLAB, but 
it achieved no performance gain, leading to longer reconstructions when 
overlapping bins were used. Another possible optimisation route would 
be the use of automated conversion tools, such as MATLAB CoderTM to 
generate C++ code. However, this could have led to the duplication of 
interfaces, as the MATLAB reference implementation used an external 
library [43] for performing the NUFFT. 

In all cases, the application gained in performance using multi- 
threading, achieving sub-linear scaling depending on the RAM speed. 
This is compatible with benchmarks performed by the FINUFFT library 
developers [35] who suggested that for a precision of 10− 3, the NUFFT 
execution time was dominated by the RAM access times to the kernel 
data, instead of the theoretical operations speed of the CPU. As 
enterprise-grade systems with high-core counts become available in 
clinical settings [17], the reconstruction time for inter-slice parallelised 
algorithms should decrease until one slice is reconstructed per core, with 
speed-ups getting closer to the ones predicted by Amdahl’s law. 

The number of slices to reconstruct is determined by the size of the 
field-of-view along the superior-inferior axis and the slice thickness. For 
our data, the field-of-view was 200 mm, in line with the maximum 
treatment field of 220 mm of the MR-Linac. Future applications may 
however require larger field-of-views to fully cover large organs-at-risk, 
such as the lungs. In this case, the best performance is obtained if the 
number of slices is a multiple of the number of CPU cores to balance the 
workload equally among cores. 

We noticed a trade-off between reconstruction time and image 
quality when using the different data preparation strategies. While more 
temporal blurring could be expected when doubling the data in each 
respiratory bin, we found that the images reconstructed using the ORB 
and combined methods appeared sharper. We hypothesise that the 

reduced amount of undersampling artefacts combined with a lower total 
variation score between adjacent overlapping respiratory bins could 
mitigate the smoothing effects of the regularisation. 

In this study, we reconstructed data acquired with a balanced 
contrast and fat-suppression. Clinically, however, we found that the 
optimal contrast is dependent on the patient. Multiple contrasts are 
acquired in a first session (balanced and spoiled sequences with and 
without fat-suppression) and the contrast offering the best tumour and 
organs-at-risk visibility is used throughout the treatment sessions. The 
use of different contrasts could affect the reconstruction times of our fast 
implementations. 

The primary applications for respiratory-correlated 4D-MRI in MR- 
guided radiotherapy [10] are measuring the extent of respiratory mo
tion for treatment planning, providing data as input for time-resolved 
4D-MRI and calculating the delivered dose [44,45]. These concepts 
apply to image-guided proton therapy as well, where interplay effects 
[7] and the Bragg peak depth could require an even lower image 
reconstruction latency [46]. 

We explored the benefits of inter-slice parallelism for the XD-GRASP 
algorithm. The presented approach could be applied to other MRI 
reconstruction algorithms, where at least one sampling dimension is 
Cartesian, such as the stack-of-stars [28] or the stack-of-spirals [47] 
patterns and could be extended to time-resolved 4D-MRI [10] based on 
XD-GRASP such as MRSIGMA [22] or SPIDERM [48]. In particular 
regarding time-resolved 4D-MRI, the use of randomized projection- 
encoding [49] could be beneficial, but wouldn’t allow for straight- 
forward inter-slice parallelism. Compared with AI-based reconstruc
tion schemes [50,51], our proposed implementations provided an 
excellent agreement with the reference implementation. 

Using our open-source implementation, 4D-MRI reconstruction takes 
less than two minutes, even without GPU accelerator, enabling their use 

Fig. 5. The straight line represents the theoretical linear speed-up for the number of threads (a) and the number of GPUs used (b). The CPU scaling experiment 
showed less than optimal scaling on both testing systems though the system with higher RAM speed achieved higher scaling. In the GPU case, a hyper-scaling 
phenomenon was observed where the observed speed-up was higher than the linear speed-up. Reconstruction time scaled linearly with the number of respiratory 
phases (c). 
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for online adaptive radiotherapy. Our results make 4D-MRI an attractive 
solution for monitoring intra-fraction motion in MR-guided radio
therapy, where the superior soft-tissue contrast compared to 4D 
computed tomography could reduce the uncertainty in tumour position 
and enable online adaptive gated treatments and real-time tracking [52] 
without the need for fiducial markers. This could benefit the treatment 
of lung, liver, pancreas and oligometastatic disease [53]. 
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